数学人教版七年级上册合并同类项.2整式的加减(1)教案
最新2024人教版七年级数学上册4.2 第1课时 合并同类项--教案
4.2 整式的加减
第1课时合并同类项
一、新课导入
引言:一辆汽车从香港口岸行驶到东人工岛的平均速度为96 km/h. 在海底隧道和主桥上行驶的平均速度分别为72 km/h 和92 km/h. 请根据这些效据回答下列问题:
(2)如果汽车通过海底隧道需要a h,从香港口岸行驶到东人工岛的时间是通过海底隧道时间的1.25 倍,你能用含a 的代数式表示香港口岸到西人工岛的全长吗?
教师:行程问题:
香港口岸到西人工岛
=海底隧道+香港口岸到东人工岛
=72a+96×1.25a,即72a+120a.
如何计算72a+120a呢?下面我们类比数的运算,讨论整式72a,120a的加法运算.
二、探究新知
知识点一:同类项
探究1:填空.
(1) 72×2 + 120×2 = ( )×2
(2) 72×(-2) + 120×(-2) = ( )×(-2)
师生活动:学生先独立解答,然后学生代表回答,教师教师给予恰当评析.
教师追问:式子72a+ 120a与问题2中的两个算
1.找
2.移
3.合并
教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.
1.数式类比,提升迁移能力。
人教版七年级数学教案(上)整式的加减_教案(1--8)课时
第二章整式的加减2.1 整式 2.1.1单项式教学目标(1)能用代数式表示实际问题中的数量关系.(2)理解单项式、单项式的次数,系数等概念,会指出单项式的次数和系数.重、难点与关键1.重点:单项式的有关概念.2.难点:负系数的确定以及准确确定一个单项式的次数.教学过程一、新授6a 2,a 3,2.5x ,vt ,-n .观察上面各式中运算有什么共同特点?上面各式中,数字与字母之间,字母与字母之间都是乘法运算,•它们都是数字与字母的积,例如:6a 2表示6×a 2,a 3表示1×a 3,2.5x 表示2.5×x ,vt 表示1×v ×t ,-n•表示-1×n .像上面这样,只含有数与字母的积的式子叫做单项式.单独的一个数或一个字母也是单项式.如:-2,a ,13,都是单项式,而1a,1+x 都不是单项. 单项式中的数字因数叫做这个单项式的系数,例如:6a 2的系数是6,a 3的系数是1,-n 的系数是-1,-5ab 的系数是-15. 单项式表示数字与字母相乘时,通常把数字写成前面,当一个单项式的系数是1或-1时通常省略不写. 一个单项式中,所有字母的指数的和叫做这个单项式的次数.例如,2.5x•中字母x 的指数是1,2.5x 是一次单项式;vt 中字母v 与t 的指数和是2,vt 是二次单项式,-a b 2c 中字母a 、b 、c 的指数和是4,-a b 2c 是4次单项式. 二、范例学习例1.用单项式填空,并指出它们的系数和次数. (1)每包书有12册,n 包书有_______册.(2)底边长为a ,高为h 的三角形的面积是______. (3)一个长方体的长和宽都是a ,高是h ,它的体积是_______.(4)一台电视机原价a 元,现按原价的9折出售,这台电视机现在售价为_____元. (5)一个长方形的长为0.9,宽是a ,这个长方形的面积是_________. 三、巩固练习1.下列各式是不是单项式?为什么? (1)x-2y ; (2)-4;(3);(4)55x a bm; (5)-1. 2.判断下列各说法是否正确,错误的改正过来.(1)单项式-xy 2的系数是0,次数是2. (2)单项式27a 2的系数是2,次数是9.(3)单项式-23n x y的系数是-23,次数是n+1.3.请你写出系数为-,含有x 、y ,次数为4的所有单项式.4.课本第56页练习1、2题.四、课堂小结1.什么叫单项式?举例说明.2.单独的一个数或一个字母是单项式吗?xa是单项式吗?为什么? 3.什么叫单项式的系数?什么叫单项式的次数?举例说明. 五、作业布置1.课本第59页至第60页,习题2.1第1、2、8题.2.选用课时作业设计. 作业设计 一、判断题.(对的打“∨”,错的打“×”) 1.x 是单项式.( ) 2.6不是单项式.( ) 3.m 的系数是0,次数也是0.( ) 4.单项式4πxy 的系数是4π,次数是2.( ) 二、填空题.5.x 2yz 的系数是________,次数是________.6.-372ab 的系数是______,次数是_______. 7.如果单项式-2x 2y n 与单项式a 4b 的次数相同,则n=________.8.写出系数为5,含有x 、y 、z•三个字母且次数为4•的所有单项式,•它们分别是_______. 三、选择题.9.下列各式中单项式的个数是( ).3x ,x+1,-212,-1,0.72,42a x xy -. A .2个 B .3个 C .4个 D .5个10.单项式-x 2yz 2的系数、次数分别是( ).A .0.2 B .0.4 C .-1,5 D .1,4 四、解答题.11.苹果的价格比梨贵35%,如果梨的价格是每千克m 元,那么苹果的价格是多少?如果梨的价格比苹果便宜10%,梨的价格仍是每千克m 元,那么苹果的价格是多少?12.买一级肉5千克和买二级肉6千克用的钱同样多,如果一级肉每千克a 元,那么二级肉每千克多少元?如果用买b 千克一级肉的钱去买二级肉,可以买多少千克?个人修改:教学反思:2.1.2 多项式教学目标使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数. 重、难点与关键1.重点:多项式以及有关概念.2.难点:准确确定多项式的次数和项. 教学过程一、复习提问1.什么叫单项式?举例说明.2.怎样确定一个单项式的系数和次数?-237ab c的系数、次数分别是多少? 3.列式表示下列问题:(1)一个数比数x 的2倍小3,则这个数为________. (2)买一个篮球需要x (元),买一个排球需要y (元),买一个足球需要z (元),买3个篮球,5个排球,2个足球共需________元.(3)如图1,三角尺的面积为________.(4)如图2是一所住宅的建筑平面图,这所住宅的建筑面积是________平方米.(1) (2)上面列出的式子2x-3,3x+5y+2z ,12ab-πr 2,x 2+2x+18,它们是单项式吗?这些式子有什么共同特点?与单项式有什么关系?2x-3可看作2x 与-3的和:3x+5y+2z 可以看作单项式3x 、5y 与2z 的和;同样12ab-πr 2看作12ab 与-πr 2的和,x 2+2x+18可以x 2、2x 、18的和.二、新授请同学们阅读课本第57页有关内容,并回答下列问题.1.几个单项式的和叫做_________; 2.在多项式中,每个单项式叫做_________; 3.在多项式中,不含字母的项叫做_________;4.在多项式中,_____________________,叫做这个多项式的次数. 5.多项式的次数与单项式的次数有什么区别?6(1)多项式的次数与单项式的次数概念不同,但又有联系,•首先求出此多项式各项(单项式)的次数,次数最高的就是这个多项式的次数.(2)一个多项式的最高次项可以不唯一,次高项也可以不唯一,•如,•多项式3x 2y-12xy 2+x 2-xy-5中,最高次项为3x 2y 和-12x y 2,二次项也有2项,x 2和-xy ,•这个多项式为二次五项式.单项式和多项式统称为整式,例如:100t ,6a 3,vt ,-n ,2x-3,3x+5y+2z 等都是整式. 三、范例学习例1.用多项式填空,并指出它们的项和次数. (1)温度由t ℃下降5℃后是_______℃.(2)甲数x 的13与乙数y 的12的差可以表示为_________. (3)如课本图2.1-3,圆环的面积为________.(4)如课本图2.1-4,钢管的体积是________.例2.一条河流的水流速度为2.5千米/时,如果已知船在静水中的速度,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、•乙两条船在静水中的速度分别是20千米/时和35千米/时,•则它们在这条河流中的顺水行驶和逆水行驶的速度各是多少? 四、巩固练习1.下列式子中,哪些是单项式?哪些是多项式?哪些是整式? 3x ,2x-1,13m +,-ab ,-5,2x-1,3m-4n+m 2n . 2.判别正误:(1)多项式-x 2y+2x 2-y 的次数2.( )(2)多项式-12-a+3a 2的一次项系数是1.( ) (3)-x-y-z 是三次三项式.( ) 3.课本第59页练习. 4.课本第61页第10题. 五、课堂小结1.什么叫做多项式?多项式是整式吗?整式是多项式吗? 2.什么叫多项式的项?什么叫做常数项?举例说明? 3.什么叫做多项式的次数?六、作业布置 1.课本第60页,习题2.1第2、3、4、5、6、7题作业设计一、填空题.1.式子-35ab ,229,32x y x +,-a 2bc ,1,x 3-2x+3,3a ,1x +1中,单项式的是______,多项式的是_______.2.多项式-23x y+2x-3是_______次_______项式,最高次项的系数是______,常数项是________. 3.2x 2-3x y 2+x-1的各项分别为________. 二、选择题.4.一个五次多项式,它任何一项的次数( ).A .都小于5B .都等于5C .都不小于5D .都不大于5 5.下列说法正确的是( ). A .x 2+x 3是五次多项式 B .3a b+不是多项式C .x 2-2是二次二项式 D .xy 2-1是二次二项式 三、列式表示.6.n 为整数,不能被3整除的整数表示为________.7.一个三位数,十位数字为x ,个位数字比十位数字少3,•百位数字是个位数字的3倍,则这个三位数可表示为________.8.某班有学生a 人,若每4人分成一组,有一组少2人,则所分组数是________.9.如图所示,阴影部分的面积表示为________.10.用火柴棒按图4的方式搭塔式三角形.(1)观察填表:(2)照这样下去,搭起的大三角形一条边用了n根火柴棒,这样的小三角形有多少个?个人修改:教学反思:2.1.3整式教学目标1.理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。
人教版七年级数学上册教案(RJ) 第二章 整式的加减
第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.重点掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点识别单项式的系数和次数.一、创设情境,导入新课师:出示图片. 青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?(2)t 小时呢? 二、推进新课(一)用含字母的式子表示数量关系. 师:出示第54页例1.生:解答例1后,讨论问题,用字母表示数有什么意义?学生经过讨论得出一定的答案,但可能不会太规范,教师总结.师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).师生共同完成例2,进一步体会用字母表示数的意义.巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.引言与例1中的式子100t ,0.8p ,mn ,a 2h ,-n 这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 0.7,-a ,-3+b ,2a 2b 7,0,1x .(三)单项式的系数,次数.师:提出问题,观察单项式,6a 2,2.5x ,-n ,2a 2b7,它们各由哪几个部分组成? 生:观察讨论得出结果.师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?生:举手回答.师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?练习:第57页练习第1题.(四)例题讲解.例3:用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有________册.(2)底边长为a,高为h的三角形面积是________.(3)一个长方体的长和宽都是a,高是h,它的体积是________.(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________.(5)一个长方形的长是0.9,宽是a,这个长方形的面积是________.生:独立完成,然后举手回答.师:针对学生的问题,进行点拨和进一步的解释.师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?生:自由发表意见.师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓励)三、练习与小结练习:第57页练习第2题.小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.四、布置作业习题2.1第1题.教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.第2课时多项式1.掌握多项式的概念,进而理解整式的概念.2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.重点多项式的概念及多项式的项数、次数的概念.难点多项式的次数.一、创设情境,导入新课师:出示问题(投影).观察一列数1,4,9,16,25,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?生:思考得出答案,第一列中第6个数是36,第n 个数是n 2,第二列中第6个数是37,第n 个数是n 2+1. 师:我们知道,n 2是一个单项式,而n 2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题. 二、推进新课(一)多项式及多项式的项数、次数的概念师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x +5y +2z ,12ab -πr 2,x 2+2x +18,有何特点?生:思考讨论.师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2x 可以叫做三项多项式.师:进一步引导学生探究多项式次数的概念. 生:可以发挥自己的想象去探究给多项式的次数命名的方法,教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.师:在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.师:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.(二)整式的概念学生阅读教材,找出整式的概念.师:什么是整式?生:单项式和多项式统称为整式.师:进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗? 生:讨论后回答.师:根据学生回答情况予以点拨、强调. (三)例题例4:如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积.(π取3.14)解析:圆环的面积是外部大圆的面积与内部小圆面积的差.生:写解答过程.师:巡回指导,发现问题,及时点拨.三、练习与小结练习:58~59页练习.小结:1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?四、布置作业习题2.1第2题.本课的知识点比较简单,属于概念介绍型的,先让学生自己阅读课本,了解相关的概念,然后完成自学检测.教师进行适当点评后,学生完成分层练习,巩固对概念的掌握.整节课基本以学生自学为主线,完成整个教学过程,意在培养学生的自学能力.2.2整式的加减(4课时)第1课时同类项1.理解同类项的概念,在具体情境中,认识同类项.2.理解合并同类项的概念,掌握合并同类项的法则.重点理解同类项的概念,掌握合并同类项的法则.难点根据同类项的概念在多项式中找同类项.活动1:创设情境,导入新课师出示图片引言中的问题2.在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段的时间是2.1t小时,这段路的全长(单位:千米)是100t+120×2.1t,即100t+252t.怎样化简这个式子呢?活动2:探究同类项及合并同类项的方法教师出示教材第62页探究1;学生讨论完成,然后教师继续出示63页探究2内容,学生讨论交流完成.师生共同归纳特点,引出同类项的定义.像100t与252t,3ab2与-4ab2这样的式子,它们所含字母相同,并且相同字母的指数也相同的项叫做同类项.师进一步提出问题,在探究2中,你是如何化简的?学生观察、讨论、交流,然后归纳出合并同类项的法则.尝试运用:化简:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=(4x2-8x2)+(2x+3x)+(7-2)(运用运算律进行整理)=(4-8)x2+(2+3)x+(7-2)(运用分配律进行合并)=-4x2+5x+5一般结果按某个字母的升降幂排列.活动3:巩固运用法则教师出示例1.师生共同完成,教师要给学生示范,可以采用学生口述,教师板书的方法.过程中注意结合法则和方法.练习:教材第65页练习第1题.教师出示例3.学生尝试独立完成,然后同学交流.教师点拨:这里的结果用整式表示.练习:教材第65页练习2,3题.活动4:小结与作业小结:谈谈你对同类项及合并同类项的认识.作业:习题2.2第1题.本节课在概念的讲解时通过典型的例题让学生充分去感受概念的意义,启发学生,鼓励学生合作交流,让学生充分发表意见,使学生真正成为学习的主人.因而,人人都开动脑筋,积极发言,积极参与,掌握知识效果较好.第2课时去括号法则能运用运算律探究去括号法则,并且利用去括号法则将整式化简.重点去括号法则,准确应用法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:创设情境,导入新课师:数学爱好者发现了一个非常有趣的现象,将一个两位数的个位和十位对调得到一个新的两位数以后,这两个数的差能被9整除,和能被11整除,这是为什么呢?提示:如果设这个两位数的个位数字是a,十位数字是b,如何表示这个两位数?学生讨论以后师生共同得出以下结果:原数10b+a,新数10a+b差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,a,10a,b看做几个数,类似小学中的计算,你能化简这两个式子吗?学生讨论交流,然后尝试完成.10b+a+(10a+b)=10b+a+10a+b==11a+11b10b+a-(10a+b)=10b+a-10a-b=9b-9a现在你能说明为什么一个能被9,另一个能被11整除了吗?再看下面的问题,你能化简这两个式子吗?你的依据是什么?100u+120(u-0.5)100u-120(u-0.5)学生交流讨论,然后尝试完成.活动2:归纳去括号法则师:观察以上各式,在去括号的过程中,你发现有什么规律?学生讨论交流.归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,对于形如+(10a+b),-(10a+b)的式子,可以将因数看做1或者-1.活动3:运用法则教材展示教材例4.教师提示:先观察判断是哪种类型的去括号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.易犯错误:①括号前是“-”时,去括号以后,只是第一项改变了符号,而其他各项未变号.②括号前面的系数不为1或者-1时,容易漏乘除第一项以外的项.师生共同完成,学生口述,教师板书.教师展示例5.问题:船在水中航行时它的速度都与哪些量有关,它们之间的关系如何?学生思考、小组交流.然后学生完成,同学间交流.活动4:练习与小结练习:教材第67页练习.小结:1.谈谈你对去括号法则的认识.2.去括号的依据是什么?活动5:作业布置习题2.2第2,5,8题.通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则,这样的设计起点低,学生学起来更自然,对新知识更容易接受.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y ……………………………………合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.第4课时整式的加减让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.重点整式的加减.难点总结出整式的加减的一般步骤.一、创设情境,复习引入练习:化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?二、推进新课师:出示投影.例8:做两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?分析:做一个纸盒用料多少,实际上是在求什么?学生回答.大盒用料多少,小盒用料多少?请列式表示.解:略教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.教师出示教材例9.教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.三、练习与小结练习:教材第69页练习第3题.小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?四、布置作业习题2.2第4,7题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。
4.2 整式的加减第1课时 合并同类项 课件(共37张PPT)
-
1 3
+
1 3
c2
abc.
当a
-
1 6
,b
2,c
-3
时,原式
-
1 6
2
-3
=1.
3 合并同类项的应用
例5 一天,王村的小明奶奶提着一篮子土豆去换苹果,双方 商定的结果是:1千克土豆换0.5千克苹果.当称完带篮子的土 豆重量后,摊主对小明奶奶说:“别称篮子的重量了,称苹 果时也带篮子称,这样既省事又互不吃亏.”你认为摊主的话 有道理吗?请你用所学的有关数学知识加以判定.
周长为30x .当时 x 2cm ,周长为 60 cm.
5.合并同类项: (1)-a-a-2a=__-_4_a____; (2)-xy-5xy+6yx=__0____; (3)0.8ab2-a2b+0.2ab2=_a_b_2_-_a_2b_; (4)3a2b-4ab2-4+5a2b+2ab2+7=_8_a_2b_-_2_a_b_2_+_3_.
=- x2y+xy2
练一练
合并同类项: (1)6x+2x2-3x+x2+1; (2)-3ab+7-2a2-9ab-3.
先分组, 再合并
解:(1)原式=(6x-3x)+(2x2+x2)+1 =3x+3x2+1
(2)原式=(-3ab-9ab)-2a2+(7-3) =-12ab-2a2+4
归纳总结
“合并同类项”的方法: 一找,找出多项式中的同类项,不同类的同类项用不同 的标记标出; 二移,利用加法的交换律,将不同类的同类项集中到不 同的括号内; 三并,将同一括号内的同类项相加即可.
答案:下降1.5a
当堂练习
✓ 当堂反馈 ✓ 即学即用
最新人教版七年级数学上册《第3课时 整式的加减》优质教案
2.2 整式的加减第3课时整式的加减一、新课导入1.课题导入:前面我们学习了合并同类项,去括号等知识,它们是进行整式加减运算的基础,这节课我们来学习整式的加减运算.(板书课题).2.三维目标:(1)知识与技能让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.(2)过程与方法培养学生的观察、分析、归纳、总结以及概括能力.(3)情感态度认识到数学是解决实际问题和进行交流的重要工具.3.学习重难点:重点:熟练进行整式加减运算.难点:能运用整式加减运算解决简单的实际问题.二、分层学习1.自学指导:(1)自学内容:教材第67页例6的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,理解例6中两个算式的意义,尝试归纳出整式加减运算的解题步骤.(4)自学参考提纲:①第(1)题是计算多项式2x-3y和5x+4y的和;第(2)题是计算多项式8a-7b和4a-5b的差.这说明求几个多项式的和或差的运算时,每个多项式都要用括号括起来.②由例题可归纳出整式加减运算的一般步骤是怎样的?小组同学相互交流一下自己的见解.先去括号,再移项,合并同类项.③尝试解答下列问题,并相互展示自己的计算过程和结果.a.计算:5(3a2b-ab2)-3(ab2+2a2b)原式=15a2b-5ab2-3ab2-6a2b=9a2b-8ab2.b.求12x-2(x-13y2)+(-32x+13y2)的值,其中x=-2,y=23.原式化简为y2-3x.当x=-2,y=23,原式=(23)2-3×(-2)=589.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生是否掌握了去括号法则及自学参考提纲完成情况.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)整式加减的一般步骤:先去括号,再合并同类项.(2)应注意的问题:①去括号时,不能漏乘括号前的系数,并注意符号的变化.②求值时,要先化简,并注意求值的书写格式.(3)练习:教材第69页“练习”的第1、2、3题.1.自学指导:(1)自学内容:教材第68页例7和例8.(2)自学时间:8分钟.(3)自学要求:认清例题中反映的条件,思考问题中要利用的数量关系,正确列出相关的代数式.(4)自学参考提纲:①例7有两种考虑问题的角度.第一种先求出小红和小明买这两种物品分别花费多少钱,再得出花费多少钱,这样可列出式子:(3x+2y)+(4x+3y).第二种先求出买笔记本和买圆珠笔分别花费多少钱,再得共花费多少钱,于是可列出式子:(3x+4x)+(2y+3y).②长方体共有几个面?都是什么形式?相对的两个面大小有什么关系?因此,在例8中,a.小纸盒的表面积是(2ab+2bc+2ca)cm2,大纸盒的表面积是(6ab+8bc+6ca)cm2.b.做两个纸盒共用料多少平方厘米?可列出式子:(2ab+2bc+2ca)+(6ab+8bc+6ca).计算得8ab+10bc+8ca.c.做大纸盒比做小纸盒多用料多少平方厘米,可列出式子(6ab+8bc+6ca)-(2ab+2bc+2ca).计算得4ab+6bc+4ca.2.自学:同学们可结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生的自学情况以及存在的问题.注意在求多项式的和或差时,相应的多项式是不是没加括号.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)集中讲解学生自学过程中存在的共性问题.(2)练习:甲村种植小麦a亩,种植水稻面积是小麦面积的2倍,乙村种植小麦b亩,种植水稻的面积比小麦面积的3倍少200亩,求甲、乙两村两种作物的总面积是多少亩?解:甲村种植作物总面积为(a+2a)亩,乙村种植总面积为(b+2b-200)亩.所以甲、乙两村两种作物的总面积为(a+2a)+(b+3b-200)=(3a+4b-200)亩.三、评价1.学生的自我评价(围绕学习目标):自我评价在本节课学习的收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中相关方面情况进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时是在学生掌握了合并同类项、去括号法则的基础上学习的,主要任务是通过探索性练习,引导学生总结归纳出整式加减的一般步骤,并应用其进行整式加减的准确运算,所以可采用以旧带新的方式,让学生在练习中熟悉法则,纠正错误,弥补不足.鼓励学生间互相交流,互相改正问题,充分体现学生自行解决问题的主体作用.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(40分)计算:(1)(5a+4c+7b )+(5c-3b-6a)解:原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)(8xy-x 2+y 2)-(x 2-y 2+8xy)解:原式=8xy-x 2+y 2-x 2+y 2-8xy=-2x 2+2y 2(3)(2x 2-12+3x)-4(x-x 2+12) 解:原式=2x 2-12+3x-4x+4x 2-2=6x 2-x-52 (4)3x 2-[7x-(4x-3)-2x 2]解:原式=3x 2-(7x-4x+3-2x 2)=3x 2-7x+4x-3+2x 2=5x 2-3x-32.(10分)求(-x 2+5+4x )+(5x-4+2x 2)的值,其中x=-2.解:(-x 2+5+4x)+(5x-4+2x 2)=-x 2+5+4x+5x-4+2x 2=x 2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13.3.(10分)已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,求这个多项式.解:这个多项式为(3x 2+4x-1)-(3x 2+9x)=3x 2+4x-1-3x 2-9x=-5x-1.二、综合应用(每题15分,共30分)4.(10分)窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形.已知下部小正方形的边长是a cm ,计算:(1)窗户的面积;(2)窗户外框的总长.解:(1)窗户的面积为:22a π+4a 2=π+282a π+ (cm 2) (2)窗户的外框总长是:πa+2a ×3=πa+6a=(π+6)a(cm)5.(10分)观察下列图形并填表(单位:cm).三、拓展延伸(20分)6.(20分)(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数.(2)列式表示上面的两位数与10的乘积.(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?解:(1)10b+a;(2)10(10b+a);(3)10b+a+10(10b+a)=11(10b+a),这个和是11的倍数,因为它含有11这个因数.学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。
人教版七年级上册数学2.2整式的加减(合并同类项)说课稿
2.2整式的加减(合并同类项)说课稿各位评委:上午好!我今天说课的课题是《整式的加减》。
下面我将从以下四个方面进行说课。
一教材分析二教法与学法三教学过程设计四板书设计教材分析:教材地位:本节课是新人教版七年级(上册)第二章第2.2的第一课时,是在结合学生已有的生活经验,在学习了用字母表示数、有理数运算以及单项式、多项式的基础上,对同类项进行合并、探索、研究的一个课题。
“合并同类项”这一知识点是整式加减的核心,它为学习一元一次方程提供了理论依据,在本册中起着承上启下的作用。
通过以上分析,我制订了如下的教学目标:知识与技能:理解同类项的概念,会识别同类项。
掌握合并同类项法则,会利用法则来化简整式。
过程与方法:经历合并同类项法则的概括过程,进一步发展学生的抽象思维能力和概括能力;通过分组合作学习活动,学会在活动中与他人合作。
情感态度与价值观:通过合并同类项法则的概括与合作学习的过程,培养学生从特殊到一般的思维认知规律及团体合作精神和积极参与、勤于思考意识根据学生的认知水平,认知能力和教材的特点,我确定了本节课的重难点。
重点:同类项的概念、合并同类项的法则及应用。
难点:正确识别同类项;准确合并同类项。
教法与学法:学情分析:七年级学生刚刚跨入少年期,理性思维的发展还有很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱教法:本节课中我先由具体实例提出问题,采用“自主探究—合作交流—学以致用—课堂收获—分层训练—课后探究”的模式展开教学,让学生经历知识的形成与应用过程,从而更好地理解数学知识,使学生主动地获取知识,积累数学活动经验。
学法:学生心理特征和中小学教材衔接的特点采用引导发现法,讨论法引导学生从具体生活情景及已有的知识和生活经验出发,用眼睛去观察,用大脑去思考,在自主探索与合作交流的氛围中,提出问题,共同解决问题。
人教版七年级数学《整式的加减》教案
整式的加减[教学目标]1.知识与能力:理解并掌握合并同类项的概念,能够利用整式的加减法则对整式进行加减运算.2.过程与方法:能从具体情境中抽象出数量关系和变化规律,使学生经历对具体问题的探索过程,培养符号感.3.情感、态度与价值观:通过丰富有趣的现实情境,使学生经历从具体问题中抽象出数量关系的过程,在解决问题中了解数学的价值,增强学生“用数学”的信心.[重点难点]1.教学重点:合并同类项的概念,整式的加减法则.2.教学难点:合并同类项的理解.[教学方法]创设情境——主体探究——合作交流——应用提高.[教学过程]一、创设情境,激发学生的兴趣,引出本节课所要研究的内容活动 1:填空,并解释等式成立的依据.(1)x + 2x + 4x - 3x =________;(2)3x2 + 2x2 =_________;(3)3ab2 - 4ab2 =________.学生活动设计:学生自己解决上述问题,然后观察结果,解释等式成立的依据.经过思考可以发现,上述等式可以利用乘法分配律进行运算,从而把上述多项式进行合并.教师活动设计:引导学生在观察的基础上归纳出合并同类项的定义:若两个单项式中所含字母相同,且相同字母的指数也相同,那么这两个单项式叫做同类项,利用分配律可以把同类项进行合并,合并时把它们的系数相加作为新的系数,而字母部分不变.所以上述各式计算结果应为(1)x +2 x +4 x -3x =(1+2+4-3)x = 4 x ;(2)3x 2 + 2x 2 =(3+2)x 2 = 5x 2;(3)3ab 2 - 4 ab 2=(3-4)ab 2 = - ab 2.活动 2:1.合并下列各式的同类项.(1)2251xy xy -; (2)-3x 2y + 2x 2y + 3xy 2 - 2xy 2; (3)4a 2 + 3b 2 + 2ab - 4a 2 – 4b 2.解:(1)2251xy xy - 2511xy ⎪⎭⎫ ⎝⎛-= 254xy =; (2)-3x 2y + 2x 2y + 3xy 2 - 2xy 2=(-3 + 2)x 2y +(3 - 2)xy 2= - x 2y+ xy 2;(3)4a 2 + 3b 2 + 2ab - 4a 2 – 4b 2 =(4a 2 - 4a 2)+(3b 2 – 4b 2) + 2ab =(4 – 4)a 2 + (3 - 4)b 2 + 2ab= - b 2 + 2ab .学生活动设计:学生独立思考,只需要辨别清楚各个问题中的同类项即可.教师活动设计:引导学生在解决问题后,分析各个多项式的项,找到同类项并进行合并,进行交流,在交流中纠正一些不正确的想法.2.(1)求多项式 2x 2 - 5x + x 2 + 4x – 3x 2 – 2 的值,其中 21=x ; (2)求多项式 22313313c a c abc a +--+ 的值,其中 61-=a ,b = 2,c = –3. 分析:在求多项式的值时,可以先将多项式中的同类项合并,然后再求值,这样做往往可以简化计算.解:(1)2x 2 - 5x + x 2 + 4x – 3x 2– 2=(2 + 1 - 3)x 2+(-5 + 4)x – 2= - x – 2; 当 21=x 时,原式 = 21- - 2 =25-. (2)22313313c a c abc a +--+23131)33(c abc a ⎪⎭⎫ ⎝⎛+-++-== abc ;当 61-=a,b = 2,c = -3 时,原式13)(261=-⨯⨯⎪⎭⎫ ⎝⎛-=. 3.(1)水库中水位第一天连续下降了 a 小时,每小时平均下降 2 cm ;第二天连续上升了 a 小时,每小时平均上升 cm ,这两天水位总的变化情况如何?(2)某商店原有 5 袋大米,每袋大米为 x 千克,上午卖出 3 袋,下午又购进同样包装的大米 4 袋. 进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,上升的水位变化量记为正. 第一天水位的变化量为 -2a cm ,第二天水位的变化量为 a cm .两天水位的总变化量为-2a + =(-2 + a = (cm ).这两天水位总的变化情况为下降了 cm .(2)把进货的数量记为正,售出的数量记为负.进货后这个商店共有大米5x - 3x + 4x =(5 - 3 + 4)x = 6x (千克).活动 3:合并下列各式中的同类项.(1)4x 2 + 2x + 7 + 3x - 8x 2- 2;(2)2x 2 - 3x + 1 - 3x 2 + 5x - 7.学生活动设计:学生独立思考,分析问题(1)可以发现,这个多项式中 4x 2 与 -8x 2 是同类项,可以合并;2x 与 3x 是同类项,7 与 -2 是同类项,于是4x 2 + 2x + 7 + 3x - 8x 2 - 2 =(4 - 8)x 2 +(2 + 3)x +(7 - 2)= -4x 2 + 5x + 5.对问题(2)也作同样的分析.教师活动设计:引导学生在解决问题时,分析多项式的各个项,从中找到同类项并进行合并,进行交流.然后在交流中纠正一些不正确的想法.二、问题引申、探索整式的加减法则活动 4:观察下列式子的变形,你能发现什么?(1)+120(t-)=+120 t-60;(2)-120(t-)=-120 t+60.发现:括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反.以上为去括号法则,依据是乘法分配律做一做.1.化简下列各式:(1)8a + 2b +(5a - b);(2)(5a –3b)-3(a2-2b).解:(1)8a + 2b +(5a - b)= 8a + 2b + 5a - b= 13a + b;(2)(5a - 3b)- 3(a2 - 2b)= 5a - 3b –(3a2 - 6b)= 5a - 3b –3a2+6b= -3a2+5a + 3b.2.计算下列各式,看看你有什么发现?(1)163 + 87 - 77,163 +(87 - 77);9a + 6a - a,9a +(6a - a);(2)123 – 68 - 32,123 -(68 + 32);9a - 6a + a,9a -(6a - a).学生活动设计:学生独立完成以上问题的解答,在活动中获取相应的结论.解答:(1)163 + 87 – 77 = 163 +(87 - 77),①9a + 6a– a = 9a +(6a - a);②(2)123 – 68 – 32 = 123 -(68 + 32),①9a - 6a + a = 9a -(6a - a).②添括号法则:添括号后,括号前面是正号,括到括号里的各项都不改变符号;添括号后,括号前面是负号,括到括号里的各项都改变符号.做一做.1.计算:(1)127x + 44x + 56x;(2)131a - 67a - 33a.解:(1)127x + 44x + 56x= 127x +(44x + 56x)= 127x + 100x= 227x;(2)131a - 67a - 33a= 131a -(67a +33a)= 131a - 100a= 31a.2.计算:(1)(2x - 3y)+(5x + 4y);(2)(8a - 7b)-(4a - 5b).分析:第(1)题是计算多项式 2x - 3y和 5x +4y 的和;第(2)题是计算多项式8a–7b 和 4a –5b的差.解:(1)(2x - 3y)+(5x + 4y)= 2x - 3y + 5x + 4y=(2x +5x)-(3y -4y)= 7x - (-y)= 7x + y;(2)(8a - 7b)-(4a - 5b)= 8a - 7b - 4a +5b=(8a– 4a)-(7a - 5b)= 4a - 2b.3.一种笔记本的单价是x 元,圆珠笔的单价是y 元.小红买这种笔记本 3 个,买圆珠笔 2 支;小明买这种笔记本 4 个,买圆珠笔 3 支.买这些笔记本和圆珠笔,小红和小明一共花了多少钱?解法一:小红买笔记本和圆珠笔共花(3x + 2y)元,小明买笔记本和圆珠笔共花(4x+3y)元.小红和小明共花(3x + 2y)+(4x+3y)= 3x + 2y + 4x + 3y=(3x + 4x)+(2y + 3y)=7x+5y(元).解法二:小红和小明买笔记本共花(3x + 4x)元,买圆珠笔共花(2y+3y)元.小红和小明共花(3x + 4x)+(2y + 3y)=7x + 5y(元).4.做两个长方体纸盒,尺寸如下(单位:cm):长宽高小纸盒a b c大纸盒 2b 2c(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?学生活动设计:学生自主探索,完成上述两个问题,有困难时可以进行适当的讨论、交流,进一步总结归纳整式的加减法则.经过分析可以发现,小纸盒的表面积是(2ab + 2bc + 2ac )cm 2;大纸盒的表面积是 (6ab + 8bc + 6ac )cm 2.对于问题(1),上述两个多项式作加法(2ab + 2bc + 2ac )+(6ab + 8bc + 6ac )= 2ab + 2bc + 2ac + 6ab + 8bc + 6ac= 8ab + 10bc + 8ac ;对于问题(2),上述两个多项式作减法(6ab + 8bc + 6ac )-(2ab + 2bc + 2ac ) = 6ab + 8bc + 6ac - 2ab - 2bc - 2ac= 4ab + 6bc + 4ac .教师活动设计:让学生独立完成上述问题,接着引导学生对整式的加减法则进行归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项.活动 5:计算:(1))23421()213(2222y xy x y xy x -+---+-; (2)(5y + 3x - 15z 2)-(12y - 7x + z 2).学生活动设计:学生自己解决上述问题,进一步体会整式加减的本质——合并同类项. (1))23421()213(2222y xy x y xy x -+---+-222223421213y xy x y xy x +-+-+-=222223214321y y xy xy x x +--++-= 2221y xy x +--=; (2)(5y + 3x - 15z 2)-(12y - 7x + z 2)= 5y + 3x - 15z 2 - 12y + 7x - z 2= 5y - 12y + 3x + 7x - 15z 2 - z 2s= -7y + 10x - 16z 2.教师活动设计:鼓励学生根据对多项式的理解自己解决问题,并分析学生在计算过程中存在的问题(比如去括号的问题等).三、应用提高、拓展创新问题 1:求)3123()31(22122y x y x x +-+--的值,其中 x= -2,32=y . 学生活动设计:学生独立进行分析,发现可以把字母的值直接代入计算,但是过于麻烦,仔细分析可以发现所给的多项式中有同类项,通过合并可以简化形式,再代入求值比较简单.教师活动设计:在不同的方法中引导学生利用简单的方法求解,进而培养学生的简化思想.〔解答〕原式 )3123()31(22122y x y x x +-+--== - 3x + y 2.当 x= -2,32=y 时,原式94632)2(3322=⎪⎭⎫ ⎝⎛+-⨯-=+-=y x . 问题 2:任意取一个两位数,交换个位数字和十位数字的位置得到一个新的两位数,这两个两位数的差是否能够被 9 整除?再研究这两个两位数的和的特点.学生活动设计:学生在思考的基础上进行讨论.对于任意一个两位数,可以用字母表示数的形式表示出来,设 a 、b 分别表示两位数十位上的数字和个位上的数字,那么这个两位数可以表示为 10a + b .交换这个两位数的十位数字和个位数字,就得到一个新的两位数 10b + a .要求这两个数的差,可以列出计算的式子(10a + b)-(10b + a)= 10a + b - 10b - a =(10a - a)+(b - 10b)= 9a - 9b = 9(a - b),显然是 9 的倍数;若求这两个数的和,则有(10a + b)+(10b + a)= 10a + b + 10b + a =(10a + a)+(b + 10b)= 11a + 11b = 11(a + b),显然是 11 的倍数.教师活动设计:教师组织学生进行思考、讨论、交流,提醒学生用字母表示数字时的规律,引导学生利用整式的加减运算解决问题.〔解答〕略.问题 3:某花店一枝黄色康乃馨的价格是x元,一枝红色玫瑰的价格是y元,一枝白色百合的价格是z元,下面这三束鲜花的价格各是多少?这三束鲜花的总价是多少元?师生活动设计:第(1)束鲜花的价格为(3x + 2y + z)元;第(2)束鲜花的价格为(2x + 2y + 3z)元;第(3)束鲜花的价格为(4x + 3y + 2z)元.这三束花的总价为(3x + 2y + z)+(2x + 2y + 3z)+(4x + 3y + 2z)= 3x + 2y + z + 2x + 2y + 3z + 4x + 3y + 2z= 9x + 7y + 6z(元).四、归纳小结、布置作业小结:同类项的概念;整式的加减法则.作业:习题.。
整式的加减 第一课时_教案2022-2023学年人教版数学七年级上册
《2.2整式加减(1)》教学设计一、教学目标1. 认识同类项,能判断两个式子是否是同类项.2. 能独立完成合并同类项,求多项式的值.3.能用整式表示生活中的数量关系,解决生活中问题.二、重点难点重点:理解同类项的概念;正确合并同类项.难点:根据同类项的概念在多项式中找同类,正确合并同类项.三、教学过程(一)情境引入问题1:在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t h,你能用含t的式子表示这段铁路的全长吗?列式:100t+120×2.1t==100t+252t教师追问:这个式子还能化简吗?设计意图:引入实际问题,使学生感受到学习含有字母的式子的运算是实际需要,理解化筒100t+252t的方法是运用有理数的运算律“分配律”,初步体会“数式通性”,促使学生的学习形成正迁移.(二)类比探究1.运用有理数的运算律计算:⑴100×2+252×2=⑵100×(-2)+252×(-2)=归纳:3个式子的结构相同,整式中的字母表示数,可以类比数的运算,运用数的运算法则和运算律进行整式运算.设计意图:通过用分配律进行有理数的运算,帮助学生理解用分配律化简式子100t + 252t 的方法,为进一步类比学习整式的运算提供方法上的借鉴.通过引导学生观察比较,发现三个算式的联系,理解由于式子100t+252t中的字母表示数,因此可以依据分配律对式子进行化简,理解整式的运算与有理数的运算具有一致性,为更一般的同类项的合并提供方法上指导.体会由“数”到“式”是由特殊到一般的思想方法,初步感受“数式通性”和类比的数学思想. 2.运用刚才方法填空:①100252t t-②2232x x+③2234ab ab-观察:上述各多项式的项有什么共同特点?同类项:⑴所含字母相同;⑵相同字母的指数也分别相同.设计意图:进一步引导学生类比前面关于式子100t+252t 的化简,讨论更一般的同类项(多项式中的项的次数高于1,字母不止一个等)的合并,进一步理解分配律的运用,体会“数式通性”和类比的数学思想,通过几组不同形式的同类项,感受不同类型式子的组成,突出同类项的特点,为归纳同类项的概念和合并同类项法则做好铺垫.3.观察多项式100252t t-,2232x x+,2234ab ab-上述多项式中同类项的运算过程有什么共同特点?归纳:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.设计意图:在观察、比较中,发现各多项式的项的共同特征,分析运算特点,归纳出同类项、合并同类项的定义及合并同类项的法则.(三)例题讲解例:4x2+2x+7+3x-8x2-2解:=4x2-8x2+2x+3x+7-2 (交换律)=(4x2-8x2 )+(2x+3x)+(7-2) (结合律)=(4-8)x2+(2+3)x+(7-2) (分配律)=-4x2+5x+5 (按字母x的指数从大到小顺序排列)归纳步骤:(1)找出同类项并做标记;(2)运用交换律、结合律将多项式的同类项结合;(3)合并同类项;(4)按同一个字母的降幂(或升幂)排列.设计意图:归纳化简多项式的一般步骤.例2 (1)求多项式22225432x x x x x-++--的值,其中=12x;22)45()312(234522222--=-+-+-+=--++-x x x x x x x x 解:25-2-21-21===时,原式当x方法总结:在求多项式的值时,可以先将多项式化简(同类项合并),然后再求值. (2)求多项式 22113333a abc c a c +--+ 的值,其中16a =-,2b = , 3c =- . 设计意图:归纳化简求值的方法,先将多项式化简,然后再求值.使运算更简便.例3: (1)水库中水位第一天连续下降了a 小时,每小时平均下降2cm ;第二天连续上升了a 小时,每小时平均上升0.5cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x 千克. 上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,把上升的水位变化量记为正.则有:-2a + 0.5a = -1.5a答:这两天水位总的变化情况为下降了1.5a cm.(2)把进货的数量记为正,售出的数量记为负.则有:5x -3x +4x =6x答:进货后这个商店有大米6x 千克.设计意图: 本题让学生体会到数学知识之间的相互联系,同时体会到数学在生活中处处存在,数学来源于生活又服务于生活.(四)巩固提升1.判断同类项:(1) -5ab 3 与 3a 3b( ) (2) 3xy 与 3x( ) (3) -5m 2n 3 与 2n 3m 2( ) (4) 53 与 35( ) (5) x 3 与 53( )判断同类项要注意:① 字母 相同 ,相同字母的指数也 相同 .② 与 系数 无关,与 字母顺序 无关.③常数都是同类项.2. 单项式236ab c -的同类项可以是 . 3. 5x 2y 和42y m x n 是同类项,则 m=_______, n=________.4.判断下列计算是否正确?y 2x 5xy y 3x (4)02ba 2ab (3)32y 5y (2)5ab2b 3a (1)22222-=-=-=-=+注意:1.多项式中只有同类项才能合并;2.若两个同类项的系数互为相反数,则两项的和等于零.5. 下列运算,正确的是 (填序号).①2235a a a += ; ② 22532a b ab ab -= ;③ 22232x x x -= ;④22651m m -=. 6.–x m-3y 与 45y n+1x 3是同类项,则 m=_____,n=______.7.填空(1)x 的4倍与x 的5倍的和是多少?(2)x 的3倍比x 的一半大多少?8.如图,大圆的半径是R,小圆的面积是大圆面积的 94,求阴影部分的面积.9. 用式子表示十位上的数是a ,个位上的数是b 的两位数,再把这个两位数的十位上的数与个位上的数交换位置,计算所得数与原数的和.解:原来的两位数为:10a +b ,新的两位数为:10b +a两个数的和为:10a+b+10b+a=11a+11b所得数与原数的和能被11整除吗?∵11a+11b=11(a+b)∴所得数与原数的和能被11整除.设计意图:设置有梯度的练习题,加深对同类项和合并同类项法则的理解和运用,提高运算能力.(五)课堂小结1.回顾本节课的学习过程.2.本节课运用了什么思想方法研究问题?3.化简求值4.把实际问题抽象为数学模型5.挖掘已知条件,构造所求整式设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心一同类项的概念、合并同类项的概念和法则,感受“数式通性”和类比的数学思想.(六)巩固提高已知m是绝对值最小的有理数,且11m ya b++-与33x a b是同类项,求2222 23639x xy x mx mxy my -+-+-的值.设计意图:提高学生对同类项概念的理解.。
七年级数学《整式的加减1(同类项)》教案
8x2y,-mn2,5a,-x2y,7mn2, ,9a,- ,0,0.4mn2, ,2xy2。
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?
请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
1、同类项的定义:
所含字母相同,并且相同字母的指数也分别相等的项叫做同类项。另外,所有的常数项都是同类项。
2.例1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x与3mx是同类项。()(2)2ab与-5ab是同类项。( )
(3)3x2y与- yx2是同类项。( ) (4)5ab2与-2ab2c是同类项。( )
中学“育本课堂”育人设计方案
时间
年 月 日
第 周星期
年级学科
七年级数学
课题
第62—63页,2.2整式的加减:1.同类项。
课程标准
理解同类项的概念,在具体情景中,认识同类项。
育人目标
通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。
核心问题
初步体会数学与人类生活的密切联系。
通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项
师生共同完成
(5)23与32是同类项。( )
例2:指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5;(2)3x2y-2xy2+ xy2- yx2。
解:(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项。
(2)3x2y与- yx2是同类项,-2xy2与 xy2是同类项。
人教版七年级数学教材上册《整式的加减》全章教案
第一学时 整式(1)学习内容:教科书第54—56页,2.1整式:1.单项式。
学习目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流能力。
学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
一、自主学习;1、先填空,再分析写出式子特点,与同伴交流。
(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方体棱长,则正方体的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。
2、观察以上式子的运算,有什么共同特点?3、单项式定义:由数与字母的乘积组成的代数式称为单项式。
[老师提示] 单独一个数或一个字母也是单项式,如a ,5,0。
4、练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。
5、单项式系数和次数:观察“1”中所列出的单项式,发现单项式是由数字因数和字母因数两部分组成。
单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和叫单项式的次数。
说说四个单项式31a 2h ,2πr ,a bc ,-m 的数字因数和字母因数及各个字母的指数?二、合作探究:1、教材p56例1:阅读例题,体会单项式及系数次数概念。
2、判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数 和次数。
①x +1; ②x 1; ③πr 2; ④-23a 2b 。
3、下面各题的判断是否正确?①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2; ④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2h 的系数是31。
人教版七年级数学上册同步备课 2.2.1 合并同类项(教学设计)
2.2.1 合并同类项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“整式的加减” 2.2.1 合并同类项,内容包括:同类项的概念、合并同类项的法则、在合并同类项的基础上进行化简、求值运算.2.内容解析本节课是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题.合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础.另一方面,这节课与前面所学的知识的联系非常密切:合并同类项的法则是建立在有理数的加减运算的基础之上;在合并同类项过程中,要不断运用有理数的运算.可以说合并同类项是有理数加减运算的延伸与拓展.基于以上分析,确定本节课的教学重点为:知道同类项的概念,会识别同类项,理解和熟练应用合并同类项法则.二、目标和目标解析1.目标(1)知道同类项的概念,会识别同类项.(2)掌握合并同类项的法则,并能准确合并同类项.(3)能在合并同类项的基础上进行化简、求值运算.2.目标解析通过观察、对比、分析,理解同类项的定义,能够识别同类项.根据分配律,类比数的计算进行式的计算,从而理解合并同类项的概念,掌握合并同类项的法则.通过例题学习和习题训练,会利用合并同类项的法则化简多项式,会代入具体的值进行计算.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识.激发学生的求知欲,在独立思考和合作交流的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益,体验成功的喜悦.三、教学问题诊断分析学生前面已经学会了有理数运算,掌握了单项式、多项式的有关概念等知识,为本节课的学习做好了铺垫.七年级的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇.但我所教班级学生受基础知识和思维发展水平的限制,抽象概括能力不强,但学生上进心强,也有强烈的好奇心和好胜心,因而在教学素材的选取与呈现方式以及学习活动的安排上要设置学生感兴趣的并且具有挑战性的内容.学生在找同类项中问题不大,这部分的内容学生自己可以消化,而在合并同类项时对同类项中利用乘法交换律时容易出错,还有在多项式中找同类项时易将单项式的系数找错,特别是系数是负数的,学生容易遗漏,老师要在课堂上加以讲解.基于以上学情分析,确定本节课的教学难点为:能在合并同类项的基础上进行化简、求值运算.四、教学过程设计(一)问题引入1.银行职员数钞票时,把100元票面、50元票面、20元票面、10元票面…的人民币分类来数,在多项式中是否也有类似的情形呢?2.下图中有两个三角形,两个矩形,你能用式子表示这四个图形的面积和吗?四个图形面积和:2a+ab+3a+2ab=___________.(二)合作探究探究一:(1) 运用运算律计算:100×2+252×2=______________;100×(﹣2)+252×(﹣2)=________________;(2) 根据(1)中的方法完成下面的运算,并说明其中的道理:100t+252t=____________.在(1)中,我们知道,根据分配律可得100×2+252×2=(100+252)×2=352×2=704100×(﹣2)+252×(﹣2)=(100+252)×(﹣2)=352×(﹣2)=﹣704在(2)中,式子100t+252t表示100t与252t两项的和.它与(1)中的两个式子有相同的结构,并且字母t代表的是一个因(乘)数,因此根据分配律也应该有100t +252t=(100+252)t=352t.探究二:填空:(1)100t -252t=( )t ;(2)3x 2+2x 2=( )x 2;(3)3ab 2-4ab 2=( )ab 2.上述运算有什么共同特点,你能从中得出什么规律吗?对于上面的(1)(2)(3),利用分配律可得100t -252t=(100-252)t=﹣152t3x 2+2x 2=(3+2)x 2=5x 23ab 2-4ab 2=(3-4)ab 2=﹣ab 2观察:多项式100t -252t 的项100t 和﹣252t ,它们含有相同的字母t ,并且t 的指数都是1;多项式3x 2+2x 2的项3x 2和2x 2,它们含有相同的字母x ,并且x 的指数都是2;多项式3ab 2-4ab 2的项3ab 2和﹣4ab 2,它们含有相同的字母a 、b ,并且a 的指数都是1次,b 的指数都是2次.【归纳】同类项的概念像100t 与﹣252t ,3x 2与2x 2,3ab 2与﹣4ab 2这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项. 几个常数项也是同类项. 例如5与﹣3.(三)考点解析例1.下列各组式子中,是同类项的是( )①2x 3y 5与x 5y 3;①x 6y 7z 与﹣3x 6y 7;①6xy 与53xy ;①x 4与34;①4x 2y 与3yx 2;①﹣100与15A.①①①B.①①①①C.①①①D.只有①【总结提升】同类项的判别方法(1)同类项只与字母及其指数有关,与系数无关,与字母在单项式中的排列顺序无关;(2)抓住“两个相同”:一是所含的字母要完全相同,二是相同字母的指数要相同,这两个条件缺一不可.(3)不要忘记几个单独的数也是同类项.【迁移应用】1.下列单项式中,ab 3的同类项是( )A.a 3b 2B.3a 2b 3C.a 2bD.ab 32.下列各选项中,不是同类项的是( )A.3a 2b 和﹣5ba 2B.12x 2y 和12xy 2C.6和23D.5x n 和﹣3x n 43.在多项式x 3﹣x+4﹣6x 3﹣5+7x 的每一项中,_____与x 3,____与﹣x ,____与4分别是同类项.(四)自学导航因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并.例如,4x 2+2x +7+3x -8x 2-2=4x 2-8x 2+2x +3x +7-2 (交换律)=(4x 2-8x 2)+(2x +3x)+(7-2) (结合律)=(4-8)x 2+(2+3)x +(7-2) (分配律)=-4x 2+5x +5通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如-4x 2+5x +5也可以写成5+5x -4x 2.(五)考点解析例2.多项式3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列正确的是( )A .3x 2y +4x 5y 2+2+xy 3B .−4x 5y 2+3x 2y −xy 3+2C .4x 5y 2+3x 2y −xy 3+2D .2-xy 3+3x 2y -4x 5y 2【分析】把一个多项式按照某一字母的指数从大到小的顺序排列起来,叫做把多项式按照这个字母降幂排列.解:3x 2y −4x 5y 2+2−xy 3按字母x 的降幂排列为−4x 5y 2+3x 2y −xy 3+2【迁移应用】1.代数式3m 2n −4m 3n 2+2mn 3−1按m 的降幂排列,正确的是( )A .−4m 3n 2+3m 2n +2mn 3−1B .2mn 3+3m 2n −4m 3n 2−1C .−1+3m 2n −4m 3n 2+2mn 3D .−1+2mn 3+3m 2n −4m 3n 22.多项式5x2y+y3−3xy2−x3按y的降幂排列是()A.5x2y−3xy2+y3−x3B.y3−3xy2+5x2y−x3C.5x2y−x3−3xy2+y3D.y3−x3+5x2y−3xy2(六)自学导航1.把多项式中的同类项合并成一项叫做合并同类项.2.合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(七)考点解析例3.合并同类项:(1)4a2﹣9b﹣3a2+8b;(2)x3﹣3x2﹣2+4x2﹣1;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4.解:(1)4a2﹣9b﹣3a2+8b=(4a2﹣3a2)+(﹣9b+8b) =(4﹣3)a2+(﹣9+8)b=a2﹣b;(2)x3﹣3x2﹣2+4x2﹣1=x3+(﹣3x2+4x2)+(﹣2﹣1)=x3+(﹣3+4)x2+(﹣2﹣1)=x3+x2﹣3;(3)﹣4a2b﹣3ab+1+3ab﹣2a2b﹣4=(﹣4a2b﹣2a2b)+(﹣3ab+3ab)+(1﹣4)=(﹣4﹣2)a2b+(﹣3+3)ab+(1﹣4)=﹣6a2b﹣3.【总结提升】“合并同类项”的方法:一找,找出多项式中的同类项,不同类的同类项用不同的标记标出;二移,利用加法的交换律,将不同类的同类项集中到不同的括号内;三合,将同一括号内的同类项相加即可.【迁移应用】1.﹣4a2b+3ab=(﹣4+3)a2b=﹣a2b,上述运算依据的运算律是( )A.加法交换律B.乘法交换律C.分配律D.乘法结合律2.下列计算正确的是( )A.3x2﹣x2=3B.a+b=abC.3+x=3xD.﹣ab+ab=03.合并同类项:(1)﹣2x2y﹣3x2y+5x2y; (2)3x2+2xy﹣5x﹣3y2﹣6xy.解:(1)原式=(﹣2﹣3+5)x2y=0;(2)原式=(3﹣5)x2+(2﹣6)xy﹣3y2=﹣2x2﹣4xy﹣3y2.例4.求多项式3x2+4x﹣2x2﹣x+x2﹣3x﹣1的值,其中x=﹣3.解:原式=(3x2﹣2x2+x2)+(4x﹣x﹣3x)﹣1=(3﹣2+1)x2+(4﹣1﹣3)x﹣1=2x2﹣1当x=﹣3时,原式=2×(﹣3)2﹣1=17.【迁移应用】1.当x=2025时,3x2+x﹣4x2﹣2x+x2+2024的值为______.2.求多项式a2b﹣6ab﹣3a2b+5ab+2a2b的值,其中a=0.1,b=0.01.解:原式=(a2b﹣3a2b+2a2b)+(﹣6ab+5ab)=(1﹣3+2)a2b+(﹣6+5)ab=﹣ab当a=0.1,b=0.01时,原式=﹣0.1×0.01=﹣0.001.例5.七年级有三个班参加了植树活动,其中一班植树x棵,二班植树棵数比一班的2倍少5,三班植树棵数比一班的一半多10.这三个班一共植树多少棵?x+10)棵,解:根据题意,得二班植树(2x﹣5)棵,三班植树(12所以这三个班一共植树(单位:棵)x+10x+2x﹣5+12)x+(﹣5+10)=(1+2+12=7x+5.2【迁移应用】张老师家住房结构如图所示(图中长度单位:m),他打算在卧室和客厅铺上木地板.请你帮他算一算,他至少需要木地板_____m 2.例6.已知4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式,求5m+3n ﹣p 的值. 解:因为4a 4b m c 与﹣72b 2a n+3c p﹣2的和是单项式, 所以4a 4b m c 与﹣72b 2a n+3c p ﹣2是同类项所以4=n+3,m=2,1=p ﹣2,所以m=2,n=1,p=3.当m=2,n=l ,p=3时,5m+3n ﹣p=5×2+3×1﹣3=10.【迁移应用】1.若多项式5a 3b m +a n b 2+1可以进一步合并同类项,则m ,n 的值分别是( )A.m=3,n=1B.m=3,n=2C.m=2,n=1D.m=2,n=32.若13x 3y m+2与12x 1﹣n y 4的差是单项式,则这个差的结果是_________. 3.已知﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,求(m ﹣n)(2a ﹣b)的值.解:因为﹣4x a y a+1与mx 5y b ﹣1的和是3x 5y n ,所以﹣4+m=3,a=5,a+1=b ﹣1=n.所以a=5,b=7,m=7,n=6.所以(m ﹣n)(2a ﹣b)=(7﹣6)×(2×5﹣7)=3.例7.已知关于x ,y 的多项式2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2的值与字母x 的取值无关,求a ,b 的值.解:2x 2+ax ﹣y+6﹣2bx 2+3x ﹣5y ﹣2=(2﹣2b)x 2+(a+3)x+(﹣1﹣5)y+(6﹣2)=(2﹣2b)x2+(a+3)x﹣6y+4因为多项式的值与x的取值无关所以2﹣2b=0,a+3=0,所以a=﹣3,b=1.【迁移应用】1.若关于x的多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,则m,n的值分别为( )A.﹣1,﹣3B.1,3C.﹣1,3D.1,﹣32.若关于x,y的多项式mx3+3nxy2﹣2x3﹣xy2+y中不含三次项,则2m+3n的值为______.3.有这样一道题:“当x=1,y=2025时,求多项式7x3﹣6x3y+3x2y+3x3+6x3y﹣3x2y﹣10x3+3的值.”小聪4同学说:“就算不给出x=1,y=2 025,也能求出多项式的值.”他的说法有道理吗?请说明理由.4解:有道理.理由如下:原式=(7+3﹣10)x3+(﹣6+6)x3y+(3﹣3)x2y+3=3.该多项式的值与x,y的取值无关.所以小聪同学的说法有道理.(八)小结梳理五、教学反思。
人教版七年级上册数学2.2《整式的加减-同类项、合并同类项)》教案设计
2.2整式的加减(第1课时)一、内容和内容解析1.内容同类项的概念,合并同类项的法则.2.内容解析整式的加减运算是“数与代数”领域中最基本的运算,它是今后学习整式的乘除、因式分解、分式和根式运算、方程及函数等知识的重要基础.同类项及合并同类项的法则是学习整式的加减运算和一元一次方程的直接基础.整式的运算与数的运算具有一致性,整式中的字母表示数,因此数的运算性质和运算律在式的运算中仍然成立,可以类比数的运算来学习式的运算,用关于数的运算法则和运算律对式子进行变形和化简.这充分体现了“数式通性”及由数到式、由特殊(具体)到一般(抽象)的数学思想.合并同类项是把多项式中同类项合并成一项,经过合并同类项,多项式的项数会减少,这样多项式就得到了简化.同类项的概念是判断同类项的依据,“所含字母相同,相同字母的指数也相同”是同类项的本质特征.合并同类项的依据是数的运算律中的“分配律”,“合并” 是指同类项的系数相加,把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.基于以上分析,可以确定本节课的教学重点:同类项的概念及合并同类项的法则,感受其中的“数式通性”和类比的思想.二、教材解析本节课是整式的加减的第一课时,从章前引言中的问题(2)“在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1 倍,如果通过冻土地段需要t h,你能用含t 的式子表示这段铁路的全长吗?”出发,通过分析这个问题中的数量关系,列出式子100t +252t,引出对式子化简的问题.由字母表示数,运用类比思想,类比有理数的运算化简这个式子,引出了合并同类项的方法,重点引出合并同类项的依据是分配律,为更一般的同类项的合并提供方法指导.在此基础上类比式子100t+252t 的化简,讨论更一般的同类项(例如多项式中的项的次数高于1,字母不只一个等)的合并,然后分析几个式子的结构特征,抽象出同类项的特点,得出同类项的概念和合并同类项的方法.通过例题理解和巩固同类项的概念和合并同类项的方法,为继续学习整式的加减打基础.本节课重点是同类项的概念及合并同类项的法则,感受其中的“数式通性”和类比的数学思想.学生在学习中对正确判断同类项,准确合并同类项会有困难.要使学生会辨别同类项,必须准确地掌握判断同类项的两条标准(字母和字母指数).要准确合并同类项,必须理解整式中的字母表示数,整式的运算与数的运算具有一致性,因此依据分配律可以把多项式中同类项合并成一项.教学中充分运用类比的思想方法,探究合并同类项的法则,理解合并同类项的依据是分配律,理解数的运算性质和运算律在式的运算中仍然成立,体会“数式通性”.三、教学目标和目标解析1.教学目标(1) 理解同类项的概念;(2) 掌握合并同类项的方法;(3) 通过类比数的运算探究合并同类项的法则,从中体会数式通性和类比的思想.2.目标解析达成目标(1)的标志:会根据“所含字母相同,相同字母的指数也相同”的标准判断同类项,并说出判断的依据,会举例说明同类项,会在一个多项式中找到同类项;达成目标(2) 的标志:能准确合并同类项,并说出合并的方法,能通过合并同类项进行多项式的化简;目标(3)是“内容所蕴涵的思想方法”,学生需要体会的是在化简含有字母的式子时,由于整式中的字母表示数,字母可以像数一样参与运算,算式与含有字母的式子有相同的结构,可以对比数的运算,运用分配律合并同类项,体会“数式通性”和类比的数学思想.四、教学问题诊断分析在前面的学习中,学生已经掌握有理数的运算,了解字母表示数的意义,这些知识对本课的学习有着铺垫作用.七年级学生的认知水平、抽象概括能力和迁移能力都有待逐步提高,学生从熟悉的数的运算到理解含有字母的式子的运算,需要一个过程.在进行整式的加减运算时,对于如何判断同类项,为什么可以把同类项进行合并,如何合并同类项,学生理解和运用起来还是有困难的.还需要教师引导学生进行“数”与“式”的类比,正确分析含有字母的式子的结构,帮助学生理解由于字母表示数,字母可以像数一样参与运算,因此可以运用分配律合并同类项.教学中要多展示找同类项及合并同类项的过程,积累感性经验,丰富学习体验,逐步达到对“式”的运算的理解.本课的教学难点:正确判断同类项,准确合并同类项.人教版七年级上册数学2.2《整式的加减-同类项、合并同类项)》教案设计五、教学过程设计1.创设情境,引入课题问题1 青藏铁路西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的 2.1 倍,如果通过冻土地段需要t h,你能用含t 的式子表示这段铁路的全长吗?师生活动:学生尝试解答.如果学生得到100t+120×2.1t=100t+252t,教师可以追问:这个式子的结果是多少?你是怎样得到的?说明其中的道理.如果学生直接得到352t,教师可以追问:这个结果是怎样得到的?说明其中的道理.此环节教师应关注:(1)学生能否正确列式;(2)学生能否依据分配律化简100t+252t,并说明其中的道理;(3)学生能否体会在实际生活中,经常遇到含有字母的式子的运算问题.教师归纳:在实际生活中,经常遇到含有字母的式子的运算问题,学习含有字母的式子的运算是实际的需要,整式的运算是建立在数的运算基础之上的.【设计意图】引入实际问题,使学生感受到学习含有字母的式子的运算是实际需要.理解化简100t +252t 的方法是运用分配律,初步体会“数式通性”,促使学生的学习形成正迁移.2.类比探究,学习新知问题2 整式的运算是建立在数的运算基础之上的,对于有理数的运算是怎样进行的呢?整式的运算与有理数的运算有什么联系?(1)运用运算律计算:100×2+252×2=;100 ×(-2)+252 ×(-2)=.师生活动:学生尝试回答,根据分配律可得100 ×2+252 ×2=(100+252)×2=352×2=704;100×(-2)+252×(-2)=(100+252)×(-2)=352×(-2)教师追问:式子100t+252t 与问题2中的两个算式有什么联系?你是如何理解化简式子100t+252t 的方法的?师生活动:学生尝试解释,教师根据学生回答情况进行引导.教师引导学生归纳:①算式100×2+252×2与100×(-2)+252×(-2)实际上是在式子100t +252t 中,当t取2和-2时的算式,由于字母t代表的是一个因(乘)数,它们有相同的结构,因此根据分配律应有100t+252t=(100+252)t=352t.②整式中的字母表示数,因此可以类比数的运算,运用数的运算法则和运算律进行整式的运算.整式的运算与数的运算具有一致性,数的运算性质和运算律在式的运算中仍然成立,这体现了“数式通性”.【设计意图】回顾用分配律进行有理数的运算,帮助学生理解用分配律化简式子100t +252t 的方法,为进一步类比学习整式的运算提供方法上的借鉴.通过引导学生观察比较,发现三个算式的联系,理解式子100t+252t 中的字母表示数,因此可以依据分配律对式子进行化简,理解整式的运算与有理数的运算具有一致性,为更一般的同类项的合并提供方法指导.体会由“数”到“式”是由特殊到一般的思想方法,初步感受“数式通性”和类比的数学思想.(2)类比式子100t+252t 的运算,化简下列式子:①100t-252t;②3x2+2x2;③3ab2-4ab2.师生活动:学生先尝试独立解答,学生代表发言.此环节教师应关注:①学生在计算100t-252t 时,注意分配律的使用,正确区分运算符号和性质符号,即100t-252t=[100+(-252)]t=-152t;②学生能否正确理解运用分配律化简式子时“系数相加,字母连同它的指数不变”的道理.【设计意图】进一步引导学生类比前面关于式子100t+252t 的化简,讨论更一般的同类项(多项式中的项的次数高于1,字母不只一个)的合并,进一步理解分配律的运用,体会“数式通性”和类比的数学思想.通过几组不同形式的同类项,感受不同类型式子的组成,突出同类项的特点,为归纳同类项的概念和合并同类项法则作铺垫.问题3 观察多项式100t+252t,100t-252t,3x2+2x2,3ab2-4ab2.(1)上述各多项式的项有什么共同特点?(2)上述多项式的运算有什么共同特点?你能从中得出什么规律?师生活动:学生先独立思考,然后小组合作讨论,小组代表发言.教师巡视,指导学生归纳和表达.在讨论交流的基础上,教师引导学生归纳各多项式的项的共同特点:(1) 每个式子的两项含有相同的字母;(2) 并且相同字母的指数也相同.上述运算的共同特点:(1)根据分配律把多项式各项的系数相加;(2)字母连同它的指数保持不变.教师给出定义和法则:(1) 所含字母相同,并且相同字母的指数也相同的项叫做同类项.几个常数项也是同类项.(2) 把多项式中的同类项合并成一项,叫做合并同类项.(3) 合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.此环节教师应关注:(1)学生能否理解判断同类项的两条标准;(2)学生能否理解合并同类项的要点,一是“字母连同它的指数不变”,既包含字母不变,也包含字母的指数不变,二是“系数相加减”.【设计意图】在观察、比较中发现各多项式的项的共同特征,分析运算特点,归纳出同类项、合并同类项的概念及合并同类项的法则,培养观察、分析和抽象概括能力.问题4 你能举出一个同类项的例子吗?师生活动:学生代表举出同类项的例子,由其他学生合并所给出的同类项.教师在评价学生举例后,追问合并同类项的结果.【设计意图】通过举例,加深对同类项的概念和合并同类项法则的理解.问题5 化简多项式的一般步骤是什么呢?通过如下例题说明,找出多项式4x2+2x+7+3x-8x2-2 中的同类项并进行合并,思考下面的问题:每一步运算的依据是什么?应注意什么?学生尝试口述解题,教师适时追问,教师示范解答过程.解:4x2+2x+7+3x-8x2-2=4x2-8x2+2x+3x+7-2 (交换律)=(4x2-8x2)+(2x+3x)+(7-2) (结合律)=(4-8)x2+(2+3)x+(7-2) (分配律)=-4x2+5x+5.(按字母x降幂排列)教师引导学生归纳步骤:(1) 找出同类项并做标记;(2)运用交换律、结合律将多项式的同类项结合;(3)合并同类项;(4) 按同一个字母的降幂(或升幂)排列.此环节教师应强调:(1)运用交换律、结合律将多项式变形时,不要丢掉各项系数的符号;(2)不要漏项;(3)运算结果通常按某一个字母的指数由大到小(降幂)或者由小到大(升幂)的顺序排列.【设计意图】类比数的运算,利用交换律、结合律、分配律将多项式中的同类项进行合并,归纳运算步骤和注意的问题,进一步体会“数式通性”,发展类比的数学思想.3.学以致用,应用新知例1 合并下列各式的同类项:2- 1 2(1) xy2-xy ;5(2) -3x2y+2x2y+3xy2-2xy2;(3) 4a2+3b2+2ab― 4a2― 4b2.学生先独立完成,然后互相纠错、评价,学生代表板演,教师巡视指导.【设计意图】加深对同类项的概念和合并同类项法则的理解和运用,提高运算能力.4.基础训练,巩固新知练习1 判断下列说法是否正确,正确的在括号内打“√,”错误的打“×.”(1) 3x 与3mx 是同类项;( )(2) 2ab 与-5ab 是同类项;( )1(3) 3xy2与2y2x 是同类项;( )(4) 5a2b 与-2a2bc 是同类项;( )(5) 23与32是同类项.( )【设计意图】进一步巩固同类项的概念.练习2 填空:(1) 若单项式2x m y3与单项式-3x2y n是同类项,则m=,n=.(2) 单项式-6ab2c3的同类项可以是(写出一个即可).(3) 下列运算,正确的是(填序号).① 2a+3a=5a2;②5a2b-3ab2=2ab;③3x2-2x2=x2;④6m2-5m2=1.(4) 多项式3ab-6a2b2-8ab2+4a2b2-9ab+2ab2-5,其中与ab2是同类项的是;与a2b2是同类项的是;将多项式中的同类项合并后结果是.【设计意图】进一步巩固同类项的概念和合并同类项的法则.5.小结归纳,自我完善教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)你能举例说明同类项的概念吗?(3) 举例说明合并同类项的方法.(4) 本节课主要运用了什么思想方法研究问题?【设计意图】通过小结,使学生梳理本节课所学内容,掌握本节课的核心——同类项的概念,合并同类项的概念和法则,感受“数式通性”和类比的数学思想.布置作业:教科书第65页练习第1题,习题2.2 第1题.六、目标检测设计1.下列各组中的两项,属于同类项的是( ) .1A.a2与a B.-0.5ab与ba C.a2b与ab2D.a与b2【设计意图】检测学生用同类项的概念判断同类项.2.下列运算,正确的是( ).A.3a+2b=5ab B.3a2b-3ba2=0C.2x3+3x2=5x5 D .5y2-4y2=1【设计意图】通过几个合并同类项问题的辨析,引起对合并同类项产生错误的原因的分析和思考,检测学生对合并同类项法则的理解和运用.3.若单项式-3a m b2与单项式1a3b n是同类项,则m=,n=.3【设计意图】检测学生对同类项概念的理解.4.合并下列各式的同类项:(1) -a +0.5a +2.5a ;(2)7a+3a-2a-a +3;(3) 3x2-2xy-x2+5xy;(4) 3x3-3x2-y2+5y+x2-5y+y2.【设计意图】检测学生掌握合并同类项化简多项式的情况.。
4.2 整式的加法与减法教案-七年级上册数学人教版
第1课时合并同类项课时目标1.理解合并同类项的概念,会判断两个项是否是同类项.2.掌握合并同类项法则,熟练应用合并同类项法则合并同类项,并利用法则化简多项式及求多项式的值.3.在具体情境中了解法则,经历合并同类项法则的形成过程,理解合并同类项法则的实质,感悟分类和转化思想.学习重点理解合并同类项的概念,会判断两个项是否是同类项;掌握合并同类项法则,熟练应用合并同类项法则合并同类项,并利用法则化简多项式及求多项式的值.学习难点掌握合并同类项法则,熟练应用合并同类项法则合并同类项,并利用法则化简多项式及求多项式的值.课时活动设计回顾引入有理数的加法有哪些运算律?学生举手回答,师生共同回忆有理数加法运算律.加法交换律:a+b=b+a.加法结合律:(a+b)+c=a+(b+c).乘法对加法的分配律:a(b+c)=ab+ac.设计意图:复习已有相关知识,为本节要学的知识打基础.探究新知数能进行加减运算,整式中的每个字母都表示数,这样,整式与数一样,也可以进行加减运算.下面我们就一起来探究整式如何进行加减运算.探究1同类项的概念问题1:港珠澳大桥是集主桥、海底隧道和人工岛于一体的世界上最长的跨海大桥,一辆汽车从香港口岸行驶到东人工岛的平均速度为96 km/h,在海底隧道和主桥上行驶的平均速度分别为72 km/h和92 km/h.汽车从香港口岸到西人工岛包含两段路程,一段为香港口岸到东人工岛,另一段为海底隧道.如果汽车通过海底隧道需要a h,从香港口岸到东人工岛所需时间是1.25a h,则香港口岸到西人工岛的全长(单位:km)是72a+96×1.25a,即72a+120a.学生举手回答,在教师的启发引导下得出正确答案.追问:如何计算72a+120a呢?能否类比以往我们学过的知识进行运算?学生举手回答,在教师的启发引导下得出正确答案.解:可以类比数的运算,进行整式72a,120a的加法运算.问题2:(1)运用运算律计算:72×2+120×2=;72×(-2)+120×(-2)=.(2)根据(1)中的方法完成下面的运算,并说明其中的道理:72a+120a=.学生先独立完成并举手回答,教师适时启发引导并点评.解:(1)根据分配律可得:72×2+120×2=(72+120)×2=192×2,72×(-2)+120×(-2)=(72+120)×(-2)=192×(-2).(2)多项式72a+120a表示72a与120a两项的和,它与(1)中的式子72×2+120×2和72×(-2)+120×(-2)有相同的结构,并且字母a代表的是一个乘数,因此根据分配律也有72a+120a=(72+120)a=192a.问题3:根据以上探究过程完成下列题目:(1)72a-120a=(-48)a;(2)3m2+2m2=(5)m2;(3)3xy2-4xy2=(-)xy2.追问:上述运算有什么共同特点,你能从中得出什么规律?学生先独立完成并举手回答,教师适时启发引导并点评.解:观察(1)中的多项式的项72a和-120a,它们含有相同的字母a,并且a的指数都是1;(2)中的多项式的项3m2和2m2,含有相同的字母m,并且m的指数都是2;(3)中的多项式的项3xy2与-4xy2,都含有字母x,y,并且x的指数都是1,y的指数都是2.问题4:像72a与-120a,3m2与2m2,3xy2与-4xy2这样的式子,同学们能不能根据它们的特征下个定义?学生试着进行总结并举手回答,在教师的启发引导下得出正确答案.同类项:所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个常数项也是同类项.探究2合并同类项问题5:计算:4x2+2x+7+3x-8x2-2.追问1:上式该如何计算?小组合作讨论后学生试着完成解答过程,教师适时启发引导并点评.解:因为多项式中的字母表示的是数,所以可以利用交换律、结合律、分配律把多项式中的同类项进行合并,4x2+2x+7+3x-8x2-2=4x2-8x2+2x+3x+7-2(交换律)=(4x2-8x2)+(2x+3x)+(7-2)(结合律)=(4-8)x2+(2+3)x+(7-2)(分配律)=-4x2+5x+5.追问2:请同学们试着给以上过程下个定义,并总结具体做法.学生尝试归纳总结并举手回答,教师适时启发引导并点评.合并同类项:把多项式中的同类项合并成一项,叫作合并同类项.合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.规定:通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列.设计意图:从实际问题入手,引导学生探究同类项的概念及合并同类项法则,培养学生用类比的思想学习新知识的能力.典例精讲例1 合并下列各式的同类项:(1)xy 2-15xy 2; (2)4a 2+3b 2+2ab -4a 2-4b 2.解:(1)xy 2-15xy 2=(1−15)xy 2=45xy 2.(2)4a 2+3b 2+2ab -4a 2-4b 2=(4a 2-4a 2)+(3b 2-4b 2)+2ab =(4-4)a 2+(3-4)b 2+2ab =-b 2+2a b.例2 (1)求多项式2x 2-5x +x 2+4x -3x 2-2的值,其中x =12;(2)求多项式3a +abc -13c 2-3a +13c 2的值,其中a =-16,b =2,c =-3.分析:在求多项式的值时,可以先将多项式中的同类项合并,然后再求值,这样做往往可以简化计算.解:(1)2x 2-5x +x 2+4x -3x 2-2=(2+1-3)x 2+(-5+4)x -2=-x -2.当x =12时,原式=-12-2=-52.(2)3a +abc -13c 2-3a +13c 2=(3-3)a +abc +(-13+13)c 2=abc. 当a =-16,b =2,c =-3时,原式=(-16)×2×(-3)=1.例3 (1)水库水位第一天连续下降了a h,平均每小时下降2 cm;第二天连续上升了a h,平均每小时上升0.5 cm .这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x kg,上午售出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,上升的水位变化量记为正,则第一天水位的变化量是-2a cm,第二天水位的变化量是0.5a cm,由-2a +0.5a =(-2+0.5)a =-1.5a 可知,这两天水位总的变化情况为下降了1.5a cm .(2)把进货的数量记为正,售出的数量记为负,则上午大米质量的变化量是-3x kg,下午大米质量的变化量是4x kg,由5x -3x +4x =(5-3+4)x =6x 可知,进货后这个商店有大米6x kg .设计意图:通过例题,让学生能够熟练运用合并同类项法则对代数式进行化简求值,并会利用本节所学知识解决实际问题.巩固训练1.化简:(1)a 2b -27a 2b ; (2)3x -4y +7x +y ;(3)5m +3m -10m ; (4)11xy -3x 2-7xy +x 2.解:(1)原式=(1−27)a 2b =57a 2b.(2)原式=3x +7x -4y +y =(3+7)x +(-4+1)y =10x -3y.(3)原式=(5+3-10)m =-2m.(4)原式=11xy -7xy -3x 2+x 2=(11-7)xy +(-3+1)x 2=4xy -2x 2.2.先合并同类项,再求值;(1)7x 2-3+2x -6x 2-5x +8,其中x =-2;(2)5a 3-3b 2-5a 3+4b 2+2ab ,其中a =-1,b =12.解:(1)原式=(7-6)x 2+(2-5)x +(8-3)=x 2-3x +5.当x =-2时,原式=(-2)2-3×(-2)+5=4+6+5=15.(2)原式=(5-5)a 3+(4-3)b 2+2ab =b 2+2ab.当a =-1,b =12时,原式=(12)2+2×(-1)×12=14-1=-34.设计意图:通过练习,让学生巩固所学知识,加深对所学知识的理解,提高综合运用能力.课堂小结1.同类项的概念是什么?2.合并同类项的法则是什么?3.本节课用到了哪些数学思想方法?设计意图:通过课堂小结的形式,引导学生对本节课所学知识进行整理,同时明确 学习重点.课堂8分钟.1.教材第98页练习第1,2,3题,第102页习题4.2第1题.2.作业.教学反思第2课时去括号课时目标1.探究去括号法则.2.掌握去括号法则,能准确地对多项式进行去括号运算.3.利用去括号法则将整式化简并解决简单的实际问题.学习重点掌握去括号法则,能准确地对多项式进行去括号运算.学习难点利用去括号法则将整式化简,并解决简单的实际问题.课时活动设计回顾引入回顾:上节课学习了合并同类项,我们一起来回忆一下同类项的定义以及合并同类项法则.追问:合并同类项用到了什么运算律?学生举手回答,教师点评并规范学生答题内容.同类项:所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个常数项也是同类项.合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.乘法对加法的分配律:a(b+c)=ab+ac.设计意图:复习已有相关知识,为本节课要学的知识打基础.探究新知探究去括号问题1:计算:6×(12-1 3 ).追问:如何进行计算比较简便?学生思考并独立完成,教师利用多媒体展示学生解题过程.解:6×(12-13)=6×12-6×13=3-1=2.利用分配律进行计算比较简便.问题2:港珠澳大桥是集主桥、海底隧道和人工岛于一体的世界上最长的跨海大桥,一辆汽车从香港口岸行驶到东人工岛的平均速度为96 km/h,在海底隧道和主桥上行驶的平均速度分别为72 km/h和92 km/h.如果汽车通过主桥的行驶时间是b h,通过海底隧道所需时间比通过主桥的时间少0.15 h,你能用含b的代数式表示主桥与海底隧道的长度的和吗?主桥与海底隧道的长度相差多少千米?师生共同分析并引导学生解决实际问题.解:汽车通过主桥的行驶时间是b h,那么汽车在主桥上行驶的路程是92b km,通过海底隧道所需时间比通过主桥的时间少0.15 h,那么汽车在海底隧道行驶的时间是(b-0.15)h,行驶的路程是72(b-0.15)km.因此,主桥与海底隧道的长度的和(单位:km)为92b+72(b-0.15),①主桥与海底隧道长度的差(单位:km)为92b-72(b-0.15).①追问1:上面的代数式①①要进行加减运算需要先如何做?学生举手回答,教师适时进行点评.解:与数的运算一样,进行整式的运算时先去括号.追问2:上面的代数式①①应如何去括号进行化简?学生举手回答,教师适时进行点评.解:由于字母表示的是数,所以可以利用分配律,将括号前的乘数与括号内的各项相乘,去掉括号,再合并同类项,得92b+72(b-0.15)=92b+72b-10.8=164b-10.8,92b-72(b-0.15)=92b-72b+10.8=20b+10.8.追问3:请同学们根据以上探究过程总结一下去括号法则.学生尝试归纳总结并举手回答,教师适时进行引导归纳出去括号法则.去括号法则:一般地,一个数与一个多项式相乘,需要去括号,去括号就是用括号外的数乘括号内的每一项,再把所得的积相加.特别地,+(x-3)与-(x-3)可以看作1与-1分别乘(x-3).利用分配律,可以将式子中的括号去掉,得+(x-3)=x-3,-(x-3)=-x+3.这也符合上面的去括号的方法.利用去括号,可以对整式进行化简.设计意图:从实际问题出发,为了解决实际问题需要先去括号再进行整式的加减运算,从而让学生感受数学来源于生活,并服务于生活.典例精讲例1化简:(1)8a+2b+(5a-b);(2)(4y-5)-3(1-2y).解:(1)8a+2b+(5a-b)=8a+2b+5a-b=13a+b.(2)(4y-5)-3(1-2y)=4y-5-3+6y=10y-8.追问:为什么-3×(-2y)=6y?学生独立思考后小组讨论解决.解:-3×(-2y)=-3×(-2)·y=6y.例2两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2 h后两船相距多远?(2)2 h后甲船比乙船多航行多少千米?解:顺水航速=静水航速+水流速度=(50+a)km/h,逆水航速=静水航速-水流速度=(50-a)km/h.(1)由题意,得2(50+a)+2(50-a)=100+2a+100-2a=200(km).因此,2 h后两船相距200 km.(2)由题意,得2(50+a)-2(50-a)=100+2a-100+2a=4a(km).因此,2 h后甲船比乙船多航行4a km.设计意图:通过例题,让学生能够熟练地利用去括号法则对多项式进行化简,并且能解决简单的实际问题.巩固训练1.下列去括号正确的是(A)A.-0.5(1-2x)=-0.5+xB.3(2x+3y)=6x+3yx-y)=-x-2y D.-(2x2-x+1)=-2x2+xC.-2(122.化简:(9y-3)+2(y+1).(1)8x-(-3x-5);(2)13解:(1)原式=8x+3x+5=11x+5.(2)原式=3y-1+2y+2=(3+2)y+(2-1)=5y+1.设计意图:通过练习,让学生巩固所学知识,加深对所学知识的理解,提高综合运用能力.课堂小结1.去括号法则是什么?2.去括号时需要注意什么?设计意图:通过课堂小结的形式,引导学生对本节课所学知识进行整理,同时明确学习重点.课堂8分钟.1.教材第100页练习第1,2,3,4题,第102页习题4.2第2题.2.作业.第2课时 去 括 号去括号{法则:①用括号外的数乘括号内的每一项②再把所得的积相加注意:括号外是负数时,去括号内的各项要变号教学反思第3课时 整式的加减课时目标1.理解整式的加减的实质就是去括号、合并同类项.2.在掌握合并同类项法则、去括号法则的基础上,掌握整式加减的一般步骤.3.能熟练准确地进行整式的加减运算.学习重点运用合并同类项、去括号法则进行整式运算.学习难点熟练地进行整式的加减混合运算.课时活动设计回顾引入合并同类项和去括号是进行整式加减运算的基础,同学们还记得合并同类项法则与去括号法则吗?师生共同回忆,学生举手回答,教师点评.合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.去括号法则:一般地,一个数与一个多项式相乘,需要去括号,去括号就是用括号外的数乘括号内的每一项,再把所得的积相加.设计意图:复习已有相关知识,为本节课要学的知识打基础.探究新知问题:用代数式表示百位上的数字是a,十位上的数字是b,个位上的数字是c 的三位数,再把这个三位数的百位上的数字与个位上的数字交换位置,计算所得数与原数的差,这个差能被11整除吗?学生独立思考后小组讨论确定出最终答案,教师适时指导.解:设这个三位数是100a+10b+c,交换后的三位数是100c+10b+a.则100a+10b+c-(100c+10b+a)=100a+10b+c-100c-10b-a=99a-99c=99(a-c).因为99(a-c)=11×9(a-c),所以这个差能被11整除.追问1:解决上述问题时涉及了整式的什么运算?说说你是如何运算的?学生独立思考并归纳总结,教师适时点拨.解:涉及整式的加减运算,运算过程是先去括号再合并同类项.追问2:请同学们试着总结一下整式加减的运算法则.学生独立思考并归纳总结,教师适时点拨.整式加减的运算法则:几个整式相加减,如果有括号就先去括号,然后再合并同类项.设计意图:通过解决数学问题,渗透整式的加减的实质,并培养学生归纳总结的能力.典例精讲例1计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y=7x+y.(2)(8a -7b )-(4a -5b )=8a -7b -4a +5b =4a -2b.例2 做大、小两个长方形纸盒,尺寸如下表所示.长方体纸盒的尺寸(1)做这两个纸盒共用纸多少平方厘米?(2)做大纸盒比做小纸盒多用纸多少平方厘米?解:小纸盒的表面积是(2ab +2bc +2ca ) cm 2,大纸盒的表面积是(6ab +8bc +6ca ) cm 2.(1)由题意,得(2ab +2bc +2ca )+(6ab +8bc +6ca ) =2ab +2bc +2ca +6ab +8bc +6ca =8ab +10bc +8ca.因此,做这两个纸盒共用纸(8ab +10bc +8ca )cm 2. (2)由题意,得(6ab +8bc +6ca )-(2ab +2bc +2ca ) =6ab +8bc +6ca -2ab -2bc -2ca =4ab +6bc +4ca.因此,做大纸盒比做小纸盒多用纸(4ab +6bc +4ca )cm 2. 例3 求12x -2(x -13y 2)+(-32x +13y 2)的值,其中x =-2,y =23.分析:括号外是负号时括号内的各项需要变号,并且化简求值问题先将式子化简,再代入数值进行计算往往比较简便.解:12x -2(x -13y 2)+(-32x +13y 2) =12x -2x +23y 2-32x +13y 2 =-3x +y 2. 当x =-2,y =23时,原式=(-3)×(-2)+(23)2=6+(49)=649.设计意图:通过例题,让学生能够熟练地进行整式的加减运算,并且利用整式的加减运算法则解决简单的实际问题以及化简求值问题.巩固训练1.先化简再求值:2(x3-2y2)-(x-2y)-(x-4y2+2x3),其中x=-1,y=-2.解:原式=2x3-4y2-x+2y-x+4y2-2x3=2y-2x.当x=-1,y=-2时,原式=2×(-2)-2×(-1)=-4+2=-2.2.有一道题目是一个多项式减去x2+14x-6,小明误当成了加法计算,得到的结果是2x2-x+3.正确的结果是什么?解:这个多项式为(2x2-x+3)-(x2+14x-6)=2x2-x+3-x2-14x+6=x2-15x+9.则正确的结果为(x2-15x+9)-(x2+14x-6)=x2-15x+9-x2-14x+6=-29x+15.设计意图:通过练习,让学生巩固所学知识,加深对所学知识的理解,提高综合运用能力.课堂小结1.整式的加减的实质是什么?2.多项式减去多项式时要注意什么?设计意图:通过课堂小结的形式,引导学生对本节课所学知识进行整理,同时明确学习重点.课堂8分钟.1.教材第101页练习第1,2,3题,第102页习题4.2第4,5题.2.作业.第3课时整式的加减整式的加减{法则:①去括号②合并同类项注意:①去括号时注意符号变化①多项式相减时加括号教学反思。
人教版初中数学课标版七年级上册第二章2.2 整式的加减教案
人教版初中数学课标版七年级上册第二章 2.2 整式的加减教案2.2.1 整式的加减教学目标1.知识与技能(1)了解同类项、合并同类项的概念,会判断两个单项式是否是同类项。
(2) 掌握合并同类项法则,能正确合并同类项2.过程与方法经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力。
3.情感态度与价值观掌握规范解题步骤,养成良好的学习习惯。
重、难点与关键1.重点:掌握合并同类项法则,熟练地合并同类项.2.难点:多字母同类项的合并.3.关键:正确理解同类项概念和合并同类项法则.教学过程一、创设问题情境,引入新课(1)展示一幅图片,谁能告诉大家有关青藏铁路的信息?(2)今天我们一起学习有关青藏铁路的问题青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t小时,则这段铁路的全长是多少?(单位:千米)解:这段铁路的全长是:100t+120×2.1t即 100t+252t2. 类比数的运算,如何化简100t+252t,并说明你的道理。
思路点拨:教师引导,启发学生类比数的运算,逆用乘法分配律。
对比:100×2+252×2 100t+252t=(100+252) ×2 =(100+252)t=(4-8)x 2 +(2+3)x+(7-2) (分配律)=-4x 2+5x+5把多项式中的同类项合并成一项,叫做合并同类项。
问题:合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?(学生交流,教师归纳)合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
注意:1.若两个同类项的系数互为相反数,则两项的和等于零,如:-3ab 2+3ab 2=(-3+3)ab 2=0×ab 2=0。
人教版七年级上(初一上)册数学教案:第二章 整式的加减
第二章 整式的加减2.1 整式 第1课时 用字母表示数学习内容:教科书第54—56页,2.1整式:1.单项式。
学习目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流能力。
学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
一、自主学习;1、先填空,再分析写出式子特点,与同伴交流。
(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ; (3)若x 表示正方体棱长,则正方体的体积是 ; (4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。
2、观察以上式子的运算,有什么共同特点?3、单项式定义:由数与字母的乘积组成的代数式称为单项式。
[老师提示] 单独一个数或一个字母也是单项式,如a ,5,0。
4、练习:判断下列各代数式哪些是单项式?(1); (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。
5、单项式系数和次数:21 x观察“1”中所列出的单项式,发现单项式是由数字因数和字母因数两部分组成。
单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和叫单项式的次数。
说说四个单项式a 2h ,2πr ,a bc ,-m 的数字因数和字母因数及各个字母的指数?二、合作探究:1、教材p56例1:阅读例题,体会单项式及系数次数概念。
2、判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
①x +1; ②; ③πr 2; ④-a 2b 。
3、下面各题的判断是否正确?①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2; ④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥πr 2h 的系数是。
新人教版初中数学七年级上册《第二章整式的加减:2.2整式的加减:合并同类项》公开课教案_1
课题:2.2 整式的加减(1)合并同类项第一课时一、三维目标1、知识与技能(1)了解同类项、合并同类项的概念,掌握合并同类项法则,•能正确合并同类项.(2)能先合并同类项化简后求值.经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力.3、情感态度与价值观掌握规范的解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用.二、 教学重、难点与关键(1)重点:掌握合并同类项法则,熟练地合并同类项.(2)难点:多字母同类项的合并.(3)关键:正确理解同类项概念和合并同类项法则..三、 教学过程,1、引入新课实际生活中,我们身边的同一类事物有很多,为了需要,往往我们要将它们进行分类。
又哪位同学愿意给大家举个例子呢?你会做吗?(1) 卓玛从家里带了3朵花到教室,尼玛从家里带了2朵花到教室。
请问现在教室里到底有几朵花?(2) (2)扎西家里有12头奶牛,有3只绵羊。
请问扎西家共有几头奶牛?2、讲授新课1.试一试 ?312532752222=+=+=+y x ab ab ab aa a2.导学提纲:(议一议)观察下列各单项式,把你认为相同类型的式子归类,并说出分类依据。
0.3ab 2 、 -4a 2b 、9xy 、 -xy -ab 2观察0.3ab 2,-ab 2中都含有相同字母a 和b ,并且相同字母a 的指数都是1, 相同字母b 的指数是2;而9xy 和 –xy 都含有相同字母x 和y,且相同字母x 指数都是1,相同字母y 指数都是1.3、归纳: 像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,•几个常数项也是同类项.4. 练习。
判断下列各组中的两项是否是同类项,不是同类项的请说明原因:(1) -5ab 3与3a 3b( ) (2)3xy 与3x( )(3)0.5ab 与2ba ( )(4)53与35 ( )(5)x 3与53 ( ) (6) -5m 2n 3与2n 3m 2( )理解同类项应注意:两个相同:所含字母相同,相同字母的指数相同。
人教版七年级数学上册《合并同类项》教案
2.2 整式的加减第1课时合并同类项【知识与技能】理解同类项的概念,掌握合并同类项的法则.【过程与方法】1.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识.2.渗透分类和类比的思想方法.【情感态度】在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益.【教学重点】正确合并同类项.【教学难点】找出同类项并正确的合并.一、情境导入,初步认识我们来看本章引言中的问题(2).在西宁到拉萨路段,列车通过冻土地段所需时间是th,那么它通过非冻土地段所需要的时间就是 2.1th,则这段铁路的全长(单位:千米)是100t+120×2.1t,即100t+252t.类比数的运算,我们应如何化简式子100t+252t呢?【教学说明】教师先引出教材中的问题,让学生思考,并试着写出答案,教师再予以评讲,为下面同类项及合并同类项概念的引入作铺垫.二、思考探究,获取新知问题1 为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:①他们两次共买了多少本软面抄和多少支水笔?②若设软面抄的单价为每本x 元,水笔的单价为每支y 元,则这次活动他们支出的总金额是多少元?【教学说明】知识的呈现过程尽量与学生已有的生活实际密切联系,从而能提高学生从事探索活动的投入程度和积极性,激发学生的求知欲.问题2 观察下列各单项式,把你认为相同类型的式子归为一类.【教学说明】由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示.要求学生观察归为一类的式子,思考它们有什么共同的特征?请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类,再由教师给出同类项的定义.试一试1.下列各式与3a2b3是同类项的是( )A.-3a 2b 3B.-3a 3b 2C.-2b 2a 3D.-a 3b 32.若单项式3xm -ny3与单项式3x2nyn 的和是6xm -nyn ,则( )A.m ≠9B.n ≠3C.m =9,n ≠3D.m =9,n =33.判断下列各题中的两个项是否是同类项,并说明理由.(1)3a 2b 和-21a 2b ;(2)31ab 3和-43a 3b ; (3)x 3和y 3;(4)21m 2n 3和3n 3m 2; (5)2ab 和2xy ;(6)-3和0.4.(1)若32x3y2a 与-52x 5by 4是同类项,求a ,b 的值; (2)若-3x 5y2m -3与31x n y 5是同类项,求m 2-2n 的值; (3)若3a m b 5和-7b n+1a 2是同类项,求m 与n 的值.【答案】1.A2.D3.(1)(4)(6)是同类项.4.(1)a =2,b =53 (2)6 (3)m =2,n =4 问题3 探索合并同类项的过程.学生讨论问题1的解答过程,可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得的结果都为(21x +25y)元.由此可得:把多项式中的同类项合并成一项,叫做合并同类项.(板书:合并同类项.)三、典例精析,掌握新知例1 k 取何值时,3x k y 与-x 2y 是同类项?解:要使3x k y 与-x 2y 是同类项,这两项中x 的次数必须相等,即k =2.所以当k =2时,3x k y 与-x 2y 是同类项.例2 找出多项式3x 2y -4xy 2-3+5x 2y +2xy 2+5中的同类项,并合并同类项.【教学说明】根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.例3 下列各题合并同类项的结果对不对?若不对,请改正.(1)2x 2+3x 2=5x 4;(2)3x +2y=5xy ;(3)7x 2-3x 2=4; (4)9a 2b -9ba 2=0.解:(1)不对,结果应为5x 2;(2)不对,两者不是同类项;(3)不对,结果应为4x2;(4)结果正确.【教学说明】通过这一组题的训练,进一步熟悉法则.例4 合并下列多项式中的同类项:【教学说明】用不同的记号标出各同类项,会减少运算错误,当然熟练后可以不再标出.其中第(3)题应把(x+y)、(x-y)看作一个整体,特别注意(x-y)2n=(y-x)2n,n为正整数.在讲完这个例题后,教师可让学生做教材第64页例1,进一步体会合并同类项.例5 求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3.试一试把x=-3直接代入例5这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?【教学说明】通过比较两种方法,使学生认识到,在求多项式的值时,常常先合并同类项,再求值,这样比较简便.在讲完这个例题后,教师可让学生看教材第64页例2,看跟此题有什么类似之处.四、运用新知,深化理解1~4.教材第65页练习.【教学说明】这4题让学生独立完成,并让学生上台板演.【答案】略五、师生互动,课堂小结1.要牢记同类项的概念,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误.2.从实际问题中类比概括得出合并同类项法则,并能运用法则,正确的合并同类项.1.布置作业:从教材习题2.2中选取.2.完成练习册中本课时的练习.本课时教学要重点引导学生抓住理解同类项的定义中的要点:(1)所含字母相同,不能多或少;(2)相同字母指数完全相同;从这个定义可归纳出:几个代数式的系数大小,字母排列顺序,单项式次数等都不是决定是否是同类项的全部因素.合并同类项是从具体的数字运算发展到代数式运算的一个转折,教学中需要学生通过本课内容的学习,初步了解代数式运算的特点,体会代数式运算与数字运算的异同,初步完成由数字运算到代数式运算的思维转变;同时合并同类项又是今后其他代数式运算及解方程、解不等式的不可或缺的一个环节,因此要特别重视.教学时可充分让学生利用小组交流的方式探索出法则,并在应用时互相纠偏补缺.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。
人教版七年级数学上册:2.2整式的加减-合并同类项(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与合并同类项相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的合并同类项的练习。这个操作将演示如何识别和合并同类项。
-难点二:在合并同类项时,学生可能会忘记只对系数进行运算,而错误地改变字母的指数或字母本身。
-难点三:将合并同类项的法则应用到复杂的整式中,特别是当整式中含有多个字母和多项式时,学生可能会感到困惑。
举例解释:
对于难点一,教师可以通过对比练习,强调同类项的辨识关键点,如提供3x^2和3x^3这样容易混淆的例子,让学生通过对比加深理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指将含有相同字母且相同字母指数的项进行相加或相减。它在数学运算中非常重要,可以帮助我们简化整式,解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将3x^2 + 5x^2这样的同类项合并为8x^2,以及它在实际中的应用。
五、教学反思
今天我们在课堂上学习了整式的加减-合并同类项,回顾整个教学过程,我觉得有几个方面值得反思。首先,我注意到在导入新课环节,通过提问方式引导学生思考日常生活中的合并同类项现象,大部分学生能够积极参与,但仍有部分学生显得不够活跃。这可能是因为他们对这个概念还不够熟悉,或者是对数学与生活联系的认识不够深入。在今后的教学中,我需要更多地设计贴近生活的例子,帮助学生建立起数学与实际的联系。
4.培养学生的合作交流能力,通过小组讨论和互动,让学生在交流中深化理解,共同提高。
人教版七年级上册数学2.2整式的加减(合并同类项)说课稿-学习文档
2.2整式的加减(合并同类项)说课稿各位评委:上午好!我今天说课的课题是《整式的加减》。
下面我将从以下四个方面进行说课。
一教材分析二教法与学法三教学过程设计四板书设计教材分析:教材地位:本节课是新人教版七年级(上册)第二章第2.2的第一课时,是在结合学生已有的生活经验,在学习了用字母表示数、有理数运算以及单项式、多项式的基础上,对同类项进行合并、探索、研究的一个课题。
“合并同类项”这一知识点是整式加减的核心,它为学习一元一次方程提供了理论依据,在本册中起着承上启下的作用。
通过以上分析,我制订了如下的教学目标:知识与技能:理解同类项的概念,会识别同类项。
掌握合并同类项法则,会利用法则来化简整式。
过程与方法:经历合并同类项法则的概括过程,进一步发展学生的抽象思维能力和概括能力;通过分组合作学习活动,学会在活动中与他人合作。
情感态度与价值观:通过合并同类项法则的概括与合作学习的过程,培养学生从特殊到一般的思维认知规律及团体合作精神和积极参与、勤于思考意识根据学生的认知水平,认知能力和教材的特点,我确定了本节课的重难点。
重点:同类项的概念、合并同类项的法则及应用。
难点:正确识别同类项;准确合并同类项。
教法与学法:学情分析:七年级学生刚刚跨入少年期,理性思维的发展还有很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱教法:本节课中我先由具体实例提出问题,采用“自主探究—合作交流—学以致用—课堂收获—分层训练—课后探究”的模式展开教学,让学生经历知识的形成与应用过程,从而更好地理解数学知识,使学生主动地获取知识,积累数学活动经验。
学法:学生心理特征和中小学教材衔接的特点采用引导发现法,讨论法引导学生从具体生活情景及已有的知识和生活经验出发,用眼睛去观察,用大脑去思考,在自主探索与合作交流的氛围中,提出问题,共同解决问题。
七年级数学上册(人教版)2.2整式的加减(第1课时)合并同类项教学设计
-教师通过多个示例,讲解不同情况下的合并同类项方法,如:含有一个字母的同类项、含有多个字母的同类项、系数为负数的同类项等。
-学生跟随教师一起完成示例,加深对合并同类项法则的理解。
(三)学生小组讨论
1.教学内容:小组合作,共同探讨合并同类项的技巧和策略。
4.课后思考题:请学生思考并讨论以下问题:
-同类项的定义中,为什么要求字母和字母的指数都相同?
-合并同类项在实际生活中的应用有哪些?
-你在合并同类项的过程中遇到了哪些困难?如何克服?
5.个性化作业:针对学生的不同学习需求,鼓励学生自主选择一道感兴趣的题目进行深入研究,例如编写一道含有多个同类项的整式题目并解答,以提高他们对知识点的理解。
2.教学过程:
-教师将学生分成小组,每组分配一道具有挑战性的合并同类项题目。
-学生在小组内展开讨论,共同分析题目,探讨合并同类项的方法。
-教师巡回指导,观察学生的讨论情况,给予适当的提示和指导。
-各小组汇报解题过程和结果,其他小组进行评价,教师点评并总结。
(四)课堂练习
1.教学内容:设计不同难度的练习题,让学生独立完成,巩固所学知识。
2.教学过程:
-让学生回顾本节课所学的内容,总结同类项的定义和合并同类项的法则。
-教师通过提问方式,检查学生对知识点的掌握程度,如:“什么是同类项?”“合并同类项的法则是什么?”
-针对本节课的难点和易错点,教师进行强调和提示。
-鼓励学生提出疑问,教师解答,确保学生对所学知识点的理解。
-课堂小结后,布置课后作业,巩固所学知识,为下一节课的学习做好准备。
2.培养学生严谨、细心的学习态度,养成认真检查、及时纠正错误的习惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学课题:2.2整式的加减(1)—合并同类项作者:周辉
教学时间:
教学目标:1.了解同类项、合并同类项的概念,掌握合并同类项法则能正确合并同类项. 2.能先合并同类项化简后求值.
教学重点:掌握合并同类项法则,熟练地合并同类项。
教学难点:多字母同类项的合并。
教学过程:
Ⅰ.出示学习目标
1.了解同类项、合并同类项的概念,掌握合并同类项法则能正确合并同类项.
2.能先合并同类项化简后求值.
Ⅱ.新课探索
有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?
我们来看本章引言中的问题(2).
在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段所需的时间就是2.1t小时,则这段铁路的全长是100t+120×2.1t,即100t+252t
1.类比数的运算,我们应如何化简式子100t+252t呢?
(1)运用有理数的运算律计算:
100×2+252×2=______;
100×(-2)+252×(-2)=________.
(2)根据(1)中的方法完成下面的运算,并说明其中的道理.(根据逆用乘法对加法的分配律可得)
100t+252t=________.
2.填空:
(1)100t-252t=()t;(2)3x2+2x2=()x2;(3)3ab24ab2=()a b2.上述运算有什么共同特点,你能从中得出什么规律?
3.同类项的定义:(微课)
所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,•几个常数项也是同类项.
4.思考:下列各组是不是同类项:
(1)0.5x2y和0.2xy2;(2)4abc和4ab;
(3)-5m2n3和2n3m2;(4)7x n y n+1和-3x n y n+1.
5.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项法则:在合并同类项时,把同类项的系数相加,字母和字母的指数保持不变.注意以下三点:
(1)若两个同类项的系数互为相反数,则两项的和等于零,即这两项相抵消,如-3a b2+3ab2=(-3+3)ab2=0·ab2=0.
(2)多项式中只有同类项才能合并,不是同类项不能合并.
(3)通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如-4x2+5x+5或写成5+5x-4x2.
6.例题
例1.合并下列各式的同类项:
(1)xy2-1
5
x y2;(2)-3x2y+2x2y+3x y2-2x y2;(3)4a2+3b2+2ab-4a2-4b2.
例2.(1)求多项式2x2-5x+x24x-3x22的值,其中x=1
2
.
(2)求多项式3a+abc-1
3
c2-3a+
1
3
c2的值,其中a=-
1
6
,b=2,c=-3.
例3.(1)水库中水位第一天连续下降了a小时,每小时平均下降2cm,•第二天连续上升了a小时,每小时平均上升0.5cm,这两天水位总的变化情况如何?
(2)某商店原有5袋大米,每袋大米为x千克,上午卖出3袋,•下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?
Ⅲ.课内练习:
课本第65页,练习第1、2、3题.
Ⅳ.课时小结:
1.什么叫同类项?字母相同,次数也相同的项是同类项吗?举例说明.
2.什么叫合并同类项?怎样合并同类项?合并同类项的依据是什么?
对于求多项式的值,不要急于代入,应先观察多项式,看其中有没有同类项,若有,要先合并同类项使之变得简单,而后代入求值.
Ⅴ.课后作业:1.课本第69页习题2.2第1、7题.
Ⅵ.堂堂清:
1.如果5x2y与1
2
x m y n是同类项,那么m=______,n=______.
2.合并同类项:
(1)-a-a-2a=________.(2)-xy-5xy+6yx=________.(3)0.8ab2-a2b+0.2a b2=_______.3.下列各组式子中是同类项的是().
A.-2a与a2 B.2a2b与3ab2 C.5ab2c与-b2a c D.-1
7
a b2和4ab2c
4.下列运算中正确的是().
A.3a2-2a2=a2 B.3a2-2a2=1 C.3x2-x2=3 D.3x2-x=2x 5.合并同类项:
(1)-7mn+mn+5nm; (2)3a2b-4a b2-4+5a2b+2ab2+7.
6.求多项式3x2-8x+2x3-13x2+2x-2x3+3的值,其中x=-11
2
.。