概率论与数理统计 古典概型.ppt
合集下载
《概率论与数理统计》全套课件PPT(完整版)
m?????若对于一随机试验每个样本点出现是等可能的样本空间所含的样本点个数为无穷多个且具有非零的有限的几何度量即则称这一随机试验是一几何概型的20义定义当随机试验的样本空间是某个区域并且任量意一点落在度量长度面积体积相同的子区域是等可能的则事件a的概率可定义为?mamap??说明当古典概型的试验结果为连续无穷多个时就归结为几何概率
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
古典概型课件
概率公式、全概率公式等。
对概率论的展望
概率论的发展方向
概率论作为数学的一个重要分支,将继续在金融、生物医 学、人工智能等领域发挥重要作用,同时也会随着实际应 用的需求不断发展新的理论和方法。
概率论与其他学科的交叉
概率论与统计学、金融学、生物学、医学等许多学科都有 密切的联系,未来这种交叉将会更加广泛和深入。
03 概率函数
用于计算每个事件发生的概率,通常用P()函数表 示。
02
古典概型的概率计算
排列与组合
排列
从n个不同元素中取出m个元素的所有排列的个数 。
组合
从n个不同元素中取出m个元素的所有组合的个数 。
概率公式
概率的定义
概率是指事件发生的可能性,通常用P表示。
事件的概率
一个事件的概率是指该事件发生的可能性,即事件发生的概率。
概率论的应用前景
随着大数据和人工智能的快速发展,概率论在数据分析和 模式识别等领域的应用前景广阔,同时也会为解决实际问 题提供更加精确和有效的数学工具。
THANKS
感谢观看
古典概型的特征
01 等可能性
每个试验结果的出现概率相等。
02 有限性
试验结果的数量是有限的。
03 互斥性
试验结果之间是互斥的,即一个结果发生时,其 他结果不会发生。
古典概型的概率空间
01 样本空间
包含所有可能的试验结果,通常用大写字母表示 。
02 事件空间
包含所有可能的结果集合,通常用小写字母表示 。
06
总结与展望
对古典概型的总结
01
古典概型的定义和特点
古典概型是一种离散概率模型,其特点是样本空间有限且每个样本点等
概率论与数理统计--第一章 概率论的基本概念(2)
利用软件包进行数值计算
3 超几何概率
设有 N 件产品, 其中有 D 件次品, 今从中任取 n 件,问其中恰有 k ( k D ) 件次品的概率是多少 ?
解
在N件产品中抽取n件的取法数
C
n N
在 N 件产品中抽取n件,其中恰有k 件次品的取法数
C
nk N D
C
k D
于是所求的概率为
p
C
nk N D n N
7 12
周ቤተ መጻሕፍቲ ባይዱ 周四 周五 周六 周日
故一周内接待 12 次来访共有 712 种.
2 1
2
2 3
2 4
2 12
周一 周二 周三 周四 周五 周六 周日
12 次接待都是在周二和周四进行的共有 212 种. 故12 次接待都是在周二和周四进行的概率为
212 p 12 0.0000003 . 7
(1) 每一个班级各分配到一名特长生的分法共有
( 3!12! ) (4! 4! 4! ) 种.
因此所求概率为
25 3!12! 15! . p1 4! 4! 4! 5! 5! 5! 91
(2)将3名特长生分配在同一个班级的分法共有3种, 12! 种. 对于每一种分法,其余12名新生的分法有 2! 5! 5! 因此3名特长生分配在同一个班级的分法共有
例4 将 15 名新生随机地平均分配到三个班级中 去,这15名新生中有3名是特长生.问 (1) 每一个班 级各分配到一名特长生的概率是多少? (2) 3 名特长生分配在同一个班级的概率是多少?
解 15名新生平均分配到三个班级中的分法总数:
15 10 5 15! . 5 5 5 5! 5! 5!
概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计—古典概型
2023/8/17
3
3.排列:从n个不同元素中(按不放回方式)取出m
(m≤n)个元素的所有排列的个数,叫做从n个不同元素中
取出m个元素的排列数,记为
Pnm n (n 1) (n m 1)
4.组合:从n个不同元素中(按不放回方式)取出m
(m≤n)个元素并成一组, 叫做从n个不同元素中取出m个
元素的组合数,记为
有m1种不同的方法,在第2类中有m2种不同的方法,…… 在第n类中有mn种不同的方法, 那么完成这件事共有
M m1 m2 mn
2.乘法原理:完成1件事,需要分成n个步骤. 做第1步
有m1种不同的方法, 做第2步有m2种不同的方法,…… 做第n步有mn种不同的方法, 那么完成这件事共有
N m1 m2 mn
P( A) C9153 C52 0.1377 C15
100
2023/8/17
6
例3.袋中有a只白球,b只红球,k个人依次在袋中 取一只球,
(1)作放回抽样;(2)作不放回抽样
求第i(i=1,2,…,)人取到白球(记为事件B)的概率 (设k ≤ a+b).
2023/8/17
7
Cnm
n (n
1)
(n m!
m
1)
2023/8/17
4
例1将. n只球随机地装入N个盒子中去,问每个盒子 至多装一只球的概率(设盒子容量不限,n≤N). 解:设A为每个盒子至多装一只球, n只球随机地装入N个盒子共有 N N N N n 每个盒子至多装一只球,则第一只球共有N种装法,
第二只球有N-1种装法,……,第n只球有N-n+1 种,
故N(A)=NP((NA)-1)N…((NN-n+1)1N),n于(N是 n 1)
概率论与数理统计 第一章1.3古典概型与几何概型
基本事件总数为 24. 记 (1), (2), (3), (4) 的事件分
别为 A, B,C, D.
(1) 各球自左至右或自右至左恰好排成 1,2,3,4 的
顺序;
(1) A 中有两种排法, 故有
P(
A)
2 24
1 12
.
(2) 第 1 号球排在最右边或最左边;
(2) B 中有 2 (3!) 12 种排法, 故有
完
计算古典概率的方法
基本计数原理
加法原理
乘法原理
排列组合方法 排列公式
应用举例
组合公式
二项式
完
例 1 一个袋子中装有 10 个大小相同的球, 其中 3
个黑球, 7 个白球, 求: (1) 从袋子中任取一球, 这个球是黑球的概率;
(2) 从袋子中任取两球, 刚好一个白球一个黑球的
概率 以及两个球全是黑球的概率.
顺序;
(2) 第 1 号球排在最右边或最左边; (3) 第 1 号球与第 2 号球相邻;
解 将 4 个球随意地排成一行有4!=24 种排法, 即 基本事件总数为 24. 记 (1), (2), (3), (4) 的事件分 别为 A, B,C, D.
解 将 4 个球随意地排成一行有4!=24 种排法, 即
三班 6 名的分法有:
C145C151C
6 6
15! 4!5!6!
(种).
解 15 名优秀生分别分配给一班 4 名, 二班 5 名,
三班 6 名的分法有:
C145C151C
பைடு நூலகம்
6 6
15! 4!5!6!
(种).
(1) 将 3 名优秀生分配给三个班级各一名, 共有 3!
种分法, 再将剩余的 12 名新生分配给一班 3 名,
第一章 概率论的基本概念PPT课件
(4) A BA BA AB
(5)
n
n
n
n
Ai Ai ,
Ai Ai ,
i 1
i 1
i 1
i 1
Ai Ai ,
Ai Ai .
i 1
i 1
i 1
i 1
上一页 下一页 返 回
例2: 设A,B,C为三个事件,试用A,B,C表 示下列事件: (1)A发生且B与C至少有一个发生; (2)A与B都发生而C不发生; (3)A,B,C恰有一个发生; (4)A,B,C中不多于一个发生; (5)A,B,C不都发生; (6)A,B,C中至少有两个发生。
例1 : 从一批产品中任取8件,观察其中的正品件数, 则这一试验的样本空间为:
={0,1,2,3,4,5,6,7,8}
引入下列随机事件: A={正品件数不超过3}={0,1,2,3} B={取到2件至3件正品}={2,3} C={取到2件至5件正品}={2,3,4,5}
D={取到的正品数不少于2且不多于5}={2,3,4,5}
上一页 下一页 返 回
样本空间:
随机试验E的全体基本事件组成的集合。记为。
随机事件中有两个极端情况:
•每次试验中都必然发生的事件,称为必然事件 。
•每次试验中都不发生的事件,称为不可能事件 。
基本事件是样本空间的单点集。 复合事件是由多个样本点组成
不可能事件不含任何样本点,它就是空集 。
或A1A2 … An ,也可简记为 n 。A i
i1
在可列无穷的场合,用
i1
A
i
表示事件“A1、A2
、
…诸
事件同时发生。”
上一页 下一页 返 回
40 AB
事件A发生但事件B不发生,称为事件A与事件B的差 事件。显然有:
概率论与数理统计-古典概型_图文
思考题
从0,1,2, ,9共十个数字中任意选出三个不同的数字, 试求下列事件的概率:
从0,1,2, ,9共十个数字中任意选出三个不同的数字, 试求下列事件的概率:
从0,1,2, ,9共十个数字中任意选出三个不同的数字, 试求下列事件的概率:
则有
该式称为等可能概型中事件概率的计算公式.
[例1]
表达方法:
[例 2]
解:(1) 有放回情形 样本空间中基本事件总数:
所包含的基本事件总数: 于是,
(2) 无放回情形 样本空间中基本事件总数:
所包含的基本事件总数:
于是,
[例3](继上题) 将抽样方式改为“一次任取 件样品”,求相应
的概率. 解: 样本空间中基本事件总数为:
解:基本事件总数为:
* 2.几何概型
假设随机试验包含无穷多个基本事件,且每个基本 事件都是等可能的. 定义
小结
1. 古典概型:构建合适的样本空间,正确计算样本 点个数.构建样本空间时,要特别注意样本点的等可能 性.
2. 两个重要的概率模型---无放回抽样(超几何分 布),抽签次序无关性.
3. 几何概型---古典概型的推广:样本空间为无穷 集合.
所包含的基本事件总数为:
于是,
附:不放回依次抽样与一次抽样的等价性
例4 在10张奖券中有2张中奖券,有10人依次逐个 抽取一张奖
[例4] 一批产品共有 件,其中有 件次品.每次从中 任取一件,取出后不放回,接连取 个产品.求第 次取 得次品的概率.
概率论与数理统计-古典概型_图文.ppt
一、古典概型的定义
定义 1。试验的样本空间只包含有限个元素; 2。试验中每个基本事件发生的可能性相同.
等可能概型的试验大量存在, 它在概率论发 展初期是主要研究对象. 等可能概型的一些概念 具有直观、容易理解的特点, 应用非常广泛.
大学概率论与数理统计第一章(2)-56页PPT资料
练习
等可能概型
解:从袋中取两球,每一种取法就是一个基本事件。
设 A= “ 取到的两只都是白球 ”,
B= “ 取到的两只球颜色相同 ”,
C= “ 取到的两只球中至少有一只是白球”。
有放回抽取:
42
4222
P(A) 62 0.444 P(B) 62 0.556
22 P(C)1P(C)1620.889
例(会面问题) 两人约定在早上8点至9点在某地会
面,先到者等15分钟离去。假定每人在1小时的任 何时刻到达都是等可能的,求两人会面的概率。
解:设两人的到达时刻分别为x和y,则
0 x 6,0 0 y 60
两人能会面的充要条件是
xy 15
如图,问题转化为平面区域:
{x ( ,y)0x 6,0 0 y 6}0
n! n 1 !.... n m !
4 随机取数问题
例4 从1到200这200个自然数中任取一个,
(1)求取到的数能被6整除的概率 (2)求取到的数能被8整除的概率 (3)求取到的数既能被6整除也能被8整除的概率
解:N(S)=200, N(1)=[200/6]=33,
N(2)=[200/8]=25
频率的性质
(1) 0 fn(A) 1; (2) fn(S)=1; fn( )=0 (3) 可加性:若AB= ,则
fn(AB)= fn(A) +fn(B).
实践证明:当试验次数n增大时, fn(A) 逐渐 趋向一个稳定值。可将此稳定值记作P(A),即可将 P(A)作为事件A的概率
四. 概率的公理化定义(数学定义)
练习
等可能概型
例 2 一口袋装有6只球,其中4只白球、2只红球。从 袋中取球两次,每次随机的取一只。考虑两种取球方 式:
中国矿业大学(北京)《概率论与数理统计》-课件 频率与概率 ,等可能概型(古典概型)
于是 P(B A) P(B) P( A).
又因 P(B A) 0, 故 P( A) P(B).
(4) 对于任一事件 A, P( A) 1. 证明 A S P( A) P(S) 1,
故 P( A) 1. (5) 设 A 是 A的对立事件, 则 P( A) 1 P( A). 证明 因为 A A S, A A , P(S) 1,
2. 概率的主要性质 (1) 0 P(A) 1, P(S) 1, P() 0; (2) P( A) 1 P( A); (3) P( A B) P( A) P(B) P( AB); (4) 设 A, B 为两个事件,且 A B,则 P( A) P(B), P( A B) P( A) P(B).
25
处波动较小
0.50
247 0.494
2 0.2
24 0.48 251 0.502
0.4
18 0.36 26波2 动0最.52小4
0.8
27 0.54 258 0.516
从上述数据可得
(1) 频率有随机波动性,即对于同样的 n, 所得的 f 不一定相同;
(2) 抛硬币次数 n 较小时, 频率 f 的随机波动幅 度较大, 但随 n 的增大 , 频率 f 呈现出稳定性.即 当 n 逐渐增大时频率 f 总是在 0.5 附近摆动, 且 逐渐稳定于 0.5.
P( A)
k n
A 包含的基本事件数 S中基本事件的总数
.
3.计算公式推导
设试验 E 的样本空间为S={e1,e2,...,en},由于 在试验中每个基本事件发生的可能性相同, 即有
P({e1})=P({e2})=...=P({en}). 又由于基本事件是两两互不相容的, 于是
1 P(S)
概率论与数理统计
记下颜色, 重复 m 次.
E: 球编号, 一次取出 m个球, 记下颜色.
(或 Ab )1) #S P (a ,b)( a
k # A Cm Pak Pbmk ,
m ab
m ab
#b S n C , (a 1)
m ab
k mk # A Ca Cb ,
—— 超几何分布—— 注: 不放回地逐次取 m 个球与一次取 m 个球所得结果相同.
解: A = “取到的数被 6 整除”, B = “取到的数被 8 整除”.
则
P ( A) 333 , 2000 P ( B) 250 , 2000 P( AB) 83 , 2000
所求为:P( A
B ) P ( A B) 1 P ( A B )
1 [ P( A) P( B) P( AB )] 1 ( 333 250 83 ) 3 . 4 2000 2000 2000
1
例1. 一个盒中装有10个大小形状完全相同的球. 依次将球
编号为1-10 . 把球搅匀,蒙上眼睛,从中任取一球 . 1. 样本空间 S = { 1 2 3 4 5 6 7 8 9 10 }?
2. 记 A = “摸到 2 号球”,则 P(A) = ?
A = { 2 },
P( A) # A 1 ; # S 10
5 1 9 4 6 7 2 3 10 8
3. 记 B = “摸到红色球”,则 P(B) = ? B = { 1 2 3 4 5 6 }, P( B) # B 6 . # S 10
第一章 概率论的基本概念
2
例2 (p.13 例6). 在 1~2000 的整数中随机地取一个数,求
该数既不能被 6 整除, 又不能被 8 整除的概率.
E: 球编号, 一次取出 m个球, 记下颜色.
(或 Ab )1) #S P (a ,b)( a
k # A Cm Pak Pbmk ,
m ab
m ab
#b S n C , (a 1)
m ab
k mk # A Ca Cb ,
—— 超几何分布—— 注: 不放回地逐次取 m 个球与一次取 m 个球所得结果相同.
解: A = “取到的数被 6 整除”, B = “取到的数被 8 整除”.
则
P ( A) 333 , 2000 P ( B) 250 , 2000 P( AB) 83 , 2000
所求为:P( A
B ) P ( A B) 1 P ( A B )
1 [ P( A) P( B) P( AB )] 1 ( 333 250 83 ) 3 . 4 2000 2000 2000
1
例1. 一个盒中装有10个大小形状完全相同的球. 依次将球
编号为1-10 . 把球搅匀,蒙上眼睛,从中任取一球 . 1. 样本空间 S = { 1 2 3 4 5 6 7 8 9 10 }?
2. 记 A = “摸到 2 号球”,则 P(A) = ?
A = { 2 },
P( A) # A 1 ; # S 10
5 1 9 4 6 7 2 3 10 8
3. 记 B = “摸到红色球”,则 P(B) = ? B = { 1 2 3 4 5 6 }, P( B) # B 6 . # S 10
第一章 概率论的基本概念
2
例2 (p.13 例6). 在 1~2000 的整数中随机地取一个数,求
该数既不能被 6 整除, 又不能被 8 整除的概率.
概率论与数理统计ppt课件
注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....
•
5.1 大数定律 5.2 中心极限定理
•
第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13
事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定
例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖
概率论与数理统计第1.3节
(365)r
美国数学家伯格米尼曾经做过 一个别开生面的实验,在一个盛况 空前、人山人海的世界杯足球赛赛场上, 他随机地在某号看台上召唤了22个球迷, 请他们分别写下自己的生日,结果竟发现 其中有两人同生日.
用上面的公式可以计算此事出现的概率为
P(A)=1-0.524=0.476
即22个球迷中至少有两人同生日的概率为 0.476.
解 方法1 把a+b个球编上1至a+b号,将球一只一只 取出后排成一排,考虑取球的先后顺序,因此共有 (a+b)!种取法,由球的均匀性知每种取法机会都相 同,故属于古典概型,A发生可以先从a个红球中 任取一个放在第k个位置上,然后将剩下的a+b+1 个球随意排在另外a+b+1个位置上,
共有 Ca1(a b 1)! 种排法,故
(1)不放回地从中任取一件,共取3次,求取到3 件次品的概率;
(2)每次从中任取一件,有放回地取3次,求取到 3件次品的概率;
(3)从中任取3件,求至少取得1件次品的概率。
例2 已知10件产品中有7件正品,3件次品。 (1)不放回地从中任取一件,共取3次,求取到3 件次品的概率; 解 (1)设A={取到3件次品}
由于此试验是不放回抽取3次,所以由乘法原理 3次取产品共有10×9×8=720种不同取法,
而3次取3件次品共有3×2×1=6种不同取法,所以
P( A) 6 1 0.0083 720 120
例2 已知10件产品中有7件正品,3件次品。 (2)每次从中任取一件,有放回地取3次,求取到 3件次品的概率; 解 (2)设B={取到3件次品}
(1)事件A包含的基本事件个数是3!个,所以
P( A)
3! 33
2 9
美国数学家伯格米尼曾经做过 一个别开生面的实验,在一个盛况 空前、人山人海的世界杯足球赛赛场上, 他随机地在某号看台上召唤了22个球迷, 请他们分别写下自己的生日,结果竟发现 其中有两人同生日.
用上面的公式可以计算此事出现的概率为
P(A)=1-0.524=0.476
即22个球迷中至少有两人同生日的概率为 0.476.
解 方法1 把a+b个球编上1至a+b号,将球一只一只 取出后排成一排,考虑取球的先后顺序,因此共有 (a+b)!种取法,由球的均匀性知每种取法机会都相 同,故属于古典概型,A发生可以先从a个红球中 任取一个放在第k个位置上,然后将剩下的a+b+1 个球随意排在另外a+b+1个位置上,
共有 Ca1(a b 1)! 种排法,故
(1)不放回地从中任取一件,共取3次,求取到3 件次品的概率;
(2)每次从中任取一件,有放回地取3次,求取到 3件次品的概率;
(3)从中任取3件,求至少取得1件次品的概率。
例2 已知10件产品中有7件正品,3件次品。 (1)不放回地从中任取一件,共取3次,求取到3 件次品的概率; 解 (1)设A={取到3件次品}
由于此试验是不放回抽取3次,所以由乘法原理 3次取产品共有10×9×8=720种不同取法,
而3次取3件次品共有3×2×1=6种不同取法,所以
P( A) 6 1 0.0083 720 120
例2 已知10件产品中有7件正品,3件次品。 (2)每次从中任取一件,有放回地取3次,求取到 3件次品的概率; 解 (2)设B={取到3件次品}
(1)事件A包含的基本事件个数是3!个,所以
P( A)
3! 33
2 9
概率论与数理统计第3节 古典概型与几何概型
S 1,
S(A)
2
3 1
3
(1
x
2 9
1 )dx x
1 2 ln 2;
69
因此所求事件A的概率为:
P( A)
A的面积 的面积
1 6
2 9
ln
2
1
2
ln
2.
1
69
目录 上页 下页 返回 结束
内容小结
1. 古典概型:
(1) 试验结果有限个 ;
(2)每种结果出现是等可能 的;
解:样本空间的样本点有100 个,设A表示“取到的整数能 被6整除”,B表示“取到的整数能被8整除”;
令A中的样本点为x 个,则有:6x 100, 解得:x 16; 令B中的样本点为y 个,则有:8y 100, 解得:y 12; 令AB中的样本点为z 个,则有:24z 100, 解得:z 4; 于是取到的整数能被6或8整除的概率为:
目录 上页 下页 返回 结束
那么问题来了,请问如果你是参赛者,为了得到门后的跑车大 奖,你会做哪种选择,使得自己获奖的概率会更大呢?
或者增加点难度,换和不换的获胜概率分别是多少呢?
为了避免歧义和误解,先明确游戏具有如下的限制条件:
1.参赛者只能在三扇门中挑选一扇,而且他并不知道内里 有什么。
2.主持人却是明确知道每扇门后面有什么。 3.主持人必须开启剩下的其中一扇门,并且必须提供换门 的机会。
目录 上页 下页 返回 结束
一、古典概型
例5的结果表明,这是一个小概率事件。 人们在长期的实践中,总结出了所谓的“实际推断原理”: 概率很小的事件在一次试验中实际上几乎不可能发生。 但例5表明概率很小的事件在一次试验中竟然发生了, 因此有理由怀疑假设的正确性,而断言该女士却有这种分辨能力, 即她的说法是可信的。 这种推断思想在第8章的假设检验中十分有用。