鹤山初中2018-2019学年初中七年级上学期数学第一次月考试卷

合集下载

2018-2019学年度第一学期第一次月考试题答案

2018-2019学年度第一学期第一次月考试题答案

2018~2019学年度第一学期第一次月考试题
七年级数学(答案)
一、选择题
1. C
2. A
3. B
4. C
5. D
6. D
7. B
8. A
9. C10. C
二、填空题
11. ;;12. 0
13. 114. 7
三、计算题:
15. 解:原式;
原式;
原式.
16.原式;
原式;
原式.
四、解答题;
17. 解:,

18. 解:根据题意得:,;,,
则或;

,,,
则.
19. 解:正确,理由为:一个数的倒数的倒数等于原数;
原式的倒数为,则.
20. 解:如图所示:
21. 解;

答:该小组在A地的东边,距A东面39km;
升.
小组从出发到收工耗油195升,
升升,
收工前需要中途加油,
应加:升,
答:收工前需要中途加油,应加15升.
22. 个;答:前三天共生产599个;
个;
产量最多的一天比产量最少的一天多生产26个;
个,
元,
答:该厂工人这一周的工资总额是84135元.。

2018-2019学年人教版七年级上册第一次月考数学试卷(含答案)

2018-2019学年人教版七年级上册第一次月考数学试卷(含答案)

2018-2019学年七年级(上)第一次月考数学试卷一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定3.在有理数中有()A.最大的数 B.最小的数C.绝对值最小的数D.不能确定4.若x=(﹣3)×,则x的倒数是()A.﹣ B.C.﹣2 D.25.在﹣2与1.2之间有理数有()A.2个B.3 个 C.4 个 D.无数个6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)29.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 01310.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个11.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C.|﹣3|=|3| D.(﹣3)100=310012.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是.15.若|x+2|与|y﹣3|互为相反数,则x+y= ,x y= .16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= .三.解答题17.计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?一、选择题1.若﹣a=2,则a 等于( )A .2B .C .﹣2D .【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣a=2,则a 等于﹣2,故选:C .【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.两个非零有理数的和为零,则它们的商是( )A .0B .﹣1C .1D .不能确定【考点】有理数的乘法;有理数的加法;有理数的除法.【分析】根据互为相反数的两数的和等于0判断出这两个数是互为相反数,再根据异号得负解答.【解答】解:∵两个非零有理数的和为零,∴这两个数互为相反数,∴它们的商是负数.故选B .【点评】本题考查了有理数的除法,有理数的加法,判断出这两个数互为相反数是解题的关键.3.在有理数中有( )A .最大的数B .最小的数C .绝对值最小的数D .不能确定【考点】绝对值;有理数.【分析】根据有理数的知识和绝对值的性质作出正确地判断即可.【解答】解:没有最大的有理数也没有最小的有理数,绝对值最小的数是0,故选C【点评】本题主要考查了绝对值和有理数的知识,解题的关键是掌握有理数的有关知识以及绝对值的性质.4.若x=(﹣3)×,则x的倒数是()A.﹣ B.C.﹣2 D.2【考点】有理数的乘法;倒数.【分析】先求出x的值,再根据倒数的定义即可求出x的倒数.【解答】解:∵x=(﹣3)×=﹣,∴x的倒数是﹣2,故选C.【点评】此题主要考查了有理数的乘法和倒数的定义,两数相乘,同号得正,异号得负,并把绝对值相乘.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.5.在﹣2与1.2之间有理数有()A.2个B.3 个 C.4 个 D.无数个【考点】有理数.【分析】根据有理数分为整数与分数,判断即可得到结果.【解答】解:在数轴上﹣2与1.2之间的有理数有无数个.故选D.【点评】此题考查了数轴,熟练掌握有理数的定义是解答本题的关键.6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个【考点】相反数;正数和负数.【分析】注意﹣(﹣2)=2,﹣23=﹣8,指出所有的负数即可.【解答】解:负数有﹣1,﹣2,﹣23,一共有3个,故答案为:B.【点评】本题考查了有理数的分类,本题比较简单,明确有理数分为正数、负数和0即可做出正确判断.7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b【考点】数轴.【分析】根据数轴可以得到a、0、b的关系,从而可以解答本题.【解答】解:由数轴可得,a<﹣1<0<b<1,∴﹣a>﹣b,故选项A错误,﹣b>a,故选项B错误,a<b,故选项C错误,﹣a>b,故选项D正确,故选D.【点评】本题考查数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)2【考点】有理数大小比较.【分析】根据正数大于一切负数即可解答.【解答】解:(2)2=4,(﹣22)=﹣2,∴最大的数是(﹣2)2,故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 013【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列方程求出m、n的值,再代入代数式进行计算即可得解.【解答】解:由题意得,1﹣m=0,n+2=0,解得m=1,n=﹣2,所以,(m+n)2013=(1﹣2)2013=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个【考点】有理数的除法;有理数的乘法.【分析】根据有理数的乘法和除法法则分别进行计算即可.【解答】解:①(﹣1)×(﹣2)×(﹣3)=﹣6,故原题计算错误;②(﹣36)÷(﹣9)=4,故原题计算错误;③×(﹣)÷(﹣1)=,故原题计算正确;④(﹣4)÷×(﹣2)=16,故原题计算正确,正确的计算有2个,故选:C.【点评】此题主要考查了有理数的乘除法,关键是注意结果符号的判断.11.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C.|﹣3|=|3| D.(﹣3)100=3100【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方分别求出即可得出答案.【解答】解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,故选:B.【点评】此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.12.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13【考点】有理数的减法;绝对值.【专题】分类讨论.【分析】根据绝对值的意义及a+b<0,可得a,b的值,再根据有理数的减法,可得答案.【解答】解:由|a|=5,|b|=8,且满足a+b<0,得a=5,或a=﹣5,b=﹣8.当a=﹣5,b=﹣8时,a﹣b=﹣5﹣(﹣8)=﹣5+8=3,当a=5,b=﹣8时,a﹣b=5﹣(﹣8)=5+8=13,故选:D.【点评】本题考查了有理数的减法,分类讨论是解题关键,以防漏掉.二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思净含量最大不超过50kg+0.5kg,最少不低于50kg ﹣0.5kg..【考点】正数和负数.【分析】意思是净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【解答】解:由题意可知:“50kg±0.5kg”表示净含量的浮动范围为上下0.5kg,即含量范围在(50+0.5)=50.5kg到(50﹣0.5)=49.5kg之间.即:它表示净含量的浮动范围为上下5kg,最多重50.5kg,最少重49.5kg;故答案为:净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1和5 .【考点】数轴.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A的两侧,分别是﹣1和5.【解答】解:2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故答案为:﹣1或5.【点评】本题考查了数轴的性质,理解点A所表示的数是2,那么点A距离等于3个单位的点所表示的数就是比2大3或小3的数是关键.15.若|x+2|与|y﹣3|互为相反数,则x+y= 1 ,x y= ﹣8 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出x、y的值,计算即可.【解答】解:由题意得,|x+2|+|y﹣3|=0,则x+2=0,y﹣3=0,解得,x=﹣2,y=3,则x+y=1,x y=﹣8,故答案为:1;﹣8.【点评】本题考查的是相反数的概念和非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= 13 .【考点】有理数的混合运算.【专题】新定义.【分析】利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣5)(﹣3)=9﹣(﹣5)﹣1=9+5﹣1=13.故答案为:13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.(2015秋•利川市校级月考)计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=4﹣1+2=5;(2)原式=4.3+4﹣2.3﹣4=2;(3)原式=﹣﹣﹣+=﹣;(4)原式=﹣3+6﹣8+9=4;(5)原式=﹣48﹣8﹣100+4=﹣156+4=﹣152;(6)原式=﹣8+1﹣9=﹣16.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ ,﹣(﹣3.14),2006,+1.88 …};(2)负数集合:{ ﹣23,﹣|﹣|,﹣(+5)…};(3)整数集合:{ ﹣23,0,2006,﹣(+5)…};(4)分数集合:{ ﹣|﹣|,,﹣(﹣3.14),+1.88 …}.【考点】有理数.【分析】按照有理数分类即可求出答案.【解答】解:故答案为:正数:,﹣(﹣3.14),2006,+1.88;负数:﹣23,﹣|﹣|,﹣(+5);整数:﹣23,0,2006,﹣(+5);分数:﹣|﹣|,,﹣(﹣3.14),+1.88;【点评】本题考查有理数的分类,属于基础题型.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.【考点】有理数的混合运算.【专题】新定义.【分析】根据新运算得出1×0.5﹣(﹣3)×(﹣2),算乘法,最后算减法即可.【解答】解:=1×0.5﹣(﹣3)×(﹣2)=0.5﹣6=﹣5.5.【点评】本题考查了有理数的混合运算的应用,能根据新运算得出1×0.5﹣(﹣3)×(﹣2)是解此题的关键.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.【考点】倒数;相反数;绝对值.【专题】计算题.【分析】根据相反数,绝对值,倒数的概念和性质求得a与b,c与d及x的关系或值后,代入代数式求值.【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵|x|=1,∴x=±1,当x=1时,a+b+x2﹣cdx=0+(±1)2﹣1×1=0;当x=﹣1时,a+b+x2+cdx=0+(±1)2﹣1×(﹣1)=2.【点评】本题主要考查相反数,绝对值,倒数的概念及性质.(1)相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;(2)倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;(3)绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.【考点】有理数的混合运算.【分析】根据题意,可以知道顶峰的温度与小明所在位置的温差,从而可以求得顶峰的高度.【解答】解:由题意可得,星斗山顶峰的海拔高度是:1020+(14﹣2)÷0.6×100=1020+12÷0.6×100=1020+2000=3020(米),即星斗山顶峰的海拔高度是3020米.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?【考点】数轴.【分析】(1)数轴三要素:原点,单位长度,正方向.依此表示出家以及A、B、C三个村庄的位置;(2)距离相加的和即为所求;(3)分两种情况:①D村在C村左边时;②D村在C村右边时;分别计算即可.【解答】解:(1)如图所示:(2)2+3+10=15,即小明一共走了15千米;(3)分两种情况:①D村在C村左边时,则C、D村表示的数分别是5千米、4千米,4﹣(﹣2﹣3)=4+5=9(千米);②D村在C村右边时,则C、D村表示的数分别是5千米、6千米,6﹣(﹣2﹣3)=6+5=11(千米);综上所述:D到B村有9千米或11千米.【点评】本题考查的是数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?【考点】正数和负数.【分析】(1)将各数据相加即可求出20袋小麦是不足或超过;(2)将(1)中的数据与20袋标准小麦总量相加即可求出答案;(3)记数为0时,小麦重量非常标准.【解答】解:(1)﹣6+4+3﹣2﹣3+1+0+5+8﹣5=5,这20袋小麦总计超过5千克;(2)20袋小麦总质量是:20×450+5=9005;(3)只有一袋非常标准,由于该袋小麦与标准质量相比较为0;【点评】本题考查正负数的意义,属于基础题型。

新人教版2018-2019学年七年级数学上学期第一次月考试题(含答案)

新人教版2018-2019学年七年级数学上学期第一次月考试题(含答案)

1 2018-2019学年七年级数学上学期第一次月考试题
(考试时间:120分钟,满分:120分)
一、选择题(本大题6小题,每小题3分,共18分,每小题只有一个正确选项)
1.2的相反数是( )
A.-2
B.2
C.21
D. 1
2
2.-2018的倒数是()
A .-2018
B .2018
C .20181
D .2018
1
3.向东行进-30米表示的意义是()
A.向东行进30米
B.向东行进-30米
C.向西行进30米
D.向西行进-30米
4.有理数a ,b 在数轴上的位置如图所示,下列各式成立的是( )
A .b >0
B .|a |>-b
C .a +b >0
D .ab <0
5.1x + 3y = 0, 则y -x -1
2的值是()
A .-412
B .-21
2 C .-11
2 D .11
2
6.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依
次报自己顺序的倒数加1,如第1位同学报1
(1)1),第2位同学报1
(1)2),…,这样得到的
20个数的积为()
A.21
B. 63
4 C. 21
2 D. 21
20
二、填空题(本大题6小题,每小题3分,共18分)
8.计算36=().
9.若a ,b 互为相反数,则2017a b .
10.若x=4,则|x-5|=. 题号一二三四五总分得分。

2018-2019学年人教版七年级数学上册第一次月考试题(有答案)

2018-2019学年人教版七年级数学上册第一次月考试题(有答案)

2018-2019学年度第一学期人教版七年级数学上第一次月考试题(9月份第一二章)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列说法中,不正确的是()A.既不是正数,也不是负数B.是绝对值最小的数C.的相反数是D.的绝对值是2.有理数、在数轴上的位置如图所示,在下列结论中:① ;② ;③ ;④正确的结论有()A.个B.个C.个D.个3.在,,,,,,中,分数的个数是()A.个B.个C.个D.个4.用科学记数法表示的数.它的原数是()A. B.C. D.5.已知数轴上的三点、、,分别表示有理数、、,那么表示为()A.、两点间的距离B.、两点间的距离C.、两点到原点的距离之和D.、两点倒原点的距离之和6.的相反数是()A. B. C. D.7.下列说法正确的是()A.与不是同类项B.不是整式C.单项式的系数是D.是二次三项式8.某日嵊州的气温是,长春的气温是,则嵊州的气温比长春的气温高()A. B. C. D.9.下列结论正确的有()①任何数都不等于它的相反数;②一个数的绝对值一定是正数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数,互为相反数,那么;⑤绝对值最小的数是.A.个B.个C.个D.个10.在下列代数式:中,单项式有()A.个B.个C.个D.个二、填空题(共 10 小题,每小题 3 分,共 30 分)11.多项式是________次________项式,常数项是________,将多项式按的降幂排列为________.12.的相反数是________,倒数是________,绝对值是________.13.比低的温度是________.14.若单项式与的和仍为单项式,则这两个单项式的和为________.15.当________时,代数式中不含项.16.计算:________.17.去括号:________.18.的相反数是________,的倒数是________,绝对值是________.19.有理数,,在数轴上的位置如图所示,则化简的结果是________.20.太阳光到达地球表面大约需要秒,已知光速为米/秒,则太阳与地球之间的距离用科学记数法表示为________千米.三、解答题(共 6 小题,每小题 10 分,共 60 分)21..22.先化简后求值,其中,;,其中,.23.小强与小亮在同时计算这样一道题:“当时,求整式的值.”小亮正确求得结果为,而小强在计算时,错把看成了,但计算的结果却也正确,你能说明为什么吗??24.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上,乘以,减去,除以,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是 ”,小张说得对吗?说明理由.25.点、在数轴上分别表示有理数、,、两点之间的距离表示为,在数轴上、两点之间的距离.回答下列问题:数轴上表示和两点之间的距离是________,数轴上表示和的两点之间的距离是________;数轴上表示和的两点之间的距离表示为________;若表示一个有理数,则有最小值吗?若有,请求出最小值;若没有,请说明理由.26.已知、在数轴上对应的数分别用、表示,且.是数轴上的一个动点在数轴上标出、的位置,并求出、之间的距离;数轴上一点距点个单位长度,其对应的数满足.当点满足时,求点对应的数;动点从原点开始第一次向左移动个单位长度,第二次向右移动个单位长度,第三次向左移动个单位长度第四次向右移动个单位长度,….点移动到与或重合的位置吗?若能,请探究第几次移动是重合;若不能,请说明理由.答案1.B2.C3.B4.C5.B6.A7.C8.A9.B10.B11.五四12.13.14.15.16.17.18.19.20.21.解:原式;原式;原式;原式.22.解:原式,,当,时,原式;原式,,.当,时,原式.23.解:原式,结果与和无关,都为,故小亮正确求得结果为,而小强在计算时,错把看成了,但计算的结果却也正确.24.解:正确.理由:设此整数是,.25.根据绝对值的定义有:可表示为点到与两点距离之和,根据几何意义分析可知:当在与之间时,有最小值.26.解:,,; ∵,,∴ ,又,∴ ..① 在之间时,点表示,② 在点右边时,点表示;第一次点表示,第二次点表示,依次,,, …则第次为,点表示,则第次与重合;点表示,点与点不重合.。

2018-2019七年级数学上册第一次月考试卷(1)

2018-2019七年级数学上册第一次月考试卷(1)

2018—2019学年(上)青云片第一次月考七年数学试卷(完卷时间90分钟,满分100分)一、选择题(每题2分,共20分)1.-3的相反数是( )A .-3B .-31C .3D .31 2.向东行驶5km,记作+5km,向西行驶8km,记作( ) A .+8km B .-8km C .+8D .-8 3.下列各组数中,互为倒数的是( )A .-3与3B .-3与31 C .-3与-31 D .-3与|-3| 4.两个非零有理数的和为零,则它们的商是( ) A .不能确定 B .+1 C .0D .-1 5.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )A .0.1(精确到0.1)B . 0.05(精确到千分位)C .0.05(精确到百分位)D .0.0502(精确到0.0001) 6.在2,-7,0,-6.2四个数中,最小的数是( )A .2B . -7C .0D .-6.27.有下列四个算式:①(-5)+(+3)=-8;②-(-2)3=6;③(+65)+(-61)=32;④-2÷(-21)=4,其中正确的有( ) A .0个 B .1个 C .2个 D .3个8.下列式子中,正确的是( )A .-|-5|>4B .-|-4|=4C .|-5.6|<5D .-7<|-7|9.已知:|a|=5,|b|=3,a+b<0,则|a -b|的值为( )A .2B .8C .3或8D .2或810.近似数2.50所表示的准确数x 的取值范围是( )A .2.495≤x<2.505B .2.495≤x ≤2.505C .2.45 ≤x<2.55D .2.5≤x ≤2.55二、填空题(每题3分,共24分)11.将-6+(-5)-(-7)写成省略加号与括号的形式为 。

12.(-31)3的底数是 ,指数是 。

13.A 、B 两地相距6980000m,用科学计数法表示为 km.14.在数-6,2,0,-5,3中,任取两个相乘,其中最大的积是 。

人教版2018-2019学年七年级数学上学期第一次月考试卷及答案

人教版2018-2019学年七年级数学上学期第一次月考试卷及答案

2018-2019学年七年级(上)第一次月考数学试卷一、选择题1.﹣2016的绝对值是()A.2016 B.﹣2016 C.D.﹣2.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0 C.D.﹣13.下列说法正确的是()A.整数就是正整数和负整数B.负整数的相反数就是非负整数C.有理数中不是负数就是正数D.零是自然数,但不是正整数4.如图,数轴上点A所表示的数的倒数是()A.﹣2 B.2 C.D.5.下列算式中,结果是正数的是()A.﹣[﹣(﹣3)]B.﹣|﹣(﹣3)|3 C.﹣(﹣3)2D.﹣32×(﹣2)3 6.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2 B.﹣3 C.+3 D.+47.下列说法正确的是()A.一个数的绝对值一定比0大B.倒数等于它本身的数是±1C.绝对值等于它本身的数一定是正数D.一个数的相反数一定比它本身小8.下列结论中,错误的个数为()﹣(﹣2)2=4,﹣5÷×5=﹣5,=,(﹣3)2×(﹣)=3,﹣33=﹣9.A.2个 B.3个 C.4个 D.5个9.已知a、b、c大小如图所示,则的值为()A.1 B.﹣1 C.±1 D.010.将正整数依次按如表规律排成4列,根据表中的排列规律,数2016应在()A.第671行第2列B.第671行第3列 C.第672行第2列 D.第672行第3列二、填空题11.在知识抢答中,如果用+10表示得10分,那么扣20分表示为.12.某天温度最高是12℃,最低是﹣7℃,这一天温差是℃.13.在数﹣4.3,﹣,|0|,﹣(﹣),﹣|﹣3|,﹣(+5)中,是非正数.14.比较大小:.15.将2.96精确到十分位的近似数为.16.当|a|+a=0时,则a是.17.若|a+2|+(b﹣3)2=0,则﹣a2b=.18.设a<0,b>0,且a+b>0,用“<”号把a、﹣a、b、﹣b连接起来为.19.A、B两地相距6980000m,用科学记数法表示为km.20.若x、y互为相反数,a、b互为倒数,c的绝对值等于2,则()2016﹣(﹣ab)2015+c3=.三、解答题(共60分)21.(6分)在数轴上表示下列各数,再用“<”号把各数连接起来.+2,﹣(+4),+(﹣1),|﹣3|,﹣1.522.(24分)计算:(1)22+(﹣2016)+(﹣2)+2016(2)(﹣4)×|﹣3|﹣4÷(﹣2)﹣|﹣5|(3)﹣3×(﹣)﹣(﹣10)÷(﹣)(4)0.7×19+2×(﹣14)+0.7×+×(﹣14)(5)(﹣22﹣33)÷[(﹣)3×÷](6)215﹣214﹣213﹣…﹣27﹣26﹣25.23.(6分)规定“*”是一种运算,且a*b=a b﹣b a,例如:2*3=23﹣32=8﹣9=﹣1,试计算4*(3*2)的值.24.(6分)已知|m|=4,|n|=6,且|m+n|=m+n,求m﹣n的值.25.(9分)股民周思源上周五在股市以收盘价(收市时的价格)买进某公司股票1000股,每股25元,周六、周日股市不交易,在接下来的一周交易日内,周思源记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)这一周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交总金额的5‰(千分之五)的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?26.(9分)阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时.(1)如图2所示,点A、B都在原点右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a ﹣b|;(2)如图3所示,点A、B都在原点左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b ﹣(﹣a)=|a﹣b|;(3)如图4所示,点A、B在原点两边,|AB|=|OB|+|OA|=|b|+|a|=a+(﹣b)=|a﹣b|.综上所述,数轴上A、B两点之间的距离表示为|AB|=|a﹣b|.根据阅读材料回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣3的两点A、B之间的距离是,如果|AB|=2,则x 为.(3)当代数式|x+1|+|x﹣2|取最小值时,即在数轴上,表示x的动点到表示﹣1和2的两个点之间的距离和最小,这个最小值为.相应的x的取值范围是.参考答案与试题解析一、选择题1.﹣2016的绝对值是()A.2016 B.﹣2016 C.D.﹣【考点】绝对值.【分析】根据正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.【解答】解:∵﹣2016的绝对值等于其相反数,∴﹣2016的绝对值是2016.故选A.【点评】本题考查了绝对值,解决本题的关键是明确绝对值的定义.2.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0 C.D.﹣1【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数大小比较的法则,可得﹣1<﹣,所以在﹣,0,,﹣1这四个数中,最小的数是﹣1.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.下列说法正确的是()A.整数就是正整数和负整数B.负整数的相反数就是非负整数C.有理数中不是负数就是正数D.零是自然数,但不是正整数【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:A、整数就是正整数和负整数,还有0,故本选项错误;B、负整数的相反数就是非负整数,故本选项错误;C、有理数中不是负数就是正数,还有0,故本选项错误;D、零是自然数,但不是正整数,本选项正确;故选D.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.4.如图,数轴上点A所表示的数的倒数是()A.﹣2 B.2 C.D.【考点】倒数;数轴.【分析】由题意先读出数轴上A的数,然后再根据倒数的定义进行求解.【解答】解:由题意得数轴上点A所表示的数为﹣2,∴﹣2的倒数是﹣,故选D.【点评】此题主要考查倒数的定义,是一道基础题.5.下列算式中,结果是正数的是()A.﹣[﹣(﹣3)]B.﹣|﹣(﹣3)|3 C.﹣(﹣3)2D.﹣32×(﹣2)3【考点】绝对值;正数和负数;相反数.【分析】根据相反数的定义,有理数的运算,可得答案.【解答】解:A、﹣[﹣(﹣3)]=﹣[+3]=﹣3,故A错误;B、﹣|﹣(﹣3)|2=﹣9,故B错误;C、﹣(﹣3)2=﹣9,故C错误;D、﹣32×(﹣2)3=﹣9×(﹣8)=72,故D正确;故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.6.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A.+2 B.﹣3 C.+3 D.+4【考点】正数和负数.【分析】实际克数最接近标准克数的是绝对值最小的那个数.【解答】解:A、+2的绝对值是2;B、﹣3的绝对值是3;C、+3的绝对值是3;D、+4的绝对值是4.A选项的绝对值最小.故选A.【点评】本题主要考查正负数的绝对值的大小比较.7.下列说法正确的是()A.一个数的绝对值一定比0大B.倒数等于它本身的数是±1C.绝对值等于它本身的数一定是正数D.一个数的相反数一定比它本身小【考点】倒数;相反数;绝对值.【分析】根据倒数的意义,绝对值的性质,相反数的意义,可得答案.【解答】解:A、0的绝对值等于零,故A错误;B、倒数等于它本身的数是±1,故B正确;C、绝对值等于它本身的数一定是非负数,故C错误;D、0等相反数等于零,故D错误;故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.下列结论中,错误的个数为()﹣(﹣2)2=4,﹣5÷×5=﹣5,=,(﹣3)2×(﹣)=3,﹣33=﹣9.A.2个 B.3个 C.4个 D.5个【考点】有理数的乘方;有理数的乘法;有理数的除法.【分析】根据有理数的乘方、有理数的除法和有理数的乘法法则分别进行计算,即可得出答案.【解答】解:∵﹣(﹣2)2=﹣4,﹣5÷×5=﹣125,=,(﹣3)2×(﹣)=﹣3,﹣33=﹣27,∴错误的有5个;故选D.【点评】此题考查了有理数的乘方、有理数的除法和有理数的乘法,掌握运算法则是本题的关键,是一道基础题.9.已知a、b、c大小如图所示,则的值为()A.1 B.﹣1 C.±1 D.0【考点】绝对值;数轴.【分析】根据数轴上a,b,c的位置知道它们的符号,从而去掉绝对值.【解答】解:根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.【点评】本题考查了绝对值、数轴.解题的关键是根据数轴判断a,b,c的符号.10.将正整数依次按如表规律排成4列,根据表中的排列规律,数2016应在()A.第671行第2列B.第671行第3列 C.第672行第2列 D.第672行第3列【考点】规律型:数字的变化类.【分析】由图表知,3个数字为一组,奇数行从左向右排列,偶数列是从右向左排列,2016÷3=672,即可依据规律得出其位置.【解答】解:∵2016÷3=672,∴2016排在第672行,第2列,故选:C.【点评】本题考查数字的变化类,解题的关键是明确题意,找出数字的变化特点.二、填空题11.在知识抢答中,如果用+10表示得10分,那么扣20分表示为﹣20.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:用+10表示得10分,那么扣20分用负数表示,那么扣20分表示为﹣20.故答案为:﹣20.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.某天温度最高是12℃,最低是﹣7℃,这一天温差是19℃.【考点】有理数的减法.【分析】温差等于最高气温减去最低气温,列式计算即可.【解答】解:12﹣(﹣7)=12+7=19.故答案为:19.【点评】本题考查了有理数的减法的应用和有理数的减法法则,是基础知识较简单.13.在数﹣4.3,﹣,|0|,﹣(﹣),﹣|﹣3|,﹣(+5)中,﹣4.3,﹣,|0|,﹣|﹣3|,﹣(+5)是非正数.【考点】正数和负数;相反数;绝对值.【分析】首先将各数化简,再根据正负数的定义可得结果.【解答】解:﹣4.3是负数,不是正数;﹣是负数,不是正数;|0|=0,不是正数;﹣()=,是正数;﹣|﹣3|=﹣3,不是正数;﹣(+5)=﹣5,不是正数,所以﹣4.3,﹣,|0|,﹣|﹣3|,﹣(+5)是非负数,故答案为:﹣4.3,﹣,|0|,﹣|﹣3|,﹣(+5).【点评】本题主要考查了有理数的定义,熟练掌握有理数的分类是解答此题的关键.14.比较大小:>.【考点】有理数大小比较.【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵|﹣|=,|﹣|=,∴﹣>﹣,故答案为:>.【点评】本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键.15.将2.96精确到十分位的近似数为 3.0.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:2.96精确到十分位的近似数为3.0.答案为3.0.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.\16.当|a|+a=0时,则a是非负数.【考点】绝对值.【分析】利用相反数的定义可得|a|与a的关系,易得结果.【解答】解:∵|a|+a=0,∴|a|=﹣a,∴a≤0,即a为非负数,故答案为:非负数.【点评】本题主要考查了相反数的定义和绝对值的性质,根据相反数的定义解答此题是关键.17.若|a+2|+(b﹣3)2=0,则﹣a2b=﹣12.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+2=0,b﹣3=0,解得a=﹣2,b=3,所以,﹣a2b=﹣(﹣2)2×3=﹣4×3=﹣12.故答案为:﹣12.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.设a<0,b>0,且a+b>0,用“<”号把a、﹣a、b、﹣b连接起来为﹣b <a<﹣a<b.【考点】有理数大小比较.【分析】根据有理数的加法法则判断a、b以及﹣a、﹣b的符号和|a|与|b|的大小,据此即可判断.【解答】解:∵a<0,b>0,a+b>0,∴﹣a>0,﹣b<0,|a|<|b|,∴﹣b<a<﹣a<b.故答案是:﹣b<a<﹣a<b.【点评】本题考查了有理数的加法法则以及有理数大小的比较,判断a、b以及﹣a、﹣b的符号和|a|与|b|的大小是关键.19.A、B两地相距6980000m,用科学记数法表示为 6.98×103km.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将6980000m=6980km用科学记数法表示为:6.98×103.故答案为:6.98×103.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.若x、y互为相反数,a、b互为倒数,c的绝对值等于2,则()2016﹣(﹣ab)2015+c3=9或﹣7.【考点】代数式求值.【分析】根据题意可知x+y=0,ab=1,|c|=2,然后分别代入原式求值即可.【解答】解:由题意可知:x+y=0,ab=1,c=±2,当c=2时,∴原式=0﹣(﹣1)2015+23=1+8=9当c=﹣2时,∴原式=0﹣(﹣1)2015+(﹣2)3=1+(﹣8)=﹣7故答案为:9或﹣7.【点评】本题考查代数式求值,涉及相反数,倒数,绝对值的性质.三、解答题(共60分)21.在数轴上表示下列各数,再用“<”号把各数连接起来.+2,﹣(+4),+(﹣1),|﹣3|,﹣1.5【考点】有理数大小比较;数轴.【分析】根据有理数大小的比较方法,先化简再判断大小.【解答】解:先化简:﹣(+4)=﹣4,+(﹣1)=﹣1,|﹣3|=3;所给5个数中,有3个负数,2个正数,在数轴上分别比较3个负数2个正数的大小,正数大于一切负数.故﹣(+4)<﹣1.5<+(﹣1)<+2<|﹣3|.【点评】要比较几个数的大小,需要先对数进行化简,看每个数的实际值.22.(24分)(2016秋•麻城市月考)计算:(1)22+(﹣2016)+(﹣2)+2016(2)(﹣4)×|﹣3|﹣4÷(﹣2)﹣|﹣5|(3)﹣3×(﹣)﹣(﹣10)÷(﹣)(4)0.7×19+2×(﹣14)+0.7×+×(﹣14)(5)(﹣22﹣33)÷[(﹣)3×÷](6)215﹣214﹣213﹣…﹣27﹣26﹣25.【考点】有理数的混合运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式逆用乘法分配律计算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算即可得到结果;(6)原式两项两项结合后,计算即可得到结果.【解答】解:(1)原式=22﹣2﹣2016+2016=20;(2)原式=﹣12+2﹣5=﹣15;(3)原式=×﹣10×=3﹣15=﹣12;(4)原式=﹣14×(+)+0.7×(19+)=﹣42+14=﹣28;(5)原式=(﹣31)÷(﹣××)=﹣31×(﹣)=46.5;(6)原式=214×(2﹣1)﹣213﹣…﹣27﹣26﹣25=213×(2﹣1)﹣…﹣27﹣26﹣25=…=26﹣25=32.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.规定“*”是一种运算,且a*b=a b﹣b a,例如:2*3=23﹣32=8﹣9=﹣1,试计算4*(3*2)的值.【考点】有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=4*(9﹣8)=4*1=4﹣1=3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.已知|m|=4,|n|=6,且|m+n|=m+n,求m﹣n的值.【考点】有理数的减法;绝对值;有理数的加法.【分析】首先根据绝对值的性质得到m、n的值,然后再根据绝对值的性质确定m、n的值,进而可得m﹣n的值.【解答】解:∵|m|=4,|n|=6,∴m=±4,n=±6,∵|m+n|=m+n,∴m+n≥0,∴m=±4,n=6,∴当m=4,n=6时,m﹣n=﹣2,当m=﹣4,n=6时,m﹣n=﹣10,综上:m﹣n=﹣2或﹣10.【点评】此题主要考查了有理数的减法,以及绝对值的性质,关键是掌握绝对值等于一个正数的数有两个,它们互为相反数.25.股民周思源上周五在股市以收盘价(收市时的价格)买进某公司股票1000股,每股25元,周六、周日股市不交易,在接下来的一周交易日内,周思源记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)这一周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交总金额的5‰(千分之五)的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加减法的运算方法,求出星期二收盘时,该股票每股多少元即可.(2)这一周内该股票星期一的收盘价最高,星期四的收盘价最低.(3)用本周五以收盘价将全部股票卖出后得到的钱数减去买入股票与卖出股票均需支付的交易费,判断出他的收益情况如何即可.【解答】解:(1)25+2﹣1.4=25.6(元)答:星期二收盘时,该股票每股25.6元.(2)25+2=27(元)25+2﹣1.4+0.9﹣1.8=24.7(元)答:收盘时的最高价、最低价分别是27元、24.7元.(3)(25.2﹣25)×1000﹣5‰×1000×(25+25.2)=200﹣251=﹣51(元)答:他的收益情况为亏51元.【点评】此题主要考查了正数和负数,有理数加减乘除的运算方法,以及单价、总价、数量的关系,要熟练掌握.26.阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时.(1)如图2所示,点A、B都在原点右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a ﹣b|;(2)如图3所示,点A、B都在原点左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b ﹣(﹣a)=|a﹣b|;(3)如图4所示,点A、B在原点两边,|AB|=|OB|+|OA|=|b|+|a|=a+(﹣b)=|a﹣b|.综上所述,数轴上A、B两点之间的距离表示为|AB|=|a﹣b|.根据阅读材料回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上表示x和﹣3的两点A、B之间的距离是|x+3| ,如果|AB|=2,则x为﹣1或5.(3)当代数式|x+1|+|x﹣2|取最小值时,即在数轴上,表示x的动点到表示﹣1和2的两个点之间的距离和最小,这个最小值为3.相应的x的取值范围是﹣1≤x≤2.【考点】整式的加减—化简求值;数轴;绝对值.【分析】根据数轴上A、B两点之间的距离表示为|AB|=|a﹣b|即可求出答案.【解答】解:(1)﹣2﹣(﹣5)=3,1﹣(﹣3)=4,;(2)|x﹣(﹣3)|=|x+3|,∵|x+3|=2,∴x+3=±2,∴x=﹣1或5;(3)由题意可知:当x在﹣1与2之间时,此时,代数式|x+1|+|x﹣2|取最小值,最小值为2﹣(﹣1)=3,此时x的取值范围为:﹣1≤x≤2;故答案为:(1)3,4;(2)|x+3|,﹣1或﹣5;(3)3,﹣1≤x≤2.【点评】本题考查绝对值的意义,涉及有理数的运算,整式化简,绝对值的性质.。

2018-2019学年度第一学期人教版七年级数学上册第一次月考试卷含解析

2018-2019学年度第一学期人教版七年级数学上册第一次月考试卷含解析

2018-2019学年度第一学期人教版七年级数学上册第一次月考试卷含解析一、选择题(共10小题,每小题3分,共30分)1.下列各组量中具有相反意义的量是( )A.蚂蚁向上爬30cm与向左爬30cmB.收入人民币2元与归还图书2本C.向东走与向北走D.弹簧伸长3cm与缩短1cm2.若﹣3减去一个有理数的差是﹣6,则﹣3乘以这个有理数的积是( )A.9B.﹣9C.6D.﹣63.下列说法正确的是( )A.绝对值等于本身的数是正数B.﹣a是负数C.有理数不是正数就是负数D.分数都是有理数4.用科学记数法表示的数是1.69×105,则原来的数是( )A.169B.1690C.16900D.1690005.有理数a,b在数轴上的位置如图所示,则在a+b,a﹣b,ab,a3,a2b3这五个数中,正数的个数是( )A.2B.3C.4D.56.今年3月份某市一天的气温最高是12℃,最低气温是﹣7℃,那么这一天的最高气温比最低气温高多少( )A.﹣19℃B.19℃C.5℃D.﹣5℃7.有理数a,b在数轴上的位置如图所示,则|a+b|+|a﹣b|化简的结果为( )A.﹣2b B.﹣2a C.2b D.08.下列结论正确的是( )A.有理数包括正数和负数B.数轴上原点两侧的数互为相反数C.0是绝对值最小的数D.倒数等于本身的数是0、1、﹣19.下列说法中,不正确的是( )A.﹣ab2c的系数是﹣1,次数是4B.﹣1是整式C.6x2﹣3x+1的项是6x2、﹣3x,1D.2πR+πR2是三次二项式10.下列说法中,正确的有( )①单项式﹣的系数是﹣2,次数是3;②﹣5π,0.333…都是无理数;③在﹣(﹣8),|﹣1|,﹣|0|,(﹣2)3这四个数中,非负数共有3个;④平方等于本身数只有0和1.A.4个B.3个C.2个D.1个二、填空题(共10小题,每小题3分,共30分)11.﹣5a2b3的系数是 ,次数是 ;2x2y﹣3中常数项是 .12.一架直升机从高度为450m的位置开始,先以20m/s的速度上升60s,然后以12m/s的速度下降120s,这时,直升机的高度是 .13.比﹣6小2的数是 .平方等于4的数是 .14.已知代数式2a3b n+1与﹣3a m﹣2b2是同类项,则3m﹣4n= .15.小明与小刚规定了一种新运算△:a△b=(﹣)÷,请你帮他们计算﹣2△5= .16.若代数式2ax2y+3xy﹣4﹣5x2y﹣7x﹣7ax2y+m中,化简后不含x2y项,则a2010﹣4= .17.日地最近距离:147 100 000千米,用科学记数法表示为 .18.若某数由四舍五入得到的近似数是3.240,那么原来的数介于 和 之间.19.已知a2+3ab=7,2ab+5b2=4,则a2+5ab+5b2= .20.有四张扑克牌,分别是黑桃1、红桃2、方块3、梅花4,规定:黑色扑克牌代表正数,红色扑克牌代表负数.一次抽取两张,用牌面数字作乘法运算,乘积的最大值是 .三、解答题(共6小题,每小题10分,共60分)21.计算:(1)(﹣8)×(﹣12)×(﹣0.125)×(﹣)×(﹣0.001);(2)(﹣1)×÷(﹣)×2÷(﹣)+(﹣2.5)÷(﹣0.25)×.22.合并同类项:(1)3ab+2mn﹣3ab+4mn(2)﹣5yx2+4xy2﹣2xy+6x2y+2xy+5.23.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.24.已知多项式(2mx2+5x2+3x+1)﹣(6x2﹣4y2+3x)化简后不含x2项.求多项式2m3﹣[3m3﹣(4m﹣5)+m]的值.25.小明的爸爸是一名出租车司机,一天下午小明的爸爸以某超市为出发点,在东西方向的公路上运营,记向东为正,向西为负,以先后次序记录如下:(单位km)+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣2,﹣4,+10(1)将最后一名乘客送到目的地时,出租车离出发点有多远?在它的什么方向?(2)若每千米收费为2.5元,小明爸爸这个下午的营业额是多少元?26.南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2014年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:每亩生产成本每亩产量油菜籽市场价格种植面积310元130千克5元/千克500000亩请根据以上信息解答下列问题:(1)种植油菜每亩的种子成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2014年南县全县农民冬种油菜的总获利为多少元?(结果用科学记数法表示)参考答案与试题解析一.选择题(共10小题)1.下列各组量中具有相反意义的量是( )A.蚂蚁向上爬30cm与向左爬30cmB.收入人民币2元与归还图书2本C.向东走与向北走D.弹簧伸长3cm与缩短1cm【分析】首先知道正负数的含义,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.【解答】解:蚂蚁向上和向下爬才能具有相反意义,故A错误,收入和支出才有相反意义,故B错误,向东走和向西走才有相反意义,故C错误,弹簧伸长和缩短具有相反意义,故D正确,故选:D.2.若﹣3减去一个有理数的差是﹣6,则﹣3乘以这个有理数的积是( )A.9B.﹣9C.6D.﹣6【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:﹣3×[﹣3﹣(﹣6)]=﹣9,故选:B.3.下列说法正确的是( )A.绝对值等于本身的数是正数B.﹣a是负数C.有理数不是正数就是负数D.分数都是有理数【分析】根据有理数的分类,有理数的意义,绝对值的性质,可得答案.【解答】解:A.绝对值等于本身的数还有0,故A不符合题意;B.﹣a是正数,0,负数,故B不符合题意;C、有理数还包括0,故C不符合题意;D、分数都是有理数,故D符合题意;故选:D.4.用科学记数法表示的数是1.69×105,则原来的数是( )A.169B.1690C.16900D.169000【分析】根据科学记数法的表示方法,n是几小数点向右移动几位,可得答案.【解答】解:1.69×105,则原来的数是169000,故选:D.5.有理数a,b在数轴上的位置如图所示,则在a+b,a﹣b,ab,a3,a2b3这五个数中,正数的个数是( )A.2B.3C.4D.5【分析】首先由数轴得出ab的正负:﹣1<a<0,b>1>0,再根据有理数的运算法则进行计算即可得出选项.【解答】解:由数轴可知﹣1<a<0,b>1>0,根据有理数的加法、减法、乘法、乘方法则得:a+b>0,a﹣b<0,ab<0,a3<0,a2b3>0,所以正数的个数是2个.故选:A.6.今年3月份某市一天的气温最高是12℃,最低气温是﹣7℃,那么这一天的最高气温比最低气温高多少( )A.﹣19℃B.19℃C.5℃D.﹣5℃【分析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12﹣(﹣7)=12+7=19℃.故选:B.7.有理数a,b在数轴上的位置如图所示,则|a+b|+|a﹣b|化简的结果为( )A.﹣2b B.﹣2a C.2b D.0【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:b<0<a,且|a|<|b|,∴a+b<0,a﹣b>0,则原式=﹣a﹣b+a﹣b=﹣2b,故选:A.8.下列结论正确的是( )A.有理数包括正数和负数B.数轴上原点两侧的数互为相反数C.0是绝对值最小的数D.倒数等于本身的数是0、1、﹣1【分析】根据有理数的分类,可判断A;根据相反数的定义,可判断B;根据绝对值的性质,可判断C;根据倒数的定义,可判断D.【解答】解:A、有理数分为正数、零、负数,故A错误;B、只有符号不同的两个数互为相反数,故B错误;C、0是绝对值最小的数,故C正确;D、倒数等于本身的数是1、﹣1,故D错误.故选:C.9.下列说法中,不正确的是( )A.﹣ab2c的系数是﹣1,次数是4B.﹣1是整式C.6x2﹣3x+1的项是6x2、﹣3x,1D.2πR+πR2是三次二项式【分析】根据单项式的系数、次数,可判断A,根据整式的定义,可判断B,根据多项式的项是多项式中每个单项式,可判断C,根据多项式的次数是多项式中次数最高项的单项式的次数,可判断D.【解答】解:A、﹣ab2c的系数是﹣1,次数是4,故A正确;B、﹣1是整式,故B正确;C、6x2﹣3x+1的项是6x2、﹣3x,1,故C正确;D、2πR+πR2是二次二项式,故D错误;故选:D.10.下列说法中,正确的有( )①单项式﹣的系数是﹣2,次数是3;②﹣5π,0.333…都是无理数;③在﹣(﹣8),|﹣1|,﹣|0|,(﹣2)3这四个数中,非负数共有3个;④平方等于本身数只有0和1.A.4个B.3个C.2个D.1个【分析】根据单项式的系数和次数的定义,无理数的定义,非负数的定义,数的平方进行判断即可.【解答】解:①单项式﹣的系数是﹣,次数是3;错误;②0.333…是有理数;错误③在﹣(﹣8),|﹣1|,﹣|0|,(﹣2)3这四个数中,非负数共有3个;正确;④平方等于本身数只有0和1;正确,故选:C.二.填空题(共10小题)11.﹣5a2b3的系数是 ﹣5 ,次数是 5 ;2x2y﹣3中常数项是 ﹣3 .【分析】根据单项式、多项式的概念及单项式的次数、系数的定义解答.【解答】解:﹣5a2b3的系数是﹣5,次数是 5;2x2y﹣3中常数项是﹣3.故答案为﹣5、5、﹣3.12.一架直升机从高度为450m的位置开始,先以20m/s的速度上升60s,然后以12m/s的速度下降120s,这时,直升机的高度是 210m .【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:450+20×60﹣12×120=450+1200﹣1440=210(m),则直升机的高度是210m.故答案为:210m.13.比﹣6小2的数是 ﹣8 .平方等于4的数是 ±2 .【分析】根据有理数的减法的意义列出算式﹣6﹣2计算即可求解;根据平方根的定义计算即可求解.【解答】解:﹣6﹣2=﹣8,±=±2.故比﹣6小2的数是﹣8.平方等于4的数是±2.故答案为:﹣8,±2.14.已知代数式2a3b n+1与﹣3a m﹣2b2是同类项,则3m﹣4n= 11 .【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,得出关于m,n的方程,求得m,n的值,继而可求解.【解答】解:∵代数式2a3b n+1与﹣3a m﹣2b2是同类项,∴m﹣2=3,n+1=2,∴m=5,n=1,则3m﹣4n=11.故答案为:11.15.小明与小刚规定了一种新运算△:a△b=(﹣)÷,请你帮他们计算﹣2△5= .【分析】根据题目中新运算,可以求得题目中式子的值,本题得以解决.【解答】解:∵a△b=(﹣)÷,∴﹣2△5===,故答案为:.16.若代数式2ax2y+3xy﹣4﹣5x2y﹣7x﹣7ax2y+m中,化简后不含x2y项,则a2010﹣4= ﹣3 .【分析】先合并同类项,再根据化简后不含x2y项,那么令x2y项的系数等于0,得到关于a的一元一次方程,易求a,再把a的值代入所求式子求值即可.【解答】解:原式=(﹣5a﹣5)x2y+3xy﹣7x﹣4+m,∵不含x2y项,∴﹣5a﹣5=0,∴a=﹣1,∴a2010﹣4=1﹣4=﹣3.故答案为﹣3.17.日地最近距离:147 100 000千米,用科学记数法表示为 1.471×108 .【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:147 100 000=1.471×108.18.若某数由四舍五入得到的近似数是3.240,那么原来的数介于 3.2395 和 3.2405 之间.【分析】根据近似数的精确度求解.【解答】解:数a由四舍五入得到的近似数是3.240,那么3.2395≤a<3.2405.故答案为3.2395,3.2405.19.已知a2+3ab=7,2ab+5b2=4,则a2+5ab+5b2= 11 .【分析】把原式化为(a2+3ab)+(2ab+5b2)的形式,再把a2+3ab=7,2ab+5b2=4代入进行计算即可.【解答】解:∵a2+3ab=7,2ab+5b2=4,∴原式=(a2+3ab)+(2ab+5b2)=7+4=11.故答案为:11.20.有四张扑克牌,分别是黑桃1、红桃2、方块3、梅花4,规定:黑色扑克牌代表正数,红色扑克牌代表负数.一次抽取两张,用牌面数字作乘法运算,乘积的最大值是 6 .【分析】根据题意得到四个数为+1,﹣2,﹣3,+4,找出乘积的最大值即可.【解答】解:根据题意得:(﹣2)×(﹣3)=6,则乘积的最大值为6,故答案为:6.三.解答题(共6小题)21.计算:(1)(﹣8)×(﹣12)×(﹣0.125)×(﹣)×(﹣0.001);(2)(﹣1)×÷(﹣)×2÷(﹣)+(﹣2.5)÷(﹣0.25)×.【分析】(1)原式变形后,约分即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:(1)原式=﹣8×12×××=﹣0.004;(2)原式=﹣××(﹣)××(﹣)+×4×=﹣4+4=0.22.合并同类项:(1)3ab+2mn﹣3ab+4mn(2)﹣5yx2+4xy2﹣2xy+6x2y+2xy+5.【分析】(1)首先确定同类项,然后进行合并同类项即可,(2)首先确定同类项,然后进行合并同类项即可.【解答】解:(1)原式(2mn+4mn)+(3ab﹣3ab)=6mn,(2)原式=(﹣5yx2+6x2y)+(﹣2xy+2xy)+4xy2+5=x2y+4xy2+5.23.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.【分析】先去括号、合并同类项化简,再代入计算即可;【解答】解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y=11x2﹣11xy﹣y当x=﹣2,y=时,原式=44+﹣=5124.已知多项式(2mx2+5x2+3x+1)﹣(6x2﹣4y2+3x)化简后不含x2项.求多项式2m3﹣[3m3﹣(4m﹣5)+m]的值.【分析】原式去括号合并得到最简结果,由结果不含x2项,得到m的值,所求式子去括号合并后代入计算即可求出值.【解答】解:原式=2mx2+5x2+3x+1﹣6x2+4y2﹣3x=(2m+5﹣6)x2+4y2+1,由结果不含x2项,得到2m﹣1=0,即m=,则原式=2m3﹣3m3+4m﹣5﹣m=﹣m3+3m﹣5=﹣+﹣5=﹣.25.小明的爸爸是一名出租车司机,一天下午小明的爸爸以某超市为出发点,在东西方向的公路上运营,记向东为正,向西为负,以先后次序记录如下:(单位km)+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣2,﹣4,+10(1)将最后一名乘客送到目的地时,出租车离出发点有多远?在它的什么方向?(2)若每千米收费为2.5元,小明爸爸这个下午的营业额是多少元?【分析】(1)把数据+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣2,﹣4,+10相加得到+4,说明出租车离出发点有4千米远,且在正东方向;(2)把数据+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣2,﹣4,+10的绝对值相加,然后乘以2.5即可得到小明爸爸这个下午的营业额.【解答】解:(1)+9+(﹣3)+(﹣5)+(+4)+(﹣8)+(+6)+(﹣3)+(﹣2)+(﹣4)+(+10)=9﹣3﹣5+4﹣8+6﹣3﹣2﹣4+10=4,所以出租车离出发点有4千米远,在正东方向;(2)(9+3+5+4+8+6+3+2+4+10)×2.5=135,即小明爸爸这个下午的营业额是多135元.26.南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2014年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:每亩生产成本每亩产量油菜籽市场价格种植面积310元130千克5元/千克500000亩请根据以上信息解答下列问题:(1)种植油菜每亩的种子成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2014年南县全县农民冬种油菜的总获利为多少元?(结果用科学记数法表示)【分析】(1)种植油菜每亩的种子成本=每亩油菜生产成本×种子所占的百分比即可;(2)农民冬种油菜每亩获利的钱数=每亩的产量×油菜市场价格﹣每亩油菜生产成本.(3)2014年全县农民冬种油菜的总获利=种油菜每亩获利的钱数×种植面积【解答】解:(1)根据题意得:1﹣10%﹣35%﹣45%=10%,310×10%=31(元),答:种植油菜每亩的种子成本是31元;(2)根据题意得:130×5﹣310=340(元),答:农民冬种油菜每亩获利340元;(3)根据题意得:340×500 000=170 000 000=1.7×108(元),答:2014年南县全县农民冬种油菜的总获利为1.7×108元.。

2018--2019学年度第一学期人教版七年级月考第一次数学试卷一

2018--2019学年度第一学期人教版七年级月考第一次数学试卷一

绝密★启用前2018--2019学年度第一学期人教版七年级月考第一次数学试卷考试时间:100分钟;满分120分题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.做题时要平心静气,不要漏做。

评卷人得分一、单选题1.(本题4分)若收入6元记作+6元,则支出10元记作()A.+4元B.﹣4元C.+10元D.﹣10元2.(本题4分)在﹣2,0,1,3中,最小的数是()A.﹣2B.0C.1D.33.(本题4分)2017年秋季,合肥市共招收七年级新生64000人,这里“64000”用科学记数法表示为()A.64×103B.6.4×105C.6.4×104D.0.64×1054.(本题4分)近似数2.5万精确到()A.万位B.千位C.个位D.十分位5.(本题4分)下列运算中,正确的是()A.﹣3+5=﹣8B.(﹣2)×(﹣3)=﹣6C.4÷2=2D.﹣32=﹣9 6.(本题4分)如图所示,检测4袋大米的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,则最接近标准质量的是()A.B.C.D.7.(本题4分)把算式“(﹣2)﹣(﹣5)+(﹣3)﹣(﹣1)”写成省略加号和括号的形式,结果正确的是()A.2﹣5+3﹣1B.2+5﹣3+1C.﹣2﹣5+3﹣1D.﹣2+5﹣3+18.(本题4分)运用乘法分配律计算“(﹣24)×(﹣+﹣)”,不正确的是()A.(﹣24)+(﹣24)×(﹣)+(﹣24)×+(﹣24)×(﹣)B.(﹣24)×﹣(﹣24)×(﹣)+(﹣24)×﹣(﹣24)×(﹣)C.(﹣24)×﹣(﹣24)×+(﹣24)×﹣(﹣24)×D.×(﹣24)﹣×(﹣24)+×(﹣24)﹣×(﹣24)9.(本题4分)2017年汛期,安庆水文站每天都会对外公布长江水位变化情况.7月1日该水文站的水位是14.6m,7月2日下跌了0.4m;7月3日上涨了1.2m;7月4日又下跌了0.3m,则该水文站7月4日的水位高度是()A.﹣0.5m B.0.5m C.14.1m D.15.1m10.(本题4分)我们规定一种新运算“★”,其含义:对于有理数a,b,a★b=a2﹣ab﹣b,则计算(﹣3)★(﹣1)的结果是()A.﹣11B.5C.7D.13评卷人得分二、填空题11.(本题4分)﹣2的相反数是_____.12.(本题4分)请写出两个既是负数,又是分数的有理数:_____,_____.13.(本题4分)计算(﹣1)2017+(﹣1)2018的结果是_____.14.(本题4分)有理数a,b,c在数轴上的位置如图所示,现有下列结论:①b+c>0;②ab>0;③|a+c|=|a|+|c|;④a﹣c+bc<0.其中正确的有_____.(把所有正确结论的序号都填上)评卷人得分三、解答题15.(本题7分)把下列各数在数轴上表示出来,并用“<“连接﹣(﹣3);﹣|﹣2.5|;0;(﹣1)3;2的倒数.16.(本题7分)计算:﹣+(﹣)﹣(﹣)﹣(﹣).17.(本题7分)下面是小明同学的运算过程.计算:﹣5÷2×.解:﹣5÷2×=﹣5÷(2×) (1)=﹣5÷1 (2)=﹣5 (3)请问:(1)小明从第步开始出现错误;(2)请写出正确的解答过程.18.(本题7分)计算:﹣14+(4﹣6)2+×(﹣12÷3﹣1)×.19.(本题7分)(1)写出绝对值不大于4的所有整数;(2)求满足(1)中条件的所有整数的和.20.(本题7分)我们把“如果a=b,那么b=a”称为等式的对称性.(1)根据等式的对称性,由乘法的分配律m(a+b+c)=am+bm+cm可得到等式:;(2)利用(1)中的结论,求﹣8.57×3.14+1.81×3.14﹣3.24×3.14的值.21.(本题7分)国际足球比赛对足球的质量有严格的要求,比赛所用足球上标有:430±20(g).请问:(1)比赛所用足球的标准质量是多少?符合比赛所用足球质量的合格范围是多少?(2)组委会随机抽查了8只足球的质量,高于标准质量记为正,低于标准质量记为负,结果分别是:﹣15g,+12g,﹣24g,﹣6g,+13g,﹣5g,+22g,﹣9g,求这8只足球质量的合格率.(足球质量的合格率=)22.(本题7分)某校七年级举行数学测验,以120分为基准,高于基准记为正,低于基准记为负,各班平均分情况如表:班级701702703704705班级平均﹣2 +5+8﹣10﹣15分(1)平均分最高的班级是,平均分最低的班级是;(2)平均分最高的班级比最低的班级多多少分?(3)若每个班的人数均为50人,求这5个班级的平均分.23.(本题8分)我们规定:有理数x A用数轴上点A表示,x A叫做点A在数轴上的坐标;有理数x B用数轴上点B表示,x B叫做点B在数轴上的坐标.|AB|表示数轴上的两点A,B之间的距离.(1)借助数轴,完成下表:(2)观察(1)中的表格内容,猜想|AB|= ;(用含x A,x B的式子表示,不用说理)(3)已知点A在数轴上的坐标是﹣2,且|AB|=8,利用(2)中的结论求点B在数轴上的坐标.参考答案1.D【解析】【分析】根据收入50元记作+6元,可以得到支出10元记作多少,本题得以解决.【详解】解:∵收入50元记作+50元,∴支出10元记作-10元,故选B.【点睛】本题考查正数和负数,解题的关键是明确正数和负数在题目中表示的实际意义.2.A【解析】【分析】根据正数大于0,0大于负数即可求出答案.【详解】解:-2、0、1、3这四个数中比0小的数是-2.故选:A.【点睛】本题考查比较有理数数的大小,要求学生掌握比较有理数数大小的方法,会比较数的大小,属基础题.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:∵科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.∴将64000用科学记数法表示为6.4×104.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【解析】【分析】由于0.38万=3800,而8在百位上,所以近似数0.38万精确到百位.【详解】解:近似数0.38万精确到百位.故选:B.【点睛】本题考查了近似数和有效数字,经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.5.D【解析】【分析】依据有理数的加减乘除乘方运算即可判断.【详解】A、-3+5=2,故A错;B、(-2)×(-3)=6,故B错;C、,故C错;D、-32=-9,故D正确.【点睛】熟练掌握有理数的加减乘除乘方的运算法则是解决本题的关键.6.C【解析】【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【详解】解:∵|-2|=2,|+2.5|=2.5,|-0.5|=0.5,|+1|=1,0.5<1<2<2.5,∴从质量轻重的角度看,最接近标准的是-0.5.故选C.【点睛】本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.7.D【解析】【分析】先把加减法统一成加法,再省略括号和加号,即可将一个加减混合运算的式子写成省略加号的和的形式,再读出来,然后根据有理数的加减法法则计算.【详解】解:根据有理数的加减混合运算可知,原式=(﹣2)﹣(﹣5)+(﹣3)﹣(﹣1)=﹣2+5﹣3+1.【点睛】本题考查了有理数的加减混合运算,注意将一个加减混合运算的式子写成省略加号的和的形式时,必须统一成加法后,才能省略括号和加号.8.B【解析】【分析】直接运用乘法的分配律来判断即可.【详解】解:运用乘法的分配律可知原式=故选择答案B.【点睛】正确运用乘法的分配律:m(a+b+c)=ma+mb+mc,是解本题的关键.9.D【解析】【分析】依据7月1日的水平水位,根据题意,可以依次求出7月2日、3日、4日的水位高度.【详解】解:∵7月1日的水位是14.6m,7月2日下跌了0.4m;7月3日上涨了1.2m;7月4日又下跌了0.3m,∴7月2日的水位为:14.6m-0.4m=14.2m;7月3日的水位为:14.2m+1.2m=15.4m;7月4日的水位为:15.4m-0.3m=15.1m.故选择D.【点睛】掌握正负号的含义,以及有理数的加减法运算是解决本题的关键.10.C【解析】【分析】由题目中给出的运算方法,即可推出原式=(-3)2-(-3)×(-1)- (-1),通过计算即可推出结果.【详解】解:(﹣3)★(﹣1)=(-3)2-(-3)×(-1)- (-1)=7,故选择C.【点睛】此题主要考查了有理数的混合运算,解题的关键是根据题意掌握新运算的规律.11.2.【解析】【分析】根据“a相反数为-a”即可得出答案.【详解】解:-2的相反数是2,故答案为2.【点睛】此题考查了相反数的性质,要求掌握相反数的性质及其定义,并能熟练运用到实际当中.12.﹣2.3﹣1.5(答案不唯一).【解析】【分析】既是负数,又是分数的有理数即为负分数.根据负分数的定义即可写出.【详解】解:因为负数小于0,整数和分数统称有理数,所以小于0的非整数即可.例如-2.3,-1.5(答案不唯一).【点睛】需要注意,中学阶段分数和小数都是分数,不再有小数这一说法.本题是开放题,答案不唯一,符合条件即可.13.0.【解析】【分析】利用乘方的意义计算即可得到结果.【详解】解:原式=-1+1=0,故答案为:0【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.①②④【解析】【分析】由图可知:,再依据绝对值的还有理数的加减乘除法则即可解题.【详解】解:由图可知:,∴b+c>0,ab>0,故①②正确,又∵,∴,故③错误。

人教版2018-2019学年度第一学期七年级数学上册第一次月考试卷

人教版2018-2019学年度第一学期七年级数学上册第一次月考试卷

七年级数学第一次月考试题(考试时间120分钟 满分100 分)10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是: ( ) A. 1 B. 0 C. 2 D. -32、2的相反数是: ( ) A.21-B. 21C.-2D.23、﹣5的绝对值是( )A .5B .-5C .D .﹣4、-2的倒数是( )A .2B .-2C . 21D .21- 5、下列数轴正确的是( )6、下列说法正确的是:( )带正号的数是正数,带负号的数是负数.B. 一个数的相反数,不是正数,就是负数. 倒数等于本身的数有2个.D.零除以任何数等于零. 7、下列算式正确的是:( )A . 3-(-3)=6 B. -(-3)=-3-C.(-3) ×(-3)=-6D. 0+(-3)=08、已知a>0,b>0,c<0,那么abc 的值( )A .大于0B .小于0C .等于0D .大于等于0 9、如果032=-++b a ,则a+b 的值为( ) A. 2 B. -2 C. 1 D.510、 有理数a 、b 在数轴上对应的位置如图所示,则( )A .a+b>0 B. b-a <0 C.ab>0 D.a ÷b<0二、填空题(本大题8小题,每小题3分,共24分)11、如果温度上升3℃记作+3℃,那么下降5℃记作 .12、已知|a|=4,那么a = .13、数轴上一点与表示-3的点距离2个单位长度,该点表示的数为 .14、 2 3-; 3- 0; 6- 5- 15、绝对值小于9的所有整数的和为 .16、把式子(-3.5)+(-6)- (+4.8) -(-5)改写成省略括号的和的形式:_ ___.17、若a 和b 互为相反数,那么2a+2b=_ ___.18、观察下面的一列数:-2,4,-8,16,-32……请你找出其中排列的规律,并按此规律填空.第9个数是_______。

2018-2019学年 七年级上第一次月考数学试卷含解析

2018-2019学年 七年级上第一次月考数学试卷含解析

2018-2019学年七年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.下列式子简化不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5 C.﹣(+1)=1D.﹣|+3|=﹣32.圆柱的侧面展开图()A.是平行四边形B.一定是正方形C.可能是菱形D.必是矩形3.m<﹣1,则数m,,﹣m,﹣中最小的数是()A.m B.C.﹣m D.﹣4.如图,这是一个正方体的展开图,我们把它重新围成正方体后,在A,B,C中分别填上什么数字,就可以使相对面上的数正好都互为相反数()A.1,0,﹣2 B.﹣2,1,0 C.0,﹣2,1 D.2,﹣1,05.钱塘江水库水位上升5cm记作+5cm,则水位下降3cm记作,()A.﹣2 B.2cm C.﹣3cm D.3cm6.由5个相同的小正方体搭成的物体的俯视图如图所示,则这个物体的搭法有()A.4种B.3种C.2种D.1种7.a、b在数轴上的位置如图,则所表示的数是()A.a是正数,b是负数B.a是负数,b是正数C.a、b都是正数 D.a、b都是负数8.下列说法正确的是()A.﹣a是负数B.符号相反的数互为相反数C.有理数a的倒数是D.一个数的绝对值越大,表示它的点在数轴上离原点越远9.一个几何体的三种视图如图所示,则这个几何体是()A.长方体B.圆锥C.圆台D.圆柱10.代数式|x﹣1|﹣|x+4|﹣5的最大值为()A.0 B.﹣10 C.﹣5 D.3二、填空题(本题共6小题,每小题3分,共18分).11.若m是一个数,且||m|+2m|=3,则m等于.12.已知两个有理数﹣12.43和﹣12.45.那么,其中的大数减小数所得的差是.13.自然数一定是正整数.(判断对错)14.|x﹣3|的最小值是,此时x的值为.15.比+6小﹣3的数是.16.如下左图是一个三棱柱,用一个平面去截这个三棱柱,把形状可能的截面的序号填入.三、计算题(18分,每小题18分,解答题写过程)17.(18分)计算:5+(﹣11)﹣(﹣9)﹣(+22).四、解答题(本大题共8小题,共28分).18.(6分)用小正方体搭一个几何体,使它的主视图和俯视图如图所示:(1)搭这样的几何体最少需要个小正方体,最多需要个小正方体;(2)请你在俯视图的小正方体中用数字表示当用最多的小正方体搭起的几何体时该位置小正方体的个数;(3)画出其中一种搭成的几何体的左视图.19.(5分)如图是一长方体纸盒的展开图,每个面内都标注了字母.(1)如果面A在长方体的上面,那么哪个面会在下面?(2)如果面F在长方体的后面,从左面看是面B,那么A、C、D、E都在什么位置?20.(4分)根据立体图从上面看到的形状图(如图所示),画出它从正面和左面看到的形状图(图中数字代表该位置的小正方体的个数).21.(6分)指出数轴上A,B,C,D各点分别表示的有理数,并用“<”将它们连接起来.22.(5分)一天上午,出租车司机小王在东西走向的路上运营,如果规定向东为正,向西为负,出租车的行车里程(单位:km)如下:+15,﹣3,+12,﹣11,﹣13,+3,﹣12,﹣18.请间小王将最后一位乘客送到目的地时,共行驶了多少千米?23.(4分)一项工程,甲单独做5天可以完成全工程;如果乙,丙两队合作12天可以完成全工程;如果三队合作,多少天可以完成全工程?24.(4分)若|a|=4,|b|=2,且a<b,求a+b的值.25.(6分)已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)下列式子简化不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5 C.﹣(+1)=1D.﹣|+3|=﹣3【分析】根据多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正进行化简可得答案.【解答】解:A、+(﹣5)=﹣5,计算正确,故此选项不合题意;B、﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C、﹣(+1)=﹣1,原计算错误,故此选项符合题意;D、﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.【点评】此题主要考查了相反数,关键是掌握多重符号的化简方法.2.(3分)圆柱的侧面展开图()A.是平行四边形B.一定是正方形C.可能是菱形D.必是矩形【分析】根据立体图形的展开图是平面图形及圆柱的侧面特点,即可得出.【解答】解:圆柱的侧面展开图形可能是平行四边形,可能是正方形,可能是菱形,可能是矩形.故选C.【点评】本题考查了几何体的展开图,同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,熟记常见几何体的侧面展开图.3.(3分)m<﹣1,则数m,,﹣m,﹣中最小的数是()A.m B.C.﹣m D.﹣【分析】根据m<﹣1可以代入特殊值判断即可.【解答】解:因为m<﹣1,可设m=﹣2,可得:m=﹣2,=﹣0.5,﹣m=2,﹣=0.5,所以可得:最小的数是m,故选A【点评】此题考查有理数大小的比较,关键是根据特殊值代入去判断大小.4.(3分)如图,这是一个正方体的展开图,我们把它重新围成正方体后,在A,B,C中分别填上什么数字,就可以使相对面上的数正好都互为相反数()A.1,0,﹣2 B.﹣2,1,0 C.0,﹣2,1 D.2,﹣1,0【分析】根据相反数的定义,即:只有符号不同的两个数互为相反数,0的相反数是0可知,A与2互为相反数,即A是﹣2;同理,B是1;C是0.【解答】解:根据正方体中相对面的性质和相反数的概念,可得:在A,B,C中分别填上﹣2,1,0就可以使相对面上的数正好都互为相反数.故选B.【点评】主要考查相反数,倒数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.5.(3分)钱塘江水库水位上升5cm记作+5cm,则水位下降3cm记作,()A.﹣2 B.2cm C.﹣3cm D.3cm【分析】先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意,水位下降3m记作﹣3m.故选C.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.6.(3分)由5个相同的小正方体搭成的物体的俯视图如图所示,则这个物体的搭法有()A.4种B.3种C.2种D.1种【分析】根据俯视图先画出四个小正方体的形状,再根据只有放在第1个或第4个上面才不影响俯视图,从而得出答案.【解答】解:因为将四个小正方体拼成如图所示的情况,第5个小立方体只有放在第1个或第4个上面才不影响俯视图,所以共有两种搭法.故选C.【点评】此题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.7.(3分)a、b在数轴上的位置如图,则所表示的数是()A.a是正数,b是负数B.a是负数,b是正数C.a、b都是正数 D.a、b都是负数【分析】根据数轴的特点进行解答即可.【解答】解:∵由图可知,a在原点的左侧,b在原点的右侧,∴a为负数,b为正数.【点评】本题考查的是数轴,熟知数轴的特点是解答此题的关键.8.(3分)下列说法正确的是()A.﹣a是负数B.符号相反的数互为相反数C.有理数a的倒数是D.一个数的绝对值越大,表示它的点在数轴上离原点越远【分析】根据相反数、倒数以及绝对值的定义和性质进行判断选择即可.【解答】解:A、若a≤0,则﹣a为非负数,故本选项错误;B、符号相反且绝对值相等的数是相反数,故本选项错误;C、若a=0,则a没有倒数,故本选项错误;D、一个数的绝对值即表示它的点在数轴上离原点的距离,所以,一个数的绝对值越大,表示它的点在数轴上离原点越远,故本选项正确;综上,D选项正确,故应选D选项.【点评】本题考查了相反数、倒数以及绝对值的定义和性质.其中应注意0的绝对值等于0的相反数等于0本身,且0没有倒数.9.(3分)一个几何体的三种视图如图所示,则这个几何体是()A.长方体B.圆锥C.圆台D.圆柱【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和俯视图为长方形可得此几何体为柱体,由左视图为圆可得为圆柱体.故选D.【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.10.(3分)代数式|x﹣1|﹣|x+4|﹣5的最大值为()A.0 B.﹣10 C.﹣5 D.3【分析】根据不等式的性质分析判断.【解答】解:当x≥1时,原式可化为x﹣1﹣x﹣4﹣5=﹣10;当﹣4≤x<1时,原式可化为1﹣x﹣x﹣4﹣5=﹣2x﹣8,不论x取何值原式>﹣10;当x<﹣4时,原式可化为1﹣x+x+4﹣5=0.故选A.【点评】此题很简单,只要把x的取值分为三种情况讨论即可.二、填空题(本题共6小题,每小题3分,共18分).11.(3分)若m是一个数,且||m|+2m|=3,则m等于1或﹣3.【分析】分情况讨论当m>0或m<0时||m|+2m|=3.从而得出m的值.【解答】解:当m>0时,|m|=m,∴||m|+2m|=|m+2m|=3m=3当m<0时,|m|=﹣m,∴||m|+2m|=|﹣m+2m|=|m|=3∴m=﹣3所以m等于1或﹣3.【点评】本题考查了绝对值的性质,分情况讨论m的符号是解题的关键.12.(3分)已知两个有理数﹣12.43和﹣12.45.那么,其中的大数减小数所得的差是0.02.【分析】大数是﹣12.43,小数是﹣12.45,由此可得出答案.【解答】解:﹣12.43与﹣12.45中,大数为﹣12.43,小数为﹣12.45,所以大数减小数所得差为﹣12.43﹣(﹣12.45)=﹣12.43+12.45=0.02.故填0.02.【点评】本题考查有理数的大小比较,难度不大,注意细心运算即可.13.(3分)自然数一定是正整数.×(判断对错)【分析】根据有理数的分类,0是自然数,但是0不是正整数,据此判断即可.【解答】解:因为0是自然数,但是0不是正整数,所以自然数不一定是正整数.故答案为:×.【点评】此题主要考查了有理数的分类,要熟练掌握,解答此题的关键是要明确:0是自然数,但是0不是正整数.14.(3分)|x﹣3|的最小值是0,此时x的值为3.【分析】根据任何数的绝对值一定是非负数即可求解.【解答】解:∵|x﹣3|≥0∴|x﹣3|的最小值是0,此时x=3.故答案是:0,3.【点评】本题考查了任何数的绝对值是非负数.15.(3分)比+6小﹣3的数是9.【分析】关键是理解题中“小”的意思,列出算式+6﹣(﹣3),结果就是比+6小﹣3的数.【解答】解:∵+6﹣(﹣3)=9,∴比+6小﹣3的数是9.故答案为:9.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.16.(3分)如下左图是一个三棱柱,用一个平面去截这个三棱柱,把形状可能的截面的序号填入①②③.【分析】用平面取截三棱柱,当横截时,截面为①三角形,竖着截时截面为②长方形或③梯形,但是惟独不可能是菱形.【解答】解:用平面取截三棱柱,当横截时,截面为①三角形;竖着截时截面为②长方形或③梯形;但是惟独不可能是菱形.因此选择①②③.【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.三、计算题(18分,每小题18分,解答题写过程)17.(18分)计算:5+(﹣11)﹣(﹣9)﹣(+22).【分析】原式利用减法法则变形,计算即可得到结果.【解答】解:原式=5﹣11+9﹣22=14﹣33=﹣19.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.四、解答题(本大题共8小题,共28分).18.(6分)用小正方体搭一个几何体,使它的主视图和俯视图如图所示:(1)搭这样的几何体最少需要个小正方体,最多需要个小正方体;(2)请你在俯视图的小正方体中用数字表示当用最多的小正方体搭起的几何体时该位置小正方体的个数;(3)画出其中一种搭成的几何体的左视图.【分析】(1)易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最少或最多的正方体的个数,相加即可;(2)每一列的正方体均选择主视图中个数最多的正方体的个数;(3)任选一种符合题意要求的左视图画图即可.【解答】解:(1)搭这样的几何体最少需要7+2+1=10个小正方体,最多需要7+6+3=16个小正方体;(2)个数分别为第一列都为3,第二列都为2,第三列是1;(3)(7分)如图:(有多种左视图,只要画出其中一个就行)【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.19.(5分)如图是一长方体纸盒的展开图,每个面内都标注了字母.(1)如果面A在长方体的上面,那么哪个面会在下面?(2)如果面F在长方体的后面,从左面看是面B,那么A、C、D、E都在什么位置?【分析】(1)找出A的对面即可;(2)确定出F、B、A的对面,然后根据相对位置判断即可.【解答】解:(1)A得对面是C,所以面C会在下面;(2)F的对面是E,所以面E在前面,B的对面是D,所以面D在右面,面A在上面,面C 在下面.【点评】本题主要考查的是几何体的展开图,找出已知面的对面是解题的关键.20.(4分)根据立体图从上面看到的形状图(如图所示),画出它从正面和左面看到的形状图(图中数字代表该位置的小正方体的个数).【分析】由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,4;从左面看有2列,每列小正方形数目分别为2,4.据此可画出图形.【解答】解:如图所示:【点评】此题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.21.(6分)指出数轴上A,B,C,D各点分别表示的有理数,并用“<”将它们连接起来.【分析】根据数轴上各点的位置写出各数,再根据数轴的特点直接用“<”将它们连接起来即可.【解答】解:由数轴上各点的位置可知A、B、C、D四点分别表示为:0,1.5,﹣2,3.根据数轴的特点可用“<”号连接为﹣2<0<1.5<3.【点评】本题考查的是数轴上各数的特点及有理数大小比较,比较简单.22.(5分)一天上午,出租车司机小王在东西走向的路上运营,如果规定向东为正,向西为负,出租车的行车里程(单位:km)如下:+15,﹣3,+12,﹣11,﹣13,+3,﹣12,﹣18.请间小王将最后一位乘客送到目的地时,共行驶了多少千米?【分析】根据绝对值的意义,可得每次行驶的路程,根据有理数的加法,可得答案.【解答】解:由题意,得|+15|+|﹣3|+|+12|+|﹣11|+|﹣13|+|+3|+|﹣12|+|﹣18|=87(千米),答:小王将最后一位乘客送到目的地时,共行驶了87千米.【点评】本题考查了正数和负数,利用了有理数的加法运算,注意路程是每次行驶的绝对值.23.(4分)一项工程,甲单独做5天可以完成全工程;如果乙,丙两队合作12天可以完成全工程;如果三队合作,多少天可以完成全工程?【分析】把这项工程的工作总量看作单位“1”,甲的工作效率为,乙、丙两队的工作效率和为,进一步求得三个队的工作效率和,利用工作总量÷工作效率=工作时间列式解答即可.【解答】解:1÷(+)=1÷=(天)答:如果三队合作,天可以完成全工程.【点评】此题考查有理数的混合运算的实际运用,掌握工作效率、工作总量、工作时间三者之间的关系是解决问题的关键.24.(4分)若|a|=4,|b|=2,且a<b,求a+b的值.【分析】根据绝对值的性质得出a、b的值,再分别求解可得.【解答】解:∵|a|=4,|b|=2,∴a=4或﹣4,b=2或﹣2,∵a<b,∴a=﹣4,b=2或﹣2,当a=﹣4,b=2时,a+b=﹣4+2=﹣2;当a=﹣4,b=﹣2时,a+b=﹣4﹣2=﹣6.【点评】本题主要考查有理数的加法和绝对值,解题的关键是熟练掌握绝对值的性质.25.(6分)已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.在数轴上找出﹣a,﹣b,﹣c的对应点,依据a,b,c,﹣a,﹣b,﹣c在数轴上的位置比较大小.在此基础上化简给出的式子.【解答】解:(1)解法一:根据表示互为相反数的两个点在数轴上的关系,分别找出﹣a,﹣b,﹣c对应的点如图所示,由图上的位置关系可知﹣b>a=﹣c>﹣a=c>b.解法二:由图知,a>0,b<0,c<0且|a|=|c|=|b|,∴﹣b>a=﹣c>﹣a=c>b.(2)∵a>0,b<0,c<0,且|a|=|c|<|b|,∴a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣a﹣b﹣a+b﹣b+c=﹣2a﹣b+c.【点评】以上分别用两种不同的方法即几何方法和代数方法进行求解.通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.。

最新初中2018-2019学年七年级上学期数学第一次月考试卷试卷

最新初中2018-2019学年七年级上学期数学第一次月考试卷试卷

初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•丹东)﹣2015的绝对值是()A. ﹣2015B. 2015C.D.2.(2分)(2015•莆田)﹣2的相反数是()A. B. 2 C. - D. -23.(2分)(2015•恩施州)恩施气候独特,土壤天然含硒,盛产茶叶,恩施富硒茶叶2013年总产量达64000吨,将64000用科学记数法表示为()A. B. C. D.4.(2分)(2015•漳州)漳州市被国家交通运输部列为国家公路运输枢纽城市,现拥有营运客货车月21000辆,21000用科学记数法表示为()A. 0.21×104B. 21×103C. 2.1×104D. 2.1×1035.(2分)(2015•海南)﹣2015的倒数是()A. B. C. ﹣2015 D. 20156.(2分)(2015•海南)据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是()A. 4B. 5C. 6D. 77.(2分)(2015•甘南州)在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A. 2.7×105B. 2.7×106C. 2.7×107D. 2.7×1088.(2分)(2015•淄博)从1开始得到如下的一列数:1,2,4,8,16,22,24,28,…其中每一个数加上自己的个位数,成为下一个数,上述一列数中小于100的个数为()A. 21B. 22C. 23D. 999.(2分)(2015•宁德)2015的相反数是()A. B. C. 2015 D. -201510.(2分)(2015•眉山)﹣2的倒数是()A. B. 2 C. D. -211.(2分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A. ﹣3m B. 3m C. 6m D. ﹣6m12.(2分)(2015•南宁)3的绝对值是()A. 3B. -3C.D.二、填空题13.(1分)(2015•泉州)声音在空气中每小时约传播1200千米,将1200用科学记数法表示为________ . 14.(1分)(2015•曲靖)2015年云南省约有272000名学生参加高考,272000用科学记数法表示为2.72×10n,则n=________ .15.(1分)(2015•玉林)将太阳半径696000km这个数值用科学记数法表示是 ________km.16.(1分)(2015•玉林)计算:3﹣(﹣1)= ________.17.(1分)(2015•广安)实数a在数轴的位置如图所示,则|a﹣1|=________ .18.(1分)(2015•湘潭)的倒数是________ .三、解答题19.(8分)有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c-b________0,a+b________0,a-c________0.(2)化简:|c-b|+|a+b|-2|a-c|.20.(15分)有30箱苹果,以每箱20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如1(2)与标准质量比较,这30箱苹果总计超过或不足多少千克?(3)若苹果每千克售价6元,则出售这30箱苹果可卖多少元?21.(10分)已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.22.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满足 +(c-7)2=0.(1)a=________,b=________,c=________.(2)若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合.(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=________,AC=________,BC=________.(用含t的代数式表示)(4)请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.23.(11分)(1)【归纳】观察下列各式的大小关系:|-2|+|3|>|-2+3| |-6|+|3|>|-6+3||-2|+|-3|=|-2-3| |0|+|-8|=|0-8|归纳:|a|+|b|________|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)(2)【应用】根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.(3)【延伸】a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.24.(10分)已知A=ax2-3x+by-1,B=3-y-x+x2且无论x,y为何值时,A-2B的值始终不变.(1)分别求a、b的值;(2)求b a的值.25.(11分)有20筐白菜,以每筐25 kg为标准,超过和不足的千克数分别用正、负数来表示,记录如下:(2)与标准质量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?26.(8分)有理数a、b、c在数轴上的位置如图所示:(1)判断正负,用“>”或“<”填空:b________-1;a________1;c________b.(2)化简:|b+1|+|a-1|-|c-b|.初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题。

2018-2019学年七年级数学上第一次月考题含答案

2018-2019学年七年级数学上第一次月考题含答案

2018-2019学年七年级数学上学期第一次月考题一、选择题(本大题共12小题,共36分)1.在1,-3,-4.5,0,,-,3.14中,负数的个数为()A.2个B.3个C.4个D.5个2.下列说法正确的是()A.有理数是指整数、分数、正数、负数和0B.a是正数,-a是负数C.在有理数中,不是正数就是负数D.一个有理数不是整数就是分数3.若数轴上的点A表示的数-2,则与点A相距5个单位长度的点表示的数是()A.±7B.±3C.3或-7D.-3或74.一个数的相反数是非负数,这个数是()A.负数B.非负数C.正数D.非正数5.下列省略加号和括号的形式中,正确的是()A.(-7)+(+6)+(-5)+(-2)=-7++6+-5+-2B.(-7)+(+6)+(-5)+(-2)=-7+6-5-2C.(-7)+(+6)+(-5)+(-2)=-7+6+5+2D.(-7)+(+6)+(-5)+(-2)=-7+6-5+26.若a+b<0,且,则()A.a,b异号且负数的绝对值大B.a,b异号且正数的绝对值大C.a>0,b>0D.a<0,b<07、绝对值大于或等于1,而小于4的所有的正整数的和是()A.8B.7C.6D.58.若|a|=﹣a,a一定是( )A.正数 B.负数C.非正数D.非负数9.两个数相加,如果和小于每个加数,那么这两个加数()A.同为正数B.同为负数C.一正一负且负数的绝对值较大D.不能确定10.一潜水艇所在的海拔高度是-60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔()A.-60米B.-80米C.-40米D.40米11.下列运算过程中有错误的个数是();(2)-4×(-7)×(-125)=-(4×125×7);;(4)[3×(-2)]×(-5)=3×2×5.A.1个B.2个C.3个D.4个12.若m•n≠0,则+的取值不可能是()A.0B.1C.2D.-2二、填空题(本大题共8小题,共24分)13.的倒数是______ ,的相反数是______ .14.如果向西走6米记作-6米,那么向东走10米记作______ ;如果产量减少5%记作-5%,那么20%表示______ .15.|x|=7,则x= ______ ;|-x|=7,则x= ______ .16.已知P是数轴上的一点-4,把P点向左移动3个单位后再向右移1个单位长度,那么P点表示的数是______ .17.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m-cd+值为________18.化简:-[+(-6)]= ______ .19.若a<0,且|a|=2,则a+1= ______ .20.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,______ ,…三、计算题(本大题共4小题,共20分)21.(1)23-16-(-7)+(-24)(4分)(2)|-|×(-5)÷|-3|;(4分)(3)(-+-+)÷(-)(4分)22.已知|a|=7,|b|=3,且a<b,求a+b的值.(8分)四、简答题(本大题共4小题,共40分)23.(8分)点A、B在数轴上的位置如图所示:(1)点A表示的数是______ ,点B表示的数是______ ;(2)在原图中分别标出表示+1.5的点C、表示-3.5的点D;(3)在上述条件下,B、C两点间的距离是______ ,A、C两点间的距离是______ .24.(8分)已知有理数a、b、c在数轴上的位置如图所示,且a b =化简2 a a b c a c b b -+--+---25.(12分)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为a升/千米,则这次养护共耗油多少升?26.(12分)观察下列等式:,,,将以上三个等式两边分别相加得:.(1)猜想并写出:= ______ .(2)直接写出下列各式的计算结果:= ______ ;(3)探究并计算:.数学试题选择题:1.A2.D3.C4.D5.B6.A7.C8.C9.B 10.C 11.A 12.B 填空题: 13. 53-, 32114.10米,产量增加20%15.±7,±7 16.-6 17.1或-318.6 19.-1 20.3611-计算题:21.(1)-10 (2)71-(3)16 (4)-4或-10 简答题:(1)-2,3 (2)略 (3)1.5,3.5-2a+2b (1)111+-n n (2)20072006 (3)40121003。

2018-2019学年度第一学期七年级数学第一次月考试题(卷)

2018-2019学年度第一学期七年级数学第一次月考试题(卷)

2018-2019学年度第一学期第一月考试题(卷)七年级数学一、选择题(共10小题,每小题2,共20分)1.如果零上5℃记作+5℃,那么零下5℃记作( ) A .-5 B .-10 C .-10℃ D .-5℃ 2.-(–5)的绝对值是( )A.5B.–5C.51 D . –513. 在–2,+3.5,0,32- ,–0.7,11中,负分数有( )A.l 个B.2个C.3个D.4个 4. 下列说法中正确的是( )A.正数和负数互为相反数B.任何一个数的相反数都与它本身不相同C.任何一个数都有它的相反数D.数轴上原点两旁的两个点表示的数互为相反数 5. -a 一定是( )A.正数B.负数C.正数或负数D.正数或零或负数 6.一个数和它的倒数相等,则这个数是( )A.1B. 1-C.±1D.±1和0 7. 如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a 8.若x 的相反数是3,│y │=5,则x +y 的值为( )A .-8B .2C .-8或2D .8或-2 9.下列各式中,不成立的是( )A .3-=3 B. -3+=-3 C. -3-=3 D. 3-=3 10.有理数a 、b 在数轴上的位置如图所示,则b a +的值( )A .大于0B .小于0C .小于aD .大于b二、填空题(本题共8题,每题3分,共24分)11. 如果80m 表示向东走80 m ,那么-60m 表示__________ .12. -3的相反数是__ ; 绝对值是12的数是_____ ;43-的倒数是 .13. 把12500000用科学计数法表示为_________ . 14. 5.276(精确到十分位)_____ .15.化简:()68--=_____ ;3--= ;-(+0.75)=_____ .16.在数轴上,点A 到原点的距离等于3,点A 所表示的数是_________. 17. 若|m -2|+|n +3|=0,则2n-3m= .18. 观察下面的一列数:21,-61,121,-201……请你找出其中排列的规律,并按此规律填空.第9个数是________,第14个数是________.三、解答题(一):本大题共6小道,共36分. 19.(6分)把下列各数填在相应的大括号里.8,,0.275,0,﹣,﹣6,π,﹣0.25,﹣|﹣2|,分数:{ …} 非负整数:{ …} 有理数:{ …}. 20.(6分)在数轴上把下列各数表示出来,并用“<”连接各数.5+ ,5.3-,21,211-,4,021.(每题1分,共4分)计算:(1)7+(-3.04) (2) (-2.9)+(-0.31)(3)(-3)-(-7) (4)(-10)-322.(每题2分,共4分)计算:(1)()()24192840-+---- (2)()()13181420----+-23. (每题2分,共8分)比较下列各对数的大小:(1)54-与43-; (2)54+-与54+-;(3)25与52; (4)232⨯与2)32(⨯.24.(8分)10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?四、解答题(本大题共5小道,共40分.)25.计算:(每题2分,共8分)(1) );49(32-⨯ (2)-0.25÷83(3)()()169441281-÷⨯÷- (4) 13(1)(48)64-+⨯-26.计算:(每题4分,共8分)(1) 232)31(3)4(-⨯--(2) 42221(10.5)()2(3)3⎡⎤---⨯÷---⎣⎦27.(8分)若|a|=2, b=-3,c 是最大的负整数,求a +b-c 的值.28. (8分)已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.29.(8分)如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B 是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A 表示数-3,将点A 向右移动7个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A,B 两点间的距离为 . (3)如果点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(4)一般地,如果A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动p 个单位长度,那么请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?数学参考答案一、选择题(本题共10小题,每小题2,共20分.)二、填空题(共8题,每题3分,共24分) 11. 向西走60米 12. 3;; 13.1.25×107 14. 5.315.68;-3;-0.75 16.±3 17.13 18. , 三、解答题(一):本大题共6小道,共36分.19.分数:{ ,0.275 , ﹣ , ﹣0.25 …}非负整数:{8 , 0 …}有理数:{ 8,,0.275,0,﹣,﹣6,﹣0.25,﹣|﹣2|,…} 20. ﹣3.5<﹣1<0<<4<+5,21.(1)3.96 (2)-3.21 (3)4 ( 4)-13 22.(1)-73 (2)-2923. (1)∵-的绝对值是,的绝对值是,而>,所以> (2)∵|-4+5|=1,|-4|+|5|=9,∴|-4+5|<|-4|+|5|; (3)∵52,=25,25=32,∴52,<25;(4)2×32=18,(2×3)2=36,∴2×32<(2×3)2.2 kg. 28. 解 由题意得:a+b=0,cd=1,m=±2,24m =原式=0042314231241241+⨯-⨯+⨯--⨯⨯+⨯+或()=5或-11 29. 解:(1)∵点A 表示数-3,∴点A 向右移动7个单位长度,终点B 表示的数是-3+7=4,A ,B 两点间的距离是|-3-4|=7; (2)∵点A 表示数3,∴将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是3-7+5=1,A ,B 两点间的距离为3-1=2;(3)∵点A 表示数-4,∴将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是-4+168-256=-92,A 、B 两点间的距离是|-4+92|=88;(4)∵A 点表示的数为m ,∴将A 点向右移动n 个单位长度,再向左移动p 个单位长度,那么点B 表示的数为(m+n-p ),A ,B 两点间的距离为|n-p|.。

鹤山镇初中2018-2019学年初中七年级上学期数学第一次月考试卷

鹤山镇初中2018-2019学年初中七年级上学期数学第一次月考试卷

鹤山镇初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•毕节市)下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是12.(2分)(2015•眉山)﹣2的倒数是()A. B. 2 C. D. -23.(2分)(2015•六盘水)下列说法正确的是()A. |﹣2|=﹣2B. 0的倒数是0C. 4的平方根是2D. ﹣3的相反数是34.(2分)(2015•咸宁)方程2x﹣1=3的解是()A. -1B. -2C. 1D. 25.(2分)(2015•呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是()A. ﹣3℃ B. 15℃ C. ﹣10℃ D. ﹣1℃6.(2分)(2015•贺州)下列各数是负数的是()A. 0B.C. 2.5D. -17.(2分)(2015•襄阳)﹣2的绝对值是()A. 2B. -2C.D.8.(2分)(2015•毕节市)﹣的倒数的相反数等于()A. ﹣2B.C. -D. 29.(2分)(2015•鄂州)﹣的倒数是()A. B. 3 C. -3 D.10.(2分)(2015•泰州)﹣的绝对值是()A. -3B.C. -D. 311.(2分)(2015•遵义)在0,﹣2,5,,﹣0.3中,负数的个数是()A. 1B. 2C. 3D. 412.(2分)(2015•淄博)从1开始得到如下的一列数:1,2,4,8,16,22,24,28,…其中每一个数加上自己的个位数,成为下一个数,上述一列数中小于100的个数为()A. 21B. 22C. 23D. 99二、填空题13.(1分)(2015•呼伦贝尔)将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是 ________.14.(1分)(2015•娄底)我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为10.8万千米,10.8万用科学记数法表示为________ .15.(1分)(2015•湘西州)﹣2015的绝对值是________ .16.(1分)(2015•益阳)如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有________根小棒.17.(1分)(2015•永州)国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为365000000元,365000000用科学记数法表示为________ .18.(1分)(2015•岳阳)据统计,2015年岳阳市参加中考的学生约为49000人,用科学记数法可将49000表示为________ .三、解答题19.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满足 +(c-7)2=0.(1)a=________ ,b=________ ,c=________ .(2)若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合.(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=________ ,AC=________ ,BC=________ .(用含t的代数式表示)(4)请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.20.(10分)2010年8月7日夜22点左右,甘肃舟曲发生特大山洪泥石流灾害,甘肃消防总队迅即出动兵力驰援灾区.在抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,-9,+8,-7,+13,-6,+10,-5.(1)救灾过程中,B地离出发点A有多远?B地在A地什么方向?(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?21.(6分)如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为________.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数是多少?②设点A的移动距离AA′=x.(ⅰ)当S=4时,求x的值;(ⅱ)D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.22.(10分)燕尾槽的截面如图所示(1)用代数式表示图中阴影部分的面积;(2)若x=5,y=2,求阴影部分的面积23.(20分)(阅读理解)第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算.则奥运会的年份可排成如下一列数:1896,1900,1904,1908,…观察上面一列数,我们发现这一列数从第二项起,每一项与它前一项的差都等于同一个常数4,这一列数在数学上叫做等差数列,这个常数4叫做等差数列的公差.(1)等差数列2,5,8,…的第五项多少;(2)若一个等差数列的第二项是28,第三项是46,则它的公差为多少,第一项为多少,第五项为多少;(3)聪明的小雪同学作了一些思考,如果一列数a1,a2,a3,…是等差数列,且公差为d,根据上述规定,应该有:a 2-a1=d,a3-a2=d,a4-a3= d,…所以a 2=a1+d,a3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,…则等差数列的第n项a n多少(用含有a1、n与d的代数式表示);(4)按照上面的推理,2008年中国北京奥运会是第几届奥运会,2050年会不会(填“会”或“不会”)举行奥运会.24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满足 +(c-7)2=0.(1)a=________,b=________,c=________.(2)若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合.(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=________,AC=________,BC=________.(用含t的代数式表示)(4)请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.(1)如果n=8时,那么S的值为________;(2)根据表中的规律猜想:用n的代数式表示S的公式为S=2+4+6+8+…+2n=________;(3)由上题的规律计算100+102+104+…+2014+2016+2018的值(要有计算过程)26.(8分)有理数a、b、c在数轴上的位置如图所示:(1)判断正负,用“>”或“<”填空:b________-1;a________1;c________b.(2)化简:|b+1|+|a-1|-|c-b|.鹤山镇初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题1.【答案】D【考点】正数和负数的认识及应用,相反数及有理数的相反数,绝对值及有理数的绝对值【解析】【解答】A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D、最小的正整数是1,正确.故选:D【分析】分别利用绝对值以及有理数和相反数的定义分析得出即可.2.【答案】C【考点】倒数【解析】【解答】解:﹣2的倒数是-,故选C.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.【答案】D【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,平方根【解析】【解答】A、|﹣2|=2,错误;B、0没有倒数,错误;C、4的平方根为±2,错误;D、﹣3的相反数为3,正确,故选D.【分析】利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可.4.【答案】D【考点】解一元一次方程【解析】【解答】解:方程2x﹣1=3,移项合并得:2x=4,解得:x=2,故选D.【分析】方程移项合并,把x系数化为1,即可求出解.5.【答案】C【考点】有理数大小比较【解析】【解答】解:15℃>﹣1℃>﹣3℃>﹣10℃,故选:C.【分析】根据正数大于零,零大于负数,两个负数比较大小,绝对值大的负数反而小,可得答案.6.【答案】D【考点】正数和负数【解析】【解答】解:﹣1是一个负数.故选:D.【分析】在正数的前面加上一个负号就表示一个负数.7.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【分析】根据负数的绝对值等于它的相反数解答.8.【答案】D【考点】相反数及有理数的相反数,有理数的倒数【解析】【解答】﹣的倒数为﹣2,所以﹣的倒数的相反数是:2.故选:D【分析】根据倒数和相反数的定义分别解答即可.9.【答案】C【考点】倒数【解析】【解答】﹣的倒数是﹣=﹣3.故选C.【分析】一个数的倒数就是把这个数的分子、分母颠倒位置即可得到.10.【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】﹣的绝对值是,故选B【分析】根据负数的绝对值等于它的相反数即可求解.11.【答案】B【考点】正数和负数【解析】【解答】在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.【分析】根据小于0的是负数即可求解.12.【答案】A【考点】探索数与式的规律【解析】【解答】解:由题意知:1,2,4,8,16,22,24,28,…由此可知,每4个数一组,后面依次为36,42,44,48,56,62,64,68,76,82,84,88,96,故小于100的个数为:21个,故选A.【分析】根据数字的变化,找出规律,每4个数一组,每一组数的首数字为1,16,36,56,76,96,由此可得结果.二、填空题13.【答案】4n+1【考点】探索图形规律【解析】【解答】解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,则第n次得到4n+1个正方形,故答案为:4n+1.【分析】仔细观察,发现图形的变化的规律,从而确定答案.14.【答案】1.08×105【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:10.8万=1.08×105.故答案为:1.08×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成的绝对值<1时,n是负数15.【答案】2015【考点】相反数及有理数的相反数【解析】【解答】解:∵﹣2015的绝对值等于其相反数,∴﹣2015的绝对值是2015;故答案为:2015.【分析】根据相反数的意义,求解即可.注意正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.16.【答案】5n+1【考点】探索图形规律【解析】【解答】解:∵第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…∴第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.故答案为:5n+1.【分析】由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…由此得出第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.17.【答案】3.65×108【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将365000000用科学记数法表示为3.65×108.故答案为:3.65×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.18.【答案】4.9×104【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:用科学记数法可将49000表示为4.9×104,故答案为:4.9×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成的绝对值<1时,n是负数.三、解答题19.【答案】(1)-2;1;7(2)4(3)AB=3t+3;AC=5t+9;BC=2t+6(4)解:不变.3BC-2AB=3(2t+6)-2(3t+3)=12.【考点】数轴及有理数在数轴上的表示,绝对值的非负性,几何图形的动态问题【解析】【解答】解:(1)∵|a+2|+(c-7)2=0,∴a+2=0,c-7=0,解得a=-2,c=7,∵b是最小的正整数,∴b=1;(2 )(7+2)÷2=4.5,对称点为7-4.5=2.5,2.5+(2.5-1)=4;(3 )AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;【分析】(1)利用几个非负数之和为0,则这几个数都为0,就可求出a、c的值,再根据b是最小的正整数,可得出b的值。

鹤山街初中2018-2019学年初中七年级上学期数学第一次月考试卷

鹤山街初中2018-2019学年初中七年级上学期数学第一次月考试卷

鹤山街初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•安徽)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A. 1.62×B. 1.62×C. 1.62×D. 0.162×2.(2分)(2015•河南)据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A. B. C. D.3.(2分)(2015•北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A. 14×104B. 1.4×105C. 1.4×106D. 14×1064.(2分)(2015•徐州)﹣2的倒数是()A. 2B. -2C.D. -5.(2分)备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为()A. 7.7×109元B. 7.7×1010元C. 0.77×1010元D. 0.77×1011元6.(2分)(2015•漳州)漳州市被国家交通运输部列为国家公路运输枢纽城市,现拥有营运客货车月21000辆,21000用科学记数法表示为()A. 0.21×104B. 21×103C. 2.1×104D. 2.1×1037.(2分)(2015•六盘水)如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A. 相对B. 相邻C. 相隔D. 重合8.(2分)(2015•无锡)﹣3的倒数是()A. 3B. ±3C.D. -9.(2分)(2015•泰州)一个几何体的表面展开图如图所示,则这个几何体是()A. 四棱锥B. 四棱柱C. 三棱锥D. 三棱柱10.(2分)(2015•郴州)2的相反数是()A. B. C. -2 D. 211.(2分)(2015•铜仁市)2015的相反数是()A. 2015B. -2015C. -D.12.(2分)(2015•南平)﹣6的绝对值等于()A. -6B. 6C. -D.二、填空题13.(1分)(2015•上海)计算:|﹣2|+2=________ .14.(1分)(2015•内江)如图是由火柴棒搭成的几何图案,则第n个图案中有________ 根火柴棒.(用含n的代数式表示)15.(1分)(2015•上海)计算:|﹣2|+2=________ .16.(1分)(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒________ 根.17.(1分)(2015•梧州)计算:3﹣4= ________.18.(1分)(2015•重庆)我国“南仓”级远洋综合补给舱满载排水量为37000吨,把数37000用科学记数法表示为 ________ .三、解答题19.(10分)(1)关于x的方程与方程的解相同,求m的值.(2)已知关于x的多项式的值与x的值无关,求m,n的值.20.(10分) 2010年8月7日夜22点左右,甘肃舟曲发生特大山洪泥石流灾害,甘肃消防总队迅即出动兵力驰援灾区.在抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,-9,+8,-7,+13,-6,+10,-5.(1)救灾过程中,B地离出发点A有多远?B地在A地什么方向?(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?21.(7分)观察下列等式:请解答下列问题:(1)按以上规律列出第5个算式: ________(2)由此计算:(3)用含n的代式表示第n个等式:a n= ________(n为正整数);22.(10分)出租车司机老王某天上午的营运全是在东西走向的解放路上进行的,如果规定向东行驶路程记为正数,向西为负,他这天上午的行车里程(单位:)依次如下:,,,,,,,.(1)若汽车的耗油量为,这天上午老王耗油多少升?(2)当老王最后一次行驶结束时,他在上午最初出发点的什么位置?23.(10分)如图,检测5个排球,其中质量超过标准的克数记为正数,不足的克数记为负数.(1)从轻重的角度看,几号球最接近标准?(2)若每个排球标准质量为260克,求这五个排球的总质量为多少克?24.(10分)已知:(1)求(用含的代数式表示)(2)比较与的大小25.(8分)(教材回顾)课本88页,有这样一段文字:人们通过长期观察发现如果早晨天空中棉絮的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.(数学问题)三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?(问题探究)为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪357(1)【问题解决】①当三角形内有4个点时,最多剪得的三角形个数为________;②你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加________个;③猜想:当三角形内点的个数为n时,最多可以剪得________个三角形;像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.(2)【问题拓展】请你尝试用归纳的方法探索1+3+5+7+…+(2n-1)+(2n+1)的和是多少?26.(11分)如图设a1=22-02,a2=32-12,…,a n=(n+1)2-(n-1)2(n为大于1的整数)(1)计算a15的值;(2)通过拼图你发现前三个图形的面积之和与第四个正方形的面积之间有什么关系:________(用含a、b的式子表示);(3)根据(2)中结论,探究a n=(n+1)2-(n-1)2是否为4的倍数.鹤山街初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题1.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】将1.62亿用科学记数法表示为1.62×108.故选C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.2.【答案】D【考点】科学记数法—表示绝对值较大的数【解析】【解答】40570亿=4057000000000=4.057×1012,故选D.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中40570亿,有13位整数,n=13﹣1=12.3.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】将140000用科学记数法表示即可.140000=1.4×105,故选B.【分析】此题考查了科学记数法——表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【考点】倒数【解析】【解答】∵﹣2×(-)=1,∴﹣2的倒数是﹣.故选D.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.5.【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】77亿=77 0000 0000=7.7×109,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:把21000用科学记数法表示为2.1×104,故选:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.7.【答案】B【考点】几何体的展开图【解析】【解答】正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻.故选B.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.8.【答案】D【考点】倒数【解析】【解答】﹣3的倒数是-,故选D【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.9.【答案】A【考点】几何体的展开图【解析】【解答】如图所示:这个几何体是四棱锥.故选:A.【分析】根据四棱锥的侧面展开图得出答案.10.【答案】C【考点】相反数【解析】【解答】解:2的相反数是﹣2,故选:C.【分析】根据相反数的概念解答即可.11.【答案】B【考点】相反数及有理数的相反数【解析】【解答】根据相反数的含义,可得2015的相反数是:﹣2015.故选:B.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.12.【答案】B【考点】绝对值【解析】【解答】解:|﹣6|=6,故选:B.【分析】根据一个负数的绝对值是它的相反数进行解答即可.二、填空题13.【答案】4【考点】绝对值及有理数的绝对值,有理数的加法【解析】【解答】解:原式=2+2=4.故答案为4.【分析】先计算|﹣2|,再加上2即可.14.【答案】2n(n+1)【考点】探索图形规律【解析】【解答】解:依题意得:n=1,根数为:4=2×1×(1+1);n=2,根数为:12=2×2×(2+1);n=3,根数为:24=2×3×(3+1);…n=n时,根数为:2n(n+1).故答案为:2n(n+1).【分析】本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳即可得出最终答案.15.【答案】4【考点】绝对值及有理数的绝对值,有理数的加法【解析】【解答】解:原式=2+2=4.故答案为4.【分析】先计算|﹣2|,再加上2即可.16.【答案】29【考点】探索图形规律【解析】【解答】解:如图所示:第1个图形有3+2=5根火柴棒,第2个图形有3×2+2=8根火柴棒,第3个图形有3×3+2=11根火柴棒,故第n个图形有3n+2根火柴棒,则第9个“H”需用火柴棒:3×9+2=29(根).故答案为:29.【分析】根据已知图形得出数字变化规律,进而求出答案.17.【答案】-1【考点】有理数的减法【解析】【解答】解:3﹣4=3+(﹣4)=﹣1.故答案为:﹣1.【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.18.【答案】3.7×104 【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将37000用科学记数法表示为3.7×104.故答案为:3.7×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.三、解答题19.【答案】(1)解:(x-16)=-6,x-16=-12,x=16-12,x=4,把x=4代入得,2+=0,∴m=-6(2)解:∵多项式-2x2+mx+nx2-5x-1的值与x的取值无关,∴-2+n=0,m-5=0,∴n=2,m=5【考点】整式的加减运算,一元一次方程的解【解析】【分析】(1)首先求出方程的解,然后将x的值代入方程即可算出m的值;(2)由于多项式是关于x的多项式,将m,n作为常数合并同类项,根据关于x的多项式的值与x的值无关,故含x的项的系数都应该为0,从而列出方程,求解即可。

鹤城初中2018-2019学年初中七年级上学期数学第一次月考试卷

鹤城初中2018-2019学年初中七年级上学期数学第一次月考试卷

鹤城初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•龙岩)﹣1的倒数是()A. ﹣1B. 0C. 1D. ±12.(2分)备受宁波市民关注的象山港跨海大桥在2012年12月29日建成通车,此项目总投资约77亿元,77亿元用科学记数法表示为()A. 7.7×109元B. 7.7×1010元C. 0.77×1010元D. 0.77×1011元3.(2分)(2015•柳州)如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A. 147.40元B. 143.17元C. 144.23元D. 136.83元4.(2分)(2015•鄂州)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()A. B. C. D.5.(2分)(2015•南京)计算:|﹣5+3|的结果是()A. -2B. 2C. -8D. 86.(2分)(2015•福州)计算3.8×107﹣3.7×107,结果用科学记数法表示为()A. 0.1×107B. 0.1×106C. 1×107D. 1×1067.(2分)(2015•六盘水)下列说法正确的是()A. |﹣2|=﹣2B. 0的倒数是0C. 4的平方根是2D. ﹣3的相反数是38.(2分)(2015•河南)据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A. B. C. D.9.(2分)(2015•鄂州)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()A. B. C. D.10.(2分)(2015•毕节市)下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是111.(2分)(2015•广东)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为()A. 1.3573×B. 1.3573×C. 1.3573×D. 1.3573×12.(2分)(2015•毕节市)﹣的倒数的相反数等于()A. ﹣2B.C. -D. 2二、填空题13.(1分)(2015•娄底)下列数据是按一定规律排列的,则第7行的第一个数为________ .14.(1分)(2015•张家界)由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学记数法表示为________美元.15.(1分)(2015•梧州)计算:3﹣4= ________.16.(1分)(2015•郴州)请观察下列等式的规律:=(1﹣),=(﹣),=(﹣),=(﹣),…则+++…+=________ .17.(1分)(2015•贺州)中国的陆地面积约为9600000km2,这个面积用科学记数法表示为 ________km2.18.(1分)(2015•重庆)我国“南仓”级远洋综合补给舱满载排水量为37000吨,把数37000用科学记数法表示为________ .三、解答题19.(11分)任何一个整数,可以用一个多项式来表示:.例如:.已知是一个三位数.(1)为________.(2)小明猜想:“ 与的差一定是的倍数”, 请你帮助小明说明理由.(3)在一次游戏中,小明算出,,,与这个数和是,请你求出这个三位数.20.(7分)观察下列等式的规律,解答下列问题:(1)按此规律,第④个等式为________;第个等式为________;(用含的代数式表示,为正整数)(2)按此规律,计算:21.(10分)已知A=ax2-3x+by-1,B=3-y-x+x2且无论x,y为何值时,A-2B的值始终不变.(1)分别求a、b的值;(2)求b a的值.22.(8分)有理数、、在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b-c________0,+________0,c-________0.(2)化简:| b-c|+| +b|-|c-|23.(20分)任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。

鹤城镇初中2018-2019学年初中七年级上学期数学第一次月考试卷(2)

鹤城镇初中2018-2019学年初中七年级上学期数学第一次月考试卷(2)

鹤城镇初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A. B. C. D.2.(2分)(2015•海南)据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是()A. 4B. 5C. 6D. 73.(2分)(2015•深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A. 140B. 120C. 160D. 1004.(2分)(2015•丹东)﹣2015的绝对值是()A. ﹣2015B. 2015C.D.5.(2分)(2015•衢州)﹣3的相反数是()A. 3B. -3C.D. -6.(2分)(2015•毕节市)2014年我国的GDP总量为629180亿元,将629180亿用科学记数法表示为()A. 6.2918×105元B. 6.2918×1014元C. 6.2918×1013元D. 6.2918×1012元7.(2分)(2015•天津)计算(﹣18)÷6的结果等于()A. -3B. 3C. -D.8.(2分)(2015•郴州)2的相反数是()A. B. C. -2 D. 29.(2分)(2015•咸宁)方程2x﹣1=3的解是()A. -1B. -2C. 1D. 210.(2分)(2015•六盘水)下列运算结果正确的是()A. ﹣87×(﹣83)=7221B. ﹣2.68﹣7.42=﹣10C. 3.77﹣7.11=﹣4.66D. <11.(2分)(2015•鄂州)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()A. B. C. D.12.(2分)(2015•山西)计算﹣3+(﹣1)的结果是()A. 2B. -2C. 4D. -4二、填空题13.(1分)(2015•岳阳)单项式的次数是________ .14.(1分)(2015•常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的值为________ .15.(1分)(2015•湘西州)﹣2015的绝对值是________ .16.(1分)(2015•广安)实数a在数轴的位置如图所示,则|a﹣1|=________ .17.(1分)(2015•大连)比较大小:3________ ﹣2.(填“>”、“<”或“=”)18.(1分)(2015•湘西州)﹣2015的绝对值是________ .三、解答题19.(12分)如图,在数轴上点表示的数是点在点的右侧,且到点的距离是18;点在点与点之间,且到点的距离是到点距离的2倍.(1)点表示的数是________;点表示的数是________;(2)若点P从点出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鹤山初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A. 140B. 120C. 160D. 1002.(2分)(2015•漳州)漳州市被国家交通运输部列为国家公路运输枢纽城市,现拥有营运客货车月21000辆,21000用科学记数法表示为()A. 0.21×104B. 21×103C. 2.1×104D. 2.1×1033.(2分)(2015•来宾)来宾市辖区面积约为13400平方千米,这一数字用科学记数法表示为()A. 1.34×102 B. 1.34×103 C. 1.34×104 D. 1.34×1054.(2分)(2015•六盘水)如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A. 相对B. 相邻C. 相隔D. 重合5.(2分)(2015•衢州)﹣3的相反数是()A. 3B. -3C.D. -6.(2分)(2015•巴彦淖尔)﹣3的绝对值是()A. ﹣3B. 3C. ﹣3﹣1D. 3﹣17.(2分)(2015•淮安)2的相反数是()A. B. - C. 2 D. -28.(2分)(2015•孝感)下列各数中,最小的数是()A. ﹣3B. |﹣2|C.D.9.(2分)(2015•河南)据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A. B. C. D.10.(2分)(2015•崇左)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A. 的B. 中C. 国D. 梦11.(2分)(2015•遵义)据有关资料显示,2014年通过国家科技支撑计划,遵义市获得国家级科技专项重点项目资金5533万元,将5533万用科学记数法可表示为()A. 5.533×108B. 5.533×107C. 5.533×106D. 55.33×10612.(2分)(2015•福建)下列各数中,绝对值最大的数是()A. 5B. -3C. 0D. -2二、填空题13.(1分)(2015•常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的值为________ .14.(1分)(2015•通辽)一列数x1,x2,x3,…,其中x1=,x n=(n为不小于2的整数),则x2015= ________.15.(1分)(2015•梧州)如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 ________个圆组成.16.(1分)(2015•湘西州)每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为________ .17.(1分)(2015•湘西州)﹣2015的绝对值是________ .18.(1分)(2015•厦门)已知(39+)×(40+)=a+b,若a是整数,1<b<2,则a=________ . 三、解答题19.(13分)如图,数轴上点A、B 到表示-2 的点的距离都为6,P为线段AB 上任一点,C,D 两点分别从P,B 同时向A 点移动,且C 点运动速度为每秒2 个单位长度,D点运动速度为每秒3 个单位长度,运动时间为t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若P 点表示的数是0,①运动1 秒后,求CD 的长度;②当D 在BP 上运动时,求线段AC、CD之间的数量关系式.(3)若t=2 秒时,CD=1,请直接写出P 点表示的数.20.(10分)已知A=ax2-3x+by-1,B=3-y-x+x2且无论x,y为何值时,A-2B的值始终不变.(1)分别求a、b的值;(2)求b a的值.21.(3分)某市出租车的计价标准为:行驶路程不超过3 km收费10元,超过3 km的部分按每千米1.8元收费.(1)某出租车行程为x km,若x>3 km,则该出租车驾驶员收到车费________元(用含有的代数式表示);(2)一出租车公司坐落于东西向的宏运大道边,某驾驶员从公司出发,在宏运大道上连续接送4批客人,行km).①送完第4批客人后,该出租车驾驶员在公司的________边(填“东或西”),距离公司________km的位置;22.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满足 +(c-7)2=0.(1)a=________ ,b=________ ,c=________ .(2)若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合.(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=________ ,AC=________ ,BC=________ .(用含t的代数式表示)(4)请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.23.(11分)如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值;②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.24.(11分)任何一个整数,可以用一个多项式来表示:.例如:.已知是一个三位数.(1)为________.(2)小明猜想:“ 与的差一定是的倍数”, 请你帮助小明说明理由.(3)在一次游戏中,小明算出,,,与这个数和是,请你求出这个三位数.25.(10分)小华家买了一辆轿车,他连续10天记录了他家轿车每天行驶的路程,以40km为标准,超过或不足部分分别用正数、负数表示,得到的数据分别如下(单位:km)+3,+1,2,+8,-7,+2.5,4,+5,-3,+2(1)请你运用所学知识估计小华家一个月(按30天算)轿车行驶的路程(2)若已知该轿车每行驶100km耗用汽油7L,且汽油的价格为每升804元,试根据第(1)题估计小华家一年(按12个月算)的汽油费用26.(12分)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=.利用数轴,根据数形结合思想,回答下列问题:(1)数轴上表示2和6两点之间的距离是________,数轴上表示1和的两点之间的距离为________(2)数轴上表示和1两点之间的距离为________,数轴上表示和两点之间的距离为________(3)若表示一个实数,且,化简,(4)的最小值为________,的最小值为________.(5)的最大值为________鹤山初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题1.【答案】B【考点】一元一次方程的实际应用-销售问题【解析】【解答】设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.2.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:把21000用科学记数法表示为2.1×104,故选:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.3.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:13400=1.34×104,故选C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于13400有5位,所以可以确定n=5﹣1=4.4.【答案】B【考点】几何体的展开图【解析】【解答】正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻.故选B.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.5.【答案】A【考点】相反数及有理数的相反数【解析】【解答】﹣3的相反数是3,故选:A.【分析】根据相反数的概念解答即可.6.【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】﹣3的绝对值是3,故选B.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.7.【答案】D【考点】相反数及有理数的相反数【解析】【解答】2的相反数是2,故选:D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.8.【答案】A【考点】有理数大小比较【解析】【解答】解:∵|﹣2|=2,(﹣3)2=9,2×103=2000,∴﹣3<2<9<2000,∴最小的数是﹣2,故选:A.【分析】根据正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小,即可解答.9.【答案】D【考点】科学记数法—表示绝对值较大的数【解析】【解答】40570亿=4057000000000=4.057×1012,故选D.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中40570亿,有13位整数,n=13﹣1=12.10.【答案】D【考点】几何体的展开图【解析】【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选:D.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.11.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】∵5533万=55330000,∴用科学记数法表示为:5.533×107,故选B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.12.【答案】A【考点】绝对值,有理数大小比较【解析】【解答】解:|5|=5,|﹣3|=3,|0|=0,|﹣2|=2,∵5>3>2>0,∴绝对值最大的数是5,故选:A.【分析】根据绝对值的概念,可得出距离原点越远,绝对值越大,可直接得出答案.二、填空题13.【答案】128、21、20、3【考点】探索数与式的规律【解析】【解答】解:根据分析,可得则所有符合条件的m的值为:128、21、20、3.故答案为:128、21、20、3.【分析】首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m的值为多少即可.14.【答案】2【考点】探索数与式的规律【解析】【解答】解:根据题意得,a2==2,a3==﹣1,a4==,…,依此类推,每三个数为一个循环组依次循环,∵2015÷3=671…2,∴a2015是第671个循环组的第2个数,与a2相同,即a2015=2.故答案为:2.【分析】根据表达式求出前几个数不难发现,每三个数为一个循环组依次循环,用2015除以3,根据商和余数的情况确定a2015的值即可.15.【答案】51【考点】探索图形规律【解析】【解答】解:第⑥个图形中圆的个数是:6+7+8+9+10+11=51.故答案为:51.【分析】根据图形可得第n个图形一定有n排,最上边的一排有n个,下边的每排比上边的一排多1个,据此即可求解.16.【答案】5.4×106【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将5400000用科学记数法表示为:5.4×106.故答案为:5.4×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.17.【答案】2015【考点】相反数及有理数的相反数【解析】【解答】解:∵﹣2015的绝对值等于其相反数,∴﹣2015的绝对值是2015;故答案为:2015.【分析】根据相反数的意义,求解即可.注意正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.18.【答案】1161【考点】有理数的混合运算【解析】解:(39+)×(40+)=1560+27+24+=1611+∵a是整数,1<b<2,∴a=1611.故答案为:1611.【分析】首先把原式整理,利用整式的乘法计算,进一步根据b的取值范围得出a的数值即可.三、解答题19.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时,,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若t=2秒时,D点为-2,若CD=1,则C=-3 或-1,①当C=-3 时,CP=4,此时P=1;②当C=-1 时,P=3.【考点】数轴及有理数在数轴上的表示,线段的长短比较与计算,几何图形的动态问题【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点A、B 到表示-2 的点的距离都为6 ,且点A在点B的左边,就可求出点A 和点B表示的数,再利用两点间的距离公式求出AB的长。

相关文档
最新文档