高等数学第十章10-5

合集下载

高等数学第10章 曲线积分与曲面积分

高等数学第10章 曲线积分与曲面积分
79
80
81
82
10.7.2 旋度的定义及其物理意义
83
84
85
66
67
实际上,我们常常碰到的曲面是双侧曲面,但单侧 曲面也存在,最有名的单侧曲面是拓扑学中的莫比乌斯 带,如图10.28所示.它的产生是将长方形纸条ABCD 先 扭转一次,然后使B与D,及A与C粘合起来构成的一个 非闭的环带.若想象一只蚂蚁从环带上一侧的某一点出发, 蚂蚁可以不用跨越环带的边界而到达环带的另一侧,然 后再回到起点;或者用一种颜色涂这个环带,不用越过 边界,可以涂满环带的两侧.显然这是双侧曲面不可能出 现的现象
第10章 曲线积分与曲面积分
解决许多几何、物理以及其他实际问题时,不仅需 要用到重积分,而且还需要将积分区域推广到一段曲线 弧或一片曲面上,这样推广后的积分称为曲线积分和曲 面积分.本章还将介绍格林公式、高斯公式及斯托克斯公 式,这三个公式刻画了不同类型的积分之间的内在联系, 并且在微积分、场论及其他学科中有着广泛的应用。
46
47
48
49
50
51
10.4 第一型曲面积分
通过讨论非均匀密度的空间曲面壳质量这一物理问 题,本节引入第一型曲面积分的概念并研究了相关性质。 10.4.1 实例 质量分布在可求面积的曲面壳上,曲面壳占有空间 曲面Σ,其密度函数为ρ(x,y,z),求曲面壳的质量.
52
53
54
55
15
16
17
18
19
20
21
10.2.3 向量值函数在有向曲线上的积分的计算法 设向量值函数F(x,y,z)=P(x,y,z)i+Q(x, y,z)j+R(x,y,z)k在有向曲线Γ上有定义且连续, 有向曲线弧Γ为简单曲线,它的参数方程为

高等数学科学出版社下册课后答案第十章曲线积分与曲面积分习题简答

高等数学科学出版社下册课后答案第十章曲线积分与曲面积分习题简答

第十章曲线积分与曲面积分习题简答习题10—11 计算下列对弧长的曲线积分:(1)LIxds ,其中L 是圆221xy中(0,1)A 到11(,)22B 之间的一段劣弧;解:1(1)2.(2)(1)Lx y ds,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解:(1)322Lxyds.(3)22Lxy ds,其中L 为圆周22x yx ;解:222Lxy ds.(4)2Lx yzds ,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C (1,2,3)D ;解:2853Lx yzds .2 求八分之一球面2221(0,0,0)xyzx y z 的边界曲线的重心,设曲线的密度1。

解故所求重心坐标为444,,333.习题10—21 设L 为xOy 面内一直线y b (b 为常数),证明xyz(0,0,0)A (0,0,2)B (1,0,2)C (1,2,3)D xyoABC(,)0LQ x y dy 。

证明:略.2 计算下列对坐标的曲线积分:(1)Lxydx ,其中L 为抛物线2yx 上从点(1,1)A 到点(1,1)B 的一段弧。

解:45Lxydx 。

(2)Ldy y xdx y x 2222)()(,其中L 是曲线x y11从对应于0x 时的点到2x 时的点的一段弧;解34)()(2222Ldyy xdxy x.(3),Lydx xdy L 是从点(,0)A a 沿上半圆周222xya 到点(,0)B a 的一段弧;解0.Lydxxdy(4)22Lxy dyx ydx ,其中L 沿右半圆222xya 以点(0,)A a 为起点,经过点(,0)C a 到终点(0,)B a 的路径;解22Lxy dyx ydx44a 。

(5)3223Lx dx zy dy x ydz ,其中L 为从点(3,2,1)A 到点(0,0,0)B 的直线段AB ;解3223Lx dx zy dy x ydz3187874t dt。

高等数学课后习题及参考答案(第十章)

高等数学课后习题及参考答案(第十章)

高等数学课后习题及参考答案(第十章)习题 10-11. 设在xOy 面内有一分布着质量的曲线弧L , 在点(x , y )处它的线密度为μ(x , y ), 用对弧长的曲线积分分别表达:(1)这曲线弧对x 轴、对y 轴的转动惯量I x , I y ; (2)这曲线弧的重心坐标x , y .解 在曲线弧L 上任取一长度很短的小弧段ds (它的长度也记做ds ), 设(x , y )为小弧段ds 上任一点.曲线L 对于x 轴和y 轴的转动惯量元素分别为 dI x =y 2μ(x , y )ds , dI y =x 2μ(x , y )ds . 曲线L 对于x 轴和y 轴的转动惯量分别为 ⎰=Lx ds y x y I ),(2μ, ⎰=Ly ds y x x I ),(2μ.曲线L 对于x 轴和y 轴的静矩元素分别为 dM x =y μ(x , y )ds , dM y =x μ(x , y )ds . 曲线L 的重心坐标为⎰⎰==L L y dsy x ds y x x M M x ),(),(μμ, ⎰⎰==LL x ds y x dsy x y M M y ),(),(μμ. 2. 利用对弧长的曲线积分的定义证明: 如果曲线弧L 分为两段光滑曲线L 1和L 2, 则⎰⎰⎰+=12),(),(),(LL L ds y x f ds y x f ds y x f .证明 划分L , 使得L 1和L 2的连接点永远作为一个分点, 则∑∑∑+===∆+∆=∆111111),(),(),(n n i i i i ni n i i i i i i i s f s f s f ηξηξηξ.令λ=max{∆s i }→0, 上式两边同时取极限∑∑∑+=→=→=→∆+∆=∆nn i i i i n i i i i ni i i i s f s f s f 111011),(lim),(lim ),(lim ηξηξηξλλλ,即得⎰⎰⎰+=12),(),(),(LL L ds y x f ds y x f ds y x f .3. 计算下列对弧长的曲线积分:(1)⎰+Ln ds y x )(22, 其中L 为圆周x =a cos t , y =a sin t (0≤t ≤2π);解⎰+L nds y x)(22⎰+-+=π20222222)cos ()sin ()sin cos (dt t a t a t a t a n=⎰+-+π20222222)cos ()sin ()sin cos (dt t a t a t a t a n ⎰++==ππ2012122n n a dt a .(2)⎰+Lds y x )(, 其中L 为连接(1, 0)及(0, 1)两点的直线段;解 L 的方程为y =1-x (0≤x ≤1);⎰⎰'-+-+=+102])1[(1)1()(dx x x x ds y x L22)1(1=-+=⎰dx x x .(3)xdx L⎰, 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) .xdx L ⎰xdx xdx LL ⎰⎰+=21⎰⎰'++'+=102122)(1])[(1dx x x dx x x⎰⎰++=10102241xdx dx x x )12655(121-+=.(4)ds ey x L22+⎰, 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界; 解 L =L 1+L 2+L 3, 其中 L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t )40(π≤≤t ,L 3: x =x , y =x )220(a x ≤≤,因而ds eds eds eds ey x L y x L y x L y x L22322222122++++⎰⎰⎰⎰++=,⎰⎰⎰+++-++=axa ax dx e dt t a t a e dx e 220222402202211)cos ()sin (01π2)42(-+=a e a π.(5)⎰Γ++ds z y x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧;解 dt dtdz dt dydt dx ds 222)()()(++=dt e t e t e t e t e t t t t t 222)cos sin ()sin cos (+++-=dt e t 3=,⎰⎰++=++Γ20222222223sin cos 11dt e et e t e ds z y x t t t t ⎰----=-==2220)1(23]23[23e e dt e t t .(6)⎰Γyzds x 2, 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、 (0, 0, 2)、(1, 0, 2)、(1, 3, 2); 解 Γ=AB +BC +CD , 其中 AB : x =0, y =0, z =t (0≤t ≤1), BC : x =t , y =0, z =2(0≤t ≤3), CD : x =1, y =t , z =2(0≤t ≤3), 故yzds x yzds x yzds x yzds x CD BC AB 2222⎰⎰⎰⎰++=Γ9010200322231=++++=⎰⎰⎰dt t dt dt .(7)⎰Lds y 2, 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解⎰⎰'+'--=L dt t a t t a t a ds y π2022222])(cos [])sin ([)cos 1(⎰--=π2023cos 1)cos 1(2dt t t a 315256a =.(8)⎰+Lds y x )(22, 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解 dt dtdydt dx ds 22)()(+=atdt dt t at t at =+=22)sin ()cos (atdt t t t a t t t a ds y x L ])cos (sin )sin (cos [)(22202222-++=+⎰⎰π⎰+=+=πππ2023223)21(2)1(a tdt t a .4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心. 解 建立坐标系如图10-4所示, 由对称性可知0=y , 又 ⎰==L x xds a M M x ϕ21⎰-⋅=ϕϕθθϕad a a cos 21ϕϕsin a =, 所以圆弧的重心为)0 ,sin (ϕϕa5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心. 解 dt t z t y t x ds )()()(222'+'+'=dt k a 22+=. (1)⎰+=Lz ds z y x y x I ),,()(22ρds z y x y x L))((22222+++=⎰dt k a t k a a ⎰++=π20222222)()43(32222222k a k a a ππ++=. (2)⎰⎰++==LLds z y x ds z y x M )(),,(222ρ⎰++=π2022222)(dt k a t k a)43(3222222k a k a ππ++=, ds z y x x M x L)(1222⎰++=⎰++=π2022222)(cos 1dt k a t k a t a M2222436k a ak ππ+=, ds z y x y M y L)(1222⎰++=⎰++=π2022222)(sin 1dt k a t k a t a M2222436k a ak ππ+-=, ds z y x z M z L)(1222⎰++=⎰++=π2022222)(1dt k a t k a kt M22222243)2(3k a k a k πππ++=,故重心坐标为)43)2(3 ,436 ,436(22222222222222k a k a k k a ak k a ak πππππππ+++-+.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明:⎰=L dx y x P 0),(.证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段, 则L : x =a , y =t , t 从b 1变到b 2. 于是00) ,())( ,(),(2121⎰⎰⎰=⋅==b b b b L dt t a P dt dtda t a P dx y x P . 2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线, 证明⎰⎰=Lbadx x P dx y x P )0 ,(),(.证明L : x =x , y =0, t 从a 变到b , 所以⎰⎰⎰='=baL b adx x P dx x x P dx y x P )0 ,())(0 ,(),(.3. 计算下列对坐标的曲线积分:(1)⎰-Ldx y x )(22, 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以⎰⎰-=-=-L dx x x dx y x2042221556)()(.(2)⎰Lxydx , 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第 一象限内的区域的整个边界(按逆时针方向绕行); 解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π, L 2: x =x , y =0, x 从0变到2a , 因此⎰⎰⎰+=21L L L xydx xydx xydx⎰⎰+'++=adx dt t a a t a t a 200)cos (sin )cos 1(π3020232)sin sin sin (a t td tdt a πππ-=+-=⎰⎰.(3)⎰+Lxdy ydx , 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到2π的一段弧;解 ⎰⎰+-=+L dt t tR R t R t R xdy ydx ]cos cos )sin (sin [20π⎰==20202cos πtdt R .(4)⎰+--+L y x dy y x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+L yx dyy x dx y x 22)()( ⎰---+=π202)]cos )(sin cos ()sin )(sin cos [(1dt t a t a t a t a t a t a a ⎰-=-=ππ202221dt a a .(5)ydz zdy dx x -+⎰Γ2, 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧; 解⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x233220331)(a k d a k ππθθπ-=-=⎰.(6)dz y x ydy xdx )1(-+++⎰Γ, 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1.⎰Γ-+++dz y x ydy xdx )1(⎰-+++++++=1)]1211(3)21(2)1[(dt t t t t⎰=+=1013)146(dt t .(7)⎰Γ+-ydz dy dx , 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1); 解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0, BC : x =0, y =1-z , z =z , z 从0变到1, CA : x =x , y =0, z =1-x , x 从0变到1, 故ydz dy dx ydz dy dx ydz dy dx ydz dy dx CA BC AB +-++-++-=+-⎰⎰⎰⎰Γ⎰⎰⎰+-+'--+'--=101010)]1()1([])1(1[dx dt z z dx x 21=.(8)dy xy y dx xy x L)2()2(22-+-⎰, 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故⎰-+-L dy xy y dx xy x )2()2(22⎰--+-=113432]2)2()2[(dx x x x x x 1514)4(21042-=-=⎰dx x x 4. 计算⎰-++Ldy x y dx y x )()(, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧; 解 L : x =y 2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(⎰=⋅-+⋅+=2122334]1)(2)[(dy y y y y y . (2)从点(1, 1)到点(4, 2)的直线段; 解 L : x =3y -2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(11]1)23()23[(21=⋅+-+⋅+-=⎰dy y y y y y(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线; 解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2, L 2: x =x , y =2, x 从1变到4, 故⎰-++L dy x y dx y x )()(dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰14)2()1(4121=++-=⎰⎰dx x dy y .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧. 解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故⎰-++L dy x y dx y x )()(332]2)()14)(23[(1022=⋅--++++=⎰dt t t t t t t .5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m 的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时 场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为 x =R cos θ, y =R sin θ,θ从0变到2π, 于是场力所作的功为R F d R F dx F d W LL||)sin (||||20-=-⋅==⋅=⎰⎰⎰πθθr F .6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1) 沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线, 则重力所作的功为⎰⎰⎰ΓΓ-==++=⋅=21)(0012z z z z mg dz mg mgdz dy dx d W r F .7. 把对坐标的曲线积分⎰+Ldy y x Q dx y x P ),(),(化成对弧长的曲线积分, 其中L 为:(1)在xOy 面内沿直线从点(0, 0)到(1, 1); 解 L 的方向余弦214cos cos cos ===πβα,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰+=L ds y x Q y x P 2),(),(.(2)沿抛物线y =x 2从点(0, 0)到(1, 1);解 曲线L 上点(x , y )处的切向量为τ=(1, 2x ), 单位切向量为 )412,411()cos ,(cos 22x x x ++==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L ]cos ),(cos ),([βα+=⎰⎰++=L ds xy x xQ y x P 241),(2),(. (3)沿上半圆周x 2+y 2=2x 从点(0, 0)到(1, 1). 解 L 的方程为22x x y -=, 其上任一点的切向量为 )21 ,1(2x x x --=τ, 单位切向量为)1 ,2()cos ,(cos 2x x x --==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L ]cos ),(cos ),([βα+=⎰⎰-+-=Lds y x Q x y x P x x )],()1(),(2[2.8. 设Γ为曲线x =t , y =t 2, z =t 3上相应于t 从0变到1的曲线弧,把对坐标的曲线积分⎰Γ++Rdz Qdy Pdx 化成对弧长的曲线积分.解 曲线Γ上任一点的切向量为 τ=(1, 2t , 3t 2)=(1, 2x , 3y ), 单位切向量为)3 ,2 ,1(9211)cos ,cos ,(cos 22y x yx ++==τγβαe ,ds R Q P Rdz Qdy Pdx L ]cos cos cos [γβα++=++⎰⎰Γ⎰++++=L ds y x yRxQ P 2294132.习题 10-31. 计算下列曲线积分, 并验证格林公式的正确性:(1)⎰++-ldy y x dx x xy )()2(22, 其中L 是由抛物线y =x 2及y 2=x 所围成的区域的正向边界曲线; 解 L =L 1+L 2, 故⎰++-L dy y x dx x xy )()2(22⎰⎰++-+++-=21)()2()()2(2222L L dy y x dx x xy dy y x dx x xy⎰⎰++-+++-=112243423)](2)2[(]2)()2[(dy y y y y y dx x x x x x301)242()22(1010245235=++--++=⎰⎰dy y y y dx x x x ,而dxdy x dxdy yPx Q DD)21()(-=∂∂-∂∂⎰⎰⎰⎰⎰⎰-=102)21(y y dx x dy301)(42121=+--=⎰dy y y y y , 所以⎰⎰⎰+=∂∂-∂∂l DQdy Pdx dxdy yPx Q )(.(2)⎰-+-ldy xy y dx xy x )2()(232, 其中L 是四个顶点分别为(0, 0)、 (2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界.解 L =L 1+L 2+L 3+L 4, 故⎰-+-L dy xy y dx xy x )2()(232dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰ ⎰⎰⎰⎰+-+-+=202002022222)8()4(dy y dx x x dy y y dx x 8482020=-+=⎰⎰ydy xdx , 而 dxdy xy y dxdy y P x Q DD )32()(2+-=∂∂-∂∂⎰⎰⎰⎰ ⎰⎰+-=20220)32(dy xy y dx 8)48(20=-=⎰dx x , 所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. 2. 利用曲线积分, 求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t , y =a sin 3t ;解 ⎰⎰-⋅⋅-=-=L dt t t a t a ydx A π2023)sin (cos 3sin ⎰==ππ20224283cos sin 3a tdt t a . (2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2 =144的参数方程为x =4cos θ, y =3sin θ, 0≤θ≤2π, 故⎰-=Lydx xdy A 21 ⎰-⋅-⋅=πθθθθθ20)]sin 4(sin 3cos 3cos 4[21d ⎰==ππθ20126d . (3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π,故 ⎰-=Lydx xdy A 21 ⎰-⋅-⋅+=πθθθθθ20)]sin (sin cos )cos 1([21d a a a a 2202)cos 1(2a d a ⎰=+=ππθθ.3. 计算曲线积分⎰+-L y x xdy ydx )(222, 其中L 为圆周(x -1)2+y 2=2, L 的方 向为逆时针方向.解 )(222y x y P +=, )(222y x x Q +-=. 当x 2+y 2≠0时 y P x Q ∂∂=∂∂0)(2)(22222222222=+--+-=y x y x y x y x . 在L 内作逆时针方向的ε小圆周l : x =εcos θ, y =εsin θ(0≤θ≤2π),在以L 和l 为边界的闭区域D ε上利用格林公式得0)(=∂∂-∂∂=+⎰⎰⎰-+dxdy y P x Q Qdy Pdx D l L ε, 即 ⎰⎰⎰+=+-=+-lL l dy Pdx Qdy Pdx Qdy Pdx . 因此 ⎰⎰+-=+-l L y x xdy ydx y x xdy ydx )(2)(22222⎰--=πθεθεθε20222222cos sin d ⎰-=-=ππθ2021d .4. 证明下列曲线积分在整个xOy 面内与路径无关, 并计算积分值:(1)⎰-++)3 ,2()1 ,1()()(dy y x dx y x ;解 P =x +y , Q =x -y , 显然P 、Q 在整个xOy 面内具有一阶连续偏 导数, 而且1=∂∂=∂∂xQ y P , 故在整个xOy 面内, 积分与路径无关.取L 为点(1, 1)到(2, 3)的直线y =2x -1, x 从1变到2, 则⎰⎰-+-=-++)3 ,2()1 ,1(21)]1(2)13[()()(dx x x dy y x dx y x ⎰=+=2125)1(dx x . (2)⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy ;解 P =6xy 2-y 3, Q =6x 2y -3xy 2, 显然P 、Q 在整个xOy 面内具有一阶连续偏导数, 并且2312y xy xQ y P -=∂∂=∂∂, 故积分与路径无关, 取路径 (1, 2)→(1, 4)→(3, 4)的折线, 则⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy236)6496()3642312=-+-=⎰⎰dx x dy y y .(3)⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy .解 P =2xy -y 4+3, Q =x 2-4xy 3, 显然P 、Q 在整个xOy 面内具有一阶连续偏导数, 并且342y x xQ y P -=∂∂=∂∂, 所以在整个xOy 面内积分与 路径无关, 选取路径为从(1, 0)→(1, 2)→(2, 1)的折线, 则⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy⎰⎰=++-=102135)1(2)41(dx x dy y .5. 利用格林公式, 计算下列曲线积分:(1)⎰-+++-Ldy x y dx y x )635()42(, 其中L 为三顶点分别为(0, 0)、 (3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yP x Q , 故由格林公式,得⎰-+++-L dy x y dx y x )6315()42(dxdy y P x Q D)(∂∂-∂∂=⎰⎰ 124==⎰⎰dxdy D.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正 向星形线323232a y x =+(a >0);解 x e y x xy x y x P 22sin 2cos -+=, x ye x x Q 2sin 2-=,0)2cos sin 2()2cos sin 2(22=-+--+=∂∂-∂∂x x ye x x x x ye x x x x yP x Q , 由格林公式⎰-+-+L x x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (2220)(=∂∂-∂∂=⎰⎰dxdy yP x Q D . (3)⎰+-+-Ldy y x x y dx x y xy )3sin 21()cos 2(2223, 其中L 为在抛物线 2x =πy 2上由点(0, 0)到)1 ,2(π的一段弧; 解 x y xy P cos 223-=, 223sin 21y x x y Q +-=,0)cos 26()6cos 2(22=--+-=∂∂-∂∂x y xy xy x y yP x Q , 所以由格林公式0)(=∂∂-∂∂=+⎰⎰⎰++-dxdy yP x Q Qdy Pdx D OB OA L , 其中L 、OA 、OB 、及D 如图所示.故 ⎰⎰++=+AB OA L Qdy Pdx Qdy Pdx4)4321(02201022πππ=+-+=⎰⎰dy y y dx . (4)⎰+--L dy y x dx y x )sin ()(22, 其中L 是在圆周22x x y -=上由点(0, 0)到点(1, 1)的一段弧.解 P =x 2-y , Q =-x -sin 2y ,0)1(1=---=∂∂-∂∂y P x Q , 由格林公式有0)(=∂∂-∂∂-=+⎰⎰⎰++dxdy y P x Q Qdy Pdx DBO AB L , 其中L 、AB 、BO 及D 如图所示.故 ⎰⎰++--=+--L OB BA dy y x dx y x dy y x dx y x )sin ()()sin ()(22222sin 4167)sin 1(102102+-=++-=⎰⎰dx x dy y .6. 验证下列P (x , y )dx +Q (x , y )dy 在整个xOy 平面内是某一函数u (x , y )的全微分, 并求这样的一个u (x , y ):(1)(x +2y )dx +(2x +y )dy ;证明 因为yP x Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整 个xOy 面内的函数u (x , y )的全微分.⎰++++=),()0,0()2()2(),(y x C dy y x dx y x y x u C y xy x +++=22222. (2)2xydx +x 2dy ;解 因为y P x x Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整个 xOy 面内的函数u (x , y )的全微分.⎰++=),()0,0(22),(y x C dy x xydx y x u ⎰⎰+=++=y yC y x C xydx dy 00220. (3)4sin x sin3y cos xdx –3cos3y cos2xdy解 因为yP x y x Q ∂∂==∂∂2sin 3cos 6, 所以P (x , y )dx +Q (x , y )dy 是某个 定义在整个xOy 平面内的函数u (x , y )的全微分.⎰+-=),()0,0(2cos 3cos 3cos 3sin sin 4),(y x C xdy y xdx y x y x u C y x C xdy y dx xy +-=+-+=⎰⎰3sin 2cos 2cos 3cos 3000. (4)dy ye y x x dx xy y x y )128()83(2322++++解 因为yP xy x x Q ∂∂=+=∂∂1632, 所以P (x , y )dx +Q (x , y )dy 是某个定 义在整个xOy 平面内的函数u (x , y )的全微分. ⎰+++++=),()0,0(232)128()823(),(y x y C dy ye y x x dx xy iy xh y x u C dx xy y x dy ye yx y +++=⎰⎰0022)83(12C e ye y x y x y y +-++=)(124223.(5)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++解 因为yP y x x y x Q ∂∂=-=∂∂sin 2cos 2, 所以P (x , y )dx +Q (x , y )dy 是 某个函数u (x , y )的全微分 ⎰⎰+-+=x y C dy y x x y xdx y x u 002)sin sin 2(2),( C y x x y ++=cos sin 22.7. 设有一变力在坐标轴上的投影为X =x +y 2, Y =2xy -8, 这变力确 定了一个力场, 证明质点在此场内移动时, 场力所做的功与路径无关. 解 场力所作的功为⎰Γ-++=dy xy dx y x W )82()(2. 由于yX y x Y ∂∂==∂∂2, 故以上曲线积分与路径无关, 即场力所作的功 与路径无关.习题10-41. 设有一分布着质量的曲面∑, 在点(x , y , z )处它的面密度为μ(x , y , z ), 用对面积的曲面积分表达这曲面对于x 轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS ,对于x 轴的转动惯量为dS z y x z y I x ),,()(22μ+=∑⎰⎰.2. 按对面积的曲面积分的定义证明公式dS z y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅⋅⋅, ∆S m ;划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅⋅⋅, ∆S m +n ,则∆S 1, ⋅⋅⋅, ∆S m , ∆S m +1, ⋅⋅⋅, ∆S m +n 为∑的一个划分, 并且i i i i nm m i i i i i m i i i i i n m i S f S f S f ∆∑+∆∑=∆∑++==+=),,(),,(),,(111ζηξζηξζηξ. 令}{max 11i mi S ∆=≤≤λ, }{max 12i n m i m S ∆=+≤≤+λ, } ,max{21λλλ=, 则当 λ→0时, 有dS z y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=.3. 当∑是xOy 面内的一个闭区域时, 曲面积分dSz y x f ),,(∑⎰⎰与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,dxdy dxdy z z dS y x=++=221, 故 dxdy z y x f dS z y x f D),,(),,(⎰⎰⎰⎰=∑.4. 计算曲面积分dS z y x f ),,(∑⎰⎰, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下:(1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x22224411++=++=. 因此 dxdy y x dS z y x f xyD 22441),,(++=⎰⎰⎰⎰∑ ⎰⎰+=πθ2020241rdr r d ππ313])41(121[2202/32=+=r . (2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2, dxdy y x dxdy z z dS y x22224411++=++=. 因此 dxdy y x y x dS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑ ⎰⎰+=πθ2020241rdr r d ππ301494122022=+=⎰rdr r r . (3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x22224411++=++=. 因此 dS z y x f ),,(∑⎰⎰dxdy y x y x xyD 2222441)](2[3+++-=⎰⎰⎰⎰+-=πθ20202241)2(3rdr r r d ππ1011141)2(62022=+-=⎰rdr r r . 5. 计算dS y x )(22+∑⎰⎰, 其中∑是: (1)锥面22y x z +=及平面z =1所围成的区域的整个边界曲面;解 将∑分解为∑=∑1+∑2, 其中∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:22y x z +=, D 2: x 2+y 2≤1, dxdy dxdy z z dS y x2122=++=. dS y x dS y x dS y x )()()(22222221+++=+∑∑∑⎰⎰⎰⎰⎰⎰ dxdy y x dxdy y x D D )()(222221+++=⎰⎰⎰⎰⎰⎰=πθ20103dr r d +⎰⎰πθ201032dr r d πππ221222+=+=. 提示: dxdy dxdy yx y y x x dS 21222222=++++=.(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:223y x z +=, D xy : x 2+y 2≤3,dxdy dxdy z z dS y x2122=++=, 因而 πθπ922)()(302202222==+=+⎰⎰⎰⎰⎰⎰∑rdr r d dxdy y x dS y x xy D . 提示: dxdy dxdy y x y y x x dS 2])(326[])(326[1222222=++++=.6. 计算下面对面积的曲面积分:(1)dS y x z )342(++∑⎰⎰, 其中∑为平面1432=++z y x 在第一象限中的部分;解 y x z 3424:--=∑, x y x D xy 2310 ,20 :-≤≤≤≤, dxdy z z dS y x 221++=dxdy 361=, 61436143614)342(==⋅=++⎰⎰⎰⎰⎰⎰∑dxdy dxdy dS y x z xy xyD D . (2)dS z x x xy )22(2+--∑⎰⎰, 其中∑为平面2x +2y +z =6在第一象限中的部分;解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,dxdy dxdy z z dS y x3122=++=, dS z x x xy )22(2+--∑⎰⎰ dxdy y x x x xy xyD 3)22622(2--+--=⎰⎰⎰⎰--+--=x dy y xy x x dx 30230)22236(3 427)9103(33023-=+-=⎰dx x x . (3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分;解 ∑:222y x a z --=, D xy : x 2+y 2≤a 2-h 2,dxdy z z dS y x 221++=dxdy y x a a 222--=,dxdy yx a a y x a y x dS z y x xy D 222222)()(----++=++⎰⎰⎰⎰∑ )(||22h a a D a adxdy xy D xy-===⎰⎰π(根据区域的对称性及函数的奇偶性).提示: dxdy yx a y y x a x dS 22222222)()(1+--++--+=dxdy y x a a 222--=, (4)dS zx yz xy )(++∑⎰⎰, 其中∑为锥面22y x z +=被x 2+y 2=2ax所截得的有限部分.解 ∑: 22y x z +=, D xy : x 2+y 2≤2ax ,dxdy dxdy z z dS y x2122=++=, dxdy y x y x xy dS zx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑ ⎰⎰++=-θππθθθθcos 202222)]sin (cos cos sin [2a rdr q r r dθθθθθθππd a )cos sin cos cos (sin 24422554⎰-++= 421564a =. 提示: dxdy yx y y x x dS 2222221++++=. 7. 求抛物面壳)10)((2122≤≤+=z y x z 的质量, 此壳的面密度为μ=z .解 ∑: )(2122y x z +=, D xy : x 2+y 2≤2, dxdy y x dxdy z z dS y x222211++=++=.故 dxdy y x y x zdS M xyD 22221)(21+++==⎰⎰⎰⎰∑ ⎰⎰+=πθ202022121rdr r r d )136(152+=π. 8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量. 解 ∑: 222y x a z --=, D xy : x 2+y 2≤a 2,dxdy z z dS y x 221++=dxdy yx a a 222--=, dxdy y x a a y x dS y x I z 222022022)()(--+=+=∑∑⎰⎰⎰⎰μμ ⎰⎰-=a dr ya r d a 0223200πθμ 4034a πμ=.提示:dxdy yx a y y x a x dS 22222222)()(1---+---+=dxdy y x a a 222--=.习题10-51. 按对坐标的曲面积分的定义证明公式:dydz z y x P z y x P )],,(),,([21±∑⎰⎰dydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点, λ是各小块曲面的直径的最大值, 则dydzz y x P z y x P )],,(),,([21±∑⎰⎰ yz i i i i i i i n i S P P ))](,(),([lim ,2,110∆±==→∑ζηξζηξλyz i i i i ni yz i i i i n i S P S P ))(,(lim ))(,(lim ,210,110∆±∆==→=→∑∑ζηξζηξλλ dydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.2. 当∑为xOy 面内的一个闭区域时, 曲面积分dxdy z y x R ),,(∑⎰⎰与二重积分有什么关系?解 因为∑: z =0, (x , y )∈D xy , 故dxdy z y x R dxdy z y x R xyD ),,(),,(⎰⎰⎰⎰±=∑,当∑取的是上侧时为正号, ∑取的是下侧时为负号.3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为222y x R z ---=, D xy : x 2+y 2≤R , 于是zdxdy y x 22∑⎰⎰dxdy y x R y x xyD )(22222----=⎰⎰ ⎰⎰⋅-⋅⋅=πθθθ20222202sin cos rdr r R r r d R⎰⎰-=πθθ20052222sin 41R dr r r R d 71052R π=. (2)ydzdx xdydz zdxdy ++∑⎰⎰, 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧;解 ∑在xOy 面的投影为零, 故0=∑⎰⎰zdxdy .∑可表示为21y x -=, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故 ⎰⎰⎰⎰⎰⎰⎰-=-=-=∑3010102221311dy y dy y dz dydz y xdyz yz D ∑可表示为21x y -=, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故dzdx x ydzdx zx D 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=30101022131dx x dx x dz . 因此 ydzdx xdydz zdxdy ++∑⎰⎰)13(2102dx x ⎰-=ππ2346=⨯=. 解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为)0 , ,(1)cos ,cos ,(cos 22y x y x +=γβα, 由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy )cos cos cos (γβα++=++∑∑⎰⎰⎰⎰π23)(222222==+=+⋅++⋅=∑∑∑⎰⎰⎰⎰⎰⎰dS dS y x dS y x y y y x x x . 提示: dS ∑⎰⎰表示曲面的面积.(3)dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰, 其中f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧; 解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为)31 ,31 ,31()cos ,cos ,(cos -=γβα, 由两类曲面积分之间的联系可得dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰dS z f y f x f ]31)()31()2(31)(⋅++-⋅++⋅+=∑⎰⎰ 2131)(31===+-=⎰⎰⎰⎰⎰⎰∑∑dxdy dS dS z y x xyD .(4)⎰⎰∑++yzdzdx xydydz xzdxdy , 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧.解 ∑=∑1+∑2+∑3+∑4, 其中∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z ,∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x ,∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x ,于是 ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑∑+++=4321xzdxdy xzdxdy 4000∑⎰⎰+++= dxdy y x x xy D )1(--=⎰⎰⎰⎰-=--=1010241)1(x dy y x xdx . 由积分变元的轮换对称性可知241⎰⎰⎰⎰∑∑==yzdzdx xydydz . 因此⎰⎰∑=⨯=++812413yzdzdx xydydz xzdxdy .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块; ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x .显然在∑1、∑2、∑3上的曲面积分均为零, 于是⎰⎰∑++yzdzdx xydydz xzdxdyyzdzdx xydydz xzdxdy ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰81)]1)(([3=--++=⎰⎰dxdy y x y x xy xyD . 4. 把对坐标的曲面积分dxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(++∑⎰⎰化成对面积的曲面积分:(1)∑为平面63223=++z y x 在第一卦限的部分的上侧;解 令63223),,(-++=z y x z y x F , ∑上侧的法向量为:)32 ,2 ,3(),,(==z y x F F F n ,单位法向量为)32 ,2 ,3(51)cos ,cos ,(cos =γβα, 于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰dS R Q P )cos cos cos (γβα++=∑⎰⎰dS R Q P )3223(51++=∑⎰⎰. (2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量n =(F x , F y , F z )=(2x , 2y , 1),单位法向量为)1 ,2 ,2(4411)cos ,cos ,(cos 22y x y x ++=γβα, 于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰dS R Q P )cos cos cos (γβα++=∑⎰⎰dS R yQ xP yx )22(441122++++=∑⎰⎰.10-61. 利用高斯公式计算曲面积分:(1)⎰⎰∑++dxdy z dzdx y dydz x 222, 其中∑为平面x =0, y =0, z =0, x =a ,y =a , z =a 所围成的立体的表面的外侧;解 由高斯公式原式dv z y x dv z R y Q x P )(2)(++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰⎰⎰⎰===Ωaa a a dz dy xdx xdv 0400366(这里用了对称性).(2)⎰⎰∑++dxdy z dzdx y dydz x 333, 其中∑为球面x 2+y 2+z 2=a 2的外侧;解 由高斯公式原式dv z y x dv z R y Q x P )(3)(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ20004sin 3a dr r d d 5512a π=. (3)⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322, 其中∑为上半球体 x 2+y 2≤a 2, 2220y x a z --≤≤的表面外侧;解 由高斯公式原式dv y x z d z R y Q x P )()(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ2020022sin a dr r r d d 552a π=. (4)⎰⎰∑++zdxdy ydzdx xdydz 其中∑界于z =0和z =3之间的圆柱体x 2+y 2≤9的整个表面的外侧;解 由高斯公式原式π813)(==∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰dv dv z R y Q x P . (5)⎰⎰∑+-yzdxdy dzdx y xzdydz 24,其中∑为平面x =0, y =0, z =0, x =1,y =1, z =1所围成的立体的全表面的外侧.解 由高斯公式原式dv y y z dv z R y Q x P )24()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=-=10101023)4(dz y z dy dx . 2. 求下列向量A 穿过曲面∑流向指定侧的通量: (1)A =yz i +xz j +xy k , ∑为圆柱x +y 2≤a 2(0≤z ≤h )的全表面, 流向外侧; 解 P =yz , Q =xz , R =xy ,⎰⎰∑++=Φxydxdy xzdzdx yzdydzdv z xy y xz x yz ))()()((∂∂+∂∂+∂∂=Ω⎰⎰⎰00==Ω⎰⎰⎰dv . (2)A =(2x -z )i +x 2y j - xz 2k , ∑为立方体0≤x ≤a , 0≤y ≤a , 0≤z ≤a ,的全表面, 流向外侧;解 P =2x -z , Q =x 2y , R =-xz 2,⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv xz x dv z r y Q x P )22()(2-+=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰-=-+=a a a a a dz xz x dy dx 023200)62()22(. (3)A =(2x +3z )i -(xz +y )j +(y 2+2z )k , ∑是以点(3, -1, 2)为球心, 半径R =3的球面, 流向外侧.解 P =2x +3z , Q =-(xz +y ), R =y 2+2z ,⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv dv z R y Q x P )212()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰π1083==Ω⎰⎰⎰dv . 3. 求下列向量A 的散度:(1)A =(x 2+yz )i +(y 2+xz )j +(z 2+xy )k ;解 P =x 2+yz , Q =y 2+xz , R =-z 2+xy ,)(2222div z y x z y x zR y Q x P ++=++=∂∂+∂∂+∂∂=A . (2)A =e xy i +cos(xy )j +cos(xz 2)k ;解 P =e xy , Q =cos(xy ), R =cos(xz 2),)sin(2sin div 2xz xz xy x ye zR y Q x P xy --=∂∂+∂∂+∂∂=A . (3)A =y 2z i +xy j +xz k ;解 P =y 2, Q =xy , R =xz ,x x x zR y Q x P 20div =++=∂∂+∂∂+∂∂=A . 4. 设u (x , y , z )、v (x , y , z )是两个定义在闭区域Ω上的具有二阶连续 偏导数的函数, n u ∂∂, nv ∂∂依次表示u (x , y , z )、v (x , y , z )沿∑的外法线方向 的方向导数. 证明dS n u v n v u dxdydz u v v u )()∂∂-∂∂=∆-∆⎰⎰⎰⎰⎰∑Ω, 其中∑是空间闭区间Ω的整个边界曲面, 这个公式叫作林第二公式. 证明 由第一格林公式(见书中例3)知dxdydz z v y v x v u )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ dxdydz z v z u y v y u x v x u dS n v u )(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω, dxdydz z u y u x u v )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰dxdydz z v z u y v y u x v x u dS n u v )(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω. 将上面两个式子相减, 即得dxdyd z u y u x u v z v y v x v u )]()([222222222222∂∂+∂∂+∂∂-∂∂+∂∂+∂∂Ω⎰⎰⎰ ⎰⎰∑∂∂-∂∂=dS n u v n v u )(. 5. 利用高斯公式推证阿基米德原理: 浸没在液体中所受液体的压力 的合力(即浮力)的方向铅直向上, 大小等于这物体所排开的液体的重力. 证明 取液面为xOy 面, z 轴沿铅直向下, 设液体的密度为ρ, 在物 体表面∑上取元素dS 上一点, 并设∑在点(x , y , z )处的外法线的方向余 弦为cos α, cos β, cos γ, 则dS 所受液体的压力在坐标轴x , y , z 上的分量 分别为-ρz cos αdS , -ρz cos β dS , -ρz cos γ dS ,∑所受的压力利用高斯公式进行计算得00cos ==-=Ω∑⎰⎰⎰⎰⎰dv dS z F x αρ,00cos ==-=Ω∑⎰⎰⎰⎰⎰dv dS z F y βρ,||cos Ω-=-=-=-=ΩΩ∑⎰⎰⎰⎰⎰⎰⎰⎰ρρργρdv dv dS z F z ,其中|Ω|为物体的体积. 因此在液体中的物体所受液体的压力的合力, 其方向铅直向上, 大小等于这物体所排开的液体所受的重力, 即阿基 米德原理得证.习题10-71. 利用斯托克斯公式, 计算下列曲线积分:(1)⎰Γ++xdz zdy ydx , 其中Γ为圆周x 2+y 2+z 2=a 2, , 若从z 轴 的正向看去, 这圆周取逆时针方向;解 设∑为平面x +y +z =0上Γ所围成的部分, 则∑上侧的单位法向量为)31,31,31()cos ,cos ,(cos ==γβαn .于是 ⎰Γ++xdz zdy ydx dS x z y zy x ∂∂∂∂∂∂=∑⎰⎰γβαcos cos cos 2333)cos cos cos (a dS dS πγβα-=-=---=∑∑⎰⎰⎰⎰.提示:dS ∑⎰⎰表示∑的面积, ∑是半径为a 的圆.(2)⎰Γ-+-+-dz y x dy x z dz z y )()()(, 其中Γ为椭圆x 2+y 2=a 2, 1=+b z a x(a >0, b >0), 若从x 轴正向看去, 这椭圆取逆时针方向;解 设∑为平面1=+b z a x 上Γ所围成的部分, 则∑上侧的单位法向量为) ,0 ,()cos ,cos ,(cos 2222b a b b a b ++==γβαn . 于是 ⎰Γ-+-+-dz y x dy x z dx z y )()()(dS y x x z z y zy x ---∂∂∂∂∂∂=∑⎰⎰γβαcos cos cos dS b a b a dS ∑∑⎰⎰⎰⎰++-=---=22)(2)cos 2cos 2cos 2(γβα)(2)(2)(22222b a a dxdy a b a dxdy a b a b a b a xyxyD D +-=+-=+++-=⎰⎰⎰⎰π.提示: ∑(即x ab b z -=)的面积元素为dxdy a b a dxdy a b dS 222)(1+=+=.(3)⎰Γ+-dz yz xzdy ydx 23, 其中Γ为圆周x 2+y 2=2z , z =2, 若从z 轴的正向看去, 这圆周是取逆时针方向;解 设∑为平面z =2上Γ所围成的部分的上侧, 则⎰Γ+-dz yz xzdy ydx 2323yz xz y zy x dxdydzdx dydz -∂∂∂∂∂∂=∑⎰⎰ ππ2025)3()(22-=⨯-=+-+=∑⎰⎰dxdy z dydz x z .(4)⎰Γ-+dz z xdy ydx 232, 其中Γ为圆周x 2+y 2+z 2=9, z =0, 若从z 轴的正向看去, 这圆周是取逆时针方向.解 设∑为xOy 面上的圆x 2+y 2≤9的上侧, 则⎰Γ-+dz z xdy ydx 232232z x y zy x dxdydzdx dydz -∂∂∂∂∂∂=∑⎰⎰ π9===⎰⎰⎰⎰∑dxdy dxdy xyD .2. 求下列向量场A 的旋度: (1)A =(2z -3y )i +(3x -z )j +(-2x )k ;解 k j i kj i A 6422332++=---∂∂∂∂∂∂=x y z x y z z y x rot . (2)A =(sin y )i -(z -x cos y )k ;解 j i kji A +=--+∂∂∂∂∂∂=0)cos (sin y x z y z z yx rot . (3)A =x 2sin y i +y 2sin(xz )j +xy sin(cos z )k .解 )sin(cos )sin(sin 22z xy xz y y x z y x ∂∂∂∂∂∂=kj i A rot=[x sin(cos z )-xy 2cos(xz )]i -y sin(cos z )j +[y 2z cos(xz )-x 2cos y ]k . 3. 利用斯托克斯公式把曲面积分dS n A ⋅∑⎰⎰rot 化为曲线积分, 并计算积分值,其中A 、∑及n 分别如下:(1)A =y 2i +xy j +xz k , ∑为上半球面221y x z --=, 的上侧, n 是∑的 单位法向量;解 设∑的边界Γ : x 2+y 2=1, z =0, 取逆时针方向, 其参数方程为 x =cos θ, y =sin θ, z =0(0≤θ≤2π, 由托斯公式dS n A ⋅∑⎰⎰rot ⎰Γ++=Rdz Qdy Pdx ⎰Γ++=xzdz xydy dx y 2⎰=+-=πθθθθθ20220]sin cos )sin ([sin d .(2)A =(y -z )i +yz j -xz k , ∑为立方体0≤x ≤2, 0≤y ≤2, 0≤z ≤2的表面外侧 去掉xOy 面上的那个底面, n 是∑的单位法向量. 解dS n A ⋅∑⎰⎰rot ⎰Γ++=Rdz Qdy Pdx⎰Γ-++-=dz xz yzdy dx x y )()(⎰⎰Γ-===0242dx ydx .4. 求下列向量场A 沿闭曲线Γ(从z 轴正向看依逆时针方向)的环流量: (1)A =-y i +x j +c k (c 为常量), Γ为圆周x 2+y 2=1, z =0; 解θθθθθπd cdz xdy ydx L ]cos cos )sin ()(sin [(20+--=++-⎰⎰⎰==ππθ202d .(2)A =(x -z )i +(x 3+yz )j -3xy 2k , 其中Γ为圆周222y x z +-=, z =0. 解 有向闭曲线Γ的参数方程为x =2cos θ, y =2sin θ, z =0(0≤π≤2π). 向量场A 沿闭曲线Γ的环流量为⎰⎰-++-=++LL dz xy dy yz x dx z x Rdz Qdy Pdx 223)()(。

高等数学第十章无穷级数精选讲义

高等数学第十章无穷级数精选讲义

第十章 无穷级数精选讲义【考试要求】1.理解级数收敛、发散的概念.掌握级数收敛的必要条件,了解级数的基本性质. 2.掌握正项级数的比值审敛法.会用正项级数的比较审敛法. 3.掌握几何级数、调和级数与p 级数的敛散性.4.了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法. 5.了解幂级数的概念,收敛半径,收敛区间.6.了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分). 7.掌握求幂级数的收敛半径、收敛区间的方法.【考试内容】一、常数项级数的相关概念1.常数项级数的定义一般地,如果给定一个数列1u ,2u,,n u,,则由这数列构成的表达式123n u u u u +++++叫做常数项无穷级数,简称常数项级数或级数,记为1nn u∞=∑,即1231nn n uu u u u ∞==+++++∑,其中第n 项n u 叫做级数的一般项.2.常数项级数收敛、发散的概念作常数项级数1nn u∞=∑的前n 项和121nn n ii s u u u u ==+++=∑,n s 称为级数1nn u∞=∑的部分和,当n 依次取1,2,3,时,它们构成一个新的数列11s u =,212s u u =+,3123s u u u =++,,12n n s u u u =+++,.如果级数1nn u∞=∑的部分和数列{}n s 有极限s ,即limn n s s →∞=,则称无穷级数1nn u ∞=∑收敛,这时极限s 叫做这级数的和,并写成123n s u u u u =+++++或者1nn us ∞==∑;如果{}n s 没有极限,则称无穷级数1n n u ∞=∑发散.3.收敛级数的基本性质 (1)如果级数1nn u∞=∑收敛于和s ,则级数1nn ku∞=∑也收敛,且其和为ks .一般地,级数的每一项同乘一个不为零的常数后,它的收敛性不变. (2)如果级数1n n u ∞=∑、1nn v∞=∑分别收敛于和s 、σ,则级数1()nn n uv ∞=±∑也收敛,且其和为s σ±. (3)在级数1nn u∞=∑中去掉、加上或改变有限项,不会改变级数的收敛性.(4)如果级数1nn u∞=∑收敛,则对这级数的项任意加括号后所成的级数仍收敛,且其和不变.(5)如果级数1nn u∞=∑收敛,则它的一般项n u 趋于零,即lim 0nn u →∞=.说明:此条件称为级数收敛的必要条件.由原命题成立逆否命题一定成立可得,如果lim nn u →∞不为零,则级数1nn u∞=∑一定发散.4.几个重要的常数项级数 (1)等比级数级数21nnn q q q q ∞==++++∑或21n n n q q q q ∞==+++++∑称为等比级数或几何级数,其中q 叫做级数的公比.其收敛性为:当1q <时,级数收敛;当1q ≥时级数发散.(2)调和级数级数 11111123n nn∞==+++++∑ 称为调和级数,此级数是一个发散级数.(3)p 级数级数 11111123p p p p n nn∞==+++++∑称为p 级数,其中常数0p >.其收敛性为:当1p >时,级数收敛;当1p ≤时级数发散.二、正项级数的审敛法1.比较审敛法设1n n u ∞=∑和1nn v∞=∑都是正项级数,且存在正数N ,使当n N ≥时有n n u v ≤成立.若级数1nn v∞=∑收敛,则级数1nn u∞=∑收敛;如果级数1nn u∞=∑发散,则级数1nn v∞=∑也发散.2.比较审敛法的极限形式 设1n n u ∞=∑和1nn v∞=∑都是正项级数.(1)如果lim nn n u l v →∞=,0l ≤<+∞,且级数1n n v ∞=∑收敛,则级数1n n u ∞=∑收敛;(2)如果lim nn nu l v →∞=,0l <≤+∞,且级数1n n v ∞=∑发散,则级数1n n u ∞=∑发散.说明:极限形式的比较审敛法,在两个正项级数的一般项均趋于零的情况下,其实是比较它 们的一般项作为无穷小的阶.上述结论表明,当n→∞时,如果n u 是与n v 同阶或是比nv 高阶的无穷小,而级数1nn v∞=∑收敛,则级数1nn u∞=∑收敛;如果n u 是与n v 同阶或是比n v 低阶的无穷小,而级数1nn v∞=∑发散,则级数1nn u∞=∑发散.3.比值审敛法(达朗贝尔判别法)设1n n u ∞=∑为正项级数,如果1lim n n nu u ρ+→∞=,则当1ρ<时级数收敛;1ρ>(或1lim n n nu u +→∞=+∞)时级数发散;1ρ=时级数可能收敛也可能发散. 4.根值审敛法(柯西判别法)设1nn u∞=∑为正项级数,如果n ρ→∞=,则当1ρ<时级数收敛;1ρ>(或n →∞=+∞)时级数发散;1ρ=时级数可能收敛也可能发散.三、交错级数及其审敛法1.交错级数的概念所谓交错级数是这样的级数,它的各项是正负交错的,从而可以写成下面的形式:112341(1)n n n u u u u u ∞-=-+-+=-∑ ,或12341(1)nn n u u u u u ∞=-+-+-=-∑ , 其中1u ,2u ,都是正数.2.交错级数的审敛法—莱布尼茨定理如果交错级数11(1)n n n u ∞-=-∑满足条件: (1)1nn u u +≥ (1,2,3,n =);(2)lim 0nn u →∞=.则级数收敛.四、绝对收敛与条件收敛1.绝对收敛与条件收敛对于一般的级数12n u u u ++++,它的各项为任意实数.如果级数1nn u∞=∑各项的绝对值所构成的正项级数1nn u∞=∑收敛,则称级数1nn u∞=∑绝对收敛;如果级数1nn u∞=∑收敛,而级数1nn u ∞=∑发散,则称级数1n n u ∞=∑条件收敛.例如,级数1211(1)n n n ∞-=-∑是绝对收敛级数,而级数111(1)n n n∞-=-∑是条件收敛级数.对于绝对收敛级数,我们有如下结论:如果级数1nn u∞=∑绝对收敛,则级数1nn u∞=∑必定收敛.这说明,对于一般的级数1nn u∞=∑,如果我们用正项级数的审敛法判定级数1nn u∞=∑收敛,则此级数一定收敛.这就使得一大类级数的收敛性判定问题,转化为正项级数的收敛性 判定问题. 2.重要结论一般说来,如果级数1nn u∞=∑发散,我们不能断定级数1nn u∞=∑也发散.但是,如果我们用比值审敛法或根值审敛法根据1lim1n n nu u ρ+→∞=>或1n ρ→∞=>判定级数1nn u∞=∑发散,则我们可以断定级数1nn u∞=∑必定发散(这是因为从1ρ>可推知n →∞时nu 不趋于零,从而n→∞时n u 也不趋于零,因此级数1n n u ∞=∑发散).五、幂级数(一)函数项级数1.函数项级数的定义如果给定一个定义在区间I 上的函数列1()u x ,2()u x ,,()n u x ,,则由这函数列构成的表达式1231()()()()()n n n u x u x u x u x u x ∞=+++++=∑称为定义在I 上的函数项无穷级数,简称函数项级数. 2.收敛域、发散域、和函数对于每一个确定的值0x I ∈,函数项级数1()n n u x ∞=∑成为常数项级数1020300()()()()n u x u x u x u x +++++.如果该常数项级数收敛,就称点0x 是函数项级数1()nn u x ∞=∑的收敛点;如果该常数项级数发散,就称点0x 是发散点.函数项级数1()n n u x ∞=∑的收敛点的全体称为收敛域,发散点的全体称为发散域.对应于收敛域内的任意一个常数x ,函数项级数成为一收敛的常数项级数,因而有一确定的和s .这样,在收敛域上,函数项级数的和是x 的函数()s x ,通常称()s x 为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成123()()()()()n s x u x u x u x u x =+++++.(二)幂级数及其收敛性1.幂级数的定义函数项级数中简单而常见的一类级数就是各项都是幂函数的函数项级数,即所谓幂级 数,形式为20120nn n n n a xa a x a x a x ∞==+++++∑,其中常数0a ,1a ,2a ,,n a,叫做幂级数的系数.2.阿贝尔定理如果级数nn n a x∞=∑当0xx =(00x ≠)时收敛,则适合不等式0x x <的一切x 使这幂级数绝对收敛.反之,如果级数0nn n a x ∞=∑当0x x =时发散,则适合不等式0x x >的一切x 使这幂级数发散.由上述定理可以推出,如果幂级数nn n a x∞=∑不是仅在0x =一点收敛,也不是在整个数轴上都收敛,则必有一个确定的正数R 存在,使得当x R <时,幂级数绝对收敛;当x R >时,幂级数发散;当x R =或x R =-时,幂级数可能收敛也可能发散.正数R叫做幂级数的收敛半径,开区间(,)R R -叫做幂级数的收敛区间. 3.求收敛半径及收敛区间的方法(1)对于标准形式的幂级数nn n a x∞=∑或1n n n a x ∞=∑,有如下方法: 如果1limn n na a ρ+→∞=,其中n a 、1n a +是幂级数0n n n a x ∞=∑的相邻两项的系数,则这幂级数的收敛半径1,0,00,R ρρρρ⎧≠⎪⎪⎪=+∞=⎨⎪=+∞⎪⎪⎩.(2)对于非标准形式的幂级数0()n n u x ∞=∑或1()n n u x ∞=∑(如202!n n n x n ∞=∑或0(1)2nn n x n ∞=-∑),方法如下:令1()lim1()n n n u x u x +→∞<,得到x 的范围,然后再求x 的两个边界值所对应的常数项级数的敛散性即可.(三)幂级数的和函数1.幂级数和函数的性质 性质1 幂级数0n n n a x ∞=∑的和函数()s x 在其收敛域I 上连续. 性质2 幂级数n n n a x ∞=∑的和函数()s x 在其收敛域I 上可积,并有逐项积分公式 10000()1xxx n nn n n n n n n a s x dx a x dx a x dx x n ∞∞∞+===⎡⎤===⎢⎥+⎣⎦∑∑∑⎰⎰⎰ (x I ∈), 逐项积分后所得到的幂级数和原来的幂级数有相同的收敛半径. 性质3 幂级数0nn n a x ∞=∑的和函数()s x 在其收敛区间(,)R R -内可导,并有逐项求导公式()1001()n n n n n n n n n s x a x a x na x ∞∞∞-==='⎛⎫''=== ⎪⎝⎭∑∑∑ (x R <),逐项求导后所得到的幂级数和原来的幂级数有相同的收敛半径.2.幂级数和函数的求法(“先导后积”或“先积后导”)当幂级数的一般项形如(1)nx n n +时,可用先求导后求积分的方法求其和函数;当幂级数的一般项形如2(21)nn x +、1n nx-等形式,可用先求积分后求导的方法求其和函数.3.常用的幂级数展开式(1)20111n n n x x x x x ∞===+++++-∑,11x -<<;(2)201(1)1(1)1n n n n n x x x x x ∞==-=-+-+-++∑,11x -<<.【典型例题】【例10-1】用比较法或其极限形式判别下列级数的敛散性. 1.1n ∞= .解:因1lim 2n n n→∞→∞==,而调和级数11n n ∞=∑发散,故原级数发散. 2.1n ∞=.解:因223n n n →∞→∞==,而级数211n n∞=∑是收敛的p 级数,故原级数收敛.3.1352nnnn ∞=-∑ .解:因 33552lim lim 152335nn n n n n n n nn n →∞→∞-=⋅=-⎛⎫⎪⎝⎭,而级数135n n ∞=⎛⎫ ⎪⎝⎭∑是收敛的等比级数,故原级数收敛.4.11sin n n ∞=∑ .解:因 1sinlim 11n n n→∞=,而调和级数11n n∞=∑发散,故原级数发散.5.11(1cos )n n ∞=-∑ . 解:因211cos1lim12n n n→∞-=,而级数211n n ∞=∑是收敛的p 级数,故原级数收敛.6.32tan n nn π∞=∑ . 解:因 2222tan lim lim 211n n n n n n n n πππ→∞→∞⋅==,而级数211n n∞=∑是收敛的p 级数,故原级数收敛.7.312(1)n n n n ∞=++∑ .解:因 333322(1)limlim 11(1)n n n n n n n n n n →∞→∞+++=⋅=+,而级数311n n∞=∑是收敛的p 级数,故原级数收敛. 8.111nn a∞=+∑ (0a >). 解:当1a=时, 111limlim 0122n n n a →∞→∞==≠+,故原级数发散;当01a <<时,11limlim 10110n n n a →∞→∞==≠++,故原级数发散;当1a >时,因11lim lim 111n n n n n na a a a →∞→∞+==+,而级数11n n a∞=∑是收敛的等比级数,故原级数收敛.【例10-2】利用比值审敛法判别下列级数的敛散性. 1.1(1)!2nn n ∞=+∑ . 解:因11(2)!(2)!222lim lim lim (1)!2(1)!22n n n n n n n n n n n n ++→∞→∞→∞+++=⋅==∞++,故原级数发散.2.213nn n ∞=∑ .解:因221212(1)(1)313lim lim 1333n n n n n nn n n n ++→∞→∞++=⋅=<,故原级数收敛. 3.1135(21)3!nn n n ∞=⋅⋅⋅⋅-⋅∑ . 解:因1135(21)(21)2123(1)!lim lim 1135(21)3(1)33!n n n n n n n n n n n +→∞→∞⋅⋅⋅⋅-⋅++⋅+==<⋅⋅⋅⋅-+⋅,故原级数收敛.4.110!nn n ∞=∑ .解:因111010!(1)!lim lim 0110(1)!10!n n n n n n n n n n ++→∞→∞+=⋅=<+,故原级数收敛.5.1212nn n ∞=-∑ . 解:因112121212lim lim 12122122n n n n n nn n n n ++→∞→∞++=⋅=<--,故原级数收敛.6.21sin2nn nπ∞=∑ .解:因22sin22lim lim 1122n nn n nnn n πππ→∞→∞==⋅,故原级数与级数212n n n ∞=∑敛散性相同. 对于级数212n n n ∞=∑,因221212(1)(1)212lim lim 1222n n n n n nn n n n ++→∞→∞++=⋅=<,故级数212n n n ∞=∑收敛,所以原级数也收敛.【例10-3】利用根值审敛法判别下列级数的敛散性.1.12(1)2nn n ∞=+-∑.解:1ln[2(1)]11lim 122n nn n n e+-→∞→∞→∞===<,故原级数收敛. 2.11[ln(1)]n n n ∞=+∑ .解:1lim 01ln(1)n n n n →∞→∞→∞===<+,故原级数收敛. 【例10-4】判定下列级数的敛散性,如果是收敛的,判定是绝对收敛还是条件收敛. 1.11(1)n n ∞-=-∑.解:因级数111(1)n n n ∞∞-==-=∑发散,但由莱布尼茨定理可知,原级数满足1n n u u +=>=,且0n →∞=,所以原级数收敛且为条件收敛.2.1211(1)n n n∞-=-∑ . 解:因级数1221111(1)n n n n n∞∞-==-=∑∑收敛,所以原级数绝对收敛.3.11(1)1n n nn ∞+=-+∑ . 解:因1lim(1)1n n nn +→∞-+不存在,故原级数发散. 4.11sin27n n n π∞=∑ .解:11sin 272n n n π≤,而级数112n n ∞=∑是收敛的等比级数,故根据比较审敛法可知,级数11sin 27n n n π∞=∑收敛,故原级数绝对收敛.【例10-5】求下列幂级数的收敛半径和收敛域. 1.11(1)nn n x n∞-=-∑ . 解:因111limlim 11n n n na n a nρ+→∞→∞+===,所以收敛半径11R ρ==,故收敛区间为(1,1)-.又当1x =-时,原级数即为11()n n ∞=-∑,发散;当1x =时,原级数即为111(1)n n n∞-=-∑,收敛,故原级数的收敛域为(1,1]-. 2.0!nn x n ∞=∑ .解:因111(1)!limlim lim 011!n n n n na n a n n ρ+→∞→∞→∞+====+,所以收敛半径R =+∞,故级数的收敛域为(,)-∞+∞.3.0!n n n x ∞=∑ . 解:因1(1)!limlim !n n n n a n a n ρ+→∞→∞+===+∞,所以收敛半径0R =,即级数仅在点0x =处收敛. 4.2121n nn x n ∞=+∑ . 解:因12212222(1)(1)1limlim lim 22(1)11n n n n n n na n n a n n ρ++→∞→∞→∞+++====+++,所以收敛半径112R ρ==,故收敛区间为11(,)22-.又当12x =-时,原级数即为21(1)1n n n ∞=-+∑,收敛;当12x =时,原级数即为2111n n ∞=+∑,收敛,故原级数的收敛域为11[,]22-.【例10-6】求下列幂级数的收敛域.1.1(1)2nnn x n ∞=-⋅∑ .解:这是非标准形式的幂级数,我们用比值审敛法.令 11(1)1(1)2lim 1(1)22n n n n nx x n x n ++→∞--+⋅=<-⋅,则12x -<,故当13x -<<时级数收敛,当1x <-或3x >时级数发散.当1x =-时,原级数即为1(1)nn n ∞=-∑,收敛;当3x =时,原级数即为11n n∞=∑,发散.因此原级数的收敛域为[1,3)-. 2.211(1)21n nn x n +∞=-+∑ .解:这是非标准形式的幂级数,我们用比值审敛法.令 231221(1)23lim 1(1)21n n n n nxn x xn +++→∞-+=<-+,则当11x -<<时级数收敛,当1x <-或1x >时级数发散.当1x =-时,原级数即为111(1)21n n n ∞+=-+∑,收敛;当1x =时,原级数即为11(1)21nn n ∞=-+∑,也收敛.因此原级数的收敛域为[1,1]-.【例10-7】求下列幂级数的和函数. 1.11n n nx∞-=∑ .解:先求幂级数的收敛域. 令1(1)lim 1nn n n x x nx-→∞+=<,可得收敛区间为(1,1)-.当1x =-时,原级数即为1(1)nn n ∞=-∑,发散;当1x =时,原级数即为1n n ∞=∑,也发散.因此原级数的收敛域为(1,1)-.再求和函数.设和函数11()n n s x nx ∞-==∑,则2111()()()()1(1)nnn n x s x x x x x ∞∞=='''====--∑∑, (1,1)x ∈-.2.2111(1)21n n n x n -∞-=--∑ .解:先求幂级数的收敛域.令 212211(1)21lim 1(1)21n nn n n x n x xn +-→∞--+=<--,可得收敛区间为(1,1)-.当1x =-时,原级数即为11(1)21nn n ∞=--∑,收敛;当1x =时,原级数即为111(1)21n n n ∞-=--∑,也收敛.因此原级数的收敛域为[1,1]-.再求和函数.设和函数2111()(1)21n n n x s x n -∞-==--∑,则12224122211()(1)1(1)1n n n n n s x xx x xx ∞----='=-=-+-+-+=+∑,故[]2001()arctan arctan 1xxs x dx x x x ===+⎰, [1,1]x ∈-.3.111(1)n n x n n ∞+=+∑. 解:先求幂级数的收敛域.令 211(1)(2)lim 11(1)n n n x n n x x n n +→∞+++=<+,可得收敛区间为(1,1)-.当1x =-时,原级数即为111(1)(1)n n n n ∞+=-+∑,收敛;当1x =时,原级数即为11(1)n n n ∞=+∑,也收敛.因此原级数的收敛域为[1,1]-.再求和函数.设和函数111()(1)n n s x x n n ∞+==+∑,(1,1)x ∈-,则11111111()(1)(1)n n n n n n s x x x x n n n n n∞∞∞++===''⎡⎤⎡⎤'===⎢⎥⎢⎥++⎣⎦⎣⎦∑∑∑,1111111()()()1n n n n n n s x x x x n n x ∞∞∞-===''''====-∑∑∑, 故[]001()ln(1)ln(1)1x xs x dx x x x'==--=---⎰,[]0()ln(1)(1)ln(1)x s x x dx x x x =--=--+⎰,[1,1)x ∈-. 当1x =时,原级数即为11(1)n n n ∞=+∑,令 1111223(1)n s n n =+++⋅⋅+, 则11111111112233411n s n n n =-+-+-+-=-++, 所以1(1)lim lim(1)11n n n s s n →∞→∞==-=+,故原幂级数的和函数为 1,1()(1)ln(1),11x s x x x x x =⎧=⎨--+-<<⎩ . 4.1(1)nn n n x∞=+∑ .解:先求幂级数的收敛域.令 1(1)(2)lim 1(1)n n n n n x x n n x+→∞++=<+,可得收敛区间为(1,1)-.当1x =-时,原级数即为1(1)(1)nn n n ∞=-+∑,发散;当1x =时,原级数即为1(1)n n n ∞=+∑,也发散.因此原级数的收敛域为(1,1)-.再求和函数.设和函数1()(1)n n s x n n x ∞==+∑,则1111111()(1)(1)()()()n nn n n n n n s x x n n xx n x x x x x ∞∞∞∞-++===='''''=+=+==∑∑∑∑222322()[]1(1)(1)x x x x x x x x x -'''===---,(1,1)x ∈-.【例10-8】将下列函数展开成相应的幂级数. 1.将函数21()32f x x x =-+展开成关于x 的幂级数. 解:11111()()(1)(2)1212(1)2f x x x x x x x ==--=-------, 而 011nn x x ∞==-∑(1x <),01()212n n x x ∞==-∑(12x <,即2x <), 所以1000111()(1)222nn n n n n n n f x x x x ∞∞∞+====-=-∑∑∑,1x <.2.将函数21()32f x x x =++展开成关于(4)x +的幂级数. 解:11111()(1)(2)123(4)2(4)f x x x x x x x ==-=-++++-++-++ 111144321132x x =-⋅+++--. 因 011n n x x ∞==-∑(11x -<<), 故 011(4)4313nnn x x ∞==++-∑ (4113x +-<< 即 71x -<<-), 011(4)4212n n n x x ∞==++-∑ (4112x +-<< 即 62x -<<-), 从而001111()(4)(4)3322nn n n n n f x x x ∞∞===-+++∑∑11011()(4)23nn n n x ∞++==-+∑, 62x -<<-.【历年真题】一、选择题1.(2010年,1分)lim 0nn u →∞=是级数1n n u ∞=∑收敛的 条件( )(A )必要 (B )充分 (C )充分必要 (D )不确定 解:根据收敛级数的性质,lim 0nn u →∞=是级数1n n u ∞=∑收敛的必要条件.选项(A )正确.2.(2009年,1分)幂级数13(1)3n nnn x ∞=+-∑的收敛半径是( ) (A )6 (B )32(C )3 (D )13解:原幂级数即为1333n n n x x ∞=⎡⎤⎛⎫⎛⎫+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦∑,由13x ≤及13x-≤可得,3x ≤,故级数的收敛半径为3,选项(C )正确.3.(2008年,3分)数项级数21sin n an n∞=∑(a 为常数)是( )级数 (A )发散的(B )条件收敛(C )绝对收敛(D )敛散性由a 确定 解:因22sin a an n n ≤,而级数 21n a n∞=∑收敛,故原级数绝对收敛.选项(C )正确.4.(2007年,3分)数项级数1(1)[1cos ]nn a n ∞=--∑(其中a 为常数)是( ) (A )发散的 (B )条件收敛(C )收敛性根据a 确定 (D )绝对收敛解:级数1(1)[1cos ]nn a n ∞=--∑加绝对值后的级数为1(1cos )n an ∞=-∑,对于此正项级数,由于2222211cos 2limlim 112n n a a a n n n n →∞→∞-⋅==为常数,而级数211n n∞=∑收敛,故级数1(1cos )n an ∞=-∑也收敛,所以原级数绝对收敛.选项(D )正确. 5.(2005年,3分)幂级数1(1)(1)nnn x n ∞=--∑的收敛区间是( )(A )(0,2](B )(1,1]- (C )[2,0]- (D )(,)-∞+∞解:令111(1)(1)()1lim lim 11(1)()(1)n n n n n n n nx u x n x x u x n+++→∞→∞--+==-<-- 可得,02x <<,故级数的收敛区间为(0,2).又当0x =时,原级数即为11n n∞=∑,发散;当2x =时,原级数即为11(1)nn n∞=-∑,收敛,故原级数的收敛域为(0,2].选项(A )正确. 二、填空题1.(2010年,2分)幂级数1!nn x n ∞=∑的收敛区间为 .解:因111(1)!limlim lim 011!n n n n na n a n n ρ+→∞→∞→∞+====+,故1R ρ==+∞,所以原幂级数的收敛区间为(,)-∞+∞.2.(2006年,2分)函数1()12f x x=+在1x =处展开的泰勒级数是 .解:因01(1)1n n n x x ∞==-+∑,故1111()21232(1)31(1)3f x x x x ===⋅++-+- 10012(2)(1)[(1)](1)333n n n n n n n x x ∞∞+==-=--=-∑∑.其中,21(1)13x -<-<,即1522x -<<.3.(2006年,2分)幂级数11(1)(2)12nnnn x ∞=--+∑在0.6x =处的敛散性是 . 解:令 11111(1)(2)()112lim lim 211()2(1)(2)12n n n n n n n n n nx u x x u x x ++++→∞→∞--+==-<--+,可得04x <<,即收敛区间为(0,4),故幂级数在0.6x =处是收敛的.说明:此题也可将0.6x =代入原幂级数,判定对应的常数项级数的敛散性.三、计算题1.(2009年,5分)求幂级数231(1)23nn x x x x n--+-+-+的收敛半径和收敛域.解:原级数即为11(1)n n n x n ∞-=-∑.因111(1)1limlim 11(1)nn n n n n a n a n ρ+→∞→∞--+===-,故收敛半径11R ρ==,收敛区间为(1,1)-.又当1x =-时,原级数即为11()n n ∞=-∑,发散;当1x=时,原级数即为111(1)n n n∞-=-∑,收敛.故原级数的收敛域为(1,1]-. 2.(2008年,7分)将函数1()3f x x=-展开成(2)x -的幂级数. 解:因011nn x x ∞==-∑,故011()(2)31(2)n n f x x x x ∞====----∑. 其中,121x -<-<,即13x <<.3.(2007年,7分)求幂级数1(1)n n n x ∞=-∑的收敛区间与和函数. 解:令11()(1)(1)lim lim 11()(1)n n n n n nu x n x x u x n x ++→∞→∞+-==-<-,可得02x <<,故幂级数的收敛区间为(0,2).21设 1()(1)n n s x n x ∞==-∑,则 111()(1)(1)(1)n n n n s x n x x n x ∞∞-===-=--∑∑ 101(1)(1)(1)(1)(1)n n n n x x x x x x x ∞∞==''-⎡⎤⎛⎫'⎡⎤=--=--=- ⎪⎣⎦⎢⎥-⎝⎭⎣⎦∑∑ 22(1)(1)1(1)x x x x x x---⋅--=-⋅=, 02x <<. 4.(2006年,4分)判定级数21(1)(1)nn n n ∞=-+∑的敛散性. 解:此级数为交错级数,其中2(1)n n u n =+. 由于3322123221(1)331(2)1(2)44(1)n n n u n n n n n n u n n n n nn +++++++===<++++,即1n n u u +<,且2lim lim 0(1)n n n n u n →∞→∞==+,故此交错级数符合莱布尼茨定理的条件,故该级数收敛.。

高等数学 课后习题答案 第十章

高等数学 课后习题答案 第十章

习题十1. 根据二重积分性质,比较ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形;(2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x+y=1与x+y=2之间,显然有图10-112x y ≤+≤从而0l n ()1x y ≤+<故有2l n ()[l n ()]x y x y +≥+ 所以2l n ()d [l n ()]dDDx y x yσσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2 从而 ln(x+y)>1 故有2l n ()[l n ()]x y x y +<+ 所以2l n ()d [l n ()]dDDx y x yσσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值:(1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}DI x y D x y x y σ==≤≤≤≤⎰⎰;(3)2222(49)d ,{(,)|4}DI x y D x y x y σ=++=+≤⎰⎰.解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而04xy ≤≤.从而2≤≤故2d DD σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而d Dσσ=⎰⎰(σ为区域D 的面积),由σ=4得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d DDDx y σσσ≤≤⎰⎰⎰⎰⎰⎰即220sin sin d d DDx y σσσ≤≤=⎰⎰⎰⎰而2πσ=所以2220sin sin d πDx y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以 22229494()925x y x y ≤++≤++≤故229d (49)d 25d DDDx y σσσ≤++≤⎰⎰⎰⎰⎰⎰即 229(49)d 25Dx y σσσ≤++≤⎰⎰而2π24πσ=⋅=所以 2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值:(1)222(,{(,)|};Da D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,Da σ-⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3D a a σ=⎰⎰(2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰4. 设f(x ,y)为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f(x ,y)为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x0,y0)为圆心,r 为半径的圆盘,所以当0r→时,00(,)(,),x y ξη→于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d Df x y σ⎰⎰化为累次积分:(1){(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥(3)2{(,)|,2,2}D x y y y x x x =≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yDy f x y y f x y xσ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y=x-2与抛物线x=y2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y Dyf x y y f x y xσ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y=2x 与曲线2y x =的交点(1,2),与x=2的交点为(2,4),曲线2y x =与x=2的交点为(2,1),区域D 可表示为22,1 2.y x x x ≤≤≤≤图10-5所以2221(,)d d (,)d xDxf x y x f x y yσ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序:(1)2220d (,)d yy y f x y x⎰⎰; (2)eln 1d (,)d xx f x y y⎰⎰;(3)1320d (,)d y y f x y x-⎰; (4)πsin 0sin2d (,)d xxx f x y y-⎰⎰;(5)123301d (,)d d (,)d yyy f x y y y f x y x-+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以22242d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D:1e,0ln.x y x≤≤≤≤如图10-7所示.图10-7D亦可表示为:01,e e,yy x≤≤≤≤所以e ln1e100ed(,)d d(,)dyxx f x y y y f x y x=⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y≤≤≤≤-如图10-8所示.图10-8D亦可看成D1与D2的和,其中D1:201,0,x y x≤≤≤≤D2:113,0(3).2x y x≤≤≤≤-所以2113213(3)200010d(,)d d(,)d d(,)dy x xy f x y x x f x y y x f x y y--=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D为:0π,sin sin.2xx y x≤≤-≤≤如图10-9所示.图10-9D亦可看成由D1与D2两部分之和,其中D1:10,2arcsinπ;y y x-≤≤-≤≤D2:01,arcsinπarcsin.y y x y≤≤≤≤-所以πsin 0π1πarcsin 0sin12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx yyx f x y y y f x y x y f x y x----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D1与D2两部分组成,其中 D1:01,02,y x y ≤≤≤≤ D2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤-所以()123323012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y--+=⎰⎰⎰⎰⎰⎰7. 求下列立体体积:(1)旋转抛物面z=x2+y2,平面z=0与柱面x2+y2=ax 所围; (2)旋转抛物面z=x2+y2,柱面y=x2及平面y=1和z=0所围. 解:(1)由二重积分的几何意义知,所围立体的体积V=22()d d Dx y x y+⎰⎰其中D :22{(,)|}x y x y ax +≤由被积函数及积分区域的对称性知,V=2122()d d D x y x y+⎰⎰,其中D1为D 在第一象限的部分.利用极坐标计算上述二重积分得cos πππcos 344442220001132d d 2d cos d π4232a a V r r r a a θθθθθθ====⎰⎰⎰⎰.(2) 由二重积分的几何意义知,所围立体的体积22()d d ,DV x y x y =+⎰⎰其中积分区域D 为xOy 面上由曲线y=x2及直线y=1所围成的区域,如图10-11所示.图10-11D 可表示为:211, 1.x x y -≤≤≤≤所以21122221()d d d ()d DxV x y x y x x y y-=+=+⎰⎰⎰⎰2111232461111188d ()d .333105x x y y x x x x x --⎡⎤=+=+--=⎢⎥⎣⎦⎰⎰ 8. 计算下列二重积分:(1)221d d ,:12,;Dx x y D x y x y x ≤≤≤≤⎰⎰(2)e d d ,x yDx y ⎰⎰D 由抛物线y2=x,直线x=0与y=1所围;(3)d ,x y ⎰⎰D 是以O(0,0),A(1,-1),B(1,1)为顶点的三角形;(4)cos()d d ,{(,)|0π,π}Dx y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx Dx xx x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000e d d d e d d e d()xx x y y y y yD xx y y x y y y ==⎰⎰⎰⎰⎰⎰ 21111ed (e 1)d e d d y x y y yy y y y y y y y==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰(3) 积分区域D 如图10-13所示.图10-13 D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxx x y x y x y xx --⎡==+⎢⎣⎰⎰⎰⎰⎰112300ππ1πd .2236x x x ==⋅=⎰ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x xx x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224sin (1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d xx x ⎰求不出来,故应改变积分次序。

中国人民大学出版社(第四版)高等数学一第10章课后习题详解

中国人民大学出版社(第四版)高等数学一第10章课后习题详解

第10章课后习题详解 曲线积分与曲面积分例题分析★★1. 计算ds y x L⎰+)(,其中L 为连接)0,0(O ,)0,1(A ,)1,0(B 的闭折线。

知识点:第一类曲线积分.思路: L 由三段直线段组成,故要分段积分.解: 如图L OA =AB +BO +则=+⎰ds y x L)(⎰+OA(⎰+AB⎰+BOds y x ))(10,0:≤≤=x y OA ,dx dx y ds ='+=2)(1,2121)0()(1021==+=+∴⎰⎰x dx x ds y x OA10,1:≤≤-=x x y AB ,dx dx y ds 2)(12='+=, 2221)(1010==⋅=+∴⎰⎰x dx ds y x AB注:利用被积函数定义在AB 上,故总有1),(=+=y x y x f10,0:≤≤=y x BO ,dy dy x ds ='+=2)(12121)0()(1021==+=+∴⎰⎰y dy y ds y x BO2121221)(+=++=+⎰ds y x L. 注:1)⎰⎰+=+BAABds y x ds y x )()(,⎰⎰+=+OBBOds y x ds y x )()(对弧长的曲线积分是没有方向性的,积分限均应从小到大. 2)对AB 段的积分可化为对x 的定积分,也可化为对y 的定积分,但OA 段,OB 段则只能化为对x (或对y )的定积分.★★2.计算⎰L yds ,其中L 为圆周4)2(222a a y x =-+.知识点:第一类曲线积分.思路: L 为圆周用极坐标表示较简单.解:L 的极坐标方程:πθθ≤≤=0,sin a rθθθθθad d a a d r r ds =+='+=2222)cos ()sin ()(θθ2sin sin a r y ==∴22020222212212sin 2sin a a d aad a yds Lππθθθθππ=⋅⋅==⋅=⎰⎰⎰.★3. 计算曲线积分⎰Γ++ds z y x 2221,其中Γ为曲线tt t e z t e y t e x ===,sin ,cos ,应于t 从0到2的一段弧.知识点:第一类曲线积分.思路: Γ空间曲线,用空间间曲线第一类曲线积分公式. 解:dt e dt e t e t e dt z y x ds t t t t 3 )sin ()cos ()()()(222222=+'+'='+'+'=∴原式=dt e dt e e tt t-⎰⎰=+⋅2222t 2331e 1)1(2323220---=-=e e t . ★★★1. 计算曲线积分⎰Γ++ds xz z x 22,其中Γ为球面2222R z y x =++与平面0=++z y x 的交线。

高等数学第十章重积分

高等数学第十章重积分

高等数学第十章重积分1. 引言在高等数学中,积分是一个重要的概念。

在之前的学习中,我们学习了定积分和不定积分的概念和性质。

在本章中,我们将进一步学习一种扩展的积分形式,即重积分。

2. 重积分的引入和定义重积分是一种将函数在二维或更高维空间内的区域上进行积分的方法。

它的引入主要是为了解决在二维平面上对非矩形区域进行积分的问题。

在计算重积分之前,我们首先需要定义积分区域。

对于二维平面上的区域,我们可以使用极坐标或直角坐标来描述。

对于更高维的区域,我们则需要使用其他的坐标系。

一般来说,重积分可以分为两类:累次积分和二重积分。

累次积分是指先对一个变量进行积分,然后再对另一个变量进行积分。

而二重积分则是指在一个积分符号下同时对两个变量进行积分。

对于二重积分,我们可以使用迭代积分和换元积分的方法来计算。

迭代积分是将一个二重积分转化为两个累次积分的过程,而换元积分是利用变量替换的方法来简化计算。

3. 重积分的性质重积分具有一些和定积分相似的性质。

例如,重积分具有线性性质和保号性质。

线性性质指的是对于两个函数的重积分,其和函数的重积分等于两个函数分别取重积分后再相加。

保号性质指的是如果函数在积分区域上恒大于等于0,则函数的重积分也大于等于0。

此外,重积分还具有可加性和可积性。

可加性指的是如果一个积分区域可以被分割为多个不相交的子区域,则重积分可以拆分成多个子区域的重积分之和。

可积性指的是如果一个函数在有界闭区域上连续或只有有限个间断点,那么该函数的重积分存在。

4. 重积分的应用重积分在物理学、经济学和几何学等领域中有着广泛的应用。

在物理学中,我们可以使用重积分来计算物体的质心、面积、体积等性质。

在经济学中,我们可以使用重积分来计算市场需求曲线和供给曲线之间的面积,从而得到市场的总需求量和总供给量。

在几何学中,重积分可以用来计算平面和空间中的曲线长度、曲面面积和体积。

例如,我们可以使用重积分来计算球体的体积和球冠的体积。

张卓奎《高等数学(第3版)》第十章无穷级数-本章提要

张卓奎《高等数学(第3版)》第十章无穷级数-本章提要

第10章 无穷级数一、常数项级数的概念常数项级数 设给定一个数列12,,,,n u u u ,表达式1nn u∞=∑称为常数项无穷级数.121n n s u u u u =++++称为该级数的(前n 项)部分和.级数收敛 如果部分和数列{}n s 有极限,即若lim n n s s →∞=,则称该级数收敛,s 为其和,并记为1nn us ∞==∑,否则,称级数发散.二、常数项级数性质 (1)如果级数1nn u∞=∑收敛于s ,则级数1nn ku∞=∑(k 为常数)也收敛,且收敛于ks ;(2)如果级数11, n nn n u v∞∞==∑∑分别收敛于s 和σ,a 和b 为任意实数,则1()nn n aubv ∞=+∑也收敛,且收敛于as b σ+;(3) 在级数中去掉(加上或改变有限项),级数敛散性不变; (4) 收敛级数加括号后仍然收敛,且收敛于原来的和; (5) 级数1nn u∞=∑收敛的必要条件是:0lim =∞→n n u .三、常数项级数的审敛法 1.正项级数收敛充要条件 数列{}n s 有上界 1nn u∞=∑收敛。

比较审敛法 n n v u ≤(1,2,n =),当1nn v∞=∑收敛时⇒1nn u∞=∑收敛;当∑∞=1n nu发散时⇒∑∞=1n nv也发散。

(极限形式) lim n n nul v →∞=,当0l <<+∞时,1nn u∞=∑与∑∞=1n nv同时收敛或发散;当0l =时,若1nn v∞=∑收敛⇒1nn u∞=∑必收敛;当l =+∞时,若1nn u∞=∑发散⇒1nn v∞=∑必发散。

比值审敛法 1limn n nu u ρ+→∞=,当10<≤ρ时,1n n u ∞=∑收敛; 当∞<<ρ1时,1nn u∞=∑发散;当1=ρ时,判别法失效。

根值判别法n ρ=,当10<≤ρ时,1nn u∞=∑收敛;当∞<<ρ1时,1nn u∞=∑发散;当1=ρ时,判别法失效。

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

ds L ( L 表示曲线 L 的弧长 ) .
L
积函数可用积分曲线方程作变换.
( 6) 奇偶性与对称性 如果积分弧段 L (AB ) 关于 y 轴对称,
f (x, y)ds 存在,则
L( AB )
f ( x, y)ds
L ( AB )
0,
f ( x, y) 关于 x是奇函数 ,
2
f ( x, y)ds,f ( x, y) 关于 x是偶函数 .
切线的方向余弦是一个常量。 所以, 当积分曲线是直线时, 可能采用两类不同的曲线积分的
转换。
定理 4 (格林公式)
设 D 是由分段光滑的曲线 L 围成,函数 P( x, y), Q (x, y) 及其一阶偏导数在 D 上连续,
则有
P(x, y)dx Q (x, y)d y
Q P dxdy
L
Dx x
设 L (AB ) 的平面曲线: 其参数方程: x
分别是 和 ,则
(t), y
(t) ,起点和终点对应的参数取值
Pdx Qdy
L ( AB)
{ P( (t ), (t)] (t) Q[( (t), (t )] (t )}dt
设 L (AB ) 的空间曲线 :其参数方程: x (t), y (t ), z w(t ) ,起点和终点对应的
表示曲线的线密度。 定义 2 第二类曲线积分(对坐标的曲线积分)
( 1)平面曲线 L( AB) 的积分:
P(x, y)dx Q( x, y)dy
L ( AB )
( 2)空间曲线 L( AB) 的积分:
n
lim
(T ) 0
[ f ( k , k ) xk
k1
f ( k , k ) yk ]

高等数学同济第六版第10章公式总结

高等数学同济第六版第10章公式总结

高等数学同济第六版(下册)(第10章)第10章重积分10.1 二重积分的概念与性质一、二重积分的概念二、二重积分的性质1 性质 1 设、为常数,则2 性质 2 如果闭区域被有限条曲线分为有限个部分闭区域,则在上的二重积分等于在各部分闭区域上的二重积分的和。

(可加性)3 性质 3 如果在上,,为的面积,则4 性质 4 如果在上,,则有特殊地,由于又有5 性质 5 设、为分别是在闭区域上的最大值和最小值,是的面积,则有6 性质 6(二重积分的中值定理) 设函数在闭区域上连续,是的面积,则在上至少存在一点,使得10.2 二重积分的计算法一、利用直角坐标计算二重积分7 型(先后)型(先后)例 4 求两个底圆半径都等于的直交圆柱面所围成的立体的体积。

解设这两个圆柱面的方程分别为及由对称性,将其分为8部分在第一卦限中,所求立体的顶为柱面又积分区域则即所求立体的体积为二、利用极坐标计算二重积分8例 5 计算其中是由中心在原点、半径为的圆周所围成的闭区域。

解在极坐标系中,闭区域则例 6 求球体被圆柱面所截得的(含在圆柱面内的部分) 立体的体积。

解由对称性,有在极坐标系中,闭区域则*三、二重积分的换元法10.3 三重积分一、三重积分的概念二、三重积分的计算1 利用直角坐标计算三重积分9 (先一后二)其中,例 1 计算三重积分其中为三个坐标面及平面所围成的闭区域。

解闭区域则(先二后一)其中,是竖坐标为的平面截闭区域所得到的一个平面闭区域。

例 2 计算三重积分其中是由椭球面所围成的空间闭区域。

解闭区域则2 利用柱面坐标计算三重积分10 点的直角坐标与柱面坐标的关系为例 3 利用柱面坐标计算三重积分其中是由曲面与平面所围成的闭区域。

解闭区域则*3 利用球面坐标计算三重积分11 点的直角坐标与球面坐标的关系为例 4 求半径为的球面与半顶角为的内接锥面所围成的立体的体积。

解设球面通过原点,球心在轴上,又内接锥面的顶点在原点,其轴与轴重合,则球面方程为,锥面方程为。

《高等数学》第十章曲线积分与曲面积分 第五节

《高等数学》第十章曲线积分与曲面积分 第五节
A( x0 , y0 )
G
B( x , y )
C ( x , y0 )
o
u( x , y ) x P ( x , y0 )dx y Q( x , y )dy
0 0
x
x
y
AC CB
或 u( x , y ) y Q( x0 , y )dy x P ( x , y )dx
一重积分中,牛顿—莱布尼茨公式
f(x)积分区间[a , b]
y
y f x

b
a
f ( x )dx F (b) F (a )
二重积分中, 格林公式
o a
y
b x
D
f(x, y)积分区域D
x y dxdy L Pdx Qdy . D P Q
o
三重积分中, 高斯公式和斯托克斯公式
2
设 P ( x , y ) x 2 2 xy , Q( x , y ) x 2 y 4 .
则 P,Q 在全平面上有连续的 一阶偏导数,且
1
y
B
1
P 2 x , y
Q 2 x. x
o
x
Q P 即 . 全平面是单连通域。 y x
因此,积分与路径无关。
10
P 2 x , y
( x, y)
D
0 , y0 )
P ( x , y )dx Q( x , y )dy
0
x
当起点A( x , y )固定时,
0
O
积分的值取决于终点 B( x , y ), 因此,它是 x , y的函数,
定义 u( x , y )

( x, y)
( x0 , y0 )

高等数学第10章 拉普拉斯变换

高等数学第10章 拉普拉斯变换

e st f (t)dt 0
对于 s在某一范围内的值收敛,则此积分就确定了一
个参数
s
的函数,记为 F(s)
,即 F (s) est f (t)dt 0
,函数 F(s)
称为 f (t) 的拉普拉斯变换,简称拉氏变换。
拉氏变换通常用符号 L 表示,即
F (s) L[ f (t)] est f (t)dt 0
且常常将
y


f
(t), 0,
t 0 t0
简记为 y f (t);
2. 积分F(s)
0
e st
f
(t)dt
中的 s
一般情况下为复数,
但我们只讨论 s 是实数的情况。
3. 函数 f (t) 的拉氏变换 F(s) ,当且仅当积分
F (s) est f (t)dt 时才存在,但一般说来,科技、 0
解:由 L[ (t)] 1 及 L[ f (t )] esF(s) 可得:
L[ (t a)] eas L[ (t)] eas
同理可得:
L[I (t a)] eas s
同理可算得余弦函数的拉氏变换
L[cos t ]

s2
s
2
二 两个重要函数
1. 单位阶梯函数I (t)
单位阶梯函数
I (t)

0 1
t0 t0
由例1知,它的拉氏变换 L[I
的图像如下页左图所示, (t)] 1 ,将 I (t) 的图像向右
s
平移 a
个单位,即得
0 I (t a) 1
若 F(s) 是 f (t) 的拉氏变换,则称 F(s) 是 f (t) 的像 函数,拉氏变换是可逆的积分变换,称 f (t) 是 F(s) 的像

高等数学第十章曲面积分

高等数学第十章曲面积分

(1)求 1和 2在 yoz 平面上的投影区域:
因 1和 2在 yoz 平面上的投影区域相同, 设为 D yz : 0 z H 。 R y R,

1
H
z

o
2
x
R
R
y
(2)求微元 dS :在 1和 2 上,
dS 1 ( x 2 x ) ( ) 2 dydz y z R R y
Pdydz Qdzdx Rdxdy Pdydz Qdzdx Rdxdy
1 2
2.反号性
Pdydz Qdzdx Rdxdy Pdydz Qdzdx Rdxdy

3.奇偶对称性
0 Rdxdy 2 Rdxdy
4 z 2 x y与 形式相同,故可利用曲面方程来简化被积 3 4 z 2 x y 4 代入,从而简化计算。 函数,即将 3 x y 解:平面 方程的为 z 4(1 ) (见下图), 2 3
在 xoy 面上的投影区域为:
x y D xy : 1, x 0, y 0 2 3 z z 4 2, x y 3
0 i 1
n


2.物理意义 Pdydz Qdzdx Rdxdy

表示流体密度 1 速度场为 V P i Q j R k , 单位时间内流过曲面 一侧的流量。




二、对坐标的曲面积分的性质
1.可加性

1 2
Pdydz Qdzdx Rdxdy
【例1】计算曲面积分 ( z 2 x

x y z 1在第一卦限中的部分。 2 3 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

α ( x)
[ f ( x + ∆x , y ) − f ( x , y )]dy .
上式右端最后一个积分的积分限不变, 当 ∆x → 0 时,上式右端最后一个积分的积分限不变,
湘潭大学数学与计算科学学院 王文强 上一页 下一页 9
根据证明定理1时同样的理由,这个积分趋于零 又 根据证明定理 时同样的理由,这个积分趋于零.又 时同样的理由
α β
定的 x 值. 当 x 的值改变时 一般来说这个积分的值也 的值改变时,一般来说这个积分的值也 跟着改变. 跟着改变 这个积分确定一个定义在[a , b]上的 x 的函 数, 我们把它记作 ϕ ( x ), 即
ϕ( x) = ∫α f ( x, y)dy (a ≤ x ≤ b).
湘潭大学数学与计算科学学院 王文强 上一页
并且 α ≤ α ( x ) ≤
β ,α ≤ β ( x ) ≤ β
(a ≤ x ≤ b ),
则由积分(3)确定的函数 Φ( x )在 [a , b]上也连续. 上也连续. 则由积分( 证 上的两点, 设 x 和 x + ∆x是 [a , b] 上的两点,则
Φ ( x + ∆x ) − Φ ( x ) = ∫α ( x + ∆x ) f ( x + ∆x , y )dy − ∫α ( x ) f ( x , y )dy .
Φ( x + ∆x ) − Φ( x ) → 0 (a ≤ x ≤ b ),
上连续. 所以函数 Φ( x ) 在 [a , b]上连续
湘潭大学数学与计算科学学院 王文强 上一页
定理得证
下一页 10
二、含参变量的函数的微分
下面考虑由积分(*)确定的函数 的微分问题. 下面考虑由积分 确定的函数 ϕ (x ) 的微分问题
则由积分(3)确定的函数 上可微, 则由积分(3)确定的函数 Φ( x )在 [a , b]上可微,并且 (3)
湘潭大学数学与计算科学学院 王文强

由(4)式有 式有
不变, 不变,则
β ( x ) f ( x + ∆x , y ) − f ( x , y ) Φ ( x + ∆x ) − Φ ( x ) dy = ∫α ( x ) ∆x ∆x 1 β ( x + ∆x ) + ∫β ( x ) f ( x + ∆x , y )dy ∆x 1 α ( x) ( 8) − ∫α ( x + ∆x ) f ( x + ∆x , y )dy . ∆x 当 ∆x → 0 时,上式右端的第一个积分的积分限

β ( x)
α ( x)
β ( x ) ∂f ( x , y ) f ( x + ∆x , y ) − f ( x , y ) dy → ∫α ( x ) dy . ∆x ∂x
湘潭大学数学与计算科学学院 王文强 上一页 下一页 15
对于(8)右端的第二项, 对于 右端的第二项,应用积分中值定理得 右端的第二项
∫ ϕ ( x )dx = ∫ [ ∫
b b a a b
β
α
f ( x , y )dy ]dx
β
= ∫a dx ∫α f ( x , y )dy .
右端积分式函数 f ( x , y ) 先对 y 后对 x 的二次积分. 的二次积分
湘潭大学数学与计算科学学院 王文强 上一页 下一页 5
定理2 定理2
β ( x ) ∂f ( x , y ) d β ( x) dy Φ′( x ) = ∫α ( x ) f ( x , y )dy = ∫α ( x ) dx ∂x + f [ x , β ( x )]β ′( x ) − f [ x ,α ( x )]α ′( x ). (7)
上一页 下一页 14
1 β ( x + ∆x ) ∫β ( x ) f ( x + ∆x , y )dy ∆x 1 [ β ( x + ∆x ) − β ( x )] f ( x + ∆x ,η ), = ∆x
之间. 其中 η 在β ( x )与 β ( x + ∆x ) 之间 当 ∆x → 0时,
1 [ β ( x + ∆x ) − β ( x )] → β ′( x ), ∆x f ( x + ∆x ,η ) → f [ x , β ( x )],
如果函数 f ( x , y )在矩形
R( a ≤ x ≤ b ,α ≤ y ≤ β )
β
b
上连续, 上连续,则
∫ [∫
a
b
β
α
f ( x , y )dy ]dx = ∫α [ ∫a f ( x , y )dx ]dy .
( 2)
公式( ) 公式(2)也可写成

dx ∫α f ( x , y )dy = ∫α dy ∫a f ( x , y )dx . a
三、莱布尼茨公式
∂f ( x , y ) 定理5 如果函数 f ( x , y )及其偏导数 定理5 都在 ∂x 连续, 矩形上 R( a ≤ x ≤ b,α ≤ y ≤ β )连续,又函数 α ( x ) 上可微, 与 β ( x )在区间 [a , b]上可微,并且 α ≤ α ( x ) ≤ β ,α ≤ β ( x ) ≤ β (a ≤ x ≤ b ),
湘潭大学数学与计算科学学院 王文强
上一页
下一页
11

因为 ϕ ′( x ) = lim ∆x → 0
∆ →
ϕ ( x + ∆x ) − ϕ ( x )
∆x
,
先利用公式(1)作出增量之比 为了求ϕ ′( x ),先利用公式 作出增量之比
f ( x + ∆x , y ) − f ( x , y ) dy . = ∫α ∆x ∆x ∂f 的一致连续性,我们有 由拉格朗日中值定理, 由拉格朗日中值定理,以及 的一致连续性, ∂x f ( x + ∆ x , y ) − f ( x , y ) ∂f ( x + θ∆ x , y ) = ∆x ∂x ∂f ( x , y ) ( 6) = + η ( x , y , ∆x ), 12 ∂x 上一页 下一页 湘潭大学数学与计算科学学院 王文强
上一页
于是由( ) 于是由(1)式有
湘潭大学数学与计算科学学院 王文强 下一页 4
ϕ ( x + ∆x ) − ϕ ( x )
上连续. 所以ϕ ( x ) 在 [a , b]上连续
≤ ∫α f ( x + ∆x , y ) − f ( x , y )dy < ε (α − β ).
定理得证
β
上连续,那么它在 注 既然函数 ϕ ( x ) 在[a , b] 上连续 那么它在 [a , b]上 的积分存在,这个积分可以写为 的积分存在 这个积分可以写为
证 上的两点, 设 x 和 x + ∆x 是 [a , b] 上的两点,则
ϕ ( x + ∆x ) − ϕ ( x )
= ∫α [ f ( x + ∆x , y ) − f ( x , y )]dy .
湘潭大学数学与计算科学学院 王文强 上一页 下一页
β
(1)
3
上连续,从而一致连续. 由于 f ( x , y )在闭区域 R上连续,从而一致连续 因此对于任意取定的 ε > 0 ,存在δ > 0 ,使得对于 R内 存在 使得对于 的任意两点( x1 , y1 ) 及( x2 , y2 ) ,只要它们之间的距离 只要它们之间的距离 小于 δ ,即 即
湘潭大学数学与计算科学学院 王文强 上一页 下一页 8
β ( x + ∆x )
β ( x)
Q∫ =∫
β ( x + ∆x )
α ( x + ∆x ) α ( x)
f ( x + ∆x , y )dy f ( x + ∆x , y )dy + ∫
β ( x) α ( x)
α ( x + ∆x )
f ( x + ∆x , y )dy
( x2 − x1 ) 2 + ( y2 − y1 ) 2 < δ ,
f ( x2 , y2 ) − f ( x1 , y1 ) < ε .
就有
因为点( x + ∆x , y )与 ( x , y ) 的距离等于 ∆x ,所以当 所以当 ∆x < δ 时,就有 就有
f ( x + ∆x , y ) − f ( x , y ) < ε .
β
(∗)
下一页 2
在积分过程中是一个常量, 这里变量 x 在积分过程中是一个常量,通常称它为 参变量. 参变量 定理1 如果函数 f ( x , y )在矩形 定理1
R( a ≤ x ≤ b , α ≤ b ≤ β )
β
上连续,那么由积分 上连续,
ϕ ( x ) = ∫α f ( x , y )dy (a ≤ x ≤ b ) 上也连续. 确定的函数 ϕ ( x )在 [a , b]上也连续.
第五节
含参变量的积分
一、含参变量积分的连续性 二、含参变量的函数的微分 三、莱布尼茨公式 四、小结 思考题
湘潭大学数学与计算科学学院 王文强
上一页
下一页
1
一、含参变量积分的连续性
设函数 f ( x, y) 是在矩形 R(a ≤ x ≤ b,α ≤ b ≤ β ) 上的连续函数. 的一个值, 上的连续函数 在[a , b] 上任意确定x 的一个值 于是 f ( x, y) 是变量 y 在[α , β ]上的一个一元连续函数 上的一个一元连续函数, 从而积分 ∫ f ( x, y)dy 存在 这个积分的值依赖于取 存在,
相关文档
最新文档