学案25.1.1随机事件与概率(1)
人教版九年级上册数学教案 25.1 随机事件与概率
如果学生感到困难,教师可再举几个随机事件的经典例子,如,任意抛掷一枚硬币,正面朝上.以引导学生独立地总结,归纳出随机事件的共同特点:在一定条件下,这些事件可能发生,也可能不发生.
教师应允许学生充分发表意见,学生相互合作,相互交流,尝试着给出随机事件的定义.
3.达标练习阶段
指出下列事件中,哪些是必然事件,哪些是不可能事件?
(1)通常加热到 C时,水沸腾;
(2)任意点击数字按钮,栏框中的数字是偶数.
(3)汽车经过城市中某一有交通信号灯的路口,遇到红灯.
(4)度量三角形的内角和,结果是
(5)篮球运动员在罚球线上投篮一次,未命中;
(6)掷一次骰子,向上的一面是6点;
这些现象的结果是确定的吗?进而教师提出问题。
对于其中一些问题,教师(或学生)进行实物演示。学生需阅读、观察、思考、回答问题。
本次活动中,教师应重点关注学生的表情变化,学生的参与程度,学生是否细心观察、认真阅读,勤于思考。
首先通过几个实际生活中的几个生动、鲜活的实例,自然而然地引出必然事件和不可能事件。
教师引导学生建构,总结出随机事件的定义.
我们以往研究的各种量,起码其结果都是确定的,而随机事件不同,因此,这里应留出一些时间,让同学们充分思考讨论.
问题3袋子中装有4个黑球2个白球,这些球形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
⑴摸出的这个球是白球还是黑球?
⑵如果两种球都有可能被摸出,那么“摸出黑球”和“摸出白球”的可能性一样大吗?
课题:25.1.1随机事件
教学任务分析
教
学
目
标
知识技能
了解必然事件、不可历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
人教版九年级数学上册《25.1随机事件与概率——25.1.1随机事件》 教 案
第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件一、教学目标1.了解必然事件、不可能事件、随机事件的特点.2.了解影响随机事件发生的可能性大小的因素.二、教学重点及难点重点:1.理解必然事件、不可能事件、随机事件的概念.2.对随机事件发生的可能性大小作定性分析.难点:1.辨别某个事件是否是随机事件.2.理解大量重复试验的必要性.三、教学用具多媒体课件.四、相关资源《箱子中装10个白球》、《箱子中5白球5红球》、《箱子中10红球》图片五、教学过程【创设情境,引入新课】下列现象哪些是必然发生的,哪些是不可能发生的?(1)将白糖放入一杯温水中,并搅拌,白糖溶解;(2)测量某天气温,结果为-150℃;(3)物体在重力作用下自由下落;(4)两个正数相加,结果是负数.师生活动:教师进行课件演示,并提出问题.学生阅读、观察、思考,回答问题.教师应关注:学生的表情变化,学生的参与程度,学生是否细心观察,认真阅读,勤于思考.设计意图:首先通过实际生活中几个生动,鲜活的实例,自然而然地引出必然事件和不可能事件.必然事件和不可能事件,相对于随机事件而言,学生更容易接受和理解.【合作探究,形成新知】1.摸球游戏三个不透明的箱子里均装有10个乒乓球,挑选多名同学来参加游戏.游戏规则:每人每次从自己选择的箱子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出红色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.师生行为:教师事先准备三个箱子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个红色的乒乓球;10个红色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第一个箱子中摸出红色球是不可能的;在第二个箱子中能否摸出红色球是不确定的;在第三个箱子中摸出红色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.归纳总结:必然事件:在一定条件下,重复进行试验时,有的事件在每次试验中必然会发生,这种事件称为必然事件.不可能事件:在一定条件下,重复进行试验时,有的事件在每次试验中都不会发生,这种事件称为不可能事件.随机事件:在一定条件下,有些事件有可能会发生,也有可能不会发生,事先无法确定,这种事件称为随机事件.设计意图:做游戏是学习数学的最好方法之一,在这个环节上,设计三次摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,同时也活跃了课堂气氛,培养了学生的合作能力,在轻松快乐的氛围中,领悟了数学的道理,突出了本节课的重点.2.解决问题问题1五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签.请考虑以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的序号小于6吗?这是什么事件?(3)抽到的序号会是吗?这是什么事件?(4)抽到的序号会是1吗?这是什么事件?师生活动:根据学生回答的具体情况,教师适当地加以点拔和引导.问题2小伟掷一个质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,观察骰子向上的一面,请考虑以下问题:(1)可能出现哪些点数?(2)出现的点数大于0吗?这是什么事件?(3)出现的点数是7吗?这是什么事件?(4)出现的点数是4吗?这是什么事件?师生活动:学生先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件.设计意图:通过抽签和掷骰子两个问题,引导学生进入生活中的数学,为学生提供一个开放的空间,放手让学生去探索和发现,再通过小组的合作交流,展示成果,更进一步的加深了对三种事件的理解,化解难点,贯彻课改中的数学来源于生活同时又指导生活的理念.问题3袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?师生活动:教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.3.实验论证(1)袋子中装有4个黄球、2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从袋子中摸出一个球是白球.(2)袋子中装有4个黄球、2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从袋子中摸出一个球是黄球.师生活动:教师让一部分学生动手操作并把摸出的白、黄球分成两类.让学生通过它们的数量差异归纳结论:摸到白球的可能性小.归纳总结:一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.设计意图:让学生自己概括出所感知的知识,有利于学生在实践中感悟知识的生成过程,并能培养学生的语言表达能力.得出结论:随机事件的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.4.思考能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?师生活动:小组讨论、交流,小组代表汇报讨论结果,教师给予表扬.归纳总结:可以增加2个白球或减少2个黑球,使“摸出黑球”和“摸出白球”的可能性大小相同.设计意图:把问题留给学生,也是体现了以学生为主体,让学生自主探索、自主学习的理念.【例题分析,深化提升】例指出下列事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.1.通常加热到100℃时,水沸腾;2.篮球队员在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是180°;5.经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天.师生活动:学生先思考,回答问题.教师引导学生从必然事件、不可能事件和随机事件的定义来判断各事件.解:1.通常加热到100℃时,水沸腾,是必然事件.2.篮球队员在罚球线上投篮一次,命中,是随机事件.3.掷一次骰子,向上的一面是6点,是随机事件.4.度量三角形的内角和,结果是180°,是必然事件.5.经过城市中某一有交通信号灯的路口,遇到红灯,是随机事件.6.某射击运动员射击一次,命中靶心,是随机事件.7.太阳东升西落,是必然事件.8.人离开水可以正常生活100天,是不可能事件.设计意图:通过大量丰富多彩的实例,激发学生的学习热情,调动学生的学习兴趣,使学生对随机现象有比较充分的感知,从不同的侧面,不同的视角进一步深化对随机事件的理解和认识.【练习巩固,综合应用】1.下列事件中,是必然事件的为( ).A.抛掷一枚质地均匀的硬币,落地后正面朝上B.江汉平原7月份某一天的最低气温是-2℃C.通常加热到100℃时,水沸腾D.打开电视,正在播放节目《男生女生向前冲》2.下列说法正确的是( ).A.如果一件事情发生的机会只有十万分之一,那么它就不可能发生B.如果一件事情发生的可能性是100%,那么它就一定会发生C.彩票的中奖率是1%,那么买100张彩票,就有一张中奖D.一个口袋中装有10个质地均匀的小球,其中9个白球,只有一个红球,那么从中任取一个球,一定是白球3.为了了解参加某运动会的2 000名运动员的年龄情况,从中抽查了100名运动员的年龄,“某运动员被抽到”这一事件是事件,抽到的可能性为.4.小明和小华在做抛掷骰子游戏,规则是这样的:抛掷出去的骰子落地后,朝上的点数是偶数,则小明获胜,否则小华获胜,那么这个游戏是(填“公平”或“不公平”)的.5.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的可能性为P(偶数),指针指向标有奇数所在区域的可能性为P(奇数),则P(偶数) P(奇数)(填“>”“<”或“=”).6.指出下列事件中,哪些是不可能事件,哪些是必然事件,哪些是随机事件.(1)地球不停地转动;(2)木柴燃烧,产生能量;(3)一天中在常温下,石头被风化;(4)某人射击一次,击中十环;(5)掷一枚硬币,出现正面;(6)在标准大气压下且温度低于0℃时,雪融化.7.已知地球表面陆地面积与海洋面积的比均为3︰7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?参考答案1.C2.B3.随机;1204.公平5.<设计意图:巩固学生对概念的理解与判断,巩固新知,同时培养学生的发散思维.6.解:(1)地球不停地运动,是必然事件.(2)木柴燃烧,产生热量,是必然事件.(3)一天中在常温下,石块被风化,是不可能事件.(4)某人射击一次,击中十环,是随机事件.(5)掷一枚硬币,出现正面,是随机事件.(6)在标准大气压下且温度低于0℃时,雪融化,是不可能事件.设计意图:考查了必然事件、不可能事件和随机事件的概念的应用.7.解:因为“落在陆地上”的可能性为310,“落在海洋里”的可能性为710,因为710>310,所以“落在海洋里”的可能性更大.设计意图:考查了对随机事件发生的可能性大小的比较.六、课堂小结1.必然事件:在一定条件下,重复进行试验时,有的事件在每次试验中必然会发生,这种事件称为必然事件.2.不可能事件:在一定条件下,重复进行试验时,有的事件在每次试验中都不会发生,这种事件称为不可能事件.3.随机事件:在一定条件下,有些事件可能会发生,也可能不会发生,事先无法确定,这种事件称为随机事件.4.一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.设计意图:通过回顾和反思,把所学内容内化成自己的思考问题的能力,让学生看到自己的进步,提高学生的学习热情.同时也是给教师一个反思提高的机会.七、板书设计25.1 随机事件与概率——25.1.1 随机事件1.必然事件2.不可能事件3.随机事件。
九年级数学上册 第二十五章 概率初步 25.1 随机事件与概率 25.1.1 随机事件教案 新人教版
一般地,随机事件发生的可能性是有大小的,不同的随机事件
发生的可能性的大小有可能不同。
作
业
设
计
绩优学案p113
1、必做题:1-------7
2、选做题:8
教
学
反
思
思考:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?
3、巩固练习:
1、指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.
(1)通常加热到100℃时,水沸腾;
(2)篮球队员在罚线上投篮一次,未投中;
(3)掷一枚骰子,向上一面的点数是6;
(4)任意画一个三角形,其内角和是360°;
——————————新学期新成绩新目标新方向——————————
25.1.1随机事件
课题:25.1.1随机事件
课时
1课时
教学设计
课标
要求
1、能通过列表、画树状图等方法列出简单随机 事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。
2、知道通过大量重复的试验,可以用频率估计概率。
教
材
(1)从1到6的每一个点数都有可能出现,所有可能的点数共有6种,但是 事先无法预料掷一次骰子会出现哪一种结果;
(2)出现的点数肯定大于0;
(3)出现的点 数绝对不会是7;
(4)出现的点数可能 是4.也可能不是4,事先无法确定.
了解随机试验的特点
归纳相关概念
教
学过Βιβλιοθήκη 程4、随机事件的特点
三、巩固练习
在一定条件下,有些事件必然会发生.例如,问题1中“抽到的数字小于6”,问题2中“出现的点数大于0”,这样的事件称为必然事件.
九年级数学上册 25.1 随机事件与概率学案(新版)新人教版
25.1.1 随机事件自学案(一)学习目标1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
2.通过“摸球〞这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。
〔二〕学习重点学习重点:随机事件的特点,对随机事件发生的可能性大小的定性分析学习难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性。
〔三〕课前预习一、选择题1.以下事件中,是确定性事件的是〔〕A.明日有雷阵雨B.小明的自行车轮胎被钉子扎坏C.小红买体育彩片D.抛掷一枚正方体骰子,出现点数7点朝上2.以下事件中,属于不确定事件的有〔〕①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下;④小勇长大后成为一名宇航员。
A. ①②③ B . ①③④ C. ②③④ D. ①②④3.以下成语所描述的事件是必然事件的是〔〕A.水中捞月B.守株待兔C.水涨船高D.画饼充饥4.以下说法正确的选项是〔〕A.随机的抛掷一枚质地均匀的硬币,落地后反面一定朝上B.从1、2、3、4、5中随机取一个数,取得奇数的可能性较大C.某彩票的中奖率为36%,说明买100张彩票,有36张中奖D. 翻开电视,**一套正在播放?新闻联播?5.有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面的点数为偶数。
以下说法正确的选项是〔〕A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件6.一个不透明的布袋中有30个球,每次摸一个,摸一次就一定摸到红球,那么红球有〔〕A.15个 B. 20个 C. 29个 D.30个二、填空题7.从数1、2、3、4、5中任取两个数字,得到的都是偶数,这一事件是_____。
8.一个口袋中装有红、黄、蓝三个大小和形状都相同的三个球,从中任取一球得到红球与得到蓝球的可能性___ __ 。
25.1.1随机事件教案
1.理论介绍:首先,我们要了解随机事件的基本概念。随机事件是指在相同条件下可能发生也可能不发生的事件。它是概率论的基础,帮助我们理解和预测生活中的不确定性。
2.案例分析:接下来,我们来看一个具体的案例。比如抛硬币,正面朝上和反面朝上是两种可能的结果,这个案例展示了随机事件在实际中的应用。
3.重点难点解析:在讲授过程中,我会特别强调随机事件的分类和概率的基本性质这两个重点。对于难点部分,我会通过抛硬币、掷骰子等实验和具体计算来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与随机事件相关的实际问题。
2.实验操作:为了加深理解,我们将进行抛硬币、掷骰子等简单的实验操作。这些操作将演示随机事件的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上)
今天的学习,我们了解了随机事件的基本概念、分类、概率的基本性质以及在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对随机事件的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
d.将现实生活中的问题转化为概率问题,并运用所学知识解决,这需要学生具备较强的抽象思维和问题解决能力。
举例:针对难点b,教师可以通过具体的扑克牌抽取实验,引导学生理解概率的统计意义,并通过实际操作来计算概率。针对难点c,教师可以通过图形树状图或者列表法来帮助学生理解并应用概率的加法规则和乘法规则。例如,讲解“第一次抽取是红桃的概率为1/4,第二次在没有放回的情况下抽取是红桃的概率为1/3,两次事件同时发生的概率是1/4 × 1/3”这一过程。针对难点d,教师可以设计一些贴近学生生活的实际问题,如抽奖、比赛等,指导学生如何将问题转化为概率模型,并解决问题。
2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案
25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。
25.1.1随机事件(导学案)人教版九年级数学上册
第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件学习目标1.熟记必然事件、不可能事件、随机事件的概念和特点2.会判断一个事件是必然事件、不可能事件还是随机事件重点:能对必然事件、不可能事件、随机事件的类型作出正确判断.难点:必然事件、不可能事件、随机事件的区别与转化关系.学习过程一、创设问题情境活动:试分析:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况.图①图②图③二、自主学习阅读课本本课时“问题1”“问题2”,解决下列问题.1.两人合作,在五张大小相同的白纸条上,分别标上1、2、3、4、5这几个数字.然后每人每次分别抓一张纸条,把所抓纸条上的数字记下.重复20次,最后汇总,填写下表:抓到的数字 1 2 3 4 5次数2.由表格可知,每次抓到的数字有种可能的结果,纸条上的数字是6(填“可能”或“不可能”),数字5出现的次数为0(填“可能”或“不可能”).3.阅读课本本课时“问题3”至“思考”部分的内容,解决下列问题.两人一组进行课本本课时“问题3”中的试验,把“摸到白球”记为事件A,把“摸到黑球”记为事件B,其中一人把球搅均匀,另一人摸球并记录下摸球10次和摸球100次的结果.(1)事件A和事件B都是事件.(2)摸球次的试验所获得的结论比较正确.(3)事件发生的可能性大.(4)如何通过改变球的数量使事件A和事件B发生的可能性一样?三、揭示问题规律(一)必然事件、不可能事件和随机事件在一定条件下,必然会发生的事件称为;不可能发生的事件称为;可能发生也可能不发生的事件称为.填表:成语水中捞月守株待兔水涨船高画饼充饥事件类型①②③④(二)随机事件发生可能性的大小一般地,随机事件发生的可能性是有的.一个口袋里有1个红球、2个白球、3个黑球,从中随机摸出一个球,摸出球的可能性最大,摸出球的可能性最小.四、尝试应用【例1】如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:(1)小猫踩在白色的正方形地板上,这属于哪一类事件?(填“必然”,“不可能”或“不确定”)(2)小猫踩在白色或黑色的正方形地板上,这属于哪一类事件?(3)小猫踩在红色的正方形地板上,这属于哪一类事件?【例2】不透明的口袋里装有2个红球2个白球(除颜色外其余都相同).事件A:随机摸出一个球后放回,再随机摸出一个球,两次都摸到红球;事件B:随机摸出一个球后不放回,再随机摸出一个球,两次都摸到相同颜色的球.试比较上述两个事件发生的可能性哪个大?请说明理由.五、自主总结1.体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.2.根据具体情况能判断事件发生的可能性的大小.六、达标测试一、选择题1.下列事件是必然事件的是()A.地球绕着太阳转B.抛一枚硬币,正面朝上C.明天会下雨D.打开电视,正在播放新闻2.下列事件是确定事件的是()A.阴天一定会下雨B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.在学校操场上向上抛出的篮球一定会下落3.下列事件:①367人中一定有两个人的生日相同;②抛掷两枚质地均匀的骰子,向上一面的点数之和大于2;③“彩票中奖的概率是1%”表示买1000张彩票必有10张会中奖;④如果a、b为实数,那么a+b=b+a.其中是必然事件的有().A.1个B.2个C.3个D.4个4.在一个不透明的袋子中装有4个白球和3个黑球,它们除了颜色外都相同,随机从中摸出2个球,属于不可能事件的是()A.摸到2个白球B.摸到2个黑球C.摸到1个白球,1个黑球D.摸到1个黑球,1个红球5.下列说法正确的是()A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生二、填空题6.写出一个所描述的事件是不可能事件的成语_______.7.袋中有4只白球,2只红球,这些球除了颜色以外完全相同,将袋中的球搅拌均匀后,小强同学闭上眼睛随机从袋中抽出三个球,这三个球都是_____球是可能发生的,都是______球是不可能发生的.8.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数)______P(奇数).三解答题9.甲袋中放着19只红球和6只黑球,乙袋中则放着170只红球、67只黑球和13只白球,这些球除了颜色外没有其他区别,两袋中的球都已经搅匀.如果只给一次机会,蒙上眼睛从一个口袋中摸出一只球,摸到黑球即获奖,那么选哪个口袋摸球获奖的机会大?请说明理由.25.1.1随机事件二、自主学习阅读课本本课时“问题1”“问题2”,解决下列问题.答案: 5;不可能;可能3.阅读课本本课时“问题3”至“思考”部分的内容,解决下列问题.答案:(1)随机;(2)100;(3)B;(4)答案不唯一,只要保证袋内两种颜色的球个数相同即可,如拿出2个黑球或加入2个白球三、揭示问题规律(一)必然事件、不可能事件和随机事件答案: 必然事件;不可能事件;随机事件填表:答案:①不可能事件;②随机事件;③必然事件;④不可能事件(二)随机事件发生可能性的大小一般地,随机事件发生的可能性是有的.答案:大小一个口袋里有1个红球、2个白球、3个黑球,从中随机摸出一个球,摸出球的可能性最大,摸出球的可能性最小.答案:黑;红四、尝试应用【例1】解:(1)可能发生,也可能不发生,是不确定事件;(2)一定会发生,是必然事件;(3)一定不会发生,是不可能事件;【例2】解:事件A:随机摸出一个球后放回,再随机摸出一个球,两次都摸到红球的可能性均为2 4×24=14;事件B:随机摸出一个球后不放回,再随机摸出一个球,两次都摸到相同颜色的球的可能性为412=13.14<13.答:事件B发生的可能性较大.达标测试1.A【解析】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件. 解:A、地球绕着太阳转是必然事件,故A符合题意;B、抛一枚硬币,正面朝上是随机事件,故B不符合题意;C、明天会下雨是随机事件,故C不符合题意;D、打开电视,正在播放新闻是随机事件,故D不符合题意;故选:A.2.D【解析】试题分析:因为A.阴天一定会下雨,可能发生也可能不发生,是随机事件,所以选项A错误;因为B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,可能发生也可能不发生,是随机事件,所以选项B错误;因为C.打开电视机,任选一个频道,屏幕上正在播放新闻联播,可能发生也可能不发生,是随机事件,所以选项C错误;因为D.在学校操场上向上抛出的篮球一定会下落,一定会发生,所以是确定事件,故选:D.3.B【解析】解:一年有365天,则367人中一定有两个人的生日相同,所以①是必然事件;抛掷两枚质地均匀的骰子,向上一面的点数之和可能为2,所以②是随机事件;彩票中奖的概率是1%,表示中奖的机会为1%,则买1000张彩票可能有10张会中奖,也可能一张也不中奖,所以③是随机事件;如果a、b为实数,则a+b=b+a,所以④是必然事件.故选B.4.D 【解析】试题分析:因为不透明的袋子中装只有4个白球和3个黑球,没有红球,所以从中摸出2个球,属于不可能事件的是:D.摸到1个黑球,l个红球,故选:D.5.C【解析】试题分析:在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;不可能事件是指在大量重复实验中完全不会发生的事件,根据题意故选C.6.拔苗助长等7.白,红8.<解析:∵一个圆形转盘被等分成五个扇形区域,有2个偶数区,3个奇数区,∴有p(偶数)=25,p(奇数)=35,所以p(偶数)<p(奇数).9.解:甲袋摸中黑球的几率为:p甲=625;乙袋摸中黑球的几率为:p乙=671701367++=67250;∴p甲=60250,p乙=67250,显然p甲<p乙,∴选择乙袋摸球获奖的几率比较大.。
九年级数学上册-25.1.1随机事件与概率第1课时教案
一、【教材分析】
教
学
目
标
知识
目标
1.能识别必然事件、不可能事件和随机事件.
掌握判断随机事件的方法.
2.理解事件发生的可能性大小.
能力
目标
根据生活中的情景感受三种事件的意义.
情感
目标
从生活中感受数学知识的产生,增强数学的应用意识,培养学习数学的兴趣.
教学
重点
1.掌握判断随机事件的方法.
学生独立完成尝试部分.
掌握判断三种事件的方法及随机事件可能性的大小.培养运用知识的能力.
3题考查随机事件的可能性的大小.
补
偿
提
高
1.任意掷一枚硬币,正面向上和反面向上的可能性是————。但是任意掷出一个塑料瓶盖,其盖面向上和盖面向下的可能性( )。
2.下列实践中,随机事件是( )
A抛掷1个均匀的骰子,向上的点数是6.
问:(1).你会摸到什么颜色
的球? 摸出黑球的可能性与
摸出白球的可能性大小一
样吗?为什么?
(2)怎样改变袋子中某种球的颜色使得摸到黑球的可能性与摸到白球的可能性大小一样呢?
在上述问题的基础上根据生活的经验熟练地下列事件发生的可能性.
从而教师给出三种事件的定义:必然事件,不可能事件,随机事件.
学以致用:通过举例,进一步加深对三种事件的理解,及判断方法.
通过问题三的分析感受随机事件的可能性有大小.
尝
试
应
用
1.判断下列事件是必然事件,随机事件,还是不可能事件?
①煮熟的鸭子飞了;
②明天地球还在转动;
③木材燃烧会放出热量;
④掷一枚硬币,出现正面向上.
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计一. 教材分析本节课为人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时,主要内容包括随机事件的定义、必然事件、不可能事件以及概率的定义。
本节课的内容是学生对概率知识的一次初步认识,为后续学习更高级的概率知识打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于事件的分类和概率的概念有一定的理解。
但同时,学生对于概率这一概念的理解还需要通过具体的例子来进行引导。
三. 教学目标1.了解随机事件的定义、必然事件、不可能事件。
2.理解概率的定义,并能运用概率知识解决简单问题。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.重点:随机事件的定义、必然事件、不可能事件,概率的定义。
2.难点:概率的计算和应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过具体的例子引导学生理解概率的概念,培养学生的动手操作能力和团队协作能力。
六. 教学准备1.教学PPT。
2.教学案例和问题。
3.小组合作学习的任务单。
七. 教学过程1.导入(5分钟)通过一个简单的抛硬币实验,引导学生思考:抛硬币时,正面朝上和反面朝上的可能性是否相等?从而引出随机事件的定义。
2.呈现(15分钟)呈现必然事件、不可能事件的例子,让学生通过观察和分析,理解必然事件和不可能事件的含义。
3.操练(10分钟)让学生通过PPT上的练习题,巩固对随机事件、必然事件、不可能事件的理解。
4.巩固(10分钟)学生分小组,根据任务单,探讨并计算一些简单的概率问题,如抛硬币、掷骰子等。
教师巡回指导,帮助学生解决遇到的问题。
5.拓展(10分钟)让学生思考并讨论:如何计算一个事件的概率?引导学生理解概率的计算方法。
6.小结(5分钟)教师引导学生总结本节课所学的知识,让学生明确随机事件、必然事件、不可能事件的定义,以及概率的计算方法。
九年级数学上册 第二十五章 25.1 随机事件与概率 25.1.1 随机事件备课资料教案 (新版)新人教版
第二十五章 25.1.1随机事件知识点1:确定事件(必然事件、不可能事件)与随机事件在一定条件下,有的事件必然会发生,这样的事件称为必然事件;相反地,有的事件必然不会发生,这样的事件称为不可能事件.必然事件和不可能事件统称为确定事件.在一定条件下,可能发生也可能不发生的事件,称为随机事件.关键提醒:(1)必然事件、不可能事件具有确定性;随机事件具有不确定性.(2)判断事件所属类型要根据事件分类的标准,即根据结果是否一定发生、一定不发生或可能发生也可能不发生判断,同时这类问题的解答有时也需要有一定的生活常识和对自然规律的了解.(3)在叙述三种事件时,要强调“在一定条件下”这几个字,这是因为必然事件、不可能事件、随机事件都必须受到一定条件的制约.如:在标准大气压下,水加热到100℃沸腾是必然事件,但当气压高于标准大气压时,水加热到100℃沸腾,就不是必然事件了(此时沸点提高了).知识点2:事件发生的可能性的大小随机事件发生的可能性是有大小的,不同的随机事件发生的可能性会有所不同.关键提醒:(1)正确理解相关名词:①“可能”发生是指有时会发生,有时不会发生;②“不可能”发生就是指每次都完全没有机会发生;③“必然事件”是指每次一定发生,不可能不发生.(2)事件发生的可能性:①必然事件就是在试验中,必然会发生的事件,所以它发生的可能性为100%或1;②不可能事件就是在试验中不可能发生的事件,所以它发生的可能性为0;③随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小可能不同,发生的可能性介于0与1之间.(3)对随机事件的可能性的大小,可利用反复试验获取一定的经验数据,预测它们发生机会的大小.要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样.考点1:必然事件、不可能事件、随机事件【例3】下列事件是必然事件的为( ).2A. 抛掷一枚硬币,四次中有两次正面朝上B. 打开电视体育频道,正在播放美国职业蓝球联赛C. 射击运动员射击一次,命中十环D. 若a 是实数,则≥0答案:D.点拨:事先能够肯定一定会发生的事件称为必然事件,事先能够肯定一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件;可能发生也可能不发生的事件称为随机事件(也称为不确定事件).题中A 、B 、C 都为随机事件;只有D 是必然事件.考点2:事件发生的可能性的判定【例2】 甲、乙、丙、丁、戊五个不透明的袋中各装有10个小球,这些小球除颜色外没有任何区别,现要从每个袋中摸出1个小球.已知袋中球的情况如下:甲袋:0个红球,10个白球;( )乙袋:10个红球,0个白球;( )丙袋:1个红球,9个白球;( )丁袋:9个红球,1个白球;( )戊袋:5个红球,5个白球.( )请根据袋中球的情况,从下列各选项中选择一个恰当的说法,并将选项前的字母填入相应的括号中.A. 必然摸到红球B. 很可能摸到红球C. 可能摸到红球D. 不大可能摸到红球E. 不可能摸到红球答案:依次填E 、A 、D 、B 、C.点拨:本题甲袋和乙袋的情况很明显,前者没有红球,故从中是不可能摸到红球的;后者全是红球,故摸到红球自然是必然事件;丙袋和丁袋中两种颜色的球都有,但数量相差很大,而红球越多,从中摸到红球的可能性越大,反之越小.。
人教版九年级上册数学学案:25.1.1随机事件(1)
中学导学稿 25章.概率初步年级:九年级学科:数学学期:上学期设计时间:自主合作交流2、什么是确定性事件?什么是随机事件?根据教材举例说明。
3、随机事件与必然事件和不可能事件的区别在哪里?活动二:即学即练:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
(1)两直线平行,内错角相等;(2)打靶命中靶心;(3)在装有3个球的布袋里摸出4个球活动三:在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共5只,请考虑以下问题,摸一次球,观察摸出球的颜色:(1)摸到的是红球,可能吗?这是什么事件?(2)摸到的是黑球或白球,可能吗?这是什么事件?(3)摸到的是白球,可能吗?这是什么事件?当堂检测定为1000公斤;(C)在只装有5个红球的袋中摸出1球是红球;(D)农历十五的晚上一定能看到圆月。
2、指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
(1)掷一次骰子,向上一面是3点;(2)13个人中,至少有两个人出生的月份相同;(3)经过有信号灯的十字路口,遇见红灯;(4)物体在重力的作用下自由下落。
(5)抛掷一千枚硬币,全部正面朝上。
3、下列事件:A.袋中有5个红球,能摸到红球;B.袋中有4个红球,1个白球,能摸到红球;C.袋中有2个红球,3个白球,能摸到红球;D.袋中有5个白球,能摸到红球。
问上述事件哪些事件是必然事件?哪些是随机事件?哪些是不可能事件?能力提升:下列说法正确的是 ( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生。
九年级数学上册第二十五章概率初步25.1随机事件与概率25.1.1随机事件(第1课时)学案设计(新版)新人教版
第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件(第1课时)学习目标1.借助典型事例了解必然事件、不可能事件、随机事件的概念;会正确判断生活中的简单事件哪些是随机事件、必然事件或不可能事件.2.主动通过试验,观察—探究—归纳出随机事件的概念和特点,从而培养抽象概括的能力和分析、解决问题的能力.3.在愉快的学习中获得成功体验,感受数学就在身边,乐于亲近数学,体会数学的应用价值.学习过程设计一、提出问题,创设情境1.试分析:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况.图①图②图③2.思考:下图中三人每次都能摸到红球吗?二、信息交流,揭示规律归纳必然事件、不可能事件、随机事件的概念.三、运用规律,解决问题【例1】五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字会是0吗?(3)抽到的数字会是6吗?(4)抽到的数字会是1吗?(5)你能说出一个与问题(3)相似的问题吗?【例2】阅读日记:划横线的事件中,哪些是必然事件? 哪些是不可能事件? 哪些是随机事件?2013年3月11日晴早上,我迟到了,在楼梯上遇到了班主任,她批评了我一顿.我想我真不走运,她经常在办公室的啊,今天我真倒霉.我明天不能再迟到了,不然明天早上我将在楼梯上遇到班主任.中午放学回家,我看了一场篮球赛,我想长大后我会比姚明还高,我将长到10米高.看完比赛后,我又回到学校上学.下午放学后,我开始写作业.今天作业太多了,我不停地写啊写,一直写到太阳从西边落下.四、变式训练,深化提高1.现有背面相同的两张牌(红牌和黑牌),下列事件属于哪类事件?(1)洗匀后任意抽一张,抽到黑牌;(2)洗匀后任意抽一张,抽到红牌或黑牌;(3)抽一张牌 ,放回,洗匀后再抽一张牌.这样先后抽得的两张牌都是红牌.(4)抽一张牌,不放回,再抽一张牌.这样先后抽得的两张牌都是红牌.2.请你举一些生活中的必然事件、随机事件和不可能事件的例子.布置作业指出下列事件中,哪些是必然事件,哪些是不可能事件?哪些是随机事件?1.通常加热到100 ℃时,水沸腾;2.篮球队员在罚球线上投篮一次,未投中;3.掷一枚骰子,向上一面的点数是6;4.任意画一个三角形,其内角和是360°;5.经过有交通信号灯的路口,遇到红灯;6.射击运动员射击一次,命中靶心.参考答案一、设计问题,创设情境1.图①:必然发生;图②:必然不发生;图③:可能发生,也可能不发生.2.小明:可能摸到红球也可能摸不到红球;小麦:一定不会摸到红球;小米:一定会摸到红球.二、信息交流,揭示规律在一定条件下,必然会发生的事件叫做必然事件;在一定条件下,必然不会发生的事件叫做不可能事件;在一定条件下:可能发生也可能不发生的事件,称为随机事件.三、运用规律,解决问题【例1】解:(1)抽到的数字有五种可能的结果;(2)抽到的数字不会是0;(3)抽到的数字不会是6;(4)抽到的数字会是1;(5)例如:抽到的数字会是9吗?【例2】解:在楼梯上遇到了班主任(必然事件)明天早上我将在楼梯上遇到班主任(随机事件)我将长到10米高(不可能事件)太阳从西边落下(必然事件)四、变式训练,深化提高1.解:(1)随机事件;(2)必然事件;(3)随机事件;(4)不可能事件.2.例如:摸一张彩票中奖是随机事件.布置作业1.必然事件;2.随机事件;3.随机事件;4.不可能事件;5.随机事件;6.随机事件.。
人教版九年级数学上册学案:25.1.1 随机事件1
第二十五概率初步25.1 随机事件与概率25.1.1 随机事件自学目标:1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
2.历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
重、难点:随机事件的特点并能对生活中的随机事件作出准确判断。
自学过程:一、课前准备:1.在一定条件下必然发生的事件,叫做;在一定条件下不可能发生的事件,叫做;在一定条件下可能发生也可能不发生的事件,叫做;2.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山; (2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数); (4)水往低处流;(5)酸和碱反应生成盐和水; (6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。
3.什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?二、自主探究:活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?(1)上述两个活动中的两个事件(2)怎样的事件称为随机事件呢?(3)与必然事件和不可能事件的区别在哪里?三、巩固新知:1.下列事件是必然发生事件的是()(A)打开电视机,正在转播足球比赛 (B)小麦的亩产量一定为1000公斤(C)在只装有5个红球的袋中摸出1球是红球 (D)农历十五的晚上一定能看到圆月2.下列事件中是必然事件的是 ( )A.早晨的太阳一定从东方升起 B.安阳的中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目 D·小红今年14岁了她一定是初中生3.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破 ( ) A.可能性很小 B.绝对不可能 C.有可能 D.不太可能4.下列各语句中是必然事件的是 ( )A.两个分数相加和一定是整数 B.两个分数相乘积一定是整数C.两个互为相反数的和为0 D.两个互为相反数的积为05.下列说法正确的是 ( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生6.下列事件:A.袋中有5个红球,能摸到红球B.袋中有4个红球,1个白球,能摸到红球C.袋中有2个红球,3个白球,能摸到红球D.袋中有5个白球,能摸到红球问上述事件哪些事件是必然事件?哪些是随机事件?哪些是不可能事件?7.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
九年级数学 学案2 25.1.1 随机事件
第二十五概率初步25.1 随机事件与概率25.1.1 随机事件自学目标:1.通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。
2.历经“猜测—动手操作—收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件。
重、难点:1.对随机事件发生的可能性大小的定性分析2.理解大量重复试验的必要性。
自学过程:一、课前准备:1.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中同时摸出1个小球,请你写出这个摸球活动中的一个随机事件_________________.2.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性______摸到J、Q、K 的可能性.(填“<,>或=”)3.下列事件为必然发生的事件是( )(A)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1(B)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数(C)打开电视,正在播广告(D)抛掷一枚硬币,掷得的结果不是正面就是反面4.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能发生的事件是( )(A)点数之和为12 (B)点数之和小于3(C)点数之和大于4且小于8 (D)点数之和为135.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( )(A)抽出一张红心(B)抽出一张红色老K(C)抽出一张梅花J (D)抽出一张不是Q的牌6.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a、抽到一名住宿女生;b、抽到一名住宿男生;c、抽到一名男生.其中可能性由大到小排列正确的是( )(A)cab(B)acb(C)bca(D)cba一、自主探究:1、袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
人教版九年级数学上册25.1.1 随机事件与概率(第1课时)导学案
人教版义务教育课程教科书九年级上册25.1.1 随机事件与概率(1)导学案一、学习目标(1)目标理解必然事件、不可能事件、随机事件的概念;区分必然事件、不可能事件和随机事件;(2)目标解析教学重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。
随机事件的特点教学难点:难点:必然事件、不可能事件、随机事件的区别, 对生活中的随机事件作出准确判断二、课内探究1. 、据事件发生可能性的不同,把下面的 8 个事件分类:(1)某人的体温是 100 ℃(2)a 2+b 2=-1(其中a,b 都是实数);(3)太阳从西边下山;(4)经过城市中某一有交通信号灯的路口,遇到红灯;(5)一元二次方程x 2+2x +3=0 无实数解.(6)掷一枚骰子,向上的一面是 6 点;(7)人离开水可以正常生活 100 天;(8)篮球队员在罚线上投篮一次,未投中.必然会发生的事件有_______________;不可能发生的事件有_______________;可能发生也可能不发生的事件有______________2、论并总结:什么是必然事件?什么又是不可能事件呢?它们各有什么特点?3、自主探究建构新知问题1 组长组织另五人进行抽签活动,每位同学在看不到纸签上的数字的情况下随机的取一根签,并考虑以下问题:抽到的序号有几种可能的结果?抽到的序号小于6吗?抽到的序号会是0吗?抽到的序号会是1吗?思考以上事件是否是随机事件?问题2探讨,掷一次骰子,在骰子向上的一面上可能出现哪些点数?出现的点数大于0吗?出现的点数会是7吗?出现的点数会是4吗?条件下重复进行掷骰子试验,验证讨论的结果的准确性,并思考以上事件是否是随机事件。
问题3试分析:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况?问题4: 袋子中装有 4 个黑球、2 个白球,这些球的形状、大小、质地等完全相同.即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出 1 个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?三、当堂检测1、下列事件中,哪些是必然事件的,哪些是不可能事件的,哪些是随机事件(1)通常加热到100℃时,水沸腾;(2)篮球队员在罚线上投篮一次,未投中;(3)掷一枚骰子,向上的一面是6点;(4)度量三角形的内角和,结果是360°;(5)经过城市中某一有交通信号灯的路口遇到红灯;(6)某射击运动员射击一次,命中靶心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.1.1 随机事件导学案(第1课时)
学习内容:随机事件设计教师:付永要编号:01
【学习目标】了解随机事件的意义,会判断必然事件、不可能事件和随机事件,知道不同随机事件发生的可能性不同.
学习重点:随机事件的特点
学习难点:对生活中的随机事件作出准确判断。
【学习过程】一、问题情境:“有位从不买彩票的人,在别人的劝说下用2元买了一随机号码,居然中了500万”,你认为这样的事情可能发生吗?请简述理由.
二、自学指导:认真自学课本125页至126页练习前内容,并注意:
1.注意问题1和2中思考问题。
2.生活中的事件分为哪几类?
6分钟后,看谁自学的好,能正确理解,比谁能做对检测题。
三、自学效果检查:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
(1)两直线平行,内错角相等;(2)刘翔再次打破110米栏的世界纪录;
(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;
(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;
(7)在装有3个球的布袋里摸出4个球(8)物体在重力的作用下自由下落。
(9)抛掷一千枚硬币,全部正面朝上。
(10)水往低处流;
(11)煮熟的鸭子飞了 (12)一元二次方程x2+2x+3=0无实数解。
四、指导应用下列成语所描述的事件是必然事件的是:()
A.瓮中捉鳖B.拔苗助长C.守株待兔D.水中捞月
五、当堂训练:(每个10分共100分)
1. 指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)同旁内角互补,两直线平行. (2)留盆明天下大雨.
(3)1+1=3. (4)掷一次骰子,向上一面是6点. (5)11个人中,至少有两个人出生的月份相同.(6)中国足球队夺得世界杯冠军.
(7)在装有3个红球的布袋里摸出绿球. (8)对顶角相等.
(9)抛掷一千枚硬币,全部反面朝上. (10)数学下次测试你得满分.
2.(2010浙江杭州)“a是实数, ||0
a ”这一事件是()
A. 必然事件
B. 不确定事件
C. 不可能事件
D. 随机事
件
3.(2010 浙江台州市)下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件; B.某次抽奖活动中奖的概率为
100
1,说明每买100张奖券,一定有一次中奖; C.数据1,1,2,2,3的众数是3;D.想了解台州市城镇居民人均年收入水平,宜采用抽样调查.
4.(2010 福建晋江)下列事件中,是确定事件的是( ) .
A.打雷后会下雨
B. 明天是睛天
C. 1小时等于60分钟
D.下雨后有彩虹
5.(2010湖南长沙)下列事件是必然事件的是().
A、通常加热到100℃,水沸腾;
B、抛一枚硬币,正面朝上;
C、明天会下雨;
D、经过城市中某一有交通信号灯的路口,恰好遇到红灯.
6.(2009,河池)下列事件是随机事件的是()
A.在一个标准大气压下,加热到100℃,水沸腾B.购买一张福利彩票,中奖C.有一名运动员奔跑的速度是30米/秒D.在一个仅装着白球和黑球的袋中摸球摸出红球
7.同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件中是不可能事件的是( ).
A.点数之和为12 B.点数之和小于3
C.点数之和大于4且小于8 D.点数之和为13
8.(2009年,常德市)下面事件:①掷一枚硬币,着地时正面向上;②在标准大气压下,水加热到100℃会沸腾;③买一张福利彩票,开奖后会中奖;④明天会下雨.其中,必然事件有()A.1个 B.2个 C.3个 D.4个
9.(2009年,甘肃庆阳)下列说法中,正确的是()
A.“明天降雨的概率是80%”表示明天有80%的时间降雨
B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上
C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖
D.在同一年出生的367名学生中,至少有两人的生日是同一天
10.(2011湖南衡阳)下列说法正确的是()A.在一次抽奖活动中,“中
奖的概率是
1
100
”表示抽奖100次就一定会中奖 B.随机抛一枚硬币,落地后正
面一定朝上C.同时掷两枚均匀的骰子,朝上一面的点数和为6D.在一副没有
大小王的扑克牌中任意抽一张,抽到的牌是6的概率是
1 13。