推荐2019高考数学二轮复习压轴提升练一文

合集下载

2019届高三理科数学二轮复习:分类加法计数原理与分步乘法计数原理(知识总结与题型演练)

2019届高三理科数学二轮复习:分类加法计数原理与分步乘法计数原理(知识总结与题型演练)

2019届高三理科数学二轮复习:分类加法计数原理与分步乘法计数原理(知识总结与题型演练)最新考纲1.理解分类加法计数原理和分步乘法计数原理;2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.知识总结1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.[常用结论与微点提醒]1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.()解析分类加法计数原理,每类方案中的方法都是不同的,每一种方法都能完成这件事;分步乘法计数原理,每步的方法都是不同的,每步的方法只能完成这一步,不能完成这件事,所以(1),(4)均不正确.答案(1)×(2)√(3)√(4)×2.从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为()A.6B.5C.3D.2解析5个人中每一个都可主持,所以共有5种选法.答案 B3.(选修2-3P28B2改编)现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种解析需要先给C块着色,有4种结果;再给A块着色,有3种结果;再给B块着色,有2种结果;最后给D块着色,有2种结果,由分步乘法计数原理知共有4×3×2×2=48(种). 答案 D4.5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有种(用数字作答).解析每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,总的报名方法共2×2×2×2×2=32(种).答案325.(2018·西安月考)已知某公园有5个门,从任一门进,另一门出,则不同的走法的种数为(用数字作答).解析分两步,第一步选一个门进有5种方法,第二步再选一个门出有4种方法,所以共有5×4=20种走法.答案20题型演练考点一分类加法计数原理的应用【例1】(1)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为.(2)在所有的两位数中,个位数字大于十位数字的两位数的个数为.解析(1)当a=0时,b的值可以是-1,0,1,2,故(a,b)的个数为4;当a≠0时,要使方程ax2+2x+b=0有实数解,需使Δ=4-4ab≥0,即ab≤1.若a=-1,则b的值可以是-1,0,1,2,(a,b)的个数为4;若a=1,则b的值可以是-1,0,1,(a,b)的个数为3;若a=2,则b的值可以是-1,0,(a,b)的个数为2.由分类加法计数原理可知,(a,b)的个数为4+4+3+2=13.(2)当个位数字为2时,十位数字为1,共1个;当个位数字为3时,十位数字为1,2,共2个;当个位数字为4时,十位数字为1,2,3,共3个;……当个位数字为9时,十位数字为1,2,3,4,…,7,8,共8个;由分类加法计数原理可知满足条件的两位数的个数为1+2+3+…+8=36.答案(1)13(2)36规律方法分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素和关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏,如本例(1)中易漏a=0这一类.【训练1】(1)从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3B.4C.6D.8(2)如图,从A到O有种不同的走法(不重复过一点).解析(1)以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9;把这4个数列的顺序颠倒,又得到另外的4个数列,∴所求的数列共有2(2+1+1)=8个.(2)分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O 共2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O共2种不同的走法,由分类加法计数原理可得共有1+2+2=5种不同的走法.答案(1)D(2)5考点二分步乘法计数原理的应用【例2】(1)(2018·石家庄模拟)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有()A.10种B.25种C.52种D.24种(2)(2016·全国Ⅱ卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9解析(1)每相邻的两层之间各有2种走法,共分4步.由分步乘法计数原理,共有24种不同的走法.(2)分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.答案(1)D(2)B规律方法(1)在第(1)题中,易误认为分5步完成,错选B.(2)利用分步乘法计数原理应注意:①要按事件发生的过程合理分步,即分步是有先后顺序的;②各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.【训练2】(1)用0,1,2,3,4,5可组成无重复数字的三位数的个数为.(2)(2018·合肥质检)五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为.五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有种.解析(1)可分三步给百、十、个位放数字,第一步:百位数字有5种放法;第二步:十位数字有5种放法;第三步:个位数字有4种放法,根据分步乘法计数原理,三位数的个数为5×5×4=100.(2)五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法.五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性.答案(1)100(2)4554考点三两个计数原理的综合应用(多维探究)命题角度1组数、组点、组线、组对及抽取问题【例3-1】如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36解析在正方体中,每一个表面有四条棱与之垂直,六个表面,共构成24个“正交线面对”;而正方体的六个对角面中,每个对角面有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”.答案 D命题角度2涂色、种植问题【例3-2】(一题多解)如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.解法一按所用颜色种数分类.第一类:5种颜色全用,共有A55种不同的方法;第二类:只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类:只用3种颜色,则A与C,B与D必定同色,共有A35种不同的方法.由分类加法计数原理,得不同的染色方法种数为A55+2×A45+A35=420(种).法二以S,A,B,C,D顺序分步染色.第一步:S点染色,有5种方法;第二步:A点染色,与S在同一条棱上,有4种方法;第三步:B点染色,与S,A分别在同一条棱上,有3种方法;第四步:C点染色,也有3种方法,但考虑到D点与S,A,C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S,B 也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).规律方法(1)①注意在综合应用两个原理解决问题时,一般是先分类再分步.在分步时可能又用到分类加法计数原理.②注意对于较复杂的两个原理综合应用的问题,可恰当地列出示意图或列出表格,使问题形象化、直观化.(2)解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成.例题中,相邻顶点不同色,要按A,C和B,D是否同色分类处理.【训练3】(1)(一题多解)(2018·大同质检)如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有()A.72种B.48种C.24种D.12种(2)如图所示,在连结正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有个(用数字作答).解析(1)法一首先涂A有4种涂法,则涂B有3种涂法,C与A,B相邻,则C有2种涂法,D只与C相邻,则D有3种涂法,所以共有4×3×2×3=72种涂法.法二按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B 有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).(2)把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案(1)A(2)40小检测基础巩固题组(建议用时:25分钟)一、选择题1.(2018·郑州调研)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则不同的监考方法有()A.8种B.9种C.10种D.11种解析设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理,共有3+3+3=9(种)不同的监考方法.答案 B2.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数的个数是()A.30B.42C.36D.35解析因为a+b i为虚数,所以b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.答案 C3.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13D.10解析分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.答案 C4.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数分别为400,040,004;由3,1,0组成6个数分别为310,301,130,103,013,031;由2,2,0组成3个数分别为220,202,022;由2,1,1组成3个数分别为211,121,112.共计3+6+3+3=15(个).答案 B5.某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为()A.20B.25C.32D.60解析依据题意知,后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.答案 C6.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15D.21解析当x=2时,x≠y,点的个数为1×7=7(个).当x≠2时,由P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).答案 B7.用10元、5元和1元来支付20元钱的书款,不同的支付方法的种数为()A.3B.5C.9D.12解析只用一种币值有2张10元,4张5元,20张1元,共3种;用两种币值的有1张10元,2张5元;1张10元,10张1元;3张5元,5张1元;2张5元,10张1元;1张5元,15张1元,共5种;用三种币值的有1张10元,1张5元,5张1元,共1种.由分类加法计数原理得,共有3+5+1=9(种).答案 C8.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个解析将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C12=2种,共有2×2×2×2×2=32个.答案 A二、填空题9.某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火车有4趟,轮船有3次,问此人的走法可有种.解析因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都能从甲地到乙地,根据分类加法计数原理,可得此人的走法可有4+3=7(种).答案710.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种(用数字作答).解析第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种).答案3611.在编号为1,2,3,4,5,6的六个盒子中放入两个不同的小球,每个盒子中最多放入一个小球,且不能在两个编号连续的盒子中同时放入小球,则不同的放小球的方法有种. 解析设两个不同的小球为A,B,当A放入1号盒或者6号盒时,B有4种不同的放法;当A放入2,3,4,5号盒时,B有3种不同的放法,一共有4×2+3×4=20种不同的放法.答案2012.如图,矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有种不同的涂色方法(用数字作答).解析区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C 与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法.所以共有5×4×4+5×4×3×3=260种涂色方法.答案260能力提升题组(建议用时:10分钟)13.(2018·河南天一大联考)如图,图案共分9个区域,有6种不同颜色的涂料可供涂色,每个区域只能涂一种颜色的涂料,其中2和9同色、3和6同色、4和7同色、5和8同色,且相邻区域的颜色不相同,则涂色方法有()A.360种B.720种C.780种D.840种解析由题意知2,3,4,5的颜色都不相同,先涂1,有6种方法,再涂2,3,4,5,有A45种方法,故一共有6·A45=720种.答案 B14.(2018·衡水调研)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279解析0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).答案 B15.三边长均为正整数,且最大边长为11的三角形的个数是.解析另两边长用x,y(x,y∈N)表示,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x可取1,2,3,...,11,有11个三角形;当y取10时,x可取2,3, (10)有9个三角形;…;当y取6时,x只能取6,只有1个三角形.所以所求三角形的个数为11+9+7+5+3+1=36.答案3616.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个.解析A={1}时,B有23-1种情况;A={2}时,B有22-1种情况;A={3}时,B有1种情况;A={1,2}时,B有22-1种情况;A={1,3},{2,3},{1,2,3}时,B均有1种情况,故满足题意的“子集对”共有7+3+1+3+3=17个.答案17。

高考数学第二轮复习精品资料压轴题

高考数学第二轮复习精品资料压轴题

高考数学第二轮复习 压轴题高考坚持“有利于高校选拔人才,有利于中学实施素质教育,有利于高校扩大办学自主权”的命题原则,坚持“考查基础知识的同时,注重考查能力”,这决定了每套高考试卷都有一道或几道把关的题目,我们称之为压轴题.这类题目的分值稳定在14分左右,多以传统的综合题或常用题型,与高等数学有关知识或方法联系比较紧密.如结合函数、不等式、导数研究无理型、分式型、指对数型以及多项式函数等初等函数的图像与性质,或数列兼考查数学归纳法,或以解析几何为主的向量与解析几何交汇,或以上三类题互相交汇形成新的综合问题,这类题目综合性强,解法多,有利于高校选拔.第一讲 函数、不等式与导数型压轴题【调研1】设21()log 1x f x x +=-,1()()2F x f x x=+- (1)试判断函数()y F x =的单调性,并给出证明;(2)若()f x 的反函数为1()f x -,证明 对任意的自然数(3)n n ≥,都有1()1nf n n ->+; (3)若()F x 的反函数1()F x -,证明 方程1()0F x -=有惟一解.分析:第(1)问先具体化函数()y F x =后,再判断单调性,而判断单调性有定义法和导数法两条途径;第(2)问先具体化1()f n -,再逐步逆向分析,寻找不等式的等价条件,最后转化为不等式212nn >+的证明问题;第(3)问应分“存在有解”和“唯一性”两个方面证明. 解析:(1)∵21()log 1x f x x +=-,1()()2F x f x x =+- ∴211()log 12x F x x x+=+-- ∴函数()y F x =的定义域为(1,1)-.解法一:利用定义求解 设任意1x ,2x (1,1)∈-,且12x x <,则21()()F x F x -=212222111111(log )(log )2121x x x x x x +++-+---- =212221211111()(log log )2211x x x x x x ++-+-----=211221212(1)(1)log (2)(2)(1)(1)x x x x x x x x --++--+- ∵210x x ->,120x ->,220x -> ∴1212(1)(1)0(1)(1)x x x x -+>+-∴211221212(1)(1)log 0(2)(2)(1)(1)x x x x x x x x --++>--+- ∴函数()y F x =在(1,1)-上是增函数解法二:利用导数求解∵211()log 12x F x x x+=+--∴()F x '=22121(1)ln 2(1)(2)x x x x -⨯++--=2221ln 2(1)(2)x x +⨯--又∵11x -<< ∴()F x '=22210ln 2(1)(2)x x +>⨯--∴函数()y F x =在(1,1)-上是增函数 (2) 由21()log 1x f x x +=-得121y x x +=-,即2121y y x -=+ ∴121()21x x f x --=+(x R ∈)∴121()21n n f n --=+=2121n -+∵1111n n n =-++∴证明不等式1()1n f n n ->+(3n ≥),即证222122n n <++,也即证212nn >+(3n ≥) 以下有两条求证途径:解法一:利用数学归纳法求证①当3n =时,不等式显然成立. ②设n k =时成立,即212kk >+当1n k =+时,12222(12)k k k +=⨯>+=42222k k k +=++232(1)1k k >+=++ ∴当1n k =+时不等式也成立.由①②可知,对利用大于或等于3的自然数都有212nn >+成立.∴证明不等式1()1nf n n ->+(3n ≥) 解法二:利用放缩法求证∵2(11)112221n n n n n n =+=++++=+>+…∴等式1()1n f n n ->+(3n ≥) 故:1()1n f n n ->+ (3)∵ 211(0)log 122F =+= ∴11()02F -=,即12x =是1()0F x -=的一个根.假设1()0F x -=另外还有一个解0x (012x ≠),则10()0F x -=∴0(0)F x = (012x ≠),这与1(0)2F =相矛盾 故1()0F x -=有惟一解.【方法探究】证明不等式的方法很多,其中分析法和综合法是最基本的方法.分析法由果索因,优点是便于寻找解题思路,而综合法由因索果,优点是便于书写,所以我们在求解过程中,常常两种方法联合作战,从而衍生出“分析综合法”,在本例第(2)问以及下例第(2)问都中有所体现.【技巧点拨】对于压轴题,大多数同学都不能完全解答,如何更好发挥,争取更好的成绩?“分步解答”、“跳步解答”与“解准第一问”是很实用的夺分技巧,其中分析综合题的各小问之间的关系是非常关键.从各小问之间的相互关系来分,数学综合题有以下三类: (1)递进型 递进型解答题是指前问是后问的基础,只有前问正确解答,才能准确求解后问,若第(1)问出错,则可能“全军覆没”,这也是相当多同学不能很好发挥其数学水平的重要原因.对于这类题目,“解准第一问”是至关重要,不容丝毫的马虎.(2)并列式 并列型解答题是指前问与后问关联性不强,前问是否正确,不会影响后问作答,如本例的三个问题.但这类题目也容易丢分,同学们在作答时,常常因为前问不会答而放弃后问的分析与思考,这时“跳步解答”非常关键.(3)混合式 混合型解答题是指解答题有三个及其以上的小问,兼有以上两种类型的特点,答题时注意“分步解答”,如本例万一不会求解第(2)问,具体化1()f n -是没有问题的,争取得到一定的步骤分.【调研2】已知函数22()ln f x x a x x=++(0x >),()f x 的导函数是()f x '对任意两个不相等的正数1x 、2x 求证:(1)当0a ≤时,1212()()()22f x f x x xf ++>;(2)当4a ≤时,1212()()f x f x x x ''->-. 分析:本例以高等数学的函数凸凹性、一致连续性、中值定理等知识为内核,综合考查函数的基本性质、导数求函数极值和均值不等式等知识的应用,考查综合分析、推理论证以及运算能力.第(1)问先根据题设条件具体化12()()2f x f x +、12()2x x f +的表达式,再对二者进行比较,可以逐项比较,也可以作差比较;第(2)问先具体化12()()f x f x ''-,再逐步逆向分析,采用分析法寻找解题思路,至于书写可用分析法,也可以用综合法. 解析:(1)∵()22ln f x x a x x =++∴()()()()1222121212111ln ln 222f x f x a x x x x x x +⎛⎫=+++++ ⎪⎝⎭ ()2212121212x x x x a x x +=+++2121212124ln 222x x x x x x f a x x +++⎛⎫⎛⎫=++ ⎪ ⎪+⎝⎭⎝⎭ 以下有两条求解途径:解法一:逐项比较法122x x +<∴12ln 2x x +< ∵0a ≤∴12ln 2x x a a + ………………………………①∵()()22222212121212112242x x x x x x x x +⎛⎫⎡⎤+>++= ⎪⎣⎦⎝⎭……………………………………② 又∵()()2221212121224x x x x x xx x +=++> ∴1212124x x x x x x +>+ ………………③ 由①、②、③得()22212121212121422x x x x x x a a x x x x ++⎛⎫+++++ ⎪+⎝⎭∴ ()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭解法二:作差比较法()()121222f x f x x x f ++⎛⎫- ⎪⎝⎭=()22212121212121214[[()ln ]222x x x x x x x x a a x x x x ++++++-+++=22212121212121214[()()]()(ln )222x x x x x x x x a a x x x x ++++-+-++=221212121212()1()4()x x x x a x x x x --+++ ∵12x x ≠,且10x >,20x > ∴2121()04x x ->,2121212()0()x x x x x x ->+,1201<<∵0a ≤∴12ln0a ≥∴()()121222f x f x x x f ++⎛⎫-⎪⎝⎭=221212121212()1()04()x x x x a x x x x --++>+ 故()()121222f x f x x x f ++⎛⎫-⎪⎝⎭0>(2)证法一:分析综合法由()22ln f x x a x x =++,得()'222a f x x x x=-+ ∴()()12f x f x ''-=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x ax x x x x x +-⋅+- 欲证()()''1212f x f x x x ->- ,只需证()12221212221x x ax x x x ++->即证()1212122x x a x x x x +<+成立 ∵()121212122x x x x x x x x ++>+设t =,()()240u t t t t =+>,则()242u t t t '=- 令()0u t '=得t =()4u t a ≥=>≥ ∴()1212122x x x x a x x ++> ∴对任意两个不相等的正数12,x x ,恒有()()''1212f x f x x x ->-证法二:综合法1 对于任意两个不相等的正数1x 、2x 有()1212122x x x x x x ++>12x x=12x x +3≥3 4.5a >> ∴ ()12221212221x x a x x x x ++->而()'222a f x x x x =-+ ∴()()12f x f x ''-=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x a x x x x x x +-⋅+-12x x >- 故:()()''1212f x f x x x ->- 证法三:综合法2由()22ln f x x a x x =++,得()'222a f x x x x=-+ ∴()()''12f x f x -=122211222222a a x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭=()121222121222x x a x x x x x x +-⋅+- ∵12,x x 是两个不相等的正数∴()()123221212122422x x aax x x x x x ++->+-()312442x x ≥+-设t =,()()322440u t t t t =+->,则()()'432u t t t =-,列表: ∴38127u => 即 ()12221212221x x ax x x x ++-> ∴()()()12''12121222121222x x af x f x x x x x x x x x +-==-⋅+->- 【方法探究】本例以高等数学中的函数凸凹性与中值定理为知识载体,所以也可以采取高等数学方法求解: (1)当0a ≤时,求证1212()()()22f x f x x xf ++>,联系凹(下凸)函数性质知,只需证明当0a ≤时,只需证明22()ln f x x a x x=++(0x >)为凹函数或下凸函数. 即证明“函数)(x f 的二阶导数恒大于0”其具体证明如下:∵22()ln f x x a x x =++(0x >)∴22()2a f x x x x '=-+,324()2a f x x x''=+-∵0x >,0a < ∴324()20af x x x''=+->在(0,)x ∈+∞时恒成立.∴22()ln f x x a x x =++(0x >)为凹函数 故()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭(2)为证明|||)()(|2121x x x f x f ->'-',可以考虑对函数()f x 的导函数是()f x '在闭区间12[,]x x (或21[,]x x )上应用中值定理,具体证明过程如下:不妨设210x x >>,则由(1)问知22()2a f x x x x '=-+,324()2af x x x''=+-,在闭区间12[,]x x 上,由中值定理有,存在[]21,x x ∈ξ,使得: ))(()()(2121x x f x f x f -''='-'ξ.下证当4a ≤,0ξ>时,有()1f ξ''>成立∵324()2a f x x x ''=+-∴当0a ≤,0x >时,有324()22af x x x ''=+->恒成立 当04a <≤,0x >时,令324()2()a f xg x x x ''=+-=,则34212()a g x x x'=-再令34212()0a g x'=-=,得6x =列表如下:即当04a <≤,0x >时,有33324438()222110810827a a f x x x ''=+-≥->-=>∴1)(04>''>≤ξξf a 时,有,当,有212121)()()(x x x x f x f x f ->-⋅''='-'ξ故()()''1212f x f x x x ->-1.已知32()2f x x bx cx =+++(1)若()y f x =在1x =时有极值-1,求b ,c 的值.(2)当b 为非零实数时,证明()f x 的图像不存在与直线2()10b c x y -++=平行的切线;(3)记函数|()|f x '(11x -≤≤)的最大值为M ,求证32M ≥. 2.已知函数()ln(1)(1)x f x a e a x =+-+,2()(1)(ln )g x x a x f x =---且()g x 在1x =处取得极值. (1)求a 的值和()g x 的极小值; (2)判断()y f x =在其定义域上的单调性, 并予以证明;(3)已知△ ABC 的三个顶点A 、B 、C 都在函数()y f x =的图象上,且横坐标依次成等差数列,求证△ABC 是钝角三角形, 但不可能是等腰三角形.【参考答案】解析:(1)∵32()2f x x bx cx =+++ ∴2()32f x x bx c '=++ 由()f x 在1x =时有极值-1有(1)320(1)121f b c f b c '=++=⎧⎨=+++=-⎩,解之得15b c =⎧⎨=-⎩当1b =,5c =-时,2()325f x x x '=+-当1x >时,()0f x '>,当513x -<<时,()0f x '< 从而符合在1x =时,()y f x =有极值 ∴1b =,5c =-(2)假设()y f x =图象在x t =处的切线与直线2()10b c x y -++=平行,则 ∵2()32f t t bt c '=++,直线2()10b c x y -++=的斜率为2c b -∴2232t bt c c b ++=-,即22320t bt b ++=∵0b ≠ ∴△=2224(3)80b b b -=-<从而方程22320t bt b ++=无解,即不存在t ,使22()32f t t bt c c b '=++=-∴()y f x =的图象不存在与直线2()10b c x y -++=平行的切线.(3)证法一:分类讨论∵|()|f x '=22|3()()|33b b xc ++-∴①若||13b ->,则M 应是|(1)|f '-和|(1)|f '中最大的一个∴2|(1)||(1)|M f f ''≥-+=|32||32|b c b c -++++|4|b ≥12> ∴362M >≥②当30b -≤<时,2|(1)||()|3b M f f ''≥-+-=2|32|||3b b c c -++-2|23|3b b ≥-+=21|(3)|3b -3> ∴32M ≥ ③当03b <≤时,2|(1)||()|3b M f f ''≥+-=2|32|||3b bc c +++-2|23|3b b ≥++=21|(3)|3b +3> ∴32M ≥综上所述,32M ≥成立.证法二:利用二次函数最值求解2()32f t t bt c '=++的顶点坐标是(3b -,332b c -),①若||13b->,则M 应是|(1)|f '-和|(1)|f '中最大的一个 ∴2|(1)||(1)|M f f ''≥-+=|32||32|b c b c -++++|4|b ≥12> ∴362M >≥②若||13b -≤,则M 应是|(1)|f '-、|(1)|f '、|332b c -|中最大的一个(1)当32c ≥-时,2|(1)||(1)|M f f ''≥-+|(1)(1)|f f ''≥-+=|62|3x +≥ ∴32M ≥ (2)当32c <-时, 23||3c b M -≥=2332b c c -≥->综上所述,32M ≥成立. 证法三:利用绝对值不等式的性质∵函数|()|f x '(11x -≤≤)的最大值为M ∴|(1)|M f '≥-,|(1)|M f '≥,|(0)|M f '≥∴4|(1)||(1)|2|(0)|M f f f '''≥-++|(1)(1)2(0)|f f f '''≥-+-=6 ∴32M ≥ 2.解析:(1)∵2()(1)(ln )g x x a x f x =---∴1()2(1)1a a g x x a x x+'=---++(0x >) ∵()g x 在1x =处取得极值 ∴(1)2(1)102ag a a '=---++=,即8a =∴()8ln(1)9xf x e x =+- 2()78ln(1)9ln g x x x x x =--+-89(1)(3)(23)()271(1)x x x g x x x x x x --+'=--+=++(0x >) 令(1)(3)(23)()0(1)x x x g x x x --+'==+得1x =或3x =当13x <<时,()0g x '<,当01x <<时,()0g x '>当3x >时,()0g x '> ∴当3x =时,min ()9ln38ln 412g x =-- (2)∵()8ln(1)9x f x e x =+-∴89()9011xx xe f x e e--'=-=<++恒成立,即函数()f x 在(,)-∞+∞上是单调减函数. (3)设11(,())A x f x ,22(,())B x f x ,33(,())C x f x ,且123x x x <<,则123()()()f x f x f x >>,1322x x x +=∴1212(,()())BA x x f x f x =+-,3232(,()())BC x x f x f x =-- ∴12321232()()[()()][()()]BA BC x x x x f x f x f x f x ⋅=--+-⋅-∵120x x -<,320x x ->,12()()0f x f x ->,32()()0f x f x -< ∴0BA BC ⋅< 故B 为钝角,△ABC 为锐角三角形.另一方面,若ABC ∆为等腰三角形,则只能是BA BC = 即222212123232()[()()]()[()()]x x f x f x x x f x f x -+-=-+- ∵2132x x x x -=-,221232[()()][()()]f x f x f x f x -=- ∴1223()()()()f x f x f x f x -=-,即13)()()f x f x f x =+22(∵()8ln(1)9x f x e x =+- ∴21221316ln(1)188[ln(1)(1)]9()x x xe x e e x x +-=++-+ ∴132122ln(1)ln(1)x x x x xe e e e ++=+++,即22122222x x x x x e e e e e +=++∴3212x x x ee e =+,但与3122x x x e e e +≥==相矛盾,所以ABC ∆不能为等腰三角形.综上所述,△ABC 是钝角三角形, 但不可能是等腰三角形.第二讲 递推数列、数学归纳法型压轴题数列和数学归纳法是初等数学与高等数学的最重要衔接点之一,是中学数学的重要组成部分,涉及知识面广、综合性强、方法灵活、试题新颖、技巧性突出,蕴含函数与方程,等价转化、分类与整合等数学思想以及错位相减法、归纳-猜想-证明、叠加(乘)法、叠代法、裂项法等大量的数学方法,是代数计算与逻辑推理训练的重要题材,因而这类题目多以压轴题的形式出现,成为高考的重头戏之一.【调研1】已知函数)(x f 是定义在R 上的不恒为零的函数, 且对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+.若1()12f =,(2)n n f a n-=(n N *∈),求①.数列{}n a 的通项公式;②.数列{}n a 的前n 项和为n S ,问是否存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立?若存在,求出m 的最小值;若不存在,则说明理由.分析: 求解本题的关键在于准确求解第(1)小问,所以准确化简(2)n f -成为求解本例的焦点.大致有以下三条途径:①.由已知条件()()()f a b af b bf a ⋅=+探索)(n a f 的规律,最后用数学归纳法证明; ②.将所给函数关系式适当变形, 根据其形式特点构造另一个函数, 设法用此函数求出)(n a f ; ③.设法将(2)n f -转化为熟悉的数列. 解析:(1)解法一:“归纳-猜想-证明”法∵对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+∴2()f a =()()a f a a f a ⋅+⋅=2()a f a ⋅3()f a =22()()a f a a f a ⋅+⋅=22()()a a f a a f a ⋅⋅+⋅=23()a f a 4()f a =33()()a f a a f a ⋅+⋅=233()()a a f a a f a ⋅⋅+⋅=34()a f a猜想1()()n n f a na f a -=⋅ (n N *∈)现在用数学归纳法证明: ①.显然1n =时,左边=()f a ,右边=111()a f a -⨯⋅=()f a ∴1n =时,命题1()()n n f a na f a -=⋅显然成立. ②.设n k =(*k N ∈)时有1()()kk f a kaf a -=⋅当1n k =+时 ∵()()()f a b af b bf a ⋅=+∴1()k f a +=()k f a a ⨯=()()k k a f a a f a ⋅+⋅=1()()k k a f a a ka f a -⋅+⋅⋅=()()k k a f a ka f a ⋅+⋅=(1)()k k a f a +⋅∴1n k =+时,命题1()()n n f a na f a -=⋅成立.由①②可知,对任意n N *∈都有1()()n n f a na f a -=⋅(n N *∈)成立.又∵1()12f =∴11111[()]()()(2)1222()2n n nn n f n f f a n n n ---⋅====故数列{}n a 的通项公式n a =11()2n -解法二:构造函数法 ∵当0≠⋅b a 时,有()()()f a b af b bf a ⋅=+ ∴bb f a a f ab ab f )()()(+= 令()()f x g x x =,则bb f a a f ab ab f )()()(+=即为: ()()()g ab g a g b =+∴()()ng a n g a =⋅ 即()()n nf a ng a a=⋅ ∴1()()()()nnnn f a f a a n g a a n na f a a-=⋅⋅=⋅⋅=⋅,即1()()n n f a na f a -=⋅余下的过程同解法一. 证法三: 转化为特殊数列求解∵对于任意的R b a ∈,, 都满足()()()f a b af b bf a ⋅=+,1()12f =∴1[()]2n f =111[()]22n f -⨯=111111[()]()()2222n n f f --⨯+⨯=11111[()]()222n n f --⨯+即1[()]2n f =11111[()]()222n n f --⨯+ ∴1111[()][()]222()()22n n n n f f --=+ ∴新数列1[()]21()2n n f ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是公差为2,首项为1()2212f =的等差数列,即1[()]221()2n n f n = ∴11()2(2)12()2n nn n n f a n n --⨯=== 故数列{}n a 的通项公式n a =11()2n -.(2)假设存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立,则由(1)问可知111()2n n S -=-,所以1141()23n m ---<恒成立∴413m -≥,即7m ≥ 故存在正整数m ,使得对任意的*n N ∈都有43n m S -<成立,此时m 的最小值为7.【方法探究】本例是已知抽象函数关系, 利用函数迭代求数列通项问题.在所给的三种方法之中, 解法一利用“归纳-猜想-证明”求解,思路自然, 但较为繁琐;解法二利用构造函数法求解,比较简洁,但技巧性强;解法三转化为特殊数列求解,思维跨度大.这三种证法反应出求解数列与函数综合题的共同规律: 充分应用已知条件变形转化, 根据其形式特点构造新的数列, 然后利用数列的性质求解.【调研2】已知等差数列{}n a 的公差d 大于0,且2a 、5a 是方程027122=+-x x 的两根,数列{}n b 的前n 项和为n T ,且n n b T 211-=(*n N ∈)(1)求数列{}n a 、{}n b 的通项公式;(2)设数列{}n a 的前n 项和为n S ,试比较nb 1与1+n S 的大小. 分析:(1)由方程027122=+-x x 可求2a 、5a ,从而得到等差数列{}n a 的通项;由公式1112n n n S n a S S n -=⎧=⎨-≥⎩求解数列{}n b 的通项.(2)要比较n b 1与1+n S 的大小,应先由(1)问具体化nb 1、1+n S ,再求出前几项,探索大小规律, 最后用数学归纳法证明.解析:(1)∵2a 、5a 是方程027122=+-x x 的两根,公差d 大于0∴2a =3,5a =9,即5223a a d -==,11a = ∴21n a n =-(*n N ∈) ∵数列{}n b 的前n 项和为n T ,且n n b T 211-=(*n N ∈)∴当1n =时,111112T b b ==- ∴321=b当2≥n 时,∵n n b T 211-= ∴111122n n n n n b T T b b --=-=-∴113n n b b -=(2n ≥),即1212()333n n n b -==故21n a n =-,1212()333n n n b -==(2)解法一:归纳-猜想-证明由(1)可知2[1(21)]2n n n S n +-==,132n n b = ∴21(1)n S n +=+ 当1n =时,1132b =,24S = ∴211S b <当2n =时,2192b =,39S = ∴321S b <当3n =时,31272b =,416S = ∴431S b <当4n =时,41812b =,525S = ∴541S b >当5n =时,512432b =,636S = ∴651S b >猜想:4≥n 时,11+>n n S b以下用数学归纳法证明:(1)当4n =时,由上可知成立.(2)设n k =(*,4k N n ∈≥)时,11+>k kS b ,即2)1(23+>k K 当1n k =+时,11k b +=132k +=332k ⋅23(1)k >+2363k k =++=22(44)221k k k k ++++-2(1)1[(1)1]k k S ++>++=∴当1n k =+时,11+>n nS b 成立.由(1)(2)知n N *∈,4n ≥时,11+>n n S b .综上所述,当1n =,2,3时,11+<n n S b ,当4≥n 时,11+>n nS b .解法二:放缩法证明当1n =,2,3时,同以上解法 当n N *∈,4n ≥时1nb =32n =1223311(12)(1222)22n n n n C C C +>+⋅+⋅+⋅=1(1)(1)(2)[1248]226n n n n n n ---++⋅+⋅ ≥18[126(1)]23n n n n +++-=281636n n ++221n n >++1n S += 综上所述,当1n =,2,3时,11+<n n S b ,当4≥n 时,11+>n nS b . 【方法探究】通过对有限个特例进行考察,猜想一般的结论,然后运用数学归纳法证明,即“观察――猜想――证明”,这是中学数学中重要的解题方法,可有效解决探索性问题、存在性问题或某些与自然数有关的命题,在求解时注意“猜想大胆、求证小心”.【技巧点拨】放缩法是证明不等式的常用方法,过程简洁,但有一定难度,犹如花中的玫瑰,美丽但有刺. 成功运用放缩法求证的关键在于把握放缩尺度,在平时训练中注意多积累与整理.常见的放缩技巧有:(1)添项或减项的“添舍放缩”,如本例12233113(1222)22n n n n C C C ⨯>+⋅+⋅+⋅,只取(21)n +的二项展开式的前四项进行放缩;(2)拆项对比的“分项放缩”;(3)运用分数的性质放缩,如①分子增加正数项或分母减少正数项,分数值变大,反之变小;② a, b, m 都是正数并且a b <,有a a mb b m+<+(真分数的性质)等. (4)运用不等式串)1(11)1(12-<<+n n n n n 放缩,如在第3讲例2第(2)问中求证23π<n T 时,运用该技巧放缩后,再裂项相加求解.类似的不等式有2()4a b ab +≤≤ 222a b +,<<等. 1.已知函数()2x f x m t =⋅+的图象经过点A (1,1)、B (2,3)及C (n S n ,),n S 为数列{}n a 的前n 项和,*n N ∈. (1)求n S 及n a ;(2)若数列{}n b 满足22log 1n n b a =+,记11122334111111ni i i n n b b b b b b b b b b =++=++++∑(*n N ∈)求证:1111132n i i i bb =+≤<∑. 2.第七届国际数学教育大会的会徽的主体是由一连串直角三角形演变而成,其中OA =AB =BC =CD=DE =EF =FG =GH =HI =1.若将图2的直角三角形继续作下去,并记OA 、OB 、… 、OI 、…… 的长度所构成的数列为{}n a (1)求数列{}n a 的通项公式 (2)若函数22212111()nf n n a n a n a =+++++…+,求函数()f n 的最小值; (3)设11n n nb a a +=+,数列{n b }的前n 项和为n S .解不等式|2|4n S -≥3.已知一次函数)(x f 的反函数为)(x g ,且(1)0f =,若点1(,)n n na A n a +(n N *∈)在曲线)(x g y =上,11=a ,对于大于或等于2的任意自然数n 均有111=--+n nn n a a a a . (1)求)(x g y =的表达式;(2)求}{n a 的通项公式;O AB C DE F G H I图1图2(3)设)!2(!4!321++++=n a a a S n n ,求lim n n S →∞. 4.已知数列{}n a 与{}n b 满足下列关系:12a a =(0a >),211()2n n na a a a +=+,n n n a ab a a +=-(n N *∈)(1)求数列{}n b 的通项公式,并化简aa aa n n --+1;(2)设n S 是数列{}n a 的前n 项和,当2≥n 时,n S 与a n )34(+是否有确定的大小关系?若有,请并加以证明,若没有,请说明理由.【参考答案】1.解析:(1)∵函数()2x f x m t =⋅+的图象经过点A (1,1)、B (2,3) ∴2143m t m t +=⎧⎨+=⎩ 解之得11m t =⎧⎨=-⎩ ∴()21x f x =-∵函数()2x f x m t =⋅+的图象经过C (n S n ,) ∴21n n S =-(*n N ∈) ∴当1n =时,111S a ==当2≥n 时,111222n n n n n n a S S ---=-=-= ∵当1n =时,满足12n n a -= ∴数列{}n a 的通项为12n n a -= 故:12n n a -=,21n n S =-(*n N ∈)(2)由(1)可知121)1(21log 22-=+-=+=n n a b n n ,则∴11n n b b +=1(21)(21)n n -+=111()22121n n --+∴111ni i i b b -+∑=12233411111n n b b b b b b b b +++++=11111111(1)2335572121n n -+-+-++--+=11(1)221n -+(*n N ∈) ∵11(1)221n -+在*n N ∈上单调递增 ∴当1n =时min 11(1)221n -+=13 ∵1021n >+ ∴111(1)2212n -<+ 综上可得∑=+<≤n i i i b b 11211312.解析:(1)由题意有2211n n a a+=+∴ 21(1)1n a n =+-⨯=n 即n a (2)∵22212111()n f n n a n a n a =+++++…+∴1111()1232f n n n n n =++++++…+ 111111(1)23322122f n n n n n n n +=++++++++…+++ ∴111(1)()21221f n f n n n n +-=-++++=1102122n n >++- ∴(1)()f n f n +> 即函数()y f n =是递增数列∴()y f n =的最小值为11(1)112f ==+ (3)∵11n n n b a a +===+∴1)n S =++…1 ∴|2|4n S -≥即为2|4≥ 解之得48n ≥且n N ∈3.分析:由)(x g 为一次函数)(x f 的反函数得)(x g 也为一次函数,所以可设()g x kx b =+; 由(1)0f =得(0)1g =,从而有1b =;由“点1(,)n n na A n a +(n N *∈)在曲线)(x g y =上,且111=--+n nn n a a a a ”确定斜率k ,一旦直线)(x g y =的解析式确定,剩下的问题水到渠成. 解析:(1)∵)(x f 为一次函数,且)(x g 为其反函数 ∴设b kx x g +=)( 由(1)0f =得(0)1g =,即1)(+=kx x g ∵()1g n kn =+且1(,)n n n a A n a +(n N *∈)均在直线b kx x g +=)(上,且111=--+n n n n a aa a ∴1)1(112=-+-=+++nn a a a a k nn n n ∴1)(+=x x g (2)∵1(,)n n na A n a +(n N *∈)均在直线b kx x g +=)(上 ∴11+=+n a a nn ∴当*N n ∈时,12121(1)(2)n n n n a a an n n a a a ---⋅⋅⋅⋅⋅⋅⋅=⨯-⨯-⨯…21=n!(3)n S =123!4!(2)!n a a a n ++++=1!2!!3!4!(2)!n n ++++…=1112334(1)(2)n n +++⨯⨯++…=111111233412n n -+-++-++=1122n -+ ∴lim n n S →∞=11lim()22n n →∞-+=124.已知数列{}n a 与{}n b 满足下列关系:12a a =(0a >),211()2n n na a a a +=+,n n n a ab a a +=-(n N *∈)(1)求数列{}n b 的通项公式,并化简aa aa n n --+1;(2)设n S 是数列{}n a 的前n 项和,当2≥n 时,n S 与a n )34(+是否有确定的大小关系?若有,请并加以证明,若没有,请说明理由.4.解析:(1)∵n n n a a b a a +=-(n N *∈),211()2n n na a a a +=+∴1n b +=11n n a a a a +++-=331()21()2n n n na a aa a a a a +++-=22()()n n a a a a +-=2n b 0> ∴1lg 2lg n n b b += ∵1113a a b a a +==- ∴1lg (lg3)2n n b -=⋅,即123n n b -= ∴11223131n n n a a --+=-故1n n a a a a +--=2n n a a a-=1n b +=1231n -+(2)当2≥n 时,1n a a +-=1231n n a a --+≤1()10n a a -(当且仅当2n =时取“=”) ∴321()10a a a a -≤-,431()10a a a a -<-,……,)(1011a a a a n n -<-- ∴])2([101)2(1121a n a S a n a a S n n ---<----- ∵12a a =,254a a = ∴651010(2)2(2)2n n n S a n a S a a n a ---<---- ∴11226131[(2)]189(31)n n n S n a --+<-+--251()189n a <+-23()18n a =+4()3n a <+故4()3n S n a <+.第三讲 解析几何型压轴题解析几何综合题是高考命题的一个热点内容,这类试题往往以解析几何知识为载体,综合函数、不等式、向量、数列等知识,涉及知识点多,综合性强,题目多变,解法灵活多样,能较好体现高考的选拔功能,因此这类题目常常以压轴题的形式出现.求解这类题目,注意在掌握通性通法的同时,从宏观上把握,微观上突破,在审题和解题思路上下功夫,不断跨越求解征途中可能会遇到的一道道运算难关,最终达到求解目的.【调研1】若1F ,2F 为双曲线22221b y a b -=的左、右焦点,O 为坐标原点,P 在双曲线左支上,M 在右准线上,且满足1F O PM =,11OF OP OP OM OP OMOF OP⋅⋅=.(1)求此双曲线的离心率;(2)若此双曲线过点N ,求双曲线的方程;(3)设(2)中双曲线的虚轴端点为1B ,2B (1B 在y 轴的正半轴上),过2B 作直线AB 与双曲线交于A ,B两点,求11B A B B =时,直线的方程. 分析:弄清向量表达式11OF OP OP OM OP OMOF OP⋅⋅=是求解本题的关键!由向量的数量积定义可知cos ,OP OM <>=1cos ,OF OP <>,即OP 是1F OM ∠的角平分线,联系1F O PM =可判断四边形1OMPF 是菱形.解析:(1)由1F O PM =知四边形1PFOM 是平行四边形 又由11OF OP OP OM OP OMOF OP⋅⋅=知OP 平分1F OM ∠ ∴四边形1PFOM 是菱形 设焦半距为c ,则有11OF PF PM c === ∴2122PF PF a c a =+=+ 由双曲线第二定义可知21PF e PM =,即2c aec+= ∴2e =(1e =-舍去) (2)∵2ce a== ∴2c a = ∴双曲线方程为222213x y a a -=又∵双曲线过点N ∴224313a a -=,即23a = ∴所求双曲线的方程为22139x y -=(3)由题意知()10,3B ,()20,3B -,则设直线AB 的方程为3y kx =-,()11,A xy ,()22,B x y则由223139y kx x y=-⎧⎪⎨-=⎪⎩有()2236180k x kx -+-= ∵双曲线的渐近线为y = ∴当k =时,AB 与双曲线只有一个交点,即k ≠∵12263k x x k +=-,122183x x k -⋅=- ∴()121221863y y k x x k -+=+-=-,()212121299y y k x x k x x ⋅=-++= 又∵()1113B A x y =-,,()1223B B x y =-,∵11B A B B ⊥∴()121212390xx y y y y +⋅-++=即221818939033k k --+-⋅+=-- ∴k = ∴直线AB 的方程为3y =-【方法探究】平面向量是高中数学新增内容,兼有代数和几何特性,是高中数学应用最广泛的数学工具之一,解析几何是高中数学的传统重点内容,是高考中的重头戏,而平面向量与解析几何交汇命题是近三年来新高考的一个新亮点.这类综合问题大致可分三类:(1)平面向量与圆锥曲线符号层面上的整合问题:这类题目是平面向量和圆锥曲线的简单拼盘,在平面向量刚进入高考时,比较常见,近来比较少;(2)平面向量与圆锥曲线知识层面上的整合问题:用平面向量语言包装解析几何中元素的关系,试题情境新颖,结合点选取恰到好处,命题手法日趋成熟,如本例求解过程中,明确向量式“1F O PM =”与“11OF OP OP OM OP OMOF OP⋅⋅=”含义,还原几何元素“菱形1PFOM ”是求解关键;(3)平面向量与圆锥曲线应用层面的整合问题:以平面向量作为工具,综合处理有关长度、角度、垂直、射影等问题以及圆锥曲线中的轨迹、范围、最值、定值、对称等典型问题,这类问题往往更具有挑战性. 【调研2】在xoy 平面上有一系列点111(,)P x y ,222(,)P x y ,……,(,)n n n P x y ……,对每个自然数n ,点n P 位于函数)0(2≥=x x y 的图象上.以点n P 为圆心的⊙n P 与x 轴都相切,且⊙n P 与⊙1+n P 又彼此外切.若11=x ,且n n x x <+1 )(N n ∈.(1)求证数列}1{nx 是等差数列; (2)设⊙n P 的面积为n S ,n n S S S T +⋅⋅⋅++=21, 求证:23π<n T 分析:本题是数列与圆锥曲线的综合题,求解过程有两个关键点:①.由⊙n P 与⊙1+n P 彼此外切,从而构建关于n x 的递推关系式,突破的办法是具体化已知条件 “⊙n P 与⊙1+n P 彼此外切”为1n n P P +1n n r r ++=1n n y y ++; ②.经过一系列演算后得到222111]35(21)n T n =++++-,如何放缩?放缩度是把握问题的关键.解析:(1) ⊙n P 与⊙1+n P 彼此外切∴11n n n n P P r r ++=+1n n y y +=+ 两边平方并化简得1214)(++=-n n n n y y x x依题意有⊙n P 的半径2n n n x y r ==,22211()4n n n n x x x x ++-=⋅∵10n n x x +>> ∴112++=-n n n n x x x x ,即1112()n nn N x x +-=∈ ∴ 数列}1{n x 是以111x =为首项,以2为公差的等差数列. (2) 由(1)问有111(1)2n n x x =+-⋅,即121n x n =-∴2244(21)n n n n S r y x n ππππ====-, n n S S S T +⋅⋅⋅++=21])12(151311[222-++++=n π ≤])12()32(15313111[-⋅-++⋅+⋅+n n π =)]}121321()5131()311[(211{---++-+-+n n π =)]1211(211[--+n π< 【方法探究】在04年的湖南、上海、浙江卷, 05年的上海、浙江卷,06年的重庆、山东、湖北、浙江等卷都有数列与解析几何的综合问题.这类题综合性强,可以从数与形的两个角度考查理性思维能力以及函数与方程、数形结合、特殊化与一般化等数学思想.这类试题大多以点列的形式出现的,一个点的横,纵坐标分别是某两个不同数列的项,而这两个数列又由点所在的曲线建立联系,从而数列的代数特征与曲线的几何性质熔合.求解这类题目关键在于利用曲线性质建立数列的递推式,转化为代数问题求解.【技巧点拨】数列的判断与证明是数列的常考点,其求解过程常常从数列通项或递推式入手,通常有两种方法:①.定义法 证明数列每项与它的前项之差(比)是同一个常数,即证1n n a a +-=d ,d 为常数(1n na a +=q ,q 为不等于零的常数);②.中项法 证明每一项都是它的前一项和后一项的等差(比)中项,即证122n n n a a a ++=+(221++⋅=n n n a a a ).【调研3】在平面直角坐标系xOy中,有一个以(10,F和(2F的椭圆,设椭圆在第一象限的部分为曲线C ,动点P 在C 上,C 在点P 处的切线与x y 、轴的交点分别为A ,B ,且向量OM OA OB =+.求:(1)点M 的轨迹方程; (2)OM 的最小值.分析:求解本例可以根据以下步骤进行:①求立椭圆的方程,得到曲线C的方程; ②求过点P的切线方程,求出点A、B的坐标;③运用相关点法求点M 的轨迹方程; ④具体化OM ,转化为函数最值问题求解.解析:∵椭圆的焦点为(10,F、(2F,离心率为2∴椭圆方程可写为22221y x a b +=(0a b >>),其中223a b ⎧+==,解之得24a =,21b =∴曲线C的方程为y =,y '=设在曲线C上的动点00(,)P x y (0<x 0<1),则0y =∴过切点P的切线的斜率为0|x x k y ='==04x y -,过点P的切线的方程为 00004()x y x x y y =---+ ∵点,A B 是切线与x y 、轴的交点 ∴A01(,0)x ,B04(0,)y设点M为(,)x y ,则由OM →=OA → +OB →得01x x =,04y y =∵点00(,)P x y在曲线C:0y =∴点M 的轨迹方程为22141x y +=(1x >,2y >) (2)由(1)问可知2y =2411x -=2441x +- ∴2||OM =22x y +=22441x x ++-=224151x x -++-≥5=9 (当且仅当22411x x -=-,即1x =>时取等号)故当x =|OM →|的最小值为3. 【高考前沿】切线是曲线的一个重要几何性质,而导数是求曲线切线的最有力的工具,所以从切线角度与圆锥曲线综合考查,这是高考的一个新趋势,大大丰富了解析几何的研究内容,可能成为以后高考的一个新热点.导数也是求解最值问题的最常用工具,常与解析几何交汇,以最值问题的形式出现,是高考常考常新的热点.1.P 、Q 、M 、N 四点都在中心为坐标原点,离心率22=e ,左焦点)0,1(-F 的椭圆上,已知PF 与FQ 共线,MF 与FN 共线,0PF MF ⋅=,求四边形PMQN 的面积的最大值与最小值.2.设向量(1,0)i =,(0,1)j =,()a x m i y j =++,()b x m i y j =-+,且||||6a b +=,03m <<,0x >,y R ∈. (1)求动点(,)P x y 的轨迹方程;(2)已知点(1,0)A -,设直线1(2)3y x =-与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得13AB AC ⋅=?若存在,求出m 的值;若不存在,请说明理由. 3.已知曲线C :222(23)1k x k y k +-=+(k R ∈). (1)若曲线C 是双曲线,求k 的取值范围;(2)若曲线C 是焦点在x(3)对于满足条件(2)的双曲线,是否存在过点B (1,1)的直线l ,使直线l 与双曲线交于M ,N 两点且B 是线段MN 的中点?若存在,求出直线l 的方程;若不存在,请说明理由. 【参考答案】1.解析:∵椭圆的中心为坐标原点,离心率22=e ,左焦点)0,1(-F ∴椭圆方程为2212x y += ∵PF 与FQ 共线,MF 与FN 共线,0PF MF ⋅=∴直线PQ 和直线MN 都过椭圆的左焦点)0,1(-F不妨设PQ 的方程为1ky x =+,设11(,)P x y ,11(,)Q x y ,则12y y +22112ky x x y =+⎧⎪⎨+=⎪⎩ ∴22(2)210k y ky +--= ∴12222k y y k -+=-+,12212y y k -⋅=+∴12PQ y y =-=22)2k k +==+ (1)当0k ≠时,MN 的斜率为1k-,同理可得221)12k MN k +=+故四边形面积222214(2)12252k k S PQ MN k k ++==++=222212(5)2252k k k k ++-++=222252k k-++ ∵222529k k ++≥ ∴222202952k k-≤-<++,即1629S ≤<(2) 当0k =时,MN 为椭圆的长轴,MN =PQ =∴122S PQ MN ==综合(1) (2)知,四边形PQMN 面积的最大值为2,最小值为169.2.解析:(1)∵(1,0)i =,(0,1)j =,||||6a b +=6=,即为点(,)P x y 到点(,0)m -与到点(,0)m 距离之和为6记1(,0)F m -,2(,0)F m (03m <<),则12||26F F m =<∴1212||||6||PF PF F F +=> 又∵0x > ∴P 点的轨迹是以1F ,2F 为焦点的椭圆的右半部分.∵26a =,22c m =∴22229b a c m =-=-∴所求轨迹方程为222199x y m +=-(0,03x m ><<) (2)设11(,)B x y =,22(,)C x y = ∴11(1,)AB x y =+,22(1,)AC x y =+∴121212·()1AB AC x x x x y y =++++而12y y ⋅=1211(2)(2)33x x -⋅-=12121[2()4]9x x x x -++∴AB AC ⋅=121212121()1[-2()4]9x x x x x x x x ++++++=12121[107()13]9x x x x +++若存在实数m ,使得1·3AB AC =成立,则1212107()13=0x x x x +++………………………①高考数学第二轮复习 压轴题21 由⎪⎪⎩⎪⎪⎨⎧>=-+=0)(1992),-(31y 222x m y x x 得222(1)4(977)0m x x m --+-=…………………………② ∵0x > ∴22164(1)(977)0m m =--⋅->△,2124010x x m +=>-,21229-77010 m x x m =>- ∴2321940m =< 此时虽满足△>0,但21229-7728893080010 4040m x x m ==-<- ∴不存在符合题意的实数m ,使得1·3AB AC = 3.解析:(1)当1k =-、0k =或32k =时,曲线C 表示直线. 当1k ≠-且0k ≠且32k ≠时,曲线C 可化为22111223x y k k k k +=++-………………(1) 方程(1)表示椭圆的充要条件是110223k k k k ++⋅<- ∴解之得302k << (2)∵ 曲线C 是焦点在x∴212k a k +=,2123k b k +=--,从而有211223312k k k k e k k++--==+ ∴ 1k = 故曲线C 的方程为22112x y -= (3)假设存在直线l ,设11(,)M x y ,22(,)N x y ,则有⎪⎪⎩⎪⎪⎨⎧=-=-12112122222121y x y x ∴0)(2122212221=---y y x x ,即121212122()()()()x x x x y y y y -+=-+ ∵B 是线段MN 的中点 ∴221=+x x ,221=+y y∴ 直线l 的斜率22121=--=x x y y k ,即直线l :21y x =- 又直线l 与双曲线交于MN 两点,由⎪⎩⎪⎨⎧-==-1212122x y y x 得03422=+-x x , 此时0832416<-=⨯⨯-=∆,方程无实数根.即直线l 与双曲线12122=-y x 无交点. 故不存在满足条件的直线l .点评:本题易忽视直线m 与双曲线交于MN 两点的隐含条件0>∆,而得出存在直线l 为12-=x y 的错误结论.。

2019高考数学押题卷及答案解析

2019高考数学押题卷及答案解析

山东省2019年高考数学押题试卷考试范围:学科内综合,第二轮复习用卷。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分,考试时间120分钟。

参考公式:锥体的体积公式:V=3Sh ,其中S 是锥体的底面积,h 是锥体的高。

如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ):如果事件A 、B 独立,那么P (AB )=P (A )·P (B )。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈-<≤-=N x x M x,2110log 11的真子集的个数是 ( )A .902B .9022-C .9121-D .1290-2.已知点A (2,3),B (5,4),C (7,10),若AP →=AB →+λAC →(λ∈R ),则当点P 在第三象限时,λ的取值范围是 ( ) A .(-1,0) B .(-1,+∞) C .(0,1) D .(-∞,-1)3.设a 、b 、c 、d ∈R ,若a +b ic +d i为实数,则 ( )A .bc +ad ≠0B .bc -ad ≠0C .bc -ad =0D .bc +ad =04.等比数列{}n a 前项的积为n T ,若156a a a 是一个确定的常数,那么数列789,,T T T ,10T 中也是常数的项是 ( ) A .7TB .8TC .9TD .10T5.(理)已知(2x 2 - x p )6的展开式中常数项为2027,那么正数p 的值是 ( )A .1B .2C .3D .4(文)如果函数f(x)=⎩⎨⎧>-≤1111x x 则不等式()0xf x ≤的解集为 ( ) A .[]1,1-B .[]()1,01,-+∞C .()()1,,1+∞-∞-D .()()0,1,1-∞-6.已知函数()()1x xf x k a a -=--()0,1a a >≠为奇函数,且为增函数, 则函数x y a k =+的图象为( )7.抛物线y x C 2:2=的焦点为F ,过C 上一点),1(0y P 的切线l 与y 轴交于A ,则AF =( ) A .1B .12C .2D .148.如果执行右面的程序框图,输出的A 为 ( ) A .2047 B .2049 C .1023 D .10259.已知函数f(x)=)(23R c b a cx bx x ∈++、、的图象如图所示,则下列关于b 、c符号判断正确的是()A .b<0 c<0 B .b>0 c<0 C .b<0 c>0 D .b>0 c>010.(理)如图在正方体ABCD —A 1B 1C 1D 1中,点E 1,F 1分别是线段A 1B 1,A 1C 1的中点,则直线BE 1与AF 1所成角的余弦值是 ( )A .3010 B .12 C .3015 D .1510(文)一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由这样的正方体组成的个数为 ( )A .12个B .13个C .14个D .18个11.已知抛物线22y px =(0)p >与双曲线22221x y a b-=(0,0)a b >>有相同的焦点F ,点A 是两曲线的一个交点,且AF x ⊥轴,则双曲线的离心率为( ) A1B1C.2D.2+12.(理)已知函数1()lg ()2x f x x =-有两个零点21,x x ,则有 ( ) A .021<x x B .121=x x C .121>x x D .1021<<x x (文)已知函数f (x )=|lg x |.若0<a<b,且f (a )=f (b ),则如结论中错误的是 ( ) A .0<a<1 B .b>1 C .ab=1 D .2a b +≥第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分。

2019-2020年高考数学二轮复习 专题1 高考客观题常考知识 第3讲 不等式与线性规划 理

2019-2020年高考数学二轮复习 专题1 高考客观题常考知识 第3讲 不等式与线性规划 理

2019-2020年高考数学二轮复习专题1 高考客观题常考知识第3讲不等式与线性规划理不等式的解法1.设f(x)=则不等式f(x)<2的解集为( B )(A)(,+∞) (B)(-∞,1)∪[2,)(C)(1,2]∪(,+∞) (D)(1,)解析:原不等式等价于或即或解得2≤x<或x<1.故选B.2.(xx山东卷)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为( C )(A)(-∞,-1) (B)(-1,0)(C)(0,1) (D)(1,+∞)解析:f(-x)==,由f(-x)=-f(x)得=-,即1-a·2x=-2x+a,化简得a·(1+2x)=1+2x,所以a=1.f(x)=.由f(x)>3,得0<x<1,故选C.3.(xx陕西西安市模拟)关于x的不等式x2-2ax-3a2<0(a<0)的解集为(x1,x2),且x2-x1=12,则实数a的值等于.解析:因为关于x的不等式x2-2ax-3a2<0(a<0)的解集为(x1,x2),所以x1+x2=2a,x1·x2=-3a2,又x2-x1=12,(x2-x1)2=(x2+x1)2-4x1·x2,所以144=4a2+12a2=16a2,解得a=±3,因为a<0,所以a=-3.答案:-3简单的线性规划问题4.(xx北京卷)若x,y满足,则z=x+2y的最大值为( D )(A)0 (B)1 (C) (D)2解析:由x,y的约束条件可画出可行域(如图所示),其中A(,),B(0,1),易知直线x+2y-z=0经过点B(0,1)时,z取最大值2,故选D.5.(xx浙江温州市第二次适应测试)若实数x,y满足不等式组且z=y-2x的最小值等于-2,则实数m的值等于( A )(A)-1 (B)1 (C)-2 (D)2解析:由z=y-2x,得y=2x+z,作出不等式对应的可行域,平移直线y=2x+z,由平移可知当直线y=2x+z经过点A时,直线y=2x+z的截距最小,此时z取得最小值为-2, 即y-2x=-2,由解得即A(1,0),点A也在直线x+y+m=0上,则m=-1.故选A.6.(xx贵州遵义市第二次联考)若则目标函数z=的取值范围是( A )(A)[2,5] (B)[1,5] (C)[,2] (D)[2,6]解析:z==1+2,可理解为求斜率的最值问题,画出可行域如图阴影部分,可知k=在(1,2)点处最大,最大为2;在(2,1)点处最小,最小为,所以z的取值范围为[2,5].故选A.7.(xx河南开封市模拟)设不等式组表示的平面区域为D,若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是.解析:作出区域D的图象,联系指数函数y=a x的图象,能够看出,当图象经过区域的边界点C(2,9)时,a可以取到最大值3,而显然只要a大于1,图象必然经过区域内的点.则a的取值范围是1<a≤3.答案:(1,3]基本不等式的应用8.(xx甘肃省河西五地市高三第一次联考)函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A 在直线mx+ny-1=0(mn>0)上,则+的最小值为( B )(A)3 (B)4 (C)5 (D)6解析:函数y=a1-x(a>0,a≠1)的图象恒过定点A(1,1),又点A在直线mx+ny-1=0(mn>0)上,所以m+n=1,所以+=(m+n)(+)=2++≥2+2=4,当且仅当m=n=时取等号.故选B.9.(xx河南郑州市第一次质量预测)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy的最大值为( C )(A)32 (B)32 (C)64 (D)64解析:设该三棱锥的高为h,由三视图知,两式相减并整理得x2+y2=128.又因为xy≤==64(仅当x=y时取等号).10.(xx广东深圳市第一次调研考试)已知向量a=(-1,1),b=(1,)(x>0,y>0),若a⊥b,则x+4y的最小值为.解析:由a⊥b得-1+=0,+=1,(x+4y)·(+)=5++≥2+5=9.(当且仅当=时取等号)答案:9一、选择题1.(xx四川资阳市三模)已知loa<lob,则下列不等式一定成立的是( A )(A)()a<()b (B)>(C)ln(a-b)>0 (D)3a-b<1解析:因为y=lox是定义域上的减函数,且loa<lob,所以a>b>0.又因为y=()x是定义域R上的减函数,所以()a<()b;又因为y=x b在(0,+∞)上是增函数,所以()b<()b;所以()a<()b,选项A正确.2.(xx湖南卷)若变量x,y满足约束条件则z=3x-y的最小值为( A )(A)-7 (B)-1 (C)1 (D)2解析:画出可行域如图所示.当直线y=3x-z过点C(-2,1)时,z取最小值,故z min=3×(-2)-1=-7.故选A.3.(xx广西柳州市、北海市、钦州市1月份模拟)设变量x,y满足约束条件则z=2x×的最小值为( B )(A) (B) (C) (D)解析:可得z=2x-2y,设m=x-2y,不等式组表示的平面区域如图阴影部分,平移直线l:y=x,由图象可知直线l经过点A时,其截距最大,m最小,z最小,解方程组得A(2,2),则z最小=.4.(xx江西南昌市第一次模拟)已知实数x,y满足若目标函数z=2x+y的最大值与最小值的差为2,则实数m的值为( C )(A)4 (B)3 (C)2 (D)-解析:作出可行域如图,根据目标函数的几何意义可转化为直线y=-2x+z的截距,可知在N点z取最小值,在M点z取最大值.因为N(m-1,m),M(4-m,m),所以z M-z N=2(4-m)+m-2(m-1)-m=10-4m=2,所以m=2.5.(xx甘肃省河西五地市高三第一次联考)已知集合{(x,y)|}表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为( D )(A) (B) (C) (D)解析:作出不等式组对应的平面区域如图,则对应的区域为△AOB.由解得即B(4,-4).由解得即A(,).直线2x+y-4=0与x轴的交点坐标为(2,0),则△OAB的面积S=×2×+×2×4=.点P的坐标满足不等式x2+y2≤2区域面积S=×π×()2=,由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=.故选D.6.(xx陕西卷)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( D )甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8解析:设该企业每天生产甲产品x吨,乙产品y吨,每天获得的利润为z万元,则有z=3x+4y,由题意得x,y满足不等式组表示的可行域是以O(0,0),A(4,0),B(2,3),C(0,4)为顶点的四边形及其内部.根据线性规划的有关知识,知当直线3x+4y-z=0过点B(2,3)时,z取最大值18,故该企业每天可获得最大利润为18万元.故选D.7.设f(x)=ln x,0<a<b,若p=f(),q=f(),r=[f(a)+f(b)],则下列关系式中正确的是( C )(A)q=r<p (B)q=r>p(C)p=r<q (D)p=r>q解析:由题意得p=ln ,q=ln ,r=(ln a+ln b)=ln =p,因为0<a<b,所以>,所以ln >ln ,所以p=r<q.故选C.8.(xx四川南充市第一次高考适应性考试)若目标函数z=ax+by(a>0,b>0)满足约束条件且最大值为40,则+的最小值为( B )(A) (B) (C)1 (D)4解析:不等式表示的平面区域为如图阴影部分,当直线z=ax+by(a>0,b>0)过直线x-y+2=0与直线2x-y-6=0的交点(8,10)时,目标函数z=ax+by(a>0,b>0)取得最大值40,即8a+10b=40,即4a+5b=20,而+=(+)=+(+)≥+1=.故选B.9.(xx山东卷)已知x,y满足约束条件当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时, a2+b2的最小值为( B )(A)5 (B)4 (C) (D)2解析:不等式组表示的平面区域如图中阴影部分所示,根据目标函数的几何意义可知,目标函数在点A(2,1)处取得最小值,故2a+b=2.法一将2a+b=2两边分别平方得4a2+b2+4ab=20,而4ab=2×a×2b≤a2+4b2,当且仅当a=2b, 即a=,b=时取等号.所以20≤4a2+b2+a2+4b2=5(a2+b2),所以a2+b2≥4,即a2+b2的最小值为4.故选B.法二将2a+b=2看作平面直角坐标系aOb中的直线,则a2+b2的几何意义是直线上的点与坐标原点距离的平方,故其最小值为坐标原点到直线2a+b=2距离的平方,即()2=4.故选B.10.(xx重庆卷)若不等式组表示的平面区域为三角形,且其面积等于,则m的值为( B )(A)-3 (B)1 (C) (D)3解析:作出不等式组表示的平面区域如图中阴影部分所示,由图可知,要使不等式组表示的平面区域为三角形,则m>-1.由解得即A(1-m,1+m).由解得即B(-m,+m).因为S△ABC=S△ADC-S△BDC=(2+2m)[(1+m)-(+m)]=(m+1)2=,所以m=1或m=-3(舍去),故选B.11.(xx四川宜宾市二诊)已知集合A={x∈R|x4+mx-2=0},满足a∈A的所有点M(a,)均在直线y=x的同侧,则实数m的取值范围是( A )(A)(-∞,-)∪(,+∞)(B)(-,-1)∪(1,)(C)(-5,-)∪(,6)(D)(-∞,-6)∪(6,+∞)解析:因为集合A={x∈R|x4+mx-2=0},所以方程的根显然x≠0,原方程等价于x3+m=,原方程的实根是曲线y=x3+m与曲线y=的交点的横坐标,而曲线y=x3+m是由曲线y=x3向上或向下平移|m|个单位而得到的,若交点(x i,)(i=1,2)均在直线y=x的同侧,因直线y=x与y=交点为(-,-),(,);所以结合图象可得或解得m>或m<-.故选A.12.已知函数f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,则当y≥1时,的取值范围是( A )(A)[,] (B)[0,] (C)[,] (D)[0,]解析:因为f(-x)=-x+sin(-x)=-f(x),且f′(x)=1+cos x≥0,所以函数f(x)为奇函数,且在R上是增函数.所以由f(y2-2y+3)+f(x2-4x+1)≤0,得f(y2-2y+3)≤f(-x2+4x-1),所以y2-2y+3≤-x2+4x-1,即(x-2)2+(y-1)2≤1,其表示圆(x-2)2+(y-1)2=1及其内部.表示满足的点P与定点A(-1,0)连线的斜率.结合图形分析可知,直线AC的斜率=最小,切线AB的斜率tan∠BAX=tan 2∠PAX===最大.故选A.二、填空题13.(xx江苏卷)不等式<4的解集为.解析:不等式<4可转化为<22,由指数函数y=2x为增函数知x2-x<2,解得-1<x<2,故所求解集为(-1,2).答案:(-1,2)14.(xx新课标全国卷Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是.解析:由题意,得函数f(x)的草图如图所示.因为f(x-1)>0,所以|x-1|<2,所以-2<x-1<2,所以-1<x<3.答案:(-1,3)15.(xx合肥八中段考)若正数a,b满足a+2b=3,且使不等式+-m>0恒成立,则实数m的取值范围是.解析:不等式+-m>0恒成立,即3(+)>3m恒成立.又正数a,b满足a+2b=3,(a+2b)(+)=+++2≥,当且仅当a=b=1时取“=”,所以实数m的取值范围是(-∞,).答案:(-∞,)16.(xx浙江卷)已知函数f(x)=则f(f(-3))= ,f(x)的最小值是.解析:因为-3<1,所以f(-3)=lg[(-3)2+1]=lg 10=1,所以f(f(-3))=f(1)=1+-3=0.当x≥1时,f(x)=x+-3≥2-3(当且仅当x=时,取“=”),当x<1时,x2+1≥1,所以f(x)=lg(x2+1)≥0,又因为2-3<0,所以f(x)min=2-3.答案:0 2-3。

届数学二轮复习第二部分专题篇素养提升文理专题一三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三

届数学二轮复习第二部分专题篇素养提升文理专题一三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三

第2讲三角恒等变换与解三角形(文理)JIE TI CE LUE MING FANG XIANG解题策略·明方向⊙︱考情分析︱1.三角恒等变换是高考的热点内容,主要考查利用各种三角函数公式进行求值与化简,其中二倍角公式、辅助角公式是考查的重点,切化弦、角的变换是常考的内容.2.正弦定理、余弦定理以及解三角形问题是高考的必考内容,主要考查:(1)边、角、面积的计算;(2)有关边、角的范围问题;(3)实际应用问题.⊙︱真题分布︱(理科)年份卷别题号考查角度分值202 0Ⅰ卷9、16三角恒等变换和同角间的三角函数关系求值;利用余弦定理解三角形10Ⅱ卷17解三角形求角和周长的12(文科)KAO DIAN FEN LEI XI ZHONG DIAN考点分类·析重点考点一三角恒等变换错误!错误!错误!错误!三角恒等变换与求值1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β。

(2)cos(α±β)=cos αcos β∓sin αsin β。

(3)tan(α±β)=错误!。

2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α。

(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)tan 2α=错误!.3.辅助角公式a sin x+b cos x=错误!sin(x+φ)(其中tan φ=错误!)典错误!错误!错误!典例1(1)(2020·全国Ⅱ卷模拟)cos2 40°+2sin 35°sin 55°sin 10°=(A)A.错误!B.错误!C.错误!+错误!D.错误!(2)(2020·宜宾模拟)已知α∈错误!,且3sin2α-5cos2α+sin 2α=0,则sin 2α+cos 2α=(A)A.1B.-错误!C.-错误!或1D.-1(3)已知函数f(x)=错误!cos x cos错误!+sin2错误!-错误!.①求f(x)的单调递增区间;②若x∈错误!,f(x)=错误!,求cos 2x的值.【解析】(1)原式=cos240°+2sin 35°cos 35°sin 10°=cos240°+sin 70°sin 10°=12+12cos 80°+sin 70°sin 10°=错误!+错误!(cos 70°cos 10°-sin 70°sin 10°+2sin 70°sin 10°)=错误!+错误!(cos 70°cos 10°+sin 70°sin 10°)=错误!+错误!cos 60°=34。

高考数学二轮复习第三篇攻坚克难压轴大题多得分第30练圆锥曲线的热点问题练习文

高考数学二轮复习第三篇攻坚克难压轴大题多得分第30练圆锥曲线的热点问题练习文

第30练圆锥曲线的热点问题[明考情]圆锥曲线的热点问题作为直线与圆锥曲线的位置关系的延伸与深化,是高考的必考点,高考中常选取其中一个热点问题作为圆锥曲线的压轴题目.[知考向]1.范围与最值问题.2.定值、定点问题.3.探索性问题.考点一范围与最值问题方法技巧圆锥曲线的最值和范围问题解题常见思路(1)利用判别式来构造不等式,从而确定参数的取值范围.(2)利用已知参数的取值范围,求新参数的范围,解决这类问题的核心是在两个参数之间建立相关关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知不等关系构造不等式,从而求出参数的取值范围.(5)利用函数值域的求法,确定参数的取值范围.1.已知点A(1,0),点M是圆C:(x+1)2+y2=8上的任意一点,线段MA的垂直平分线与直线CM交于点E.(1)求点E的轨迹方程;(2)若直线y=kx+m与点E的轨迹有两个不同的交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m 的取值范围.解 (1)由题意知|EM |=|EA |,|CE |+|EM |=22, 所以|CE |+|EA |=22>2=|CA |,所以点E 的轨迹是以点C ,A 为焦点的椭圆,其轨迹方程为x 22+y 2=1.(2)设P (x 1,y 1),Q (x 2,y 2),则将直线与椭圆的方程联立得⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2=2,消去y ,得(2k 2+1)x 2+4kmx +2m 2-2=0, Δ>0,m 2<2k 2+1.①x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-22k 2+1.因为点O 在以PQ 为直径的圆的内部,故OP →·OQ →<0,即x 1x 2+y 1y 2<0,而y 1y 2=(kx 1+m )(kx 2+m )=m 2-2k 22k 2+1,故由x 1x 2+y 1y 2=2m 2-22k 2+1+m 2-2k22k 2+1<0,得m 2<2k 2+23,且满足①式,所以m 2<23,所以m 的取值范围是⎝ ⎛⎭⎪⎫-63,63. 2.如图,已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.①则x 1x 2=b 2-112+1m2=2m 2(b 2-1)m 2+2,x 1+x 2=2bm12+1m2=4mbm 2+2, y 1+y 2=-1m (x 1+x 2)+2b =-1m ×4mb m 2+2+2b =2bm2m 2+2.设M 为AB 的中点,则M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2,代入直线方程y =mx +12,解得b =-m 2+22m 2,②由①②,得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且点O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 3.已知抛物线y 2=4x ,直线l :y =-12x +b 与抛物线交于A ,B 两点.(1)若x 轴与以AB 为直径的圆相切,求该圆的方程;(2)若直线l 与y 轴负半轴相交,求△AOB (O 为坐标原点)面积的最大值. 解 (1)联立⎩⎪⎨⎪⎧y =-12x +b ,y 2=4x ,化简得y 2+8y -8b =0.由Δ=64+32b >0,解得b >-2.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-8,y 1y 2=-8b . 设圆心Q (x 0,y 0),则有x 0=x 1+x 22,y 0=y 1+y 22=-4,r =|y 0|=4,|AB |=1+(-2)2|y 1-y 2|=5(64+32b )=2r =8,解得b =-85.所以x 0=2b +8=245,圆心Q ⎝ ⎛⎭⎪⎫245,-4,故圆的方程为⎝ ⎛⎭⎪⎫x -2452+(y +4)2=16.(2)因为直线与y 轴负半轴相交,所以b <0. 又直线与抛物线交于两点,由(1)知b >-2, 所以-2<b <0,直线l 的方程为y =-12x +b ,整理得x +2y -2b =0,点O 到直线l 的距离d =|-2b |5=-2b5,所以S △AOB =12|AB |d =-42b ·2+b =42·b 3+2b 2.令g (b )=b 3+2b 2,-2<b <0,g ′(b )=3b 2+4b =3b ⎝ ⎛⎭⎪⎫b +43,当b 变化时,g ′(b ),g (b )的变化情况如下表:由上表可得g (b )的最大值为g ⎝ ⎛⎭⎪⎫-43=3227.所以当b =-43时,△AOB 的面积取得最大值3239.4.(2017·山东)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,焦距为2.(1)求椭圆E 的方程; (2)如图,动直线l :y =k 1x -32交椭圆E 于A ,B 两点,C 是椭圆E 上一点,直线OC 的斜率为k 2,且k 1k 2=24.M 是线段OC 延长线上一点,且|MC |∶|AB |=2∶3,⊙M 的半径为|MC |,OS ,OT 是⊙M 的两条切线,切点分别为S ,T .求∠SOT 的最大值,并求取得最大值时直线l的斜率.解 (1)由题意知e =c a =22,2c =2, 所以c =1,a =2,则b =1, 所以椭圆E 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧x 22+y 2=1,y =k 1x -32,得(4k 21+2)x 2-43k 1x -1=0, 由题意知Δ>0,且x 1+x 2=23k 12k 21+1,x 1x 2=-12(2k 21+1), 所以|AB |=1+k 21|x 1-x 2|=21+k 211+8k 211+2k 21. 由题意可知圆M 的半径r 为r =23|AB |=2231+k 211+8k 211+2k 21.由题设知k 1k 2=24, 所以k 2=24k 1,因此直线OC 的方程为y =24k 1x ,联立方程⎩⎪⎨⎪⎧x 22+y 2=1,y =24k1x ,得x 2=8k 211+4k 21,y 2=11+4k 21,因此|OC |=x 2+y 2=1+8k 211+4k 21. 由题意可知,sin ∠SOT 2=r r +|OC |=11+|OC |r.而|OC |r =1+8k 211+4k 21223 1+k 21 1+8k 211+2k 21=3241+2k 211+4k 211+k 21, 令t =1+2k 21,则t >1,1t∈(0,1),因此|OC |r =32·t 2t 2+t -1=32·12+1t -1t 2=32·1-⎝ ⎛⎭⎪⎫1t -122+94≥1,当且仅当1t =12,即t =2时等号成立,此时k 1=±22,所以sin ∠SOT 2≤12,因此∠SOT 2≤π6,所以∠SOT 的最大值为π3.综上所述,∠SOT 的最大值为π3,取得最大值时直线l 的斜率为k 1=±22.考点二 定值、定点问题方法技巧 (1)定点问题的常见解法①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求定点;②从特殊位置入手,找出定点,再证明该点适合题意. (2)定值问题的常见解法①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.5.(2017·全国Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. (1)解 不能出现AC ⊥BC 的情况.理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2.又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明 BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22.由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,又x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.6.已知抛物线C 的顶点在坐标原点O ,其图象关于y 轴对称且经过点M (2,1). (1)求抛物线C 的方程;(2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,求该等边三角形的面积;(3)过点M 作抛物线C 的两条弦MA ,MB ,设MA ,MB 所在直线的斜率分别为k 1,k 2,当k 1+k 2=-2时,试证明直线AB 的斜率为定值,并求出该定值. 解 (1)设抛物线C 的方程为x 2=2py (p >0), 由点M (2,1)在抛物线C 上,得4=2p , 则p =2,∴抛物线C 的方程为x 2=4y .(2)设该等边三角形OPQ 的顶点P ,Q 在抛物线上, 且P (x P ,y P ),Q (x Q ,y Q ), 则x 2P =4y P ,x 2Q =4y Q ,由|OP |=|OQ |,得x 2P +y 2P =x 2Q +y 2Q , 即(y P -y Q )(y P +y Q +4)=0.又y P >0,y Q >0,则y P =y Q ,|x P |=|x Q |, 即线段PQ 关于y 轴对称. ∴∠POy =30°,y P =3|x P |, 代入x 2P =4y P ,得x P =±43,∴该等边三角形边长为83,S △POQ =48 3. (3)设A (x 1,y 1),B (x 2,y 2), 则x 21=4y 1,x 22=4y 2,∴k 1+k 2=y 1-1x 1-2+y 2-1x 2-2=14x 21-1x 1-2+14x 22-1x 2-2=14(x 1+2+x 2+2)=-2.∴x 1+x 2=-12,∴k AB =y 2-y 1x 2-x 1=14x 22-14x 21x 2-x 1=14(x 1+x 2)=-3.7.(2017·全国Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝ ⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)解 由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明 设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝ ⎛⎭⎪⎫t ,4-t 22,⎝⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2. 由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0, 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0, 于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).8.已知中心在原点,焦点在坐标轴上的椭圆E 的离心率为12,椭圆E 的一个焦点和抛物线y2=-4x 的焦点重合,过直线l :x =4上一点M 引椭圆E 的两条切线,切点分别是A ,B . (1)求椭圆E 的方程;(2)若在椭圆x 2a 2+y 2b 2=1(a >b >0)上的点(x 0,y 0)处的切线方程是x 0x a 2+y 0yb2=1,求证:直线AB恒过定点C ,并求出定点C 的坐标.(1)解 设椭圆方程为x 2a 2+y 2b2=1(a >b >0),因为抛物线y 2=-4x 的焦点是(-1,0),所以c =1.又c a =12,所以a =2,b =a 2-c 2=3, 所以所求椭圆E 的方程为x 24+y 23=1.(2)证明 设切点坐标为A (x 1,y 1),B (x 2,y 2),直线l 上一点M 的坐标为(4,t ), 则切线方程分别为x 1x 4+y 1y3=1,x 2x 4+y 2y3=1.又两切线均过点M ,即x 1+t 3y 1=1,x 2+t3y 2=1,即点A ,B 的坐标都适合方程x +t3y =1.又两点确定唯一的一条直线, 故直线AB 的方程是x +t3y =1,显然对任意实数t ,点(1,0)都适合这个方程, 故直线AB 恒过定点C (1,0). 考点三 探索性问题方法技巧 探索性问题的求解方法(1)处理这类问题,一般要先对结论作出肯定的假设,然后由此假设出发,结合已知条件进行推理论证,若推出与已知、定理或公理相符的结论,则存在性得到肯定;若导致矛盾,则否定存在性.若证明某结论不存在,也可以采用反证法.(2)采用特殊化思想求解,即根据题目中的一些特殊关系,归纳出一般结论,然后进行证明,得出结论.9.(2017·湖南东部五校联考)已知椭圆E :x 2a 2+y 2b2=1的右焦点为F (c ,0)且a >b >c >0,设短轴的一个端点D ,原点O 到直线DF 的距离为32,过原点和x 轴不重合的直线与椭圆E 相交于C ,G 两点,且|GF →|+|CF →|=4. (1)求椭圆E 的方程;(2)是否存在过点P (2,1)的直线l 与椭圆E 相交于不同的两点A ,B 且使得OP →2=4PA →·PB →成立?若存在,试求出直线l 的方程;若不存在,请说明理由. 解 (1)由椭圆的对称性知,|GF →|+|CF →|=2a =4, ∴a =2.又原点O 到直线DF 的距离为32, ∴bc a =32,∴bc =3,又a 2=b 2+c 2=4,a >b >c >0, ∴b =3,c =1.故椭圆E 的方程为x 24+y 23=1.(2)当直线l 与x 轴垂直时不满足条件.故可设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x -2)+1,代入椭圆方程得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0, ∴x 1+x 2=8k (2k -1)3+4k2,x 1x 2=16k 2-16k -83+4k 2,Δ=32(6k +3)>0, ∴k >-12.∵OP 2=4PA →·PB →,即4[(x 1-2)(x 2-2)+(y 1-1)(y 2-1)]=5, ∴4(x 1-2)(x 2-2)(1+k 2)=5, 即4[x 1x 2-2(x 1+x 2)+4](1+k 2)=5, ∴4⎣⎢⎡⎦⎥⎤16k 2-16k -83+4k 2-2×8k (2k -1)3+4k 2+4(1+k 2)=4×4+4k 23+4k 2=5,解得k =±12,k =-12不符合题意,舍去,∴存在满足条件的直线l ,其方程为y =12x .10.(2016·全国Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其它公共点?说明理由.解 (1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t ,又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,ON 的方程为y =p t x , 代入y 2=2px ,整理得px 2-2t 2x =0,解得x 1=0,x 2=2t2p ,因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px ,得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.11.在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a (x -2a ),即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,理由如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程,得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a .从而k 1+k 2=y 1-b x 1+y 2-b x 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.12.已知椭圆C :x 2a 2+y 2b 2=1(a >b ≥1)的离心率e =22,其右焦点到直线2ax +by -2=0的距离为23. (1)求椭圆C 的方程;(2)已知直线x -y +m =0与椭圆C 交于不同的两点M ,N ,且线段MN 的中点不在圆x 2+y 2=1内,求实数m 的取值范围.(3)过点P ⎝ ⎛⎭⎪⎫0,-13的直线l 交椭圆C 于A ,B 两点,是否存在定点Q ,使以AB 为直径的圆恒过这个定点?若存在,求出Q 点的坐标;若不存在,请说明理由. 解 (1)由题意知e =ca =22, 所以e 2=c 2a 2=a 2-b 2a 2=12,即a 2=2b 2,可得a =2b ,c =b .因为右焦点(c ,0)到直线2ax +by -2=0的距离为23,所以|2ac -2|4a 2+b2=23, 又c =b ,a =2b ,a >b ≥1,解得b =1,所以a 2=2,c =1. 故椭圆C 的方程为x 22+y 2=1.(2)联立方程⎩⎪⎨⎪⎧x -y +m =0,x 22+y 2=1,消去y 可得3x 2+4mx +2m 2-2=0,则Δ=16m 2-12(2m 2-2)>0⇒-3<m < 3.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4m 3,y 1+y 2=x 1+x 2+2m =-4m 3+2m =2m3,所以线段MN 的中点坐标为⎝ ⎛⎭⎪⎫-2m 3,m 3.因为MN 的中点不在圆x 2+y 2=1内, 所以⎝ ⎛⎭⎪⎫-2m 32+⎝ ⎛⎭⎪⎫m 32≥1⇒m ≥355或m ≤-355.综上可知,实数m 的取值范围为⎝ ⎛⎦⎥⎤-3,-355∪⎣⎢⎡⎭⎪⎫355,3.(3)假设存在定点Q ,使以AB 为直径的圆恒过该定点. 当AB ⊥x 轴时,以AB 为直径的圆的方程为x 2+y 2=1;当AB ⊥y 轴时,以AB 为直径的圆的方程为x 2+⎝ ⎛⎭⎪⎫y +132=169.由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+⎝ ⎛⎭⎪⎫y +132=169,可得⎩⎪⎨⎪⎧x =0,y =1,那么这个定点Q 的坐标为(0,1).当直线l 的斜率存在且不为零时,设直线l 的方程为y =kx -13(k ≠0),代入x 22+y 2=1,可得(2k 2+1)x 2-43kx -169=0.设A (x 3,y 3),B (x 4,y 4), 则x 3+x 4=4k 3(2k 2+1),x 3x 4=-169(2k 2+1), 则QA →=(x 3,y 3-1),QB →=(x 4,y 4-1),从而QA →·QB →=x 3x 4+(y 3-1)(y 4-1)=x 3x 4+⎝ ⎛⎭⎪⎫kx 3-43⎝ ⎛⎭⎪⎫kx 4-43 =(1+k 2)x 3x 4-43k (x 3+x 4)+169=(1+k 2)·-169(2k 2+1)-43k ·4k 3(2k 2+1)+169=0, 故QA →⊥QB →,即点Q (0,1)在以AB 为直径的圆上.综上,存在定点Q (0,1),使以AB 为直径的圆恒过这个定点.例 (12分)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由. 审题路线图(1)联立直线方程与椭圆方程―→一元二次方程―→中点坐标―→求出斜率乘积 (2)先假定四边形OAPB 能为平行四边形―→找几何关系:平行四边形的对角线互相平分 ―→转化成代数关系:x P =2x M ―→求k 规范解答·评分标准(1)证明 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).……………………………………………………………………2分将y =kx +b 代入9x 2+y 2=m 2, 得(k 2+9)x 2+2kbx +b 2-m 2=0, 故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9bk 2+9.……………………………………………4分 于是直线OM 的斜率k OM =y M x M=-9k,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值.………………………………………6分 (2)解 四边形OAPB 能为平行四边形.…………………………………………………7分因为直线l 过点⎝ ⎛⎭⎪⎫m3,m , 所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3. 由(1)得OM 的方程为y =-9kx .设点P 的横坐标为x P , 由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km3k 2+9.………………………………9分 将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入l 的方程,得b =m (3-k )3,因此x M =k (k -3)m3(k 2+9).………………………………………………………………………10分 四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是±km 3k 2+9=2×k (k -3)m 3(k 2+9), 解得k 1=4-7,k 2=4+7. 因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.………………12分 构建答题模板[第一步] 先假定:假设结论成立.[第二步] 再推理:以假设结论成立为条件,进行推理求解.[第三步] 下结论:若推出合理结果,经验证成立则肯定假设;若推出矛盾则否定假设. [第四步] 再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性.1.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2分别为椭圆的左、右焦点,D ,E分别是椭圆的上顶点与右顶点,且2DEF S △=1-32. (1)求椭圆C 1的方程;(2)在椭圆C 1落在第一象限的图象上任取一点作C 1的切线l ,求l 与坐标轴围成的三角形的面积的最小值. 解 (1)由题意知e =c a =32,故c =32a ,b =12a . ∵2DEF S △=12(a -c )×b =12⎝ ⎛⎭⎪⎫a -32a ×a 2=14⎝ ⎛⎭⎪⎫1-32a 2=1-32.故a 2=4,即a =2,b =12a =1,c =3,∴椭圆C 1的方程为x 24+y 2=1.(2)∵l 与椭圆C 1相切于第一象限内的一点, ∴直线l 的斜率必存在且为负. 设直线l 的方程为y =kx +m (k <0),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y 整理可得⎝⎛⎭⎪⎫k 2+14x 2+2kmx +m 2-1=0.①根据题意可得方程①有两相等实根,∴Δ=(2km )2-4⎝ ⎛⎭⎪⎫k 2+14(m 2-1)=0,整理可得m 2=4k 2+1.②∵直线l 与两坐标轴的交点分别为⎝ ⎛⎭⎪⎫-m k,0,(0,m )且k <0,∴l 与坐标轴围成的三角形的面积S =12·m2-k,③②代入③,可得S =(-2k )+1-2k ≥2(当且仅当k =-12时取等号), ∴l 与坐标轴围成的三角形面积的最小值为2.2.(2017·全国Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .(1)解 设P (x ,y ),M (x 0,y 0),则N (x 0,0), NP →=(x -x 0,y ),NM →=(0,y 0).由NP →=2NM →,得x 0=x ,y 0=22y ,因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明 由题意知F (-1,0).设Q (-3,t ),P (m ,n ), 则OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn , OP →=(m ,n ),PQ →=(-3-m ,t -n ).由OP →·PQ →=1,得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2,故3+3m -tn =0, 所以OQ →·PF →=0,即OQ →⊥PF →, 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .3.(2016·北京)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1.又a 2=b 2+c 2,解得a =2,b =1,c = 3. ∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1.当x 0≠0时,直线PA 的方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2=⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1·⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2=⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, ∴|AN |·|BM |=4.故|AN |·|BM |为定值.4.如图所示,已知椭圆M :y 2a 2+x 2b2=1(a >b >0)的四个顶点构成边长为5的菱形,原点O 到直线AB 的距离为125,其中A (0,a ),B (-b ,0).直线l :x =my +n 与椭圆M 相交于C ,D 两点,且以CD 为直径的圆过椭圆的右顶点P (其中点C ,D 与点P 不重合).(1)求椭圆M 的方程;(2)证明:直线l 与x 轴交于定点,并求出定点的坐标. 解 (1)由已知,得a 2+b 2=52,由点A (0,a ),B (-b ,0)知,直线AB 的方程为x -b +ya =1,即ax -by +ab =0.又原点O 到直线AB 的距离为125,即|0-0+ab |a 2+b 2=125,所以a 2=16,b 2=9,c 2=16-9=7. 故椭圆M 的方程为y 216+x 29=1. (2)由(1)知P (3,0),设C (x 1,y 1),D (x 2,y 2),将x =my +n 代入y 216+x 29=1,整理,得(16m 2+9)y 2+32mny +16n 2-144=0,则y 1+y 2=-32mn 16m 2+9,y 1y 2=16n 2-14416m 2+9. 因为以CD 为直径的圆过椭圆的右顶点P , 所以PC →·PD →=0,即(x 1-3,y 1)·(x 2-3,y 2)=0, 所以(x 1-3)(x 2-3)+y 1y 2=0. 又x 1=my 1+n ,x 2=my 2+n ,所以(my 1+n -3)(my 2+n -3)+y 1y 2=0,整理,得(m 2+1)y 1y 2+m (n -3)(y 1+y 2)+(n -3)2=0, 即(m 2+1)·16n 2-14416m 2+9+m (n -3)·-32mn 16m 2+9+(n -3)2=0, 所以16(m 2+1)(n 2-9)16m 2+9-32m 2n (n -3)16m 2+9+(n -3)2=0, 易知n ≠3,所以16(m 2+1)(n +3)-32m 2n +(16m 2+9)·(n -3)=0, 整理,得25n +21=0,即n =-2125.所以直线l 与x 轴交于定点,定点的坐标为⎝ ⎛⎭⎪⎫-2125,0. 5.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由. 解 (1)由已知,得点C ,D 的坐标分别为(0,-b ),(0,b ), 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b =2,所以椭圆E 的方程为x 24+y 22=1.(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0,其判别式Δ=(4k )2+8(2k 2+1)>0, 所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1, 从而OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2. 所以当λ=1时,-λ-12k 2+1-λ-2=-3,此时OA →·OB →+λPA →·PB →=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD ,此时,OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD →=-2-1=-3. 故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3.。

【精选高考】2019-2020高考数学二轮复习小题专项练习(一)集合与常用逻辑用语文

【精选高考】2019-2020高考数学二轮复习小题专项练习(一)集合与常用逻辑用语文
故y=f(x)在(-∞,a)和(b,+∞)上分别单调递增,是y=f(x)在(-∞,a)∪(b,+∞)上为增函数的必要不充分条件.
14.②④
解析:“若xy=0,则x=0”的否命题为“xy≠0,则x≠0”,则①不正确;若A∩B=A,则A⊆B,是真命题,则逆否命题是真命题,②正确;“全等三角形的面积相等”的否命题为假命题,③不正确;“若x2+y2=0,则x,y均为0”的逆命题为“若x,y均为0,则x2+y2=0”,④正确.
A.∃x0≥0,2x0<x B.∀x≥0,2x<x2
C.∃x0≥0,2x0≤x D.∀x≥0,2x≤x2
4.[2018·天津南开中学第五次月考]“lgx,lgy,lgz成等差数列”是“y2=xz”成立的()
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既不充分也不必要条件
5.[2018·河北景县中学月考]设命题p:“∀x∈R,x2+1≥1”的否定是“∃x0∈R,x +1<1”;命题q:函数y=cosx的图象关于直线x= 对称.则下列判断正确的是()
6.D当α=45°,β=405°,α<β,
但tanα=tanβ,D错,故选D.
7.CA={y|y=-ex+4}={y|y<4},
B={x|y=lg[(x+2)(3-x)]}={x|-2<x<3},
∴B⊆A,
∴∁RA⊆∁RB,故选C.
8.C命题“∀x∈R,sinx≥1”的否定是“∃x0∈R,sinx0<1”,A错;若a∥b,当b≠0时,存在唯一的实数λ,使得a=λb,B错;若“p∨q”为真命题,则p与q至少有一个为真,当p假,q真时,p∨q为真命题,但p∧(綈q)为假,D错,C正确,故选C.
C.{-3,-2,-1,0,1,2} D.[0,2]

2019届高考数学(理)二轮复习提优导学案(江苏专用):第1部分 二轮课时专题5 解析几何 2 圆锥曲线

2019届高考数学(理)二轮复习提优导学案(江苏专用):第1部分 二轮课时专题5 解析几何 2 圆锥曲线

第2讲圆锥曲线【课前热身】第2讲圆锥曲线(本讲对应学生用书第45~47页)1.(选修2-1 P32练习3改编)已知椭圆的焦点分别为F1(-2,0),F2(2,0),且经过点P53-22⎛⎫⎪⎝⎭,,则椭圆的标准方程为.【答案】210x+26y=1【解析】设椭圆方程为22xa+22yb=1,由题意得2222259144-4a ba b⎧+=⎪⎨⎪=⎩,,解得a2=10,b2=6,所以所求方程为210x+26y=1.2.(选修2-1 P47练习2改编)若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为.【答案】264x-236y=1或264y-236x=1【解析】由b=6,ca=54,结合a2+b2=c2,解得a=8,c=10,由于对称轴不确定,所以双曲线标准方程为264x-236y=1或264y-236x=1.3.(选修2-1 P47练习3改编)已知双曲线x 2-22y m=1(m>0)的一条渐近线方程为x+0,则实数m= .【答案】3【解析】双曲线x 2-22y m=1(m>0)的渐近线方程为y=±mx ,又因为该双曲线的一条渐近线方程为x+0,所以m=3.4.(选修2-1 P53练习2改编)设抛物线y 2=mx 的准线与直线x=1的距离为3,则抛物线的标准方程为 .【答案】y 2=8x 或y 2=-16x【解析】当m>0时,准线方程为x=-4m=-2,所以m=8,此时抛物线方程为y 2=8x ;当m<0时,准线方程为x=-4m=4,所以m=-16,此时抛物线方程为y 2=-16x. 所以所求抛物线方程为y 2=8x 或y 2=-16x.5.(选修2-1 P37练习6改编)若一个椭圆长轴的长、短轴的长和焦距成等差数列,则该椭圆的离心率是 .【答案】35【解析】由题意知2b=a+c ,又b 2=a 2-c 2, 所以4(a 2-c 2)=a 2+c 2+2ac.所以3a 2-2ac-5c 2=0,所以5c 2+2ac-3a 2=0.所以5e 2+2e-3=0,解得e=35或e=-1(舍去).【课堂导学】求圆锥曲线的标准方程例1(2019·扬州中学)在平面直角坐标系xOy中,已知椭圆C:22xa+22yb=1(a>b>0)的离心率为32,以原点为圆心、椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的标准方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.【分析】(1)利用直线与圆相切求出b的值,然后利用离心率可求出a的值,从而求出椭圆方程.(2)解出两直线的交点,验证满足椭圆方程即可.【解答】(1)由题意知椭圆C的短半轴长为圆心到切线的距离,即22因为离心率e=ca=32,所以ba21-ca⎛⎫⎪⎝⎭12,所以a=2所以椭圆C的标准方程为28x+22y=1.(2)由题意可设M,N两点的坐标分别为(x0,y0),(-x0,y0),则直线PM的方程为y=-1yxx+1,①直线QN的方程为y=-2-yxx+2. ②设点T的坐标为(x,y).联立①②解得x0=2-3xy,y=3-42-3yy.因为28x+22y=1,所以2182-3xy⎛⎫⎪⎝⎭+213-422-3yy⎛⎫⎪⎝⎭=1,整理得28x+2(3-4)2y=(2y-3)2,所以28x+292y-12y+8=4y2-12y+9,即28x+22y=1,所以点T的坐标满足椭圆C的方程,即点T在椭圆C上.【点评】求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a,b的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx2+ny2=1(m>0,n>0,m≠n)的形式.变式已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)已知动点P到定点Q(20)的距离与点P到定直线l:x=2222,求动点P的轨迹C'的方程.【分析】本题主要考查椭圆的定义和椭圆的标准方程等基础知识,以及利用直接法和待定系数法求椭圆方程的基本方法.【解答】(1)依题意,可设椭圆C的方程为22xa+22yb=1(a>b>0),且可知左焦点为F'(-2,0),从而有22'358ca AF AF=⎧⎨=+=+=⎩,,解得24.ca=⎧⎨=⎩,又a2=b2+c2,所以b2=12,故椭圆C的方程为216x+212y=1.(2)设点P(x,y),依题意,得22(-2)|-22|x yx+=22,整理,得24x+22y=1,所以动点P的轨迹C'的方程为24x+22y=1.【点评】本题第一问已知焦点即知道了c,再利用椭圆定义先求得2a的值,再利用椭圆中a,b,c的关系,求得b的值,从而得椭圆方程.本题还可以利用待定系数法设椭圆方程为22xa+22-4ya=1,代入已知点求解,显然没有利用定义来得简单.求离心率的值或范围例2(1)(2019·徐州三校调研)如图(1),在平面直角坐标系xOy中,A1,A2,B1,B2分别为椭圆22xa+22yb=1(a>b>0)的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为.(例2(1))(2)(2019·临川一中质检)如图(2),已知点A,F分别是2 2 xa-22yb=1(a>0,b>0)的左顶点与右焦点,过A,F作与x轴垂直的直线分别与两条渐近线交于P,Q,R,S,若S△ROS=2S△POQ,则双曲线的离心率为.(例2(2))(3)(2019·金陵中学)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若PF1=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是.【点拨】依题设得出关于a,b,c的等式或不等式,再消去b.【答案】75(2)2(3)13∞⎛⎫+⎪⎝⎭,【解析】(1)由题意知直线A1B2的方程为-xa+yb=1,直线B1F的方程为xc+-yb=1.联立方程组解得T2()--ac b a ca c a c+⎛⎫⎪⎝⎭,.又M()-2(-)ac b a ca c a c⎛⎫+⎪⎝⎭,在椭圆22xa+22yb=1(a>b>0)上,故22(-)ca c+22()4(-)a ca c+=1,即e2+10e-3=0,解得e=275.(2)由题意,得A(-a,0),F(c,0),直线PQ,RS的方程分别为x=-a,x=c,与渐近线y=±ba x 联立,可求得P(-a,b),Q(-a,-b),R-bcca⎛⎫⎪⎝⎭,,Sbcca⎛⎫⎪⎝⎭,,则S△ROS=12·2bca·c=2bca,S△POQ =12a·2b=ab,于是由S△ROS=2S△POQ,得2bca=2ab,即22ca=2,所以e=2.(3)设椭圆的长轴长为2a,双曲线的实轴长为2m,则2c=PF2=2a-10,2m=10-2c,a=c+5,m=5-c,所以e1e2=5cc+·5-cc=2225-cc=2125-1c.又由三角形性质知2c+2c>10,又由已知得2c<10,c<5,所以52<c<5,1<225c<4,0<225c-1<3,所以e1e2=2125-1c>13.变式1(2019·苏北四市期末)已知椭圆22xa+22yb=1(a>b>0),点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点,若直线AB2与直线B1F的交点恰好在椭圆的右准线上,则该椭圆的离心率为.(变式1)【答案】12【解析】如图,A(-a,0),B1(0,-b),B2(0,b),F(c,0),设点M2Mayc⎛⎫⎪⎝⎭,.由2ABk=k AM,得ba=2Myaac+,所以y M=b1ac⎛⎫+⎪⎝⎭.由1FBk=k FM,得bc=2-Myacc,所以y M =2-b a c c c ⎛⎫⎪⎝⎭. 从而b 1a c⎛⎫+ ⎪⎝⎭=2-b a c c c ⎛⎫ ⎪⎝⎭, 整理得2e 2+e-1=0,解得e=12.变式2 (2019·泰州期末)若双曲线22x a -22y b=1的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e= .【答案】53【解析】由双曲线的性质“焦点到渐近线的距离等于b ”,得b=2a c+,所以a 2+22a c +⎛⎫ ⎪⎝⎭=c 2,整理得3c 2-2ac-5a 2=0,所以3e 2-2e-5=0,解得e=53.变式3 (2019·泰州中学)如图,椭圆22x a +22y b=1(a>b>0)的右焦点为F ,其右准线l 与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 .(变式3)【答案】112⎡⎫⎪⎢⎣⎭, 【解析】方法一:由题意知椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,所以PF=FA ,而FA=2a c -c ,PF ≤a+c ,所以2a c -c ≤a+c ,即a 2≤ac+2c 2.又e=ca,所以2e 2+e ≥1,所以2e 2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.方法二:设点P(x,y).由题意,椭圆上存在点P,使得线段AP的垂直平分线过点F,所以PF=FA.由椭圆第二定义,2-PFaxc=e,所以PF=2ac e-ex=a-ex,而FA=2ac-c,所以a-ex=2ac-c,解得x=21-aa ce c⎛⎫+⎪⎝⎭.由于-a≤x≤a,所以-a≤21-aa ce c⎛⎫+⎪⎝⎭≤a.又e=ca,所以2e2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.直线与圆锥曲线问题例3(2019·南通一调)如图,在平面直角坐标系xOy中,已知椭圆22xa+22yb=1(a>b>0)过点A(2,1),离心率为3 2.(1)求椭圆的方程;(2)若直线l:y=kx+m(k≠0)与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且AB⊥AC,求直线l的方程.(例3)【点拨】联立方程化归为一元二次方程的根与系数问题.【解答】(1)由条件知椭圆22x a +22y b=1(a>b>0)的离心率为e=c a =32,所以b 2=a 2-c 2=14a 2.又点A (2,1)在椭圆上,所以24a +21b =1,解得2282.a b ⎧=⎨=⎩,所以所求椭圆的方程为28x +22y =1.(2)将y=kx+m (k ≠0)代入椭圆方程,得(1+4k 2)x 2+8mkx+4m 2-8=0, ①由线段BC 被y 轴平分,得x B +x C =-2814mkk +=0,因为k ≠0,所以m=0.因为当m=0时,B ,C 关于原点对称,设B (x ,kx ),C (-x ,-kx ),由方程①,得x 2=2814k +,又因为AB ⊥AC ,A (2,1),所以AB uuu r ·A C uuu r =(x-2)(-x-2)+(kx-1)(-kx-1)=5-(1+k 2)x 2=5-228(1)14k k ++=0,所以k=±12,由于k=12时,直线y=12x 过点A (2,1),故k=12不符合题设. 所以直线l 的方程为y=-12x.【点评】解析几何包含两个主要问题,即已知曲线求方程和已知方程研究曲线的性质.对解析几何的复习,要在牢固掌握与解析几何有关的基本概念基础上,把上述两个问题作为复习和研究的重点,把握坐标法思想的精髓.变式 (2019·南通、扬州、泰州、淮安三模)如图,在平面直角坐标系xOy 中,已知椭圆22x a +22y b =1(a>b>0)的离心率为22,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆x 2+y 2=a 2于相异两点P ,Q.(1)若直线l的斜率为12,求APAQ的值;(2)若PQu u u r=λAPuuu r,求实数λ的取值范围.(变式)【解答】(1)由条件知2222422acaa b c=⎧⎪⎪=⎨⎪=+⎪⎩,,解得22.ab=⎧⎪⎨⎪⎩,所以椭圆的方程为24x+22y=1,圆的方程为x2+y2=4.由题知直线l的方程为y=12(x+2),即x=2y-2,联立方程组222-224x yx y=⎧⎨+=⎩,,消去x,得3y2-4y=0,所以y P=4 3.由222-24x yx y=⎧⎨+=⎩,,消去x,得5y2-8y=0,所以y Q=85.所以APAQ=PQyy=43×58=56.(2)因为PQu u u r=λAPuuu r,且APuuu r,PQu u u r同向,则λ=PQAP=-AQ APAP=AQAP-1,设直线l:y=k(x+2),联立方程组224(2)x yy k x⎧+=⎨=+⎩,,消去x,得(k2+1)y2-4ky=0,所以y Q =241k k +,同理y P =2421k k +,λ=AQ AP -1=QP y y -1=2241421k k k k ++-1=1-211k +.因为k 2>0,所以0<λ<1.即实数λ的取值范围是(0,1).【课堂评价】1.(2019·泰州期末)在平面直角坐标系xOy 中,双曲线22x -y 2=1的实轴长为 .【答案】22【解析】根据双曲线的方程知a=22a=22.(2019·镇江期末)以抛物线y 2=4x 的焦点为焦点,以直线y=±x 为渐近线的双曲线的标准方程为 .【答案】212x -212y =1【解析】由题意设双曲线的标准方程为22x a -22y b=1,y 2=4x 的焦点为(1,0),即c=1,则双曲线的焦点为(1,0).因为y=±x 为双曲线的渐近线,则b a =1,又a 2+b 2=c 2,所以a 2=12,b 2=12,故双曲线的标准方程为212x-212y=1.3.(2019·南京、盐城一模)在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x 轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为.【答案】92【解析】由题意可设抛物线C的方程为y2=2px(p>0),因为曲线C过点P(1,3),所以9=2p,解得p=92,从而其焦点到准线的距离为p=92.4.(2019·苏中三校联考)设椭圆C:22xa+22yb=1(a>b>0)的左、右焦点分别为F1,F2,过F2作x轴的垂线与椭圆C相交于A,B两点,F1B与y轴相交于点D,若AD⊥F1B,则椭圆C的离心率为.(第4题)【答案】33【解析】如图,连接AF1,因为OD∥AB,O为F1F2的中点,所以D为BF1的中点.又AD⊥BF1,所以AF1=AB.所以AF1=2AF2.设AF2=n,则AF1=2n,F1F2=3所以e=ca=1212F FAF AF=33nn=33.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第23~24页.【检测与评估】第2讲圆锥曲线一、填空题1.(2019·苏锡常镇调研)若双曲线x2+my2=1过点(2),则该双曲线的虚轴长为.2.(2019·苏州调查)已知双曲线2xm-25y=1的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为.3.(2019·徐州、连云港、宿迁三检)已知点F是抛物线y2=4x的焦点,该抛物线上位于第一象限的点A到其准线的距离为5,则直线AF的斜率为.4.(2019·普陀区调研)离为1,则该椭圆的离心率为.5.(2019·西安模拟)已知椭圆24x+22yb=1(0<b<2)的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若BF2+AF2的最大值为5,则b的值是.6.(2019·盐城中学)设椭圆22xm+..=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的短轴长为 .7.(2019·丹阳中学)设A ,B 分别是椭圆22x a +22y b =1(a>b>0)的左、右顶点,点P 是椭圆C 上异于A ,B 的一点,若直线AP 与BP 的斜率之积为-13,则椭圆C 的离心率为 .8.(2019·淮阴四校调研)已知椭圆C :22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是 .二、 解答题9.(2019·扬州期末)如图,已知椭圆22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,M 在PF 1上,且满足1F M u u u u r =λMP u u u r(λ∈R ),PO ⊥F 2M ,O 为坐标原点.(1)若椭圆方程为28x +24y =1,且P (2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围.(第9题)10.(2019·赣榆中学)如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且AF u u u r ·FB u u u r=1,|OF u u u r |=1.(1)求椭圆的标准方程.(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.(第10题)11.如图,椭圆C:2 2 xa+22yb=1(a>b>0)的一个焦点为F(1,0),且过点622⎛⎫⎪⎪⎭,.(1)求椭圆C的方程;(2)已知A,B为椭圆上的点,且直线AB垂直于x轴,直线l:x=4与x轴交于点N,直线AF与BN交于点M,求证:点M恒在椭圆C上.(第11题)【检测与评估答案】第2讲圆锥曲线一、填空题1. 4【解析】将点(22)代入可得2+4m=1,即m=-14,故双曲线的标准方程为21x-24y=1,即虚轴长为4.2.y=±2x3,所以m=4.而双曲线的渐近线方程为x ,即y=±2x.3. 43 【解析】抛物线y 2=4x 的准线方程为x=-1,焦点F (1,0),设点A (x 0,y 0)(x 0>0,y 0>0),由题意得x 0+1=5,所以x 0=4,所以20y=4x 0=16,y 0=4,从而点A (4,4),直线AF 的斜率k=4-04-1=43.4.2 【解析】不妨设椭圆方程为22x a +22y b =1(a>b>0),则有222-1b a a c c ⎧=⎪⎪⎨⎪=⎪⎩,即2221b a b c ⎧=⎪⎪⎨⎪=⎪⎩, ②则①÷②得e=2.5.【解析】由题意知a=2,所以BF 2+AF 2+AB=4a=8,因为BF 2+AF 2的最大值为5,所以AB 的最小值为3,当且仅当AB ⊥x 轴时,取得最小值,此时A 3-2c ⎛⎫ ⎪⎝⎭,,B3--2c ⎛⎫ ⎪⎝⎭,,代入椭圆方程得24c +294b =1.又c 2=a 2-b 2=4-b 2,所以24-4b +294b =1,即1-24b +294b =1,所以24b =294b ,解得b 2=3,所以6.4【解析】由题意可知抛物线y 2=8x 的焦点为(2,0),所以c=2.因为离心率为12,所以a=4,所以47.【解析】由题意知A (-a ,0),B (a ,0),取P (0,b ),则k AP ·k BP =b a×-b a ⎛⎫ ⎪⎝⎭=-13,故a 2=3b 2,所以e 2=222-a b a =23,即e=3.8. 1132⎛⎫ ⎪⎝⎭,∪112⎛⎫⎪⎝⎭,【解析】6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称、左右对称.不妨设P 在第一象限,PF 1>PF 2,当PF 1=F 1F 2=2c 时,PF 2=2a-PF 1=2a-2c ,即2c>2a-2c ,解得e=c a >12.又因为e<1,所以12<e<1.当PF 2=F 1F 2=2c 时,PF 1=2a-PF 2=2a-2c ,即2a-2c>2c ,且2c>a-c ,解得13<e<12.综上可得13<e<12或12<e<1.二、 解答题9. (1) 因为28x +24y =1,所以F 1(-2,0),F 2(2,0),所以k OP=22F Mk1F M k=4,所以直线F 2M 的方程为x-2),直线F 1M 的方程为y=4(x+2).联立-2)(2)4y x y x ⎧=⎪⎨=+⎪⎩,,解得x=65,所以点M 的横坐标为65.(2) 设P (x 0,y 0),M (x M ,y M ).因为1FM u u u u r=2MPuuu r ,所以1FM u u u u r =23(x 0+c ,y 0)=(x M +c ,y M ),所以M 00212-333x c y ⎛⎫⎪⎝⎭,,2F M u u u u r =00242-333x c y ⎛⎫ ⎪⎝⎭,因为PO ⊥F 2M ,O P uuu r=(x 0,y 0),所以2023x -43cx 0+223y =0,即20x +20y =2cx 0.联立方程2200022002221x y cx x y a b ⎧+=⎪⎨+=⎪⎩,,消去y 0,得c 220x -2a 2cx 0+a 2(a 2-c 2)=0,解得x 0=()a a c c +或x 0=(-)a a c c .因为-a<x 0<a ,所以x 0=(-)a a c c ∈(0,a ), 所以0<a 2-ac<ac ,解得e>12.综上,椭圆离心率e 的取值范围为112⎛⎫ ⎪⎝⎭,.10. (1) 设椭圆方程为22x a +22y b=1(a>b>0),则c=1.因为AF uuu r ·F B uuu r=1,即(a+c )(a-c )=1=a 2-c 2,所以a 2=2,故椭圆方程为22x +y 2=1.(2) 假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,则设P (x 1,y 1),Q (x 2,y 2),因为M (0,1),F (1,0),故k PQ =1,于是可设直线l 的方程为y=x+m.联立2222y x m x y =+⎧⎨+=⎩,,得3x 2+4mx+2m 2-2=0,则x 1+x 2=-43m ,x 1x 2=22-23m .因为MP uuu r·FQ u u u r=0=x 1(x 2-1)+y 2(y 1-1),又y i =x i +m (i=1,2),得x 1(x 2-1)+(x 2+m )(x 1+m-1)=0,即2x 1x 2+(x 1+x 2)(m-1)+m 2-m=0,所以2·22-23m -43m(m-1)+m 2-m=0,解得m=-43或m=1(舍去). 经检验m=-43符合条件, 所以直线l 的方程为y=x-43.11. (1) 由题意得2222212312-c a b a b c =⎧⎪⎪+=⎨⎪=⎪⎩,,,解得a 2=4,b 2=3,故椭圆C 的方程为24x +23y =1.(2) 因为F (1,0),N (4,0).设A (m ,n ),M (x 0,y 0),则B (m ,-n ),n ≠0,则直线AF 的方程为y=-1nm (x-1), 直线BN 的方程为y=4-nm (x-4), 解得点M 的坐标为5-832-52-5m n m m ⎛⎫⎪⎝⎭,. 代入椭圆方程中,得204x +203y =25-82-54m m ⎛⎫ ⎪⎝⎭+232-53n m ⎛⎫⎪⎝⎭=222(5-8)124(2-5)m n m +.由24m+23n=1,得n2=321-4m⎛⎫⎪⎝⎭,代入上式得24x+23y=1.所以点M恒在椭圆C上.。

(全国通用版)2019版数学大二轮复习-第二部分 高考22题各个击破 专题一 常考小题点 2.1.4 平面向量题专项

(全国通用版)2019版数学大二轮复习-第二部分 高考22题各个击破 专题一 常考小题点 2.1.4 平面向量题专项

A.1
B.2
C.3
D.5
∵|a+b|= 10, ∴(a+b)2=10. ∴|a|2+|b|2+2a·b=10.
∵|a-b|= 6, ∴(a-b)2=6. ∴|a|2+|b|2-2a·b=6. 由A ①-②得 a·b=1,故选 A.
关闭
① ②关闭
解析 答案
一、选择题 二、填空题
3.(2018 全国卷 1,理 6)在△ABC 中,AD 为 BC 边上的中线,E 为 AD 的
������������=(-x, 3-y),������������=(-1-x,-y),������������=(1-x,-y).
所以������������ + ������������=(-2x,-2y).
所以������������ ·(������������ +
������������ )=2x2-2y(
c∥(2a+b),则λ=
.
关闭
2a+b=2(1,2)+(2,-2)=(4,2),c=(1,λ),由 c∥(2a+b),得 4λ-2=0,得 λ=12.
1
关闭
2
解析 答案
一、选择题 二、填空题
14.已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=
.
关闭
因为|a+2b|2=(a+2b)2=|a|2+4·|a|·|b|·cos 60°+4|b|2=22+4×2×1× 12+4×1=12, 所以|a+2b|= 12=2 3.
又直线 OA 为 y= 3x,点 E 为(2,0),

2019高考数学理科二轮复习第一篇微型专题练习:微专题21 坐标系与参数方程 Word版含解析

2019高考数学理科二轮复习第一篇微型专题练习:微专题21 坐标系与参数方程 Word版含解析

21 坐标系与参数方程1.已知动点P ,Q 都在曲线C :(t 为参数)上,对应参数分别{x =2cos t,y =2sin t 为t=α与t=2α(0<α<2π),M 为PQ 的中点.(1)求点M 的轨迹的参数方程;(2)将点M 到坐标原点的距离d 表示为α的函数,并判断点M 的轨迹是否过坐标原点.解析▶ (1)由题意得P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α),故点M 的轨迹的参数方程为(α为参数,0<α<2π).{x =cos α+cos2α,y =sin α+sin2α(2)点M 到坐标原点的距离d==(0<α<2π),x 2+y 22+2cos α当α=π时,d=0,故点M 的轨迹过坐标原点.2.已知圆O 1,圆O 2的极坐标方程分别为ρ=4cos θ,ρ=-sin θ.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程;(2)求经过圆O 1与圆O 2的两个交点的直线的直角坐标方程,并将其化为极坐标方程.解析▶ (1)由ρ=4cos θ得ρ2=4ρcos θ,将ρcosθ=x ,ρ2=x 2+y 2代入上式,可得x 2+y 2=4x ,所以圆O 1的直角坐标方程为x 2+y 2-4x=0.由ρ=-sin θ得ρ2=-ρsin θ,将ρ2=x 2+y 2,ρsin θ=y 代入上式,可得x 2+y 2=-y ,所以圆O 2的直角坐标方程为x 2+y 2+y=0.(2)由x 2+y 2-4x=0及x 2+y 2+y=0,两式相减得4x+y=0,所以经过圆O 1与圆O 2的两个交点的直线的直角坐标方程为4x+y=0.将4x+y=0化为极坐标方程为4ρcos θ+ρsin θ=0,即tan θ=-4.3.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的参数方程为(t 为参数),曲{x =255t ,y =2+55t线C 的极坐标方程为ρcos 2θ=8sin θ.(1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线;(2)若直线l 与曲线C 的交点分别为M ,N ,求|MN|.解析▶ (1)因为cosρ2θ=8sin θ,所以cos θ=8ρsin θ,ρ22即x 2=8y ,所以曲线C 表示焦点坐标为(0,2),对称轴为y 轴的抛物线.(2)易知直线l 过抛物线的焦点(0,2),且参数方程为{x =255t ,y =2+55t(t 为参数),代入曲线C 的直角坐标方程,得t 2-2t-20=0,设M ,N 对应的参5数分别为t 1,t 2,所以t 1+t 2=2,t 1t 2=-20.5所以|MN|=|t 1-t 2=10.(t 1+t 2)2-4t 1t 24.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 1的极坐标方程为ρsin =,曲线C 2的极坐标(θ-π4)2方程为ρ=2cos .(θ-π4)(1)写出曲线C 1的直角坐标方程和曲线C 2的参数方程;(2)设M ,N 分别是曲线C 1,C 2上的两个动点,求|MN|的最小值.解析▶ (1)依题意得,ρsin =ρsin θ-ρcos θ=(θ-π4)2222,2所以曲线C 1的直角坐标方程为x-y+2=0.由曲线C 2的极坐标方程得ρ2=2ρcos =ρcos θ+(θ-π4)22ρsin θ,所以曲线C 2的直角坐标方程为x 2+y 2-x-y=0,即+22(x -22)2=1, (y -22)2所以曲线C 2的参数方程为(θ为参数). {x =22+cos θ,y =22+sin θ(2)由(1)知,圆C 2的圆心到直线x-y+2=0的距离d=(22,22)=.|22-22+2|22又半径r=1,所以|MN|min =d-r=-1.2能力1▶ 能用曲线极坐标方程解决问题 【例1】 在平面直角坐标系xOy 中,圆C 的圆心为,半径为(0,12),现以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.12(1)求圆C 的极坐标方程;(2)设M ,N 是圆C 上两个动点,且满足∠MON=,求+的最2π3|OM ||ON |小值.解析▶ (1)由题意得圆C 的直角坐标方程为x 2+=,即(y -12)214x 2+y 2-y=0,化为极坐标方程为ρ2-ρsin θ=0,整理可得ρ=sin θ.(2)设M ,N, 则|OM|+=ρ1+ρ2=sin θ+sin(ρ1,θ)(ρ2,θ+2π3)|ON | =sin θ+cos θ=sin .(θ+2π3)1232(θ+π3)由得0≤θ≤,所以≤θ+≤,故≤sin{0≤θ≤π,0≤θ+2π3≤π,π3π3π32π332≤1,(θ+π3)即+的最小值为.|OM ||ON |32 由极坐标方程求与曲线有关的交点、距离等几何问题时,若能用极坐标系求解,可直接用极坐标求解;若不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.已知曲线C :ρ=-2sin θ.(1)求曲线C 的直角坐标方程;(2)若曲线C 与直线x+y+a=0有公共点,求实数a 的取值范围.解析▶ (1)由ρ=-2sin θ可得 ρ2=-2ρsin θ,即x 2+y 2=-2y ,∴曲线C 的直角坐标方程为x 2+(y+1)2=1.(2)由圆C 与直线有公共点,得圆心C 到直线的距离d=|0-1+a |2≤1,解得1-≤a ≤1+.22∴实数a 的取值范围为[1-,1+].22能力2▶ 会用参数方程解决问题 【例2】 在平面直角坐标系xOy 中,曲线C 的参数方程为(θ为参数),直线l 的参数方程为(t 为参{x =2cos θ,y =4sin θ{x =1+t cos α,y =2+t sin α数).(1)求曲线C 和直线l 的普通方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.解析▶ (1)曲线C的普通方程为+=1.x 24y 216当cos α≠0时,l 的普通方程为y=x tan α+2-tan α;当cos α=0时,l 的普通方程为x=1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程,即(1+3cos 2α)t 2+4(2cos α+sin α)t-8=0. ①因为曲线C 截直线l 所得线段的中点坐标(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0.又由①得t 1+t 2=-,故2cos α+sin α=0,于是直线l4(2cos α+sin α)1+3cos 2α的斜率k=tan α=-2. 过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程是(t 是参数).注意以下结论的应用:{x =x 0+tcos α,y =y 0+tsin α(1)|M 1M 2|=|t 1-t 2|;(2)若线段M 1M 2的中点M 所对应的参数为t ,则t=,中点M 到t 1+t 22定点M 0的距离|MM 0|=|t|=;|t 1+t 22|(3)若M 0为线段M 1M 2的中点,则t 1+t 2=0.在平面直角坐标系xOy 中,曲线M 的参数方程为{x =2+r cos θ,y =1+r sin θ(θ为参数,r>0),曲线N 的参数方程为(t 为参数,且{x =255t ,y =1+55tt ≠0).(1)以曲线N 上的点与原点O 连线的斜率k 为参数,写出曲线N 的参数方程;(2)若曲线M 与N 的两个交点为A ,B ,直线OA 与直线OB 的斜率之积为,求r 的值.43解析▶ (1)将消去参数t ,得x-2y+2=0(x ≠0),由题{x =255t ,y =1+55t意可知k ≠.12由得.{x -2y +2=0,y =kx (k ≠12),{x =22k -1,y =2k 2k -1(k ≠12)故曲线N 的参数方程为k 为参数,{x =22k-1,y =2k2k-1.且k ≠12)(2)由曲线M 的参数方程得其普通方程为(x-2)2+(y-1)2=r 2,将代入上式,{x =22k-1,y =2k2k-1整理得(16-4r 2)k 2+(4r 2-32)k+17-r 2=0.因为直线OA 与直线OB 的斜率之积为,所以=,解得r 2=1.4317-r 216-4r 243又r>0,所以r=1.将r=1代入(16-4r 2)k 2+(4r 2-32)k+17-r 2=0,得12k 2-28k+16=0,满足Δ>0,故r=1.能力3▶ 会解极坐标与参数方程的综合问题 【例3】 在平面直角坐标系xOy 中,曲线C 1的参数方程为(t 为参数,a ∈R),以坐标原点为极点,x 轴正半轴为极轴{x =a -22t ,y =1+22t建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+2cos θ-ρ=0.(1)写出曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知点P (a ,1),曲线C 1和曲线C 2交于A ,B 两点,且|PA|·|PB|=4,求实数a 的值.解析▶ (1)由C 1的参数方程消去t 得其普通方程为x+y-a-1=0.由C 2的极坐标方程得ρ2cos 2θ+2ρcos θ-ρ2=0,所以C 2的直角坐标方程为y 2=2x.(2)将曲线C 1的参数方程代入曲线C 2:y 2=2x ,得t 2+4t+2(1-22a )=0,由Δ>0得a>-.32设A ,B 对应的参数分别为t 1,t 2,则t 1t 2=2(1-2a ).由题意得|PA|·|PB|=|t 1t 2|=|2(1-2a )|=4,解得a=-或a=,满足Δ>0,1232所以实数a的值为-或.1232 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程方便.在平面直角坐标系xOy 中,曲线C 1的参数方程为(α为参数),以坐标原点O 为极点,x 轴的正半轴为{x =2+25cos α,y =4+25sin α极轴建立极坐标系,直线C 2的极坐标方程为θ=(ρ∈R).π3(1)求C 1的极坐标方程和C 2的直角坐标方程;(2)若直线C 3的极坐标方程为θ=(ρ∈R),设C 2与C 1的交点为π6O ,M ,C 3与C 1的交点为O ,N ,求△OMN 的面积.解析▶ (1)将曲线C 1的参数方程消去参数α,得其普通方程为(x-2)2+(y-4)2=20,即x 2+y 2-4x-8y=0.把x=ρcos θ,y=ρsin θ代入方程得ρ2-4ρcos θ-8ρsin θ=0,所以C 1的极坐标方程为ρ=4cos θ+8sin θ.由直线C 2的极坐标方程得其直角坐标方程为y=x.3(2)设M (ρ1,θ1),N (ρ2,θ2),分别将θ1=,θ2=代入ρ=4cosπ3π6θ+8sin θ,得ρ1=2+4,ρ2=4+2.33则△OMN 的面积S=ρ1ρ2sin(θ1-θ2)12=×(2+4)×(4+2)×sin =8+5.1233π631.在极坐标系中,极点为O ,已知曲线C 1:ρ=2,曲线C 2:ρsin =(θ-π4).2(1)试判断曲线C 1与曲线C 2的位置关系;(2)若曲线C 1与曲线C 2交于A ,B 两点,求过点C (1,0)且与直线AB 平行的直线l 的极坐标方程.解析▶ (1)∵ρ=2,∴x 2+y 2=4.由ρsin =,可得ρsin θ-ρcos θ=2,即x-y+2=0.(θ-π4)2圆心(0,0)到直线x-y+2=0的距离d==<2,∴曲线C 1与曲线C 2222相交.(2)∵曲线C 2的斜率为1,∴过点(1,0)且与曲线C 2平行的直线l 的直角坐标方程为y=x-1,∴直线l 的极坐标方程为ρsin θ=ρcos θ-1,即ρcos (θ+π4)=.222.已知曲线C 的参数方程为(θ为参数),在同一平面直角{x =3cos θ,y =2sin θ坐标系中,将曲线C 经过伸缩变换后得到曲线C'.{x '=13x ,y '=12y(1)求曲线C'的普通方程;(2)若点A 在曲线C'上,点B (3,0),当点A 在曲线C'上运动时,求AB 中点P 的轨迹方程.解析▶ (1)将代入得C'的参数方程为{x =3cos θ,y =2sin θ{x '=13x ,y '=12y ,{x '=cos θ,y '=sin θ,所以曲线C'的普通方程为x 2+y 2=1.(2)设P (x ,y ),A (x 0,y 0),因为点B (3,0),且AB 的中点为P ,所以{x 0=2x -3,y 0=2y .又点A 在曲线C'上,代入C'的普通方程x 2+y 2=1,得(2x-3)2+(2y )2=1,所以动点P 的轨迹方程为+y 2=. (x -32)2143.已知直线l 的参数方程为(t 为参数),以坐标原点O{x =1+12t ,y =3+3t为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为sinθ-ρcos 2θ=0.3(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)写出直线l 与曲线C 交点的一个极坐标.解析▶ (1)由消去参数t ,得y=2x-,即直线l{x =1+12t ,y =3+3t33的普通方程为y=2x-.33∵sin θ-ρcos 2θ=0,∴ρsin θ-ρ2cos 2θ=0,得y-333x 2=0,即曲线C 的直角坐标方程为y=x 2.3(2)将代入y=x 2,得+t-=0,解得{x =1+12t ,y =3+3t3333(1+12t )2t=0,∴交点坐标为(1,),3∴交点的一个极坐标为.(2,π3)4.在平面直角坐标系xOy 中,直线l 的参数方程为(t{x =-1+22t ,y =1+22t为参数),圆C 的直角坐标方程为(x-2)2+(y-1)2=5.以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求直线l 及圆C 的极坐标方程;(2)若直线l 与圆C 交于A ,B 两点,求cos∠AOB 的值.解析▶ (1)由直线l 的参数方程得其普通方程{x =-1+22t ,y =1+22t为y=x+2,∴直线l 的极坐标方程为ρsin θ=ρcos θ+2,即ρsin θ-ρcos θ=2.又∵圆C 的方程为(x-2)2+(y-1)2=5,将代入并化简得ρ=4cos θ+2sin θ,{x =ρcos θ,y =ρsin θ∴圆C 的极坐标方程为ρ=4cos θ+2sin θ. (2)将ρsin θ-ρcos θ=2与ρ=4cos θ+2sin θ联立,得(4cos θ+2sin θ)(sin θ-cos θ)=2,整理得sin θcos θ=3cos 2θ,∴θ=或tan θ=3.π2不妨记点A对应的极角为,点B 对应的极角为θ,且tan θ=3.π2∴cos∠AOB=cos=sin θ=.(π2-θ)310105.在平面直角坐标系xOy 中,圆C 1的参数方程为(α{x =2+2cos α,y =2sin α为参数).以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线C 2的极坐标方程为ρsin θ=.3(1)求圆C 1圆心的极坐标;(2)设C 1与C 2的交点为A ,B ,求△AOB 的面积.解析▶ (1)由曲线C 1的参数方程(α为参数),消{x =2+2cos α,y =2sin α去参数,得C 1的直角坐标方程为x 2-4x+y 2=0,∴C 1的圆心坐标(2,0)在x 轴的正半轴上,∴圆心的极坐标为(2,0).(2)由C 1的直角坐标方程得其极坐标方程为ρ=4cos θ(ρ>0).由方程组得4sin θcos θ=,解得sin 2θ=.{ρ=4cos θ,ρsin θ=3332∴θ=k π+(k ∈Z)或θ=k π+(k ∈Z),π6π3∴ρ=2或ρ=2.3∴C 1和C 2交点的极坐标为A ,B 2,k π+(k ∈Z).(23,kπ+π6)π3∴S △AOB =|AO||BO|sin∠AOB=×2×2×sin =.12123π636.在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =3+2cos α,y =1+2sin α(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.在极坐标系中有射线l :θ=(ρ≥0)和曲线C 2:ρ(sin θ+2cosπ4θ)=ρ2cos 2θ+m.(1)判断射线l 和曲线C 1公共点的个数;(2)若射线l 与曲线C 2 交于A ,B 两点,且满足|OA|=|AB|,求实数m 的值.解析▶ (1)由题意得射线l 的直角坐标方程为y=x (x ≥0),曲线C 1是以(3,1)为圆心,为半径的圆,其直角坐标方程为(x-3)2+(y-21)2=2.联立解得{y =x (x ≥0),(x -3)2+(y -1)2=2,{x =2,y =2,故射线l 与曲线C 1有一个公共点(2,2). (2)将θ=代入曲线C 2的方程,π4得ρ=ρ2cos 2+m ,(sin π4+2cos π4)π4即ρ2-3ρ+2m=0.2由题知解得0<m<.{Δ=(32)2-8m >0,m >0,94设方程的两个根分别为ρ1,ρ2(0<ρ1<ρ2),由韦达定理知 ρ1+ρ2=3,ρ1ρ2=2m.2由|OA|=|AB|,得|OB|=2|OA|,即ρ2=2ρ1,∴ρ1=,ρ2=2,m=2.22。

2019年高考数学(理科)大二轮复习练习:专题二 函数与导数 专题能力训练8

2019年高考数学(理科)大二轮复习练习:专题二 函数与导数 专题能力训练8

专题能力训练8利用导数解不等式及参数的取值范围一、能力突破训练1.设f(x)=x ln x-ax2+(2a-1)x,a∈R.(1)令g(x)=f'(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.2.(2018全国Ⅲ,理21)已知函数f(x)=(2+x+ax2)·ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.3.已知函数f(x)=ax+x ln x的图象在x=e(e为自然对数的底数)处的切线的斜率为3.(1)求实数a的值;(2)若f(x)≤kx2对任意x>0成立,求实数k的取值范围;(3)当n>m>1(m,n∈N*)时,证明:.4.设函数f(x)=ax2-a-ln x,其中a∈R.(1)讨论f(x)的单调性;(2)确定a的所有可能取值,使得f(x)> -e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).5.设函数f(x)=a ln x,g(x)=x2.(1)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]内有解,求实数a的取值范围;(2)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.6.已知函数f(x)=-2(x+a)ln x+x2-2ax-2a2+a,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.二、思维提升训练7.已知函数f(x)= x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈,使得f(x0)=f.专题能力训练8利用导数解不等式及参数的取值范围一、能力突破训练1.解(1)由f'(x)=ln x-2ax+2a,可得g(x)=ln x-2ax+2a,x∈(0,+∞).则g'(x)=-2a=,当a≤0时,x∈(0,+∞)时,g'(x)>0,函数g(x)单调递增;当a>0时,x时,g'(x)>0,函数g(x)单调递增,x时,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)单调增区间为,单调减区间为(2)由(1)知,f'(1)=0.①当a≤0时,f'(x)单调递增,所以当x∈(0,1)时,f'(x)<0,f(x)单调递减.当x∈(1,+∞)时,f'(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当0<a<时,>1,由(1)知f'(x)在区间内单调递增,可得当x∈(0,1)时,f'(x)<0,x时,f'(x)>0.所以f(x)在区间(0,1)内单调递减,在区间内单调递增,所以f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f'(x)在区间(0,1)内单调递增,在区间(1,+∞)内单调递减,所以当x∈(0,+∞)时,f'(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当x时,f'(x)>0,f(x)单调递增,当x∈(1,+∞)时,f'(x)<0,f(x)单调递减,所以f(x)在x=1处取极大值,合题意.综上可知,实数a的取值范围为a>2.解(1)当a=0时,f(x)=(2+x)ln(1+x)-2x,f'(x)=ln(1+x)-,设函数g(x)=f'(x)=ln(1+x)-,则g'(x)=,当-1<x<0时,g'(x)<0;当x>0时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f'(x)≥0,且仅当x=0时,f'(x)=0.所以f(x)在(-1,+∞)内单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)①若a≥0,由(1)知,当x>0时,f(x)≥(2+x)·ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.②若a<0,设函数h(x)= =ln(1+x)-由于当|x|<min时,2+x+ax2>0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点当且仅当x=0是h(x)的极大值点.h'(x)=若6a+1>0,则当0<x<-,且|x|<min时,h'(x)>0,故x=0不是h(x)的极大值点.若6a+1<0,则a2x2+4ax+6a+1=0存在根x1<0,故当x∈(x1,0),且|x|<min时,h'(x)<0,所以x=0不是h(x)的极大值点.若6a+1=0,则h'(x)=则当x∈(-1,0)时,h'(x)>0;当x∈(0,1)时,h'(x)<0.所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点.综上,a=-3.解(1)∵f(x)=ax+x ln x,∴f'(x)=a+ln x+1.又f(x)的图象在点x=e处的切线的斜率为3,∴f'(e)=3,即a+ln e+1=3,∴a=1.(2)由(1)知,f(x)=x+x ln x,若f(x)≤kx2对任意x>0成立,则k对任意x>0成立.令g(x)=,则问题转化为求g(x)的最大值,g'(x)==-令g'(x)=0,解得x=1.当0<x<1时,g'(x)>0,∴g(x)在区间(0,1)内是增函数;当x>1时,g'(x)<0,∴g(x)在区间(1,+∞)内是减函数.故g(x)在x=1处取得最大值g(1)=1,∴k≥1即为所求.(3)证明:令h(x)=,则h'(x)=由(2)知,x≥1+ln x(x>0),∴h'(x)≥0,∴h(x)是区间(1,+∞)内的增函数.∵n>m>1,∴h(n)>h(m),即,∴mn ln n-n ln n>mn ln m-m ln m,即mn ln n+m ln m>mn ln m+n ln n,∴ln n mn+ln m m>ln m mn+ln n n.整理,得ln(mn n)m>ln(nm m)n.∴(mn n)m>(nm m)n,4.解(1)f'(x)=2ax-(x>0).当a≤0时,f'(x)<0,f(x)在区间(0,+∞)内单调递减.当a>0时,由f'(x)=0,有x=此时,当x时,f'(x)<0,f(x)单调递减;当x时,f'(x)>0,f(x)单调递增.(2)令g(x)=,s(x)=e x-1-x.则s'(x)=e x-1-1.而当x>1时,s'(x)>0,所以s(x)在区间(1,+∞)内单调递增.又由s(1)=0,有s(x)>0,从而当x>1时,g(x)>0.当a≤0,x>1时,f(x)=a(x2-1)-ln x<0.故当f(x)>g(x)在区间(1,+∞)内恒成立时,必有a>0.当0<a<时,>1.由(1)有f<f(1)=0,而g>0,所以此时f(x)>g(x)在区间(1,+∞)内不恒成立.当a时,令h(x)=f(x)-g(x)(x≥1).当x>1时,h'(x)=2ax--e1-x>x->0.因此,h(x)在区间(1,+∞)单调递增.又因为h(1)=0,所以当x>1时,h(x)=f(x)-g(x)>0,即f(x)>g(x)恒成立.综上,a5.解(1)不等式f(x)+2g'(x)≤(a+3)x-g(x),即a ln x+2x≤(a+3)x-x2,化简,得a(x-ln x)x2-x.由x∈[1,e]知x-ln x>0,因而a设y=,则y'=∵当x∈(1,e)时,x-1>0,x+1-ln x>0,∴y'>0在x∈[1,e]时成立.由不等式有解,可得a≥y min=-,即实数a的取值范围是(2)当a=1时,f(x)=ln x.由m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,得mg(x1)-x1f(x1) >mg(x2)-x2f(x2)恒成立, 设t(x)=x2-x ln x (x>0).由题意知x1>x2>0,则当x∈(0,+∞)时函数t(x)单调递增,∴t'(x)=mx-ln x-1≥0恒成立,即m恒成立.因此,记h(x)=,得h'(x)=∵函数在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,∴函数h(x)在x=1处取得极大值,并且这个极大值就是函数h(x)的最大值.由此可得h(x)max=h(1)=1,故m≥1,结合已知条件m∈Z,m≤1,可得m=1.6.(1)解由已知,函数f(x)的定义域为(0,+∞),g(x)=f'(x)=2(x-a)-2ln x-2,所以g'(x)=2-当0<a<时,g(x)在区间内单调递增, 在区间内单调递减;当a时,g(x)在区间(0,+∞)内单调递增.(2)证明由f'(x)=2(x-a)-2ln x-2=0,解得a=令φ(x)=-2ln x+x2-2x-2则φ(1)=1>0,φ(e)=--2<0.故存在x0∈(1,e),使得φ(x0)=0.令a0=,u(x)=x-1-ln x(x≥1).由u'(x)=1-0知,函数u(x)在区间(1,+∞)内单调递增.所以0==a0<<1.即a0∈(0,1).当a=a0时,有f'(x0)=0,f(x0)=φ(x0)=0.由(1)知,f'(x)在区间(1,+∞)内单调递增,故当x∈(1,x0)时,f'(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时,f'(x)>0,从而f(x)>f(x0)=0.所以,当x∈(1,+∞)时,f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.二、思维提升训练7.解(1)f'(x)=x2+2x+a,方程x2+2x+a=0的判别式为Δ=4-4a,①当a≥1时,Δ≤0,则f'(x)≥0,此时f(x)在R上是增函数;②当a<1时,方程x2+2x+a=0两根分别为x1=-1-,x2=-1+,解不等式x2+2x+a>0,解得x<-1-或x>-1+,解不等式x2+2x+a<0,解得-1-<x<-1+,此时,函数f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),单调递减区间为(-1-,-1+).综上所述,当a≥1时,函数f(x)的单调递增区间为(-∞,+∞);当a<1时,函数f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),单调递减区间为(-1-,-1+).(2)f(x0)-f+ax0+1--a-1=+a=+a+x0+(4+14x0+7+12a).若存在x0,使得f(x0)=f,则4+14x0+7+12a=0在内有解.由a<0,得Δ=142-16(7+12a)=4(21-48a)>0,故方程4+14x0+7+12a=0的两根为x1'=,x'2=由x0>0,得x0=x'2=,依题意,0<<1,即7<<11,所以49<21-48a<121,即-<a<-, 又由得a=-,故要使满足题意的x0存在,则a≠-综上,当a时,存在唯一的x0满足f(x0)=f,当a时,不存在x0满足f(x0)=f。

2019届高三数学(理)二轮复习精品同步:第1部分 基础送分题:教师用书:题型专题(4) 不等式(通用版)

2019届高三数学(理)二轮复习精品同步:第1部分 基础送分题:教师用书:题型专题(4) 不等式(通用版)

题型专题(四) 不等式(1)一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2-4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.(2)解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.[题组练透]1.(2019·河北五校联考)如图,已知R 是实数集,集合A ={x |log 12(x -1)>0},B =⎩⎨⎧⎭⎬⎫x |2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]解析:选D 由题意可知A ={x |1<x <2},B =⎩⎨⎧⎭⎬⎫x |0<x <32,且图中阴影部分表示的是B ∩(∁R A )={x |0<x ≤1},故选D.2.已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫-32,12C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-12,32 解析:选A 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3), ∴a <0,且⎩⎨⎧1-aba =2,-ba =-3,解得a =-1或13(舍去),∴a =-1,b =-3, ∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32,故选A.3.(2019·泉州质检)设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,则使得f (x )≤1成立的x 的取值范围是________.解析:由⎩⎨⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎨⎧x <0,-x 3≤1得-1≤x <0,故f (x )≤1的解集为[-1,9].答案:[-1,9] [技法融会]1.求解一元二次不等式的3步:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.2.(易错提醒)解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.基本不等式:a +b2≥ab(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.[题组练透]1.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52解析:选B 2x +2x -a =2(x -a )+2x -a+2a ≥22(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32,故选B.2.(2019·湖北七市联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( )A .9 B.92 C .4 D.52解析:选B 将圆的一般方程化为标准方程为(x -1)2+(y -2)2=5,圆心坐标为(1,2),半径r =5,故直线过圆心,即a +2b =6,∴a +2b =6≥2a ·2b ,可得ab ≤92,当且仅当a =2b=3时等号成立,即ab 的最大值是92,故选B.3.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析:选C 设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝⎛⎭⎫2x +2×4x=80+20⎝⎛⎭⎫x +4x ≥80+20×2 x ·4x=160⎝⎛⎭⎫当且仅当x =4x ,即x =2时取等号. 所以该容器的最低总造价为160元.4.(2019·江西两市联考)已知x ,y ∈R +,且x +y +1x +1y =5,则x +y 的最大值是( )A .3 B.72 C .4 D.92解析:选C 由x +y +1x +1y =5,得5=x +y +x +y xy ,∵x >0,y >0,∴5≥x +y +x +y ⎝⎛⎭⎫x +y 22=x+y +4x +y,∴(x +y )2-5(x +y )+4≤0,解得1≤x +y ≤4,∴x +y 的最大值是4.[技法融会]1.利用不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值.2.(易错提醒)利用基本不等式求最值时要注意“一正、二定、三相等”,三个条件缺一不可.解决线性规划问题的一般步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平面直线系中的任意一条直线l .(2)平移——将l 平行移动,以确定最优解所对应的点的位置.有时需要对目标函数l 和可行域边界的斜率的大小进行比较.(3)求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. [题组练透]1.(2019·河南六市联考)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =( )A .6B .5C .4D .3解析:选B 画出不等式组所表示的可行域如图中阴影部分所示,作直线l :y =x ,平移l可知,当直线l 经过A 时,z =x -y 取得最小值-1,联立⎩⎨⎧y =2x -1,x -y =-1,得⎩⎨⎧x =2,y =3,即A (2,3),又A (2,3)在直线x +y =m 上,∴m =5,故选B.2.(2019·福建质检)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,y +2≥0,x +y +2≥0,则(x +2)2+(y +3)2的最小值为( )A .1 B.92C .5D .9解析:选B 不等式组表示的可行域为如图所示的阴影部分,由题意可知点P (-2, -3)到直线x +y +2=0的距离为|-2-3+2|2=32,所以(x +2)2+(y +3)2的最小值为⎝⎛⎭⎫322=92,故选B.3.(2019·全国甲卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析:不等式组⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0表示的可行域如图中阴影部分所示.由z =x -2y 得y =12x -12z .平移直线y =12x ,易知经过点A (3,4)时,z 有最小值,最小值为z =3-2×4=-5.答案:-54.(2019·山西质检)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0,则y -1x -1的最小值是________.解析:画出不等式组所表示的可行域,如图所示,而y -1x -1表示区域内一点(x ,y )与点D (1,1)连线的斜率,∴当x =13,y =43时,y -1x -1有最小值为-12.答案:-125.(2019·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产产品A x 件,产品B y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N . 目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线2 100x +900y =0,即7x +3y =0,当直线经过点B 时,z 取得最大值,联立⎩⎨⎧10x +3y =900,5x +3y =600,解得B (60,100). 则z max =2 100×60+900×100=216 000(元). 答案:216 000 [技法融会]1.线性目标函数z =ax +by 最值的确定方法线性目标函数z =ax +by 中的z 不是直线ax +by =z 在y 轴上的截距,把目标函数化为y =-a b x +z b ,可知zb 是直线ax +by =z 在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.2.(易错提醒)解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.1.不等式的可乘性(1)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (2)a >b >0,c >d >0⇒ac >bd .2.不等式的性质在近几年高考中未单独考查,但在一些题的某一点可能考查,在今后复习中应引起关注.[题组练透]1.(2019·河南六市联考)若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D 由题可知b <a <0,所以A ,B ,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误,选D.2.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a c >bc,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析:选C 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0知a >0且b <0,所以1a >1b成立,C 正确;当a <0且b <0时,可知D 不正确.[技法融会]1.判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.2.利用不等式性质解决问题的注意事项(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等.一、选择题1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A .2 B .-2 C .-12 D.12解析:选B 根据不等式与对应方程的关系知-1,-12是一元二次方程ax 2+x (a -1)-1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2,故选B. 2.(2019·北京高考)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( )A .-1B .3C .7D .8解析:选C 作出线段AB ,如图所示.作直线2x -y =0并将其向下平移至直线过点B(4,1)时,2x -y 取最大值为2×4-1=7. 3.(2019·福建四地六校联考)已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a的值是( )A.12B.32C .1D .2 解析:选C 由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax+2≤-2a +2,当且仅当x =-a 时取等号.所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C. 4.已知函数f (x )=(x -2)(ax +b)为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( )A .{ x | x >2或x <-2}B .{ x |-2< x <2}C .{ x | x <0或x >4}D .{ x |0< x <4}解析:选C 由题意可知f (-x )=f (x ),即(-x -2)·(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立,故2a -b =0,即b =2a ,则f (x )=a (x -2)( x +2).又函数在(0,+∞)单调递增,所以a >0.f (2-x )>0即ax (x -4)>0,解得x <0或x >4.故选C. 5.(2019·赣中南五校联考)对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,且c ≠0,则a >b ; ②若a > b ,c>d ,则a +c >b +d ; ③若a > b ,c> d ,则ac >bd ; ④若a > b ,则1a >1b .其中正确的有( )A .1个B .2个C .3个D .4个解析:选B ①ac 2>bc 2,且c ≠0,则a >b ,①正确;②由不等式的同向可加性可知②正确;③需满足a ,b ,c ,d 均为正数才成立;④错误,比如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B.6.(2019·安徽江南十校联考)若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎡⎦⎤-12,2 C .[-1,2] D.⎣⎡⎦⎤-12,1 解析:选B 作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2 x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.7.(2019·河北五校联考)若对任意正实数x ,不等式1x 2+1≤ax 恒成立,则实数a 的最小值为( )A .1 B. 2 C.12 D.22解析:选C 因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x ≤12(当且仅当x =1时取等号),所以a ≥12.故选C.8.(2019·河南八市联考)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =3x +2y 的最小值为1,则a =( )A.14B.12C.34D .1 解析:选B 根据约束条件作出可行域(如图中阴影部分所示),把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线,当直线z =3x +2y 经过点B 时,截距z2最小,即z 最小,又B 点坐标为(1,-2a ),代入3x +2y =1,得3-4a =1,得a =12,故选B.9.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B .C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线3x +4y -z =0过点B (2,3)时,z 取最大值18,故该企业每天可获得最大利润为18万元.故选D.10.(2019·湖北七市联考)设向量a =(1,k ),b =(x ,y ),记a 与b 的夹角为θ.若对所有满足不等式|x -2|≤y ≤1的x ,y ,都有θ∈⎝⎛⎭⎫0,π2,则实数k 的取值范围是( )A .(-1,+∞)B .(-1,0)∪(0,+∞)C .(1,+∞)D .(-1,0)∪(1,+∞)解析:选D 首先画出不等式|x -2|≤y ≤1所表示的区域,如图中阴影部分所示,令z =a ·b =x +ky ,∴问题等价于当可行域为△ABC 时,z >0恒成立,且a 与b 方向不相同,将△ABC 的三个端点值代入,即⎩⎨⎧k +1>0,k +3>0,2+0·k >0,解得k >-1,当a 与b 方向相同时,1·y =x ·k ,则k =y x∈[0,1],∴实数k 的取值范围是(-1,0)∪(1,+∞),故选D. 11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选B 由题可知,1=1x +4y ≥24xy =4xy,即xy ≥4,于是有m 2-3m >x +y 4≥xy ≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( ) A.6+2 B.6-2C .22+2D .22-2解析:选B 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝⎛⎭⎫c a -12⎝⎛⎭⎫c a 2+1,又4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =c a -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t 2t 2+4t +3=42t +3t+4≤426+4=6-2(当且仅当t =62时等号成立),当t =0时,b 2a 2+2c 2=0,故b 2a 2+2c 2的最大值为6-2,故选B.二、填空题13.(2019·湖北华师一附中联考)若2x +4y =4,则x +2y 的最大值是________.解析:因为4=2x +4y =2x +22y ≥22x ×22y =22x +2y ,所以2x +2y ≤4=22,即x +2y ≤2,当且仅当2x =22y =2,即x =2y =1时,x +2y 取得最大值2.答案:214.(2019·河北三市联考)如果实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -2≥0,x -1≤0,y -2≤0,且z =y x +a 的最小值为12,则正数a 的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x =1,y =1时,z取最小值12,即11+a =12,所以a =1.答案:115.(2019·江西两市联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是________.解析:设z =x +2y +3x +1=x +1+2(y +1)x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )到定点D (-1,-1)的斜率.画出可行域如图中阴影部分所示,则易得z ′∈[k DA ,k DB ],易得z ′∈[1,5],∴z =1+2·z ′∈[3,11].答案:[3,11]16.(2019·湖南东部六校联考)对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式k x +a +x +b x +c<0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________.解析:不等式kxax+1+bx+1cx+1<0,可化为ka+1x+b+1xc+1x<0,故得-1<1x<-13或12<1x<1,解得-3<x<-1或1<x<2,故kxax+1+bx+1cx+1<0的解集为(-3,-1)∪(1,2).答案:(-3,-1)∪(1,2)。

2019年高考数学二轮复习解题思维提升专题13概率小题部分训练手册(附答案)

2019年高考数学二轮复习解题思维提升专题13概率小题部分训练手册(附答案)

专题13 概率小题部分【训练目标】1、理解概率的定义,能正确区分概率与频率;2、理解互斥事件和相互独立事件的定义及运算公式;3、掌握古典概型的概念及计算;4、掌握几何概型的概念及计算;5、掌握两个计数原理及简单的排列组合,及列举法求概率。

6、理解随机变量的概念,掌握随机变量分布列的性质;7、掌握随机变量分布列的求法,及期望计算公式。

8、掌握条件概率的计算公式,掌握正态分布,二项分布的期望和方差公式。

【温馨小提示】概率在高考中有一道小题一道大题,17分左右,对于理科生来讲,只要掌握了基本的概念及公式,这是属于送分题,因此在练习时要注意总结方法。

【名校试题荟萃】1、袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( )A.①B.②C.③D.④【答案】B【解析】至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件.2、张卡片上分别写有数字,从这张卡片中随机抽取2张,则取出张卡片上数字之和为偶数的概率为( )A. B. C. D.【答案】B【解析】由题知基本事件总数为,如果2张卡片上数字之和为奇数,需1奇1偶,共有种,∴取出2张卡片上数字之和为奇数的概率为,因此取出2张卡片上数字之和为偶数的概率为.3、从5张100元,3张200元,2张300元的奥运会决赛门票中任取3张,则所取3张中于至少有2张价格相同的概率为()A. B. C. D.【答案】B【解析】先求三张价格均不相同的概率所求概率为。

4、国庆期间,甲去某地的概率为,乙和丙二人去此地的概率为、,假定他们三人的行动相互不受影响,这段时间至少有人去此地旅游的概率为()A. B. C. D.【答案】B5、已知3件次品和2件正品混在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则在第一次取出次品的条件下,第二次取出的也是次品的概率是()A. B. C. D.【答案】C【解析】记“第一次取出次品”为事件,“第二次取出次品”为事件,则,,所以.6、设随机变量服从正态分布,若,则函数没有极值点的概率是()A. B. C. D.【答案】C【解析】由无相异实根得,因此函数没有极值点的概率是,选C.7、将本不同的书全发给名同学,每名同学至少有一本书的概率是( )A. B. C. D.【答案】A8、已知是球面上的五个点,其中在同一圆周上,若不在所在的圆周上,则从这五个点的任意两点的连线中取出条,这两条直线是异面直线的概率是()A. B. C. D.【答案】D【解析】由题意,得是四棱锥的五个顶点,任取两点,共有条直线,从条直线中任取两条直线,共有对,其中异面直线对是一条侧棱与地面上三条相等(如侧棱与)共有对异面直线,由古典概型的概率公式,得这两条直线是异面直线的概率是.9、某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中,任取2人,则至少有1名优秀工人的概率为()A. B. C. D.【答案】C10、一个射箭运动员在练习时只记射中环和环的成绩,未击中环或环就以环记.该运动员在练习时击中环的概率为,击中环的概率为,既未击中环也未击中环的概率为(,,),如果已知该运动员一次射箭击中环数的期望为环,则当取最小值时,的值为()A. B. C. D.【答案】A【解析】由运动员一次射箭击中环数的期望为环,可知,即,则,当,即时取等号,此时,则.11、在区间内随机取两个实数,,则满足的概率是( )A. B. C. D.【答案】D【解析】由题意知表示的区域为边长为2的正方形,面积为4,满足的区域即为图中阴影部分,面积为,所以所求概率为,.12、若是从区间中任取的一个实数,是从区间中任取的一个实数,则的概率是( )A. B. C. D.【答案】A【解析】试验的全部结果构成的区域(如图)为边长分别为2和3的矩形,面积为.其中满足的结果构成的区域为图中阴影部分,其面积为.则所求概率为.13、如图,将半径为的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为( )A. B. C. D.【答案】A14、在如图所示的正方形中随机投掷个点,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为()附:若,则,A. B. C. D.【答案】C【解析】根据题意得,设落入阴影部分点的个数为,则,则.15、有一批产品,其中有件正品和件次品,有放回地任取件,若表示取到次品的件数,则_________.【答案】【解析】由题意知取到次品的概率为,∴,∴.16、已知随机变量,若,则_________.【答案】【解析】,所以,所以,解得,所以.17、设随机变量的分布列为,其中为常数,则_________.【答案】18、设随机变量的概率分布律如下表所示:其中成等差数列,若随机变量的的均值为,则的方差为________.【答案】【解析】由题意有,,,解得,则其方差为.19、有一种游戏规则如下:口袋里共装有个红球和个黄球,一次摸出个,若颜色都相同,则得分;若有个球颜色相同,另一个不同,则得分,其他情况不得分. 小张摸一次得分的期望是________.【答案】20、设随机变量,且,则实数的值为_________.【答案】3【解析】∵随机变量,∴正态曲线关于对称,∵,∴与关于对称,所以∴.21、某校高三一模理科参加数学考试学生共有1016人,分数服从,则估计分数高于105分的人数为________.【答案】508【解析】因为分数服从,所以由正态分布的性质可知,估计分数高于105分的人数为故,答案为508.22、如图,是以为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用表示事件“豆子落在正方形内”,表示事件“豆子落在扇形(阴影部分)内”,则______.【答案】【解析】故答案为.23、袋中有大小质地完全相同的2个红球和3个黑球,不放回地摸出黑球,设“第一次摸得红球”为事件,“摸得的两球同色”为事件,则概率_________.【答案】【解析】由, ,根据条件概率可知.24、设集合,,分别从集合和中随机取一个数和,确定平面上一个点,设“点落在直线上”为事件,若事件的概率最大,则的值为________.【答案】2【解析】由题意知,点的坐标的所有情况为,,,,,,,,,共种.当时,落在直线上的点的坐标为,共种;当时,落在直线上的点的坐标为和,共种;当时,落在直线上的点的坐标为,,,共种;当时,落在直线上的点的坐标为,,共种;当时,落在直线上的点的坐标为,共种.因此,当的概率最大时,.25、个男生,个女生排成一排,其中有且只有两个女生相邻排在一起的排法总数有________.【答案】288026、将名新的同学分配到、、三个班级中,每个班级至少安排名学生,其中甲同学不能分配到班,那么不同的分配方案数为_________.(请用数字作答)【答案】24【解析】将甲同学分配到班或班,有种;剩下的名同学分配方案为种,所以不同的分配方案为种.27、某班组织文艺晚会,准备从等个节目中选出个节目演出,要求:两个节目至少有一个选中,且同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为_________.【答案】1140【解析】分两类:第一类,只有一个选中,则不同演出顺序有种;第二类,同时选中,则不同演出顺序有种,共有.故答案应填:.28、甲、乙两位高一学生进行新高考“七选三”选科(即在物、化、生、政、史、地、技术等七门科中任选择三门学科),已知学生甲必选政治,学生乙必不选物理,则甲、乙两位学生恰好有两门选课相同的选法有________种.(用数字作答)【答案】110【解析】(1)甲选物理:;(2)甲不选物理:;共有种.29、为了调查观众对央视某节目的关注度,现从某社区随机抽取名青年人进行调查,再从中挑选名做进一步调查,则这名青年人中的小张、小李至少有人被选中,而小汤没有被选中做进一步调查的不同选法有________种. 【答案】149630、有个大学报送名额,计划分别到个班级,每班至少一个名额,则不同的分法种数为种.【答案】6【解析】一共有个保送名额,分到个班级,每个班级至少一个保送名额,即将名额分成份,每份至少个(定行数).将个名额排成一列产生个空,中间有个空(定空位).即只需在中间个空中插入个隔板,隔板不同的方法共有种.(插隔板)专题13 概率(小题部分)(文)【训练目标】1、理解概率的定义,能正确区分概率与频率;2、理解互斥事件和相互独立事件的定义及运算公式;3、掌握古典概型的概念及计算;4、掌握几何概型的概念及计算;5、掌握两个计数原理,及列举法求概率。

备战2019高考数学大二轮复习 第一部分 思想方法研析指导 思想方法训练1 函数与方程思想 理

备战2019高考数学大二轮复习 第一部分 思想方法研析指导 思想方法训练1 函数与方程思想 理

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……思想方法训练1 函数与方程思想一、能力突破训练1.已知椭圆+y2=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,其一个交点为P,则|PF2|=()A. B. C. D.42.奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2B.-1C.0D.13.已知函数f(x)=x2+e x- (x<0)与g(x)=x2+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是()A. B.(-∞,)C. D.4.已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8的值为()A.16B.32C.64D.625.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b= .6.已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为.7.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,则不等式f(x+2)<5的解集是.8.设函数f(x)=cos2x+sin x+a-1,已知不等式1≤f(x)≤对一切x∈R恒成立,求a的取值范围.9.在△ABC中,内角A,B,C所对边的边长分别是a,b,c.已知c=2,C=.(1)若△ABC的面积等于,求a,b的值;(2)若sin C+sin(B-A)=2sin 2A,求△ABC的面积.10.某地区要在如图所示的一块不规则用地上规划建成一个矩形商业楼区,余下的作为休闲区,已知AB ⊥BC,OA∥BC,且|AB|=|BC|=2|OA|=4,曲线OC是以O为顶点且开口向上的抛物线的一段,如果矩形的两边分别落在AB,BC上,且一个顶点在曲线OC段上,应当如何规划才能使矩形商业楼区的用地面积最大?并求出最大的用地面积.二、思维提升训练11.已知数列{a n}是等差数列,a1=1,a2+a3+…+a10=144.(1)求数列{a n}的通项a n;(2)设数列{b n}的通项b n=,记S n是数列{b n}的前n项和,若n≥3时,有S n≥m恒成立,求m的最大值.12.已知椭圆C:=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为时,求k的值.13.直线m:y=kx+1和双曲线x2-y2=1的左支交于A,B两点,直线l过点P(-2,0)和线段AB的中点M,求直线l在y轴上的截距b的取值范围.思想方法训练1函数与方程思想一、能力突破训练1.C解析如图,令|F1P|=r1,|F2P|=r2,则化简得解得r2=2.D解析因为函数f(x)是奇函数,所以f(-x)=-f(x).又因为f(x+2)是偶函数,则f(-x+2)=f(x+2),所以f(8)=f(6+2)=f(-6+2)=f(-4)=-f(4),而f(4)=f(2+2)=f(-2+2)=f(0)=0,所以f(8)=0;同理f(9)=f(7+2)=f(-7+2)=f(-5)=-f(5),而f(5)=f(3+2)=f(-3+2)=f(-1)=-f(1)=-1,所以f(9)=1,所以f(8)+f(9)=1.故选D.3.B解析由已知得,与函数f(x)的图象关于y轴对称的图象的函数解析式为h(x)=x2+e-x- (x>0).令h(x)=g(x),得ln(x+a)=e-x-,作函数M(x)=e-x-的图象,显然当a≤0时,函数y=ln(x+a)的图象与M(x)的图象一定有交点.当a>0时,若函数y=ln(x+a)的图象与M(x)的图象有交点,则ln a<,则0<a<综上a<故选B.4.C解析因为a1,a2,a5成等比数列,则=a1·a5,即(1+d)2=1×(1+4d),d=2.所以a n=1+(n-1)×2=2n-1,S8==4×(1+15)=64.5.- 解析f(x)=a x+b是单调函数,当a>1时,f(x)是增函数,无解.当0<a<1时,f(x)是减函数,综上,a+b=+(-2)=-6.[1,+∞)解析以AB为直径的圆的方程为x2+(y-a)2=a,由得y2+(1-2a)y+a2-a=0.即(y-a)[y-(a-1)]=0,则由题意得解得a≥1.7.{x|-7<x<3}解析令x<0,则-x>0,∵当x≥0时,f(x)=x2-4x,∴f(-x)=(-x)2-4(-x)=x2+4x,又f(x)为偶函数,∴f(-x)=f(x),∴当x<0时,f(x)=x2+4x,故有f(x)=再求f(x)<5的解,由得0≤x<5;由得-5<x<0,即f(x)<5的解集为(-5,5).由于f(x)的图象向左平移两个单位即得f(x+2)的图象,故f(x+2)<5的解集为{x|-7<x<3}.8.解f(x)=cos2x+sin x+a-1=1-sin2x+sin x+a-1=-+a+因为-1≤sin x≤1,所以当sin x=时,函数有最大值f(x)max=a+,当sin x=-1时,函数有最小值f(x)min=a-2.因为1≤f(x)对一切x∈R恒成立,所以f(x)max,且f(x)min≥1,即解得3≤a≤4,故a的取值范围是[3,4].9.解 (1)由余弦定理及已知条件,得a2+b2-ab=4.因为△ABC的面积等于,所以ab sin C=,得ab=4.联立解得a=2,b=2.(2)由题意得sin(B+A)+sin(B-A)=4sin A cos A,即sin B cos A=2sin A cos A,当cos A=0时,A=,B=,a=,b=,当cos A≠0时,得sin B=2sin A,由正弦定理得b=2a,联立解得a=,b=故△ABC的面积S=ab sin C=10.解以点O为原点,OA所在的直线为x轴建立平面直角坐标系,则A(-2,0),B(-2,4),C(2,4),设抛物线的方程为x2=2py,把C(2,4)代入抛物线方程得p=,所以曲线段OC的方程为y=x2(x∈[0,2]).设P(x,x2)(x∈[0,2])在OC上,过点P作PQ⊥AB于点Q,PN⊥BC于点N,故|PQ|=2+x,|PN|=4-x2,则矩形商业楼区的面积S=(2+x)(4-x2)(x∈[0,2]).整理,得S=-x3-2x2+4x+8,令S'=-3x2-4x+4=0,得x=或x=-2(舍去),当x时,S'>0,S是关于x的增函数,当x时,S'<0,S是关于x的减函数,所以当x=时,S取得最大值,此时|PQ|=2+x=,|PN|=4-x2=,S max=故该矩形商业楼区规划成长为,宽为时,用地面积最大为二、思维提升训练11.解 (1)∵{a n}是等差数列,a1=1,a2+a3+…+a10=144,∴S10=145,∵S10=,∴a10=28,∴公差d=3.∴a n=3n-2(n∈N*).(2)由(1)知b n==,∴S n=b1+b2+…+b n=,∴S n=∵S n+1-S n=>0,∴数列{S n}是递增数列.当n≥3时,(S n)min=S3=,依题意,得m,故m的最大值为12.解 (1)由题意得解得b=所以椭圆C的方程为=1.(2)由得(1+2k2)x2-4k2x+2k2-4=0.设点M,N的坐标分别为(x1,y1),(x2,y2),则x1+x2=,x1x2=所以|MN|===因为点A(2,0)到直线y=k(x-1)的距离d=,所以△AMN的面积为S=|MN|·d=由,解得k=±1.所以k的值为1或-1.13.解由(x≤-1)消去y,得(k2-1)x2+2kx+2=0.①∵直线m与双曲线的左支有两个交点,∴方程①有两个不相等的负实数根.解得1<k<设M(x0,y0),则由P(-2,0),M,Q(0,b)三点共线,得出b=,设f(k)=-2k2+k+2=-2,则f(k)在(1,)上为减函数,∴f()<f(k)<f(1),且f(k)≠0.∴-(2-)<f(k)<0或0<f(k)<1.∴b<--2或b>2.∴b的取值范围是(-∞,--2)∪(2,+∞).。

专题5 导数中的点关于线对称问题-2019届高考数学二轮复习压轴题突破例题讲解与专题训练含答案

专题5 导数中的点关于线对称问题-2019届高考数学二轮复习压轴题突破例题讲解与专题训练含答案

专题05 导数中的点关于线对称问题导数中的存在点关于线的对称问题在平时的练习中比较常见,一开始很多同学无法下手,但是其实根据对称思想确定对称点的坐标,转化为一个函数是否存在零点的问题,再利用导数分析函数的单调性,确定最值,数形结合即可求解。

【题型示例】1、已知函数(为自然对数的底数)与的图象上存在关于直线对称的点,则实数的取值范围是()A. B. C. D.【答案】A【解析】因为函数与的图象在上存在关于直线对称的点,所以问题转化为方程在上有解,即在上有解.令,则,当时,,所以在上单调递减,在上单调递增,又,,所以,即,故选A.2、已知函数的图象上存在两点关于轴对称,则实数的取值范围是()A. B. C. D.【答案】D【解析】设是上一点,则点关于y轴的对称点为,于是,∴,令,则,∴在上是增函数,在与上是减函数,又时,,,,∴,故选D.3、已知函数,,若存在使得,则的取值范围是()A. B. C. D.【答案】B4、已知函数的图象上存在点.函数的图象上存在点,且关于原点对称,则的取值范围是()A. B. C. D.【答案】A【解析】由题知有解,令,,故函数在递减,在递增,所以,解得.【专题练习】1、已知函数, ,若图象上存在两个不同的点与图象上两点关于轴对称,则的取值范围为()A. B. C. D.【答案】D【解析】∵图象上存在两个不同的点与图象上两点关于轴对称,在上有两解,即有两解,整理得.设,则.令,得,解得或(舍).当时,,函数递减,当时,,函数递增,则当时,取得极小值,当时,,有两解,.的取值范围是.故选D.学=科网2、已知函数与的图象在上存在关于轴对称的点,则实数的取值范围是()A. B. C. D.【答案】D【解析】依题意,存在,使成立,即,在上有解.令,则.因为在上单调递增,所以,所以在上单调递减,所以,所以在上单调递增,所以,即,所以.3、已知函数,,若与的图象上分别存在点,使得关于直线对称,则实数的取值范围是()A. B. C. D.【答案】B4、已知函数(,是自然对数的底)与的图象上存在关于轴对称的点,则实数的取值范围是( )A. B. C. D.【答案】A【解析】根据题意,若函数(,是自然对数的底)与的图象上存在关于轴对称的点,则方程在区间上有解,,即方程在区间上有解,设函数,其导数,又由,在有唯一的极值,分析可得:当时,,为减函数,当时,,为增函数,故函数有最小值,又由,,比较可得:,故函数有最大值,故函数在区间上的值域为;若方程在区间上有解,必有,则有,即的取值范围是.5、若平面直角坐标系内的两点满足:①点都在的图象上;②点关于原点对称,则称点对是函数的一个“姊妹点对”(点对与可看作同一个“姊妹点对”).已知函数则的“姊妹点对”的个数为()A.1B.2C.3D.4【答案】B。

2019届高考数学大二轮复习精品练习:第1部分 专题4 数列 第2讲 Word版含解析

2019届高考数学大二轮复习精品练习:第1部分 专题4 数列 第2讲 Word版含解析

第一部分 专题四 第二讲A 组1.设{a n }的首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1=(D )A .2B .-2C .12D .-12[解析]由题意知S 1=a 1,S 2=2a 1-1,S 4=4a 1-6,因为S 1,S 2,S 4成等比数列,所以S 2=S 1·S 4,即(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.故选D .2.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a1a2+1a2a3+…+1anan +1等于( B )A .1-14nB .23(1-14n )C .1-12nD .23(1-12n)[解析]因为a n =1×2n -1=2n -1,所以a n ·a n +1=2n -1·2n =2×4n -1,所以1anan +1=12×(14)n -1,所以{1anan +1}也是等比数列,所以T n =1a1a2+1a2a3+…+1anan +1=12×错误!=错误!(1-错误!),故选B .3.(2018·烟台模拟)已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于( C)A .30B .45C .90D .186[解析]设{a n }的公差为d ,首项为a 1,由题意得⎩⎪⎨⎪⎧ a1+d =6,a1+4d =15,解得⎩⎪⎨⎪⎧a1=3,d =3,所以a n =3n ,所以b n =a 2n =6n ,且b 1=6,公差为6,所以S 5=5×6+5×42×6=90.4.等差数列{a n }中,a 1>0,公差d <0,S n 为其前n 项和,对任意自然数n ,若点(n ,S n )在以下4条曲线中的某一条上,则这条曲线应是( C )[解析]∵S n =na 1+错误!d ,∴S n =错误!n 2+(a 1-错误!)n ,又a 1>0,公差d <0,所以点(n ,S n )所在抛物线开口向下,对称轴在y 轴右侧.[点评] 可取特殊数列验证排除,如a n =3-n .5.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2; ②f (x )=2x ;③f (x )=|x|; ④f (x )=ln|x |.则其中是“保等比数列函数”的f (x )的序号为( C )A .①②B .③④C .①③D .②④ [分析]保等比数列函数指:①定义在(-∞,0)∪(0,+∞)上的函数;②若{a n }是等比数列,则{f (a n )}仍是等比数列.[解析]解法一:设{a n }的公比为q .①f (a n )=a 2n ,∵a2n +1a2n =(an +1an )2=q 2,∴{f (a n )}是等比数列,排除B 、D .③f (a n )=|an|,∵|an +1||an|=|an +1an|=|q|,∴{f (a n )}是等比数列,排除A .解法二:不妨令a n =2n .①因为f (x )=x 2,所以f (a n )=a 2n =4n .显然{f (a n )}是首项为4,公比为4的等比数列.②因为f (x )=2x ,所以f (a 1)=f (2)=22,f (a 2)=f (4)=24,f (a 3)=f (8)=28,所以错误!=错误!=4≠错误!=错误!=16,所以{f (a n )}不是等比数列.③因为f (x )=|x|,所以f (a n )=2n =(2)n .显然{f (a n )}是首项为2,公比为2的等比数列.④因为f (x )=ln|x |,所以f (a n )=ln2n =n ln2.显然{f (a n )}是首项为ln2,公差为ln2的等差数列,故选C .6.(2018·邵阳一模)已知数列{b n }为等比数列,且b 1009=e(e 为自然对数的底数),数列{a n }的首项为1.2_017的值为2018a 则ln ,n b ·n a =+1n a 且,[解析]因为数列{b n }为等比数列,且b 1009=e(e 为自然对数的底数),数列{a n }的首项为1,且a n +1=a n ·b n ,所以a 2018=b 1·b 2·b 3·b 4·…·b 2017=b 20171009=e 2017,ln a 2018=lne 2017=2017.7.已知数列{a n }是等比数列,其公比为2,设b n =log 2a n ,且数列{b n }的前10项的和为25,那么1a1+1a2+1a3+…+1a10的值为1 023128.[解析]数列{a n }是等比数列,其公比为2,设b n =log 2a n ,且数列{b n }的前10项的和为25,所以b 1+b 2+…+b 10 =log 2(a 1·a 2·…·a 10)=log 2(a 10121+2+…+9)=25,所以a 101×245=225,可得:a 1=14.那么1a1+1a2+1a3+…+1a10=4(1+12+122+…+129)=4×1-12101-12=1023128.8.已知等比数列{a n }的公比q >1,42是a 1和a 4的一个等比中项,a 2和a 3的等差中项为6,若数列{b n }满足b n =log 2a n (n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和S n .[解析](1)因为42是a 1和a 4的一个等比中项,所以a 1·a 4=(42)2=32.由题意可得⎩⎪⎨⎪⎧a2·a3=32,a2+a3=12.因为q >1,所以a 3>a 2.解得⎩⎪⎨⎪⎧a2=4,a3=8.所以q =a3a2=2.故数列{a n }的通项公式a n =2n .(2)由于b n =log 2a n (n ∈N *),所以a n b n =n ·2n , S n =1·2+2·22+3·23+…+(n -1)·2n -1+n ·2n ,①2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1.②①-②得,-S n =1·2+22+23+…+2n -n ·2n +1=错误!-n ·2n +1.所以S n =2-2n +1+n ·2n +1=2+(n -1)·2n +1.9.(文)(2018·天津卷,18)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.(1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.[解析](1)设等比数列{b n }的公比为q ,由b 1=1,b 3=b 2+2,可得q 2-q -2=0.因为q >0,可得q =2,故b n =2n -1.所以T n =1-2n1-2=2n -1.设等差数列{a n }的公差为d .由b 4=a 3+a 5,可得a 1+3d =4.由b 5=a 4+2a 6,可得3a 1+13d =16,从而a 1=1,d =1,故a n =n ,所以S n =错误!. (2)由(1),知T 1+T 2+…+T n =(21+22+…+2n )-n =2n +1-n -2.由S n +(T 1+T 2+…+T n )=a n +4b n 可得错误!+2n +1-n -2=n +2n +1,整理得n 2-3n -4=0,解得n =-1(舍),或n =4.所以n 的值为4.(理)(2018·天津卷,18)设{a n }是等比数列,公比大于0,其前n 项和为S n (n∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{a n }和{b n }的通项公式.(2)设数列{S n }的前n 项和为T n (n ∈N *),①求T n ;②证明[解析](1)设等比数列{a n }的公比为q .由a 1=1,a 3=a 2+2,可得q 2-q -2=0.因为q >0,可得q =2,故a n =2n -1.设等差数列{b n }的公差为d ,由a 4=b 3+b 5,可得b 1+3d =4.由a 5=b 4+2b 6,可得3b 1+13d =16,从而b 1=1,d =1,故b n =n .所以数列{a n }的通项公式为a n =2n -1,数列{b n }的通项公式为b n =n .(2)①由(1),有S n =1-2n1-2=2n -1,故T n =k =1n(2k -1)=k =1n 2k-n =错误!-n =2n +1-n -2.②因为错误!=错误!= 错误!=错误!-错误!,B 组1.设S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-52,则数列{错误!}的前n 项和T n =( C ) A .-n2n +1B .n2n +1C .-2n2n +1D .2n2n +1[解析]本题主要考查等差、等比数列的性质以及裂项法求和.设{a n }的公差为d ,因为S 1=a 1,S 2=2a 1+d =2a 1+a3-a12=32a 1-54,S 4=3a 3+a 1=a 1-152,因为S 1,S 2,S 4成等比数列,所以(32a 1-54)2=(a 1-152)a 1,整理得4a 21+12a 1+5=0,所以a 1=-52或a 1=-12.当a 1=-52时,公差d =0不符合题意,舍去;当a 1=-12时,公差d =a3-a12=-1,所以a n =-12+(n -1)×(-1)=-n +12=-12(2n -1),所以错误!=-错误!=-(错误!-错误!),所以其前n 项和T n =-(1-13+13-15+…+12n -1-12n +1)=-(1-12n +1)=-2n2n +1,故选C .2.(文)以S n 表示等差数列{a n }的前n 项和,若S 5>S 6,则下列不等关系不一定成立的是( D )A .2a 3>3a 4B .5a 5>a 1+6a 6C .a 5+a 4-a 3<0D .a 3+a 6+a 12<2a 7[解析]依题意得a 6=S 6-S 5<0,2a 3-3a 4=2(a 1+2d )-3(a 1+3d )=-(a 1+5d )=-a 6>0,2a 3>3a 4;5a 5-(a 1+6a 6)=5(a 1+4d )-a 1-6(a 1+5d )=-2(a 1+5d )=-2a 6>0,5a 5>a 1+6a 6;a 5+a 4-a 3=(a 3+a 6)-a 3=a 6<0.综上所述,故选D .(理)已知a n =32n -11,数列{a n }的前n 项和为S n ,关于a n 及S n 的叙述正确的是( C )A .a n 与S n 都有最大值B .a n 与S n 都没有最大值C .a n 与S n 都有最小值D .a n 与S n 都没有最小值[解析]画出a n =32n -11的图象,点(n ,a n )为函数y =32x -11图象上的一群孤立点,(112,0)为对称中心,S 5最小,a 5最小,a 6最大.3.已知正数组成的等差数列{a n },前20项和为100,则a 7·a 14的最大值是( A )A .25B .50C .100D .不存在 [解析]∵S 20=a1+a202×20=100,∴a 1+a 20=10.∵a 1+a 20=a 7+a 14,∴a 7+a 14=10.∵a n >0,∴a 7·a 14≤(a7+a142)2=25.当且仅当a 7=a 14时取等号.4.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( B )A .2n -1B .(32)n -1C .(23)n -1D .12n -1[解析]由S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,∴Sn +1Sn =32,∵a 1=1,S 1=2a 2,∴a 2=12a 1=12,∴S 2=32,∴S2S1=32,∴S n =(32)n -1.5.(2018·山东省实验中学调研)在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n),则a n =( A )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n[解析]a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n -ln(n -1)+ln(n -1)-ln(n -2)+…+ln2-ln1+2=2+ln n .6.(2018·西安一模)已知数列{a n }的通项公式a n =log 2n n +1(n∈.16的值为n 4成立的最小自然数-<n S 则使,n S 项和为n 设其前),*N[解析]因为a n =log 2nn +1,所以S n =log 212+log 223+log 234+…+log 2n n +1=log 2(12·23·34·…·n n +1)=log 21n +1,若S n <-4,则1n +1<116,即n >15,则使S n <-4成立的最小自然数n 的值为16.7.如图所示,将正整数排成三角形数阵,每排的数称为一个群,从上到下顺次为第一群,第二群,.-3n -2n 3·2个数的和是n 群中n 则第,个数n 群恰好n 第,…,群n 第,…[解析]由图规律知,第n 行第1个数为2n -1,第2个数为3·2n -2,第3个数为5·2n -3……设这n 个数的和为S则S =2n -1+3·2n -2+5×2n -3+…+(2n -3)·2+(2n -1)·20①2S n =2n +3·2n -1+5·2n -2+…+(2n -3)·22+(2n -1)·21②②-①得S n =2n +2·2n -1+2·2n -2+…+2·22+2·2-(2n -1)=2n +2n +2n -1+…+23+22-(2n -1)=2n +错误!-(2n -1) =2n +2n +1-4-2n +1=3·2n -2n -3.8.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.[分析](1)利用a n +1=S n +1-S n 用配凑法可获证;(2)假设存在λ,则a 1,a 2,a 3应成等差数列求出λ的值,然后依据a n +2-a n =λ推证{a n }为等差数列.[解析](1)由题设:a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(1)知,a 3=λ+1,令2a 2=a 1+a 3,解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列. 9.已知数列{a n }满足a n +1=-1an +2,a 1=-12.(1)求证{1an +1}是等差数列;(2)求数列{a n }的通项公式;(3)设T n =a n +a n +1+…+a 2n -1.若T n ≥p -n 对任意的n ∈N *恒成立,求p 的最大值.[解析](1)证明:∵a n +1=-1an +2,∴a n +1+1=-1an +2+1=an +2-1an +2=an +1an +2,由于a n +1≠0,∴1an +1+1=an +2an +1=1+1an +1, ∴{1an +1}是以2为首项,1为公差的等差数列.(2)由(1)题结论知:1an +1=2+(n -1)=n +1,∴a n =1n +1-1=-nn +1(n ∈N *).(3)∵T n =a n +a n +1+…+a 2n -1≥P -n ,∴n +a n +a n +1+…+a 2n -1≥P ,即(1+a n )+(1+a n +1)+(1+a n +2)+…+(1+a 2n -1)≥p ,对任意n ∈N *恒成立,而1+a n =1n +1,设H (n )=(1+a n )+(1+a n +1)+…+(1+a 2n -1),∴H (n )=1n +1+1n +2+…+12n ,H (n +1)=1n +2+1n +3+…+12n +12n +1+12n +2,∴H (n +1)-H (n )=12n +1+12n +2-1n +1=12n +1-12n +2>0,∴数列{H (n )}单调递增,∴n ∈N *时,H (n )≥H (1)=12,故P ≤12.1 2.∴P的最大值为。

2019高考数学理科二轮复习第一篇微型专题练习:微专题20 直线与抛物线的综合 Word版含解析

2019高考数学理科二轮复习第一篇微型专题练习:微专题20 直线与抛物线的综合 Word版含解析
入抛物线方程得 y2-my-a=0,所以 y1y2=-a,x1x2=(y1y2)2=a2.由������������·������������ =x1x2+y1y2=a2-a<0,解得 a∈(0,1),故选 B.
答案▶ B 4.已知点 P(-1,4),过点 P 恰好存在两条直线与抛物线 C 有且只有一 个公共点,则抛物线 C 的标准方程为( ).
求证:直线 l 过定点,并求该定点的坐标.
解析▶ (1)由题意知,圆 M 的圆心为(3,1),半径 r= 3 ,A(0,1),F(c,0),
直线 AF 的方程为������+y=1,即 x+cy-c=0.
������
由直线 AF 与圆 M 相切,得|3 + ������ - ������|= 3,
������2 + 1
联立方程组
������2 3
+
������2
=
1,
整理得(1+3k2)x2+6kx=0,
解得 x=0 或 x=
- 6������
,
1 + 3������2
( ) 故点 P 的坐标为
- 6������ 1 - 3������2
1 + 3���ቤተ መጻሕፍቲ ባይዱ��2, 1 + 3������2
,
( ) 同理可得,点 Q 的坐标为
过点(2,1)的直线交抛物线 y2=5x 于 A,B 两点(异于坐标原点 O),
2
若|������������+������������|=|������������-������������|,则该直线的方程为( ).
A.x+y-3=0 B.2x+y-5=0

高考数学二轮复习练习:专项限时集训8 函数最值、恒成立及存在性问题 含答案

高考数学二轮复习练习:专项限时集训8 函数最值、恒成立及存在性问题  含答案

专项限时集训(八) 函数最值、恒成立及存在性问题(限时:60分钟)1.(本小题满分14分)(镇江市2019届高三上学期期末)已知函数f (x )=x ln x ,g (x )=λ(x 2-1)(λ为常数).(1)若函数y =f (x )与函数y =g (x )在x =1处有相同的切线,求实数λ的值; (2)若λ=12,且x ≥1,证明:f (x )≤g (x );(3)若对任意x ∈[1,+∞),不等式f (x )≤g (x )恒成立,求实数λ的取值范围. [解](1)f ′(x )=ln x +1,则f ′(1)=1且f (1)=0. 所以函数y =f (x )在x =1处的切线方程为:y =x -1, 从而g ′(x )=2λx ,g ′(1)=2λ=1,即λ=12.2分(2)证明:由题意知:设函数h (x )=x ln x -12(x 2-1),则h ′(x )=ln x +1-x ,设p (x )=ln x +1-x ,从而p ′(x )=1x-1≤0对任意x ∈[1,+∞)恒成立,所以p (x )=ln x +1-x ≤p (1)=0,即h ′(x )≤0, 因此函数h (x )=x ln x -12(x 2-1)在[1,+∞)上单调递减,即h (x )≤h (1)=0,所以当x ≥1时,f (x )≤g (x )成立. 6分(3)设函数H (x )=x ln x -λ()x 2-1,从而对任意x ∈[1,+∞),不等式H (x )≤0=H (1)恒成立. 又H ′(x )=ln x +1-2λx ,当H ′(x )=ln x +1-2λx ≤0,即ln x +1x≤2λ恒成立时,函数H (x )单调递减.设r (x )=ln x +1x ,则r ′(x )=-ln x x2≤0, 所以r (x )max =r (1)=1,即1≤2λ⇒λ≥12,符合题意;当λ≤0时,H ′(x )=ln x +1-2λx ≥0恒成立,此时函数H (x )单调递增. 于是,不等式H (x )≥H (1)=0对任意x ∈[1,+∞)恒成立,不符合题意;当0<λ<12时,设q (x )=H ′(x )=ln x +1-2λx ,则q ′(x )=1x -2λ=0⇒x =12λ>1,当x ∈⎝ ⎛⎭⎪⎫1,12λ时,q ′(x )=1x -2λ>0,此时q (x )=H ′(x )=ln x +1-2λx 单调递增,所以H ′(x )=ln x +1-2λx >H ′(1)=1-2λ>0, 故当x ∈⎝ ⎛⎭⎪⎫1,12λ时,函数H (x )单调递增.于是当x ∈⎝ ⎛⎭⎪⎫1,12λ时,H (x )>0成立,不符合题意; 综上所述,实数λ的取值范围为λ≥12.14分2.(本小题满分14分)已知函数f (x )=a ln x -bx 3,a ,b 为实数,b ≠0,e 为自然对数的底数,e≈2.71828.(1)当a <0,b =-1时,设函数f (x )的最小值为g (a ),求g (a )的最大值; (2)若关于x 的方程f (x )=0在区间(1,e]上有两个不同的实数解,求a b的取值范围.【导学号:56394114】[解](1)b =-1时,f (x )=a ln x +x 3,则f ′(x )=a +3x 3x,令f ′(x )=0,解得:x =3-a3,∵a <0,∴3-a3>0, x ,f ′(x ),f (x )的变化如下:故g (a )=f ⎝⎛⎭⎪⎫3-a 3=a 3ln ⎝ ⎛⎭⎪⎫-a 3-a3, 令t (x )=-x ln x +x ,则t ′(x )=-ln x ,令t ′(x )=0,解得:x =1, 且x =1时,t (x )有最大值1, 故g (a )的最大值是1,此时a =-3;8分(2)由题意得:方程a ln x -bx 3=0在区间(1,e]上有2个不同的实数根,故a b =x 3ln x在区间(1,e]上有2个不同实数根, 即函数y 1=a b 的图象与函数m (x )=x 3ln x 的图象有2个不同的交点,∵m ′(x )=x 2 3ln x -1 ln x 2,令m ′(x )=0,得:x =3e , x ,m ′(x ),m (x )的变化如下:∴x ∈(1,3e)时,m (x )∈(3e ,+∞),x ∈(3e ,e]时,m (x )∈(3e ,e 3], 故a ,b 满足的关系式是3e <a b≤e 3,即a b的范围是(3e ,e 3].14分3.(本小题满分14分)(江苏省镇江市丹阳高中2019届高三下学期期中)已知函数f (x )=x -1x,(1)函数F (x )=f (e x)-k ⎝ ⎛⎭⎪⎫x +x 36,其中k 为实数, ①求F ′(0)的值;②对∀x ∈(0,1),有F (x )>0,求k 的最大值;(2)若g (x )=x 2+2ln xa(a 为正实数),试求函数f (x )与g (x )在其公共点处是否存在公切线,若存在,求出符合条件的a 的个数,若不存在,请说明理由. [解](1)由F (x )=e x-1e x -k ⎝ ⎛⎭⎪⎫x +x 36得F ′(x )=e x+1e x -k ⎝ ⎛⎭⎪⎫1+x 22,①F ′(0)=2-k ,②记h (x )=F ′(x ),则h ′(x )=e x-1ex -kx ,记m (x )=h ′(x ),则m ′(x )=e x +1e x -k ,当x ∈(0,1)时,e x+1e x ∈⎝ ⎛⎭⎪⎫2,e +1e .3分(ⅰ)当k ≤2时,m ′(x )>2-k ≥0,x ∈(0,1),即m (x )在(0,1)上是增函数, 又m (0)=0,则h ′(x )>0,x ∈(0,1),即h (x )在(0,1)上是增函数,又F ′(0)=2-k ≥0, 则F ′(x )>0,x ∈(0,1),即F (x )在(0,1)上是增函数,故F (x )>F (0)=0,x ∈(0,1). (ⅱ)当k >2时,则存在x 0∈(0,1),使得m ′(x )在(0,x 0)小于0,即m (x )在(0,x 0)上是减函数,则h ′(x )<0,x ∈(0,x 0), 即h (x )在(0,x 0)上是减函数,又F ′(0)=2-k <0, 则F ′(x )<0,x ∈(0,x 0),又F ′(0)=2-k <0, 即F (x )在(0,x 0)上是减函数, 故F (x )<F (0)=0,x ∈(0,x 0),矛盾. 故k 的最大值为2.8分(2)设函数f (x )与g (x )在其公共点x =x 1处存在公切线,则⎩⎨⎧x 1-1x 1=x 21+2ln x 1a, ①1+1x 21=2x 1+2x 1a , ②由②得(2x 1-a )(x 21+1)=0,即x 1=a2,代入①得8ln a -8ln2-a 2+8=0,记G (a )=8ln a -8ln2-a 2+8,则G ′(a )=8a-2a ,得G (a )在(0,2)上是增函数,(2,+∞)上是减函数, 又G (2)=4>0,G (4)=8ln2-8<0,G ⎝ ⎛⎭⎪⎫2e =-4e 2<0, 得符合条件的a 的个数为2.(未证明小于0的扣2分)14分4.(本小题满分16分)(无锡市2019届高三上学期期末)已知f (x )=x 2+mx +1(m ∈R ),g (x )=e x.(1)当x ∈[0,2]时,F (x )=f (x )-g (x )为增函数,求实数m 的取值范围; (2)若m ∈(-1,0),设函数G (x )=f xg x ,H (x )=-14x +54,求证:对任意x 1,x 2∈[1,1-m ],G (x 1)<H (x 2)恒成立.[解](1)∵F (x )=x 2+mx +1-e x ,∴F ′(x )=2x +m -e x. ∵当x ∈[0,2]时,F (x )=f (x )-g (x )为增函数, ∴F ′(x )≥0即2x +m -e x≥0在[0,2]上恒成立, 即m ≥e x-2x 在[0,2]上恒成立. 令h (x )=e x-2x ,x ∈[0,2],则h ′(x )=e x-2,令h ′(x )=0,则x =ln2.∴h (x )在[0,ln2]上单调递减,在[ln2,2]上单调递增. ∵h (0)=1,h (2)=e 2-4>1, ∴h (x )max =h (2)=e 2-4, ∴m ≥e 2-4.6分(2)证明:G (x )=x 2+mx +1ex,则G ′(x )=-x 2+ 2-m x +m -1e x =- x -1 [x - 1-m ]e x. 要证任给x 1,x 2∈[1,1-m ],G (x 1)≤H (x 2)恒成立,即证G (x )max ≤H (x )min , ∵x ∈[1,1-m ],∴G (x )在[1,1-m ]上单调递增,G (x )max =G (1-m )=2-me 1-m ,∵H (x )在[1,1-m ]上单调递减,H (x )min =H (1-m )=-14(1-m )+54.10分要证G (x )max ≤H (x )min ,即证2-m e 1-m ≤-14(1-m )+54,即证4(2-m )≤e1-m[5-(1-m )].令1-m =t ,则t ∈(1,2).设r (x )=e x(5-x )-4(x +1),x ∈[1,2],即r (x )=5e x-x e x-4x -4.r ′(x )=(4-x )e x -4≥2e x -4>0,∴r (x )=e x(5-x )-4(x +1)在[1,2]上单调递增, ∵r (1)=4e -8>0,∴e x(5-x )≥4(x +1),从而有-14(1-m )+54≥2-m e ,即当x ∈[1,1-m ]时,G (x )max ≤H (x )min 成立.16分5.(本小题满分16分)(苏北四市(徐州、淮安、连云港、宿迁)2019届高三上学期期末)已知函数f (x )=x 22e-ax ,g (x )=ln x -ax ,a ∈R .(1)解关于x (x ∈R )的不等式f (x )≤0; (2)证明:f (x )≥g (x );(3)是否存在常数a ,b ,使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立?若存在,求出a ,b 的值;若不存在,请说明理由.【导学号:56394115】[解](1)当a =0时,f (x )=x 22e,所以f (x )≤0的解集为{0};当a ≠0时,f (x )=x ⎝⎛⎭⎪⎫x 2e -a , 若a >0,则f (x )≤0的解集为[0,2e a ]. 若a <0,则f (x )≤0的解集为[2e a,0]. 综上所述,当a =0时,f (x )≤0的解集为{0};当a >0时,f (x )≤0的解集为[0,2e a ]; 当a <0时,f (x )≤0的解集为[2e a,0].4分(2)证明:设h (x )=f (x )-g (x )=x 22e -ln x ,则h ′(x )=x e -1x =x 2-ee x.令h ′(x )=0,得x =e ,列表如下:所以函数h (x )所以h (x )=x 22e-ln x ≥0,即f (x )≥g (x ).8分(3)假设存在常数a ,b 使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立, 即x 22e≥2ax +b ≥ln x 对任意的x >0恒成立. 而当x =e 时,ln x =x 22e =12,所以12≥2a e +b ≥12,所以2a e +b =12,则b =12-2a e ,所以x 22e -2ax -b =x 22e -2ax +2a e -12≥0(*)恒成立,①当a ≤0时,2a e -12<0,所以(*)式在(0,+∞)上不恒成立;②当a >0时,则4a 2-2e (2a e -12)≤0,即⎝ ⎛⎭⎪⎫2a -1e 2≤0,所以a =12e,则b =-12. 令φ(x )=ln x -1ex +12,则φ′(x )=e -x e x,令φ′(x )=0,得x =e ,当0<x <e 时,φ′(x )>0,φ(x )在(0,e)上单调递增; 当x >e 时,φ′(x )<0,φ(x )在(e ,+∞)上单调递减. 所以φ(x )的最大值为φ(e)=0.所以ln x -1ex +12≤0恒成立.所以存在a =12e,b =-12符合题意.16分6.(本小题满分16分)(江苏省南京市、盐城市2019届高三第一次模拟)设函数f (x )=ln x ,g (x )=ax +a -1x-3(a ∈R ). (1)当a =2时,解关于x 的方程g (e x)=0(其中e 为自然对数的底数);(2)求函数φ(x )=f (x )+g (x )的单调增区间;(3)当a =1时,记h (x )=f (x )·g (x ),是否存在整数λ,使得关于x 的不等式2λ≥h (x )有解?若存在,请求出λ的最小值:若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986)[解](1)当a =2时,方程g (e x )=0即为2e x+1e x -3=0,去分母,得2(e x )2-3e x +1=0,解得e x =1或e x=12,故所求方程的根为x =0或x =-ln2. 2分(2)因为φ(x )=f (x )+g (x )=ln x +ax +a -1x-3(x >0), 所以φ′(x )=1x +a -a -1x 2=ax 2+x - a -1 x2= ax - a -1 x +1x2(x >0), ①当a =0时,由φ′(x )>0,解得x >0; ②当a >1时,由φ′(x )>0,解得x >a -1a; ③当0<a <1时,由φ′(x )>0,解得x >0; ④当a =1时,由φ′(x )>0,解得x >0; ⑤当a <0时,由φ′(x )>0,解得0<x <a -1a . 综上所述,当a <0时,φ(x )的增区间为⎝⎛⎭⎪⎫0,a -1a ; 当0≤a ≤1时,φ(x )的增区间为(0,+∞);a >1时,φ(x )的增区间为⎝⎛⎭⎪⎫a -1a ,+∞.6分(3)法一:当a =1时,f (x )=ln x ,g (x )=x -3,h (x )=(x -3)ln x ,所以h ′(x )=ln x +1-3x 单调递增,h ′⎝ ⎛⎭⎪⎫32=ln 32+1-2<0,h ′(2)=ln2+1-32>0, 所以存在唯一x 0∈⎝ ⎛⎭⎪⎫32,2,使得h ′(x 0)=0,即ln x 0+1-3x 0=0,当x ∈(0,x 0)时,h ′(x )<0,当x ∈(x 0,+∞)时,h ′(x )>0,所以h (x )min =h (x 0)=(x 0-3)ln x 0=(x 0-3)⎝ ⎛⎭⎪⎫3x 0-1=- x 0-3 2x 0=6-⎝⎛⎭⎪⎫x 0+9x 0,记函数r (x )=6-⎝ ⎛⎭⎪⎫x +9x ,则r (x )在⎝ ⎛⎭⎪⎫32,2上单调递增,所以r ⎝ ⎛⎭⎪⎫32<h (x 0)<r (2),即h (x 0)∈⎝ ⎛⎭⎪⎫-32,-12,由2λ≥-32,且λ为整数,得λ≥0,所以存在整数λ满足题意,且λ的最小值为0. 16分法二:当a =1时,f (x )=ln x ,g (x )=x -3, 所以h (x )=(x -3)ln x ,由h (1)=0得,当λ=0时,不等式2λ≥h (x )有解,下证:当λ≤-1时,h (x )>2λ恒成立,即证(x -3)ln x >-2恒成立. 显然当x ∈(0,1]∪[3,+∞)时,不等式恒成立, 只需证明当x ∈(1,3)时,(x -3)ln x >-2恒成立. 即证明ln x +2x -3<0.令m (x )=ln x +2x -3, 所以m ′(x )=1x -2 x -3 2=x 2-8x +9x x -3 2,由m ′(x )=0,得x =4-7,当x ∈(1,4-7)时,m ′(x )>0;当x ∈(4-7,3)时,m ′(x )<0; 所以m (x )max =m (4-7)=ln(4-7)-7+13<ln(4-2)-2+13=ln2-1<0. 所以当λ≤-1时,h (x )>2λ恒成立.综上所述,存在整数λ满足题意,且λ的最小值为0. 16分。

(江苏专用)高考数学二轮复习 第二篇 第27练 压轴小题专练(1)试题 理-人教版高三全册数学试题

(江苏专用)高考数学二轮复习 第二篇 第27练 压轴小题专练(1)试题 理-人教版高三全册数学试题

第27练 压轴小题专练(1)[明晰考情] 高考题中填空题的最后2或3个小题,往往出现逻辑思维深刻,难度高档的题目.考点一 与函数有关的压轴小题方法技巧 本类压轴题常以超越方程、分段函数、抽象函数等为载体,考查函数性质、函数零点、参数的X 围和通过函数性质求解不等式.解决该类问题的途径往往是构造函数,进而研究函数的性质,利用函数性质去求解问题是常用方法,其间要注意导数的应用.1.偶函数f (x )满足f (x -1)=f (x +1),且当x ∈[-1,0]时,f (x )=x 2,若函数g (x )=f (x )-|lg x |,则g (x )在(0,10)上的零点个数为________. 答案 10解析 由题意g (x )=f (x )-|lg x |=⎩⎪⎨⎪⎧f (x )-lg x ,lg x ≥0,f (x )+lg x ,lg x <0,∵f (x -1)=f (x +1),∴f (x )=f (x +2),故f (x )是周期函数,且T =2, 又函数f (x )是R 上的偶函数,∴f (1-x )=f (1+x ),∴f (x )的图象关于x =1对称,当x >0时,在同一坐标系中作出y =f (x )和y =|lg x |的图象,如图所示.由图象知函数g (x )的零点个数为10.2.已知函数f (x )=2x-12(x <0)与g (x )=log 2(x +a )的图象上存在关于y 轴对称的点,则a 的取值X 围是________. 答案 (-∞,2)解析 由f (x )关于y 轴对称的函数为h (x )=f (-x )=2-x-12(x >0),令h (x )=g (x ),得2-x-12=log 2(x +a )(x >0),则方程2-x-12=log 2(x +a )在(0,+∞)上有解,作出y =2-x-12与y =log 2(x +a )的图象,如图所示,当a ≤0时,函数y =2-x-12与y =log 2(x +a )的图象在(0,+∞)上必有交点,符合题意;若a >0,两函数在(0,+∞)上必有交点,则log 2a <12,解得0<a <2,综上可知,实数a 的取值X 围是(-∞,2).3.函数f (x )的定义域为D ,若满足:①f (x )在D 内是单调函数;②存在[a ,b ]⊆D 使得f (x )在[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤a 2,b2,则称函数f (x )为“成功函数”.若函数f (x )=log m (m x+2t )(其中m >0,且m ≠1)是“成功函数”,则实数t 的取值X 围为________.答案 ⎝ ⎛⎭⎪⎫0,18 解析 无论m >1还是0<m <1,f (x )=log m (m x+2t )都是R 上的单调增函数,故应有⎩⎪⎨⎪⎧f (a )=a 2,f (b )=b 2,则问题可转化为求f (x )=x2,即f (x )=log m (m x+2t )=x2,即m x+2t =12x m在R 上有两个不相等的实数根的问题,令λ=12x m(λ>0),则m x+2t =12x m可化为2t =λ-λ2=-⎝ ⎛⎭⎪⎫λ-122+14,结合图形(图略)可得t ∈⎝ ⎛⎭⎪⎫0,18. 4.(2018·某某省如东高级中学月考)已知函数f (x )=(x 2-3)e x ,设关于x 的方程f 2(x )-af (x )=0(a ∈R )有4个不同的实数解,则a 的取值X 围是________.答案 ⎩⎨⎧⎭⎬⎫6e 3∪(-2e,0)解析 由题意知,f ′(x )=2x e x +(x 2-3)e x=e x(x 2+2x -3),令f ′(x )=0,解得x =1或x =-3,所以当x <-3或x >1时,f ′(x )>0,当-3<x <1时,f ′(x )<0,所以f (x )在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增,所以当x =-3时,f (x )取得极大值6e3;当x =1时,f (x )取得极小值-2e ,当x →-∞时,f (x )→0, 作出函数f (x )的图象,如图所示,由f 2(x )-af (x )=0,得f (x )=0或f (x )=a , 由图象可知f (x )=0有两解,所以f (x )=a 也有两解, 所以a =6e 3或-2e<a <0.考点二 与数列有关的压轴小题方法技巧 数列与函数的交汇、数列与不等式的交汇问题是高考的热点.解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化,确定数列的通项或前n 项和,利用函数的性质、图象求解最值问题,不等关系或恒成立问题.5.在公比为q 的正项等比数列{a n }中,a 4=4,则当2a 2+a 6取得最小值时,log 2q =________. 答案 14解析 2a 2+a 6≥22a 2a 6=22a 24=82,即2a 2+a 6=2a 4q2+a 4q 2≥82,所以q 4-22q 2+2≥0,即(q 2-2)2≥0,当且仅当q 4=2时取等号,所以log 2q =log 2214=14.6.已知数列{a n }满足:a 1=1,a n +1=a na n +2(n ∈N *).若b n +1=(n -2λ)·⎝ ⎛⎭⎪⎫1a n +1(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值X 围是________. 答案 ⎝ ⎛⎭⎪⎫-∞,23解析 由a n +1=a na n +2,得1a n +1=2a n +1,即1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,所以⎩⎨⎧⎭⎬⎫1a n +1是以1a 1+1为首项,2为公比的等比数列,所以1a n+1=⎝ ⎛⎭⎪⎫1a 1+12n -1=2n ,所以b n +1=(n -2λ)·2n.因为数列{b n }是单调递增数列,所以当n ≥2时,由b n +1>b n ,得(n -2λ)·2n>(n -1-2λ)·2n -1,解得n >2λ-1,即2>2λ-1,所以λ<32;当n =1时,由b 2>b 1得(1-2λ)·2>-λ,解得λ<23,因此λ<23.7.已知S n 和T n 分别为数列{a n }与数列{b n }的前n 项和,且a 1=e 4,S n =e S n +1-e 5,a n =e n b,则当T n 取得最大值时n 的值为________. 答案 4或5解析 由S n =e S n +1-e 5,得S n -1=e S n -e 5(n ≥2),两式相减,得a n =e a n +1(n ≥2),易知a 2=e 3,a 2a 1=e 3e 4=1e ,所以数列{a n }是首项为e 4,公比为1e的等比数列,所以a n =e 5-n .因为a n =e n b,所以b n =5-n .由⎩⎪⎨⎪⎧b n ≥0,b n +1≤0,即⎩⎪⎨⎪⎧5-n ≥0,5-(n +1)≤0,解得4≤n ≤5,所以当n =4或n =5时,T n 取得最大值.8.已知函数f (x )=x 2+(a +8)x +a 2+a -12,且f (a 2-4)=f (2a -8),设等差数列{a n }的前n 项和为S n (n ∈N *),若S n =f (n ),则S n -4aa n -1的最小值为________. 答案378解析 由题意可得a 2-4=2a -8或a 2-4+2a -8=2×⎝⎛⎭⎪⎫-a +82,解得a =1或a =-4.当a =1时,f (x )=x 2+9x -10,数列{a n }不是等差数列; 当a =-4时,f (x )=x 2+4x ,S n =f (n )=n 2+4n , ∴a 1=5,a 2=7,a n =5+(7-5)(n -1)=2n +3,∴S n -4a a n -1=n 2+4n +162n +2=12×(n +1)2+2(n +1)+13n +1=12×⎣⎢⎡⎦⎥⎤(n +1)+13n +1+2≥12⎣⎢⎡⎦⎥⎤2(n +1)×13n +1+2=13+1, 当且仅当n +1=13n +1,即n =13-1(舍负)时取等号, ∵n 为正整数,2<13-1<3,当n =2时,S n -4a a n -1=143;当n =3时,S n -4a a n -1=378,故当n =3时原式取最小值378.1.(2018·全国Ⅱ改编)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=________. 答案 2解析 ∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (1-x )=-f (x -1).∵f (1-x )=f (1+x ), ∴-f (x -1)=f (x +1),∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数及其定义域为R 得f (0)=0. 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0,∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50)=0×12+f (49)+f (50)=f (1)+f (2)=2+0=2.2.已知实数f (x )=⎩⎪⎨⎪⎧e x,x ≥0,lg (-x ),x <0,若关于x 的方程f 2(x )+f (x )+t =0有三个不同的实根,则t 的取值X 围为________. 答案 (-∞,-2]解析 设m =f (x ),作出函数f (x )的图象,如图所示,则当m ≥1时,m =f (x )有两个根,当m <1时,m =f (x )有一个根.若关于x 的方程f 2(x )+f (x )+t =0有三个不同的实根,则等价为m 2+m +t =0有两个不同的实数根m 1,m 2,且m 1≥1,m 2<1.当m =1时,t =-2,此时由m2+m -2=0,解得m =1或m =-2,f (x )=1有两个根,f (x )=-2有一个根,满足条件;当m ≠1时,设h (m )=m 2+m +t ,其对称轴为m =-12,则需h (1)<0即可,即1+1+t <0,解得t <-2.综上,实数t 的取值X 围为t ≤-2.3.若存在两个正实数x ,y 使等式2x +m (y -2e x )(ln y -ln x )=0成立(其中e =2.71828…),则实数m 的取值X 围是________.答案 (-∞,0)∪⎣⎢⎡⎭⎪⎫2e ,+∞ 解析 当m =0时,不满足题意,由题意可得m =2x(2e x -y )(ln y -ln x ),则1m =(2e x -y )(ln y -ln x )2x =⎝ ⎛⎭⎪⎫e -12·y x ·ln y x ,令t =yx ()t >0,构造函数g (t )=⎝ ⎛⎭⎪⎫e -t 2ln t (t >0), 则g ′(t )=-12ln t +⎝ ⎛⎭⎪⎫e -t 2×1t=-12ln t +e t -12(t >0),设h (t )=g ′(t ),则h ′(t )=-12t -e t 2=-t +2e 2t 2<0恒成立,则g ′(t )在(0,+∞)上单调递减, 当t =e 时,g ′(t )=0,则当t ∈(0,e)时,g ′(t )>0,函数g (t )单调递增, 当t ∈(e,+∞)时,g ′(t )<0,函数g (t )单调递减, 则当t =e 时,g (t )取得最大值g (e)=e2,且当t →0时,g (t )→-∞, 据此有1m ≤e 2,∴m <0或m ≥2e.综上可得实数m 的取值X 围是(-∞,0)∪⎣⎢⎡⎭⎪⎫2e ,+∞.4.已知函数f (x )=2x 2x +1,函数g (x )=a sin π6x -2a +2(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值X 围是________.答案 ⎣⎢⎡⎦⎥⎤12,43解析 当x ∈[0,1]时,f (x )=2x2x +1是增函数,其值域是[0,1].g (x )=a sin π6x -2a +2(a >0)的值域是⎣⎢⎡⎦⎥⎤2-2a ,2-32a ,因为存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,所以[0,1]∩⎣⎢⎡⎦⎥⎤2-2a ,2-32a ≠∅,若[0,1]∩⎣⎢⎡⎦⎥⎤2-2a ,2-32a =∅,则2-2a >1或2-32a <0,即a <12或a >43,所以a 的取值X 围是⎣⎢⎡⎦⎥⎤12,43.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“精致数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“精致数列”,则数列{b n }的通项公式为__________.答案 b n =2n -1(n ∈N *)解析 设等差数列{b n }的公差为d , 由S n S 2n 为常数,设S nS 2n=k 且b 1=1, 得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0, 因为对任意正整数n 上式恒成立,则⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,解得⎩⎪⎨⎪⎧d =2,k =14,所以数列{b n }的通项公式为b n =2n -1(n ∈N *). 6.若数列{a n }满足1a n +1-pa n=0,n ∈N *,p 为非零常数,则称数列{a n }为“梦想数列”.已知正项数列⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,且b 1b 2b 3…b 99=299,则b 8+b 92的最小值是________.答案 4解析 依题意可得b n +1=pb n ,则数列{b n }为等比数列.又b 1b 2b 3…b 99=299=b 9950,则b 50=2.b 8+b 92≥2b 8·b 92=2b 50=4,当且仅当b 8=b 92=2,即该数列为常数数列时取等号.7.当n 为正整数时,定义函数N (n )表示n 的最大奇因数.如N (3)=3,N (10)=5,…,S (n )=N (1)+N (2)+N (3)+…+N (2n),则S (5)=________. 答案 342解析 ∵N (2n )=N (n ),N (2n -1)=2n -1,而S (n )=N (1)+N (2)+N (3)+…+N (2n), ∴S (n )=N (1)+N (3)+N (5)+…+N (2n-1)+[N (2)+N (4)+…+N (2n)], ∴S (n )=1+3+5+ (2)-1+[N (1)+N (2)+N (3)+…+N (2n -1)],∴S (n )=1+2n-12×2n2+S (n -1)(n ≥2),即S (n )-S (n -1)=4n -1,又S (1)=N (1)+N (2)=1+1=2,∴S (5)-S (1)=[S (5)-S (4)]+[S (4)-S (3)]+…+[S (2)-S (1)]=44+43+42+4,∴S (5)=2+4+42+43+44=342.8.抛物线x 2=12y 在第一象限内图象上的一点(a i ,2a 2i )处的切线与x 轴交点的横坐标记为a i +1,其中i ∈N *,若a 2=32,则a 2+a 4+a 6=________. 答案 42解析 抛物线x 2=12y 可化为y =2x 2,则y ′=4x ,抛物线在点(a i ,2a 2i )处的切线方程为y -2a 2i=4a i (x -a i ),所以切线与x 轴交点的横坐标为a i +1=12a i ,所以数列{a 2k }是以a 2=32为首项,14为公比的等比数列,所以a 2+a 4+a 6=32+8+2=42. 9.已知等比数列{a n }的前n 项和为S n ,a 2>a 1,S 4=a 1+28,且a 3+2是a 2,a 4的等差中项,若数列⎩⎨⎧⎭⎬⎫a n +1S n S n +1的前n 项和T n ≤2n -2+M 恒成立,则M 的最小值为________. 答案 -16解析 设等比数列{a n }的公比为q ,依题意得2(a 3+2)=a 2+a 4,又S 4=a 1+28,∴a 2+a 3+a 4=28,得a 3=8,∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8,解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.又a 2>a 1,∴a 1=2,q =2,∴a n =2n,S n =2n +1-2.令b n =a n +1S n S n +1, ∴b n =2n +1(2n +1-2)(2n +2-2)=12n +1-2-12n +2-2, ∴T n =⎝⎛⎭⎪⎫122-2-123-2+⎝ ⎛⎭⎪⎫123-2-124-2+…+⎝ ⎛⎭⎪⎫12n +1-2-12n +2-2=122-2-12n +2-2=12-12n +2-2.故T n -2n -2=12-12n +2-2-2n -2. 又T n -2n -2-(T n +1-2n -1)=2n -2-2n -2⎝⎛⎭⎪⎫2n -12⎝ ⎛⎭⎪⎫2n +1-12>2n -2-2n -2(2n -1)2=22n -2(2n-2)(2n -1)2≥0, 即T n -2n -2>T n +1-2n -1,故数列{T n -2n -2}单调递减,故(T n -2n -2)max =12-123-2-2-1=-16.又T n ≤2n -2+M 恒成立,即M ≥T n -2n -2恒成立,故M ≥-16,所以M 的最小值为-16.10.已知数列{a n }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列{a n }的前n 项和为S n ,且满足a 4=S 3,a 9=a 3+a 4,则使得S 2kS 2k -1恰好为数列{a n }的奇数项的正整数k 的值为________. 答案 1解析 设等差数列的公差为d ,等比数列的公比为q , 则a 1=1,a 2=2,a 3=1+d ,a 4=2q ,a 9=1+4d . 因为a 4=S 3,a 9=a 3+a 4,所以1+2+1+d =2q,1+4d =1+d +2q , 解得d =2,q =3,则对于n ∈N *,有a 2n -1=2n -1,a 2n =2×3n -1,所以S 2n =[1+3+…+(2n -1)]+2(1+3+32+…+3n -1)=3n +n 2-1,S 2n -1=S 2n -a 2n =3n -1+n 2-1.若S 2k S 2k -1恰好为数列{a n }的奇数项,则可设S 2kS 2k -1=m (m 为正奇数), 所以S 2k S 2k -1=3k +k 2-13k -1+k 2-1=m ,即(3-m )3k -1=(m -1)(k 2-1).当k =1时,m =3,满足条件;当k ≠1时,3k -1k 2-1=m -13-m ,由3k -1k 2-1>0,得m -13-m>0,解得1<m <3,因为m 为正奇数,所以此时满足条件的正整数k 不存在.综上,k =1. 11.已知函数f (x )=x 2+(ln3x )2-2a (x +3ln3x )+10a 2,若存在x 0使得f (x 0)≤110成立,则实数a 的值为________. 答案130解析 f (x )=x 2+(ln3x )2-2a (x +3ln3x )+10a 2=(x -a )2+(ln3x -3a )2表示点M (x ,ln3x )与点N (a,3a )距离的平方,M 点的轨迹是函数g (x )=ln3x 的图象,N 点的轨迹是直线y =3x ,则g ′(x )=1x .作g (x )的平行于直线y =3x 的切线,切点为(x 1,y 1),则1x 1=3,所以x 1=13,切点为P ⎝ ⎛⎭⎪⎫13,0,所以曲线上点P ⎝ ⎛⎭⎪⎫13,0到直线y =3x 的距离最小,最小距离d =110,所以f (x )≥110,根据题意,要使f (x 0)≤110,则f (x 0)=110,此时N 为垂足,点M 与点P 重合,k MN=3a -0a -13=-13,得a =130. 12.(2018·某某省海安高级中学月考)已知公比不为1的等比数列{a n }中,a 1=1,a 2=a ,且a n+1=k (a n +a n +2)对任意正整数n 都成立,且对任意相邻三项a m ,a m +1,a m +2按某顺序排列后成等差数列,则满足题意的k 的值为________. 答案 -25解析 设等比数列{a n }的公比为q ,则q =a 2a 1=a (a ≠1), 所以a m =am -1,a m +1=a m ,a m +2=am +1.①若a m +1为等差中项,则2a m +1=a m +a m +2, 即2a m=am -1+am +1,解得a =1,不合题意.②若a m 为等差中项,则2a m =a m +1+a m +2, 即2am -1=a m +am +1,化简得a 2+a -2=0,解得a =-2或a =1(舍去).∴k =a m +1a m +a m +2=a m a m -1+a m +1=a 1+a 2=-25.③若a m +2为等差中项,则2a m +2=a m +1+a m , 即2am +1=a m +am -1,化简得2a 2-a -1=0,解得a =-12或a =1(舍去),∴k =a m +1a m +a m +2=a m a m -1+a m +1=a 1+a 2=-25.综上可得满足要求的实数k 有且仅有一个,且k =-25.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压轴提升卷(一)
解答题:解答应写出文字说明、证明过程或演算步骤.
1.(本题满分12分)在平面直角坐标系xOy 中,已知△ABC 的两个顶点A ,B 的坐标分别为(-1,0),(1,0),且AC ,BC 所在直线的斜率之积等于-2,记顶点C 的轨迹为曲线E .
(1)求曲线E 的方程;
(2)设直线y =2x +m (m ∈R 且m ≠0)与曲线E 相交于P ,Q 两点,点M ⎝ ⎛⎭
⎪⎫12,1,求△MPQ 面积的取值范围.
解:(1)设C (x ,y ).
由题意,可得y x -1·y x +1
=-2(x ≠±1), ∴曲线E 的方程为x 2+y 22
=1(x ≠±1). (2)设P (x 1,y 1),Q (x 2,y 2). 联立,得⎩
⎪⎨⎪⎧y =2x +m ,x 2+y 22=1,消去y , 可得6x 2+4mx +m 2
-2=0,
∴Δ=48-8m 2>0,∴m 2<6.
∵x ≠±1,∴m ≠±2.
又m ≠0,
∴0<m 2<6且m 2≠4.
∵x 1+x 2=-2m 3,x 1x 2=m 2-26
, ∴|PQ |=5|x 1-x 2|=5·(x 1+x 2)2-4x 1x 2 =5·⎝ ⎛⎭⎪⎫-2m 32-4×m 2-26=103·6-m 2. 又点M ⎝ ⎛⎭⎪⎫12,1到直线y =2x +m 的距离d =|m |5
, ∴△MPQ 的面积S △MPQ =12·103·6-m 2·|m |5=26
·|m |·6-m 2=26 m 2(6-m 2), ∴S 2△MPQ =118m 2(6-m 2)≤118⎝ ⎛⎭⎪⎫m 2+6-m 2
22=12. ∵0<m 2<6且m 2≠4,∴S 2△MPQ ∈⎝ ⎛⎦
⎥⎤0,12,
∴△MPQ 面积的取值范围为⎝ ⎛⎦
⎥⎤0,22. 2.(本题满分12分)已知函数f (x )=x e
x +x 2-x (其中e =2.718 28…). (1)求f (x )的图象在点(1,f (1))处的切线方程;
(2)已知函数g (x )=-a ln[f (x )-x 2+x ]-1x
-ln x -a +1,若对任意x ≥1,g (x )≥0恒成立,求实数a 的取值范围.
解:(1)由题意得f ′(x )=1-x e x +2x -1,f (1)=1
e
, 所以f (x )的图象在点(1,f (1))处的切线斜率为f ′(1)=1,
所以f (x )的图象在点(1,f (1))处的切线方程为y -1e
=x -1,即e x -e y -e +1=0. (2)由题意知函数g (x )=-(a +1)ln x +ax -1x
-a +1, 所以g ′(x )=-a +1x +a +1x 2=ax 2-(a +1)x +1x 2=(ax -1)(x -1)x 2
, ①若a ≤0,当x ≥1时,g ′(x )≤0,所以g (x )在[1,+∞)上是减函数,故g (x )≤g (1)=0; ②若0<a <1,则1a >1,当1<x <1a 时,g ′(x )<0,当x >1a
时,g ′(x )>0,所以g (x )在⎝ ⎛⎭⎪⎫1,1a 上是减函数,在⎝ ⎛⎭⎪⎫1a ,+∞上是增函数,故当1<x <1a
时,g (x )<g (1)=0; ③若a ≥1,则0<1a
≤1,当x ≥1时,g ′(x )≥0,所以g (x )在[1,+∞)上是增函数,所以g (x )≥g (1)=0.
综上,实数a 的取值范围为[1,+∞).。

相关文档
最新文档