中考二次函数压轴题解题通法重点中学.pdf
二次函数近两年热点压轴题总结(题型全面,PDF版有解析)
(1)若抛物线 l:y=ax2+bx+c 经过 G、O、E 三点,则它的解析式为:
;
(2)如果四边形 OHMN 为平行四边形,求点 D 的坐标;
(3)在(1)(2)的条件下,直线 MN 与抛物线 l 交于点 R,动点 Q 在抛物线 l
上且在 R、E 两点之间(不含点 R、E)运动,设△PQH 的面积为 s,当
第 2 页(共 2 页)
的坐标;若不存在,说明理由.
5.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交 y 轴于 A 点,交 x 轴于 B,C 两点(点 B 在点 C 的左侧),已知 A 点坐标为(0,3). (1)求此抛物线的解析式; (2)过点 B 作线段 AB 的垂线交抛物线于点 D,如果以点 C 为圆心的圆与直线 BD 相切,请判断抛物线的对称轴 l 与⊙C 有怎样的位置关系,并给出证明; (3)已知点 P 是抛物线上的一个动点,且位于 A,C 两点之间,问:当点 P 运 动到什么位置时,△PAC 的面积最大?并求出此时 P 点的坐标和△PAC 的最大面 积.
时,确定点 Q 的横坐标的取值范围.
8.如图,二次函数
与 x 轴交于 A、B 两点,与 y 轴交于 C 点,速度向点 B 运动,点 Q 同时从 C 点出发,以相同的 速度向 y 轴正方向运动,运动时间为 t 秒,点 P 到达 B 点时,点 Q 同时停止运动.设 PQ 交直线 AC 于点 G.
中考二次函数压轴题及答案
二次函数压轴题精讲1.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x 轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围.2.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.3.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.4.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C (0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.5.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD 沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长及经过O,D,C三点抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P 到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.6.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC 于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.7.如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D 到达原点O时,点C、D停止运动.(1)直接写出抛物线的解析式:;(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD 的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.8.如图,已知二次函数L1:y=ax2﹣2ax+a+3(a>0)和二次函数L2:y=﹣a(x+1)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣2ax+a+3(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是.(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+1)2+1=0的解.9.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.(1)①直接写出点B的坐标;②求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.10.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A 在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.11.(2015•孝感)在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P.①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;②如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值.12.(2015•无锡)一次函数y=x的图象如图所示,它与二次函数y=ax2﹣4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.13.(2015•济宁)如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.14.(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.15.(2015•甘孜州)如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H 为顶点的三角形是否能够与△OBC相似(排除全等的情况)?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.16.(2015•连云港)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?17.(2015•赤峰)已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.18.(2015•贵阳)如图,经过点C(0,﹣4)的抛物线y=ax2+bx+c(a≠0)与x 轴相交于A(﹣2,0),B两点.(1)a0,b2﹣4ac0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.19.(2015•宁德)已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3).(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和∠ABC的度数;(3)P为线段BC上一点,连接AC,AP,若∠ACB=∠PAB,求点P的坐标.20.(2015•盘锦)如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:①连接DF,求tan∠FDE的值;②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G 的坐标;若不存在,请说明理由.21.(2015•攀枝花)如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B (3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.22.(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.23.(2015•金华)如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a、c的值.(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P、Q、E为顶点的三角形与△POE全等?若存在,求出点Q的坐标;若不存在,请说明理由.24.(2015•德州)已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,(1)求抛物线的解析式.(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.25.(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.26.(2015•威海)已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.27.(2015•东营)如图,抛物线经过A(﹣2,0),B(﹣,0),C(0,2)三点.(1)求抛物线的解析式;(2)在直线AC下方的抛物线上有一点D,使得△DCA的面积最大,求点D的坐标;(3)设点M是抛物线的顶点,试判断抛物线上是否存在点H满足∠AMH=90°?若存在,请求出点H的坐标;若不存在,请说明理由.28.(2015•临沂)在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.29.(2015•自贡)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.30.(2015•丹东)如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.参考答案与试题解析一.解答题(共30小题)1.(2016•深圳模拟)已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围.【考点】二次函数综合题.【专题】压轴题;开放型.【分析】(1)点A的坐标是纵坐标为0,得横坐标为8,所以点A的坐标为(8,0);点B的坐标是横坐标为0,解得纵坐标为6,所以点B的坐标为(0,6);由题意得:BC是∠ABO的角平分线,所以OC=CH,BH=OB=6∵AB=10,∴AH=4,设OC=x,则AC=8﹣x由勾股定理得:x=3∴点C的坐标为(3,0)将此三点代入二次函数一般式,列的方程组即可求得;(2)求得直线BC的解析式,根据平行四边形的性质,对角相等,对边平行且相等,借助于三角函数即可求得;(3)如图,由对称性可知QO=QH,|QA﹣QO|=|QA﹣QH|.当点Q与点B重合时,Q、H、A三点共线,|QA﹣QO|取得最大值4(即为AH的长);设线段OA的垂直平分线与直线BC的交点为K,当点Q与点K重合时,|QA﹣QO|取得最小值0.【解答】解:(1)点C的坐标为(3,0).(1分)∵点A、B的坐标分别为A(8,0),B(0,6),∴可设过A、B、C三点的抛物线的解析式为y=a(x﹣3)(x﹣8).将x=0,y=6代入抛物线的解析式,得.(2分)∴过A、B、C三点的抛物线的解析式为.(3分)(2)可得抛物线的对称轴为直线,顶点D的坐标为,设抛物线的对称轴与x轴的交点为G.直线BC的解析式为y=﹣2x+6.4分)设点P的坐标为(x,﹣2x+6).解法一:如图,作OP∥AD交直线BC于点P,连接AP,作PM⊥x轴于点M.∵OP∥AD,∴∠POM=∠GAD,tan∠POM=tan∠GAD.∴,即.解得.经检验是原方程的解.此时点P的坐标为.(5分)但此时,OM<GA.∵,∴OP<AD,即四边形的对边OP与AD平行但不相等,∴直线BC上不存在符合条件的点P(6分)解法二:如图,取OA的中点E,作点D关于点E的对称点P,作PN⊥x轴于点N.则∠PEO=∠DEA,PE=DE.可得△PEN≌△DEG.由,可得E点的坐标为(4,0).NE=EG=,ON=OE﹣NE=,NP=DG=.∴点P的坐标为.(5分)∵x=时,,∴点P不在直线BC上.∴直线BC上不存在符合条件的点P.(6分)(3)|QA﹣QO|的取值范围是.(8分)当Q在OA的垂直平分线上与直线BC的交点时,(如点K处),此时OK=AK,则|QA﹣QO|=0,当Q在AH的延长线与直线BC交点时,此时|QA﹣QO|最大,直线AH的解析式为:y=﹣x+6,直线BC的解析式为:y=﹣2x+6,联立可得:交点为(0,6),∴OQ=6,AQ=10,∴|QA﹣QO|=4,∴|QA﹣QO|的取值范围是:0≤|QA﹣QO|≤4.【点评】此题考查了二次函数与一次函数以及平行四边形的综合知识,解题的关键是认真识图,注意数形结合思想的应用.2.(2015•枣庄)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.【考点】二次函数综合题.【专题】几何综合题;压轴题.【分析】(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(2)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC 与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)当△PAC为直角三角形时,根据直角顶点的不同,有三种情形,需要分类讨论,分别求解.【解答】解:(1)∵B(4,m)在直线y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,)、B(4,6)在抛物线y=ax2+bx+6上,∴,解得,∴抛物线的解析式为y=2x2﹣8x+6.(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6),=﹣2n2+9n﹣4,=﹣2(n﹣)2+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如答图3﹣1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=2x2﹣8x+6 ②联立①②式,解得:x=3或x=(与点A重合,舍去)∴C(3,0),即点C、M点重合.当x=3时,y=x+2=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴抛物线的对称轴为直线x=2.如答图3﹣2,作点A(,)关于对称轴x=2的对称点C,则点C在抛物线上,且C(,).当x=时,y=x+2=.∴P2(,).∵点P1(3,5)、P2(,)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).【点评】此题主要考查了二次函数解析式的确定、二次函数最值的应用以及直角三角形的判定、函数图象交点坐标的求法等知识.3.(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小,可求出直线BA′的解析式,即可得出点P的坐标.(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.【解答】解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AD×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).【点评】本题主要考查了二次函数与方程、几何知识的综合应用,解题的关键是方程思想与数形结合思想的灵活应用.4.(2015•阜新)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设P点坐标为(x,﹣x2﹣2x+3),根据S△AOP=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+3,再设Q点坐标为(x,x+3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.【解答】解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得,解得.故该抛物线的解析式为:y=﹣x2﹣2x+3.(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).∵S△AOP=4S△BOC,∴×3×|﹣x2﹣2x+3|=4××1×3.整理,得(x+1)2=0或x2+2x﹣7=0,解得x=﹣1或x=﹣1±2.则符合条件的点P的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.【点评】此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.5.(2015•荆门)如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长及经过O,D,C三点抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P 到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由折叠的性质可求得CE、CO,在Rt△COE中,由勾股定理可求得OE,设AD=m,在Rt△ADE中,由勾股定理可求得m的值,可求得D点坐标,结合C、O两点,利用待定系数法可求得抛物线解析式;(2)用t表示出CP、BP的长,可证明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;(3)可设出N点坐标,分三种情况①EN为对角线,②EM为对角线,③EC 为对角线,根据平行四边形的性质可求得对角线的交点横坐标,从而可求得M 点的横坐标,再代入抛物线解析式可求得M点的坐标.【解答】解:(1)∵CE=CB=5,CO=AB=4,∴在Rt△COE中,OE===3,设AD=m,则DE=BD=4﹣m,∵OE=3,∴AE=5﹣3=2,在Rt△ADE中,由勾股定理可得AD2+AE2=DE2,即m2+22=(4﹣m)2,解得m=,∴D(﹣,﹣5),∵C(﹣4,0),O(0,0),∴设过O、D、C三点的抛物线为y=ax(x+4),∴﹣5=﹣a(﹣+4),解得a=,∴抛物线解析式为y=x(x+4)=x2+x;(2)∵CP=2t,∴BP=5﹣2t,在Rt△DBP和Rt△DEQ中,,∴Rt△DBP≌Rt△DEQ(HL),∴BP=EQ,∴5﹣2t=t,∴t=;(3)∵抛物线的对称轴为直线x=﹣2,∴设N(﹣2,n),又由题意可知C(﹣4,0),E(0,﹣3),设M(m,y),①当EN为对角线,即四边形ECNM是平行四边形时,则线段EN的中点横坐标为=﹣1,线段CM中点横坐标为,∵EN,CM互相平分,∴=﹣1,解得m=2,又M点在抛物线上,∴y=×22+×2=16,∴M(2,16);②当EM为对角线,即四边形ECMN是平行四边形时,则线段EM的中点横坐标为,线段CN中点横坐标为=﹣3,∵EM,CN互相平分,∴=﹣3,解得m=﹣6,又∵M点在抛物线上,∴y=×(﹣6)2+×(﹣6)=16,∴M(﹣6,16);③当CE为对角线,即四边形EMCN是平行四边形时,则M为抛物线的顶点,即M(﹣2,﹣).综上可知,存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣2,﹣).【点评】本题主要考查二次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、折叠的性质、平行四边形的性质等知识点.在(1)中求得D点坐标是解题的关键,在(2)中证得全等,得到关于t的方程是解题的关键,在(3)中注意分类讨论思想的应用.本题考查知识点较多,综合性较强,难度适中.6.(2015•河南)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.【考点】二次函数综合题.【专题】压轴题.【分析】(1)利用待定系数法求出抛物线解析式即可;(2)首先表示出P,F点坐标,再利用两点之间距离公式得出PD,PF的长,进而求出即可;(3)根据题意当P、E、F三点共线时,PE+PF最小,进而得出P点坐标以及利用△PDE的面积可以等于4到13所有整数,在面积为12时,a的值有两个,进而得出答案.【解答】解:(1)∵边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,∴C(0,8),A(﹣8,0),设抛物线解析式为:y=ax2+c,。
二次函数压轴题解题思路[含答案解析]
二次函数压轴题解题思路一.基础知识1会求解析式2.会利用函数性质和图像3.相关知识:如一次函数、反比例函数、点的坐标、方程。
图形中的三角形、四边形、圆及平行线、垂直。
一些方法:如相似、三角函数、解方程。
一些转换:如轴对称、平移、旋转二.典型例题(一)面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.考点:二次函数综合题.专题:压轴题;数形结合.分析:(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长.(3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值.解答:解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.考点:二次函数综合题..专题:压轴题;转化思想.分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.(3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M 到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.解答:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.(二)周长类3.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P 点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M 点的坐标;若不存在,说明理由.考点:二次函数综合题..专题:压轴题.分析:(1)根据抛物线y=经过点B(0,4),以及顶点在直线x=上,得出b,c 即可;(2)根据菱形的性质得出C、D两点的坐标分别是(5,4)、(2,0),利用图象上点的性质得出x=5或2时,y的值即可.(3)首先设直线CD对应的函数关系式为y=kx+b,求出解析式,当x=时,求出y即可;(4)利用MN∥BD,得出△OMN∽△OBD,进而得出,得到ON=,进而表示出△PMN 的面积,利用二次函数最值求出即可.解答:解:(1)∵抛物线y=经过点B(0,4)∴c=4,∵顶点在直线x=上,∴﹣=﹣=,∴b=﹣;∴所求函数关系式为;(2)在Rt△ABO中,OA=3,OB=4,∴AB=,∵四边形ABCD是菱形,∴BC=CD=DA=AB=5,∴C、D两点的坐标分别是(5,4)、(2,0),当x=5时,y=,当x=2时,y=,∴点C和点D都在所求抛物线上;(3)设CD与对称轴交于点P,则P为所求的点,设直线CD对应的函数关系式为y=kx+b,则,解得:,∴,当x=时,y=,∴P(),(4)∵MN∥BD,∴△OMN∽△OBD,∴即得ON=,设对称轴交x于点F,则(PF+OM)•OF=(+t)×,∵,S△PNF=×NF•PF=×(﹣t)×=,S=(﹣),=﹣(0<t<4),a=﹣<0∴抛物线开口向下,S存在最大值.由S△PMN=﹣t2+t=﹣(t﹣)2+,∴当t=时,S取最大值是,此时,点M的坐标为(0,).(三)平行四边形类4.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.考点:二次函数综合题;解一元二次方程-因式分解法;待定系数法求一次函数解析式;待定系数法求二次函数解析式;三角形的面积;平行四边形的判定..专题:压轴题;存在型.分析:(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n 与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P 在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.解答:解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得解得,所以抛物线的解析式是y=x2﹣2x﹣3.设直线AB的解析式是y=kx+b,把A(3,0)B(0,﹣3)代入y=kx+b,得,解得,所以直线AB的解析式是y=x﹣3;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),因为p在第四象限,所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,当t=﹣=时,二次函数的最大值,即PM最长值为=,则S△ABM=S△BPM+S△APM==.(3)存在,理由如下:∵PM∥OB,∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=(舍去),t2=,所以P点的横坐标是.所以P点的横坐标是或.5.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.考点:二次函数综合题..专题:压轴题.分析:(1)利用旋转的性质得出A′(﹣1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,再假设四边形PB′A′B的面积是△A′B′O面积的4倍,得出一元二次方程,得出P点坐标即可;(3)利用P点坐标以及B点坐标即可得出四边形PB′A′B为等腰梯形,利用等腰梯形性质得出答案即可.解答:解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(﹣1,0),B′(0,2).方法一:设抛物线的解析式为:y=ax2+bx+c(a≠0),∵抛物线经过点A′、B′、B,∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2.方法二:∵A′(﹣1,0),B′(0,2),B(2,0),设抛物线的解析式为:y=a(x+1)(x﹣2)将B′(0,2)代入得出:2=a(0+1)(0﹣2),解得:a=﹣1,故满足条件的抛物线的解析式为y=﹣(x+1)(x﹣2)=﹣x2+x+2;(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y,=x+(﹣x2+x+2)+1,=﹣x2+2x+3.∵A′O=1,B′O=2,∴△A′B′O面积为:×1×2=1,假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=﹣x2+2x+3,即x2﹣2x+1=0,解得:x1=x2=1,此时y=﹣12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一,下面性质中的任意2个均可.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)或用符号表示:①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②PA′=B′B;③B′P∥A′B;④B′A′=PB.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)6.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.考点:二次函数综合题..专题:压轴题;分类讨论.分析:(1)先根据抛物线的解析式得出其对称轴,由此得到顶点A的横坐标,然后代入直线l的解析式中即可求出点A的坐标.(2)由A点坐标可确定抛物线的解析式,进而可得到点B的坐标.则AB、AD、BD三边的长可得,然后根据边长确定三角形的形状.(3)若以点P、A、B、D为顶点的四边形是平行四边形,应分①AB为对角线、②AD为对角线两种情况讨论,即①AD PB、②AB PD,然后结合勾股定理以及边长的等量关系列方程求出P点的坐标.解答:解:(1)∵顶点A的横坐标为x=﹣=1,且顶点A在y=x﹣5上,∴当x=1时,y=1﹣5=﹣4,∴A(1,﹣4).(2)△ABD是直角三角形.将A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,∴y=x2﹣2x﹣3,∴B(0,﹣3)当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3∴C(﹣1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x﹣5交y轴于点E(0,﹣5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即PA∥BD则构成平行四边形只能是PADB或PABD,如图,过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.设P(x1,x1﹣5),则G(1,x1﹣5)则PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|PA=BD=3由勾股定理得:(1﹣x1)2+(1﹣x1)2=18,x12﹣2x1﹣8=0,x1=﹣2或4∴P(﹣2,﹣7)或P(4,﹣1),存在点P(﹣2,﹣7)或P(4,﹣1)使以点A、B、D、P为顶点的四边形是平行四边形.(四)等腰三角形类7.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.考点:二次函数综合题..专题:压轴题;分类讨论.分析:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标.(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP三种情况分类讨论,然后分辨是否存在符合条件的P点.解答:解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得,解得,∴此抛物线的解析式为y=﹣x2+x(3)存在,如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD==,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2),8.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.考点:二次函数综合题..专题:压轴题.分析:(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y轴的距离,即B的坐标;(2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式;(3)首先假设存在,分A、C是直角顶点两种情况讨论,根据全等三角形的性质,可得答案.解答:解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO,(1分)又∵∠BDC=∠COA=90°,CB=AC,∴△BCD≌△CAO,(2分)∴BD=OC=1,CD=OA=2,(3分)∴点B的坐标为(﹣3,1);(4分)(2)抛物线y=ax2+ax﹣2经过点B(﹣3,1),则得到1=9a﹣3a﹣2,(5分)解得a=,所以抛物线的解析式为y=x2+x﹣2;(7分)(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分)过点P1作P1M⊥x轴,∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC.(10分)∴CM=CD=2,P1M=BD=1,可求得点P1(1,﹣1);(11分)②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分)过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分)∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分)经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y=x2+x﹣2上.(16分)9.在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2﹣ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.考点:二次函数综合题..专题:代数几何综合题;压轴题.分析:(1)首先过点B作BD⊥x轴,垂足为D,易证得△BDC≌△COA,即可得BD=OC=1,CD=OA=2,则可求得点B的坐标;(2)利用待定系数法即可求得二次函数的解析式;(3)分别从①以AC为直角边,点C为直角顶点,则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,③若以AC为直角边,点A为直角顶点,则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,去分析则可求得答案.解答:解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,∴△BDC≌△COA,∴BD=OC=1,CD=OA=2,∴点B的坐标为(3,1);(2)∵抛物线y=ax2﹣ax﹣2过点B(3,1),∴1=9a﹣3a﹣2,解得:a=,∴抛物线的解析式为y=x2﹣x﹣2;(3)假设存在点P,使得△ACP是等腰直角三角形,①若以AC为直角边,点C为直角顶点,则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图(1),∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC,∴CM=CD=2,P1M=BD=1,∴P1(﹣1,﹣1),经检验点P1在抛物线y=x2﹣x﹣2上;②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,如图(2),同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,∴P2(﹣2,1),经检验P2(﹣2,1)也在抛物线y=x2﹣x﹣2上;③若以AC为直角边,点A为直角顶点,则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,如图(3),同理可证△AP3H≌△CAO,∴HP3=OA=2,AH=OC=1,∴P3(2,3),经检验P3(2,3)不在抛物线y=x2﹣x﹣2上;故符合条件的点有P1(﹣1,﹣1),P2(﹣2,1)两点.(五)综合类10.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.考点:二次函数综合题..专题:压轴题.分析:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点∑的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M 点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出△ABN的面积S2=5,则S1=6S2=30.再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.证明△EBD为等腰直角三角形,则BE=BD=6,求出E的坐标为(﹣1,0),运用待定系数法求出直线PQ的解析式为y=﹣x﹣1,然后解方程组,即可求出点P的坐标.解答:解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,所以直线BC的解析式为y=﹣x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,得,解得,所以抛物线的解析式为y=x2﹣6x+5;(2)设M(x,x2﹣6x+5)(1<x<5),则N(x,﹣x+5),∵MN=(﹣x+5)﹣(x2﹣6x+5)=﹣x2+5x=﹣(x﹣)2+,∴当x=时,MN有最大值;(3)∵MN取得最大值时,x=2.5,∴﹣x+5=﹣2.5+5=2.5,即N(2.5,2.5).解方程x2﹣6x+5=0,得x=1或5,∴A(1,0),B(5,0),∴AB=5﹣1=4,∴△ABN的面积S2=×4×2.5=5,∴平行四边形CBPQ的面积S1=6S2=30.设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.∵BC=5,∴BC•BD=30,∴BD=3.过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.∵BC⊥BD,∠OBC=45°,∴∠EBD=45°,∴△EBD为等腰直角三角形,BE=BD=6,∵B(5,0),∴E(﹣1,0),设直线PQ的解析式为y=﹣x+t,将E(﹣1,0)代入,得1+t=0,解得t=﹣1∴直线PQ的解析式为y=﹣x﹣1.解方程组,得,,∴点P的坐标为P1(2,﹣3)(与点D重合)或P2(3,﹣4).11.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x 轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.考点:二次函数综合题..专题:压轴题.分析:(1)利用待定系数法求出直线解析式;(2)利用待定系数法求出抛物线的解析式;(3)关键是证明△CEQ与△CDO均为等腰直角三角形;(4)如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.利用轴对称的性质、两点之间线段最短可以证明此时△PCF的周长最小.如答图③所示,利用勾股定理求出线段C′C″的长度,即△PCF周长的最小值.解答:解:(1)∵C(0,1),OD=OC,∴D点坐标为(1,0).设直线CD的解析式为y=kx+b(k≠0),将C(0,1),D(1,0)代入得:,解得:b=1,k=﹣1,∴直线CD的解析式为:y=﹣x+1.(2)设抛物线的解析式为y=a(x﹣2)2+3,将C(0,1)代入得:1=a×(﹣2)2+3,解得a=.∴y=(x﹣2)2+3=x2+2x+1.(3)证明:由题意可知,∠ECD=45°,∵OC=OD,且OC⊥OD,∴△OCD为等腰直角三角形,∠ODC=45°,∴∠ECD=∠ODC,∴CE∥x轴,则点C、E关于对称轴(直线x=2)对称,∴点E的坐标为(4,1).如答图①所示,设对称轴(直线x=2)与CE交于点M,则M(2,1),∴ME=CM=QM=2,∴△QME与△QMC均为等腰直角三角形,∴∠QEC=∠QCE=45°.又∵△OCD为等腰直角三角形,∴∠ODC=∠OCD=45°,∴∠QEC=∠QCE=∠ODC=∠OCD=45°,∴△CEQ∽△CDO.(4)存在.如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.(证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′.由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′;而F′C″+F′P′+P′C′是点C′,C″之间的折线段,由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″,即△P′CF′的周长大于△PCE的周长.)如答图③所示,连接C′E,∵C,C′关于直线QE对称,△QCE为等腰直角三角形,∴△QC′E为等腰直角三角形,∴△CEC′为等腰直角三角形,∴点C′的坐标为(4,5);∵C,C″关于x轴对称,∴点C″的坐标为(0,﹣1).过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,在Rt△C′NC″中,由勾股定理得:C′C″===.综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为.12.如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.考点:二次函数综合题..专题:压轴题.分析:(1)利用待定系数法即可求得函数的解析式;(2)利用勾股定理求得△BCD的三边的长,然后根据勾股定理的逆定理即可作出判断;(3)分p在x轴和y轴两种情况讨论,舍出P的坐标,根据相似三角形的对应边的比相等即可求解.解答:解:(1)设抛物线的解析式为y=ax2+bx+c由抛物线与y轴交于点C(0,3),可知c=3.即抛物线的解析式为y=ax2+bx+3.把点A(1,0)、点B(﹣3,0)代入,得解得a=﹣1,b=﹣2∴抛物线的解析式为y=﹣x2﹣2x+3.∵y=﹣x2﹣2x+3=﹣(x+1)2+4∴顶点D的坐标为(﹣1,4);(2)△BCD是直角三角形.理由如下:解法一:过点D分别作x轴、y轴的垂线,垂足分别为E、F.∵在Rt△BOC中,OB=3,OC=3,∴BC2=OB2+OC2=18在Rt△CDF中,DF=1,CF=OF﹣OC=4﹣3=1,∴CD2=DF2+CF2=2在Rt△BDE中,DE=4,BE=OB﹣OE=3﹣1=2,∴BD2=DE2+BE2=20∴BC2+CD2=BD2∴△BCD为直角三角形.解法二:过点D作DF⊥y轴于点F.在Rt△BOC中,∵OB=3,OC=3∴OB=OC∴∠OCB=45°∵在Rt△CDF中,DF=1,CF=OF﹣OC=4﹣3=1∴DF=CF∴∠DCF=45°∴∠BCD=180°﹣∠DCF﹣∠OCB=90°∴△BCD为直角三角形.(3)①△BCD的三边,==,又=,故当P是原点O时,△ACP∽△DBC;②当AC是直角边时,若AC与CD是对应边,设P的坐标是(0,a),则PC=3﹣a,=,即=,解得:a=﹣9,则P的坐标是(0,﹣9),三角形ACP不是直角三角形,则△ACP∽△CBD不成立;③当AC是直角边,若AC与BC是对应边时,设P的坐标是(0,b),则PC=3﹣b,则=,即=,解得:b=﹣,故P是(0,﹣)时,则△ACP∽△CBD一定成立;④当P在x轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(d,0).则AP=1﹣d,当AC与CD是对应边时,=,即=,解得:d=1﹣3,此时,两个三角形不相似;⑤当P在x轴上时,AC是直角边,P一定在B的左侧,设P的坐标是(e,0).则AP=1﹣e,当AC与DC是对应边时,=,即=,解得:e=﹣9,符合条件.总之,符合条件的点P的坐标为:.三.对应练习13.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.考点:二次函数综合题..专题:代数几何综合题;压轴题.分析:(1)利用待定系数法求二次函数解析式解答即可;(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC 与对称轴的交点即为所求点D;(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解.解答:解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).14.如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A 点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断△AOC与△COB是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.考点:二次函数综合题..专题:压轴题.分析:(1)利用待定系数法求出抛物线解析式,利用配方法或利用公式x=求出对称轴方程;(2)在抛物线解析式中,令x=0,可求出点C坐标;令y=0,可求出点B坐标.再利用待定系数法求出直线BD的解析式;(3)根据,∠AOC=∠BOC=90°,可以判定△AOC∽△COB;(4)本问为存在型问题.若△ACQ为等腰三角形,则有三种可能的情形,需要分类讨论,逐一计算,避免漏解.解答:解:(1)∵抛物线y=﹣x2+bx+4的图象经过点A(﹣2,0),∴﹣×(﹣2)2+b×(﹣2)+4=0,解得:b=,∴抛物线解析式为y=﹣x2+x+4,又∵y=﹣x2+x+4=﹣(x﹣3)2+,∴对称轴方程为:x=3.(2)在y=﹣x2+x+4中,令x=0,得y=4,∴C(0,4);令y=0,即﹣x2+x+4=0,整理得x2﹣6x﹣16=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0).设直线BC的解析式为y=kx+b,把B(8,0),C(0,4)的坐标分别代入解析式,得:,解得k=,b=4,∴直线BC的解析式为:y=x+4.(3)可判定△AOC∽△COB成立.理由如下:在△AOC与△COB中,∵OA=2,OC=4,OB=8,∴,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB.(4)∵抛物线的对称轴方程为:x=3,可设点Q(3,t),则可求得:AC===,AQ==,CQ==.i)当AQ=CQ时,有=,25+t2=t2﹣8t+16+9,解得t=0,∴Q1(3,0);ii)当AC=AQ时,有=,t2=﹣5,此方程无实数根,∴此时△ACQ不能构成等腰三角形;iii)当AC=CQ时,有=,整理得:t2﹣8t+5=0,解得:t=4±,∴点Q坐标为:Q2(3,4+),Q3(3,4﹣).综上所述,存在点Q,使△ACQ为等腰三角形,点Q的坐标为:Q1(3,0),Q2(3,4+),Q3(3,4﹣).15.如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.考点:二次函数综合题..专题:压轴题.分析:如解答图所示:(1)首先构造全等三角形△AOB≌△CDA,求出点C的坐标;然后利用点C的坐标求出抛物线的解析式;。
中考必考题之二次函数压轴题(解析版)
中考必考题--------二次函数压轴题分析考点概况:二次函数,中考必考题型之一,通常设置3问,第一问主要考察二次函数的解析式三种表达形式的特点,通常以顶点式和坐标式为切入点,基础较薄弱的考生可以先从解析式入手,求解二次函数的解析式几乎是第一问的必考题,也是本题的送分题,需要拿到。
基础较好的考生务必要细心,第一问避免粗心出错,否则全题出错。
第二问通常会将二次函数与相似、勾股定理、三角函数、一次函数等知识点进行综合,该题的解题思路肯定是转换到几何角度思考,多想想几何的性质,平时注意该题型的解答方法的总结。
第三问,通常难度较大,解答该问需要自己先画出符合题意的草图,然后利用第二问的结论往下思考。
1. (2019·江阴澄要片一模)抛物线222m mx x y --=(m >0)与x 轴相交于A 、B 两点(A 在B 的左侧),M 是抛物线第四象限上一动点,C 是OM 上一点,且OC =2CM ,连接BC 并延长交AM 于点D 。
(1)求MAMD; (2)若M 、A 到y 轴的距离之比为3∶2,S △MCD =125,求抛物线的解析式。
【答案】(1)41(2)y =x 2-2x -8 【解析】(1)由抛物线222m mx x y --=,可十字相乘化简得y =(x -2m )(x +m ) ∴A (-m ,0);B (2m ,0) 如图所示作图,过点M 作x 轴平行线交BC 的延长线于点H易得:△BOC ∽△HMC12==CM OC HM OB ∴HM =m △ABD ∽△MHD133===m m HM AB DM AD ∴41=MA MD (2)连接OD ,∵OC ∶CM =2∶1 ∴S △OCD =2S △MCD ∴S △MOD =3S △MCDxyOABCD HM∵AD ∶DM =3∶1 ∴S △AOD =3S △MOD ∴S △MOA =9S △MOD ∴S △MOA =12S △MCD =12×125=5 ∵M 、A 到y 轴的距离之比为3∶2; ∴M (23m ,2415m -),S △MOA =385m ∴m =2822--=x x y思路点拨:本题是二次函数与相似相结合,难点是需要添加辅助线2. (2019·江阴一中一模)在平面直角坐标系xOy 中,抛物线3442+++=a ax ax y (a <0)的顶点为A ,它的对称轴与x 轴交点为B 。
中考数学—二次函数的综合压轴题专题复习及答案解析
中考数学—二次函数的综合压轴题专题复习及答案解析一、二次函数1.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y 13=x 2﹣3;(3)M 的坐标为(3632). 【解析】【分析】 (1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可.【详解】(1)将C (0,﹣3)代入y =x +m ,可得:m =﹣3;(2)将y =0代入y =x ﹣3得:x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y 13=x 2﹣3;(3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45°+15°=60°,∴OD =OC •tan30°3=设DC 为y =kx ﹣33,0),可得:k 3= 联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°-15°=30°,∴OE =OC •tan60°=3设EC 为y =kx ﹣3,代入(30)可得:k 3= 联立两个方程可得:233133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).综上所述M 的坐标为(3,63,﹣2).【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.2.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
中考二次函数的压轴题解题通法重点中学整理.docx
中考二次函数压轴题———解题通法研究二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,在宜宾市的拔尖人才考试中同样有二次函数大题,在成都,绵阳,泸县二中等地的外地招生考试中也有二次函数大题,很多学生在有限的时间内都不能很好完成。
由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。
所以二次函数综合题自然就成了相关出题老师和专家的必选内容。
我通过近6年的研究,思考和演算了上1000道二次函数大题,总结出了解决二次函数压轴题的通法,供大家参考。
几个自定义概念:①三角形基本模型:有一边在X 轴或 Y 上,或有一边平行于X 轴或 Y 轴的三角形称为三角形基本模型。
②动点(或不确定点)坐标“一母示”:借助于动点或不确定点所在函数图象的解析式,用一个字母把该点坐标表示出来,简称“设横表纵”。
如:动点 P 在 y=2x+1上,就可设P( t, 2t+1).若动点P在y=3x22x 1 ,则可设为P(t,3t 22t 1)当然若动点M在X轴上,则设为(t, 0 ) .若动点 M 在Y轴上,设为(0,t).③动三角形:至少有一边的长度是不确定的,是运动变化的。
或至少有一个顶点是运动,变化的三角形称为动三角形。
④ 动线段:其长度是运动,变化,不确定的线段称为动线段。
⑤定三角形:三边的长度固定,或三个顶点固定的三角形称为定三角形。
⑥定直线:其函数关系式是确定的,不含参数的直线称为定直线。
如:y=3x-6。
⑦X 标, Y 标:为了记忆和阐述某些问题的方便,我们把横坐标称为x 标,纵坐标称为y 标。
⑧直接动点:相关平面图形(如三角形,四边形,梯形等)上的动点称为直接动点,与之共线的问题中的点叫间接动点。
动点坐标“一母示”是针对直接动点坐标而言的。
1.求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离(即是“点点”距离,还是“点轴距离”,还是“点线距离” ,段的长度表示出来,分别把它们进行化简,即可证得两线段相等。
中考数学与二次函数有关的压轴题含答案解析
一、二次函数1.如图1,对称轴为直线x=1的抛物线y=12x2+bx+c,与x轴交于A、B两点(点A在点B的左侧),且点A坐标为(-1,0).又P是抛物线上位于第一象限的点,直线AP与y轴交于点D,与抛物线对称轴交于点E,点C与坐标原点O关于该对称轴成轴对称.(1)求点B 的坐标和抛物线的表达式;(2)当AE:EP=1:4 时,求点E 的坐标;(3)如图 2,在(2)的条件下,将线段 OC 绕点 O 逆时针旋转得到OC ′,旋转角为α(0°<α<90°),连接C ′D、C′B,求C ′B+ 23C′D 的最小值.【答案】(1)B(3,0);抛物线的表达式为:y=12x2-x-32;(2)E(1,6);(3)C′B+2 3C′D4103【解析】试题分析:(1)由抛物线的对称轴和过点A,即可得到抛物线的解析式,令y=0,解方程可得B的坐标;(2)过点P作PF⊥x轴,垂足为F.由平行线分线段弄成比例定理可得AE AP =AGAF=EGPF=15,从而求出E的坐标;(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,得到D(0,3).如图,取点M(0,43),连接MC′、BM.则可求出OM,BM的长,得到△MOC′∽△C′OD.进而得到MC′=23C′D,由C′B+23C′D=C′B+MC′≥BF可得到结论.试题解析:解:(1)∵抛物线y=12x2+bx+c的对称轴为直线x=1,∴-122b=1,∴b=-1.∵抛物线过点A(-1,0),∴12-b+c=0,解得:c=-32,即:抛物线的表达式为:y=12x2-x-32.令y=0,则12x2-x-32=0,解得:x1=-1,x2=3,即B(3,0);(2)过点P作PF⊥x轴,垂足为F.∵EG∥PF,AE:EP=1:4,∴AEAP =AGAF=EGPF=15.又∵AG=2,∴AF=10,∴F(9,0).当x=9时,y=30,即P(9,30),PF=30,∴EG=6,∴E(1,6).(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,则D(0,3).∵原点O与点C关于该对称轴成轴对称,∴EG=6,∴C(2,0),∴OC′=OC=2.如图,取点M(0,43),连接MC′、BM.则OM=43,BM=2243()3+=97.∵423'23OMOC==,'23OCOD=,且∠DOC′=∠C′OD,∴△MOC′∽△C′OD.∴'2'3MCC D=,∴MC′=23C′D,∴C′B+23C′D=C′B+MC′≥BM=4103,∴C′B+23C′D的最小值为4103.点睛:本题是二次函数的综合题,解答本题主要应用了待定系数法求二次函数的解析式,相似三角形的性质和判定,求得AF的长是解答问题(2)的关键;和差倍分的转化是解答问题(3)的关键.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x元,每星期的销售量为y件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x(元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x)×10+100=3×100,解得:x=40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w,根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P2﹣1,2);②P(﹣32,154)【解析】试题分析:(1)将B、C的坐标代入已知的抛物线的解析式,由对称轴为1x=-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得x=21-(舍去)或x=21--,∴点P (21--,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.4.如图,已知二次函数的图象过点O (0,0).A (8,4),与x 轴交于另一点B ,且对称轴是直线x =3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【解析】 【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y xy x t ⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题; (3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC=时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ POAC OC=时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b ,把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩,∴直线AB 的解析式为y =2x ﹣12, ∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n , 把M (t ,0)代入得2t+n =0,解得n =﹣2t , ∴直线MN 的解析式为y =2x ﹣2t ,解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+21(t 3)33=--+,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0); (3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO , ∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0);∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO48=, ∴PQ =12PO ,即2131m m m 422-=,解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0); 解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.5.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的 日销售量(件)与时间(天)的关系如下表: 时间(天) 1 3 6 10 36 … 日销售量(件)9490847624…未来40天内,前20天每天的价格y 1(元/件)与t 时间(天)的函数关系式为:y 1=t+25(1≤t≤20且t 为整数);后20天每天的价格y 2(原/件)与t 时间(天)的函数关系式为:y 2=—t+40(21≤t≤40且t 为整数).下面我们来研究 这种商品的有关问题.(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数 、反比例函数的知识确定一个满足这些数据之间的函数关系式;(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a 元利润(a <4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求a 的取值范围.【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a <4. 【解析】分析:(1)通过观察表格中的数据日销售量与时间t 是均匀减少的,所以确定m 与t 是一次函数关系,利用待定系数法即可求出函数关系式;(2)根据日销售量、每天的价格及时间t 可以列出销售利润W 关于t 的二次函数,然后利用二次函数的性质即可求出哪一天的日销售利润最大,最大日销售利润是多少; (3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数的性质求出a 的取值范围 .详解:(1)设数m=kt+b ,有,解得∴m=-2t+96,经检验,其他点的坐标均适合以上析式故所求函数的解析式为m=-2t+96. (2)设日销售利润为P , 由P=(-2t+96)=t 2-88t+1920=(t-44)2-16,∵21≤t≤40且对称轴为t=44,∴函数P 在21≤t≤40上随t 的增大而减小,∴当t=21时,P 有最大值为(21-44)2-16=529-16=513(元),答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元. (3)P 1=(-2t+96)=-+(14+2a )t+480-96n ,∴对称轴为t=14+2a , ∵1≤t≤20,∴14+2a≥20得a≥3时,P 1随t 的增大而增大, 又∵a <4, ∴3≤a <4.点睛:解答本题的关键是要分析题意根据实际意义准确的求出解析式,并会根据图示得出所需要的信息.同时注意要根据实际意义准确的找到不等关系,利用不等式组求解.6.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210+. (3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2). 【解析】 【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+. (2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴I 对称, ∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴2,10. ∴△PBC 的周长最小是:3210.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+) ∴()22EF m 2m 32m 6m 4m 3=--+-+=---.∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---. ②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).7.在平面直角坐标系xOy 中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x 与抛物线交于A 、B 两点,直线l 为y=﹣1. (1)求抛物线的解析式;(2)在l 上是否存在一点P ,使PA+PB 取得最小值?若存在,求出点P 的坐标;若不存在,请说明理由.(3)知F (x 0,y 0)为平面内一定点,M (m ,n )为抛物线上一动点,且点M 到直线l 的距离与点M 到点F 的距离总是相等,求定点F 的坐标.【答案】(1)抛物线的解析式为y=14x 2﹣x+1.(2)点P 的坐标为(2813,﹣1).(3)定点F 的坐标为(2,1). 【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a (x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB 与抛物线解析式成方程组,通过解方程组可求出点A 、B 的坐标,作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值,根据点B 的坐标可得出点B′的坐标,根据点A 、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;(3)由点M 到直线l 的距离与点M 到点F 的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y 0)m 2+(2-2x 0+2y 0)m+x 02+y 02-2y 0-3=0,由m 的任意性可得出关于x 0、y 0的方程组,解之即可求出顶点F 的坐标. 详解:(1)∵抛物线的顶点坐标为(2,0), 设抛物线的解析式为y=a (x-2)2. ∵该抛物线经过点(4,1),∴1=4a ,解得:a=14, ∴抛物线的解析式为y=14(x-2)2=14x 2-x+1. (2)联立直线AB 与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1, ∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0), 将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1).(3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等, ∴(m-x 0)2+(n-y 0)2=(n+1)2, ∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1. ∵M (m ,n )为抛物线上一动点, ∴n=14m 2-m+1, ∴m 2-2x 0m+x 02-2y 0(14m 2-m+1)+y 02=2(14m 2-m+1)+1, 整理得:(1-12-12y 0)m 2+(2-2x 0+2y 0)m+x 02+y 02-2y 0-3=0. ∵m 为任意值,∴000220001110222220230y x y x y y ⎧--⎪⎪-+⎨⎪+--⎪⎩===, ∴0021x y ⎧⎨⎩==,∴定点F 的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P 的位置;(3)根据点M 到直线l 的距离与点M 到点F 的距离总是相等结合二次函数图象上点的坐标特征,找出关于x 0、y 0的方程组.8. 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M (1,3)的特征线有:x =1,y =3,y =x +2,y =﹣x +4.问题与探究:如图,在平面直角坐标系中有正方形OABC ,点B 在第一象限,A 、C 分别在x 轴和y 轴上,抛物线21()4y x m n =-+经过B 、C 两点,顶点D 在正方形内部.(1)直接写出点D (m ,n )所有的特征线;(2)若点D 有一条特征线是y =x +1,求此抛物线的解析式;(3)点P 是AB 边上除点A 外的任意一点,连接OP ,将△OAP 沿着OP 折叠,点A 落在点A ′的位置,当点A ′在平行于坐标轴的D 点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?【答案】(1)x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m+n ;(2)21(2)34y x =-+;(3)抛物线向下平移9233-或2312距离,其顶点落在OP 上. 【解析】试题分析:(1)根据特征线直接求出点D 的特征线;(2)由点D 的一条特征线和正方形的性质求出点D 的坐标,从而求出抛物线解析式; (2)分平行于x 轴和y 轴两种情况,由折叠的性质计算即可.试题解析:解:(1)∵点D (m ,n ),∴点D (m ,n )的特征线是x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m +n ;(2)点D 有一条特征线是y =x +1,∴n ﹣m =1,∴n =m +1.∵抛物线解析式为21()4y x m n =-+,∴21()14y x m m =-++,∵四边形OABC 是正方形,且D 点为正方形的对称轴,D (m ,n ),∴B (2m ,2m ),∴21(2)24y m m n m =-+=,将n =m +1带入得到m =2,n =3;∴D (2,3),∴抛物线解析式为21(2)34y x =-+. (3)①如图,当点A ′在平行于y 轴的D 点的特征线时:根据题意可得,D (2,3),∴OA ′=OA =4,OM =2,∴∠A ′OM =60°,∴∠A ′OP =∠AOP =30°,∴MN 323∴抛物线需要向下平移的距离=333-=9233-.②如图,当点A ′在平行于x 轴的D 点的特征线时,设A ′(p ,3),则OA ′=OA =4,OE =3,EA 2243-7,∴A ′F =47,设P (4,c )(c >0),,在Rt △A ′FP 中,(4﹣7)2+(3﹣c )2=c 2,∴c =1673-,∴P (4,1673-),∴直线OP 解析式为y=473-x,∴N(2,8273-),∴抛物线需要向下平移的距离=3﹣827 -=127+.综上所述:抛物线向下平移923-或127+距离,其顶点落在OP上.点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答本题的关键是用正方形的性质求出点D的坐标.9.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.①若点P的横坐标为12-,求△DPQ面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x2+2x+3;(2)①点D(31524,);②△PQD面积的最大值为8【解析】分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+6x+72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E 的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题.详解:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:309330a ba b-+⎧⎨++⎩==,解得:12ab-⎧⎨⎩==,∴抛物线的表达式为y=-x2+2x+3.(2)(I)当点P的横坐标为-12时,点Q的横坐标为72,∴此时点P的坐标为(-12,74),点Q的坐标为(72,-94).设直线PQ的表达式为y=mx+n,将P(-12,74)、Q(72,-94)代入y=mx+n,得:17247924m nm n⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154mn-⎧⎪⎨⎪⎩==,∴直线PQ的表达式为y=-x+54.如图②,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),∴DE=-x2+2x+3-(-x+54)=-x2+3x+74,∴S△DPQ=12DE•(x Q-x P)=-2x2+6x+72=-2(x-32)2+8.∵-2<0,∴当x=32时,△DPQ的面积取最大值,最大值为8,此时点D的坐标为(32,154).(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,∴点P的坐标为(t,-t2+2t+3),点Q的坐标为(4+t,-(4+t)2+2(4+t)+3),利用待定系数法易知,直线PQ的表达式为y=-2(t+1)x+t2+4t+3.设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,∴S△DPQ=12DE•(x Q-x P)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.∵-2<0,∴当x=t+2时,△DPQ的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=-2x2+6x+72;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.10.如图,已知二次函数过(﹣2,4),(﹣4,4)两点.(1)求二次函数的解析式;(2)将沿x轴翻折,再向右平移2个单位,得到抛物线,直线y=m(m>0)交于M、N两点,求线段MN的长度(用含m的代数式表示);(3)在(2)的条件下,、交于A、B两点,如果直线y=m与、的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与、的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.【答案】(1);(2);(3)证明见解析.【解析】试题分析:(1)根据待定系数法即可解决问题.(2)先求出抛物线y2的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.(3)用类似(2)的方法,分别求出CD、EF即可解决问题.试题解析:(1)∵二次函数过(﹣2,4),(﹣4,4)两点,∴,解得:,∴二次函数的解析式.(2)∵=,∴顶点坐标(﹣3,),∵将沿x轴翻折,再向右平移2个单位,得到抛物线,∴抛物线的顶点坐标(﹣1,),∴抛物线为,由,消去y整理得到,设,是它的两个根,则MN===;(3)由,消去y整理得到,设两个根为,,则CD===,由,消去y得到,设两个根为,,则EF===,∴EF=CD,EF∥CD,∴四边形CEFD是平行四边形.考点:二次函数综合题.11.如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=12.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.【答案】(1)y=12x2+32x﹣2;(2)9;(3)点Q的坐标为(﹣2,4)或(﹣2,﹣1).【解析】(1)如答图1所示,利用已知条件求出点B的坐标,然后用待定系数法求出抛物线的解析式.(2)如答图1所示,首先求出四边形BMCA面积的表达式,然后利用二次函数的性质求出其最大值.(3)如答图2所示,首先求出直线AC与直线x=2的交点F的坐标,从而确定了Rt△AGF 的各个边长;然后证明Rt△AGF∽Rt△QEF,利用相似线段比例关系列出方程,求出点Q的坐标.考点:二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,由实际问题列函数关系式,二次函数最值,勾股定理,相似三角形的判定和性质,圆的切线性质.12.如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D 为抛物线的顶点,试判断△BCD 的形状,并说明理由;(3)将直线BC 向上平移t(t>0)个单位,平移后的直线与抛物线交于M ,N 两点(点M 在y 轴的右侧),当△AMN 为直角三角形时,求t 的值. 【答案】(1)243y x x =-+;(2)△BCD 为直角三角形,理由见解析;(3)当△AMN为直角三角形时,t 的值为1或4.【解析】 【分析】(1)根据点A 、B 的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C 、D 的坐标,利用两点间的距离公式可求出CD 、BD 、BC 的长,由勾股定理的逆定理可证出△BCD 为直角三角形; (3)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M 、N 的坐标,利用两点间的距离公式可求出AM 2、AN 2、MN 2的值,分别令三个角为直角,利用勾股定理可得出关于t 的无理方程,解之即可得出结论. 【详解】(1)将()1,0A 、()3,0B 代入23y ax bx =++,得:309330a b a b ++=⎧⎨++=⎩,解得:14a b =⎧⎨=-⎩, ∴此二次函数解析式为243y x x =-+.(2)BCD ∆为直角三角形,理由如下:()224321y x x x Q =-+=--, ∴顶点D 的坐标为()2,1-.当0x =时,2433y x x =-+=,∴点C 的坐标为()0,3. Q 点B 的坐标为()3,0,()()22300332BC ∴=-+-=, ()()2223102BD =-+--=,CD ==22220BC BD CD +==Q ,90CBD ∴∠=︒,BCD ∴∆为直角三角形.(3)设直线BC 的解析式为()0y kx c k =+≠, 将()3,0B ,()0,3C 代入y kx c =+,得:303k c c +=⎧⎨=⎩,解得:13k c =-⎧⎨=⎩, ∴直线BC 的解析式为3y x =-+,∴将直线BC 向上平移t 个单位得到的直线的解析式为3y x t =-++.联立新直线与抛物线的解析式成方程组,得:2343y x ty x x =-++⎧⎨=-+⎩,解得:11322x t y ⎧=⎪⎪⎨+-⎪=⎪⎩,22322x t y ⎧=⎪⎪⎨+⎪=⎪⎩,∴点M 的坐标为,点N 的坐标为,.Q 点A 的坐标为()1,0,(222210571AM t t t ⎫⎫∴=+-=++-+⎪⎪⎪⎪⎝⎭⎝⎭(222210571AN t t t ⎫⎫=-+-=++++⎪⎪⎪⎪⎝⎭⎝⎭,222188MN t =+=+⎝⎭⎝⎭. AMN ∆Q 为直角三角形, ∴分三种情况考虑:①当90MAN ∠=︒时,有222AM AN MN+=,即((22571571188t t t t t t t ++-+++++=+,整理,得:220t t +-=,解得:11t =,22t =-(不合题意,舍去);②当90AMN ∠=︒时,有222AM MN AN +=,即((22571188571t t t t t t t ++-++=++++,整理,得:2280t t --=,解得:14t =,22t =-(不合题意,舍去);③当90ANM ∠=︒时,有222AN MN AN +=,即((22571188571t t t t t t t +++++=++-+,10t ++=. 0t >Q ,∴该方程无解(或解均为增解).综上所述:当AMN ∆为直角三角形时,t 的值为1或4.【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC 2+BD 2=CD 2;(3)分∠MAN =90°、∠AMN =90°及∠ANM =90°三种情况考虑.13.已知二次函数y=﹣316x 2+bx+c 的图象经过A (0,3),B (﹣4,﹣92)两点. (1)求b ,c 的值.(2)二次函数y=﹣316x 2+bx+c 的图象与x 轴是否有公共点,求公共点的坐标;若没有,请说明情况. 【答案】(1)983b c ⎧=⎪⎨⎪=⎩;(2)公共点的坐标是(﹣2,0)或(8,0).【解析】【分析】(1)把点A 、B 的坐标分别代入函数解析式求得b 、c 的值;(2)利用根的判别式进行判断该函数图象是否与x 轴有交点,由题意得到方程﹣239168x x ++3=0,通过解该方程求得x 的值即为抛物线与x 轴交点横坐标. 【详解】(1)把A (0,3),B (﹣4,﹣92)分别代入y=﹣316x 2+bx+c , 得339164162c b c =⎧⎪⎨-⨯-+=-⎪⎩,解得983 bc⎧=⎪⎨⎪=⎩;(2)由(1)可得,该抛物线解析式为:y=﹣316x2+98x+3,△=(98)2﹣4×(﹣316)×3=22564>0,所以二次函数y=﹣316x2+bx+c的图象与x轴有公共点,∵﹣316x2+98x+3=0的解为:x1=﹣2,x2=8,∴公共点的坐标是(﹣2,0)或(8,0).【点睛】本题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.14.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,3),点B(3,﹣3),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC 的大小及点C的坐标.【答案】(1)235333y x x=-+;(2)t>4;(3)∠BOC=60°,C(32,32)【解析】分析:(1)将已知点坐标代入y=ax2+bx,求出a、b的值即可;(2)利用抛物线增减性可解问题;(3)观察图形,点A,点B到直线OC的距离之和小于等于AB;同时用点A(13点B(33详解:(1)把点A(13B(33y=ax2+bx得3=393a b a b ⎧+⎪⎨-=+⎪⎩ ,解得233533a b ⎧=-⎪⎪⎨⎪=⎪⎩∴y=﹣22353x x + (2)由(1)抛物线开口向下,对称轴为直线x=54, 当x >54时,y 随x 的增大而减小, ∴当t >4时,n <m . (3)如图,设抛物线交x 轴于点F ,分别过点A 、B 作AD ⊥OC 于点D ,BE ⊥OC 于点E∵AC≥AD ,BC≥BE ,∴AD+BE≤AC+BE=AB ,∴当OC ⊥AB 时,点A ,点B 到直线OC 的距离之和最大.∵A (13B (33∴∠AOF=60°,∠BOF=30°,∴∠AOB=90°,∴∠ABO=30°.当OC ⊥AB 时,∠BOC=60°,点C 坐标为(323 点睛:本题考查综合考查用待定系数法求二次函数解析式,抛物线的增减性.解答问题时注意线段最值问题的转化方法.15.如图1,四边形OABC 是矩形,点A 的坐标为(3,0),点c 的坐标为(0,6).点P 从点O 出发,沿OA 以每秒1个单位长度的速度向点A 运动,同时点Q 从点A 出发,沿AB 以每秒2个单位长度的速度向点B 运动,当点P 与点A 重合时运动停止.设运动时间为t 秒.(1)当2t =时,线段PQ 的中点坐标为________;(2)当CBQ ∆与PAQ ∆相似时,求t 的值;(3)当1t =时,抛物线2y x bx c =++经过P 、Q 两点,与y 轴交于点M ,抛物线的顶点为K ,如图2所示.问该抛物线上是否存在点D ,使12MQD MKQ ∠=∠,若存在,求出所有满足条件的D 点坐标;若不存在,说明理由.【答案】(1)PQ 的中点坐标是(2.5,2);(2)935t -=或3t 4=;(3)124(,)39D ,2240(,)39D -. 【解析】分析:(1)先根据时间t=2,和速度可得动点P 和Q 的路程OP 和AQ 的长,再根据中点坐标公式可得结论;(2)根据矩形的性质得:∠B=∠PAQ=90°,所以当△CBQ 与△PAQ 相似时,存在两种情况:①当△PAQ ∽△QBC 时,PA QB AQ BC =,②当△PAQ ∽△CBQ 时,PA BC AQ QB =,分别列方程可得t 的值;(3)根据t=1求抛物线的解析式,根据Q (3,2),M (0,2),可得MQ ∥x 轴,∴KM=KQ ,KE ⊥MQ ,画出符合条件的点D ,证明△KEQ ∽△QMH ,列比例式可得点D 的坐标,同理根据对称可得另一个点D .详解:(1)如图1,∵点A 的坐标为(3,0),∴OA=3,当t=2时,OP=t=2,AQ=2t=4,∴P (2,0),Q (3,4),∴线段PQ 的中点坐标为:(2+32,0+42),即(52,2); 故答案为:(52,2);(2)如图1,∵四边形OABC 是矩形,∴∠B=∠PAQ=90°∴当△CBQ 与△PAQ 相似时,存在两种情况:①当△PAQ ∽△QBC 时,PA QB AQ BC=, ∴36223t t t --=, 4t 2-15t+9=0, (t-3)(t-34)=0, t 1=3(舍),t 2=34, ②当△PAQ ∽△CBQ 时,PA BC AQ QB=, ∴33262t t t=--, t 2-9t+9=0,, ∵0≤t≤6>7, ∴x=2不符合题意,舍去, 综上所述,当△CBQ 与△PAQ 相似时,t 的值是34或2; (3)当t=1时,P (1,0),Q (3,2), 把P (1,0),Q (3,2)代入抛物线y=x 2+bx+c 中得:10932b c b c ++⎧⎨++⎩==,解得:32b c -⎧⎨⎩==, ∴抛物线:y=x 2-3x+2=(x-32)2-14, ∴顶点k (32,-14), ∵Q (3,2),M (0,2),∴MQ ∥x 轴,作抛物线对称轴,交MQ 于E ,∴KM=KQ ,KE ⊥MQ ,∴∠MKE=∠QKE=12∠MKQ , 如图2,∠MQD=12∠MKQ=∠QKE ,设DQ 交y 轴于H , ∵∠HMQ=∠QEK=90°,∴△KEQ ∽△QMH ,∴KE MQ EQ MH=, ∴12+3432MH=, ∴MH=2,∴H (0,4), 易得HQ 的解析式为:y=-23x+4, 则224332y x y x x ==⎧-+⎪⎨⎪-+⎩, x 2-3x+2=-23x+4, 解得:x 1=3(舍),x 2=-23, ∴D (-23,409); 同理,在M 的下方,y 轴上存在点H ,如图3,使∠HQM=12∠MKQ=∠QKE ,由对称性得:H (0,0),易得OQ 的解析式:y=23x , 则22332y x y x x ⎧⎪⎨⎪-+⎩==, x 2-3x+2=23x , 解得:x 1=3(舍),x 2=23, ∴D (23,49); 综上所述,点D 的坐标为:D (-23,409)或(23,49). 点睛:本题是二次函数与三角形相似的综合问题,主要考查相似三角形的判定和性质的综合应用,三角形和四边形的面积,二次函数的最值问题的应用,函数的交点等知识,本题比较复杂,注意用t 表示出线段长度,再利用相似即可找到线段之间的关系,代入可解决问题.。
中考数学与二次函数有关的压轴题附详细答案
中考数学与二次函数有关的压轴题附详细答案一、二次函数1.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P13+515-),P2(35-1+52),P35+5,1+52),P4(552-,152).【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE,=92+12×3×(-m2+5m-3),=-32m2+152m,=32(m-52)2+758, ∵-32<0, ∴当m=52时,S 有最大值是758; (3)如图3,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∵△OPF 是等腰直角三角形,且OP=PF ,易得△OMP ≌△PNF ,∴OM=PN ,∵P (m ,m 2-4m+3),则-m 2+4m-3=2-m ,解得:m=5+5或55-, ∴P 的坐标为(5+5,1+5)或(55-,15-); 如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN=FM ,则-m2+4m-3=m-2,解得:x=3+5或35 -;P的坐标为(3+5,15-)或(35-,1+52);综上所述,点P的坐标是:(5+52,1+52)或(552-,152-)或(3+5,15-)或(35-,1+5).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.2.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.【答案】(1)y=x2﹣3x。
九年级二次函数压轴题解题思路专题(PDF版)
(13)轴对称 (2012 浙江丽水)在直角坐标系中,点 A 是抛物线 y=x2 在第二象限上的点,连接 OA,过点
O 作 OB⊥OA,交抛物线于点 B,以 OA、OB 为边构造矩形 AOBC.
(1)如图 1,当点 A 的横坐标为 形; (2)如图 2,当点 A 的横坐标为 标; ②将抛物线 y=x2 作关于 x 轴的轴对称变换得到抛物线 y=-x2,试判断抛物线 y=-x2 经过 平移交换后,能否经过 A,B,C 三点?如果可以,说出变换的过程;如果不可以,请说明理 由. 时,矩形 AOBC 是正方
二次函数压轴题解题思路 一、基本知识 1 会求解析式 2.会利用函数性质和图像 3.相关知识:如一次函数、反比例函数、点的坐标、方程。图形中的三角形、四边形、圆及 平行线、垂直。一些方法:如相似、三角函数、解方程。一些转换:如轴对称、平移、旋 转。 二、典型例题: (一) 、求解析式 1.(2014•莱芜)过 A(1,0) 、B(3,0)作 x 轴的垂线,分别交直线 y=4﹣x 于 C、 D 两 点.抛物线 y=ax2+bx+c 经过 O、C、D 三点. (1)求抛物线的表达式;
(4)构造等腰三角形
1 2 x +bx+c 与 y 轴交于点 C(0,-4) ,与 x 2 轴交于点 A,B,且 B 点的坐标为(2,0) (1)求该抛物线的解析式.
(2013•泰安)如图,抛物线 y= (2)若点 P 是 AB 上的一动点,过点 P 作 PE∥AC,交 BC 于 E,连接 CP, 求△PCE 面积的最大值. (3)若点 D 为 OA 的中点,点 M 是线段 AC 上一 点,且△OMD 为等腰三角形,求 M 点的坐标.
3.(2014•兰州)如图,抛物线 y=﹣ x2+mx+n 与 x 轴交于 A、B 两点,与 y 轴交于点 C,抛物 线的对称轴交 x 轴于点 D,已知 A(﹣1,0) ,C(0,2) . (1)求抛物线的表达式; (3)点 E 时 线段 BC 上的一个动点,过点 E 作 x 轴的垂线与抛物线相交于点 F, 当点 E 运动到什么位置时,四边形 CDBF 的面积最大?求出四边形 CDBF 的最大面积及此时 E 点的坐标.
二次函数压轴题解题思路含答案资料全
-------------- 二次函数压轴题解题思路一. 基础知识1会求解析式2. 会利用函数性质和图像3. 相关知识:如一次函数、反比例函数、点的坐标、方程。
图形中的三角形、四边形、圆及平行线、垂直。
一些方法:如相似、三角函数、解方程。
一些转换:如轴对称、平移、旋转二. 典型例题(一)面积类1 .如图,已知抛物线经过点A (- 1 , 0 )、B (3 , 0 )、C (0 , 3)三点.(1 )求抛物线的解析式.(2 )点M是线段BC上的点(不与B, C重合),过M作MN // y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△ BNC的面积最大?若存在,求m的值;若不存在,说明理由.考点:二次函数综合题.专题:压轴题;数形结合.分析:(1 )已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2 )先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长.(3 )设MN交x轴于D,那么△ BNC的面积可表示为:S^BNC =S A MNC+S A MNB =MN(OD+DB) = MN?OB , MN的表达式在(2 )中已求得,OB的长易知,由此列出关于S A BNC、m的函数关系式,根据函数的性质即可判断出厶BNC是否具有最大值.解答:解:(1 )设抛物线的解析式为:y=a (x+1 ) (x - 3),贝U:a (0+1 ) (0 - 3) =3, a= - 1;抛物线的解析式:y= -( x+1 ) (x - 3) = - X2+2X+3 .(2)设直线BC的解析式为:y=kx+b,则有:解得;故直线BC的解析式:y - x+3 .已知点M 的横坐标为m , MN // y,贝U M (m , - m +3 )、N ( m , - m2+2 m+3);.•.故MN = —m2+2m+3 -( - m +3) = —m2+3 m (0 v m v 3).( 3 )如图;■/ S△ BNC=S A MNC+S A MNB= MN (OD+DB ) = MN ?OB ,22•. S△ BNC= (- m +3 m) ?3= -(m -) + (0 v m v 3);•••当m =时,△ BNC的面积最大,最大值为.2 .如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4 ,0).(1)求抛物线的解析式;(2 )试探究△ ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△ MBC的面积的最大值,并求出此时M 点的坐标.考点:二次函数综合题. . 专题:压轴题;转化思想.分析:( 1 )该函数解析式只有一个待定系数,只需将B 点坐标代入解析式中即可.(2 )首先根据抛物线的解析式确定A点坐标,然后通过证明厶ABC是直角三角形来推导出直径AB 和圆心的位置,由此确定圆心坐标.(3 )△ MBC的面积可由S A MBC =BC x h表示,若要它的面积最大,需要使h取最大值,即点M 到直线BC 的距离最大,若设一条平行于BC 的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M .解答:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16 a-x 4-2,即:a=;.抛物线的解析式为:y=x2- x- 2.(2)由( 1)的函数解析式可求得:A(- 1,0)、C(0,- 2);•••0A=1 , 0C=2 , OB =4 ,即:OC2=OA?OB,又:OC 丄AB ,•••△ OAC s\ OCB,得:/ OCA= / OBC ;ACB = / OCA+ / OCB = / OBC + / OCB =90 ,•△ ABC为直角三角形,AB为厶ABC外接圆的直径;所以该外接圆的圆心为AB 的中点,且坐标为: (,0).(3 )已求得:B (4 , 0 )、C (0,- 2 ),可得直线BC的解析式为:y=x - 2 ;设直线I // BC ,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2—x —2,即:x2—2x- 2 —匕=0,且厶=0 ;• 4 —4 x(—2 —b) =0 , 即卩b= —4 ;•直线l:y=x—4.所以点M 即直线l 和抛物线的唯一交点,有:,解得:即M(2,—3).过M点作MN丄x轴于N,S A BMC = S 梯形OCMN + S A MNB—S A OCB= X 2 X( 2+3 ) + X 2 X 3 — X 2 冻=4 .(二)周长类3 .如图,Rt △ ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3 , 0 )、(0 , 4),抛物线y=x2+bx+c经过点B,且顶点在直线x = 上.(1 )求抛物线对应的函数关系式;(2 )若把△ ABO沿x轴向右平移得到厶DCE,点A、B、O的对应点分别是D、C、E , 当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;(3 )在(2 )的条件下,连接BD,已知对称轴上存在一点P使得△ PBD的周长最小,求出P 点的坐标;(4 )在( 2 )、(3 )的条件下,若点M 是线段OB 上的一个动点 (点M 与点O、B 不重合),过点M作// BD交x轴于点N,连接PM、PN,设OM的长为t ,△ PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M 点的坐标;若不存在,说明理由.考点:二次函数综合题..专题:压轴题.分析:(1 )根据抛物线y=经过点B(0,4),以及顶点在直线x=上,得出b,c即可;(2)根据菱形的性质得出C、D 两点的坐标分别是(5,4)、(2,0),利用图象上点的性质得出x=5 或 2 时,y 的值即可.(3)首先设直线CD对应的函数关系式为y=kx+b,求出解析式,当x =时,求出y即可;(4)利用MN // BD,得出△ OMN OBD,进而得出,得到0N=,进而表示出△ PMN 的面积,利用二次函数最值求出即可.解答:解:(1 )•••抛物线y =经过点B (0 , 4)••• c=4 ,T顶点在直线x=上,•- = - =, • b=-;•所求函数关系式为;(2 )在Rt △ ABO 中,0A=3 , 0B=4 , • AB = ,••四边形ABCD 是菱形,• BC = CD = DA=AB=5 ,•C、D 两点的坐标分别是(5,4)、(2,0),当x=5 时,y=,当x=2 时,y=,•点C 和点D 都在所求抛物线上;(3)设CD与对称轴交于点P,则P为所求的点,设直线CD 对应的函数关系式为y=kx+b,则,解得:,•,当x=时,y=, • P (),(4 )• MN // BD ,•△ OMN OBD ,•即得ON=,设对称轴交x 于点F ,则(PF+OM )?OF= (+t )x,•,S A PNF= x NF?PF= x( - t) X =,S=(-),=-(0 V t V 4),a= -V 0 •••抛物线开口向下,S存在最大值.由S △ PMN = - t 2+t = -( t -) 2+ ,•••当t=时,S取最大值是,此时,点M的坐标为(0,).(三)平行四边形类4 .如图)在平面直角坐标系中)抛物线y=x2+mx+n 经过点A(3)0)、B(0)- 3))点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB 和这条抛物线的解析式.(2 )若点P在第四象限,连接AM、BM,当线段PM最长时,求△ ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在)请直接写出点P 的横坐标;若不存在)请说明理由.考点:二次函数综合题;解一元二次方程-因式分解法;待定系数法求一次函数解析式;待定系数法求二次函数解析式;三角形的面积;平行四边形的判定. .专题:压轴题;存在型.分析:(1)分别利用待定系数法求两函数的解析式:把A( 3,0 )B( 0, - 3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2 )设点P的坐标是(t, t - 3),则M (t, t2- 2t - 3),用P点的纵坐标减去M的纵坐标得到PM 的长,即PM= (t - 3)-( t2- 2t- 3 ) = - t2+3t,然后根据二次函数的最值得到当t=-=时,PM最长为=,再利用三角形的面积公式利用S A ABM =S △ BPM + S △ APM计算即可;(3)由PM // OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM = OB=3,PM最长时只有,所以不可能;当P 在第一象限:PM=OB=3,( t2- 2t - 3 ) - (t - 3 )=3 ;当P 在第三象限:PM=OB=3 ,t2- 3t=3,分别解一元二次方程即可得到满足条件的t的值.解答:解:(1 )把A (3, 0) B (0,- 3)代入y=x2+ mx + n,得解得,所以抛物线的解析式是y=x2- 2x- 3.设直线AB 的解析式是y=kx+b,把A (3 , 0) B (0,- 3)代入y=kx+b,得,解得,所以直线AB 的解析式是y=x- 3;(2 )设点P 的坐标是(t, t - 3),则M (t, t2- 2t - 3 ),因为p 在第四象限,所以PM=(t-3)-( t2-2t- 3) =-t2+3t,当t= - = 时,二次函数的最大值,即PM 最长值为= ,贝V S△ABM =S A BPM +S A APM==.( 3 )存在,理由如下:•/ PM // OB ,•••当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,①当P在第四象限:PM=OB=3 , PM最长时只有,所以不可能有PM=3 .②当P 在第一象限:PM=OB=3 , (t2- 2t - 3 )-( t - 3) =3,解得t i=, t2=(舍去),所以P 点的横坐标是;③当P在第三象限:PM=OB =3 , t2- 3t=3,解得t i=(舍去),t2=,所以P点的横坐标是. 所以P 点的横坐标是或.5.如图,在平面直角坐标系中放置一直角三角板, 其顶点为A(0, 1 ), B(2, 0), O(0, 0),将此三角板绕原点O逆时针旋转90。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考二次函数压轴题———解题通法研究二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,在宜宾市的拔尖人才考试中同样有二次函数大题,在成都,绵阳,泸县二中等地的外地招生考试中也有二次函数大题,很多学生在有限的时间内都不能很好完成。
由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。
所以二次函数综合题自然就成了相关出题老师和专家的必选内容。
我通过近6年的研究,思考和演算了上1000道二次函数大题,总结出了解决二次函数压轴题的通法,供大家参考。
几个自定义概念:①三角形基本模型:有一边在X轴或Y上,或有一边平行于X轴或Y轴的三角形称为三角形基本模型。
②动点(或不确定点)坐标“一母示”:借助于动点或不确定点所在函数图象的解析式,用一个字母把该点坐标表示出来,简称“设横表纵”。
如:动点P在y=2x+1上,就可设 P(t, 2t+1).若动点P在y=2x x,则可设为P(t,3212t t)当然若动点M 在X轴上,则设为(t, 0).若动点M在Y轴上,设为(0,321t).③动三角形:至少有一边的长度是不确定的,是运动变化的。
或至少有一个顶点是运动,变化的三角形称为动三角形。
④动线段:其长度是运动,变化,不确定的线段称为动线段。
⑤定三角形:三边的长度固定,或三个顶点固定的三角形称为定三角形。
⑥定直线:其函数关系式是确定的,不含参数的直线称为定直线。
如:y=3x-6。
⑦X标,Y标:为了记忆和阐述某些问题的方便,我们把横坐标称为x标,纵坐标称为y标。
⑧直接动点:相关平面图形(如三角形,四边形,梯形等)上的动点称为直接动点,与之共线的问题中的点叫间接动点。
动点坐标“一母示”是针对直接动点坐标而言的。
1.求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离(即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x轴(y轴)的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等。
2、“平行于y轴的动线段长度的最大值”的问题:由于平行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t ,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。
3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式(或称K 点法)求出过已知点,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可。
4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题(方法1)先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式(注意该直线与定直线的斜率相等,因为平行直线斜率(k )相等),再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0(因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0)从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离。
(方法2)该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离。
(方法3)先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出。
5.常数问题:(1)点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了。
(2)三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点(其坐标需用一个字母表示)到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了。
(3)几条线段的齐次幂的商为常数的问题:用K点法设出直线方程,求出与抛物线(或其它直线)的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可。
6.“在定直线(常为抛物线的对称轴,或x 轴或y 轴或其它的定直线)上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出(利用求交点坐标的方法)。
7.三角形周长的“最值(最大值或最小值)”问题:①“在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题(简称“一边固定两边动的问题):由于有两个定点,所以该三角形有一定边(其长度可利用两点间距离公式计算),只需另两边的和最小即可。
②“在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题(简称“三边均动的问题):在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C VV V V 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解。
8.三角形面积的最大值问题:①“抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题(简称“一边固定两边动的问题”):(方法1)先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离。
最后利用三角形的面积公式12底·高。
即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点。
(方法2)过动点向y轴作平行线找到与定线段(或所在直线)的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到1(-)-x2S y y?动三角形上(动)下(动)右(定)左(定)(x),转化为一个开口向下的二次函数问题来求出最大值。
②“三边均动的动三角形面积最大”的问题(简称“三边均动”的问题):先把动三角形分割成两个基本模型的三角形(有一边在x轴或y轴上的三角形,或者有一边平行于x轴或y轴的三角形,称为基本模型的三角形)面积之差,设出动点在x轴或y轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似(常为图中最大的那一个三角形)。
利用相似三角形的性质(对应边的比等于对应高的比)可表示出分割后的一个三角形的高。
从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了。
9.“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,从而可把动四边形分割成一个动三角形与一个定三角形(连结两个定点,即可得到一个定三角形)的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同。
10、“定四边形面积的求解”问题:有两种常见解决的方案:方案(一):连接一条对角线,分成两个三角形面积之和;方案(二):过不在x轴或y轴上的四边形的一个顶点,向x轴(或y轴)作垂线,或者把该点与原点连结起来,分割成一个梯形(常为直角梯形)和一些三角形的面积之和(或差),或几个基本模型的三角形面积的和(差)11.“两个三角形相似”的问题:两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例?若成比例,则相似;否则不相似。
(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例?若成比例,则相似;否则不相似。
一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来(一母示),然后把两个目标三角形(题中要相似的那两个三角形)中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例(要注意是否有两种情况),列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点。
(2)不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例?若成比例,则所求动点坐标符合题意,否则这样的点不存在。
简称“找特角,求(动)点标,再验证”。
或称为“一找角,二求标,三验证”。
12.、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点。
(若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形,则有三种情况)。
先借助于动点所在图象的解析式,表示出动点的坐标(一母示),按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程。
解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点(就是不能构成三角形这个题意)。
13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有3条),此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。