高考物理 一轮复习 4.5 天体运动与人造卫星
高考物理总复习课件时天体运动和人造卫星
宇宙速度与逃逸速度
01
02
03
04
第一宇宙速度
指物体在地面附近绕地球做匀 速圆周运动的速度,数值为 7.9km/s。
第二宇宙速度
指物体完全摆脱地球引力束缚 ,飞离地球所需要的最小速度 ,数值为11.2km/s。
第三宇宙速度
指物体完全摆脱太阳引力束缚 ,飞出太阳系所需要的最小速 度,数值为16.7km/s。
针对易错题型和难点题型进行专项训练,提高解题 速度和准确性。
模拟试卷训练提高实战能力
02
01
03
完成多套高考物理模拟试卷,熟悉考试流程和题型分 布。
通过模拟考试检验自己的复习效果,查漏补缺。
针对模拟考试中出现的问题进行反思和总结,调整复 习策略。
备考心态调整和时间管理建议
01
02
03
04
保持积极的心态,相信自己能 够取得好成绩。
利用卫星搭载的光学、雷达等传感器对地球表面进行观测和数据采集,
通过数据处理和分析提取有用信息。
02
遥感技术应用
广泛应用于气象观测、环境监测、资源调查、军事侦察等领域,为人类
社会提供大量有价值的信息。
03
发展趋势
随着传感器技术、数据处理技术和人工智能技术的不断发展,遥感技术
将在分辨率、观测能力、数据处理速度等方面取得更大突破,为卫星应
着重理解天体运动的规 律,如开普勒定律、万 有引力定律等。
掌握人造卫星的发射、 运行和变轨等基本原理 。
突破重点难点,如天体 运动中的椭圆轨道问题 、人造卫星的变轨问题 等。
历年真题解析及答题技巧指导
解析历年高考物理天体运动和人造卫星相关真题, 了解题型和考点。
2020高考备考物理重难点《天体运动与人造航天器》(附答案解析版)
重难点05 天体运动与人造航天器【知识梳理】考点一 天体质量和密度的计算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即ma r mv r T m r m rMm G ====2222)2(πω(2)在中心天体表面或附近运动时,万有引力近似等于重力,即2R MmG mg =(g 表示天体表面的重力加速度).(2)利用此关系可求行星表面重力加速度、轨道处重力加速度: 在行星表面重力加速度:2R Mm Gmg =,所以2R MG g = 在离地面高为h 的轨道处重力加速度:2)(h R Mm G g m +=',得2)(h R MG g +=' 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于2R Mm G mg =,故天体质量GgR M 2=天体密度:GRgV M πρ43==(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即r T m rMm G 22)2(π=,得出中心天体质量2324GT r M π=;②若已知天体半径R ,则天体的平均密度3233RGT r V M πρ== ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度23GTV M πρ==.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 【重点归纳】 1.黄金代换公式(1)在研究卫星的问题中,若已知中心天体表面的重力加速度g 时,常运用GM =gR 2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用很大,此式通常称为黄金代换公式. 2. 估算天体问题应注意三点(1)天体质量估算中常有隐含条件,如地球的自转周期为24 h ,公转周期为365天等. (2)注意黄金代换式GM =gR 2的应用. (3)注意密度公式23GTπρ=的理解和应用. 考点二 卫星运行参量的比较与运算 1.卫星的动力学规律由万有引力提供向心力,ma r mv r T m r m rMm G ====2222)2(πω2.卫星的各物理量随轨道半径变化的规律r GM v =;3r GM =ω;GMr T 32π=;2r GM a = (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其它量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定.(2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心. 【重点归纳】1.利用万有引力定律解决卫星运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式卫星运动的向心力来源于万有引力:ma r mv r T m r m rMm G ====2222)2(πω在中心天体表面或附近运动时,万有引力近似等于重力,即:2R MmGmg = (g 为星体表面处的重2.卫星的线速度、角速度、周期与轨道半径的关系⎪⎪⎩⎪⎪⎨⎧⇒⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫====减小增大减小减小增大时当半径a T v r r GM a GM r T r GM r GM v ωπω2332 考点三 宇宙速度 卫星变轨问题的分析1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的两种求法:(1)r mv r Mm G 212=,所以r GMv =1 (2)rmv mg 21=,所以gR v =1.3.第二、第三宇宙速度也都是指发射速度.4.当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:(1)当卫星的速度突然增加时,r mv rMm G 22<,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,r mv rMm G 22>,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.1.处理卫星变轨问题的思路和方法(1)要增大卫星的轨道半径,必须加速;(2)当轨道半径增大时,卫星的机械能随之增大.2.卫星变轨问题的判断:(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大.(2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.(3)圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同.3.特别提醒:“三个不同”(1)两种周期——自转周期和公转周期的不同(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度(3)两个半径——天体半径R和卫星轨道半径r的不同【限时检测】(建议用时:30分钟)1.(2019·新课标全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。
(完整word)高三一轮专题复习:天体运动知识点归类解析,推荐文档
天体运动知识点归类解析【问题一】行星运动简史 1、两种学说(1)地心说:地球是宇宙的中心,而且是静止不动的,太阳、月亮以及其他行星都绕地球运动。
支持者托勒密。
(2).日心说:太阳是宇宙的中心,而且是静止不动的,地球和其他行星都绕太阳运动。
(3).两种学说的局限性都把天体的运动看的很神圣,认为天体的运动必然是最完美,最和谐的圆周运动,而和丹麦天文学家第谷的观测数据不符。
2、开普勒三大定律开普勒1596年出版《宇宙的神秘》一书受到第谷的赏识,应邀到布拉格附近的天文台做研究工作。
1600年,到布拉格成为第谷的助手。
次年第谷去世,开普勒成为第谷事业的继承人。
第谷去世后开普勒用很长时间对第谷遗留下来的观测资料进行了整理与分析他在分析火星的公转时发现,无论用哥白尼还是托勒密或是第谷的计算方法得到的结果都与第谷的观测数据不吻合。
他坚信观测的结果,于是他想到火星可能不是按照人们认为的匀速圆周运动他改用不同现状的几何曲线来表示火星的运动轨迹,终于发现了火星绕太阳沿椭圆轨道运行的事实。
并将老师第谷的数据结果归纳出三条著名定律。
第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫过的面积相等。
如图某行星沿椭圆轨道运行,远日点离太阳的距离为a ,近日点离太阳的距离为b ,过远日点时行星的速率为a v ,过近日点时的速率为b v由开普勒第二定律,太阳和行星的连线在相等的时间内扫过相等的面积,取足够短的时间t ∆,则有:t bv t av b a ∆=∆2121①所以bav v a b = ② ②式得出一个推论:行星运动的速率与它距离成反比,也就是我们熟知的近日点快远日点慢的结论。
②式也当之无愧的作为第二定律的数学表达式。
第三定律:所有行星的轨道半长轴的三次方跟它的公转周期平方的比值都相等。
用a 表示半长轴,T 表示周期,第三定律的数学表达式为k T a =23,k 与中心天体的质量有关即k 是中心天体质量的函数)(23M k T a =①。
2023届高考物理一轮复习课件:天体运动与人造卫星
一、天上卫星模型
天体运动与人造卫星
1.基本规律
v2
Mm
GM
(1)线速度:G 2 =m ⇒v=
r
r
r
Mm
GM
2
(2)角速度:G 2 =mω r⇒ω=
r
r3
Mm
GM
(3)向心加速度:G 2 =ma⇒a= 2
r
r
2π
3
Mm
r
(4)周期:G 2 =m T 2r⇒T=2π
r
GM
=
=
=
=
口诀:高轨低速大周期大机械能
只适合绕同一中心天体的圆轨道卫星
第2课时
一、天上卫星模型
天体运动与人造卫星
1.基本规律
2.中心天体质量和密度
知2求质,知3求密
①
=
r
R
(特别知1求密).
=
若
=
则
=
得: =
设地球自转周期为 24 h,所有卫星的运动均视为匀速圆周运动,各卫星排
列位置如图所示,则下列关于卫星的说法中正确的是(
C)
A.a 的向心加速度等于重力加速度 g
π
B.c 在 4 h 内转过的圆心角为
6
C.b 在相同的时间内转过的弧长最长
D.d 的运动周期可能是 23 h
那如何发射一
颗卫星呢?
第2课 天体运动与人造卫星
BD
3.1798 年,卡文迪什测出万有引力常量 G,因此他被称为“能够称出地球质量的
2025高考物理总复习天体运动与人造卫星
A.木卫一轨道半径为16 r
B.木卫二轨道半径为2 r
C.周期 T 与 T0 之比为
3
2
0 2 3
D.木星质量与地球质量之比为 2 n
解析 设木卫一、木卫二和木卫三的公转轨道半径分别为 r1、r2、r3,根据题
3
3
1
意知 =n,在中心天体一定时,T2∝r3,故
3
r1=
1
4
2
3
nr,r2=
4π2 3
,同理得地球质量 m 地=
0
木
2 ,解得
地
3 2
=
=m
2π 2
r3,解得
0 2 3
2 n ,选项 D 正确。
典题2 (2023浙江6月选考)木星的卫星中,木卫一、木卫二、木卫三做圆周
运动的周期之比为1∶2∶4。木卫三周期为T,公转轨道半径是月球绕地球
轨道半径r的n倍。月球绕地球公转周期为T0,则( D )
发射速度
×
提示 第二宇宙速度大于光速。
研考点•精准突破
典题4 (2023辽宁盘锦模拟)三个宇宙速度的示意图如图所示,则( D )
A.嫦娥一号卫星的无动力发射速度需要
大于16.7 km/s
B.太阳系外飞行器的无动力发射速度只
需要大于11.2 km/s
C.天宫空间站的飞行速度大于7.9 km/s
D.三个宇宙速度对哈雷彗星(绕太阳运动)
不适用
解析 嫦娥一号绕月球运行,但仍没有脱离太阳系,无动力发射速度需要小
于16.7 km/s,A错误;太阳系外飞行器的无动力发射速度需要大于16.7
km/s,B错误;天宫空间站绕地球做近似圆周运动,运动速度小于7.9 km/s,C
京津鲁琼版高考物理总复习第四章第5节天体运动与人造卫星课件
Rg=5 075 s
2.宇宙速度与运动轨迹的关系 (1)v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动. (2)7.9 km/s<v 发<11.2 km/s,卫星绕地球运动的轨迹为椭圆. (3)11.2 km/s≤v 发<16.7 km/s,卫星绕太阳做椭圆运动. (4)v 发≥16.7 km/s,卫星将挣脱太阳引力的束缚,飞到太阳系 以外的空间.
[答案] AD
天体相遇与追及问题的处理方法 首先根据GMr2m=mrω2 判断出谁的角速度大,然后根据两星追 上或相距最近时满足两星运动的角度差等于 2π的整数倍,即 ωAt-ωBt=n·2π(n=1、2、3…),相距最远时两星运行的角度 差等于π的奇数倍,即 ωAt-ωBt=(2n+1)π(n=0、1、2…).
提示:(1)× (2)×
做一做 (多选)(沪科必修 2·P102·T1)关于相对于地面静止不动的同步卫星, 下列说法中正确的是( ) A.它一定在赤道上空 B.同步卫星的高度和速率是确定的值 C.它运行的线速度一定小于第一宇宙速度 D.它运行的线速度一定介于第一宇宙速度和第二宇宙速度之间 提示:ABC
A.该星球上的第一宇宙速度为
3gR 3
B.该星球上的第二宇宙速度为
gR 3
ρ
C.该星球的平均密度为 2
D.该星球的质量为8π8R13ρ
解析:选 BC.该星球表面的重力加速度 g′=g6,由 mg′=mRv2可 3
得星球第一宇宙速度 v1= g′3 R= g1R8,第二宇宙速度为 v2
= 2v1= g3R,故 A 错误,B 正确;地球表面上物体的重力等 于万有引力,即 GmRM2 =mg,地球的质量为 M=gGR2=ρ·43πR3; 同理,星球的质量为 M′=g′GR′2=ρ′·43πR′3,联立解得:ρ′
2023届高考物理一轮复习学案 4.5 天体运动的三类热点问题
第5节 天体运动的三类热点问题 学案突破一 卫星的发射与变轨问题1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示。
(2)在A 点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ。
2.各物理量的比较(1)两个不同轨道的“切点”处线速度不相等。
图中v ⅢB >v ⅡB ,v ⅡA >v ⅠA 。
(2)同一个椭圆轨道上近地点和远地点的线速度大小不相等。
从远地点到近地点万有引力对卫星做正功,卫星的动能增大(引力势能减小)。
图中v ⅡA >v ⅡB ,E k ⅡA >E k ⅡB ,E p ⅡA <E p ⅡB 。
(3)两个不同圆轨道上线速度大小不相等。
轨道半径越大,线速度越小,图中v Ⅰ>v Ⅲ。
(4)卫星在不同轨道上的机械能E 不相等,“高轨高能,低轨低能”。
卫星变轨过程中机械能不守恒。
图中E Ⅰ<E Ⅱ<E Ⅲ。
(5)卫星运行的加速度与卫星和中心天体间的距离有关,与轨道形状无关,图中a ⅢB =a ⅡB ,a ⅡA =a ⅠA 。
[典例1] (2021·四川省遂宁市高三下学期5月三诊)2021年1月,“天通一号”03星发射成功。
发射过程简化为如图所示:火箭先把卫星送上轨道1(椭圆轨道,P 、Q 是远地点和近地点)后火箭脱离;卫星再变轨,到轨道2(圆轨道);卫星最后变轨到轨道3(同步圆轨道)。
轨道1、2相切于P 点,轨道2、3相交于M 、N 两点。
忽略卫星质量变化( )A .卫星在三个轨道上的周期T 3>T 2>T 1B .由轨道1变至轨道2,卫星在P 点向前喷气C .卫星在三个轨道上机械能E 3=E 2>E 1D .轨道1在Q 点的线速度小于轨道3的线速度[典例2] (多选)若“嫦娥五号”从距月面高度为100 km 的环月圆形轨道Ⅰ上的P 点实施变轨,进入近月点为15 km 的椭圆轨道Ⅱ,由近月点Q 落月,如图所示。
4.5 第5节 天体运动与人造卫星
������������ ������ 2
=m
4π 2 ������
r 得,r= 2
3
������������������ 2 4π 2
=4.23×104 km,卫星离
地面高度 h=r-R≈6R(为恒量 35 786 km)。
(5)绕行方向一定:与地球自转的方向一致。
基础夯实 基础夯实 自我诊断
-5-
关闭
由题意知卫星运行的轨迹所对圆心角为 120°,即运行了三分之一 A.该卫星与同步卫星的运行半径之比为������������ 1 ∶4 4 π 2 周期 ,用时 1 h,因此卫星的周期 T=3 h,由 G 2 =m 2 r 可得 T∝√������ 3 , ������ ∶2 ������ B.该卫星与同步卫星的运行速度之比为1 又同步卫星的周期 T 同 =24 h,则极地卫星与同步卫星的运行半径之 C.该卫星的运行速度一定大于 7.9 km/s 2 ������������ ������ 1 比为 1∶4,A 正确 ;由 G 2 =m ,可得 v∝ ,故极地卫星与同步卫星 D.该卫星的机械能一定大于同步卫星的机械能
根据三个宇宙速度的意义,可知选项 A、B 错误,选项 C 正确;已知 M
火
=
������地 9
,R 火 =
������地 2
,则
������火 ������地
=
������������火 ������火
∶
������������地 ������地
=
√2 ,选项 3
D 正确。
解析
关闭
CD
答案
基础夯实 考点一 考点二 考点三
→v =
GM r
→v ∝
2024高考物理一轮复习--天体运动专题--卫星的变轨问题、天体追及相遇问题
卫星的变轨问题、天体追及相遇问题一、卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如右图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道 Ⅰ上。
(2)在A 点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅰ。
2.卫星的对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.二、变轨前、后各物理量的比较1.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v =GM r判断。
(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。
(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。
2.卫星变轨的实质 两类变轨离心运动 近心运动 变轨起因卫星速度突然增大 卫星速度突然减小 受力分析 G Mm r 2<m v 2rG Mm r 2>m v 2r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动 3.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v 1、v 3,在轨道Ⅰ上过A 点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.三、卫星的追及与相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…)。
高考物理大一轮复习 4.5 第5节 天体运动与人造卫星课件 新人教版
D.“拦截器”的加速度比“目标卫星”的加速度小
解析 答案
-8-
基础夯实 自我诊断
3.一宇宙飞船绕地球做匀速圆周运动,飞船原来的线速度是v1,周 期是T1,假设在某时刻它向后喷气做加速运动后,进入新轨道做匀 速圆周运动,运动的线速度是v2,周期是T2,则( )
A.v1>v2,T1>T2
B.v1>v2,T1<T2
-3-
基础夯实 自我诊断
二、地球卫星 1.卫星的轨道 (1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一 种。 (2)极地轨道:卫星的轨道过南北两极,即在垂直于赤道的平面内, 如极地气象卫星。 (3)其他轨道:除以上两种轨道外的卫星轨道。 所有卫星的轨道平面一定通过地球的球心。
-4基础夯实 自我诊断
TA=D2π.两������卫���������3���,星则的D周错期误关。系有Ta<Tb
关闭
解析 答案
-7-
基础夯实 自我诊断
2.(多选)在早期的反卫星试验中,攻击拦截方式之一是快速上升 式攻击,即“拦截器”被送入与“目标卫星”轨道平面相同而高度较低 的追赶轨道,然后通过机动飞行快速上升接近目标将“目标卫星”摧 毁。右图为追赶过程轨道示意图,下列叙述正确的是( )
关闭
根 误据 ;ABC据...两 两两GG���卫 卫卫���������������������2���������2星星星���==m的的的mω���角向���线������22r,可,速心速可知度加度知关速关vω=系度系= 有关���有���������������������������系ωv���,3则���aa,><有AvωCb正aba错>确a误b;据;据GG������������������2���������������2=���=mma,4可π������22知������,可a=知���������������2���,B 错
20届高考物理一轮复习 第4章 专题强化五 天体运动的“四类热点”问题
专题强化五天体运动的“四类热点”问题专题解读 1.本专题是万有引力定律在天体运行中的特殊运用,同步卫星是与地球表面相对静止的卫星;而双星或多星模型有可能没有中心天体,近年来常以选择题形式在高考题中出现.2.学好本专题有助于学生更加灵活地应用万有引力定律,加深对力和运动关系的理解.3.需要用到的知识:牛顿第二定律、万有引力定律、圆周运动规律等.一、卫星的轨道1.赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种.2.极地轨道:卫星的轨道过南、北两极,即在垂直于赤道的平面内,如极地气象卫星.3.其他轨道:除以上两种轨道外的卫星轨道.所有卫星的轨道平面一定通过地球的球心.自测1(多选)可以发射一颗这样的人造地球卫星,使其圆轨道()A.与地球表面上某一纬线(非赤道)是共面同心圆B.与地球表面上某一经线所决定的圆是共面同心圆C.与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的D.与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的答案CD解析人造地球卫星运行时,由于地球对卫星的引力提供它做圆周运动的向心力,而这个力的方向必定指向圆心,即指向地心,也就是说人造地球卫星所在轨道圆的圆心一定要和地球的中心重合,不可能是地轴上(除地心外)的某一点,故A错误;由于地球同时绕着地轴在自转,所以卫星的轨道平面也不可能和经线所决定的平面共面,所以B错误;相对地球表面静止的卫星就是地球的同步卫星,它必须在赤道平面内,且距地面有确定的高度,这个高度约为三万六千千米,而低于或高于这个轨道的卫星也可以在赤道平面内运动,不过由于它们公转的周期和地球自转周期不同,就会相对于地面运动,C、D正确.二、地球同步卫星的特点相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.同步卫星有以下“七个一定”的特点:(1)轨道平面一定:轨道平面与赤道平面共面.(2)周期一定:与地球自转周期相同,即T =24 h.(3)角速度一定:与地球自转的角速度相同.(4)高度一定:由G Mm (R +h )2=m 4π2T 2(R +h )得地球同步卫星离地面的高度h =3GMT 24π2-R ≈3.6×107 m.(5)速率一定:v =GM R +h ≈3.1×103 m/s. (6)向心加速度一定:由G Mm (R +h )2=ma n 得a n =GM (R +h )2=g h =0.23 m/s 2,即同步卫星的向心加速度等于轨道处的重力加速度.(7)绕行方向一定:运行方向与地球自转方向一致.自测2 (2018·河南省鹤壁市第二次段考)已知某行星半径为R ,以第一宇宙速度围绕该行星运行的卫星的绕行周期为T ,围绕该行星运动的同步卫星运行速率为v ,则该行星的自转周期为( )A.8π3R 3T 2v 3B.4π3R 3v 3C.2πR vD.2π2R 2T v2 答案 A解析 设同步卫星距地面的高度为h ,则GMm (R +h )2=m v 2R +h,以第一宇宙速度运行的卫星的轨道半径为R ,GMm R 2=m ⎝⎛⎭⎫2πT 2R ,联立解得h =4π2R 3T 2v2-R ,行星的自转周期等于同步卫星运转周期T =2π(R +h )v =8π3R 3T 2v3,A 选项正确,B 、C 、D 选项错误. 三、卫星变轨 1.当卫星的速度突然增大时,G Mm r 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大.当卫星进入新的轨道稳定运行时,由v = GM r可知其运行速度比原轨道运行时的小,但重力势能、机械能均增加. 2.当卫星的速度突然减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小.当卫星进入新的轨道稳定运行时,由v =GM r可知其运行速度比原轨道运行时的大,但重力势能、机械能均减小. 自测3 (2018·安徽省江南十校冲刺联考)现对于发射地球同步卫星的过程分析,如图1所示,卫星首先进入椭圆轨道Ⅰ,P 点是轨道Ⅰ上的近地点,然后在Q 点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则( )图1A .卫星在同步轨道Ⅱ上的运行速度大于第一宇宙速度7.9 km/sB .该卫星的发射速度必定大于第二宇宙速度11.2 km/sC .在轨道Ⅰ上,卫星在P 点的速度大于第一宇宙速度7.9 km/sD .在轨道Ⅰ上,卫星在Q 点的速度大于第一宇宙速度7.9 km/s答案 C解析 第一宇宙速度是卫星在近地轨道运行的线速度,根据G Mm r 2=m v 2r可知v = GM r,故轨道半径越大,线速度越小,所以同步卫星的运行速度小于第一宇宙速度,A 错误;该卫星为地球的卫星,所以发射速度小于第二宇宙速度,B 错误;P 点为近地轨道上的一点,但要从近地轨道变轨到Ⅰ轨道,则需要在P 点加速,所以卫星在P 点的速度大于第一宇宙速度,C 正确;在Q 点要从轨道Ⅰ变轨到轨道Ⅱ,则需要在Q 点加速,即卫星在轨道Ⅱ上经过Q 点的速度大于在轨道Ⅰ上经过Q 点的速度,而轨道Ⅱ上的速度小于第一宇宙速度,故卫星在轨道Ⅰ上经过Q 点时的速度小于第一宇宙速度,D 错误.命题点一 近地卫星、同步卫星和赤道上物体的运行问题1.解决同步卫星问题的“四点”注意(1)基本关系:要抓住G Mm r 2=ma =m v 2r =mrω2=m 4π2T2r . (2)重要手段:构建物理模型,绘制草图辅助分析.(3)物理规律:①不快不慢:具有特定的运行线速度、角速度和周期.②不高不低:具有特定的位置高度和轨道半径.③不偏不倚:同步卫星的运行轨道平面必须处于地球赤道平面上,只能静止在赤道上方的特定的点上.(4)重要条件:①地球的公转周期为1年,其自转周期为1天(24小时),地球半径约为6.4×103 km ,地球表面重力加速度g 约为9.8 m/s 2.②月球的公转周期约27.3天,在一般估算中常取27天.③人造地球卫星的运行半径最小为r =6.4×103 km ,运行周期最小为T =84.8 min ,运行速度最大为v =7.9 km/s.2.两个向心加速度3.两种周期(1)自转周期是天体绕自身某轴线转动一周所需的时间,取决于天体自身转动的快慢.(2)公转周期是运行天体绕中心天体做圆周运动一周所需的时间,T =2πr 3GM ,取决于中心天体的质量和运行天体到中心天体的距离.例1 (2018·江西省鹰潭市模拟)有a 、b 、c 、d 四颗卫星,a 还未发射,在地球赤道上随地球一起转动,b 在地面附近近地轨道上正常运行,c 是地球同步卫星,d 是高空探测卫星,设地球自转周期为24 h ,所有卫星的运动均视为匀速圆周运动,各卫星排列位置如图2所示,则下列关于卫星的说法中正确的是( )图2A .a 的向心加速度等于重力加速度gB .c 在4 h 内转过的圆心角为π6C .b 在相同的时间内转过的弧长最长D .d 的运动周期可能是23 h答案 C解析 同步卫星的运行周期与地球自转周期相同,角速度相同,则a 和c 的角速度相同,根据a =ω2r 知,c 的向心加速度大,由GMm r 2=ma 知,c 的向心加速度小于b 的向心加速度,而b 的向心加速度约为g ,故a 的向心加速度小于重力加速度g ,选项A 错误;由于c 为同步卫星,所以c 的周期为24 h ,因此4 h 内转过的圆心角为θ=π3,选项B 错误;由四颗卫星的运行情况可知,b 运行的线速度是最大的,所以其在相同的时间内转过的弧长最长,选项C 正确;d 的运行周期比c 要长,所以其周期应大于24 h ,选项D 错误.变式1 (2016·四川理综·3)如图3所示,1970年4月24日我国首次成功发射的人造卫星“东方红一号”,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的“东方红二号”卫星运行在赤道上空35 786 km 的地球同步轨道上.设“东方红一号”在远地点的加速度为a 1,“东方红二号”的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( )图3A .a 2>a 1>a 3B .a 3>a 2>a 1C .a 3>a 1>a 2D .a 1>a 2>a 3答案 D解析 由于“东方红二号”卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a =ω2r ,r 2>r 3,则a 2>a 3;由万有引力定律和牛顿第二定律得,G Mm r 2=ma ,由题目中数据可以得出,r 1<r 2,则a 2<a 1;综合以上分析有,a 1>a 2>a 3,选项D 正确.变式2 (2018·福建省南平市第一次质检)如图4所示是北斗导航系统中部分卫星的轨道示意图,已知a 、b 、c 三颗卫星均做圆周运动,a 是地球同步卫星,a 和b 的轨道半径相同,且均为c 的k 倍,已知地球自转周期为T .则( )图4A .卫星b 也是地球同步卫星B .卫星a 的向心加速度是卫星c 的向心加速度的k 2倍C .卫星c 的周期为1k 3TD .a 、b 、c 三颗卫星的运行速度大小关系为v a =v b =k v c答案 C解析 卫星b 相对地球不能保持静止,故不是地球同步卫星,A 错误;根据公式G Mm r 2=ma 可得a =GM r 2,即a a a c =r c 2r a 2=1k 2,B 错误;根据开普勒第三定律r a 3T a 2=r c 3T c 2可得T c =r c 3r a 3T a 2=1k 3T a =1k 3T ,C 正确;根据公式G Mm r 2=m v 2r 可得v =GM r,故v a =v b <v c ,D 错误. 命题点二 卫星变轨问题1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.如图5所示.图5(2)在A 点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ.2.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B .(2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3. (4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,则E 1<E 2<E 3.例2 (多选)(2018·陕西省宝鸡市质检二)如图6所示,质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMm r,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道Ⅰ上绕地球做匀速圆周运动,经过椭圆轨道Ⅱ的变轨过程进入半径为R 3的圆形轨道Ⅲ继续绕地球运动,其中P 点为Ⅰ轨道与Ⅱ轨道的切点,Q 点为Ⅱ轨道与Ⅲ轨道的切点,下列判断正确的是( )图6A .卫星在轨道Ⅰ上的动能为G Mm 2R 1B .卫星在轨道Ⅲ上的机械能等于-G Mm 2R 3C .卫星在Ⅱ轨道经过Q 点时的加速度小于在Ⅲ轨道上经过Q 点时的加速度D .卫星在Ⅰ轨道上经过P 点时的速率大于在Ⅱ轨道上经过P 点时的速率答案 AB解析 在轨道Ⅰ上,有:G Mm R 12=m v 12R 1,解得:v 1=GM R 1,则动能为E k1=12m v 12=GMm 2R 1,故A 正确;在轨道Ⅲ上,有:G Mm R 32=m v 32R 3,解得:v 3=GM R 3,则动能为E k3=12m v 32=GMm 2R 3,引力势能为E p =-GMm R 3,则机械能为E =E k3+E p =-GMm 2R 3,故B 正确;由G Mm R Q2=ma 得:a =GM R Q 2,两个轨道上Q 点到地心的距离不变,故向心加速度的大小不变,故C 错误;卫星要从Ⅰ轨道变到Ⅱ轨道上,经过P 点时必须点火加速,即卫星在Ⅰ轨道上经过P 点时的速率小于在Ⅱ轨道上经过P 点时的速率,故D 错误.变式3 (多选)(2018·河北省唐山市上学期期末)登陆火星需经历如图7所示的变轨过程,已知引力常量为G ,则下列说法正确的是( )图7A .飞船在轨道上运动时,运行的周期T Ⅲ> T Ⅱ> T ⅠB .飞船在轨道Ⅰ上的机械能大于在轨道Ⅱ上的机械能C .飞船在P 点从轨道Ⅱ变轨到轨道Ⅰ,需要在P 点朝速度方向喷气D .若轨道Ⅰ贴近火星表面,已知飞船在轨道Ⅰ上运动的角速度,可以推知火星的密度 答案 ACD解析 根据开普勒第三定律a 3T 2=k 可知,飞船在轨道上运动时,运行的周期T Ⅲ> T Ⅱ> T Ⅰ,选项A 正确;飞船在P 点从轨道Ⅱ变轨到轨道Ⅰ,需要在P 点朝速度方向喷气,从而使飞船减速到达轨道Ⅰ,则在轨道Ⅰ上机械能小于在轨道Ⅱ的机械能,选项B 错误,C 正确;根据G Mm R 2=mω2R 以及M =43πR 3ρ,解得ρ=3ω24πG,即若轨道Ⅰ贴近 火星表面,已知飞船在轨道Ⅰ上运动的角速度,可以推知火星的密度,选项D 正确.变式4 (多选)(2018·河南省南阳、信阳等六市二模)若“嫦娥四号”从距月面高度为100 km 的环月圆形轨道Ⅰ上的P 点实施变轨,进入近月点为15 km 的椭圆轨道Ⅱ,由近月点Q 落月,如图8所示.关于“嫦娥四号”,下列说法正确的是( )图8A .沿轨道Ⅰ运动至P 时,需制动减速才能进入轨道ⅡB. 沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期C .沿轨道Ⅱ运行时,在P 点的加速度大于在Q 点的加速度D .在轨道Ⅱ上由P 点运行到Q 点的过程中,万有引力对其做正功,它的动能增加,重力势能减小,机械能不变答案 AD解析 要使“嫦娥四号”从环月圆形轨道Ⅰ上的P 点实施变轨进入椭圆轨道Ⅱ,需制动减速做近心运动,A 正确;由开普勒第三定律知,沿轨道Ⅱ运行的周期小于沿轨道Ⅰ运行的周期,B 错误;万有引力使物体产生加速度,a =G Mm r 2m =G M r 2,沿轨道Ⅱ运行时,在P 点的加速度小于在Q 点的加速度,C 错误;月球对“嫦娥四号”的万有引力指向月球,所以在轨道Ⅱ上由P 点运行到Q 点的过程中,万有引力对其做正功,它的动能增加,重力势能减小,机械能不变,D 正确.命题点三 双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图9所示.图9(2)特点:①各自所需的向心力由彼此间的万有引力提供,即Gm 1m 2L 2=m 1ω12r 1,Gm 1m 2L 2=m 2ω22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为:r 1+r 2=L④两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1. ⑤双星的运动周期T =2πL 3G (m 1+m 2)⑥双星的总质量m 1+m 2=4π2L 3T 2G2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星体位于同一直线上,两颗质量相等的环绕星围绕中央星在同一半径为R 的圆形轨道上运行(如图10甲所示).②三颗质量均为m 的星体位于等边三角形的三个顶点上(如图乙所示).图10(3)四星模型:①其中一种是四颗质量相等的星体位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②另一种是三颗质量相等的星体始终位于正三角形的三个顶点上,另一颗位于中心O ,外围三颗星绕O 做匀速圆周运动(如图丁所示).例3 (多选)(2018·全国卷Ⅰ·20)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗中子星都看做是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )A .质量之积B .质量之和C .速率之和D .各自的自转角速度答案 BC解析 两颗中子星运动到某位置的示意图如图所示每秒转动12圈,角速度已知中子星运动时,由万有引力提供向心力得Gm 1m 2l 2=m 1ω2r 1① Gm 1m 2l 2=m 2ω2r 2② l =r 1+r 2③由①②③式得G (m 1+m 2)l 2=ω2l ,所以m 1+m 2=ω2l 3G, 质量之和可以估算.由线速度与角速度的关系v =ωr 得v 1=ωr 1④v 2=ωr 2⑤由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算. 质量之积和各自自转的角速度无法求解.变式5 (多选)(2018·广东省高考第一次模拟)如图11,天文观测中观测到有三颗星位于边长为l 的等边三角形三个顶点上,并沿等边三角形的外接圆做周期为T 的匀速圆周运动.已知引力常量为G ,不计其他星体对它们的影响,关于这个三星系统,下列说法正确的是()图11A .三颗星的质量可能不相等B .某颗星的质量为4π2l 33GT 2C .它们的线速度大小均为23πlTD .它们两两之间的万有引力大小为16π4l 49GT 4答案 BD解析 轨道半径等于等边三角形外接圆的半径,r =l 2cos 30°=33l .根据题意可知其中任意两颗星对第三颗星的合力指向圆心,所以这两颗星对第三颗星的万有引力等大,由于这两颗星到第三颗星的距离相同,故这两颗星的质量相同,所以三颗星的质量一定相同,设为m ,则2G m 2l2cos 30°=m ·4π2T 2·33l ,解得m =4π2l 33GT 2,它们两两之间的万有引力F =G m2l 2=G ⎝⎛⎭⎫4π2l 33GT 22l 2=16π4l 49GT 4,A 错误,B 、D 正确;线速度大小为v =2πr T =2πT ·3l 3=23πl3T,C 错误.命题点四 天体的追及相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA -ωB )t =2n π(n =1,2,3,…). 2.相距最远当两卫星位于和中心连线的半径上两侧时,两卫星相距最远,从运动关系上,两卫星运动关系应满足(ωA -ωB )t ′=(2n -1)π(n =1,2,3…).例4 (2018·福建省泉州市考前适应性模拟)当地球位于太阳和木星之间且三者几乎排成一条直线时,称之为“木星冲日”,2016年3月8日出现了一次“木星冲日”.已知木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动,木星到太阳的距离大约是地球到太阳距离的5倍.则下列说法正确的是( ) A .下一次的“木星冲日”时间肯定在2018年 B .下一次的“木星冲日”时间肯定在2017年 C .木星运行的加速度比地球的大 D .木星运行的周期比地球的小 答案 B解析 地球公转周期T 1=1年,土星公转周期T 2=125T 1≈11.18年.设经时间t ,再次出现“木星冲日”,则有ω1t -ω2t =2π,其中ω1=2πT 1,ω2=2πT 2,解得t ≈1.1年,因此下一次“木星冲日”发生在2017年,故A 错误,B 正确;设太阳质量为M ,行星质量为m ,轨道半径为r ,周期为T ,加速度为a .对行星由牛顿第二定律可得G Mm r 2=ma =m 4π2T 2r ,解得a =GMr 2,T =2πr 3GM,由于木星到太阳的距离大约是地球到太阳距离的5倍,因此,木星运行的加速度比地球的小,木星运行的周期比地球的大,故C 、D 错误.变式6 (多选)(2019·山西省太原市质检)如图12,三个质点a 、b 、c 的质量分别为m 1、m 2、M (M 远大于m 1及m 2),在万有引力作用下,a 、b 在同一平面内绕c 沿逆时针方向做匀速圆周运动,已知轨道半径之比为r a ∶r b =1∶4,则下列说法中正确的有( )图12A .a 、b 运动的周期之比为T a ∶T b =1∶8B .a 、b 运动的周期之比为T a ∶T b =1∶4C .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线12次D .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线14次 答案 AD解析 根据开普勒第三定律:周期的平方与半径的三次方成正比,则a 、b 运动的周期之比为1∶8,A 对;设图示位置夹角为θ<π2,b 转动一周(圆心角为2π)的时间为t =T b ,则a 、b 相距最远时:2πT a T b -2πT b T b =(π-θ)+n ·2π(n =0,1,2,3,…),可知n <6.75,n 可取7个值;a 、b 相距最近时:2πT a T b -2πT b T b =(2π-θ)+m ·2π(m =0,1,2,3,…),可知m <6.25,m 可取7个值,故在b转动一周的过程中,a 、b 、c 共线14次,D 对.1.(2018·广东省茂名市第二次模拟)所谓“超级月亮”,就是月球沿椭圆轨道绕地球运动到近地点的时刻,此时的月球看起来比在远地点时的月球大12%~14%,亮度提高了30%.则下列说法中正确的是( )A .月球运动到近地点时的速度最小B .月球运动到近地点时的加速度最大C .月球由远地点向近地点运动的过程,月球的机械能增大D .月球由远地点向近地点运动的过程,地球对月球的万有引力做负功 答案 B解析 由开普勒第二定律,月球运动到近地点时的速度最大,A 错误;由牛顿第二定律和万有引力定律可得a =GMr 2,月球运动到近地点时所受引力最大,加速度最大,B 正确;月球绕地球运动过程仅受地球的万有引力,机械能守恒,C 错误;月球由远地点向近地点运动的过程中二者间距变小,地球对月球的万有引力做正功,D 错误.2.(多选)(2018·广东省深圳市第一次调研)我国发射的某卫星,其轨道平面与地球赤道在同一平面内,卫星距地面的高度约为500 km ,而地球同步卫星的轨道高度约为36 000 km ,地球半径约为6 400 km ,地球表面的重力加速度取g =10 m/s 2,关于该卫星,下列说法中正确的是( )A .该卫星的线速度大小约为7.7 km/sB .该卫星的加速度大于同步卫星的加速度C .一年内,该卫星被太阳光照射时间小于同步卫星被太阳光照射时间D .该卫星的发射速度小于第一宇宙速度 答案 ABC解析 该卫星的线速度为:v =GMR +h,又由g =GMR 2得:v =gR 2R +h=10×(6 400×103)26 400×103+500×103m /s ≈7.7 km/s ,故A 正确.根据a =GMr 2知该卫星的加速度大于同步卫星的加速度,故B 正确.由开普勒第三定律知,该卫星的周期小于同步卫星的周期,则一年内,该卫星被太阳光照射时间小于同步卫星被太阳光照射时间,故C 正确.第一宇宙速度是卫星最小的发射速度,知该卫星的发射速度大于第一宇宙速度,故D 错误.3.(2018·山东省日照市校际联合质检)“慧眼”是我国首颗大型X 射线天文卫星,这意味着我国在X 射线空间观测方面具有国际先进的暗弱变源巡天能力、独特的多波段快速光观测能力等.下列关于“慧眼”卫星的说法正确的是( ) A .如果不加干预,“慧眼”卫星的动能可能会缓慢减小 B .如果不加干预,“慧眼”卫星的轨道高度可能会缓慢降低 C. “慧眼”卫星在轨道上处于失重状态,所以不受地球的引力作用D .由于技术的进步,“慧眼”卫星在轨道上运行的线速度可能会大于第一宇宙速度 答案 B解析 卫星轨道所处的空间存在极其稀薄的空气,如果不加干预,卫星的机械能减小,卫星的轨道高度会缓慢降低,据G Mmr 2=m v 2r可得v =GMr,卫星的轨道高度降低,卫星的线速度增大,卫星的动能增大,故A 错误,B 正确.卫星在轨道上,受到的地球引力产生向心加速度,处于失重状态,故C 错误.据G Mmr 2=m v 2r 可得v =GMr,卫星在轨道上运行的线速度小于第一宇宙速度,故D 错误.4.(多选)(2018·山东省淄博市一中三模)2017年4月20日19时41分,“天舟一号”货运飞船在文昌航天发射场成功发射,后与“天宫二号”空间实验室成功对接.假设对接前“天舟一号”与“天宫二号”都围绕地球做匀速圆周运动,下列说法正确的是( ) A .“天舟一号”货运飞船发射加速上升时,里面的货物处于超重状态B .“天舟一号”货运飞船在整个发射过程中,里面的货物始终处于完全失重状态C .为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D .为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向前喷气减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接 答案 AC解析 “天舟一号”货运飞船发射加速上升时,加速度向上,则里面的货物处于超重状态,选项A 正确,B 错误;为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接,选项C 正确,D 错误.5.如图1所示,有A 、B 两颗卫星绕地心O 做圆周运动,旋转方向相同.A 卫星的周期为T 1,B 卫星的周期为T 2,在某一时刻两卫星相距最近,则(引力常量为G )( )图1A .两卫星经过时间t =T 1+T 2再次相距最近B .两颗卫星的轨道半径之比为231T ∶232TC .若已知两颗卫星相距最近时的距离,可求出地球的密度D .若已知两颗卫星相距最近时的距离,可求出地球表面的重力加速度 答案 B解析 两卫星相距最近时,两卫星应该在同一半径方向上,A 比B 多转动一圈时,第二次追上,转动的角度相差2π,即2πT 1t -2πT 2t =2π,得出t =T 1T 2T 2-T 1,故A 错误;根据万有引力提供向心力得GMm r 2=m 4π2T 2r ,A 卫星的周期为T 1,B 卫星的周期为T 2,所以两颗卫星的轨道半径之比为231T ∶232T ,故B 正确;若已知两颗卫星相距最近时的距离,结合两颗卫星的轨道半径之比可以求得两颗卫星的轨道半径,根据万有引力提供向心力得GMm r 2=m 4π2T 2r ,可求出地球的质量,但不知道地球的半径,所以不可求出地球密度和地球表面的重力加速度,故C 、D 错误.6.(多选)(2018·山西省太原市三模)据NASA 报道,“卡西尼”号于2017年4月26日首次到达土星和土星内环(碎冰块、岩石块、尘埃等组成)之间,并在近圆轨道做圆周运动,如图2所示.在极其稀薄的大气作用下,开启土星探测之旅的最后阶段——“大结局”阶段.这一阶段持续到九月中旬,直至坠向土星的怀抱.若“卡西尼”只受土星引力和稀薄气体阻力的。
近年届高考物理一轮复习第四章曲线运动万有引力与航天第5讲天体运动与人造卫星作业新人教版(2021年
2019届高考物理一轮复习第四章曲线运动万有引力与航天第5讲天体运动与人造卫星作业新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考物理一轮复习第四章曲线运动万有引力与航天第5讲天体运动与人造卫星作业新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考物理一轮复习第四章曲线运动万有引力与航天第5讲天体运动与人造卫星作业新人教版的全部内容。
第5讲天体运动与人造卫星[课时作业]单独成册方便使用[基础题组]一、单项选择题1.牛顿时代的科学家们围绕引力的研究,经历了大量曲折顽强而又闪烁智慧的科学实践.在万有引力定律的发现历程中,下列叙述不符合史实的是() A.开普勒研究了第谷的行星观测记录,得出了开普勒行星运动定律B.牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律C.卡文迪许首次在实验室中比较准确地得出了引力常量G的数值D.根据天王星的观测资料,哈雷利用万有引力定律计算出了海王星的轨道解析:开普勒研究了第谷的行星观测记录,得出了开普勒行星运动定律,选项A正确;牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律,选项B正确;卡文迪许首次在实验室中比较准确地得出了引力常量G的数值,选项C正确;英国人亚当斯和法国人勒维耶根据万有引力推测出“新”行星的轨道和位置,柏林天文台年轻的天文学家伽勒和他的助手根据勒维耶计算出来的“新”行星的位置,发现了海王星,故D错误.答案:D2.若有一颗“宜居"行星,其质量为地球的p倍,半径为地球的q倍,则该行星卫星的环绕速度是地球卫星环绕速度的()A。
2020届高考物理总复习4-5天体运动与人造卫星针对训练(含解析)新人教版
天体运动与人造卫星1. (2019年蚌埠模拟)北斗卫星导航系统是我国自行研制开发的区域性三维卫星定位与通信 系统(CNSS ),建成后的北斗卫星导航系统包括 5颗同步卫星和30颗一般轨道卫星•对于其中的5颗同步卫星,下列说法中正确的是 ()A.它们运行的线速度一定不小于 7.9 km/sB. 地球对它们的吸引力一定相同C. 一定位于赤道上空同一轨道上D. 它们运行的加速度一定相同 解析:同步卫星运行的线速度一定小于 7.9 km/s , A 错误;地球对5颗同步卫星吸引力的方向一定不同,B 错误;5颗同步卫星一定位于赤道上空同一轨道上,它们运行的加速度 大小一定相等,方向不同,C 正确,D 错误.答案:C2. (2019年丽水模拟)(多选)设地球的半径为 R ,质量为m 的卫星在距地面 2R )高处做 匀速圆周运动,地面的重力加速度为g ,则下列说法正确的是( )答案:CD3.(多选)“神舟九号”飞船与“天宫一号”目标飞行器在离地面 343 km 的近圆形轨道上成功进行了我国首次载人空间交会对接. 对接轨道所处的空间存在极其稀薄的大气.下列说法正确的是( )A. 为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B.如不加干预,在运行一段时间后, “天宫一号”的动能可能会增加C. 如不加干预,“天宫一号”的轨道高度将缓慢降低D. 航天员在“天宫一号”中处于失重状态,说明航天员不受地球引力作用 解析:可认为目标飞行器是在圆形轨道上做匀速圆周运动, 由v =:'GM 知轨道半径越大时运行速度越小.第一宇宙速度为当r 等于地球半径时的运行速度,即最大的运行速度,故目标飞行器的运行速度应小于第一宇宙速度,A 错误;如不加干预,稀薄大气对“天宫一号”的阻力做负功, 使其机械能减小,引起高度的下降, 从而地球引力又对其做正功,当地球引力所做正功大于空气阻力所做负功时,“天宫一号”的动能就会增加,故 B 、C 皆正确;解析:卫星在距地面 2R >高处做匀速圆周运动,由牛顿第二定律得2mm v 2 G? = m = rrto 「2 = 「2 「22-=ma 在地球表面处有mm —,= mg 其中 r i = R>, ;2m ,a=9,C D 正确.A. 卫星的线速度为B. 卫星的角速度为C. 卫星的加速度为D.卫星的周期为4 n 2r r 2 = 3R ,解以上各式得T = 2 nA B 错误,航天员处于完全失重状态的原因是地球对航天员的万有引力全部用来提供使航天员随“天宫一号”绕地球运行的向心力了,而非航天员不受地球引力作用,故D错误.答案:BC4. (多选)发射地球同步卫星时,先将卫星发射至近地圆轨道1然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1和2相切于Q点,轨道2和3相切于P点,设卫星在轨道1和轨道3正常运行的速度和加速度分别为V i、V3和a i、a3,在轨道2经过P点时的速度和加速度为V2和a2,且当卫星分别在1、2、3轨道上正常运行时周期分别为T i、T2、T3,以下说法正确的是()图4—5- 15A. V i> V2>V3B. V i> V3>V2C. a i>a2>a3D. T i<T?<T3解析:卫星在轨道i运行速度大于卫星在轨道3运行速度,在轨道2经过P点时的速度V2小于V3,选项A错误,B正确.卫星在轨道i和轨道3正常运行加速度a i>a3,在轨道2 经过P点时的加速度a2= a3,选项C错误.根据开普勒第三定律,卫星在轨道i、2、3上正常运行时周期T i<T2<T3,选项D正确.答案:BD5. (20i8年高考•课标全国卷I )(多选)20i7年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约i00 s时,它们相距约400 km,绕二者连线上的某点每秒转动i2圈.将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星()A.质量之积B.质量之和C.速率之和D.各自的自转角速度解析:两颗中子星运动到某位置的示意图如图4—5—i6所示每秒转动i2圈,图4—5—i6角速度已知,中子星运动时,由万有引力提供向心力得Gnm 2产=r i①Gnm2r 2②~p~2~l = r 1+「2 ③质量之和可以估算.由线速度与角速度的关系 v = wr 得V i = wr i V 2= w r 2⑤由③④⑤式得V i + V 2= w (r i + r 2) = wl ,速率之和可以估算. 质量之积和各自自转的角 速度无法求解.答案:BC洁哺吋冋30H活动对最,住少学一气嶽阿以(暉:Lf 乍番由①②③式得3 2l ,所以 m i + m =G (m +m )会员升级服务第一拨・清北季神马‘有清华北大学■方法论谦;还有清华学霸向所有的父母亲述自己求学之路:蔚水名校试卷悄悄的上线了;扫qq领取官网不首发课程,很峯人我没告诉他窮!会员qq专享等祢来撩……。
高考物理一轮复习专题4.5 卫星与航天(精讲)(原卷版)
专题4.5卫星与航天1.掌握宇宙速度及卫星运行参数。
2.理解双星模型和多星模型。
3.理解同步卫星问题和变轨问题。
知识点一宇宙速度及卫星运行参数1.三种宇宙速度比较宇宙速度数值(km/s)意义第一宇宙速度7.9地球卫星最小发射速度(环绕速度)第二宇宙速度11.2物体挣脱地球引力束缚的最小发射速度(脱离速度)第三宇宙速度16.7物体挣脱太阳引力束缚的最小发射速度(逃逸速度)2.第一宇宙速度的计算方法(1)由GMm R 2=m v 2R得v =GMR。
(2)由mg =mv 2R得v =gR 。
3.物理量随轨道半径变化的规律G Mm r2=r =R 地+h m v 2r→v =GMr →v ∝1r 2r →ω=GMr 3→ωm 4π2T 2r →T =4π2r 3GM→T →a =GM r 2→a ∝1r 2=GMm R 2地近地时→GM =gR 2地4.同步卫星的六个“一定”知识点二双星模型和多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示。
(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω21r 1=m 14π2T 21r 1,Gm 1m 2L 2=m 2ω22r 2=m 24π2T 22r 2。
②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2。
③两颗星的半径与它们之间的距离关系为:r 1+r 2=L 。
(3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1。
2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同。
(2)三星模型①如图所示,三颗质量相等的行星,一颗行星位于中心位置不动,另外两颗行星围绕它做圆周运动。
这三颗行星始终位于同一直线上,中心行星受力平衡。
运转的行星由其余两颗行星的引力提供向心力:Gm 2r 2+Gm 22r 2=ma 向。
高考物理一轮复习 第四章 第5节 天体运动与人造卫星讲义
权掇市安稳阳光实验学校天体运动与人造卫星(1)同步卫星可以定点在北京市的正上方。
(×)(2)不同的同步卫星的质量不同,但离地面的高度是相同的。
(√) (3)第一宇宙速度是卫星绕地球做匀速圆周运动的最小速度。
(×) (4)第一宇宙速度的大小与地球质量有关。
(√) (5)月球的第一宇宙速度也是7.9 km/s 。
(×)(6)同步卫星的运行速度一定小于地球第一宇宙速度。
(√)(7)若物体的速度大于第二宇宙速度而小于第三宇宙速度,则物体可绕太阳运行。
(√)突破点(一) 宇宙速度的理解与计算1.第一宇宙速度的推导方法一:由G Mm R 2=m v 12R 得v 1=GM R= 6.67×10-11×5.98×10246.4×106m/s =7.9×103m/s 。
方法二:由mg =m v 12R得v 1=gR =9.8×6.4×106 m/s =7.9×103 m/s 。
第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=5 075 s≈85 min。
2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动。
(2)7.9 km/s <v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆。
(3)11.2 km/s ≤v 发<16.7 km/s ,卫星绕太阳做椭圆运动。
(4)v 发≥16.7 km/s,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。
[题点全练]1.已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为( )A .3.5 km/sB .5.0 km/sC .17.7 km/sD .35.2 km/s解析:选A 根据题设条件可知:M 地=10 M 火,R 地=2R 火,由万有引力提供向心力GMm R 2=m v 2R ,可得v =GM R ,即v 火v 地= M 火R 地M 地R 火= 15,因为地球的第一宇宙速度为v 地=7.9 km/s ,所以航天器在火星表面附近绕火星做匀速圆周运动的速率v 火≈3.5 km/s ,选项A 正确。