天体运动与人造卫星运动的两个基本模型
天体运动问题的基本模型和方法
天体运动问题的基本模型和方法天体运动问题的基本模型与方法天体运行问题的分析与求解,是牛顿第二定律与万有引力定律的综合运用,问题的分析与求解的关键是建模能力。
一、基本模型计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心,一天体绕另一天体的稳定运行视为匀速圆周运动,研究天体的自转运动时,将天体视为均匀球体。
二、基本规律1,天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。
所需向心力由中心天体对它的万有引力提供。
设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由牛顿第二定律及万有引力定律有:。
这就是分析与求解天体运行问题的基本关系式,由于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示为:或。
2,在天体表面,物体所受万有引力近似等于所受重力。
设天体质量为M,半径为R,其,由这一近似关系有:,即。
这一关系式的表面的重力加速度为g应用,可实现天体表面重力加速度g与的相互替代,因此称为“黄金代换”。
3,天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最大,所需向心力最大。
对于赤道上的物体,由万有引力定律及牛顿第二定律有:,式中N为天体表面对物体的支持力。
如果天体自转角速度过大,赤道上的物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天体不瓦解所对应的最大自转角速度,如果已知天体自转的角速度,由及可计算出天体不瓦解的最小密度。
三、常见题型题型一:平抛运动与圆周运动相结合,例1,雨伞边缘半径为r,且离地面高为h。
现让雨伞以角速,度绕伞柄匀速旋转,使雨滴从边缘甩出并落在地面上形成一圆圈,试求此圆圈的半径为R。
,解析,所述情景如图所示,设伞柄在地面上的投影为O,雨滴从伞的O R rA s B12边缘甩出后将做平抛运动,其初速度为v=r,落地时间为t,故h,gt。
雨滴在这段,02时间内的水平位移为s= vt。
(精)解决天体运动问题的方法
解决天体运动问题的方法一、基本模型计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。
二、基本规律1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。
所需向心力由中心天体对它的万有引力提供。
设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由牛顿第二定律及万有引力定律有:。
这就是分析与求解天体运行问题的基本关系式,由于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示为:或。
2.在天体表面,物体所受万有引力近似等于所受重力。
设天体质量为M,半径为R,其表面的重力加速度为g,由这一近似关系有:,即。
这一关系式的应用,可实现天体表面重力加速度g与的相互替代,因此称为“黄金代换”。
3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最大,所需向心力最大。
对于赤道上的物体,由万有引力定律及牛顿第二定律有:,式中N为天体表面对物体的支持力。
如果天体自转角速度过大,赤道上的物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天体不瓦解所对应的最大自转角速度;如果已知天体自转的角速度,由及可计算出天体不瓦解的最小密度。
三、常见题型1.估算天体质量问题由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的轨道半径及周期,可估算出被绕天体的质量。
例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟。
若还知道引力常量和月球半径,仅利用以上条件不能求出的是A.月球表面的重力加速度B.月球对卫星的吸引力C.卫星绕月运行的速度D.卫星绕月运行的加速度解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。
(完整版)万有引力与航天公式总结
万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动2.双星模型:将两颗彼此距离较近的恒星称为双星 ,它们相互之间的万有引力提供各自转动的向心力。
3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。
二.两种学说1.地心说:代表人物是古希腊科学家托勒密2/日心说:代表人物是波兰天文学家哥白尼三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴 R 的三次方跟公转周期 T 的二次方的比值都相等。
表达式为:R3 = K(K = GM ) k 只与中心天体质量有关的24π2T定值与行星无关2.牛顿万有引力定律1687 年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的 .两个物体间引力的方向在它们的连线上 ,引力的大小跟它们的质量的乘积成正比 ,跟它们之间的距离的二次方成反比 .Mm⑵.数学表达式 : F万= G r2⑶.适用条件 :a.适用于两个质点或者两个均匀球体之间的相互作用。
(两物体为均匀球体时,r 为两球心间的距离)b. 当r 0 时,物体不可以处理为质点,不能直接用万有引力公式计算c. 认为当r 0 时,引力F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。
c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义 .d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关 .与所在空间的性质无关 ,与周期及有无其它物体无关 .(5)引力常数G:①大小: G = 6.67 x 10一11N . m 2 / kg 2,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为 1kg 的物体,相距为 1 米时相互作用力为: 6.67 x10一11N四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:F万= F 向 即: F 万 = G = ma n = m r v 2= mr= mr 负22. 天体对其表面物体的万有引力近似等于重力:Mm G = m gR 2即 GM = gR 2 (又叫黄金代换式)注意:①地面物体的重力加速度: g =R≈9.8m/s 2②高空物体的重力加速度: g '= (R)2〈 9.8m/s 2g'R 2③关系: — =g (R + h)2五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。
2020高考备考物理重难点《天体运动与人造航天器》(附答案解析版)
重难点05 天体运动与人造航天器【知识梳理】考点一 天体质量和密度的计算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即ma r mv r T m r m rMm G ====2222)2(πω(2)在中心天体表面或附近运动时,万有引力近似等于重力,即2R MmG mg =(g 表示天体表面的重力加速度).(2)利用此关系可求行星表面重力加速度、轨道处重力加速度: 在行星表面重力加速度:2R Mm Gmg =,所以2R MG g = 在离地面高为h 的轨道处重力加速度:2)(h R Mm G g m +=',得2)(h R MG g +=' 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于2R Mm G mg =,故天体质量GgR M 2=天体密度:GRgV M πρ43==(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即r T m rMm G 22)2(π=,得出中心天体质量2324GT r M π=;②若已知天体半径R ,则天体的平均密度3233RGT r V M πρ== ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度23GTV M πρ==.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 【重点归纳】 1.黄金代换公式(1)在研究卫星的问题中,若已知中心天体表面的重力加速度g 时,常运用GM =gR 2作为桥梁,可以把“地上”和“天上”联系起来.由于这种代换的作用很大,此式通常称为黄金代换公式. 2. 估算天体问题应注意三点(1)天体质量估算中常有隐含条件,如地球的自转周期为24 h ,公转周期为365天等. (2)注意黄金代换式GM =gR 2的应用. (3)注意密度公式23GTπρ=的理解和应用. 考点二 卫星运行参量的比较与运算 1.卫星的动力学规律由万有引力提供向心力,ma r mv r T m r m rMm G ====2222)2(πω2.卫星的各物理量随轨道半径变化的规律r GM v =;3r GM =ω;GMr T 32π=;2r GM a = (1)卫星的a 、v 、ω、T 是相互联系的,如果一个量发生变化,其它量也随之发生变化;这些量与卫星的质量无关,它们由轨道半径和中心天体的质量共同决定.(2)卫星的能量与轨道半径的关系:同一颗卫星,轨道半径越大,动能越小,势能越大,机械能越大.3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)两种卫星的轨道平面一定通过地球的球心. 【重点归纳】1.利用万有引力定律解决卫星运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式卫星运动的向心力来源于万有引力:ma r mv r T m r m rMm G ====2222)2(πω在中心天体表面或附近运动时,万有引力近似等于重力,即:2R MmGmg = (g 为星体表面处的重2.卫星的线速度、角速度、周期与轨道半径的关系⎪⎪⎩⎪⎪⎨⎧⇒⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫====减小增大减小减小增大时当半径a T v r r GM a GM r T r GM r GM v ωπω2332 考点三 宇宙速度 卫星变轨问题的分析1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的两种求法:(1)r mv r Mm G 212=,所以r GMv =1 (2)rmv mg 21=,所以gR v =1.3.第二、第三宇宙速度也都是指发射速度.4.当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:(1)当卫星的速度突然增加时,r mv rMm G 22<,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,r mv rMm G 22>,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由rGMv =可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.1.处理卫星变轨问题的思路和方法(1)要增大卫星的轨道半径,必须加速;(2)当轨道半径增大时,卫星的机械能随之增大.2.卫星变轨问题的判断:(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大.(2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.(3)圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同.3.特别提醒:“三个不同”(1)两种周期——自转周期和公转周期的不同(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度(3)两个半径——天体半径R和卫星轨道半径r的不同【限时检测】(建议用时:30分钟)1.(2019·新课标全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。
万有引力定律
万有引力定律专题一、知识回顾1、万有引力定律的表达式:式中21m m 位置互换后结果不变说明: 适用于两个 或 球体;r 为 ;G 为 =G 2、处理天体运动问题的基本模型: 1.人间模型(1)原始方程: (2)基本结论:① ②③ ④2.天上模型(1)原始方程: (2)基本结论:① ②③ ④合起来称为“天上人间”模型. 模图 一、开普勒定律1、我国的人造卫星围绕地球的运动,有近地点和远地点,由开普勒定律可知卫星在远地点运动速率比近地点运动的速率小,如果近地点距地心距离为R 1,远地点距地心距离为R 2,则该卫星在远地点运动速率和近地点运动的速率之比为 A .12R R B. 21RR C.D.2、飞船沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某点A 处,将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道和地球表面相切,如图所示,如果地球半径为R 0,求飞船由A 点回到B 点所需时间。
二、万有引力定律:1、如下图所示,设想质量为m 的物体放到地球的中心,地球质量为M ,半径为R ,则物体与地球间的万有引力是:A .零B .无穷大C .2MmF GR = D .无法确定 2、设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作是均匀球体,月球仍沿开采前的圆轨道运动,则与开采前相比:A .地球与月球间的万有引力将变大B .地球与月球将的万有引力将变小C .月球绕地球运动的周期将变大D .月球绕地球运动的周期将变短3、如下图所示,在半径R =20cm 、质量M =168kg 的均匀铜球中,挖去一球形空穴,空穴的半径为10cm ,并且跟铜球相切,在铜球外有一质量m =1kg 、体积可忽略不计的小球,这个小球位于连接铜球球心跟空穴中心的直线上,并且在空穴一边,两球心相距是d =2m ,试求它们之间的相互吸引力.4、(09年全国高考))如图,P 、Q 为某地区水平地面上的两点,在P 点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔。
漫谈天体运动问题的十种物理模型
漫谈天体运动问题的十种物理模型闫俊仁(山西省忻州市第一中学 034000)航空航天与宇宙探测是现代科技中的重点内容,也是高考理综物理命题的热点内容,所涉及到的知识内容比较抽象,习题类型较多,不少学生普遍感觉到建模困难,导致解题时找不到切入点.下面就本模块不同类型习题的建模与解题方法做一归类分析。
一、“椭圆轨道”模型指行星(卫星)的运动轨道为椭圆,恒星(或行星)位于该椭圆轨道的一个焦点上. 由于受数学知识的限制,此类模型适宜高中生做的题目不多,所用知识为开普勒第三定律及椭圆轨道的对称性。
例1 天文学家观察到哈雷彗星的周期约是75年,离太阳最近的距离是8.9X1010m ,但它离太阳的最远距离不能测出。
试根据开普勒定律计算这个最远距离,已知太阳系的开普勒常量k =3.354X1018m 3/s 2。
解析 设哈雷彗星离太阳的最近距离为,最远距离为R 2,则椭圆轨道半长 轴为221R R R += 根据开普勒第三定律k TR =23,得 13222R kT R -==m m 103218109.83600243657510354.38⨯-⨯⨯⨯⨯⨯)(=5.224⨯1012m二、“中心天体——圆周轨道”模型指一个天体(中心天体)位于中心位置不动(自转除外),另一个天体(环绕天体)以它为圆心做匀速圆周运动,环绕天体只受中心天体对它的万有引力作用。
解答思路 由万有引力提供环绕天体做圆周运动的向心力,据牛顿第二定律,得r Tm r mw r v m ma r Mm G n 2222)2(π==== 式中M 为中心天体的质量,m 为环绕天体的质量, a n 、v 、w 和T 分别表示环绕天体做圆周运动的向心加速度、线速度、角速度和周期.根据问题的特点条件,灵活选用的相应的公式进行分析求解。
此类模型所能求出的物理量也是最多的。
(1)对中心天体而言,可求量有两个:①质量M=2324GT r π,②密度ρ=3233R GT r π,特殊地,当环绕天体为近地卫星时(r =R),有ρ=23GT π。
天体运动与人造卫星
天体运动与人造卫星一、宇宙速度 1.环绕速度(1)第一宇宙速度又叫环绕速度,其数值为7.9 km/s.(2)第一宇宙速度是人造卫星在地面附近环绕地球做匀速圆周运动时具有的速度. (3)第一宇宙速度是人造卫星最小的发射速度,也是人造卫星的最大环绕速度. 2.第二宇宙速度(脱离速度)使物体挣脱地球引力束缚的最小发射速度,其数值为11.2 km/s. 3.第三宇宙速度(逃逸速度)使物体挣脱太阳引力束缚的最小发射速度,其数值为16.7 km/s.1.第一宇宙速度的推导 方法一:由G MmR 2=m v 12R,得v 1=GMR=7.9×103 m/s. 方法二:由mg =m v 12R,得v 1=gR =7.9×103 m/s.第一宇宙速度是发射地球人造卫星的最小速度,也是地球人造卫星的最大环绕速度,此时它的运行周期最短,T min=2πRg=84.6 min. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动.(2)7.9 km/s <v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆. (3)11.2 km /s≤v 发<16.7 km/s ,卫星绕太阳做椭圆运动.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.例I1.[三种宇宙速度] (多选)下列关于三种宇宙速度的说法正确的是( )A .第一宇宙速度v 1=7.9 km/s ,第二宇宙速度v 2=11.2 km/s ,则人造卫星绕地球在圆轨道上运行时的速度大于等于v 1,小于v 2B .美国发射的“凤凰号”火星探测卫星,其发射速度大于第三宇宙速度C .第二宇宙速度是使物体可以挣脱地球引力束缚,成为绕太阳运行的人造行星的最小发射速度D .第一宇宙速度7.9 km/s 是人造地球卫星绕地球做圆周运动的最大运行速度 答案:CD2.[第一宇宙速度的计算] (2019·山东潍坊高三统考)已知地球半径约为火星半径的2倍,地球密度约为火星密度的1.5倍,则地球第一宇宙速度与火星第一宇宙速度的比值为( )A.6B.32C.23D.16答案:A 二、地球卫星1.卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种.(2)极地轨道:卫星的轨道过南北两极,即在垂直于赤道的平面内,如极地气象卫星. (3)其他轨道:除以上两种轨道外的卫星轨道. 所有卫星的轨道平面一定通过地球的球心. 2.地球同步卫星相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星.同步卫星有以下特点: (1)轨道平面一定:轨道平面与赤道平面共面. (2)周期一定:与地球自转周期相同,即T =24__h. (3)角速度一定:与地球自转的角速度相同.(4)高度一定:根据G Mm r 2=m 4π2T 2r 得,r =3GMT 24π2=4.23×104km ,卫星离地面高度h =r -R ≈5.6R (为恒量). (5)绕行方向一定:与地球自转的方向一致. 3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.1.卫星的运行轨道(如图所示)注意:轨道平面一定通过地球的球心. 2.卫星的各物理量随轨道半径变化的规律规律⎩⎪⎪⎨⎪⎪⎧G Mm r 2=(r =R 地+h )⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m v 2r→v = GM r →v ∝1rmω2r →ω=GM r 3→ω∝1r 3m 4π2T 2r →T = 4π2r 3GM→T ∝r 3ma →a =GM r 2→a ∝1r2越高越慢mg =GMm R地2(近地时)→GM =gR 地23.同步卫星的六个“一定”例II2017年10月24日,在地球观测组织(GEO)全会期间举办的“中国日”活动上,我国正式向国际社会免费开放共享我国新一代地球同步静止轨道气象卫星“风云四号”(如图所示)和全球第一颗二氧化碳监测科学实验卫星(简称“碳卫星”)的数据.“碳卫星”是绕地球极地运行的卫星,在离地球表面700公里的圆轨道对地球进行扫描,汇集约140天的数据可制作一张无缝隙全球覆盖的二氧化碳监测图.有关这两颗卫星的说法正确的是( )A .“风云四号”卫星的向心加速度大于“碳卫星”的向心加速度B .“风云四号”卫星的线速度小于“碳卫星”的线速度C .“碳卫星”的运行轨道理论上可以和地球某一条经线重合D .“风云四号”卫星的线速度大于第一宇宙速度 [答案] B[方法技巧]利用万有引力定律解决卫星运动的技巧(1)一个模型:天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式①G Mm r 2=m v 2r =mω2r =m 4π2T2r =ma .②mg =GMmR2(g 为星体表面处的重力加速度).(3)a 、v 、ω、T 均与卫星的质量无关,只由轨道半径和中心天体质量共同决定,所有参量的比较,最终归结到半径的比较.例III1.[卫星运行参数的比较] (2018·高考江苏卷)我国高分系列卫星的高分辨对地观察能力不断提高,今年5月9日发射的“高分五号”轨道高度约为705 km ,之前已运行的“高分四号”轨道高度约为36 000 km ,它们都绕地球做圆周运动.与“高分四号”相比,下列物理量中“高分五号”较小的是( )A .周期B .角速度C .线速度D .向心加速度答案:A2.[同步卫星的特点] 我国自主研发的“北斗”卫星导航系统中含有地球同步卫星.关于地球同步卫星,下列说法正确的是( )A .同步卫星处于平衡状态B .同步卫星的速度是不变的C .同步卫星的高度是一定的D .同步卫星的线速度应大于第二宇宙速度 答案:C3.[同步卫星与其他卫星运行参数的比较] (多选)地球同步卫星离地心的距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,地球的第一宇宙速度为v 2,半径为R ,则下列比例关系中正确的是( )A.a 1a 2=r RB.a 1a 2=(r R )2C.v 1v 2=r RD.v 1v 2=R r答案:AD■判一判 记一记(1)近地卫星距离地球最近,环绕速度最小.( )(2)人造地球卫星绕地球运动,其轨道平面一定过地心.( ) (3)地球同步卫星根据需要可以定点在北京正上空.( )(4)极地卫星通过地球两极,且始终和地球某一经线平面重合.( ) (5)发射火星探测器的速度必须大于11.2 km/s.( )(6)不同的同步卫星的质量不同,但离地面的高度是相同的.( ) (7)地球同步卫星的运行速度一定小于地球的第一宇宙速度.( )(8)若物体的发射速度大于第二宇宙速度,小于第三宇宙速度,则物体可以绕太阳运行.( )卫星变轨与追及问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道.如图所示,发射卫星的过程大致有以下几个步骤:(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上. (2)在A 处点火加速,由于速度变大,进入椭圆轨道Ⅱ. (3)在B 处(远地点)再次点火加速进入圆形轨道Ⅲ. 2.卫星变轨的实质例IV1.[变轨问题中运行参数分析](2016·高考北京卷)如图所示,一颗人造卫星原来在椭圆轨道1绕地球E运行,在P点变轨后进入轨道2做匀速圆周运动.下列说法正确的是()A.不论在轨道1还是轨道2运行,卫星在P点的速度都相同B.不论在轨道1还是轨道2运行,卫星在P点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量答案:B2.[卫星运动的追及问题](多选)(2019·辽宁鞍山一中等六校联考)如图所示,质量相同的三颗卫星a、b、c绕地球做匀速圆周运动,其中b、c在地球的同步轨道上,a距离地球表面的高度为R,此时a、b恰好相距最近.已知地球质量为M、半径为R、地球自转的角速度为ω,万有引力常量为G,则()A.发射卫星b时速度要大于11.2 km/sB.若要卫星a与b实现对接,可调节卫星a,使其在b的后下方加速C.若要卫星c与b实现对接,可让卫星c直接在原轨道加速D.卫星a和b下次相距最近还需经过t=2πGM8R3-ω答案:BD3.[变轨问题中能量分析](多选)我国计划于2019年在海南文昌发射场将“嫦娥五号”送上38万公里外的月球,采回月壤,实现航天工程绕、落、回的收关阶段.到时着陆器将自动从月面取样后从月表起飞,并在近月轨道实现自动交会对接后和返回舱一起返回地面,供科学家分析.了解这则新闻后物理兴趣小组进行了热烈讨论,绘制出了“嫦娥五号”奔向月球和返回地球的示意图,图中对接为取样后的对接点,实线圆为绕行器在半径为r 的圆轨道绕月等待着陆器返回的轨道,设着陆器取样并返回到绕行器的时间t 内绕行器飞行N 圈,全过程不考虑空气阻力的影响.已知引力常量为G ,月球的半径为R ,则兴趣小组提出了下列有关结论,其中表示正确的是( )A .从地表发射后的“嫦娥五号”需要进行多次变轨,当其速度达到第二宇宙速度时才能飞抵月球B .“嫦娥五号”沿椭圆轨道向38万公里外的月球飞行时,只有月球也运动到椭圆轨道的远地点附近时才能将“嫦娥五号”捕获,否则还要沿椭圆轨道返回C .结合题中信息可知月球的质量为4π2r 3N 2Gt 2,二者在对接过程中有一定的机械能损失D .绕行器携带样品沿椭圆轨道返回地球时,虽然引力做功,动能增大,但系统的机械能不变 答案:BC1.某行星的同步卫星下方的行星表面上有一观察者,行星的自转周期为T ,他用天文望远镜观察被太阳光照射的此卫星,发现日落的T 2时间内有T6的时间看不见此卫星,不考虑大气对光的折射,则该行星的密度为( )A.24πGT 2 B.3πGT 2 C.8πGT2 D.16πGT2 [解析] 设行星质量为M ,半径为R ,密度为ρ,卫星质量为m ,如图所示,发现日落的T 2时间内有T6的时间看不见同步卫星,则θ=360°6=60°,故φ=60°,r =R cos φ=2R ,根据G Mm (2R )2=m (2πT )2·2R ,M =ρ·43πR 3,解得ρ=24πGT 2.选项A 正确.[答案] A2.(2016·高考全国卷Ⅰ)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A .1 hB .4 hC .8 hD .16 h解析:万有引力提供向心力,对同步卫星有:GMm r 2=mr 4π2T 2,整理得GM =4π2r 3T 2 当r =6.6R 地时,T =24 h若地球的自转周期变小,轨道半径最小为2R 地 三颗同步卫星A 、B 、C 如图所示分布则有4π2(6.6R 地)3T 2=4π2(2R 地)3T ′2解得T ′≈T6=4 h ,选项B 正确.答案:B3.(2019·湖南五校高三联考)每年的某段时间内太阳光会直射地球赤道,如图所示,一颗卫星在赤道正上方绕地球做匀速圆周运动,运动方向与地球自转方向相同,每绕地球一周,黑夜与白天的时间比为1∶5.设地球表面重力加速度为g ,地球半径为R ,地球自转角速度为ω.忽略大气及太阳照射偏移的影响,则赤道上某定点能够直接持续观测到此卫星的最长时间为( )A.2π3( g8R +ω) B.π3( g8R -ω) C.2π3(g8R-ω) D.π3(g8R+ω) 解析:如图a ,当卫星处于地球的阴影中时,卫星处于“黑夜”,设阴影的边缘与地球球心的连线之间的夹角为α,由于转动的角度与经历的时间成正比,可得α360°-α=t 1t 2=15所以α=60°由几何关系可得sin α2=Rr可得r =2R设轨道半径为R 的卫星周期为T 1,该卫星的周期为T 2,则有mg =mR 4π2T 12,T 12T 22=R 3(2R )3,联立解得T 2=2πg 8R =2πω2,则ω2=g8R.设人在B 2位置刚好看见卫星出现在A 2位置,最后在B 1位置刚好看见卫星消失在A 1位置,如图b.由几何关系可知,在地球上能够直接观测到该卫星的角度为120°,即能够直接观测到该卫星的时间为该卫星相对地球运动120°的时间,卫星相对地球赤道上某点运动一周所用时间为t =2πg8R-ω,则赤道上某定点可直接持续观测到此卫星的最长时间为t ′=t3=2π3(g8R-ω),选项C 正确. 答案:C4.(2019·山东济宁模拟)如图所示,人造卫星P (可视为质点)绕地球做匀速圆周运动.在卫星运动轨道平面内,过卫星P 作地球的两条切线,两条切线的夹角为θ,设卫星P 绕地球运动的周期为T ,线速度为v ,引力常量为G .下列说法正确的是( )A .θ越大,T 越大B .θ越小,v 越大C .若测得T 和θ,则地球的平均密度为ρ=3πGT 2(tan θ2)3 D .若测得T 和θ,则地球的平均密度为ρ=3πGT 2(sin θ2)3 解析:由G Mm r 2=m v 2r =m 4π2T2r ,得v =GMr,T =4π2r 3GM ,由几何关系得R r =sin θ2,因地球半径不变,夹角θ越大,卫星的轨道半径越小,则T 就越小,A 错误;夹角θ越小,卫星的轨道半径越大,v 就越小,B 错误;若测得T 和θ,由万有引力充当向心力,有G Mm r 2=m 4π2T 2r ,求得地球的质量M =4π2r 3GT 2,地球的体积V =43πR 3,由几何关系得R r =sin θ2,联立解得ρ=3πGT 2(sin θ2)3,C 错误,D 正确.答案:D。
第四章 第6节 天体运动与人造卫星
第6节 天体运动与人造卫星1.三种宇宙速度2.地球同步卫星的特点[注3](1)轨道平面一定:轨道平面和赤道平面重合。
(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s 。
(3)角速度一定:与地球自转的角速度相同。
(4)高度一定:据G Mm r 2=m 4π2T 2r 得r =3GMT 24π2≈4.24×104km ,卫星离地面高度h =r -R ≈3.6×104 km(为恒量)。
(5)速率一定:运行速度v =2πrT ≈3.08 km/s(为恒量)。
(6)绕行方向一定:与地球自转的方向一致。
3.极地卫星和近地卫星[注4](1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖。
(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s 。
[注解释疑][注1] 第一宇宙速度是人造地球卫星的最大环绕速度。
[注2] 第二宇宙速度与第一宇宙速度的关系:v 2=2v 1。
[注3] 地球同步卫星的运行参数都相同,但卫星的质量不一定相同。
[注4] 极地卫星和近地卫星的轨道平面一定通过地球的球心。
[深化理解]1.人造卫星绕地球做匀速圆周运动时,卫星在其轨道上所受的重力等于万有引力,提供向心力。
2.卫星轨道半径越大,卫星的向心加速度、角速度、线速度越小,周期越大。
3.天体运动和人造卫星问题的实质就是万有引力定律与匀速圆周运动的综合。
[基础自测]一、判断题(1)同步卫星可以定点在北京市的正上方。
(×)(2)不同的同步卫星的质量不同,但离地面的高度是相同的。
(√)(3)第一宇宙速度是卫星绕地球做匀速圆周运动的最小速度。
(×)(4)第一宇宙速度的大小与地球质量有关。
(√)(5)月球的第一宇宙速度也是7.9 km/s。
(×)(6)同步卫星的运行速度一定小于地球第一宇宙速度。
第四章 第5讲 天体运动与人造卫星
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业 章末检测卷
首页 上页 下页 尾页
基础知识·自主梳理
(5)解题中常用到的重要参数
①第一宇宙速度 v1= gR= ②地表附近的人造卫星:
GRM=7.9 km/s.
r=R=6 400 km,v 运=v1,T=2π Rg=84.6 min. ③同步卫星:T=24 h,h=5.6R=36 000 km,v=3.1 km/s.
首页 上页 下页 尾页
高频考点·分类突破
考点二 卫星运行参数分析 师生互动型 1.卫星的运行轨道(如图所示)
注意:轨道平面一定通过地球的球心.
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业 章末检测卷
首页 上页 下页 尾页
高频考点·分类突破
2.卫星的各物理量随轨道半径变化的规律
的线速度,选项 B 正确;“碳卫星”的运行轨道是过地心及地球两极的固定平
面,而地球的经线是随地球不断转动的,则“碳卫星”的运行轨道不可能和地球
某一条经线重合,选项 C 错误;“风云四号”卫星的运行半径大于地球的半径,
则其线速度小于础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业 章末检测卷
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业 章末检测卷
首页 上页 下页 尾页
高频考点·分类突破
1.[卫星运行参数的比较] (2018·高考江苏卷)我国高分系列卫星的高分辨对地观察能力
不设断地提球高质,量今为年M5 ,月人9 日造发卫射星的质“量高为分m五,号人”造轨卫道星高做度匀约速为圆7周05运k动m,时之,前根已据运万行有的引“力高
基础知识·自主梳理 高频考点·分类突破 学科素养提升 课时作业 章末检测卷
浅析天体运动中的四个模型
浅析天体运动中的四个模型作者:杜志刚高磊来源:《中国校外教育·综合(上旬)》2014年第01期利用万有引力定律分析天体的运动是高中物理的核心内容,也是高考的热点、重点。
纵观各省市历年考题可知,有关天体运动的考查是必有的,考查的角度、形式多种多样。
由此对天体运行的教与学自然成为师生共同关注的焦点。
天体运动核心模型高中物理利用万有引力定律分析天体的运动是高中物理的核心内容,也是高考的热点、重点。
纵观各省市历年考题可知,有关天体运动的考查是必有的,考查的角度、形式多种多样。
由此对天体运行的教与学自然成为师生共同关注的焦点。
本人通过多年的教学实际,通过对大量学生学习实情的调研,总结归纳出了天体问题的四个模型,可以说构建四个模型便可透天体。
第一个模型是环绕模型如图。
把天体的运动看做匀速圆周运动,万有引力提供了向心力。
因此该部分的核心方程为F引=GMm1r2=GMm1(R+h)2=mg′=ma向=mv21r=mω2r=4π2mr1T2;在中心天体表面上,且忽略中心天体的自转时有F引=GMm1R2=mg;对中心天体有M=ρ4πR313。
其中M、R、ρ、g表示中心天体的质量、半径、密度、中心天体表面上的重力加速度,关于中心天体的这些量都可以成为被求的量;其中m、r、v、T、ω、h表示环绕天体的质量、轨道半径、线速度、周期、角速度、环绕天体距中心天体表面的高度,环绕天体的质量m是无法分析,而r、v、T、ω、h都可成为被求量,r是核心的环绕量。
分析该类问题时,画好环绕模型,明确已知的环绕天体量及中心天体量,明确要求的是环绕天体量还是中心天体的量,把环绕模型作为构思的载体,便可快速选取出相应的公式求之。
第二个模型是变轨道模型如图。
1、3轨道为匀速圆周运动的低轨道和较高轨道,2轨道是椭圆轨道,A、B为轨道的相切点。
在1轨道上万有引力恰好全部提供向心力,做匀速圆周运动。
在A点突然加速,机械能突然增大,万有引力小于所需的向心力,便做离心运动由A点运动到B点;由A点到B点的过程中,动能减小,重力势能增大,机械能不变,这便是天体由低轨道向高轨道跃迁的规律;在B点万有引力大于所需的向心力,便做向心运动由B点运动到A点,该过程动能增大,重力势能减小,机械能不变,这便是天体由高轨道向低轨道跃迁的规律;由此环绕天体的轨迹便是一个椭圆轨道如图2。
高中物理人造卫星教案及反思
高中物理人造卫星教案及反思物理教案是物理教师根据教学大纲和学生的实际情况编写的教学设计方案,对于高中物理课堂的展开十分重要,下面小编为大家带来高中物理人造卫星教案及反思,供你参考。
人造卫星物理教案教学目标知识目标:1、通过对行星绕恒星的运动及卫星绕行星的运动的研究,使学生初步掌握研究此类问题的基本方法:万有引力作为圆周运动的向心力;2、使学生对人造卫星的发射、运行等状况有初步了解,使多数学生在头脑中建立起较正确的图景;能力目标通过学习万有引力定律在天文学上的应用,通过解世界和中国的航天事业的发展,了解世界上第一颗人造卫星、第一个宇宙飞船、第一个宇航员的知识,了解中国的神州一号、神州二号、神州三号的发射与回收,增强学生的爱国主义热情.情感目标通过学习万有引力定律在天文学上的应用,使学生真切感受到用自己所学的物理知识能解决天体问题,能解决实际问题,增强学生学习物理的热情教学建议本节的教学过程中在加强应用万有引力定律的同时,还应注重卫星的发射过程.请教师注意下列几个问题.一、天体运动和人造卫星运动模型二、地球同步卫星三、卫星运行速度与轨道卫星从发射升空到正常运行的连续过程,一般可分为几个阶段,每个阶段对应不同的轨道.例如发射轨道、转移轨道、运行轨道、同步轨道、返回轨道等.有些卫星的发射并不是直接到达运行轨道,而需要多次变轨.例如地球同步卫星就是先发射到近地的圆轨道上,再变为椭圆形转移轨道,最后在椭圆形轨道的远地点变为同步轨道.因此发射过程需多级火箭推动.教学设计方案教学重点:万有引力定律的应用教学难点:人造地球卫星的发射教学方法:讨论法教学用具:多媒体和计算机教学过程:一、人造卫星的运动问题:1、地球绕太阳作什么运动?回答:近似看成匀速圆周运动.2、谁提供了向心力?回答:地球与太阳间的万有引力.3、人造卫星绕地球作什么运动?回答:近似看成匀速圆周运动.4、谁提供了向心力?回答:卫星与地球间的万有引力.请学生思考讨论下列问题:例题1、根据观测,在土星外围有一个模糊不清的光环,试用力学方法判定土星的光环究竟是与土星相连的连续物,还是绕土星运转的小卫星群?分别请学生提出自己的方案并加以解释:1、如果是连续物则:这些物体作匀速圆周运动的线速度与半径成正比,2、如果是卫星则:这些物体作匀速圆周运动的线速度与半径的平方根成反比,这个题可以让学生充分讨论.二、人造卫星的发射问题:1、卫星是用什么发射升空的?回答:三级火箭2、卫星是怎样用火箭发射升空的?学生可以讨论并发表自己的观点.下面我们来看一道题目:例题2、1999年11月21日,我国“神州”号宇宙飞船成功发射并收回,这是我国航天史上重要的里程碑.新型“长征”运载火箭,将重达8.4t的飞船向上送至近地轨道1,飞船与火箭分离后,在轨道1上以速度7.2km/s绕地球作匀速圆周运动.试回答下列问题:(1)根据课文内容结合例题(2)(3)(4)问画出图示.(2)轨道1离地的高度约为:A、8000kmB、1600kmC、6400kmD、42000km解:由万有引力定律得:解得: =1600km故选(B)(3)飞船在轨道1上运行几周后,在点开启发动机短时间向外喷射高速气体使飞船加速,关闭发动机后飞船沿椭圆轨道2运行,到达点开启发动机再次使飞船加速,使飞船速率符合圆轨道3的要求,进入轨道3后绕地球作圆周运动,利用同样的方法使飞船离地球越来越远,飞船在轨道2上从点到点过程中,速率将如何变化?解:由万有引力定律得:解得:所以飞船在轨道2上从点到点过程中,速率将减小.(4)飞船在轨道1、2、3上正常运行时:①飞船在轨道1上的速率与轨道3上的速率哪个大?为什么?回答:轨道1上的速率大.②飞船在轨道1上经过点的加速度与飞船在轨道2上经过点的加速度哪个大?为什么?回答:一样大③飞船在轨道1上经过点的加速度与飞船在轨道3上经过点的加速度哪个大?为什么?回答:轨道1上的加速度大.探究活动收集资料。
天体运动中卫星变轨问题与双星模型问题(解析版)
突破20 卫星变轨问题与双星模型问题一、卫星变轨问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。
(2)在A点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅱ。
(3)在B点(远地点)再次点火加速进入圆轨道Ⅲ。
2.三轨道运行物理量的大小比较(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点速率分别为v A、v B。
在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B。
(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,经过B点时的加速度也相同。
(3)周期:设卫星在轨道Ⅰ、Ⅱ、Ⅲ上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3。
【典例1】神舟十一号飞船与天宫二号空间实验室在太空中自动交会对接的成功,显示了我国航天科技力量的雄厚。
已知对接轨道所处的空间存在极其稀薄的大气,下列说法正确的是() A.为实现对接,飞船与天宫二号运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B.如不加干预,在运行一段时间后,天宫二号的动能可能会增加C.如不加干预,天宫二号的轨道高度将缓慢降低D.进入天宫二号的航天员处于失重状态,说明航天员不受地球引力作用【答案】BC【典例2】如图所示,假设月球半径为R,月球表面的重力加速度为g0,飞行器在距月球表面高度为3R的圆形轨道Ⅰ上运动,到达轨道的A点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B再次点火进入近月轨道Ⅲ绕月球做圆周运动,则()A .飞行器在B 点处点火后,动能增加B .由已知条件不能求出飞行器在轨道Ⅱ上的运行周期C .只有万有引力作用情况下,飞行器在轨道Ⅱ上通过B 点的加速度大于在轨道Ⅲ上通过B 点的加速度D .飞行器在轨道Ⅲ上绕月球运行一周所需的时间为2π R g 0【答案】 D【跟踪短训】1.(多选) 同步卫星的发射方法是变轨发射,即先把卫星发射到离地面高度为200~300 km 的圆形轨道上,这条轨道叫停泊轨道,如图所示,当卫星穿过赤道平面上的P 点时,末级火箭点火工作,使卫星进入一条大的椭圆轨道,其远地点恰好在地球赤道上空约36 000 km 处,这条轨道叫转移轨道;当卫星到达远地点Q 时,再开动卫星上的发动机,使之进入同步轨道,也叫静止轨道。
天体运动中的三种模型
天体运动中的三种模型
1、“自转”天体模型
天体表面物体做圆周运动所需向心力是由万有引力的一个分力提供的,万有引力的另一个分力即为重力,从赤道向两极因作圆周运动的半径逐渐减小,故所需向心力逐渐减小,重力逐渐增加。
在两极,万有引力等于重力,在赤道,万有引力等于重力加向心力。
2、“公转”天体模型
向心力等于万有引力。
如:人造卫星绕地球运动,地球绕太阳运动
3、双星模型
两颗距离彼此较劲的恒星,在相互之间万有引力作用下,绕两球连线上某点做周期相同的匀速圆周运动。
彼此间的万有引力是双星各自做圆周运动的向心力,又为作用力和反作用力。
双星具有相同的角速度。
双星始终与他们共同的圆心在同一条直线上。
高中物理之天体运动知识点
高中物理之天体运动知识点开普勒的行星运动三定律开普勒第一定律开普勒第一定律即为椭圆轨道定律,其内容为:所有的行星围绕太阳运动的轨道是椭圆,太阳处在所有椭圆的一个焦点上,如图。
此定律说明不同行星的椭圆轨道是不同的。
开普勒第二定律又叫面积定律,其内容为:连接太阳和行星的连线(矢径)在相等的时间内扫过相等的面积,如图。
此定律说明行星离太阳越近,其运行速率越大。
开普勒第三定律开普勒第三定律即为周期定律,其内容为:行星轨道半长轴的三次方与公转周期的二次方的比值是一个常数。
即,其中r代表椭圆轨道的半长轴,T代表行星运动的公转周期,k是一个与行星无关的常量。
对的认识:在图中,半长轴是AB间距的一半,不要认为a 等于太阳到A点的距离;T是公转周期,不要误认为是自转周期,如地球的公转周期是一年,不是一天。
(1)在以后的计算问题中,我们都把行星的轨道近似为圆,把卫星的运行轨道也近似为圆,这样就使问题变得简单,计算结果与实际情况也相差不大。
(2)在上述情况下,的表达式中,a就是圆的半径R,利用的结论解决某些问题很方便。
注意①比例系数k是一个与行星无关的常量,但不是恒量,在不同的星系中,k值不相同。
②在太阳系中,不同行星的半长轴都不相同,故其公转周期也不相等。
③卫星绕地球转动、地球绕太阳转动遵循相同的运动规律。
易错点在认识行星做椭圆运动时的向心力大小及速度大小时易错,行星的运动符合能量守恒定律,它们离太阳近时半径小,速度大,向心力也大;离太阳远时半径大,速度小,向心力也小,另一个易错点是找椭圆的半长轴时易错,许多同学在初学时,往往将2倍的半长轴代入题中进行运算。
忽略点本节中的行星运动的轨道为椭圆,是曲线运动,行星在轨道上任一点的速度方向沿该点的切线方向,速度方向易忽略,如:有部分同学认为行星的速度方向垂直于行星与太阳的连线,这种认识是错误的,是将行星的运动视为圆周运动,而实质上其轨道为椭圆。
卡文迪许扭称实验卡文迪许设计了扭称实验来测量万有引力常量,下图是扭称实验的原理图。
航天与星体问题专题(有答案)
航天与星体问题专题一.要点归纳1.天体运动的两个基本规律 (1)万有引力提供向心力行星卫星模型:F =G Mm r 2=m v 2r =mrω2=m 4π2T2r双星模型:G m 1m 2L2=m 1ω2r 1=m 2ω2(L -r 1)其中,G =6.67×10-11 N·m 2/kg 2 2.万有引力等于重力 G MmR 2=mg (物体在地球表面且忽略地球自转效应); G Mm (R +h )2=mg ′(在离地面高h 处,忽略地球自转效应完全相等,g ′为该处的重力加速度)2.人造卫星的加速度、线速度、角速度、周期跟轨道半径的关系F 万=G Mmr2=F 向=⎩⎪⎨⎪⎧ma →a =GM r 2→a ∝1r2m v 2r →v =GM r →v ∝1rmω2r →ω=GM r 3→ω∝1r3m 4π2T 2r →T =4π2r3GM→T ∝r 3.3.宇宙速度(1)第一宇宙速度(环绕速度):v =gR =7.9_km/s ,是卫星发射的最小速度,也是卫星环绕地球运行的最大速度.(2)第二宇宙速度:v =11.2 km/s (3)第三宇宙速度:v =16.7 km/s注意:①三个宇宙速度的大小都是取地球中心为参照系; ②以上数据是地球上的宇宙速度,其他星球上都有各自的宇宙速度,计算方法与地球相同.4.关于地球同步卫星地球同步卫星是指与地球自转同步的卫星,它相对于地球表面是静止的,广泛应用于通信领域,又叫做同步通信卫星.其特点可概括为六个“一定”:(1)位置一定(必须位于地球赤道的上空)地球同步卫星绕地球旋转的轨道平面一定与地球的赤道面重合.假设同步卫星的轨道平面与赤道平面不重合,而与某一纬线所在的平面重合,如图3-4所示.同步卫星由于受到地球指向地心的万有引力F 的作用,绕地轴做圆周运动,F 的一个分力F 1提供向心力,而另一个分力F 2将使同步卫星不断地移向赤道面,最终直至与赤道面重合为止(此时万有引力F 全部提供向心力).图3-4(2)周期(T )一定①同步卫星的运行方向与地球自转的方向一致.②同步卫星的运转周期与地球的自转周期相同,即T =24 h . (3)角速度(ω)一定由公式ω=φt 知,地球同步卫星的角速度ω=2πT,因为T 恒定,π为常数,故ω也一定.(4)向心加速度(a )的大小一定地球同步卫星的向心加速度为a ,则由牛顿第二定律和万有引力定律得: G Mm (R +h )2=ma ,a =GM (R +h )2. (5)距离地球表面的高度(h )一定由于万有引力提供向心力,则在ω一定的条件下,同步卫星的高度不具有任意性,而是唯一确定的.根据G Mm (R +h )2=mω2(R +h )得: h =3GM ω2-R =3GM(2πT)2-R ≈36000 km . (6)环绕速率(v )一定在轨道半径一定的条件下,同步卫星的环绕速率也一定,且为v =GMr=R 2gR +h=3.08 km/s .因此,所有同步卫星的线速度大小、角速度大小及周期、半径都相等. 由此可知要发射同步卫星必须同时满足三个条件: ①卫星运行周期和地球自转周期相同; ②卫星的运行轨道在地球的赤道平面内; ③卫星距地面高度有确定值.二、天体质量、密度及表面重力加速度的计算1.星体表面的重力加速度:g =G MR22.天体质量常用的计算公式:M =r v 2G =4π2r 3GT2●例1 假设某个国家发射了一颗绕火星做圆周运动的卫星.已知该卫星贴着火星表面运动,把火星视为均匀球体,如果知道该卫星的运行周期为T ,引力常量为G ,那么( )A .可以计算火星的质量B .可以计算火星表面的引力加速度C .可以计算火星的密度D .可以计算火星的半径【解析】卫星绕火星做圆周运动的向心力由万有引力提供,则有:G Mm r 2=m 4π2T2r而火星的质量M =ρ43πr 3联立解得:火星的密度ρ=3πGT2由M =4π2r 3GT 2,g =G M r 2=4π2T2r 知,不能确定火星的质量、半径和其的表面引力加速度,所以C 正确.[答案] C 【点评】历年的高考中都常见到关于星体质量(或密度)、重力加速度的计算试题,如2009年高考全国理综卷Ⅰ第19题,江苏物理卷第3题,2008年高考上海物理卷1(A)等. ★同类拓展1 我国探月的嫦娥工程已启动,在不久的将来,我国宇航员将登上月球.假如宇航员在月球上测得摆长为l 的单摆做小振幅振动的周期为T ,将月球视为密度均匀、半径为r 的球体,则月球的密度为( )A .3πGT 2B .3πl GrT 2C .16πl 3GrT 2D .3πl 16GrT 2 【解析】设月球表面附近的重力加速度为g 0.有:T =2πlg 0又由g 0=G M r 2,ρ=3M4πr 3可解得ρ=3πlGrT 2.[答案] B三、行星、卫星的动力学问题不同轨道的行星(卫星)的速度、周期、角速度的关系在“要点归纳”中已有总结,关于这类问题还需特别注意分析清楚卫星的变轨过程及变轨前后的速度、周期及向心加速度的关系.●例2 2008年9月25日到28日,我国成功发射了神舟七号载人航天飞行并实现了航天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟.下列判断正确的是[2009年高考·山东理综卷]( )A .飞船变轨前后的机械能相等B .飞船在圆轨道上时航天员出舱前后都处于失重状态C .飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D .飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度 【解析】飞船点火变轨,反冲力对飞船做正功,飞船的机械能不守恒,A 错误.飞船在圆形轨道上绕行时,航天员(包括飞船及其他物品)受到的万有引力恰好提供所需的向心力,处于完全失重状态,B 正确.神舟七号的运行高度远低于同步卫星,由ω2∝1r3知,C 正确.由牛顿第二定律a =F 引m =G Mr2知,变轨前后过同一点的加速度相等.[答案] BC【点评】对于这类卫星变轨的问题,特别要注意比较加速度时不能根据运动学公式a =v 2r =ω2r ,因为变轨前后卫星在同一点的速度、轨道半径均变化,一般要通过决定式a =F m 来比较.★同类拓展1 为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的嫦娥一号卫星绕月球经过一年多的运行,完成了既定任务,于2009年3月1日16日13分成功撞月.图示为嫦娥一号卫星撞月的模拟图,卫星在控制点1开始进入撞月轨道.假设卫星绕月球做圆周运动的轨道半径为R ,周期为T ,引力常量为G .根据题中信息( )A .可以求出月球的质量B .可以求出月球对嫦娥一号卫星的引力C .可知嫦娥一号卫星在控制点1处应减速D .可知嫦娥一号在地面的发射速度大于11.2 km/s【解析】由G Mm R 2=m 4π2T 2R 可得月球的质量M =4π2R 3GT 2,A 正确.由于不知嫦娥一号的质量,无法求得引力,B 错误.卫星在控制点1开始做近月运动,知在该点万有引力要大于所需的向心力,故知在控制点1应减速,C 正确.嫦娥一号进入绕月轨道后,同时还与月球一起绕地球运行,并未脱离地球,故知发射速度小于11.2 km/s ,D 错误.[答案] AC四、星体、航天问题中涉及的一些功能关系1.质量相同的绕地做圆周运动的卫星,在越高的轨道动能E k =12m v 2=G Mm2r越小,引力势能越大,总机械能越大.2.若假设距某星球无穷远的引力势能为零,则距它r 处卫星的引力势能E p =-G Mmr(不需推导和记忆).在星球表面处发射物体能逃逸的初动能为E k ≥|E p |=G MmR.●例3 2008年12月,天文学家们通过观测的数据确认了银河系中央的黑洞“人马座A *”的质量与太阳质量的倍数关系.研究发现,有一星体S2绕人马座A *做椭圆运动,其轨道半长轴为9.50×102天文单位(地球公转轨道的半径为一个天文单位),人马座A *就处在该椭圆的一个焦点上.观测得到S2星的运动周期为15.2年.(1)若将S2星的运行轨道视为半径r =9.50×102天文单位的圆轨道,试估算人马座A *的质量M A 是太阳质量M S 的多少倍.(结果保留一位有效数字)(2)黑洞的第二宇宙速度极大,处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚.由于引力的作用,黑洞表面处质量为m 的粒子具有的势能为E p =-G MmR(设粒子在离黑洞无限远处的势能为零),式中M 、R 分别表示黑洞的质量和半径.已知引力常量G =6.7×10-11 N·m 2 /kg 2,光速c =3.0×108 m/s ,太阳质量M S =2.0×1030 kg ,太阳半径R S =7.0×108 m ,不考虑相对论效应,利用上问结果,在经典力学范围内求人马座A *的半径R A 与太阳半径R S 之比应小于多少.(结果按四舍五入保留整数)[2009年高考·天津理综卷] 【解析】(1)S2星绕人马座A *做圆周运动的向心力由人马座A *对S2星的万有引力提供,设S2星的质量为m S2,角速度为ω,周期为T ,则有:G M A m S2r 2=m S2ω2rω=2πT设地球质量为m E ,公转轨道半径为r E ,周期为T E ,则: G M S m E r E 2=m E (2πT E)2r E 综合上述三式得:M A M S =(r r E )3(T ET)2上式中T E =1年,r E =1天文单位代入数据可得:M AM S=4×106.(2)引力对粒子作用不到的地方即为无限远处,此时粒子的势能为零.“处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚”,说明了黑洞表面处以光速运动的粒子在远离黑洞的过程中克服引力做功,粒子在到达无限远之前,其动能便减小为零,此时势能仍为负值,则其能量总和小于零.根据能量守恒定律可知,粒子在黑洞表面处的能量也小于零,则有:12mc 2-G Mm R<0 依题意可知:R =R A ,M =M A可得:R A <2GM Ac2代入数据得:R A <1.2×1010 m 故R AR S<17. [答案] (1)4×106 (2)R AR S<17【点评】①“黑洞”问题在高考中时有出现,关键要理解好其“不能逃逸”的动能定理方程:12mc 2-G Mm R<0.②E p =-G MmR是假定离星球无穷远的物体与星球共有的引力势能为零时,物体在其他位置(与星球共有)的引力势能,同样有引力做的功等于引力势能的减少.★同类拓展2 2005年10月12日,神舟六号飞船顺利升空后,在离地面340 km 的圆轨道上运行了73圈.运行中需要多次进行轨道维持.所谓“轨道维持”就是通过控制飞船上发动机的点火时间、推力的大小和方向,使飞船能保持在预定轨道上稳定运行.如果不进行轨道维持,由于飞船在轨道上运动受摩擦阻力的作用,轨道高度会逐渐缓慢降低,在这种情况下,下列说法正确的是( )A .飞船受到的万有引力逐渐增大、线速度逐渐减小B .飞船的向心加速度逐渐增大、周期逐渐减小、线速度和角速度都逐渐增大C .飞船的动能、重力势能和机械能都逐渐减小D .重力势能逐渐减小,动能逐渐增大,机械能逐渐减小【解析】飞船的轨道高度缓慢降低,由万有引力定律知其受到的万有引力逐渐增大,向心加速度逐渐增大,又由于轨道变化的缓慢性,即在很短时间可当做匀速圆周运动,由G Mmr2=m v 2r =mω2r =m 4π2T2r 知,其线速度逐渐增大,动能增大,由此可知飞船动能逐渐增大,重力势能逐渐减小,由空气阻力做负功知机械能逐渐减少.[答案] BD五、双星问题●例4 天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )[2008年高考·宁夏理综卷]【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2.根据题意有:ω1=ω2 r 1+r 2=r根据万有引力定律和牛顿定律,有:G m 1m 2r 2=m 1r 1ω12 G m 1m 2r 2=m 2r 2ω22 联立解得:r 1=m 2rm 1+m 2根据角速度与周期的关系知ω1=ω2=2πT联立解得:m 1+m 2=4π2r3T 2G.[答案] 4π2r3T 2G【点评】在双星系统中,当其中一星体质量远远大于另一星体时,它们的共同圆心就在大质量星球内部且趋近于球心.1.天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运行的周期约为1.4小时,引力常量G =6.67×10-11N·m 2/kg 2,由此估算该行星的平均密度约为[2009年高考·全国理综卷Ⅰ]( )A .1.8×103 kg/m 3B .5.6×103 kg/m 3C .1.1×104 kg/m 3D .2.9×104 kg/m 3【解析】由G Mm R 2=m 4π2T 2R ,ρ=3M 4πR 3可得,地球密度ρ=3πGT 2,再由质量和体积关系得该行星的密度ρ′=2.9×104 kg/m 3.[答案] D练习1.2009年2月11日,俄罗斯的“宇宙-2251”卫星和美国的“铱-33”卫星在西伯利亚上空约805 km 处发生碰撞.这是历史上首次发生的完整在轨卫星碰撞事件.碰撞过程中产生的大量碎片可能会影响太空环境.假定有甲、乙两块碎片,绕地球运行的轨道都是圆,甲的运行速率比乙的大,则下列说法中正确的是[2009年高考·安徽理综卷Ⅰ]( )A .甲的运行周期一定比乙的长B .甲距地面的高度一定比乙的高C .甲的向心力一定比乙的小D .甲的加速度一定比乙的大【解析】由v =GMr可知,甲碎片的速率大,轨道半径小,故B 错误;由公式T =2πR 3GM可知,甲的周期小,故A 错误;由于未知两碎片的质量,无法判断向心力的大小,故C 错误;碎片的加速度是指引力加速度,由G Mm R 2=ma ,可得a =GMR2,甲的加速度比乙大,D 正确.[答案] D2.1990年4月25日,科学家将哈勃天文望远镜送上距地球表面约600 km 的高空,使得人类对宇宙中星体的观测与研究有了极大的进展.假设哈勃望远镜沿圆轨道绕地球运行.已知地球半径为6.4×106 m ,利用地球同步卫星与地球表面的距离为3.6×107m 这一事实可得到哈勃望远镜绕地球运行的周期.以下数据中,最接近其运行周期的是[2008年高考·四川理综卷]( )A .0.6小时B .1.6小时C .4.0小时D .24小时【解析】由开普勒行星运动定律可知,R 3T 2=恒量,所以(r +h 1)3t 12=(r +h 2)3t 22,其中r 为地球的半径,h 1,t 1,h 2,t 2分别表示望远镜到地表的距离、望远镜的周期、同步卫星距地表的距离、同步卫星的周期(24 h),代入解得:t 1=1.6 h .[答案] B【点评】高考对星体航天问题的考查以圆周运动的动力学方程为主,具体常涉及求密度值、同步卫星的参量、变轨的能量变化等.在具体解题时要注意运用好几个常用的代换.3.我国发射的嫦娥一号探月卫星沿近似于圆形的轨道绕月飞行.为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化,卫星将获得的信息持续用微波信号发回地球.设地球和月球的质量分别为M 和m ,地球和月球的半径分别为R 和R 1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r 和r 1,月球绕地球转动的周期为T .假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间.(用M 、m 、R 、R 1、r 、r 1和T 表示,忽略月球绕地球转动对遮挡时间的影响).[2008年高考·全国理综卷Ⅱ]【解析】如图所示,设O 和O ′分别表示地球和月球的中心.在卫星轨道平面上,A 是地月连心线OO ′与地月球表面的公切线ACD 的交点,D 、C 和B 分别是该公切线与地球表面、月球表面和卫星轨道的交点.过A 点在另一侧作地月球面的公切线,交卫星轨道于E 点.卫星在圆弧BE 上运动时发出的信号被遮挡.设探月卫星的质量为m 0,引力常量为G ,根据万有引力定律有: G Mm r 2=m (2πT )2r G mm 0r 12=m 0(2πT 1)2r 1(其中T 1表示探月卫星绕月球转动的周期) 由以上两式可得:(T 1T )2=M m (r 1r)3设卫星的微波信号被遮挡的时间为t ,则由于卫星绕月球做匀速圆周运动,有: t T 1=α-βπ,其中α=∠CO ′A ,β=∠CO ′B 由几何关系得:r cos α=R -R 1,r 1cos β=R 1联立解得:t =T πMr 13mr 3(arccos R -R 1r -arccos R 1r 1). [答案] T πMr 13mr 3(arccos R -R 1r -arccos R 1r 1) 【点评】航体星体问题有时在高考中也以计算题出现,解答的关键仍是做圆周运动的动力学方程.另外,还需要同学们具有丰富的想象力,描绘情境图、难图化易、化整为零等能力.六.能力演练4.2005年12月11日,有着“送子女神”之称的小行星“婚神”(Juno)冲日,在此后十多天的时间里,国内外天文爱好者凭借双筒望远镜可观测到它的“倩影”.在太阳系中除了八大行星以外,还有成千上万颗肉眼看不见的小天体,沿着椭圆轨道不停地围绕太阳公转.这些小天体就是太阳系中的小行星.冲日是观测小行星难得的机遇.此时,小行星、太阳、地球几乎成一条直线,且和地球位于太阳的同一侧.“婚神”星冲日的虚拟图如图所示,则( )A .2005年12月11日,“婚神”星的线速度大于地球的线速度B .2005年12月11日,“婚神”星的加速度小于地球的加速度C .2006年12月11日,必将发生下一次“婚神”星冲日D .下一次“婚神”星冲日必将在2006年12月11日之后的某天发生【解析】由G Mm r 2=m v 2r 得v 2∝1r ,“婚神”的线速度小于地球的线速度,由a =F m =G Mr2知,“婚神”的加速度小于地球的加速度,地球的公转周期为一年,“婚神”的公转周期大于一年,C 错误,D 正确.[答案] BD5.2007年11月5日,嫦娥一号探月卫星沿地月转移轨道到达月球附近,在距月球表面200 km 的P 点进行第一次“刹车制动”后被月球俘获,进入椭圆轨道 Ⅰ 绕月飞行,如图所示.之后,卫星在P 点经过几次“刹车制动”,最终在距月球表面200 km 、周期127 min 的圆形轨道 Ⅲ 上绕月球做匀速圆周运动.若已知月球的半径R 月和引力常量G ,忽略地球对嫦娥一号的引力作用,则由上述条件( )A .可估算月球的质量B .可估算月球表面附近的重力加速度C .可知卫星沿轨道Ⅰ经过P 点的速度小于沿轨道Ⅲ经过P 点的速度D .可知卫星沿轨道Ⅰ经过P 点的加速度大于沿轨道Ⅱ经过P 点的加速度【解析】由G Mm (R 月+h )2=m (R 月+h )4π2T 2可得:月球的质量M =4π2(R 月+h )3GT 2,选项A 正确.月球表面附近的重力加速度为:g 月=G M R 月2=4π2(R 月+h )3R 月2T 2,选项B 正确.卫星沿轨道Ⅰ经过P 点时有: m v P Ⅰ2R 月+h >G Mm (R 月+h )2沿轨道Ⅲ经过P 点时:m v P Ⅲ2(R 月+h )=G Mm(R 月+h )2可见v P Ⅲ<v P Ⅰ,选项C 错误.加速度a P =F m =G M(R 月+h )2,与轨迹无关,选项D 错误.[答案] AB6.假设太阳系中天体的密度不变,天体的直径和天体之间的距离都缩小到原来的 12,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是( )A .地球绕太阳公转的向心力变为缩小前的 12B .地球绕太阳公转的向心力变为缩小前的 116C .地球绕太阳公转的周期与缩小前的相同D .地球绕太阳公转的周期变为缩小前的 12【解析】天体的质量M =ρ43πR 3,各天体质量变为M ′=18M ,变化后的向心力F ′=G 164Mm (r 2)2=116F ,B 正确.又由G Mm r 2=m 4π2T 2r ,得T ′=T .[答案] BC 7.假设有一载人宇宙飞船在距地面高度为4200 km 的赤道上空绕地球做匀速圆周运动,地球半径约为6400 km ,地球同步卫星距地面高为36000 km ,宇宙飞船和一地球同步卫星绕地球同向运动,每当两者相距最近时.宇宙飞船就向同步卫星发射信号,然后再由同步卫星将信号发送到地面接收站,某时刻两者相距最远,从此刻开始,在一昼夜的时间内,接收站共接收到信号的次数为( )A .4次B .6次C .7次D .8次 【解析】设宇宙飞船的周期为T 有:T 2242=(6400+42006400+36000)3 解得:T =3 h设两者由相隔最远至第一次相隔最近的时间为t 1,有: (2πT -2πT 0)·t 1=π 解得t 1=127h再设两者相邻两次相距最近的时间间隔为t 2,有: (2πT -2πT 0)·t 2=2π 解得:t 2=247 h由n =24-t 1t 2=6.5(次)知,接收站接收信号的次数为7次.[答案] C8.图示为全球定位系统(GPS).有24颗卫星分布在绕地球的6个轨道上运行,它们距地面的高度都为2万千米.已知地球同步卫星离地面的高度为3.6万千米,地球半径约为6400 km ,则全球定位系统的这些卫星的运行速度约为()A .3.1 km/sB .3.9 km/sC .7.9 km/sD .11.2 km/s 【解析】同步卫星的速度v 1=2πT r =3.08 km/s .又由v 2∝1r,得定位系统的卫星的运行速度v 2=3.9 km/s .[答案] B9.均匀分布在地球赤道平面上空的三颗同步通信卫星够实现除地球南北极等少数地区外的全球通信.已知地球的半径为R ,地球表面的重力加速度为g ,地球的自转周期为T .下列关于三颗同步卫星中,任意两颗卫星间距离s 的表达式中,正确的是( )A .3RB .23RC .334π2gR 2T 2 D .33gR 2T 24π2【解析】设同步卫星的轨道半径为r ,则由万有引力提供向心力可得:G Mm r 2=m 4π2T 2r解得:r =3gR 2T 24π2由题意知,三颗同步卫星对称地分布在半径为r 的圆周上,故s =2r cos 30°=33gR 2T 24π2,选项D 正确.[答案] D10.发射通信卫星的常用方法是,先用火箭将卫星送入一近地椭圆轨道运行;然后再适时开动星载火箭,将其送上与地球自转同步运行的轨道.则( )A .变轨后瞬间与变轨前瞬间相比,卫星的机械能增大,动能增大B .变轨后瞬间与变轨前瞬间相比,卫星的机械能增大,动能减小C .变轨后卫星运行速度一定比变轨前卫星在椭圆轨道上运行时的最大速度要大D .变轨后卫星运行速度一定比变轨前卫星在椭圆轨道上运行时的最大速度要小【解析】火箭是在椭圆轨道的远地点加速进入同步运行轨道的,故动能增大,机械能增大,A 正确.设卫星在同步轨道上的速度为v 1,在椭圆轨道的近地点的速度为v 2,再设椭圆轨道近地点所在的圆形轨道的卫星的速度为v 3.由G Mmr 2=m v 2r,知v 3>v 1;又由向心力与万有引力的关系知v 2>v 3.故v 1<v 2.选项C 错误,D 正确.[答案] AD11.(10分)火星和地球绕太阳的运动可以近似看做是同一平面内同方向的匀速圆周运动.已知火星公转轨道半径大约是地球公转轨道半径的32.从火星、地球于某一次处于距离最近的位置开始计时,试估算它们再次处于距离最近的位置至少需多少地球年.[计算结果保留两位有效数字,⎝⎛⎭⎫3232=1.85]【解析】由G Mm r 2=m 4π2T2r 可知,行星环绕太阳运行的周期与行星到太阳的距离的二分之三次方成正比,即T ∝r 32所以地球与火星绕太阳运行的周期之比为: T 火T 地=(r 火r 地)32=(32)32=1.85 (3分) 设从上一次火星、地球处于距离最近的位置到再一次处于距离最近的位置,火星公转的圆心角为θ,则地球公转的圆心角必为2π+θ,它们公转的圆心角与它们运行的周期之间应有此关系:θ=2πt T 火,θ+2π=2πtT 地 (3分)得:2π+2πt T 火=2πtT 地(2分)最后得:t =T 火T 地T 火-T 地=1.850.85T 地≈2.2年 (2分)[答案] 2.212.(11分)若宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示. 为了安全,返回舱与轨道舱对接时,必须具有相同的速度. 已知:该过程宇航员乘坐的返回舱至少需要获得的总能量为E (可看做是返回舱的初动能),返回舱与人的总质量为m ,火星表面重力加速度为g ,火星半径为R ,轨道舱到火星中心的距离为r ,不计火星表面大气对返回舱的阻力和火星自转的影响. 问:(1)返回舱与轨道舱对接时,返回舱与人共具有的动能为多少?(2)返回舱在返回轨道舱的过程中,返回舱与人共需要克服火星引力做多少功?【解析】(1)在火星表面有:GM R 2=g (2分) 设轨道舱的质量为m 0,速度大小为v ,则有 :G Mm 0r 2=m 0v 2r(2分) 返回舱和人应具有的动能E k =12m v 2 (1分) 联立解得E k =mgR 22r. (1分) (2)对返回舱在返回过程中,由动能定理知:W =E k -E (2分)联立解得:火星引力对返回舱做的功W =mgR 22r-E (2分) 故克服引力做的功为:-W =E -mgR 22r. (1分) [答案] (1)mgR 22r (2)E -mgR 22r13.(11分)中国首个月球探测计划嫦娥工程预计在2017年送机器人上月球,实地采样送回地球,为载人登月及月球基地选址做准备.设想机器人随嫦娥号登月飞船绕月球飞行,飞船上备有以下实验仪器:A .计时表一只;B .弹簧秤一把;C .已知质量为m 的物体一个;D .天平一台(附砝码一盒).在飞船贴近月球表面时可近似看成绕月球做匀速圆周运动,机器人测量出飞船在靠近月球表面的圆形轨道绕行N 圈所用的时间为t .飞船的登月舱在月球上着陆后,遥控机器人利用所携带的仪器又进行了第二次测量,利用上述两次测量的物理量可出推导出月球的半径和质量.(已知引力常量为G ),要求:(1)说明机器人是如何进行第二次测量的.(2)试推导用上述测量的物理量表示的月球半径和质量的表达式.【解析】(1)机器人在月球上用弹簧秤竖直悬挂物体,静止时读出弹簧秤的示数F ,即为物体在月球上所受重力的大小. (3分)(2)在月球上忽略月球的自转可知:mg 月=F (1分)G Mm R 2=mg 月 (1分) 飞船在绕月球运行时,因为是靠近月球表面,故近似认为其轨道半径为月球的半径R ,由万有引力提供物体做圆周运动的向心力可知:G Mm R 2=mR 4π2T 2,又T =t N(2分) 联立可得:月球的半径R =FT 24π2m =Ft 24π2N 2m (2分) 月球的质量M =F 3t 416π4GN 4m 3. (2分) [答案] (1)机器人在月球上用弹簧秤竖直悬挂物体,静止时读出弹簧秤的示数F ,即为。
高考热点3:天体运动问题》
天体运动问题大全天体运动问题, 是万有引力定律和牛顿第二定律(向心力公式)在匀速圆周运动模型中的综合应用.人造卫星、月亮绕地球运动或行星绕恒星运动可视为“环绕模型”, 由万有引力提供向心力: F引=F 向.此模型可计算卫星或行星的环绕速度、角速度、周期、向心加速度以及中心天体(被环绕的天体, 如地球、太阳)的质量和密度.对于卫星而言, 一条轨道, 对应着一个环绕速度, 因为一条轨道对应着一个固定的万有引力(作为向心力), 当卫星的环绕速度改变时, 轨道上所能提供的向心力不足或过量, 则卫星将发生离心或近心运动, 即意味着卫星要变轨, 这就是考题中的变轨问题!为什么当星球的自转速度增大到一定的程度后, 星球赤道表面的物体会“飘起来”, 甚至连星球本身也可能会离散瓦解呢!首先, 当星球自转的速度比较小的时候, 星球表面的物体随星球自转所需的向心力也比较小, 物体受到的万有引力足以提供这么一个向心力, 而且还有剩余!剩余的部分表现为物体的重力:赤道上的物体与地球一起自转时的向心力为GMm/R2-N=mv2/R, N=mg.当自转速度逐渐加快时, 物体所需的向心力也逐渐增大, 则N逐渐减小, 若自转速度继续增加, 当N=0时, 物体就会“飘起来”了.实际上就是当王物体所需的向心力比能提供的大时, 物体作离心运动!学离心运动的时候我们知道, 砂轮转速过大的时候会破碎瓦解, 那么我们把自转的星球看成转动的砂轮又有何妨呢!当星球自转太快时, 星球也会破碎瓦解的!星球表面或附近(距离地面有一定高度)的物体受到的万有引力,绝大部分用来产生物体的重力加速,剩余的一小部分则作为维持物体与星球一起自转所需的向心力.可见重力和万有引力是有所区别的!不过,在要计算重力加速度的考题中,通常忽略星球的自转(因为自转所需的向心力很小),于是认为重力近似等于万有引力,即mg=F引(我们不妨把它记作“近球模型”),据此,我们就可以推导出非常有用的“黄金代换式”:GM=gR2.既然重力可以近似等于万有引力,那么对于近地轨道(环绕轨道近似等于星球半径R)的卫星,则有mg=F向,可求得其环绕速度为v1=,也就是我们在考题中遇到的第一宇宙速度!例题点拨:例题1 (2004年江苏, 4)若人造卫星绕地球做匀速圆周运动, 则下列说法正确的是( )A. 卫星的轨道半径越大, 它的运行速度越大B. 卫星的轨道半径越大, 它的运行速度越小C. 卫星的质量一定时, 轨道半径越大, 它需要的向心力越大D. 卫星的质量一定时, 轨道半径越大, 它需要的向心力越小例题2 发射地球同步卫星时, 先将卫星发射至近地圆轨道1.然后经点火, 使其沿椭圆轨道2运动, 最后再次点火, 将卫星送人同步圆轨道3, 轨道1.2相切于Q点, 轨道2、3相切于P点(见下图), 当卫星分别在1.2、3轨道上正常运行时, 以下说法正确的是( )A. 卫星在轨道3上的速率大于在轨道1上的速率B. 卫星在轨道3上的角速度小于在轨道1上的角速度C. 卫星在轨道1上经过Q点的加速度大于它在轨道2上经过Q点时的加速度D. 卫星在轨道2上经过P点时的加速度等于它的轨道3上经过P点时的加速度例题3 地球赤道上的物体重力加速度为g, 物体在赤道上随地球自转的向心加速度为a, 要使赤道上的物体“飘”起来, 则地球的转速应为原来的( )A. g/a倍B. 倍C. 倍D. 倍例题4(2004年北京, 20)1990年5月, 紫金山天文台将他们发现的第2752号小行星命名为吴健雄星, 该小行星的半径为16 km.若将此小行星和地球均看成质量分布均匀的球体, 小行星密度与地球相同.已知地球半径R=6400km, 地球表面重力加速度为g.这个小行星表面的重力加速度为( )A. 400gB. g /400C. 20gD. g/20针对性训练1. 地球半径R0, 地面重力加速度为g, 若卫星距地面R0处做匀速圆周运动, 则( )A.卫星的速度为 B.卫星的角速度为C. 卫星的加速度为g/2D. 卫星的周期为2.假设地球质量不变, 而地球半径增大到原来的2倍, 那么从地球发射的人造地球卫星第一宇宙速度(球绕速度)大小应为原来的( )A. 倍B. 倍C. 倍D. 2倍3. 三颗人造卫星a、b、c绕地球作圆周运动, a与b的质量相等并小于c的质量, b和c的轨道半径相等且大于a的轨道半径, 则( )A. 卫星b、c运行的速度大小相等, 且大于a的速度大小B. 卫星b、c周期相等, 且大于a的周期C.卫星b、c向心加速度大小相等, 且大于a的向心加速度D. 卫星b所需的向心力最小4.关于绕地球运转的近地卫星和同步卫星, 下列说法中正确的是( )A. 近地卫星可以通过北京地理纬度圈所决定的平面上做匀速圆周运动B. 近地卫星可以在与地球赤道平面有一定倾角且经过北京上空的平面上运行C.近地卫星或地球同步卫星上的物体,因“完全失重”,其重力加速度为零D. 地球同步卫星可以在地球赤道平面上的不同高度运行5.假设一小型飞船, 在高空绕地球做匀速圆周运动, 若沿与其运动相反的方向发射一枚火箭, 则以下说法正确的是( )A. 飞船一定离开原来的轨道运动B. 火箭一定离开原来的轨道运动C. 若飞船继续绕地球匀速圆周运动, 则其运动的轨道的半径一定增大D. 若火箭离开飞船后绕地球做匀速圆周运动, 则其运动的圆轨道的半径一定减小6.关于人造地球卫星, 下列说法正确的是( )A. 轨道半径是地球半径n倍的同步卫星的向心加速度是地表附近重力加速度的倍B. 轨道半径是地球半径n倍的同步卫星的向心加速度是赤道表面物体向心加速度的n倍C. 如果卫星的轨道是椭圆, 则它在近地点比远地点时的动能大、势能小, 但两处的机械能相等D. 如果卫星因受空气阻力的作用, 其半径逐渐减小, 则它的势能逐渐减小, 动能逐渐增大, 机械能逐渐减少7.同一轨道上有一个宇航器和一个小行星,同方向围绕太阳做匀速圆周运动.由于某种原因,小行星发生爆炸而被分成两块,爆炸结束瞬间,两块都有原方向的速度,一块比原速度大,一块比原速度小,关于两块小行星能否撞上宇航器,下列判断正确的是()A. 速度大的一块能撞上宇航器B. 速度大的一块不能撞上宇航器C. 速度小的一块能撞上宇航器D. 速度小的一块不能撞上宇航器8.假设在质量与地球质量相同, 半径为地球半径两倍的某天体上进行运动比赛, 那么与地球成绩相比, 下列说法正确的是( )A. 跳高运动员的成绩会更好B. 投掷铁饼的距离更远C. 举重运动员的成绩会更好D. 游泳运动员的成绩会更好9.2003年10月15日“神舟五号”载人飞船搭载航天员杨利伟发射成功, 经过21小时太空之旅, 飞船返回舱乘载着杨利伟于10月16日6时23分在内蒙古主要着陆场成功着陆, 我国首次载人航天飞行圆满成功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天体运动与人造卫星运动的两个基本模型
随着我国探月卫星的成功发射以及天宫一号与神舟八号的成功对接,显示了我国在空间探索方面的强大实力,极大地增强了中国人的民族自豪感。
天体及卫星的运动问题也是高考的热点问题,从近几年全国各地的高考试题来看,透彻理解两个基本模型是关键。
一、环绕模型
环绕模型的基本思路是:①把天体、卫星的环绕运动近似看做是匀速圆周运动;②万有
引力提供天体、卫星做圆周运动的向心力:G Mm r 2=m v 2r =m ω2r =m ⎝ ⎛⎭
⎪⎫2πT 2r =m(2πf)2r= ma 其中r 指圆周运动的轨道半径;③在地球表面,若不考虑地球自转,万有引力等于重力:由
G Mm R 2=mg 可得天体质量M =R 2g G
,这往往是题目中重要的隐含条件。
1、围绕一个中心天体运转
例一:用m 表示同步卫星的质量,h 表示它离地面的高度,表示地球半径,表示地球表面处的重力加速度,
表示地球的自转的角速度,则通讯卫星受到地球对它的万有引力
大小为 A. B. C. D. 分析:依万有引力定律公式,其中,所以,选项A 错误,选项B 正确。
因为万有引力提供向心力,所以
,故选项D 正确。
同步
卫星距地心为,则有,其中,解得
,又,代入整理得
,选项C 正确。
点评:解答此类问题应牢记两条线索:一是围绕星球旋转的物体,根据万有引力等于向心力列方程;二是静止在星球表面上的物体,根据万有引力等于重力列方程。
2、围绕两个中心天体运转
例二:已知地球同步卫星离地面的高度约为地球半径的6倍。
若某行星的平均密度为地球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,则该行星的自转周期约为
A .6小时
B .12小时
C .24小时
D .36小时
分析:设地球或行星的半径为r ,根据万有引力提供向心力,对地球或行星的同步卫星
有G Mm r +h 2=m ⎝ ⎛⎭
⎪⎫2πT 2(r +h),M =ρ43πr 3,得T = 3πr +h 3G ρr 3,有T 1T 2= r 1+h 13r 3
2ρ2r 2+h 23r 31ρ1
,其中T 1=24 h ,h 1=6r 1,h 2=2.5r 2,ρ1=2ρ2,代入上式得T 2=12 h 点评:两个天体的同步卫星运动遵循相同的规律,解决这类问题的关键是写出待求量的通式,然后根据比例关系求解。
3、围绕一个公共点运转
例三:天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G)
分析:设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别是ω1、ω2.
根据题意有ω1=ω2=2πT
,r 1+r 2=r. 根据万有引力定律和牛顿第二定律有:
G m 1m 2r 2=m 1ω21r 1, G m 1m 2r 2=m 2ω22r 2. 联立以上各式解得m 1+m 2=4π2T 2G
r 3. 点评:对此类问题要把握双星运动的特点:(1)彼此间的万有引力是双星各自做圆周运动的向心力; (2)双星始终与它们共同的圆心在同一条直线上;(3) 双星具有共同的角速度。
二、变轨模型
若卫星所受万有引力等于做匀速圆周运动的向心力,将保持匀速圆周运动;当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力就不再等于向心力,卫星将做变轨运行。
①当v 增大时,所需向心力增大,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由v =r GM 知其运行速度要减小,但重力势能、机械能均增加。
②当卫星的速度突然减小时,所需向心力减小,即万有引力大于卫星所需的向心力,因此卫星将做向心运动,同样会脱离原来的圆轨道,轨道半径变小,进入新轨道运行时由v =r GM 知运行速度将增大,但重力势能、机械能均减少。
例四:2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图4-4-2所示.关于航天飞机的运动,下列说法中正确的有
A .在轨道Ⅱ上经过A 的速度小于经过
B 的速度
B .在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能
C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期
D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度
分析:在椭圆轨道上,近地点的速度最大,远地点的速度最小,A选项正确。
由万有引力定律可知飞机在A点受到的引力是个定值,由此结合牛顿第二定律可知飞机在A点的加速度是个定值,故D项错误。
飞机从A点进入轨道Ⅱ相对于轨道Ⅰ可看成向心运动,则可知飞机在轨道Ⅱ上A点速度小于轨道Ⅰ上A点速度,再结合动能定义式可知B选项正确。
由开普勒定律R3/T2= K可知,在轨道Ⅱ上的周期小于轨道Ⅰ上的周期,选项C正确。
点评:对于变轨问题的分析,把握住万有引力与所需要的向心力之间的“供”“求”关系进行分析是关键。
练习:2007年10月24日,“嫦娥一号”卫星星箭分离,卫星进入绕地球轨道。
在绕地运行时,要经过三次近地变轨:12小时椭圆轨道①→24小时椭圆轨道②→48小时椭圆轨道③→地月转移轨道④。
11月5日11时,当卫星经过距月球表面高度为h的A点时,再一次实施变轨,进入12小时椭圆轨道⑤,后又经过两次变轨,最后进入周期为T的月球极月圆轨道⑦。
如图所示,已知月球半径为R。
(1)请回答:“嫦娥一号”在完成第三次近地变轨时需要加速还是减速?
(2)写出月球表面重力加速度的表达式。