三角形相似的判定教学设计(优秀4篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形相似的判定教学设计(优秀4篇)
《相似三角形》数学教案篇一
一、教材内容分析
《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。
二、教学目标(知识,技能,情感态度、价值观)
1、知识目标:
(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。
(2)学生掌握相似三角形判定定理1,并了解它的证明。
(3)使学生初步掌握相似三角形的判定定理1的应用。
2、能力目标:
(1)通过尺规作图使学生得到技能的训练;
(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:
(1)在公理的形成过程中渗透:实验、观察、类比、归纳;
(2)通过知识的纵横迁移感受数学的系统特征。
三、教学重难点:
重点:掌握相似三角形判定定理1及其应用。
难点:定理1的证明方法。
四、教学环境及资源准备
1、投影片
2、观看相关视频
五、教学过程
教学过程教师活动学生活动设计意图及资源准备
(一)、导入新课
1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?
2、到目前为止判定三角形相似的方法有几个?
3、什么叫相似三角形?相似三角形与全等三角形有何联系?
学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用
(二)、探究新知
1新课讲解
(1)、做一做,做出两个三角形来试验是否相似。
(2)、师生共同总结:两角对应相等的两个三角形相似。
2应用新知
教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60
求证:△ABC∽△DEF
例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似
3、例题小结
1、学生亲手实践
2、学生理解
3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识
例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。
(三)、随堂练习
学生完成教师订正练习应用巩固知识
(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化
(五)、课后作业习题4.9
第1题、第2题。
六、教学流程图
《探索直角三角形全等的条件》
七、教学评价设计
1、本节课教学目的明确、具体,符合课程标准的要求,切合学习实际;
能够结合具体实例,通过观察、操作、想象、推理、交流等活动发展空间观念;推理能力和有条理的表达能力,能够密切结合学科特点,注重情感目标的建立。
2、教学活动设计合理,整节课的教学过程自然流畅,组织合理,练习题简洁、精练,表达准确,整节课围绕目标进行教学。
3、教后反思,培养了学生良好的学习习惯和思维品质。布置作业,基础题能够使学生更好的巩固课堂知识,开放性题是针对成绩较好的同学的,能够拓展他们的思维。
八、教学后记
为保证新课程标准的落实,我们把课堂教学作为有利于学生主动探索的数学学习环境,把学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分发展作为教学改革的基本指导思想,把数学教学看成是师生之间学生之间交往互动,共同发展的过程。
相似三角形篇二
教学建议
知识结构
本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理
重难点分析
的概念是本节的重点也是本节的难点。是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性。对应边和对应角子中占有重要地位,学生在找对应边及对应角时常常出现错误。
教法建议
1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个的例子,在此基础上给出的概念
3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是,由学生研究这些图形的边角关系,从而得到对的本质认识
4.在概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是的例子来加深对概念的理解
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出,既增加学生的参与又加深学生对概念的理解
6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握
教学设计示例
一、教学目标
1.使学生理解并掌握的概念,理解相似比的概念。
2.使学生掌握预备定理,并了解它的承上启下的作用。
3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法。
4.通过学习,培养由特殊到一般的唯物辩证法观点。
二、教学设计
类比学习、探索发现。
三、重点、难点
1.教学重点:是的概念及预备定理,教学中要让学生加深对概念的本质的认识。
2.教学难点:是相似比的概念及找对应边。
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具。
六、教学步骤