八年级数学下册期中测试题7

合集下载

人教版2020-2021学年初二数学下册期中考试试卷 (含答案)

人教版2020-2021学年初二数学下册期中考试试卷 (含答案)

2020-2021学年八年级(下)期中数学试卷一、选择题(本大题有10个小题,每小题3分,共30分)1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣34.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.45.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12 8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB 中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.49.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣110.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是岁、岁.13.(3分)化简:=.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC 2,使得△ABC2为轴对称图形,且=3S△ABC.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC 的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分)1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义进行判断.【解答】解:四个交通标志图案中,只有第2个为中心对称图形.故选:B.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=【分析】利用一元二次方程的定义进行分析即可.【解答】解:A、x+1=0是一元一次方程,故此选项不合题意;B、x2=2x﹣1是一元二次方程,故此选项符合题意;C、含有2个未知数,2y﹣x=1不是一元二次方程,故此选项不合题意;D、含有分式,x2+3=不是一元二次方程;故此选项不合题意.故选:B.3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣3【分析】二次根式的被开方数是非负数.【解答】解:依题意得x+3≥0,解得x≥﹣3.故选:A.4.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.4【分析】根据平均数的计算公式列出算式,再进行计算即可得出x的值.【解答】解:∵5,7,6,x,7的平均数是6,∴(5+7+6+x+7)=6,解得:x=5;故选:C.5.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°【分析】根据平行四边形的对角相等、邻角互补,即可得出∠A的度数.【解答】解:∵在▱ABCD中,∠B+∠D=130°,∠B=∠D,∴∠B=∠D=65°,又∵∠A+∠B=180°,∴∠A=180°﹣65°=115°.故选:D.6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°【分析】至少有一个角不小于90°的反面是每个角都小于90°,据此即可假设.【解答】解:用反证法证明:在四边形中,至少有一个角不小于90°,应先假设:四边形中的每个角都小于90°.故选:C.7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12【分析】利用二次根式的加减法对A、C进行判断;利用二次根式的除法法则对B进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项错误;D、原式=2×3=12,所以D选项正确.故选:D.8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB 中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.4【分析】根据平行四边形的性质得到OB=OD,AD+AB=CD+BC=12,根据三角形的周长公式得到CD﹣BC=4,解方程组求出CD,得到AB的长,根据直角三角形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,四边形ABCD的周长是24,∴AB=CD,AD=BC,OB=OD,AD+AB=CD+BC=12,∵△COD的周长比△BOC的周长多4,∴(CD+OD+OC)﹣(CB+OB+OC)=4,即CD﹣BC=4,,解得,CD=8,BC=4,∴AB=CD=8,∵BD⊥AD,E是AB中点,∴DE=AB=4,故选:C.9.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣1【分析】由根的判别式与方程根的情况,可得△<0,从而求出k的取值范围,再确定k 的最小整数.要保证二次项系数不为0.【解答】解:∵一元二次方程x(kx+1)﹣x2+3=0,即(k﹣1)x2+x+3=0无实数根,∴△=b2﹣4ac=1﹣4×(k﹣1)×3<0且k﹣1≠0,解得k>且k≠1.k最小整数=2.故选:A.10.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.【分析】连接AC、BC,根据勾股定理求出A1B1,根据三角形中位线定理、菱形的判定定理得到四边形A1B1C1D1是菱形,且菱形的周长=5×4=20,总结规律,根据规律解答.【解答】解:连接AC、BC,由题意得,AB1=×6=3,AA1=×8=4,由勾股定理得,A1B1==5,∵四边形ABCD为矩形,∴AC=BD,∵顺次连接四边形ABCD各边中点得到四边形A1B1C1D1,∴A1B1=BD,A1B1∥BD,C1B1=AC,C1B1∥AC,A1D1=AC,A1D1∥AC,∴A1B1=C1D1,A1B1∥C1D1,A1B1∥B1C1,∴四边形A1B1C1D1是菱形,且菱形的周长=5×4=20,同理,四边形A3B3C3D3是菱形,且菱形的周长=20×=10,……四边形A9B9C9D9是菱形,且菱形的周长=20×=,故选:B.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是6.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是15岁、16岁.【分析】根据中位数和众数的定义求解.【解答】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故填16,15.13.(3分)化简:=π﹣3.【分析】二次根式的性质:=a(a≥0),根据性质可以对上式化简.【解答】解:==π﹣3.故答案是:π﹣3.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=2020.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2020=0得:a+b﹣2020=0,即a+b=2020.故答案是:2020.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=20.【分析】根据54米的篱笆,即总长度是54m,BC=xm,则AB=(54﹣x+2)m,再根据矩形的面积公式列方程,解一元二次方程即可.【解答】解:设矩形花园BC的长为x米,则其宽为(54﹣x+2)米,依题意列方程得:(54﹣x+2)x=320,x2﹣56x+640=0,解这个方程得:x1=16,x2=40,∵28<40,∴x2=40(不合题意,舍去),∴x=16,∴AB=(54﹣x+2)=20.答:当矩形的长AB为16米时,矩形花园的面积为320平方米;故答案为:20.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为3或.【分析】分两种情况讨论,当点B'落在AD边上时,由折叠知,△BEF≌△B'EF,推出∠BFE=∠B'FE,进一步推BF=BE=5,在Rt△ABF中,通过勾股定理求出AF的长;当点B'落在CD边上时,在Rt△ECB'中,利用勾股定理求出CB'的长,进一步求出DB'的长,分别在Rt△F A'B'和Rt△FDB'中,利用勾股定理求出含x的FB'的长度,联立构造方程,求出x的值,即AF的长度.【解答】解:如图1,当点B'落在AD边上时,由折叠知,△BEF≌△B'EF,∴∠BFE=∠B'FE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠B'EF,∴∠FEB=∠BFE,∴BF=BE,∵BE=BC﹣EC=9﹣4=5,∴BF=5,在Rt△ABF中,AF===3;如图2,当点B'落在CD边上时,由折叠知,△BEF≌△B'EF,△ABF≌△A'B'F,∴EB'=EB=5,A'B'=AB=CD=4,∵四边形ABCD是矩形,∴∠D=∠C=90°,在Rt△ECB'中,CB'===3,∴DB'=CD﹣CB'=4﹣3=1,设AF=A'F=x,在Rt△F A'B'中,FB'2=F A'2+A'B'2=x2+42,在Rt△FDB'中,FB'2=FD2+DB'2=(9﹣x)2+12,∴x2+42=(9﹣x)2+12,解得,x=,∴AF=;故答案为:3或.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).【分析】(1)利用二次根式的性质计算;(2)利用二次根式的乘除法则运算.【解答】解:(1)原式=3﹣8+3=﹣2;(2)原式=﹣2=﹣2=﹣.18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.【分析】利用因式分解法求解可得.【解答】解:(1)∵x2=4x,∴x2﹣4x=0,∴x(x﹣4)=0,则x=0或x﹣4=0,解得x1=0,x2=4;(2)∵2x2﹣7x﹣4=0,∴(x﹣4)(2x+1)=0,则x﹣4=0或2x+1=0,解得x1=4,x2=﹣0.5.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC2,使得△ABC2为轴对称图形,且=3S△ABC.【分析】(1)利用网格特点和中心对称的性质画出A、B、C的对应点即可;(2)利用勾股定理作出AC2=5,则△ABC2为等腰三角形,此三角形满足条件.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△ABC2为所作.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【解答】解:(1)小张的期末评价成绩为=80(分);(2)①小张的期末评价成绩为=80(分);②设小王期末考试成绩为x分,根据题意,得:≥80,解得x≥84.2,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC 的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.【分析】(1)由角平分线的性质和等腰三角形的性质可得∠DAF=∠E,可证AD∥BE,可得结论;(2)先证△ABE是等边三角形,可求S△ABF的面积,即可求解.【解答】证明:(1)∵AB=BE,∴∠E=∠BAE,∵AF平分∠BAD,∴∠DAF=∠BAE,∴∠DAF=∠E,∴AD∥BE,又∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵AB=BE,∠E=60°,∴△ABE是等边三角形,∴BA=AE=6,∠BAE=60°,又∵BF⊥AE,∴AF=EF=3,∴BF===3,∴S△ABF=AF×BF=×3×3=,∴▱ABCD的面积=2×S△ABF=9.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)【分析】(1)直接利用二月销量×(1+x)2=四月的销量进而求出答案.(2)首先设出未知数,再利用每袋的利润×销量=总利润列出方程,再解即可.【解答】解:(1)设三、四这两个月的月平均增长率为x.由题意得:192(1+x)2=300,解得:x1=,x2=﹣(不合题意,舍去),答:三、四这两个月的月平均增长率为25%.(2)设当农产品每袋降价m元时,该淘宝网店五月份获利3250元.根据题意可得:(40﹣25﹣m)(300+5m)=3250,解得:m1=5,m2=﹣50(不合题意,舍去).答:当农产品每袋降价5元时,该淘宝网店五月份获利3250元.23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=3;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.【分析】(1)把(4,0)代入y=﹣x+b即可求得b的值;(2)过点D作DE⊥x轴于点E,证明△OAB≌△EDA,即可求得AE和DE的长,则D 的坐标即可求得;(3)分当OM=MB=BN=NO时;当OB=BN=NM=MO=3时两种情况进行讨论.【解答】解:(1)把(4,0)代入y=﹣x+b,得:﹣3+b=0,解得:b=3,故答案是:3;(2)如图1,过点D作DE⊥x轴于点E,∵正方形ABCD中,∠BAD=90°,∴∠1+∠2=90°,又∵直角△OAB中,∠1+∠3=90°,∴∠1=∠3,在△OAB和△EDA中,,∴△OAB≌△EDA,∴AE=OB=3,DE=OA=4,∴OE=4+3=7,∴点D的坐标为(7,4);(3)存在.①如图2,当OM=MB=BN=NM时,四边形OMBN为菱形.则MN在OB的中垂线上,则M的纵坐标是,把y=代入y=﹣x+3中,得x=2,即M的坐标是(2,),则点N的坐标为(﹣2,).②如图3,当OB=BN=NM=MO=3时,四边形BOMN为菱形.∵ON⊥BM,∴ON的解析式是y=x.根据题意得:,解得:.则点N的坐标为(,).综上所述,满足条件的点N的坐标为(﹣2,)或(,).1、三人行,必有我师。

人教版八年级下册数学《期中考试试卷》含答案

人教版八年级下册数学《期中考试试卷》含答案
D、 = ,被开方数是3;故本选项正确;
故选D.
【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
4.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()
A.变小B.不变C.变大D.无法判断
7.下列命题是假命题的为()
A. 直角三角形中两条直角边的平方和等于斜边的平方
B. 一组对边相等,一组对角相等的四边形是平行四边形
C. 三角形 中位线平行于三角形的第三边
D. 对角线相等且互相平分的四边形是矩形
8.如图,在▱ABCD中,AB=3,AD=5,∠ABC的平分线交AD于E,交CD的延长线于点F,则DF=()
(3)若点P在射线OA上运动,恰好使得∠OEF=30°时,猜想此时线段CF,AE,OE之间有怎样 数量关系,直接写出结论不必证明.
答案与解析
一.选择题
1.下列二次根式中,是最简二次根式的是()
A. B. C. D.
【答案】D
【解析】
【分析】
利用最简二次根式的定义判断即可.
【详解】A、 =3,不合题意,
13.如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,∠AOD=120°,则BC的长为_____cm.
14.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.
27.如图,在矩形ABCD中,AB=5,BC=4,将矩形ABCD翻折,使得点B落在CD边上 点E处,折痕AF交BC于点F,求FC的长.

2021年新人教版八年级下册数学期中测试题(含答案)

2021年新人教版八年级下册数学期中测试题(含答案)

2020-2021学年八年级(下)期中数学试卷一、选择题(本大题共10个小题,满分30分)1.(3分)若x=﹣3可以使一个二次根式有意义,这个二次根式可以是()A.B.C.D.2.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.3.(3分)以下列长度的线段为边,不能构成直角三角形的是()A.2,3,4B.1,1,C.D.5,12,13 4.(3分)如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO5.(3分)下列命题中正确的是()A.对角线互相平分的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线互相垂直平分的四边形是菱形6.(3分)如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误7.(3分)下列计算正确的是()A.﹣=B.3×2=6C.(2)2=16D.=18.(3分)如图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2B.3C.12﹣4D.6﹣69.(3分)若=a,=b,则=()A.B.C.D.10.(3分)在△ABC中,AB=15,AC=13,高AD=12,则△ABC中BC边的长为()A.9B.5C.14D.4或14二、填空题(每小题3分,共15分)11.(3分)式子有意义,则x的取值范围是.12.(3分)命题“全等三角形对应角相等”的逆命题是,它是一个(填“真”或“假”)命题.13.(3分)已知,则x+y=.14.(3分)如图,在△ABC中,∠ACB=58°,D,E分别是AB,AC中点.点F在线段DE上,且AF⊥CF,则∠F AE=°.15.(3分)如图,长方形纸片ABCD中,AB=6cm,BC=8cm.点E是BC边上一点,连接AE并将△AEB沿AE折叠,得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为cm.三、解答题(本大题共8个小题,满分75分)16.(8分)计算:(1)2+3﹣﹣;(2)(7+4)(7﹣4)﹣(﹣1)2.17.(9分)先化简,再求值:已知a=8,b=2,试求a+﹣+的值.18.(9分)已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,求∠BAE的度数.19.(9分)如图,已知平行四边形ABCD中,E、F是对角线BD上的两个点,且BE=DF.求证:四边形AECF为平行四边形.20.(9分)如图:正方形网格中每个小方格的边长为1,且点A、B、C均为格点.(1)求△ABC的面积;(2)通过计算判断△ABC的形状;.(3)求AB边上的高.21.(10分)【阅读材料】嘉嘉在学习二次根式时,发现一些含根号的式子可以化成另一个式子的平方,如:5+2=(2+3)+2=()2+()2+2×=(+)2;8+2=(1+7)+2=12+()2+2×1×=(1+)2.【类比归纳】(1)请你仿照嘉嘉的方法将20+10化成另一个式子的平方;(2)请运用嘉嘉的方法化简:.【变式探究】若a±2=(±)2,且a,m,n均为正整数,则a=.22.(10分)如图,在矩形ABCD中,AB=16cm,AD=6cm,动点P、Q分别从A、C同时出发点P以每秒3cm的速度向B移动,一直达到B止,点Q以每秒2cm的速度向D移动.(1)P、Q两点出发后多少秒时,四边形PBCQ的面积为36cm2;(2)P、Q两点出发后多少秒时,四边形PBCQ是矩形;(3)是否存在某一时刻,使四边形PBCQ为正方形?23.(11分)如图,四边形ABCD是边长为1的正方形,分别延长BD,DB至点E,F,且BF=DE=.连接AE,AF,CE,CF.(1)求证:四边形AECF是菱形;(2)求四边形AECF的面积;(3)如果M为AF的中点,P为线段EF上的一动点,求P A+PM的最小值.参考答案与试题解析一、选择题(本大题共10个小题,满分30分)1.(3分)若x=﹣3可以使一个二次根式有意义,这个二次根式可以是()A.B.C.D.【分析】根据二次根式有意义的条件即可判断.【解答】解:(A)1+x≥0,x≥﹣1,故x=﹣3不能使该二次根式有意义;(B)2x+5≥0,x≥﹣,故x=﹣3不能使该二次根式有意义;(C)3x﹣4≥0,x≥,故x=﹣3不能使该二次根式有意义;(D)4﹣x≥0,x≤4,故x=﹣3能使该二次根式有意义;故选:D.2.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】根据同类二次根式的意义,将选项中的根式化简,找到被开方数为6者即可.【解答】解:A.,与的被开方数不同,故不是同类二次根式;B.,与的被开方数不同,故不是同类二次根式;C.,与的被开方数相同,是同类二次根式;D.与的被开方数不同,故不是同类二次根式.故选:C.3.(3分)以下列长度的线段为边,不能构成直角三角形的是()A.2,3,4B.1,1,C.D.5,12,13【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【解答】解:A、∵22+32=13≠42,∴不能构成直角三角形,故本选项符合要求;B、∵12+12=()2,∴能构成直角三角形,故本选项不符合要求;C、∵()2+()2=()2,∴能构成直角三角形,故本选项不符合要求;D、∵52+122=132,∴能构成直角三角形,故本选项不符合要求.故选:A.4.(3分)如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.5.(3分)下列命题中正确的是()A.对角线互相平分的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线互相垂直平分的四边形是菱形【分析】根据矩形、正方形、平行四边形、菱形的判定定理判断即可.【解答】解:A、对角线互相平分且相等的四边形是矩形,本选项错误;B、对角线互相垂直平分且相等的四边形是正方形,本选项错误;C、对角线互相平分的四边形是平行四边形,本选项错误;D、对角线互相垂直平分的四边形是菱形,本选项正确;故选:D.6.(3分)如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误【分析】首先证明△AOE≌△COF(ASA),可得AE=CF,再根据一组对边平行且相等的四边形是平行四边形可判定判定四边形AECF是平行四边形,再由AC⊥EF,可根据对角线互相垂直的四边形是菱形判定出AECF是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.【解答】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.7.(3分)下列计算正确的是()A.﹣=B.3×2=6C.(2)2=16D.=1【分析】根据二次根式的混合运算法则计算,判断即可.【解答】解:与不是同类二次根式,不能合并,A错误;3×2=6,B正确;(2)2=8,C错误;=,D错误;故选:B.8.(3分)如图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2B.3C.12﹣4D.6﹣6【分析】过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC =60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.【解答】解:如图,过点B作BH⊥AC于H,交GF于K,∵△ABC是等边三角形,∴∠A=∠ABC=60°,∵BD=BE,∴△BDE是等边三角形,∴∠BDE=60°,∴∠A=∠BDE,∴AC∥DE,∵四边形DEFG是正方形,GF=6,∴DE∥GF,∴AC∥DE∥GF,∴KH=18×﹣6×﹣6=9﹣3﹣6=6﹣6,∴F点到AC的距离为6﹣6.故选:D.9.(3分)若=a,=b,则=()A.B.C.D.【分析】先将被开方数0.9化成分数,观察四个选项,再化简为,开方,注意要把化为,代入即可.【解答】解:=====;故选:C.10.(3分)在△ABC中,AB=15,AC=13,高AD=12,则△ABC中BC边的长为()A.9B.5C.14D.4或14【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=BD﹣CD.【解答】解:(1)如图,锐角△ABC中,AC=13,AB=15,BC边上高AD=12,∵在Rt△ACD中AC=13,AD=12,∴CD2=AC2﹣AD2=132﹣122=25,∴CD=5,在Rt△ABD中AB=15,AD=12,由勾股定理得BD2=AB2﹣AD2=152﹣122=81,∴BD=9,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AC=13,AB=15,BC边上高AD=12,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,在Rt△ABD中AB=15,AD=12,由勾股定理得BD2=AB2﹣AD2=152﹣122=81,∴BD=9,∴BC的长为DB﹣CD=9﹣5=4.故选:D.二、填空题(每小题3分,共15分)11.(3分)式子有意义,则x的取值范围是x≤1且x≠0.【分析】根据分式、二次根式有意义的条件解答:分式的分母不为0、二次根式的被开方数是非负数.【解答】解:根据题意,得1﹣x≥0且x≠0,解得,x≤1且x≠0,故答案是:x≤1且x≠0.12.(3分)命题“全等三角形对应角相等”的逆命题是对应角相等的三角形是全等三角形,它是一个假(填“真”或“假”)命题.【分析】根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题,进而判断它的真假.【解答】解:命题“全等三角形对应角相等”的题设是“全等三角形”,结论是“对应角相等”,故其逆命题是对应角相等的三角形是全等三角形,它是一个假命题.13.(3分)已知,则x+y=1.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵,∴,解得,则x+y=﹣1+2=1,故答案为1.14.(3分)如图,在△ABC中,∠ACB=58°,D,E分别是AB,AC中点.点F在线段DE上,且AF⊥CF,则∠F AE=61°.【分析】由点D,E分别是AB,AC的中点可EF是三角形ABC的中位线,所以EF∥BC,再有平行线的性质和在直角三角形中,斜边上的中线等于斜边的一半的性质可证明三角形EFC是等腰三角形,利用等腰三角形的性质可求出∠ECF的度数,进而求出∠F AE的度数.【解答】解:∵D,E分别是AB,AC的中点,∴EF是三角形ABC的中位线,∴EF∥BC,∴∠EFC=∠ECF,∵AF⊥CF,∴∠AFC=90°,∵E为AC的中点,∴EF=AC,AE=CE,∴EF=CE,∴∠EFC=∠ECF,∴∠ECF=∠EFC=∠ACB=29°,∴∠F AE的度数为90°﹣29°=61°,故答案为:61.15.(3分)如图,长方形纸片ABCD中,AB=6cm,BC=8cm.点E是BC边上一点,连接AE并将△AEB沿AE折叠,得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为3或6cm.【分析】分①∠B′EC=90°时,根据翻折变换的性质求出∠AEB=45°,然后判断出△ABE是等腰直角三角形,从而求出BE=AB;②∠EB′C=90°时,∠AB′E=90°,判断出A、B′、C在同一直线上,利用勾股定理列式求出AC,再根据翻折变换的性质可得AB′=AB,BE=B′E,然后求出B′C,设BE=B′E=x,表示出EC,然后利用勾股定理列出方程求解即可.【解答】解:①∠B′EC=90°时,如图1,∠BEB′=90°,由翻折的性质得∠AEB=∠AEB′=×90°=45°,∴△ABE是等腰直角三角形,∴BE=AB=6cm;②∠EB′C=90°时,如图2,由翻折的性质∠AB′E=∠B=90°,∴A、B′、C在同一直线上,AB′=AB,BE=B′E,由勾股定理得,AC===10cm,∴B′C=10﹣6=4cm,设BE=B′E=x,则EC=8﹣x,在Rt△B′EC中,B′E2+B′C2=EC2,即x2+42=(8﹣x)2,解得x=3,即BE=3cm,综上所述,BE的长为3或6cm.故答案为:3或6.三、解答题(本大题共8个小题,满分75分)16.(8分)计算:(1)2+3﹣﹣;(2)(7+4)(7﹣4)﹣(﹣1)2.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和完全平方公式计算.【解答】解:(1)原式=4+2﹣﹣=2;(2)原式=49﹣48﹣(3﹣2+1)=1﹣4+2=2﹣3.17.(9分)先化简,再求值:已知a=8,b=2,试求a+﹣+的值.【分析】先把二次根式化成最简二次根式,然后合并同类二次根式,再代入求值.【解答】解:a+﹣+=+2﹣+=+3当a=8,b=2时,原式=+3=+3=418.(9分)已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,求∠BAE的度数.【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=(180°﹣45°)=67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.19.(9分)如图,已知平行四边形ABCD中,E、F是对角线BD上的两个点,且BE=DF.求证:四边形AECF为平行四边形.【分析】连接对角线AC交对角线BD于点O,运用OA=OC,OE=OF,即可判定四边形AECF是平行四边形;【解答】证明:连接对角线AC交对角线BD于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E,F是对角线BD上的两点,且BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形.20.(9分)如图:正方形网格中每个小方格的边长为1,且点A、B、C均为格点.(1)求△ABC的面积;(2)通过计算判断△ABC的形状;.(3)求AB边上的高.【分析】(1)由矩形的面积减去三个直角三角形的面积即可;(2)由勾股定理和勾股定理的逆定理即可得出结论;(3)由三角形的面积即可得出结果.【解答】解:(1)△ABC的面积=4×4﹣×4×2﹣×2×1﹣×3×4=5;(2)由勾股定理得:AC2=42+22=20,BC2=22+12=5,AB2=32+42=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(3)∵AC==2,BC=,△ABC是直角三角形,∴AB边上的高===2.21.(10分)【阅读材料】嘉嘉在学习二次根式时,发现一些含根号的式子可以化成另一个式子的平方,如:5+2=(2+3)+2=()2+()2+2×=(+)2;8+2=(1+7)+2=12+()2+2×1×=(1+)2.【类比归纳】(1)请你仿照嘉嘉的方法将20+10化成另一个式子的平方;(2)请运用嘉嘉的方法化简:.【变式探究】若a±2=(±)2,且a,m,n均为正整数,则a=22或10.【分析】【类比归纳】(1)结合题目给的例子,利用完全平方公式易得;(2)利用完全平方公式求解;【类比归纳】把右边等式展开可得到m+n=a,mn=21,利用整式的特征得到mn,于是得到m+n的值.【解答】解:【类比归纳】(1);(2);【类比归纳】∵,∴m+n=a,mn=21,∵a,m,n均为正整数,∴mn=1×21=3×7,∴a=22或10.故答案为:22或10.22.(10分)如图,在矩形ABCD中,AB=16cm,AD=6cm,动点P、Q分别从A、C同时出发点P以每秒3cm的速度向B移动,一直达到B止,点Q以每秒2cm的速度向D移动.(1)P、Q两点出发后多少秒时,四边形PBCQ的面积为36cm2;(2)P、Q两点出发后多少秒时,四边形PBCQ是矩形;(3)是否存在某一时刻,使四边形PBCQ为正方形?【分析】(1)先求出CD=16,BC=6,再由运动得出CQ=2t,BP=16﹣3t,根据梯形PBCQ的面积为36,建立方程求解即可得出结论;(2)由四边形PBCQ是矩形,得出BP=CQ,进而建立方程求解即可得出结论;(3)由(2)求出CQ=,进而判断出CQ≠BC,即可得出结论.【解答】解:(1)在矩形ABCD中,CD=AB=16,BC=AD=6,由运动知,AP=3t,CQ=2t,∴BP=AB﹣AP=16﹣3t,∵四边形PBCQ的面积为36cm2,∴(16﹣3t+2t)×6=36,∴t=4,∴P、Q两点出发后4秒时,四边形PBCQ的面积为36cm2;(2)∵四边形PBCQ是矩形,∴BP=CQ,∴16﹣3t=2t,∴t=,∴P、Q两点出发后秒时,四边形PBCQ是矩形;(3)由(2)知,t=秒时,四边形PBCQ是矩形,∴CQ=2t=,∵BC=6,∴CQ≠BC,∴不存在某一时刻,使四边形PBCQ为正方形.23.(11分)如图,四边形ABCD是边长为1的正方形,分别延长BD,DB至点E,F,且BF=DE=.连接AE,AF,CE,CF.(1)求证:四边形AECF是菱形;(2)求四边形AECF的面积;(3)如果M为AF的中点,P为线段EF上的一动点,求P A+PM的最小值.【分析】(1)连接AC交BD于O,根据正方形的性质得到BD⊥AC,BO=DO,AO=CO,根据菱形的判定定理即可得到结论;(2)根据勾股定理得到BD=AC=,根据菱形的面积公式即可得到结论;(3)根据菱形的性质得到点A与点C关于直线EF对称,连接CM交EF于P,则此时,P A+PM=CM最小,过C作CN⊥AF于N,根据勾股定理列方程即可得到结论.【解答】(1)证明:连接AC交BD于O,∵四边形ABCD是正方形,∴BD⊥AC,BO=DO,AO=CO,∵BF=DE=,∴OE=OF,∴四边形AECF是菱形;(2)解:∵四边形ABCD是边长为1的正方形,∴AB=AD=1,∴BD=AC=,∴EF=3,∴四边形AECF的面积=AC•EF=×3=3;(3)解:∵四边形AFCE是菱形,∴点A与点C关于直线EF对称,连接CM交EF于P,则此时,P A+PM=CM最小,过C作CN⊥AF于N,则AC2﹣AN2=CN2=CF2﹣NF2,设AN=x,∴()2﹣x2=()2﹣(﹣x)2,解得:x=,∴MN=,∵CM2﹣MN2=AC2﹣AN2,∴CM2﹣()2=12﹣()2,解得:CM=,故P A+PM的最小值=.1、三人行,必有我师。

人教版八年级下册数学《期中测试卷》含答案

人教版八年级下册数学《期中测试卷》含答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有1项是符合题目要求的.1. 在下列性质中,平行四边形不一定具有的是( )A. 对边相等B. 对角互补C. 对边平行D. 对角相等2. 平行四边形的一个内角是70°,则其他三个角是( ) A. 70°,130°,130°B. 110°,70°,120°C. 110°,70°,110°D. 70°,120°,120° 3. 下列计算正确的是( ) A. 3242=122⋅ B. (9)(4)946-⨯-=-⨯-= C. 2223(3)633-=-⨯= D. 221312(1312)(1312)5-=+-= 4. 如右图要测量池塘两侧的两点A 、B 之间的距离,可以取一个能直接到达A 、B 的点C ,连结CA 、CB ,分别在线段CA 、CB 上取中点D 、E ,连结DE ,测得DE=35m ,则可得A 、B 之间的距离为( )A. 30 mB. 70 mC. 105mD. 140m5. 下列线段不能组成直角三角形的是( )A. a =3,b =4,c =5B. a =1,b 2,c 3C. a =2,b =3,c =4D. a =7,b =24,c =256. 直角三角形两直角边的长度分别为6和8,则斜边上的高为( )A. 10B. 5C. 9.6D. 4.87. 顺次连结对角线互相垂直的四边形各边中点所构成的四边形一定是( )A. 矩形B. 菱形C. 正方形D. 不确定8. 如图,在△ABC 中, 5AB =,6BC =,BC 边上的中线4=AD ,那么AC 的长是( )A. B. C. 34 D. 2139. 如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD10. 如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A. 线段EF 的长逐渐增大B. 线段EF 的长逐渐减少C. 线段EF 的长不变D. 线段EF 的长不能确定二、填空题:本大题共10小题,共30分.11. 1x -,则x 的取值范围是_______.12. 在实数范围内因式分解:23x -=________.13. 比较大小:31314. 在ABCD 中,如果∠A+∠C=140°,那么∠B=__度.15. 如图,菱形ABCD 的周长为20,点A 的坐标是(4,0),则点B 的坐标为_______.16. 在△ABC 中,∠C=90°,AC=1,BC=2,则AB 边上的中线CD=______. 17. 矩形两条对角线夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____. 18. 如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144S ===,S ,S ,则4S =_____.19. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.20. 如图,△ABC 的周长为16,D , E ,F 分别为AB , BC ,AC 的中点,M ,N ,P 分别为DE , EF ,DF 的中点,则△MNP 的周长为____;如果△ABC ,△DEF ,△MNP 分别为第1个,第2个,第3个三角形,按照上述方法继续做三角形,那么第n 个三角形的周长是___.三、解答题:本大题共6小题,共40分.21. 计算:(1)12-38+218;(2)21351136⋅÷.22. 如图,□ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F .(1)求证:BF=DE;(2)如果∠ABC=75°, ∠DBC=30°,BC=2,求BD的长.23. 如图,在平行四边形ABCD中,E、F为对角线BD上的三等分点.求证:四边形AFCE是平行四边形.24. 如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB中点,试判断△ABC的形状,并说明理由.25. 如图,矩形ABCD中,AB=8,AD=10.(1)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.求DE的长;(2)点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长;(3)M是AD上的动点,在DC 上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,请直接写出线段CT长度的最大值与最小值.26. 对于正数,用符号表示的整数部分,例如:[0.1]0=,[2.5]2=,[3]3=.点(,)A a b 在第一象限内,以A 为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直. 其中垂直于轴的边长为,垂直于轴的边长为[]1b +,那么,把这个矩形覆盖的区域叫做点A 的矩形域.例如:点3(3,)2的矩形域是一个以3(3,)2为对角线交点,长为3,宽为2的矩形所覆盖的区域,如图1所示,它的面积是6.图1 图2根据上面的定义,回答下列问题:(1)在图2所示的坐标系中画出点 的矩形域,该矩形域的面积是 ;(2)点77(2)()(0)22P Q a a >,,,的矩形域重叠部分面积为1,求的值; (3)已知点(,)(0)B m n m >在直线1y x =+上, 且点B 的矩形域的面积满足45S <<,那么的取值范围是 .(直接写出结果)四、附加题:(第1题4分,第2题6分,共10分)27. 如图,菱形ABCD 的周长为20,对角线AC 长为45,点E 、F 分别为AC 、BC 边上的动点.(1)直接写出菱形ABCD 的面积:_______;(2)直接写出BE+EF 最小值_______;并在图中作出此时的点E 和点F .∠+∠=︒28. 如图,菱形ABCD中,E为AB边上的一点,F为BC延长线上的一点,且BED F180求证:DE=DF.答案与解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有1项是符合题目要求的.1. 在下列性质中,平行四边形不一定具有的是()A. 对边相等B. 对角互补C. 对边平行D. 对角相等[答案]B[解析][分析]根据平行四边形的性质逐项排除即可.[详解]解:∵平行四边形的对边平行、对角相等、对边相等,∴选项B不正确;故答案为B.[点睛]本题考查平行四边形的性质,熟练掌握平行四边形的性质是解答本题的关键.2. 平行四边形的一个内角是70°,则其他三个角是()A. 70°,130°,130°B. 110°,70°,120°C. 110°,70°,110°D. 70°,120°,120°[答案]C[解析][分析]根据平行四边形的对角相等,邻角互补的性质确定出其他角即可.[详解]解:∵平行四边形的一个角为70°,∴邻角为110°,对角为70°,即其他三个角分别为:110°,70°,110°.故答案为C.[点睛]本题考查了平行四边形的角的性质,掌握并灵活运用平行四边形的性质是解答本题的关键.3. 下列计算正确的是( )A. 3242=122⋅B. (9)(4)946-⨯-=-⨯-=C. 2223(3)633-=-⨯=D. 221312(1312)(1312)5-=+-=[答案]D[解析][分析]根据二次根式的性质和运算法则进行排除即可.[详解]解:A. 3242=24,故A 选项错误;B. (9)(4)366 , 故B 选项错误;;; C. 22233633,故C 选项错误; D. 221312(1312)(1312)5-=+-= ,正确;故答案为D .[点睛]本题考查了二次根式的性质和运算法则,掌握二次根式的相关知识是解答本题的关键. 4. 如右图要测量池塘两侧的两点A 、B 之间的距离,可以取一个能直接到达A 、B 的点C ,连结CA 、CB ,分别在线段CA 、CB 上取中点D 、E ,连结DE ,测得DE=35m ,则可得A 、B 之间的距离为( )A. 30 mB. 70 mC. 105mD. 140m[答案]B[解析][分析] 先说明DE 是三角形的中位线,然后根据三角形的中位线定理即可解答.[详解]解:∵D 、E 分别是AC 、BC 的中点,∴DE 是△ABC 的中位线,∴AB=2DE=70m.故选B.[点睛]本题考查了三角形中位线定理的运用;确定三角形中位线并正确运用中位线定理是解答本题的关键.5. 下列线段不能组成直角三角形的是()A. a=3,b=4,c=5B. a=1,b,cC. a=2,b=3,c=4D. a=7,b=24,c=25[答案]C[解析][分析]根据勾股定理的逆定理对四个选项逐一分析即可解答.[详解]解:A、32+42=52,.能组成直角三角形;B、12+)2=)2,能组成直角三角形;C、22+32≠42:不能组成直角三角形;D、72+242=252,:能组成直角三角形.故答案为C.[点睛]本题考查的是勾股定理的逆定理的应用,掌握运用勾股定理逆定理判定三角形是否为直角三角形是解答本题的关键.6. 直角三角形两直角边的长度分别为6和8,则斜边上的高为()A. 10B. 5C. 9.6D. 4.8[答案]D[解析][分析]先根据勾股定理求出斜边的长,再运用面积法求出斜边上的高即可.[详解]解:设斜边长为c,斜边上的高为h.由勾股定理可得:c2=62+82,解得c=10,直角三角形面积S=12×6×8=12×10h,解得h=4.8.故答案为D .[点睛]本题考查了利用勾股定理的应用和利用面积法求直角三角形的高,掌握等面积法是解答本题的关键. 7. 顺次连结对角线互相垂直的四边形各边中点所构成的四边形一定是( )A. 矩形B. 菱形C. 正方形D. 不确定 [答案]A[解析][分析]根据四边形对角线互相垂直以及三角形中位线平行于第三边说明四个角都是直角即可求解.[详解]解:如图:E 、F 、G 、H 分别为各边中点∵EF ∥GH ∥DB ,EF=GH=12BD EH ∥FG ∥AC ,EH=FG=12AC , ∵DB ⊥AC.∴EF ⊥EH ,EF ⊥FG, HG ⊥EH∴四边形EFGH 是矩形故选答案为A .[点睛]本题考查的是三角形中位线定理的应用和矩形的判定,其中掌握三角形的中位线定理是解答本题的关键.8. 如图,在△ABC 中, 5AB =,6BC =,BC 边上的中线4=AD ,那么AC 的长是( )A.B. C. 34 D. 213[答案]A[解析] ∵6BC =,AD BC 是边上的中线,∴BD=3.222345+= ,222BD AD AB ∴+=∴△ABD 是直角三角形,∴AD ⊥BC ,∴AC =AB =5,故选A.9. 如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD[答案]C[解析][分析]根据矩形的判定定理逐项排除即可解答. [详解]解:由对角线相等的平行四边形是矩形,可得当AC=BD 时,能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当AB ⊥BC 时,能判定口ABCD 是矩形;由平行四边形四边形对边平行,可得AD//BC ,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD时,能判定口ABCD是矩形.故选答案为C.[点睛]本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.10. 如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B 向点C移动而点R不动时,那么下列结论成立的是().A. 线段EF的长逐渐增大B. 线段EF的长逐渐减少C. 线段EF的长不变D. 线段EF的长不能确定[答案]C[解析][分析]因为R不动,所以AR不变.根据三角形中位线定理可得EF= 12AR,因此线段EF的长不变.[详解]如图,连接AR,∵E、F分别是AP、RP的中点,∴EF为△APR的中位线,∴EF= 12AR,为定值.∴线段EF的长不改变.故选:C.[点睛]本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.二、填空题:本大题共10小题,共30分.11. ,则x的取值范围是_______.x≥[答案]1[解析]先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:,∴x-1≥0,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于0.12. 在实数范围内因式分解:23x-=________.[答案][解析][分析]运用平方差在实数范围内因式分解即可.详解]解:23x-=.故答案为.[点睛]本题考查了平方差公式法的因式分解,掌握并灵活运用平方差公式是解答本题的特点.13. 比较大小:[答案]<[解析]试题解析:∵∴14. 在ABCD中,如果∠A+∠C=140°,那么∠B=__度.[答案]110.[解析]根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.故答案110.15. 如图,菱形ABCD的周长为20,点A的坐标是(4,0),则点B的坐标为_______.[答案](0,3)[解析][分析]先根据菱形的性质确定菱形的长度,再设B点的坐标为(0,y),最后根据两点之间的距离公式即可求得B点的坐标.[详解]解:设B点的坐标为(0,y),根据菱形的性质,得AB=20÷4=5;22(0-4)(y-0)5(y>0),解得y=3所以B点坐标为(0,3).故答案为(0,3).[点睛]本题考查了菱形的性质和两点间的距离公式,掌握菱形的性质和两点间的距离公式是解答本题的关键.16. 在△ABC中,∠C=90°,AC=1,BC=2,则AB边上的中线CD=______.[答案 [解析][分析] 先运用勾股定理求出斜边AB ,然后再利用直角三角形斜边上的中线等于斜边的一半解答即可.详解]解:由勾股定理得,∵∠C=90°,CD 为AB 边上的中线,∴CD=12 ,. [点睛]本题考查的是勾股定理和直角三角形的性质,掌握直角三角形斜边上的中线是斜边的一半是解答本题的关键.17. 矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____. [答案]10[解析][分析]首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB 是等边三角形,即可解答本题.[详解]解:如图:∵四边形ABCD 是矩形,∴OA=12AC ,OB=12BD ,AC=BD ∴OA=OB ,∵∠A0B=60°,∴△AOB 是等边三角形,∴OA=OB=AB=5,∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.[点睛]本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键. 18. 如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144S ===,S ,S ,则4S =_____.[答案]169[解析][分析]利用正方形的基本性质和勾股定理的定义进行解答即可.[详解]解:S 1=9,S 2=16,S 3=144,∴所对应各边为:3,4,12.∴中间未命名的正方形边长为5.∴最大的直角三角形的面积4S =52+122=169.故答案为169.[点睛]本题考查了勾股定理的定义和正方形的基本性质,分析图形得到正方形和勾股定理的联系是解答本题的关键.19. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.[答案]13cm 119cm[解析][分析]设直角三角形的第三条边为c,分c为斜边和12cm为斜边两类进行讨论,根据勾股定理计算即可.[详解]解:设直角三角形的第三条边为c,当c为斜边时,2251213c=+=;当12cm为斜边时,22125119c=-=.故答案为:13cm或119cm[点睛]本题考查了勾股定理和直角三角形分类讨论思想.由于条件没有指明直角边和斜边,故要分类讨论,同时要注意直角三角形斜边最长,5cm不可能为斜边,故分两类讨论.20. 如图,△ABC的周长为16,D, E,F分别为AB, BC,AC的中点,M,N,P分别为DE, EF,DF的中点,则△MNP的周长为____;如果△ABC,△DEF,△MNP分别为第1个,第2个,第3个三角形,按照上述方法继续做三角形,那么第n个三角形的周长是___.[答案](1). 4(2). 52n-[解析][分析]利用中位线定理求出EF、DE、DF与AB、AC、BC的长度关系,可得△EFG的周长是△ABC周长的一半,△MNP 的周长是△DEF的周长的一半,以此类推,即可求得第n个三角形的周长.[详解]解:如图,△ABC的周长为16,D、E、F分别为AB、BC、AC的中点,∴EF、DE、DF为三角形中位线,∴EF=12AB,DE=12AC,FD=12BC∴EF+DE+DF=12(BC+AC+AB),即△DEF的周长是△ABC周长的一半同理,△MNP的周长是△DEF的周长的一半,即△MNP的周长为16×(12)2=4.以此类推,第n个小三角形的周长是第一个三角形周长的16×(12)n-1=415222n n.故答案是:52n-.[点睛]本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边且等于第三边的一半是解答本题的关键.三、解答题:本大题共6小题,共40分.21. 计算:(1;(2[答案](1)(2)[解析][分析](1)先运用二次根式的性质进行化简,然后再按二次根式加减运算法则进行计算即可;(2)先将被开房数化为假分数,然后再按二次根式乘除运算法则进行计算即可.详解]解:(1==(25736355637=[点睛]本题考查了二次根式加减、乘除混合运算,掌握相关运算法则是解答本题的关键.22. 如图,□ABCD中,AE⊥BD于点E,CF⊥BD于点F.(1)求证:BF=DE;(2)如果∠ABC=75°, ∠DBC=30°,BC=2,求BD的长.[答案](1)证明见解析;(23+1.[解析][分析](1)根据矩形的性质和已知条件证得△ADE≌△CBF,再利用全等三角形的性质即可证明;(2)先根据矩形的性质、勾股定理等知识求得AE的长,进而求得DE和BD的长.[详解](1)证明:∵□ABCD,∴AD∥BC,AD=BC.∴∠ADE=∠CBF.∵AE⊥BD于点E,CF⊥BD于点F,∴∠AED=∠CFB=90°.在△ADE和△CBF中,∠AED=∠BFC,∠ADE=∠CBF,|AD=BC∴△ADE≌△CBF(AAS)∴DE=BF(2)解:∵∠ABC=75°,∠DBC=30°,∴∠ABE=750-30°=45.∵AB∥CD,∴∠ABE=∠BDC=45°,∵AD=BC=2,∠ADE=∠CBF=30°,∴在Rt△ADE中,AE=1,413.在Rt△AEB中,∠ABE=∠BAE=45°故AE=BE=1.则3+1.[点睛]本题主要考查了平行四边形的性质、全等三角形的判定与性质、勾股定理等知识,弄清题意、证得△ADE ≌△CBF 是解答本题关键.23. 如图,在平行四边形ABCD 中,E 、F 为对角线BD 上的三等分点.求证:四边形AFCE 是平行四边形.[答案]证明见解析[解析][分析]根据题意与平行四边形的性质得∠ADB=∠DBC,DA=BC,DE=BF ,则△ADE ≌△CBF ,所以AE=CF,同理可证得AF=CE,故可得四边形AFCE 是平行四边形.[详解]证明:∵四边形ABCD 平行四边形,∴∠ADB=∠DBC,DA=BC,∵E,F 为BD 的三等分点,∴DE=BF,在△ADE 和△CBF 中,DA BC ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CBF(SAS),∴AE=CF,同理△CDE ≌△ABF,∴AF=CE,∴四边形AFCE 是平行四边形.[点睛]本题考查平行四边形的判定与性质和全等三角形的判定与性质,解此题的关键在于灵活运用平行四边形的性质来证明三角形全等,再利用全等三角形的性质证明已知四边形为平行四边形.24. 如图,四边形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于E .(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.[答案](1)证明见解析;(2)△ABC是直角三角形,理由见解析.[解析][分析](1)先证明四边形AECD是平行四边形,然后证明AE=EC即可四边形AECD是菱形;(2)先说明BE=CE、∠ACE=∠CAE,再说明BE=CE、∠ACE=∠CAE,再根据三角形内角和得到∠B+∠BCA+∠BAC=180°,进一步得到∠BCE+∠ACE=90°即∠ACB=90°,即可说明△ABC是直角三角形.[详解](1)证明:∵AB//CD,∴AE//CD,又∵CE/∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD∴∠CAE=∠CAD,又∵AD∥CE,.∠ACE=∠CAD,∴∠ACE=∠CAE,∴AE=CE,∴四边形AECD是菱形;(2)解:△ABC是直角三角形,理由如下:∵E是AB中点,∴AE=BE.又∵AE=CE,∴BE=CE,∠ACE=∠CAE,∴∠B=∠BCE,∵∠B+∠BCA+∠BAC=180°,∴2∠BCE+2∠ACE=180°∴∠BCE+∠ACE=90°,即∠ACB=90°∴△ABC是直角三角形.[点睛]本题利用了平行四边形的判定和性质、菱形的判定和性质以及三角形中位线的性质等知识点,考查知识点较多,增加了试题难度,灵活应用所学知识成为解答本题的的关键.25. 如图,矩形ABCD中,AB=8,AD=10.(1)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.求DE的长;(2)点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长;(3)M是AD上的动点,在DC 上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,请直接写出线段CT长度的最大值与最小值.[答案](1)5;(2)6或4或73;(3)12.[解析][分析](1)根据折叠的特点和勾股定理即可求出ED的长;(2)需分AP=AF;PF=AF和AP=PF三种情况分别求出PB的长即可;(3)由题意可知当点N与C重合时,CT取最大值是8;当点M与A重合时,CT取最小值为4,进而求出线段CT长度的最大值与最小值之和.[详解]解:(1)∵四边形ABCD是矩形,AB=8,AD=10∴AF=AD=10,FE=DE(折叠对称性)∵在Rt△ABF中,BF=6,AF=10∴FC=4所以在Rt △ECF 中,42+(8-DE )2=EF 2,∴DE=5;(2)当AP=AF 时,AB ⊥PF ,∴PB=BF=6;当PF=AF 时,则PB+6=10,解得PB=4;若AP=PF ,在Rt △APB 中,AP 2=PB 2+AB 2,解得PB=73. 综合可得PB=6或4或73; (3)当点N 与C 重合时,CT 最大=MD=8;当点M 与A 重合时,AT=AD=10,AB=8,CT 最小=10-6=4,∴线段CT 长度的最大值与最小值之和为12.[点睛]本题考查了矩形的性质、勾股定理的运用以及图形折叠的问题,试题考查知识点较多,增加了试题难度,灵活运用所学知识和分类讨论成为解答本题的关键..26. 对于正数,用符号表示的整数部分,例如:[0.1]0=,[2.5]2=,[3]3=.点(,)A a b 在第一象限内,以A 为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直. 其中垂直于轴的边长为,垂直于轴的边长为[]1b +,那么,把这个矩形覆盖的区域叫做点A 的矩形域.例如:点3(3,)2的矩形域是一个以3(3,)2为对角线交点,长为3,宽为2的矩形所覆盖的区域,如图1所示,它的面积是6.图1 图2根据上面的定义,回答下列问题:(1)在图2所示的坐标系中画出点 的矩形域,该矩形域的面积是 ;(2)点77(2)()(0)22P Q a a >,,,的矩形域重叠部分面积为1,求的值;(3)已知点(,)(0)B m n m >在直线1y x =+上, 且点B 的矩形域的面积满足45S <<,那么的取值范围是 .(直接写出结果)[答案](1)8;(2)所以的值为56或112;(3)45<<33m [解析][分析](1)点(2,72)的矩形域的定义,求出矩形边长分别为2,4,画出图形即可解决问题; (2)分两种情形,重叠部分在(1)中矩形的左边或右边,分别构建方程即可解决问题;(3)利用特殊值法.推出平行于y 轴的矩形的边长为3,由此即可解决问题;[详解]解:(1)点72,2⎛⎫ ⎪⎝⎭的矩形域如图所示,该该矩形域的面积是8;故答案为:8;(2)如图所示,因为点772(0)22P Q a a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,,,的矩形域重叠部分面积为1,且平行于轴的边长均为4, 所以点772(0)22P Q a a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,,,的矩形域重叠部分也是一个矩形,且平行于轴的边长为4,平行于轴的边长为14. ①当02a <<时,1124a a +=+,解得56a =; ②当2a >时,1324a a -=-,解得112a =. 所以的值为56或112. (3)当m=1时,S=3,当m=2时,S=8,∵4<S <5,∴1<m <2,∴平行于y 轴的矩形的边长为3,∴平行于x 轴的矩形的边长m 的范围为45<<33m 故答案为45<<33m . [点睛]本题考查一次函数综合题、矩形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.四、附加题:(第1题4分,第2题6分,共10分)27. 如图,菱形ABCD 的周长为20,对角线AC 长为45,点E 、F 分别为AC 、BC 边上的动点.(1)直接写出菱形ABCD 的面积:_______;(2)直接写出BE+EF 的最小值_______;并在图中作出此时的点E 和点F .[答案](1)20;(2)4,E 、F 两点的位置见解析.[解析][分析](1)如图:连接BD 交AC 于O 点,再根据菱形的性质求出AB 和OA 的长,再利用勾股定理求得OB 的长,进而求得BD 的长,最后利用菱形的面积等于对角线积的一半解答即可;(2)作DF ⊥BC 于点F ,交AC 于点E ,连接BE ,此时BE+EF=DE+EF=DF 最小,根据菱形面积即可求出DF 的长.[详解](1)解:连接BD 交AC 于O 点,∵菱形ABCD 的周长为20,对角线AC=45∴AB=BC=5,OA=5∴22525=5∴5∴菱形的面积为:11254522AC BD =20.(2)作DF⊥BC于点F,交AC于点E,连接BE,此时BE+EF=DE+EF=DF最小,∵BC•DF=S菱形ABCD=20,∴DF=20÷5=4.∴BE+EF的最小值4,E、F的位置如图所示..[点睛]本题考查了菱形的性质、勾股定理以及垂线段最短的应用,解答本题的关键在于灵活应用所学的几何知识以及数形结合思想.∠+∠=︒28. 如图,菱形ABCD中,E为AB边上的一点,F为BC延长线上的一点,且BED F180求证:DE=DF.[答案]证明见解析[解析][分析]如图,过D作DG⊥AB,DH⊥BC,再证明△ADG≌△DCH,得到DG=DH;然后再证△EDG≌△DHF,最后利用全等三角形的性质即可证明.[详解]证明:过D作DG⊥AB,DH⊥BC,∴∠DGA=∠DGE=∠DHB=∠DHF=90°∵菱形ABCD∴AB=BC=BD=AD,∠A=∠DCB∴△ADG≌△CDH(AAS)∴DG=DH∠+∠=︒,BED DEA180∵BED F180∠∴DEA=F∴△EDG≌△DHF(AAS)∴DE=DF.[点睛]本题考查了菱形的性质、全等三角形的判定与性质,解答本题的关键在于做出辅助线、借助菱形的性质证明三角形的全等.。

初二年级数学下期中考试试卷

初二年级数学下期中考试试卷

初⼆年级数学下期中考试试卷 数学被应⽤在很多不同的领域上,包括科学、⼯程、医学和经济学等,今天⼩编就给⼤家分享⼀下⼋年级数学,喜欢的来参考吧 ⼋年级数学下期中联考试卷 ⼀、选择题(本⼤题共10⼩题,每⼩题4分,共40分。

每⼩题都有四个选项,其中有且只有⼀个选项正确) 1.若⼆次根式a―2有意义,则a的取值范围是A.a≥0B.a≥2C.a>2D.a≠2 2.下列⼆次根式中,属于最简⼆次根式的是 A. B. C. D. 3.下列计算正确的是 A. B. C. D. 4. 正⽅形具有⽽菱形不⼀定具有的性质是A.四个⾓为直⾓B.对⾓线互相垂直C.对⾓线互相平分D.对边平⾏且相等 5.如图所⽰,在数轴上点A所表⽰的数为a,则a的值为A.﹣B.1﹣C.﹣1﹣D.﹣1+ 6. 以下各组数据为三⾓形的三边长,能构成直⾓三⾓形的是A.2,2,4B.2,3,4C.2,2,1D.4,5,6 7.化简(3―2)2002•(3+2)2003的结果为A.―1B.3+2C.3―2D.―3―2 8. 如图1,在△ABC中,∠C=90°,AC=2,点D在BC边上, ∠ADC=2∠B,AD= ,则BC的长为A. ﹣1B. +1C. ﹣1D. +1 9.如图2,在正⽅形ABCD的外侧作等边三⾓形DCE,若∠AED=15°, 则∠EAC=( )A.15°B.28°C.30°D.45° 10.若a=2016×2018-2016×2017, b=2015×2016-2013×2017,, 则a,b,c的⼤⼩关系是 A.a ⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分) 11.计算: = ; = . 12.在△ABC中,D,E分别是边AB,AC的中点,若BC=4,则DE=_______. 13.如图3,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE= cm. 14.在中,,分别以AB、AC为边向外作正⽅形,⾯积分别记为 . 若,则BC=______. 15.如图4,已知正⽅形ABCD的边长为4,对⾓线AC与BD相交于点O,点E在DC 边的延长线上.若∠CAE=15°,则CE= . 16.公元3世纪,我国古代数学家刘徽就能利⽤近似公式a 2+r≈a+r2a得到2的近似值.他 的算法是:先将2看成12+1,由近似公式得2≈1+12×1=32;再将2看成 (32)2+(-14),由近似公式得2≈32+-142×32=1712;......依此算法,所得2的近似 值会越来越精确.当2取得近似值577408时,近似公式中的a是__________,r是__________. 三、解答题(本⼤题共9⼩题,共86分) 17.(本题满分12分,每⼩题6分)计算: (1)4 + ﹣ ; (2) (2 )(2 ) 18.(本题满分6分)计算: 19.(本题满分8分) 如图,在 ABCD中,E,F分别在边AD,BC上,且AE=CF,连接EF. 请你只⽤⽆刻度的直尺画出线段EF的中点O,并说明这样画的理由. 20.(本题满分8分) ,,求代数式的值 21. (本题满分8分) 古希腊的⼏何学家海伦(约公元50年)在研究中发现:如果⼀个三⾓形的三边长分别为,,,那么三⾓形的⾯积S与,,之间的关系式是 ① 请你举出⼀个例⼦,说明关系式①是正确的. 22.(本题满分8分)如图,在□ABCD中,点E,F分别是边AB,CD的中点, (1)求证:△CFB≌△AED; (2)若∠ADB=90°,判断四边形BFDE的形状,并说明理由; 23.(本题满分10分) 如图5,E,F分别是矩形ABCD的边AB,AD上的点, . (1)求证: AF=CD. (2)若AD=2,△EFC的⾯积为,求线段BE的长. 24.(本题满分12分) 如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上⼀点,过点D作DE⊥BC,交直线MN于点E,垂⾜为F,连接CD,BE (1)求证:CE=AD (2)若D为AB的中点,则∠A的度数满⾜什么条件时,四边形BECD是正⽅形?请说明理由. 25.(本题满分14分)如图6,我们把对⾓线互相垂直的四边形叫做垂美四边形 (1)概念理解:如图7,在四边形ABCD中,AB=AD,CB=CD,四边形ABCD是垂美四边形吗?请说明理由. (2)性质探究:试探索垂美四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系. 猜想结论: (要求⽤⽂字语⾔叙述).写出证明过程(先画出图形, 写出已知、求证,再证明) (3)问题解决:如图8,分别以Rt△ACB的直⾓边AC和斜边AB为边向外作正⽅形ACFG和正⽅形形ABDE,连接CE,BG,GE,若AC=4,AB=5,求GE的长. 2017-2018学年(下)六校期中联考⼋年级 数学科评分标准 ⼀、选择题(本⼤题有10⼩题,每⼩题4分,共40分.) 题号 1 2 3 4 5 6 7 8 9 10 选项 B D C A C A B D C B ⼆、填空题(本⼤题共6⼩题,每题4分,共24分) 11. ; . 12. . 13. . 14. . 15. . 16. , . 三、解答题(本⼤题共11⼩题,共86分) 17.(本题满分12分,每⼩题6分) (1)解:原式= …………… 3分 = …………… 4分 = …………… 6分 (2)解:原式= …………… 3分 = …………… 5分 = …………… 6分 注: 1.写出正确答案,⾄少有⼀步过程,不扣分. 2.只有正确答案,没有过程,只扣1分. 3.没有写出正确答案的,若过程不完整,按步给分. (以下题⽬类似) 18.(本题满分6分) 解:原式= …………… 3分 = …………… 5分 = …………… 6分 19. 20.(本题满分8分) 解:连接与相交于点,点为的中点。

北师大版数学八年级下册《期中测试题》及答案

北师大版数学八年级下册《期中测试题》及答案
(4)根据汽车出发1小时后行驶60km,摩托车1小时后行驶40km,加上20km,则两车行驶的距离相等,此时距B地40千米;故正确;
故正确的有3个,
故选B.
二、填空题(本大题7小题,每小题4分,共28分)
11.若二次根式 有意义,则 的取值范围是_____.
[答案]a≥2
[解析]
[分析]
根据二次根式有意义的条件列出不等式并求解即可.
根据两组对角分别相等的四边形是平行四边形进行判断即可.
[详解]由两组对角分别相等的四边形是平行四边形易知,
要使四边形ABCD是平行四边形需满足∠A=∠C,∠B=∠D,
因此∠A与∠C,∠B与∠D所占的份数分别相等
故选C.
4.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()
A. B. C. D.
A.5cmB.4.8cmC.4.6cmD.4cm
[答案]A
[解析]
[分析]
作AR⊥BC于R,AS⊥CD于S边形ABCD是菱形,再根据根据勾股定理求出AB即可.
[详解]解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.
由题意知:AD∥BC,AB∥CD,
5.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x+b上,则y1,y2,y3的值的大小关系是()
A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y2>y1>y3
[答案]A
[解析]
[分析]
先根据直线y=﹣x+b判断出函数图象,y随x的增加而减少,再根据各点横坐标的大小进行判断即可.
A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y2>y1>y3
6.如图,函数 和 图象相交于A(m,3),则不等式 的解集为()

2022-2023学年青岛新版八年级下册数学期中复习试卷(有答案)

2022-2023学年青岛新版八年级下册数学期中复习试卷(有答案)

2022-2023学年青岛新版八年级下册数学期中复习试卷一.选择题(共8小题,满分24分,每小题3分)1.下列语句中不是命题的是()A.对顶角相等B.过A、B两点作直线C.两点之间线段最短D.内错角相等2.如图,平行四边形ABCD中,E是AB上一点,DE、CE分别是∠ADC、∠BCD的平分线,若AD=5,DE=6,则平行四边形的面积为()A.96B.48C.60D.303.估计的值应在()A.4与5之间B.5与6之间C.6与7之间D.7与8之间4.(﹣0.36)2的平方根是()A.﹣0.6B.±0.6C.±0.36D.0.365.已知a>b,则下列不等关系中正确的是()A.ac>bc B.a+c>b+c C.a﹣1>b+1D.ac2>bc26.在数轴上点M表示的数为﹣2,与点M距离等于3个单位长度的点表示的数为()A.1B.﹣5C.﹣5或1D.﹣1或57.函数y=中自变量x的取值范围是()A.x≥1B.x≤1C.x>1D.x<18.若二次根式有意义,则x应满足的条件是()A.x=B.x<C.x≥D.x≤二.填空题(共6小题,满分18分,每小题3分)9.如图,在四边形ABCD中,AD=BC,∠DAB=50°,∠CBA=70°,P、M、N分别是AB、AC、BD的中点,若BC=6,则△PMN的周长是.10.在正方形ABCD中,点E在直线BC上,CE=AD,连接AE,则∠EAD的大小是.11.已知Rt△ABC,∠C=90°,AC=1,BC=3,则AB=.12.小明带了23元钱去买圆珠笔和铅笔共20支,每一种至少买一支,已知每支圆珠笔2元,每支铅笔1元.(1)设他买了圆珠笔x支,可列不等式.A.2x+(20﹣x)<23B.2x+(20﹣x)≤23C.2(20﹣x)+x≤23D.2(20﹣x)+x<23(2)小明共有种购买方案.A.2B.3C.4D.513.关于x的不等式组的解集如下图所示,则该不等式组的解集是.14.利用计算比较大小.三.解答题(共9小题,满分78分)15.(10分)在Rt△ABC中,∠BAC=90°,且D是BC中点,过点A作AE∥DC,取AE =DC,连接CE.(1)求证:四边形ADCE是平行四边形;(2)求证:平行四边形ADCE是菱形;(3)连接DE交AC于点O,过点O作OF⊥DC,若DF=8,AC=6,求OF.16.(10分)如图,△ABC中,AB=AC,D是AC边上的一点,CD=2,BC=2,BD =4.(1)求证:△ABD是直角三角形;(2)求△ABC的面积.17.(10分)计算:(1);(2)3﹣||.18.(6分)如图,在长50mm,宽为40mm的长方形零件上有两个小圆孔,与孔中心A、B 相关数据如图所示,求A、B间的距离.19.(10分)已知x﹣1的平方根是±3,2x+y+7的立方根是2,求7﹣x﹣y的平方根.20.(10分)某电器超市销售甲、乙两种型号的电风扇,两种型号的电风扇每台进价与售价长期保持不变,表是近两周的销售情况:销售时段销售数量销售收入甲种型号乙种型号第一周10台8台3200元第二周8台10台3100元(1)求甲、乙两种型号的电风扇的销售单价;(2)若甲型号电风扇每台进价150元,乙型号电风扇每台进价120元,现超市决定购进甲、乙两种型号的电风扇共100台,要使这100台电风扇全部售完的总利润不少于4200元,那么该超市应至少购进甲种电风扇多少台?(利润=售价﹣进价)21.(6分)解不等式组.22.(6分)如图,在△ABC中,点D,F分别为边AC,AB的中点.延长DF到点E,使DF=EF,连接BE.求证:(1)△ADF≌△BEF;(2)四边形BCDE是平行四边形.23.(10分)阅读下列解题过程,并解答问题.①;②.(1)直接写出结果=.(2)化简:;(3)比较大小:与.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:对一件事情作出判断的语句叫做命题,“两点之间线段最短,对顶角不相等,内错角相等”都对一件事情作出了判断,而“过A、B两点作直线”描述的是一种行为,没有作出判断,不是命题,故选:B.2.解:过点D作DF⊥AB于点F,∵DE、CE分别是∠ADC、∠BCD的平分线,∴∠ADE=∠CDE,∠DCE=∠BCE,∵四边形ABCD是平行四边形,∴AB∥DC,AD=BC=5,∠CDE=∠DEA,∠DCE=∠CEB,∴∠ADE=∠AED,∠BCE=∠BEC,∴DA=AE=5,BC=BE=5,∴AB=10,则DF2=DE2﹣EF2=AD2﹣AF2,故62﹣FE2=52﹣(5﹣EF)2,解得:EF=3.6,则DE==4.8,故平行四边形ABCD的面积是:4.8×10=48.故选:B.3.解:∵<<,∴6<<7,故选:C.4.解:(﹣0.36)2的平方根是±0.36,故选:C.5.解:A、不等式两边都乘以c,当c<0时,不等号的方向改变,原变形错误,故此选项不符合题意;B、不等式两边都加上c,不等号的方向不变,原变形正确,故此选项符合题意;C、不等式的两边一边加1一边减1,不等号的方向不确定,原变形错误,故此选项不符合题意;D、不等式的两边都乘以c2,当c=0时,变为等式,原变形错误,故此选项不符合题意.故选:B.6.解:与点M距离等于3个单位长度的点在M右边时,该点表示的数是﹣2+3=1;与点M距离等于3个单位长度的点在M左边时,该点表示的数是﹣2﹣3=﹣5,故选:C.7.解:由题意得:x﹣1>0,∴x>1,故选:C.8.解:∵要使有意义,∴5﹣2x≥0,解得:x≤.故选:D.二.填空题(共6小题,满分18分,每小题3分)9.解:∵P、M分别是AB、AC的中点,∴PM∥BC,PM=BC=3,∴∠APM=∠CBA=70°,同理可得:PN∥AD,PN=AD=3,∴∠BPN=∠DAB=50°,∴PM=PN=3,∠MPN=180°﹣50°﹣70°=60°,∴△PMN为等边三角形,∴△PMN的周长为9,故答案为:9.10.解:如图,当点E在BC延长线上时,在正方形ABCD中,AD=CD,∠D=90°,∴∠DAC=∠BCA=45°,∴AC=DC,∵CE=AD,∴AC=CE,∴∠E=∠CAE=BCA=22.5°,∴∠EAD=∠E=22.5°,同理,当点E在CB延长线上时,∠EAD=90°+∠E=90°+22.5°=112.5°.则∠EAD的大小是22.5°或112.5°.故答案为:22.5°或112.5°.11.解:在Rt△ABC,∠C=90°,∴AB为斜边,∵AC=1,BC=3,∴AB===.故答案为:.12.解:(1)设他买了圆珠笔x支,可列不等式2x+(20﹣x)≤23,故答案为:B;(2)由2x+(20﹣x)≤23知x≤3,又x>0且x为整数,∴x=1或x=2或x=3,即小明共有3种购买方案,故答案为:B.13.解:数轴上表示不等式解集的方法可知,此不等式组的解集为:﹣2<x≤3.故答案为:﹣2<x≤3.14.解:∵﹣=﹣===>0,∴>.故答案为:>.三.解答题(共9小题,满分78分)15.(1)证明:∵AE∥DC,AE=DC,∴四边形ADCE是平行四边形;(2)证明:∵∠BAC=90°,且D是BC中点,∴AD=BC,CD=BC,∴AD=DC,∵四边形ADCE是平行四边形,∴平行四边形ADCE是菱形;(3)解:设FC=x,FO=y,∵平行四边形ADCE是菱形,∴∠DOC=90°,∵FO⊥DC,∴可得:FO2=DF×FC,FO2+FC2=CO2,∵DF=8,AC=6,∴CO=3,即y2=8x,y2+x2=9,解得;x=1,故y=2,即OF的长为2.16.(1)证明:∵CD=2,BC=2,BD=4,∴CD2+BD2=BC2,∴△BDC是直角三角形,∴∠BDC=90°,∴△ABD是直角三角形;(2)解:设腰长AB=AC=x,在Rt△ADB中,∵AB2=AD2+BD2,∴x2=(x﹣2)2+42,解得x=5,即△ABC的面积=AC•BD=×5×4=10.17.解:(1)原式=4﹣2+=2;(2)原式=3﹣(﹣)=3﹣+=4﹣.18.解:由题意得:AC=50﹣15﹣26=9(mm),BC=40﹣18﹣10=12(mm),在△ABC中,∠ACB=90°,由勾股定理,得:AB===15(mm),答:两圆孔中心A和B的距离约为15mm.19.解:由题意得:x﹣1=9①,2x+y+7=8②,②﹣①得:x+y+8=﹣1,∴x+y=﹣9,∴7﹣x﹣y=7﹣(x+y)=16,它的平方根为±4.20.解:(1)设甲种型号的电风扇的销售单价为x元/台,乙种型号的电风扇的销售单价为y元/台,由已知得:,解得:,∴甲种型号的电风扇的销售单价为200元/台,乙种型号的电风扇的销售单价为150元/台.(2)设该超市购进甲种型号的电风扇a台,则购进乙种型号的电风扇(100﹣a)台,由题意得:(200﹣150)a+(150﹣120)(100﹣a)≥4200,解得:a≥60.答:要使这100台电风扇全部售完的总利润不少于4200元,那么该超市应至少购进甲种型号电风扇60台.21.解:解不等式4x﹣3>1,得:x>1,解不等式3(x+1)<x+9,得:x<3,则不等式组的解集为1<x<3.22.证明:(1)∵F是AB的中点,∴AF=BF,在△ADF和△BEF中,,∴△ADF≌△BEF(SAS);(2)∵点D,F分别为边AC,AB的中点,∴DF∥BC,DF=BC,∵EF=DF,∴EF=DE,∴DF+EF=DE=BC,∴四边形BCDE是平行四边形.23.解:(1)===,故答案为:;(2)=﹣1+﹣+﹣+…+=﹣1=10﹣1=9;(3)由②可得,=,=,∴>,∴<,∴<.。

人教版2020-2021学年八年级数学下学期期中检测卷 (含答案)

人教版2020-2021学年八年级数学下学期期中检测卷 (含答案)

2020-2021学年八年级(下)期中数学试卷一、选择题(本题有10个小题,每小题3分,共30分)每小题只有一个正确答案.1.(3分)要使式子有意义,则x的取值范围是()A.x≥4B.x≠4C.x<4D.x>42.(3分)下面四个图标中,中心对称图形个数是()A.0B.1个C.2个D.3个3.(3分)一组数据按从小到大排列为2,4,6,x,14,15,若这组数据的中位数为9,则x是()A.7B.9C.12D.134.(3分)若n边形的内角和等于外角和的3倍,则边数n为()A.n=6B.n=7C.n=8D.n=95.(3分)烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是()A.90分B.87分C.89分D.86分6.(3分)如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF 7.(3分)若关于x的方程kx2﹣x+3=0有实数根,则k的取值范围是()A.k≤12B.k≤C.k≤12且k≠0D.k≤且k≠0 8.(3分)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为()A.2017B.2020C.2019D.20189.(3分)一次函数y=﹣kx+k与反比例函数y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.10.(3分)如图,在▱ABCD中,点E、F分别在AD和AB上,依次连接EB、EC、FC、FD,阴影部分面积分别为S1,S2,S3,S4,已知S1=3,S2=15,S3=4,则S4的值是()A.8B.14C.16D.22二、认真填一填(本题有6个小题,每小题4分,共24分)要认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)化简:=.12.(4分)若n边形的每一个外角都等于30°,则n=.13.(4分)一组数据x1,x2,x3,…,x n的平均数为5,则数据x1+5,x2+5,x3+5,…,x n+5的平均数是.14.(4分)在▱ABCD中,∠A的平分线分BC成4cm和3cm的两条线段,则▱ABCD的周长为.15.(4分)直线y=ax(a>0)与双曲线y=相交于A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为.16.(4分)如图,反比例函数y=(x<0),△OAB和△BCD均为等腰直角三角形,点D 在反比例函数图象上,若S△OAB﹣S△BCD=10,则k=.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自已能写出的答案写出一部分也可以.17.(6分)计算下列各式:(1)﹣3+×;(2)(﹣)2+.18.(8分)解方程:(1)x2﹣8x﹣9=0;(2)2x(x﹣3)+x=3.19.(8分)如图,▱ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.20.(10分)某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100;乙组:50,60,60,60,70,70,70,70,80,90.(1)以上成绩统计分析表如表:组别平均分中位数方差合格率优秀率甲组68a37630%乙组b c90%则表中a=,b=,c=.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.21.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.22.(12分)如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y1=的图象上.一次函数y2=x+b的图象过点A,且与反比例函数图象的另一交点为B.(1)求反比例函数和一次函数的解析式;(2)连结OA和OB,求△OAB的面积;(3)根据图象直接写出y1>y2时,x的取值范围.23.(12分)如图,平行四边形ABCD中,AB=4cm,AD=2cm,∠C=30°.点P以2cm/s 的速度从顶点A出发沿折线A﹣B﹣C向点C运动,同时点Q以1cm/s的速度从顶点A 出发沿折线A﹣D﹣C向点C运动,当其中一个动点到达末端停止运动时,另一点也停止运动.设运动时间为ts.(1)求平行四边形ABCD的面积;(2)求当t=0.5s时,△APQ的面积;(3)当△APQ的面积是平行四边形ABCD面积的时,求t的值.参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)每小题只有一个正确答案.1.(3分)要使式子有意义,则x的取值范围是()A.x≥4B.x≠4C.x<4D.x>4【分析】根据二次根式有意义的条件求解.【解答】解:∵式子有意义,∴x﹣4≥0,∴x≥4.故选:A.2.(3分)下面四个图标中,中心对称图形个数是()A.0B.1个C.2个D.3个【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【解答】解:根据中心对称图形的定义可知从左到右第1个图形和第三个图形是中心对称图形,第二和第四个图形不是中心对称图形.故选:C.3.(3分)一组数据按从小到大排列为2,4,6,x,14,15,若这组数据的中位数为9,则x是()A.7B.9C.12D.13【分析】根据中位数为9和数据的个数,可求出x的值.【解答】解:由题意得,(6+x)÷2=9,解得:x=12,故选:C.4.(3分)若n边形的内角和等于外角和的3倍,则边数n为()A.n=6B.n=7C.n=8D.n=9【分析】根据n边形的内角和等于外角和的3倍,可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.5.(3分)烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是()A.90分B.87分C.89分D.86分【分析】利用加权平均数的计算公式直接计算即可求得答案.【解答】解:这位厨师的最后得分为:=90(分).故选:A.6.(3分)如图所示,在▱ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF 【分析】根据平行四边形的判定和题中选项,逐个进行判断即可.【解答】解:A、∵四边形ABCD是平行四边形,∴OD=OB,又∵OE=OF∴四边形DEBF是平行四边形.能判定是平行四边形.B、DE=BF,OD=OB,缺少夹角相等.不能利用全等判断出OE=OF∴四边形DEBF不一定是平行四边形.C、在△ADE和△CBF中,∵∠ADE=∠CBF,AD=BC,∠DAE=∠BCF,∴△ADE≌△CBF,∴AE=CF,∴OE=OF,故C能判定是平行四边形;D、同理△ABE≌△CDF,∴AE=CF,∴OE=OF,故D能判定是平行四边形故选:B.7.(3分)若关于x的方程kx2﹣x+3=0有实数根,则k的取值范围是()A.k≤12B.k≤C.k≤12且k≠0D.k≤且k≠0【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【解答】解:当k=0时,﹣x+3=0,解得x=3,当k≠0时,方程kx2﹣x+3=0是一元二次方程,根据题意可得:△=1﹣4k×3≥0,解得k≤,k≠0,综上k≤,故选:B.8.(3分)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为()A.2017B.2020C.2019D.2018【分析】对于一元二次方程a(x﹣1)2+b(x﹣1)+21=0,设t=x﹣1得到at2+bt+2=0,利用at2+bt+2=0有一个根为t=2019得到x﹣1=2019,从而可判断一元二次方程a(x ﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.【解答】解:对于一元二次方程a(x﹣1)2+b(x﹣1)+2=0,设t=x﹣1,所以at2+bt+2=0,而关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,所以at2+bt+2=0有一个根为t=2019,则x﹣1=2019,解得x=2020,所以一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.故选:B.9.(3分)一次函数y=﹣kx+k与反比例函数y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:A、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k 的图象经过一、二、四象限,故本选项错误;B、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k的图象经过一、二、四象限,故本选项正确;C、∵由反比例函数的图象在二、四象限可知,k<0,∴一次函数y=﹣kx+k的图象经过一、三、四象限,故本选项错误;D、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k的图象经过一、二、四象限,故本选项错误.故选:B.10.(3分)如图,在▱ABCD中,点E、F分别在AD和AB上,依次连接EB、EC、FC、FD,阴影部分面积分别为S1,S2,S3,S4,已知S1=3,S2=15,S3=4,则S4的值是()A.8B.14C.16D.22【分析】阴影部分S2是三角形CDF与三角形CBE的公共部分,而S1,S4,S3这三块是平行四边形中没有被三角形CDF与三角形CBE盖住的部分,故△CDF面积+△CBE面积+(S1+S4+S3)﹣S2=平行四边形ABCD的面积,而△CDF与△CBE的面积都是平行四边形ABCD面积的一半,据此求得S4的值.【解答】解:设平行四边形的面积为S,则S△CBE=S△CDF=S,由图形可知,△CDF面积+△CBE面积+(S1+S4+S3)﹣S2=平行四边形ABCD的面积,∴S=S△CBE+S△CDF+3+S4+4﹣15,即S=S+S+3+S4+4﹣15,解得S4=8,故选:A.二、认真填一填(本题有6个小题,每小题4分,共24分)要认真看清题目的条件和要填写的内容,尽量完整的填写答案.11.(4分)化简:=+.【分析】把分子分母都乘以+,然后利用平方差公式计算.【解答】解:原式==.故答案为+.12.(4分)若n边形的每一个外角都等于30°,则n=12.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数n.【解答】解:多边形的边数n:360°÷30°=12,则n=12.故答案为:12.13.(4分)一组数据x1,x2,x3,…,x n的平均数为5,则数据x1+5,x2+5,x3+5,…,x n+5的平均数是10.【分析】根据平均数的性质知,要求x1+5,x2+5,x3+5,…,x n+5的平均数,只要把数x1,x2,x3,…,x n的和表示出即可.【解答】解:∵x1,x2,x3,…,x n的平均数为5∴x1+x2+x3+…+x n=5n,∴x1+5,x2+5,x3+5,…,x n+5的平均数为:=(x1+5+x2+5+x3+5+…+x n+5)÷n=(5n+5n)÷n=10,故答案为:10.14.(4分)在▱ABCD中,∠A的平分线分BC成4cm和3cm的两条线段,则▱ABCD的周长为22cm或20cm.【分析】∠A的平分线分BC成4cm和3cm的两条线段,设∠A的平分线交BC于E点,有两种可能,BE=4或3,证明△ABE是等腰三角形,分别求周长.【解答】解:设∠A的平分线交BC于E点,∵AD∥BC,∴∠BEA=∠DAE,又∠BAE=∠DAE,∴∠BEA=∠BAE∴AB=BE.而BC=3+4=7.①当BE=4时,AB=BE=4,▱ABCD的周长=2×(AB+BC)=2×(4+7)=22;②当BE=3时,AB=BE=3,▱ABCD的周长=2×(AB+BC)=2×(3+7)=20.所以▱ABCD的周长为22cm或20cm.故答案为22cm或20cm.15.(4分)直线y=ax(a>0)与双曲线y=相交于A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为﹣6.【分析】先根据点A(x1,y1),B(x2,y2)是双曲线y=上的点可得出x1•y1=x2•y2=3,再根据直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点可得出x1=﹣x2,y1=﹣y2,再把此关系代入所求代数式进行计算即可.【解答】解:∵点A(x1,y1),B(x2,y2)是双曲线y=上的点,∴x1•y1=x2•y2=3,∵直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,∴x1=﹣x2,y1=﹣y2,∴原式=﹣x1y1﹣x2y2=﹣3﹣3=﹣6.故答案为:﹣6.16.(4分)如图,反比例函数y=(x<0),△OAB和△BCD均为等腰直角三角形,点D 在反比例函数图象上,若S△OAB﹣S△BCD=10,则k=﹣20.【分析】根据题意列式表示出D点的坐标,然后在根据k的几何意义即可求出答案.【解答】解:设AO=a,CD=b,∵△OAB和△BCD均为等腰直角三角形,∴AO=AB=a,BO=a,CD=BC=b,DB=b,∴D(﹣a﹣b,a﹣b),∵点D在反比例函数图象上,∴(﹣a﹣b)(a﹣b)=k,即b2﹣a2=k,又∵S△OAB﹣S△BCD=10,即,∴﹣k=20,∴k=﹣20.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自已能写出的答案写出一部分也可以.17.(6分)计算下列各式:(1)﹣3+×;(2)(﹣)2+.【分析】(1)先利用二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可;(2)利用完全平方公式计算.【解答】解:(1)原式=6﹣6+=;(2)原式=2﹣2+3+2=5.18.(8分)解方程:(1)x2﹣8x﹣9=0;(2)2x(x﹣3)+x=3.【分析】(1)方程利用因式分解法求出解即可;(2)方程整理后,利用因式分解法求出解即可.【解答】解:(1)分解因式得:(x﹣9)(x+1)=0,可得x﹣9=0或x+1=0,解得:x1=9,x2=﹣1;(2)移项得:2x(x﹣3)+(x﹣3)=0,因式分解得:(x﹣3)(2x+1)=0,可得x﹣3=0或2x+1=0,解得:x1=3,x2=﹣.19.(8分)如图,▱ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.【分析】(1)先证明∠B=∠EAD,然后利用SAS可进行全等的证明;(2)证明△ABE为等边三角形,可得∠BAE=60°,求出∠BAC的度数,即可得∠AED 的度数.【解答】(1)证明:∵在平行四边形ABCD中,AD∥BC,BC=AD,∴∠EAD=∠AEB,又∵AB=AE,∴∠B=∠AEB,∴∠B=∠EAD,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS).(2)解:∵AE平分∠DAB,∴∠BAE=∠DAE,∴∠BAE=∠AEB=∠B,∴△ABE为等边三角形,∴∠BAE=60°,∴∠BAC=∠BAE+∠EAC=60°+25°=85°,∵△ABC≌△EAD,∴∠AED=∠BAC=85°.20.(10分)某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100;乙组:50,60,60,60,70,70,70,70,80,90.(1)以上成绩统计分析表如表:组别平均分中位数方差合格率优秀率甲组68a37630%乙组b c90%则表中a=60,b=68,c=70.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.【分析】(1)利用中位数的定义确定a、c的值,根据平均数的定义计算出b的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【解答】解:(1)甲组学生成绩的中位数为=60,即a=60;乙组学生成绩的平均数为(50+3×60+4×70+80+90)=68;乙组学生成绩的中位数为=70,即b=68,c=70;(2)选择乙组.理由如下:乙组学生成绩的方差为[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116,因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.21.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.【分析】(1)根据方程的系数结合根的判别式,可得出△=1>0,进而可证出方程有两个不相等的实数根;(2)利用因式分解法可求出AB,AC的长,分BC为直角边及BC为斜边两种情况,利用勾股定理可得出关于k的一元一次方程或一元二次方程,解之即可得出k值,取其正值(利用三角形的三边关系判定其是否构成三角形)即可得出结论.【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4×(k2+k)=1>0,∴方程有两个不相等的实数根.(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,解得:x1=k,x2=k+1.当BC为直角边时,k2+52=(k+1)2,解得:k=12;当BC为斜边时,k2+(k+1)2=52,解得:k1=3,k2=﹣4(不合题意,舍去).答:k的值为12或3.22.(12分)如图,已知在平面直角坐标系中,O是坐标原点,点A(2,5)在反比例函数y1=的图象上.一次函数y2=x+b的图象过点A,且与反比例函数图象的另一交点为B.(1)求反比例函数和一次函数的解析式;(2)连结OA和OB,求△OAB的面积;(3)根据图象直接写出y1>y2时,x的取值范围.【分析】(1)只需把点A的坐标代入一次函数和反比例函数的解析式,就可解决问题;(2)只需求出直线AB与y轴的交点,然后运用割补法就可解决问题;(3)观察函数图象即可求解.【解答】解:(1)∵点A(2,5)是直线y=x+b与反比例函数y=的图象的一个交点,∴5=2+b,k=2×5=10,∴b=3,即k和b的值分别为10、3,故反比例函数和一次函数的解析式分别为y1=和y2=x+3;(2)解方程组,得,∴点B(﹣5,﹣2).∵点C是直线y=x+3与y轴的交点,∴点C(0,3),∴S△OAB=S△OAC+S△OBC=×3×2+×3×5=,即△OAB的面积为;(3)观察函数图象可知,y1>y2时,x的取值范围为:x<﹣5或0<x<2.23.(12分)如图,平行四边形ABCD中,AB=4cm,AD=2cm,∠C=30°.点P以2cm/s 的速度从顶点A出发沿折线A﹣B﹣C向点C运动,同时点Q以1cm/s的速度从顶点A 出发沿折线A﹣D﹣C向点C运动,当其中一个动点到达末端停止运动时,另一点也停止运动.设运动时间为ts.(1)求平行四边形ABCD的面积;(2)求当t=0.5s时,△APQ的面积;(3)当△APQ的面积是平行四边形ABCD面积的时,求t的值.【分析】(1)过点B作BE⊥CD于点E,由30°角所对的直角边等于斜边的一半,得出平行四边形的高,再按底乘以高,即可得解;(2)过点Q作QM⊥AP,分别计算出t=0.5s时,AP,AQ和QM的长,则按三角形面积公式计算即可;(3)分点P在线段AB上,点Q在线段AD上和点P在线段BC上,点Q在线段CD上,两种情况计算即可.【解答】解:(1)平行四边形ABCD中,AB=4cm,AD=2cm∴CD=AB=4cm,BC=AD=2cm如图,过点B作BE⊥CD于点E,∵∠C=30°∴BE=BC=1cm∴平行四边形ABCD的面积为:CD×BE=4×1=4(cm2)答:平行四边形ABCD的面积为4cm2.(2)当t=0.5s时,AP=2×0.5=1cm,AQ=1×0.5=0.5cm如图,过点Q作QM⊥AP∵四边形ABCD为平行四边形,∴∠A=∠C∵∠C=30°∴∠A=30°∴QM=AQ=×0.5=(cm)∴△APQ的面积为:×AP×QM=×1×=(cm2)答:当t=0.5s时,△APQ的面积为(cm2).(3)∵由(1)知平行四边形ABCD的面积为4cm2.∴当△APQ的面积是平行四边形ABCD面积的时,△APQ的面积为:4×=(cm2)当点P在线段AB上运动t秒时,点Q在AD上运动t秒,AP=2tcm,AQ=tcm,高为=cm∴×2t×=∴t=﹣(舍)或t=∴t=时符合题意;当点P运动到线段BC上时,且运动时间为t秒时,点Q也运动到线段CD上,如图,过点P作MN垂直CD于点M,垂直于AB延长线于点N∵四边形ABCD为平行四边形,∠C=30°,∴AB∥CD∴∠PBN=∠C=30°PN=PB=(2t﹣4)=(t﹣2)(cm),PM=1﹣(t﹣2)=(3﹣t)(cm)S△APQ=4﹣×4×(t﹣2)﹣×[4﹣(t﹣2)]×[1﹣(t﹣2)]﹣(t﹣2)×1=∴4﹣2t+4﹣(6﹣t)(3﹣t)﹣+1=化简得:t2﹣4t+3=0∴(t﹣1)(t﹣3)=0∴t=1(不符合题意,舍)或t=3当t=3时,点P位于点C处,点Q位于线段CD上,符合题意.综上,t的值为或3.1、三人行,必有我师。

八年级数学期中考试试卷

八年级数学期中考试试卷

一、选择题(每题4分,共20分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…(无限循环小数)D. -√32. 已知a,b是实数,且a+b=0,那么a和b的关系是()A. a=bB. a=-bC. a和b不相等D. a和b相等或互为相反数3. 在下列各式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)² = a² - 2ab + b²D. (a-b)² = a² + 2ab - b²4. 如果等腰三角形的底边长为4cm,腰长为6cm,那么这个三角形的周长是()A. 10cmB. 12cmC. 16cmD. 20cm5. 下列函数中,图象为一条直线的是()A. y = 2x + 3B. y = x² - 1C. y = 3/xD. y = 2√x二、填空题(每题5分,共25分)6. 已知一个数的平方是25,那么这个数是______或______。

7. 如果|a| = 5,那么a的取值范围是______。

8. 在△ABC中,∠A = 45°,∠B = 60°,那么∠C的度数是______。

9. 已知等边三角形的边长为a,那么它的周长是______。

10. 函数y = 2x - 3的图象是一条直线,且斜率为______。

三、解答题(共55分)11. (10分)计算下列各式的值:(1)(-3)² - 2×(-3)×2 + 2²(2)√(49 - 14√3)12. (10分)解下列方程:(1)2x - 3 = 7(2)3(x + 2) - 2x = 513. (10分)已知等腰三角形ABC的底边AB=6cm,腰AC=8cm,求这个三角形的面积。

人教版2020年八年级下期中数学试卷(含答案)

人教版2020年八年级下期中数学试卷(含答案)

八年级(下)期中数学试卷一、选择题(10小题,每小题3分,共30分)1.下列各式是最简二次根式的是()A. B. C.D.2.式子有意义,则x的取值范围是()A.x≥2 B.x≤2 C.x≥﹣2 D.x≤﹣23.下列二次根式中与是同类二次根式是()A. B. C. D.4.用配方法解方程x2+4x﹣5=0,下列配方正确的是()A.(x+2)2=1 B.(x+2)2=5 C.(x+2)2=9 D.(x+4)2=95.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=35006.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,47.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.88.下列条件中,不能判定四边形ABCD为平行四边形的条件是()A.AB=AD,BC=CD B.∠A=∠C,∠B=∠D C.AB∥CD,AB=CD D.AB=CD,AD=BC9.已知关于x的方程kx2+(2k+1)x+(k﹣1)=0有实数根,则k的取值范围为()A.k≥﹣B.k>﹣C.k≥﹣且k≠0 D.k<﹣10.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为()A.32×20﹣32x﹣20x=540 B.(32﹣x)(20﹣x)=540C.32x+20x=540 D.(32﹣x)(20﹣x)+x2=540二、填空题(8小题,每题3分,共24分)11.计算﹣×的值是.12.当1<a<2时,代数式+|1﹣a|=.13.若方程x2﹣4x﹣5=0的两根为x1,x2,则x12+x22的值为.14.三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则此三角形周长是.15.若一直角三角形两直角边长分别为6和8,则斜边长为.16.平行四边形ABCD中,AB=3cm,∠ABC的平分线BE交AD于E,DE=1cm,则BC=.17.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积=.18.如图,在△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为.三、解答题(共6小题,19题,20题每题12分,21题,22题,23题每题10分,24题12分,共66分)19.计算:(1)(2).20.解方程(1)x2+2x﹣3=0(2)3x(x﹣2)=2(2﹣x)21.已知关于x的方程x2+(2m﹣1)x+m2=0有实数根,(1)求m的取值范围;(2)若方程的一个根为1,求m的值;(3)设α、β是方程的两个实数根,是否存在实数m使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.22.如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?23.国贸大厦销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,国贸决定采取适当的降价措施.经调查发现,如果这种衬衫的售价每降低1元,那么国贸平均每天可多售出2件.国贸若要平均每天盈利1200元,每件衬衫应降价多少元?24.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.市八年级(下)期中数学试卷参考答案与试题解析一、选择题(10小题,每小题3分,共30分)1.下列各式是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:=2,被开方数含能开得尽方的因数,不是最简二次根式,A不正确;是最简二次根式,B正确;=x,被开方数含能开得尽方的因数,不是最简二次根式,C不正确;被开方数含分母,不是最简二次根式,D不正确.故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.式子有意义,则x的取值范围是()A.x≥2 B.x≤2 C.x≥﹣2 D.x≤﹣2【考点】二次根式有意义的条件.【分析】因为是二次根式,所以被开方数大于或等于0,列不等式求解.【解答】解:根据二次根式的性质,被开方数大于或等于0,可知:x﹣2≥0,解得:x≥2.故选A.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.下列二次根式中与是同类二次根式是()A. B. C. D.【考点】同类二次根式.【分析】化简各选项后根据同类二次根式的定义判断.【解答】解:A、与被开方数不同,故不是同类二次根式;B、与被开方数不同,故不是同类二次根式;C、与被开方数相同,故是同类二次根式;D、与被开方数不同,故不是同类二次根式.故选C【点评】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.4.用配方法解方程x2+4x﹣5=0,下列配方正确的是()A.(x+2)2=1 B.(x+2)2=5 C.(x+2)2=9 D.(x+4)2=9【考点】解一元二次方程-配方法.【专题】探究型.【分析】先将原方程进行配方,然后选项进行对照,即可得到正确选项.【解答】解:x2+4x﹣5=0,配方,得(x+2)2=9.故选C.【点评】本题考查解一元二次方程﹣﹣﹣配方法,解题的关键是学生明确什么是配方法、如何运用配方法对一元二次方程配方.5.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=3500【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.【点评】本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).6.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,4【考点】勾股定理的逆定理.【分析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.8.下列条件中,不能判定四边形ABCD为平行四边形的条件是()A.AB=AD,BC=CD B.∠A=∠C,∠B=∠D C.AB∥CD,AB=CD D.AB=CD,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形的判断定理分别作出判断得出即可.【解答】解:A、根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形;故选项A不能判断这个四边形是平行四边形;B、根据平行四边形的判定定理:两组对角分别相等的四边形是平行四边形,故选项B能判断这个四边形是平行四边形;C、根据一组对边平行且相等的四边形是平行四边形,故选项C能判断这个四边形是平行四边形;D、根据平行四边形的判定定理:两组对边相等的四边形是平行四边形,故能判断这个四边形是平行四边形;故选:A.【点评】此题主要考查了平行四边形的判定定理,准确无误的掌握定理是解题关键.9.已知关于x的方程kx2+(2k+1)x+(k﹣1)=0有实数根,则k的取值范围为()A.k≥﹣B.k>﹣C.k≥﹣且k≠0 D.k<﹣【考点】根的判别式;一元一次方程的解.【专题】计算题;判别式法.【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【解答】解:(1)当k=0时,x﹣1=0,解得:x=1;(2)当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+(2k+1)x+(k﹣1)=0有实根,∴△=(2k+1)2﹣4k×(k﹣1)≥0,解得k≥﹣,由(1)和(2)得,k的取值范围是k≥﹣.故选A.【点评】本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.10.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为()A.32×20﹣32x﹣20x=540 B.(32﹣x)(20﹣x)=540C.32x+20x=540 D.(32﹣x)(20﹣x)+x2=540【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】设道路的宽为x,利用“道路的面积”作为相等关系可列方程(32﹣x)(20﹣x)=540.【解答】解:设道路的宽为x,根据题意得(32﹣x)(20﹣x)=540.故选B.【点评】本题考查的是根据实际问题列一元二次方程.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.二、填空题(8小题,每题3分,共24分)11.计算﹣×的值是.【考点】二次根式的混合运算.【分析】根据二次根式的混合运算顺序,首先计算乘法,然后计算减法,求出算式﹣×的值是多少即可.【解答】解:﹣×=2==即﹣×的值是.故答案为:.【点评】(1)此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式”.(2)此题还考查了平方根的性质和计算,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.12.当1<a<2时,代数式+|1﹣a|=1.【考点】二次根式的性质与化简.【分析】根据二次根式的性质=|a|进行化简即可.【解答】解:∵1<a<2,∴+|1﹣a|=2﹣a+a﹣1=1.故答案为:1.【点评】本题考查的是二次根式的化简,掌握二次根式的性质=|a|是解题的关键.13.若方程x2﹣4x﹣5=0的两根为x1,x2,则x12+x22的值为26.【考点】解一元二次方程-因式分解法;代数式求值.【专题】计算题.【分析】先利用因式分解法解方程得到x1,x2,然后利用代入法计算x12+x22的值.【解答】解:x2﹣4x﹣5=0,(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1,所以x12+x22=52+(﹣1)2=26.故答案为26.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).14.三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则此三角形周长是13.【考点】解一元二次方程-因式分解法;三角形三边关系.【专题】计算题;分类讨论.【分析】求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=4时,看看是否符合三角形三边关系定理;求出即可.【解答】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点评】本题考查了三角形的三边关系定理和解一元二次方程等知识点,关键是确定第三边的大小,三角形的两边之和大于第三边,分类讨论思想的运用,题型较好,难度适中.15.若一直角三角形两直角边长分别为6和8,则斜边长为10.【考点】勾股定理.【专题】计算题.【分析】已知两直角边求斜边可以根据勾股定理求解.【解答】解:在直角三角形中,斜边的平方等于两条直角边平方和,故斜边长==10,故答案为10.【点评】本题考查了根据勾股定理计算直角三角形的斜边,正确的运用勾股定理是解题的关键.16.平行四边形ABCD中,AB=3cm,∠ABC的平分线BE交AD于E,DE=1cm,则BC=4cm.【考点】平行四边形的性质.【分析】由平行四边形的性质和角平分线得出∠AEB=∠ABE,由等角对等边得出AE=AB=3cm,即可得出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB=3cm,∴BC=AD=AE+DE=4cm;故答案为:4cm.【点评】本题考查了平行四边形的性质、角平分线、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理论证与计算是解决问题的关键.17.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积=24.【考点】勾股定理的逆定理;勾股定理.【分析】先利用勾股定理求出AB,然后利用勾股定理的逆定理判断出△ABD是直角三角形,然后分别求出两个三角形的面积,相减即可求出阴影部分的面积.【解答】解:在RT△ABC中,AB==5,∵AD=13,BD=12,∴AB2+BD2=AD2,即可判断△ABD为直角三角形,阴影部分的面积=AB×BD﹣BC×AC=30﹣6=24.答:阴影部分的面积=24.故答案为:24.【点评】此题考查了勾股定理、勾股定理的逆定理,属于基础题,解答本题的关键是判断出三角形ABD 为直角三角形.18.如图,在△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为.【考点】三角形中位线定理;等腰三角形的判定与性质.【分析】首先根据全等三角形判定的方法,判断出△AFG≌△AFC,即可判断出FG=FC,AG=AC,所以点F是CG的中点;然后根据点E是BC的中点,可得EF是△CBG的中位线,再根据三角形中位线定理,求出线段EF的长为多少即可.【解答】解:∵AD是∠BAC的平分线,∴∠FAG=∠FAC,∵CG⊥AD,∴∠AFG=∠AFC=90°,在△AFG和△AFC中,,∴△AFG≌△AFC,∴FG=FC,AG=AC=3,∴F是CG的中点,又∵点E是BC的中点,∴EF是△CBG的中位线,∴EF==.故答案为:.【点评】(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了等腰三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.三、解答题(共6小题,19题,20题每题12分,21题,22题,23题每题10分,24题12分,共66分)19.计算:(1)(2).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先对式子进行化简,再合并同类项即可解答本题;(2)根据平方差公式对式子进行化简,然后再合并同类项即可解答本题.【解答】解:(1)==5;(2)==5﹣4﹣3+2=0.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式混合运算的计算方法.20.解方程(1)x2+2x﹣3=0(2)3x(x﹣2)=2(2﹣x)【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】(1)方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程变形后,利用因式分解法求出解即可.【解答】解:(1)分解因式得:(x﹣1)(x+3)=0,可得x﹣1=0或x+3=0,解得:x1=1,x2=﹣3;(2)方程变形得:3x(x﹣2)+2(x﹣2)=0,分解因式得:(3x+2)(x﹣2)=0,可得3x+2=0或x﹣2=0,解得:x1=﹣,x2=2.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.21.已知关于x的方程x2+(2m﹣1)x+m2=0有实数根,(1)求m的取值范围;(2)若方程的一个根为1,求m的值;(3)设α、β是方程的两个实数根,是否存在实数m使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据判别式的意义得到△=(2m﹣1)2﹣4m2≥0,然后解不等式即可;(2)把x=1代入原方程可得到关于m的一元二次方程,然后解此一元二次方程即可;(3)根据根与系数的关系得到α+β=﹣(2m﹣1),αβ=m2,利用α2+β2﹣αβ=6得到(α+β)2﹣3αβ=6,则(2m﹣1)2﹣3m2=6,然后解方程后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m﹣1)2﹣4m2≥0,解得m≤;(2)把x=1代入方程得1+2m﹣1+m2=0,解得m1=0,m2=﹣2,即m的值为0或﹣2;(3)存在.根据题意得α+β=﹣(2m﹣1),αβ=m2,∵α2+β2﹣αβ=6,∴(α+β)2﹣3αβ=6,即(2m﹣1)2﹣3m2=6,整理得m2﹣4m﹣5=0,解得m1=5,m2=﹣1,∵m≤;∴m的值为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=,反过来也成立.也考查了根的判别式.22.如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?【考点】勾股定理的应用.【专题】应用题.【分析】要求树的高度,就要求BD的高度,在直角三角形ACD中运用勾股定理可以列出方程式,CD2+AC2=AD2,其中CD=CB+BD.【解答】解:设BD高为x,则从B点爬到D点再直线沿DA到A点,走的总路程为x+AD,其中AD=而从B点到A点经过路程(20+10)m=30m,根据路程相同列出方程x+=30,可得=30﹣x,两边平方得:(10+x)2+400=(30﹣x)2,整理得:80x=400,解得:x=5,所以这棵树的高度为10+5=15m.故答案为:15m.【点评】本题考查的是勾股定理的灵活运用,要求在变通中熟练掌握勾股定理.23.国贸大厦销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,国贸决定采取适当的降价措施.经调查发现,如果这种衬衫的售价每降低1元,那么国贸平均每天可多售出2件.国贸若要平均每天盈利1200元,每件衬衫应降价多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】商场降价后每天盈利=每件的利润×卖出的件数=(40﹣降低的价格)×(20+增加的件数),把相关数值代入即可求解.【解答】解:∵每件衬衫降价1元,商场平均每天可多售出2件,∴每件衬衫降价x元,商场平均每天可多售出2x件,∵原来每件的利润为40元,现在降价x元,∴现在每件的利润为(40﹣x)元,∴y=(40﹣x)(20+2x)=﹣2x2+60x+800=1200.整理得:x2﹣30x+200=0.解得:x=10或x=20,∵为了减少库存,∴x=20答:每件衬衫应降价20元.【点评】本题考查一元二次方程的应用,重点考查理解题意的能力,关键是看到降价和销售量的关系,以利润做为不等量关系列方程求解.24.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.【考点】平行四边形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=3,然后求出DG=2,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾.【解答】(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG===,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或3.【点评】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.。

华师大版2021年初二年级数学下册期中同步试卷(含答案解析)

华师大版2021年初二年级数学下册期中同步试卷(含答案解析)

华师大版2021年初二年级数学下册期中同步试卷(含答案解析)试卷分析华师大版____初二年级数学下册期中同步试卷(含答案解析)一.选择题(共8小题)1.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44 B.45 C.46 D.472.如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时 B.1.5小时 C.2小时 D.3小时3.数据﹣1,0,1,2,3的平均数是()A.﹣1 B.0 C.1 D.54.一组数据3,5,7,m,n的平均数是6,则m,n的平均数是()A.6 B.7 C.7.5 D.155.某班第一小组6名女生在测仰卧起坐时,记录下她们的成绩(单位:个/分):45,48,46,50,50,49.这组数据的平均数是()A.49 B.48 C.47 D.466.某中学进行了“学雷锋”演讲比赛.下面是8位评委为一位参赛者的打分:9.4,9.6,9.8,9.9,9.7,9.9,9.8,9.5.若去掉一个最高分和一个最低分,这名参赛者的最后得分是()A.9.68 B.9.70 C.9.72 D.9.747.已知两组数据_,_2,…,_n和y1,y2,…,yn的平均数分别为2和﹣2,则_1+3y1,_2+3y2,…,_n+3yn的平均数为()A.﹣4 B.﹣2 C.0 D.28.我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A.71.8 B.77 C.82 D.95.7二.填空题(共6小题)9.近年来,A市民用汽车拥有量持续增长,____年至____年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,_.若这五个数的平均数为16,则_= _________ .10.一组数据﹣1,0,1,2,_的众数是2,则这组数据的平均数是_________ . 11.数据0、1、1、2、3、5的平均数是_________ .12.小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为_________ .13.某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为_________ 分.14.学校以德智体三项成绩来计算学生的平均成绩,三项成绩的比例依次为1:3:1,小明德智体三项成绩分别为98分,95分,96分,则小明的平均成绩为_________ 分.三.解答题(共7小题)15.某单位面向内部职工招聘高级管理人员一名.经初选、复选后,共有甲、乙、丙三名候选人进入最后的决赛.现对甲、乙、丙三人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩(分)甲乙丙笔试 80 72 92面试 70 85 68除了笔试、面试外,根据录用程序,该单位还组织了200名职工利用投票推荐的方式对三人进行民主评议,三人的得票率如下图所示(没有弃权票,每位职工只能推荐1人),每得一票记1分.(1)甲的民主评议得分为_________ 分.(直接写出结果)(2)若根据笔试成绩、面试成绩、民主评议得分三项的平均成绩确定个人成绩,那么谁将被录用?(3)根据实际需要,该单位将笔试、面试、民主评议三项得分按5:3:2的比例确定个人成绩,那么谁将被录用?16.某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:测试项目测试成绩/分甲乙丙笔试 92 90 95面试 85 95 80图二是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?17.去年,汶川地区发生特大地震,造成当地重大经济损失,在“情系灾区”捐款活动中,某同学对甲、乙两班情况进行统计,得到三条信息:(1)甲班共捐款300元,乙班共捐232元;(2)甲班比乙班多2人;(3)乙班平均每人捐款数是甲班平均每人捐款数的;请你根据以上信息,求出甲班平均每人捐款多少元?18.某广告公司欲招聘策划人员一名,对甲、乙、丙三名候选人进行了三项素质测试,他们的各项成绩如下表所示:甲的成绩乙的成绩丙的成绩创新能力 72 85 67综合知识 50 74 70计算机 88 45 67(1)若根据三次测试的平均成绩确定录取人选,那么谁被录取?说明理由.(2)若公司将创新能力、综合知识、计算机各项得分按4:3:1的比例确定各人的成绩,此时谁被录取?说明理由.19.学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目.按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学的各项成绩如下表:项目选手形象知识面普通话李文 70 80 88孔明 80 75 _(1)计算李文同学的总成绩;(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩_应超过多少分?20.如图是我市某校八年级学生为玉树灾区捐款情况抽样调查的条形图和扇形统计图.(1)求该样本的容量;(2)在扇形统计图中,求该样本中捐款5元的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.21.某中学生为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)将统计图补充完整;(2 )若该校共有1800名学生,根据以上调查结果估计该校全体学生每天完成作业所用总时间.华师大版____初二年级数学下册期中同步试卷(含答案解析)参考答案与试题解析一.选择题(共 8小题)1.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A. 44 B.45 C.46 D. 47考点:算术平均数.分析:先求出这组数的和,然后根据“总数÷数量=平均数”进行解答即可;解答:解:平均数为:(40+42+43+45+47+47+58)÷7,=322÷7,=46(千克);故选:C.点评:此题考查了平均数的计算方法,牢记计算方法是解答本题的关键,难度较小.2.如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A. 1小时 B.1.5小时 C.2小时 D. 3小时考点:算术平均数;折线统计图.分析:根据算术平均数的概念求解即可.解答:解:由图可得,这7天每天的学习时间为:2,1,1,1,1,1.5,3,则平均数为: =1.5.故选:B.点评:本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.3.数据﹣1,0,1,2,3的平均数是()A.﹣1 B.0 C.1 D. 5考点:算术平均数.分析:根据算术平均数的计算公式列出算式,再求出结果即可.解答:解:数据﹣1,0,1,2,3的平均数是(﹣1+0+1+2+3)=1.故选:C.点评:此题考查了算术平均数,用到的知识点是算术平均数的计算公式,关键是根据题意列出算式.4.一组数据3,5,7,m,n的平均数是6,则m,n的平均数是()A. 6 B.7 C.7.5 D. 15考点:算术平均数.分析:数据3,5,7,m,n的平均数是6,即已知这几个数的和是6_5,则可求出m+n,这样就可得到它们的平均数.解答:解:3+5+7+m+n=6_5∴m+n=30﹣3﹣5﹣7=15∴m,n的平均数是7.5.故选C.点评:本题考查的是样本平均数的求法.熟记公式是解决本题的关键.5.某班第一小组6名女生在测仰卧起坐时,记录下她们的成绩(单位:个/分):45,48,46,50,50,49.这组数据的平均数是()A. 49 B.48 C.47 D. 46考点:算术平均数.分析:求得数据的和,然后除以数据的个数即可求得其平均数.解答:解:平均数为= (45+48+46+50+50+49)=48.故选B.点评:本题考查的是样本平均数的求法.熟记公式是解决本题的关键.6.某中学进行了“学雷锋”演讲比赛.下面是8位评委为一位参赛者的打分:9.4,9.6,9.8,9.9,9.7,9.9,9.8,9.5.若去掉一个最高分和一个最低分,这名参赛者的最后得分是()A. 9.68 B.9.70 C.9.72 D. 9.74考点:算术平均数.分析:根据题意先在这组数据中去掉一个最低分和一个最高分,余下的数利用平均数的计算公式进行计算即可.解答:解:由题意知,最高分和最低分为9.9,9.4,则余下的数的平均数=(9.6+9.8+9.7+9.9+9.8+9.5)÷6=9.72.故选C.点评:本题考查了算术平均数,掌握算术平均数的计算公式是本题的关键,平均数等于所有数据的和除以数据的个数.7.已知两组数据_,_2,…,_n和y1,y2,…,yn的平均数分别为2和﹣2,则_1+3y1,_2+3y2,…,_n+3yn的平均数为()A.﹣4 B.﹣2 C.0 D. 2考点:算术平均数.分析:根据平均数的概念求解.解答:解:由题意得,_1+_2+…+_n=2n,y1+y2+…+yn=﹣2n,则(_1+3y1)+(_2+3y2)+…+(_n+3yn)=2n+3_(﹣2n)=﹣4n,则_1+3y1,_2+3y2,…,_n+3yn的平均数为 =﹣4.故选A.点评:本题考查平均数的概念:平均数是指在一组数据中所有数据之和再除以数据的个数,属于基础题.8.我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A. 71.8 B.77 C.82 D. 95.7考点:算术平均数.分析:根据平均数的计算公式列出算式,再进行计算即可.解答:解:根据题意得:(111+96+47+68+70+77+105)÷7=82;故选C.点评:此题考查了算术平均数,用到的知识点是平均数的计算公式,关键是根据公式列出算式.二.填空题(共6小题)9.近年来,A市民用汽车拥有量持续增长,____年至____年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,_.若这五个数的平均数为16,则_=22 .考点:算术平均数.分析:根据算术平均数:对于n个数_1,_2,…,_n,则 = (_1+_2+…+_n)就叫做这n个数的算术平均数进行计算即可.解答:解:(11+13+15+19+_)÷5=1 6,解得:_=22,故答案为:22.点评:此题主要考查了算术平均数,关键是掌握算术平均数的计算公式.10.一组数据﹣1,0,1,2,_的众数是2,则这组数据的平均数是.考点:算术平均数;众数.分析:根据众数的概念可得_=2,然后根据平均数的计算公式进行求解即可.解答:解:∵一组数据﹣1,0,1,2,_的众数是2,∴_=2,∴该组数据的平均数为(﹣1+0+1+2+2)÷5= ;故答案为:.点评:本题考查了众数和平均数,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.11.数据0、1、1、2、3、5的平均数是 2 .考点:算术平均数.分析:根据算术平均数的计算公式列出算式,再求出结果即可.解答:解:数据0、1、1、2、3、5的平均数是(0+1+1+2+3+5)÷6=12÷6=2;故答案为:2.点评:此题考查了算术平均数,用到的知识点是算术平均数的计算公式,关键是根据题意列出算式.12.小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为144 .考点:算术平均数.专题:计算题.分析:先根据平均数的定义由五次成绩的平均数为144得出这五次成绩的总数为144_5,再根据平均数的定义即可求出他七次练习成绩的平均数.解答:解:∵小林五次成绩(143、145、144、146、a)的平均数为144,∴这五次成绩的总数为144_5=720,∵小林自己又记载了两次练习成绩为141、147,∴他七次练习成绩的平均数为(720+141+147)÷7=1008÷7=144.故答案为:144.点评:本题考查了平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.13.某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为9.4 分.考点:加权平均数.专题:计算题.分析:根据加权平均数的计算公式列出算式,再进行计算即可.解答:解:这5个分数的平均分为(9.5_2+9.4_2+9.2)÷5=9.4;故答案为:9.4.点评:此题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是根据公式列出算式.14.学校以德智体三项成绩来计算学生的平均成绩,三项成绩的比例依次为1:3:1,小明德智体三项成绩分别为98分,95分,96分,则小明的平均成绩为95.8 分.考点:加权平均数.分析:根据加权平均数的计算方法进行计算即可.解答:解:根据题意得:(98_1+95_3+96_1)÷5=95.8(分),答:小明的平均成绩为95.8分.故答案为:95.8.点评:本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,掌握加权平均数的计算公式是本题的关键.三.解答题(共7小题)15.某单位面向内部职工招聘高级管理人员一名.经初选、复选后,共有甲、乙、丙三名候选人进入最后的决赛.现对甲、乙、丙三人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩(分)甲乙丙笔试 80 72 92面试 70 85 68除了笔试、面试外,根据录用程序,该单位还组织了200名职工利用投票推荐的方式对三人进行民主评议,三人的得票率如下图所示(没有弃权票,每位职工只能推荐1人),每得一票记1分.(1)甲的民主评议得分为50 分.(直接写出结果)(2)若根据笔试成绩、面试成绩、民主评议得分三项的平均成绩确定个人成绩,那么谁将被录用?(3)根据实际需要,该单位将笔试、面试、民主评议三项得分按5:3:2的比例确定个人成绩,那么谁将被录用?考点:加权平均数;扇形统计图.分析:(1)本题需先根据甲所占得比例,再根据组织的总人数,即可求出甲的民主评议分.(2)本题需先根据所给的数据,分别进行计算他们的成绩,即可求出谁被录用.(3)本题需先根据已知条件得出它们的得分,再根据比例进行计算,即可求出答案.解答:解:(1)200_25%=50(分).(2)甲的成绩为 _(80+70+50)=66.7(分)同理求得乙的成绩为79(分),丙的成绩为76.7(分).∴若根据笔试成绩、面试成绩、民主评议得分三项的平均成绩确定个人成绩,那么乙将被录用.(3)甲的成绩为:80_50%+70_30%+50_20%=71(分),同理求得乙的成绩为77.5(分),丙的成绩为80.4(分),∴将笔试、面试、民主评议三项得分按5:3:2的比例确定个人成绩,那么丙将被录用.故答案为:50.点评:本题主要考查了加权平均数和扇形统计图,在解题时要根据所给的数据以及把各个知识点结合起来解题是本题的关键.16.某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:测试项目测试成绩/分甲乙丙笔试 92 90 95面试 85 95 80图二是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?考点:加权平均数;扇形统计图;条形统计图.分析:(1)由图1可看出,乙的得票所占的百分比为1减去“丙+甲+其他”的百分比;(2)由题意可分别求得三人的得票数,甲的得票数=200_34%,乙的得票数=200_30%,丙的得票数=200_28%;(3)由题意可分别求得三人的得分,比较得出结论.解答:解:(1)(2)甲的票数是:200_34%=68(票),乙的票数是:200_30%=60(票),丙的票数是:200_28%=56(票);(3)甲的平均成绩:,乙的平均成绩:,丙的平均成绩:,∵乙的平均成绩最高,∴应该录取乙.点评:本题考查了条形统计图、扇形统计图以及加权平均数的求法.重点考查了理解统计图的能力和平均数的计算能力.17.去年,汶川地区发生特大地震,造成当地重大经济损失,在“情系灾区”捐款活动中,某同学对甲、乙两班情况进行统计,得到三条信息:(1)甲班共捐款300元,乙班共捐232元;(2)甲班比乙班多2人;(3)乙班平均每人捐款数是甲班平均每人捐款数的;请你根据以上信息,求出甲班平均每人捐款多少元?考点:算术平均数.专题:应用题.分析:设甲班有_人,由题意列出方程求解.解答:解:设甲班有_人,由题意得, _ = ,解得,_=60,经检验_=60是原方程的解.所以_=60.∴甲班平均每人捐款数为 =5元.点评:本题利用了平均数的概念列代数式和方程.解分式方程要注意验根. 18.某广告公司欲招聘策划人员一名,对甲、乙、丙三名候选人进行了三项素质测试,他们的各项成绩如下表所示:甲的成绩乙的成绩丙的成绩创新能力 72 85 67综合知识 50 74 70计算机 88 45 67(1)若根据三次测试的平均成绩确定录取人选,那么谁被录取?说明理由.(2)若公司将创新能力、综合知识、计算机各项得分按4:3:1的比例确定各人的成绩,此时谁被录取?说明理由.考点:加权平均数;算术平均数.分析:(1)根据图表数据直接求出甲,乙,丙的平均分数,即可得出答案;(2)根据各项所占比例不同,分别求出即可得出三人分数.解答:解:(1) = (72+50+88)=70,= (85+74+45)=68,= (67+70+67)=68,∵ >,>,∴甲会被录取;(2) = _72+ _50+ _88=65.75,= _85+ _74+ _45=75.875,= _67+ _70+ _67=68.125,∵ >>,∴乙会被录取.点评:此题主要考查了加权平均数求法,此题比较典型,是考查重点同学们应熟练掌握.19.学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目.按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学的各项成绩如下表:项目选手形象知识面普通话李文 70 80 88孔明 80 75 _(1)计算李文同学的总成绩;(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩_应超过多少分?考点:加权平均数.专题:图表型.分析:(1)按照各项目所占比求得总成绩;(2)各项目所占比求得总成绩大于83分即可,列出不等式求解.解答:解:(1)70_10%+80_40%+88_50%=83(分);(2)80_10%+75_40%+50%?_>83,∴_>90.∴李文同学的总成绩是83分,孔明同学要在总成绩上超过李文同学,则他的普通话成绩应超过90分.点评:本题综合考查平均数的运用.解题的关键是正确理解题目的含义.20.如图是我市某校八年级学生为玉树灾区捐款情况抽样调查的条形图和扇形统计图.(1)求该样本的容量;(2)在扇形统计图中,求该样本中捐款5元的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.考点:加权平均数;总体、个体、样本、样本容量;用样本估计总体;扇形统计图;条形统计图.专题:图表型.分析:(1)样本的容量= ;(2)捐款5元的人数所占的圆心角度数=捐款5元的人数所占的百分比_360°;(3)先算出50人捐款的平均数,再算八年级捐款总数.解答:解:(1)15÷30%=50(人),答:该样本的容量是50;(2)30%_360°=108°;(3) _800=16_475=7600元.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.本题还考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.21.某中学生为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)将统计图补充完整;(2)若该校共有1800名学生,根据以上调查结果估计该校全体学生每天完成作业所用总时间.考点:加权平均数;用样本估计总体;条形统计图.专题:图表型.分析:(1)先求出平均每天完成作业所用时间为4小时的人数,再补全统计图;(2)求出50名学生每天完成作业所用总时间,再算1800名学生每天完成作业所用总时间.解答:解:(1)正确补全(2)由图可知 = =3(小时)可以估计该校全体学生每天完成作业所用总时间=3_1800=5400(小时),所以该校全体学生每天完成作业所用总时间5400小时.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.。

人教版八年级下册数学期中考试试卷含答案

人教版八年级下册数学期中考试试卷含答案

人教版八年级下册数学期中考试试题一、单选题1.下列二次根式中,属于最简二次根式的是()AB C D 2)A .x>3B .x>-3C .x≥3D .x≥-33.下列二次根式中,与)A BC D4.如图所示,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F .若AE =3cm ,AF =4cm ,AD =8cm ,则CD 的长.()A .6cmB .4cmC .5cmD .8cm5.如图,正方形ABCD 的对角线AC 、BD 交于点O ,AO =3,则AB 的长为()A .2B .3CD .6.下列等式成立的是()A .3+=B =C=D 3=7.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于()A .1cmB .2cmC .3cmD .4cm8.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是()A .12B .16C .20D .249.如图,在矩形ABCD 中,AB =8,4BC =,将矩形沿AC 折叠,点D 落在点D '处,则重叠部分AFC △的面积为()A .6B .8C .10D .1210.如图所示,一只蚂蚁在正方体的一个顶点A 处,它能爬到顶点B 处寻找食物,若这个正方体的边长为1,则这只蚂蚁所爬行的最短路程为()A .8B 21C 5D 3二、填空题11.已知ABCD 中一条对角线分A ∠为35°和45°,则B ∠=________度.12.矩形的两条对角线的夹角为60︒,较短的边长为12m ,则对角线长为___cm .13.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为__________m.14.已知菱形的两条对角线长为8cm和6cm,那么这个菱形的面积是_______.15.在平面直角坐标系中,点A(﹣1,0)与点B(0,3)的距离是_____.16.计算3⨯的结果是________.17.已知a、b、c是△ABC的三边长且c=5,a、b2130(),则△ABCb-=的形状为_____三角形.三、解答题18.计算(2(119.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?=.20.如图,在▱ABCD中,AE CF()1求证:ADE;≌CBF()2求证:四边形BFDE为平行四边形.21.已知,如图所示,实数a、b、c a b b c--+.22.如图,在菱形ABCD中,∠B=60°,AB=3,延长AD到点E,使DE=AD,延长CD到点F,使DF=CD,连接AC、CE、EF、AF.(1)求证:四边形ACEF是矩形;(2)求四边形ACEF的周长.23.已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是菱形;(3)你学过的哪种特殊四边形的中点四边形是菱形?24.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个三角形,使三角形三边长分别为2(2)如图2,点A、B、C是小正方形的顶点,求∠ABC的度数.25.如图,正方形ABCD中,G是BC边上任意一点(不与B,C重合),DE⊥AG于点E,BF//DE,且交AG于点F.(1)求证:AE=BF;(2)四边形BFDE可能是平行四边形吗?如果可能,请指出此时点G的位置;如果不可能,请说明理由.26.如图,在四边形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=cm;(2)当t=秒时,四边形PQBA成为矩形.(3)当t为多少时,PQ=CD?(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.参考答案1.D【解析】【分析】根据最简二次根式的概念判断即可.【详解】解:A 22=,被开方数含分母,不是最简二次根式,不符合题意;B =C 2=,被开方数中含能开得尽方的因数,不是最简二次根式,不符合题意;D,是最简二次根式,符合题意;故选:D .【点睛】本题考查的是最简二次根式的判断,掌握被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式是解题的关键.2.D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0+30≥x 解得:-3≥x 故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.3.C【解析】【分析】先将各二次根式化简为最简二次根式,然后根据同类二次根式的定义判断即可.【详解】解:A 的被开方数是6、不符合题意;B ,不符合题意;C,符合题意;D 2故选C .【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.4.A【解析】【分析】根据等面积法即可求得CD .【详解】四边形ABCD 是平行四边形,∴//,//AD BC AB CDAD AE CD AF∴⨯=⨯ AE =3cm ,AF =4cm ,AD =8cm ,8364CD ⨯∴==cm故选A【点睛】本题考查了平行四边形的性质,掌握平行四边形的性质是解题的关键.5.D【解析】【分析】利用正方形的性质,在Rt AOB △中利用勾股定理计算即可.【详解】解: 四边形ABCD 是正方形,AC BD ∴⊥,AC BD =,OA OC =,OB OD =,3OA OB ∴==,△中,在Rt AOBAB=∴AB=.故选:D.【点睛】本题考查正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.D【解析】【分析】根据二次根式的运算法则即可逐一判断.【详解】解:A、3和A错误;B=B错误;C==,故C错误;D3,正确;故选:D.【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.7.B【解析】【详解】解:如图,∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5-3=2.故选B.8.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【详解】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故选:D.【点睛】本题考查了三角形的中位线,菱形的性质,掌握以上知识是解题的关键.9.C【解析】【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF =D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB−BF,即可得到结果.【详解】解:在△AFD′和△CFB中,D B AFD CFB AD CB ∠=∠⎧⎪∠=∠⎪⎨⎪=''⎩'⎪,∴△AFD ′≌△CFB ,∴D ′F =BF ,设D ′F =x ,则AF =8−x ,在Rt △AFD ′中,(8−x )2=x 2+42,解得:x =3,∴AF =AB −FB =8−3=5,∴S △AFC =12•AF •BC =10.故选:C .【点睛】本题考查了翻折变换−折叠问题,勾股定理的正确运用,本题中设D ′F =x ,根据直角三角形AFD ′中运用勾股定理求x 是解题的关键.10.C【解析】【详解】试题解析:将正方体展开,如图所示:在直角△ABC 中,∵∠ACB=90°,AC=2,BC=1,∴=故选C .考点:平面展开-最短路径问题.11.100【解析】【详解】分析:首先求出∠A的度数,然后根据平行四边形的性质得出答案.详解:∵∠A=35°+45°=80°,∠A+∠B=180°,∴∠B=100°.点睛:本题主要考查的就是平行四边形的性质,属于基础题型.平行四边形的对角相等,邻角互补,本题只要明确这个就非常好解答了.12.24【解析】【分析】由矩形的对角线相等且平分可求得较短边与对角线的一半所构成的三角形为等边三角形,则可求得答案.【详解】解:如图,在矩形ABCD中,AC、BD相交于点O,∠AOB=60°,∴OA=OB=OC=OD,∵∠AOB=60°,∴△AOB为等边三角形,∴OB=12cm,∴DB=24cm,故答案为:24.【点睛】本题主要考查矩形的性质,证得△AOB为等边三角形是解题的关键.13.12【解析】【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+1)m,再利用勾股定理即可求得AB的长,即旗杆的高.【详解】解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m.在Rt△ABC中,AB2+BC2=AC2,∴x2+52=(x+1)2,解得x=12,∴AB=12.∴旗杆的高12m.故答案是:12.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,难度不大.14.24cm2【解析】【分析】根据菱形的面积等于其对角线积的一半,计算即可.【详解】解:∵菱形的对角线8cm和6cm,∴菱形的面积为:1862⨯⨯=24cm2.故答案为:24cm2.【点睛】此题考查了菱形的性质.解此题的关键是掌握菱形的面积等于其对角线积的一半定理的应用.15【解析】【分析】根据勾股定理计算即可.【详解】解:∵点A(﹣1,0)与点B(0,3).∴2210AB OA OB =+=.故答案为:10【点睛】本题考查了坐标与图形和勾股定理,解题关键是熟练运用勾股定理进行计算.16.2【解析】【分析】利用二次根式的乘除法则运算.【详解】解:原式=228233=282233⨯⨯+=4233+=2.故答案是:2.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.17.直角【解析】【分析】根据算术平方根和平方式的非负性求得a和b值,再根据勾股定理的逆定理判断即可.【详解】2130b-=()得:120a-=,130b-=,解得:=12a,=13b,∵5c=,∴222a c b+=,∴△ABC的形状为直角三角形,且∠B=90°,故答案为:直角.【点睛】本题考查勾股定理的逆定理、算术平方根和平方式的非负性,熟练掌握勾股定理的逆定理,正确求出a和b值是解答的关键.18.(1)(2).【解析】【详解】试题分析:(1)根据二次根式的性质和乘法分配律,可直接化简,然后合并同类二次根式即可;(2)(1)根据二次根式的性质和乘法分配律,可直接化简,然后合并同类二次根式即可.试题解析:(1)原式(2)原式=19.7米,420元.【解析】【详解】试题分析:先求出AC的长,利用平移的知识可得出地毯的长度,然后求出所需地毯的面积,继而可得出答案.试题解析:在Rt ABC△中,4AC==米,故可得地毯长度=AC +BC =7米,∵楼梯宽2米,∴地毯的面积=14平方米,故这块地毯需花14×30=420元.答:地毯的长度需要7米,需要花费420元.20.(1)证明见解析(2)证明见解析【解析】【分析】()1由四边形ABCD 是平行四边形,推出AD BC =,A C ∠∠=,再根据SAS 即可证明;()2只要证明DF BE =,DF //BE 即可;【详解】()1 四边形ABCD 是平行四边形,AD BC ∴=,A C ∠∠=,在ADE 和CBF 中,AD BC A C AE CF =⎧⎪∠=∠⎨⎪=⎩,ADE ∴ ≌()CBF SAS .()2 四边形ABCD 是平行四边形,AB CD ∴=,AB //CD ,AE CF = ,DF EB ∴=,DF //EB ,∴四边形BFDE 是平行四边形.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定等知识,解题的关键是正确寻找全等三角形的全等条件,灵活运用所学知识解决问题.21.2a c-【分析】a =进行化简,再根据绝对值的代数意义,00,0,0a a a a a a >⎧⎪==⎨⎪-<⎩,结合数轴上点的特征判断正负,依次去绝对值符号后进行合并即可.【详解】解:由数轴可知:a >0,a -b >0,c ﹣a <0,b ﹣c <0,∴原式=a a b c a b c--+-++=()()()a abc a b c -----+=a a b c a b c-+-+--=a a a b b c c-++---=2a c -.故答案为:2a c-【点睛】本题考查二次根式的性质和绝对值的性质,熟练应用绝对值的性质进行化简并合并同类项为解题关键.22.(1)见解析;(2)6+【解析】【分析】(1)由菱形的性质可得AD CD =,根据题意可得,AD DE CD DF ==,则AE CF =,即可判断四边形ACEF 是矩形;(2)根据含30度角的直角三角形的性质,求得AC ,在Rt ACE △中,勾股定理求得CE ,进而即可求得四边形ACEF 的周长.【详解】(1) 四边形ABCD 是菱形AD CD∴= ,AD DE CD DF==∴四边形ACEF 是平行四边形;∴四边形ACEF 是矩形;(2) 四边形ABCD 是菱形3AB CD AD BC ∴==== 四边形ACEF 是矩形;90ACE ∴∠=︒,,AC EF AF CE==603B AB ∠=︒= ,60ADC ∴∠=︒AD CD = ,AB BC=ACD ∴是等边三角形60CAD ∴∠=︒,3AC =30AEC ∴∠=︒12AC AE ∴=6AE ∴=在Rt ACE △中,CE ==∴四边形ACEF 的周长=()(2236AC CE +=+=+【点睛】本题考查了菱形的性质,矩形的判定定理,含30度角的直角三角形的性质,等边三角形的性质,勾股定理,掌握以上知识是解题的关键.23.(1)平行四边形,证明见解析;(2)AC =BD ;(3)矩形【解析】【分析】(1)连接BD 、AC ,利用三角形的中位线性质和平行四边形的判定定理即可解答;(2)根据菱形的判定定理即可解答;(3)根据矩形的性质和菱形的判定解答即可.【详解】解:(1)四边形EFGH 的形状是平行四边形,证明:连接BD 、AC ,∵四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,∴12EH FG BD ==,12EF HG AC ==,∴四边形EFGH 是平行四边形,故答案为:平行四边形;(2)当四边形ABCD 的对角线满足AC =BD 条件时,四边形EFGH 是菱形,理由:∵BD=AC ,12EH FG BD ==,12EF HG AC ==,∴=EH FG EF HG ==,∴四边形EFGH 是菱形,故答案为:AC=BD ;(3)由于矩形的对角线相等,且由(1)(2)结论知,矩形的中点四边形是菱形.【点睛】本题考查平行四边形的判定、菱形的判定、矩形的性质、三角形的中位线性质,熟练掌握相关知识的联系与运用是解答的关键.24.(1)见解析;(2)45°【解析】【分析】(1)以12、2和32为边,即可求解;(2)连接AC ,根据勾股定理求得AC AB BC 、、的长,再根据勾股定理的逆定理求解即可.【详解】解:(1)以12、2和32为边,作图如下:(2)连接AC ,如下图:由勾股定理可得:221310AC +221310BC =+=22245AB =+∵222(10)(10)(25)+=∴222AC BC AB +=∴ABC 为直角三角形,90ACB ∠=︒又∵AC BC=∴ABC 为直角直角三角形∴45ABC ∠=︒【点睛】此题考查了勾股定理以及逆定理的应用,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.25.(1)见解析;(2)不可能,理由见解析【解析】【分析】(1)△ABF ≌△DAE 即可;(2)根据(1)DE =AF ,根据四边形BFDE 是平行四边形,得到FB =DE ,从而BF =AF ,得到∠BAF =45°,得到矛盾即可.【详解】(1)∵四边形ABCD 是正方形,∴AB =DA ,∠BAD =90°,∴∠BAF +∠DAE =90°,∵DE ⊥AG ,BF //DE ,∴∠ADE +∠DAE =90°,∠BFA =∠DEA =90°,∴∠BAF =∠ADE ,∴△ABF ≌△DAE ,∴BF =AE ;(2)四边形BFDE 不可能是平行四边形,理由如下:∵△ABF ≌△DAE ,∴DE =AF ,∵四边形BFDE 是平行四边形,∴FB =DE ,∴BF =AF ,∴∠BAF =45°,∴点G 与点C 重合,与G 是BC 边上任意一点(不与B ,C 重合)矛盾,∴四边形BFDE 不可能是平行四边形.【点睛】本题考查了正方形的性质,三角形全等的判定和性质,平行四边形的判定和性质,熟练掌握正方形的性质,邻国运用三角形全等的判定和性质是解题的关键.26.(1)18;(2)185;(3)125或245;(4)存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.【解析】【分析】(1)作DE BC ⊥于E ,则四边形ABED 为矩形.在直角△CDE 中,已知DC 、DE 的长,根据勾股定理可以计算EC 的长度,根据BC =BE +EC 即可求出BC 的长度;(2)当PA =BQ 时,四边形PQBA 为矩形,根据PA =QB 列出关于t 的方程,解方程即可;(3)分两种情况:当//P Q CD ''时,四边形CDP Q ''是平行四边形;梯形PDCQ 是等腰梯形时,PQ =CD ,可建立方程求解即可得出结论;(4)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【详解】解:(1)根据题意得:PA =2tcm ,CQ =3tcm ,则PD =AD -PA =(12-2t )cm ,06t ≤≤,如图,过D 点作DE BC ⊥于E ,∵AD ∥BC ,∠B =90°,∴90A ︒∠=,∴四边形ABED 为矩形,∴DE =AB =8cm ,AD =BE =12cm ,在Rt △CDE 中,∵∠CED =90°,DC =10cm ,DE =8cm ,∴EC =cm ,∴BC =BE +EC =18cm ;(2)∵//AD BC ,∠B =90°∴当PA =BQ 时,四边形PQBA 为矩形,即2t =18-3t ,解得t =185秒,故当t =185秒时,四边形PQBA 为矩形;(3)①当//P Q CD ''时,如图,∵//AD BC ,∴四边形CDP Q ''是平行四边形,∴P Q CD ''=,DP CQ ''=,∴12-2t =3t ,∴t =125秒;②如图,梯形PDCQ 是等腰梯形时,PQ =CD ,过点P 作PF BC ⊥于点F ,则90PFE DEF PDE ︒∠=∠=∠=,∴四边形PDEF 是矩形,∴PF DE =,EF =DP =12-2t ,∴CDE QPF ≅ ,∴FQ =CE =6cm ,∴CQ =FQ +EF +CE =6+12-2t +6=3t ,∴t =245;∴当t 为125或245时,PQ =CD ;(4)△DQC 是等腰三角形时,分三种情况讨论:①当QC =DC 时,即3t =10,∴t =103;②当DQ =DC 时,2CQ CE =,即362=⨯t ,∴t =4;③如图,当QD =QC 时,则3QD tcm =,(36)QE QC CE t cm =-=-,在Rt QDE 中,222QD QE DE =+,即()()2223368t t =-+,解得:t =259.故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.【点睛】此题是四边形综合题,主要考查了直角梯形的性质、矩形的判定、等腰三角形的判定与性质、勾股定理等知识,此题难度适中,注意掌握数形结合思想与方程思想的应用.。

华师大版数学八年级下学期《期中检测卷》及答案

华师大版数学八年级下学期《期中检测卷》及答案
[详解]解:如图,校门的位置可表示为(0,﹣2).
故答案为:(﹣7,﹣2).
[点睛]本题考查了坐标确定位置:直角坐标系中点与有序实数对一一对应.记住各象限点的坐标特征和坐标轴上点的坐标特征.
13.已知 ,则 _____________________;
①甲乙两地之间的路程是100km;
②前半个小时,货车的平均速度是40km/h;
③8∶00时,货车已行驶的路程是60km;
④最后40 km货车行驶的平均速度是100km/h;
⑤货车到达乙地的时间是8∶24,
其中,正确的结论是()
A. ①②③④B. ①③⑤C. ①③④D. ①③④⑤
[答案]D
[解析]
[分析]
(1)求 的值;
(2)函数图象在哪些象限?在每个象限内, 随 的增大而怎样变化?
(3)当 时,求 的取值范围。
21.如图,已知一次函数 图象与反比例函数 的图象交于点 ,与 轴交于点 ,过点 作 轴,垂足是 ,且 .
(1)求 的值.
(2)若一次函数 的图象与 轴交于点 ,求 的面积.
22.某公司生产 两种设备,已知每台 种设备的成本是 种设备的1.5倍,公司若投入6万元生产 种设备,投人15万元生产 种设备,则可生产两种设备共40台.请解答下列问题:
华 东 师 大 版 数 学 八年 级下学 期
期中测 试 卷
学校________班级________姓名________成绩________
第Ⅰ卷选择题(共30分)
一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)
1.函数 的自变量 的取值范围是( )
∵ ,

重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)

重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)

重庆市沙坪坝区2023–2024学年下期期中调研测试八年级数学试题卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列二次根式中,是最简二次根式的是( )ABCD2.已知函数,则自变量x 的取值范围是()A .x >-3B .x≥-3C.x ≠-3D .x ≤-33.下列计算,正确的是( )A B .C.D .4的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.下列命题正确的是()A .一组对边平行另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线相等的平行四边形是菱形D .有一个角是直角的菱形是正方形6.如图,用正方形按规律依次拼成下列图案.由图知,第①个图案中有2个正方形;第②个图案中有4个正方形;第③个图案中有7个正方形.按此规律,第8个图案中正方形的个数为()A .16B .22C .29D .377.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是()A .B .C .D .y ==1-=)221-=54+=1-8.如图,5个阴影四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、5、20,则正方形B 的面积为()A .8B .9C .10D .119.如图,在正方形ABCD 中,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF ⊥AB 与点F ,EG ⊥BC 于点G ,连接DE ,FG ,若∠AED =α,则∠EFG =()A .a -90°B .180°-aC .a -45°D .2a -90°10.将自然数1,2,3,4,5,6分别标记在6个形状大小质地等完全相同的卡片上,随机打乱之后一一摸出,并将摸出的卡片上的数字分别记为,记,以下3种说法中:①A 最小值为3;②A 的值一定是奇数;③A 化简之后一共有5种不同的结果.说法正确的个数为( )A .3B.2C .1D .0二、填空题(本大题8个小题,每小题4分,共32分)11.计算:______.12.已知一次函数y =-2x +1的图象经过,若,则______(填“>”“<”或“=”).13.如图,□ABCD 对角线AC 、BD 相交于点O ,E 为AB 中点,AE =3,OE =4,则□ABCD 的周长为______.14.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,且∠OAD =55°.则∠ODC =______.123456,,,,,a a a a a a 123456A a a a a a a =-+-+-()2π1--=1122(,),(,)A x y B x y 12x x >1y 2y15.如图,两个边长均为6的正方形ABCD 、正方形OGFE 有一部分堆叠在一起,O 恰为AC 中点,则图中阴影部分的面积为______.16.若关于x 的一次函数y =x +2a -5的图象经过第二象限,且关于y的分式方程的解为非负整数,则所有满足条件的整数a 的值之和为______.17.如图,将一个长为9,宽为3的长方形纸片ABCD 沿EF 折叠,使点C 与点A 重合,则EF 的长为______.18.若一个四位自然数,满足A ,B ,C ,D 互不相同且A -D =B -C >0;若,规定.(1)当N =1234,且F (M *N)为整数时,A +B-C -D =______;(2)若,且F (M *N )是一个立方数(即某一个整数的立方),则满足条件的M 的最小值为______.三、解答题(本大题8个小题,19题8分,其余题各10分,共78分)19.计算:(2).20.如图,四边形ABCD 是矩形,连接AC 、BD 交于点O ,AE 平分∠BAO 交BD 于点E .210122y a y y y+--=--M ABCD =N abcd =()*5Aa Bb Cc DdF M N +++=N DCBA =))2111++(1)用尺规完成基本作图:作∠ACD 的角平分线交BD 于点F ,连接AF ,EC ;(保留作图痕迹,不写作法与结论)(2)求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是矩形,∴AO =OC ,,∴ ① .∵AE 平分∠BAO ,CF 平分∠DCO ,∴,∴ ② .∵在△AEO 和△CFO 中,∴△AEO ≌△CFO (ASA ),∴ ④ .又∵AO =CO ,∴四边形AECF 是平行四边形( ⑤ ).21.已知在Rt △ABC 中,∠ACB =90°,AC =9,AB =15,BD =5,过点D 作DH ⊥AB 于点H .(1)求CD 的长;(2)求DH 的长.22.随着人口的增加和城市化进程的加快,为了预防污水排放量不断增加而导致水体污染,高新区进行了污水治理,现需铺设一段全场为4600米的污水排放管道,铺了1600米后,为了尽量减少施工对城市交通所造成的影响,承包商安排工人每天加班,每天的工作量比原来提高了25%,共用50天完成了全部任务.(1)求原来每天铺设多少米管道?(2)若承包商安排工人加班后每天支付给工人工资增加了20%,完成整个工程后承包商共支付工人工资224000元,请问安排工人加班前每天需支付工人工资多少元?AB CD ∥11,22EAO BAO FCO DCO ∠=∠∠=∠EAO FCOAO CO ∠=∠⎧⎪=⎨⎪⎩③23.如图,在□ABCD 中,AD =6,CD =4,∠ADC =30°,动点P 以每秒1个单位的速度从点B 出发沿折线B →A →D 运动(含端点),在运动过程中,过点P 作PH ⊥BC 于点H ,设点P 的运动时间为x 秒,点P 到直线BC 的距离与点P 到点A 的距离之和记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)请直接写出当y 为3时x 的值.24.如图,在△ABC 中,,AD 是BC 边上的中线,F 为AC 右侧一点,连接AF 、CF ,恰好满足,连接BF 交AD 于E .(1)求证:四边形ADCF 是菱形;(2)若AB =6,AE =2,求四边形ADCF 的面积.25.如图,在平面直角坐标系中,函数y =-2x +12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式;(2)若点C 是直线AM 上一点,且,求点C 的坐标;(3)点P 为x 轴上一点,当,∠PBA =∠BAM 时,请直接写出满足条件的点P的坐标.90BAC ∠=︒,AF BC CF AD ∥∥23ABC AMO S S =△△26.正方形ABCD 对角线AC ,BD 相交于点O ,E 为线段AO 上一点,连接BE .(1)如图1,若,求AB 的长度;(2)如图2,F 为BC 上一点,连接DF ,G 为DF 上一点,连接OG ,CG ;若∠DOG =∠BEO ,∠FGC =∠BDF ,AE =CG ,求证:BE =2CG ;(3)如图3,若正方形ABCD 边长为2,延长BE 交AD 于F ,在AD 上截取DG =AF ,连接CG 交BD 于H ,连接AH 交BF 于K ,连接DK ,直接写出DK 的最小值.重庆市沙坪坝区2023—2024学年度下期期中调研测试八年级数学试题参考答案及评分意见一、选择题:题号12345678910答案ABCBDDADCB二、填空题:11.2; 12.<; 13.28; 14.35°; 15.9; 16.14; 1718.10;6721.三、解答题:19.;解:原式.BE AE==22=+=+-=(2)解:原式20.(1)如图:(2)①∠BAO =∠DCO . ②∠EAO =∠FCO . ③∠AOE =∠COF . ④OE =OF .⑤对角线互相平分的四边形是平行四边形.21.解:(1)∵∠ACB =90°,AC =9,AB =15,∴Rt △ABC 中,由勾股定理得:,∴CD =CB -BD =12-5=7.(2)∵DH ⊥AB ,∴,∴,∴DH =3.22.解:(1)设原来每天铺设x 米管道,由题意得.解得:x =80.经检验,x =80是原方程的解,且符合题意;答:原来每天铺设80米管道.(2)设安排工人加班前每天应支付工人y 元,由题意得.解得:y =4000.答:安排工人加班前每天应支付工人4000元.))2111++31619=-+-=-12BC ===1122ADB S AB DH BD AC =⋅=⋅△11155922DH ⨯⋅=⨯⨯()1600300050125%x x+=+()160030120%22400080y y ⋅++=23.解:(1)(2)性质:当0<x <4时,y 随x 增大而减小;当4<x <10时,y 随x 增大而增大.(3)x =2或5.24.解:(1)证明:∵,∴四边形ADCF 是平行四边形;∵∠BAC =90°,AD 是BC 边上的中线,∴CD =DA =BD ,∴四边形ADCF 是菱形.(2)如图,连接DF 交AC 于O ;∵四边形ADCF 是平行四边形,∴CD =AF ,∵BD =CD ,∴BD =AF ;∵,∴四边形BDAF 是平行四边形,∴E 为DA 中点,DF =AB =6;∴AD =2AE =4,∴BC =2AD =8;∵在Rt △BAC 中,∠BAC =90°,∴由勾股定理得:∴25.解:(1)在函数y =-2x +12中,令x =0得y =12;∴B (0,12).令y =0得x =6;∴A (6,0).∵M 为OB 中点,∴M (0,6).设直线AM 解析式为y =kx +b ,()140422(410)x x y x x ⎧-+≤≤⎪=⎨⎪-<≤⎩//,//AM BC CF AD //BD AF AC ===11622ADCF S DF AC =⋅⋅=⨯⨯=菱形将A(6,0),M(0,6)代入得:解得∴直线AM解析式为y=-x+6.(2)如图,过点C作CD⊥x轴于N,交直线AB于D,设C(c,-c+6),则D(c,-2c+12),∴∴;∵,∴;∴3|c-6|=12,∴c=10或2,∴C(10,-4)或(2,4).(3)P(12,0)或.26.解:(1)如图,过点E作EH⊥AB于H,60,06k bk b+=⎧⎨⋅+=⎩16kb=-⎧⎨=⎩()()62126CD c c c=-+--+=-ABC ADC BDCS S S=-△△△1122CD AN CD NO=⋅⋅-⋅()1116636 222CD AN NO CD AO c c=⋅-=⋅⋅=⨯⋅-=-11661822AMOS AO MO=⋅⋅=⨯⨯=△22181233ABC AMOS S=⨯=⨯=△△12,07⎛⎫⎪⎝⎭∵四边形ABCD 为正方形,∴∠BAE =∠ABO =45°,∴△AHE 为等腰直角三角形,∴.∴在Rt △BHE 中,由勾股定理得:,∴AB =AH +HB =1+2=3.(4分)(2)证明:如图,过点C 作直线,交DG 延长线于M ,交OG 延长线于N ,连接BM .∵四边形ABCD 是正方形,∴AB =BC ,AC ⊥BD ,BO =DO ,∠BAE =∠DBC =45°;∵,∴∠BDG =∠1,∠BCM =∠DBC =45°=∠BAE ;∵∠BDG =∠CGF ,∴∠1=∠CGF ,∴CG =CM ;∵AE =CG ,∴AE =CM ;∴在△BAE 与△BCM 中,∴,∴∴BE =BM ,∠ABE =∠2.∵∠DBM =∠2+45°,∠DOG =∠BEO =45°+∠ABE ,∴∠DBM =∠DOG ,∴,∴四边形BONM 是平行四边形,∴BO =MN ,∴DO =MN ;∴在△ODG 与△NMG 中,∴,∴∴OG =GN ,G 为O 中点,∵∠OCN =90°,∴CG =OG ,∵BE =BM =2OG ,∴BE =2G C.1AH HE AE ====2BH ===//MN BD //MN BD AB CBBAE BCM AE CG =⎧⎪∠=∠⎨⎪=⎩()SAS BAE BCM △≌△//BM OG 1DOG OGD NGM OD MN ∠=∠⎧⎪∠=∠⎨⎪=⎩()SAS ODG NMG △≌△(简释,如图:,取AB 中点T ,连接TK ,TD ,则)1-90AHO CHO HAO HCOEBO AKE ⇒∠=∠=∠⇒∠=︒△≌△112DK DT KT AB AB ≥-=-=-。

人教版数学八年级下册《期中考试题》附答案解析

人教版数学八年级下册《期中考试题》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题1.有意义,则x 的取值范围为( ) A. x≤0 B. x ≥-1 C. x ≥0 D. x≤-12.下列运算正确的是( )A. =B.3=C. 2=-D. = 3.下列二次根式中属于最简二次根式的是( )A. B. C. D. 4.设n 为正整数,且n n+1,则n 的值为( )A. 5B. 6C. 7D. 85.在以下列线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( )A. a =9 b =41 c =40B. a =b =5 c = C a :b :c =3:4:5 D. a =11 b =12 c =156.某班七个兴趣小组人数如下:5,6,6,,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A. 6B. 6.5C. 7D. 87.平行四边形ABCD 的对角线AC ,BD 相交于点,下列结论正确的是( )A. 4ABCD AOB S S ∆=B. AC BD =C. AC BD ⊥D. AB AD =8. 多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A. 极差是47B. 众数是42C. 中位数是58D. 每月阅读数量超过40的有4个月9.在平行四边形ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A. 1∶2∶3∶4B. 1∶2∶2∶1C. 1∶2∶1∶2D. 1∶1∶2∶210.一个三级台阶,它每一级的长宽和高分别为20、、,和是这个台阶两个相对的端点,点有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点最短路程为( )A. 481B. 25C.D. 11. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A. 12B. 24 3312.如图,在ABC ∆中,90ACB ∠=︒,是BC 的中点,DE BC ⊥,//CE AD ,若2AC =,30ADC ∠=︒,①四边形ACED 是平行四边形;②BCE ∆是等腰三角形;③四边形ACEB 的周长是10213+;则以上结论正确的是( )A. ①②③B. ①②C. ①③D. ②③二.填空题13.计算:273-=_____.14.如图,在▱ABCD 中,BE⊥AB 交对角线AC 于点E,若∠1=20°,则∠2的度数为__.15.某招聘考试分笔试和面试两种,其中笔试按40%,面试按60%计算加权平均数作为总成绩,小王笔试成绩分,面试成绩分,那么小王的总成绩是_______分. 16.如图,在直角坐标系中,已知点A (﹣3,0),B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为_____.三.解答题 17.计算:14363(53)(53)3⎛ ⎝18.先化简,再求值:2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭,其中2x =19.如图,在长方形ABCD 中,将△ABC 沿AC 对折至△AEC 位置,CE 与AD 交于点F .(1)试说明:AF =FC ;(2)如果AB =3,BC =4,求AF 的长.20.某学校举行演讲比赛,选出了名同学担任评委,并事先拟定从如下个方案中选择合理的方案来确定每个演讲者的最后得分(满分为分):方案1:所有评委所给分的平均数,方案2:在所有评委所给分中,去掉一个最高分和一个最低分然后再计算其余给分的平均数.方案3:所有评委所给分中位数.方案4:所有评委所给分的众数.为了探究上述方案合理性.先对某个同学的演讲成绩进行了统计实验.如图是这个同学的得分统计图: 分别按上述个方案计算这个同学演讲的最后得分.21.平行四边形ABCD 中,AF CH =,DE BG =.求证:EG 和HF 互相平分.22.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某个角度的方向以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?23.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=60°,∠DCE=20°,求∠CBE的度数.24.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE、GC.(1)试猜想AE与GC的数量关系与位置关系;(2)将正方形DEFG绕点按顺时针方向旋转,使点落在BC边上,如图2,连接AE和GC.你认为(1)中结论是否还成立?若成立,给出证明;若不成立,请说明理由.答案与解析一.选择题1.有意义,则x的取值范围为( )A. x≤0B. x≥-1C. x≥0D. x≤-1[答案]B[解析][分析]根据二次根式有意义有条件进行求解即可.[详解]有意义,则被开方数1x+要为非负数,x+≥,即10x≥-,∴1故选B.[点睛]本题考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.2.下列运算正确的是()A. =B. 3=C. 2=- D. =[答案]B[解析][分析]根据二次根式的加减法,二次根式的性质逐一进行计算即可.[详解]A,故A选项错误;B3=,正确;C2,故C选项错误;D,故D选项错误;故选:B.[点睛]本题考查了二次根式的运算,熟练掌握二次根式加减法的运算法则以及二次根式的性质是解题的关键.3.下列二次根式中属于最简二次根式的是()[答案]B[解析][分析]根据最简二次根式的定义分别判断即可.[详解]A,故错误;B,故正确;C,故错误;D,故错误;2故答案选B.[点睛]本题主要考查了二次根式的化简,准确运用公式是解题的关键.4.设n为正整数,且n n+1,则n的值为()A. 5B. 6C. 7D. 8[答案]D[解析][分析],即可得出n的值.[详解]∴89,∵n n+1,∴n=8,故选;D.[点睛]此题主要考查了估算无理数,5.在以下列线段a、b、c的长为边的三角形中,不能构成直角三角形的是( )A. a=9 b=41 c=40B. a=b=5 c=C. a:b:c=3:4:5D. a=11 b=12 c=15[答案]D[解析][分析]根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.[详解]解:A、因为92+402=412,故能构成直角三角形;B、因为52+52=()2,故能构成直角三角形;C、因为32+42=52,故能构成直角三角形;D、因为112+122≠152,故不能构成直角三角形;故选D.[点睛]本题考查的是勾股定理的逆定理,当三角形中三边满足222a b c+=关系时,则三角形为直角三角形.6.某班七个兴趣小组人数如下:5,6,6,,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A. 6B. 6.5C. 7D. 8[答案]C[解析][分析]根据平均数求出x的值,再利用中位数定义即可得出答案.[详解]∵5,6,6,,7,8,9,这组数据的平均数是7,∴()775667898x =⨯-+++++=,∴这组数据从小到大排列为:5,6,6,7,8,8,9∵这组数据最中间的数为7,∴这组数据的中位数是7.故选C .[点睛]此题主要考查了中位数,根据平均数正确得出的值是解题关键.7.平行四边形ABCD 的对角线AC ,BD 相交于点,下列结论正确的是( )A. 4ABCD AOB S S ∆=B. AC BD =C. AC BD ⊥D. AB AD =[答案]A[解析][分析]根据平行四边形的性质分别判断得出答案即可.[详解]A .∵平行四边形ABCD 的对角线AC ,BD 相交于点,∴AO=CO ,BO=DO ,∴△△DOC △△AOD BOC AOB S S S S ===,∴平行四边形△=4ABCD AOB S S ,故A 正确;B .无法得到AC=BD ,故B 错误;C .无法得到AC BD ⊥,故C 错误;D .平行四边形邻边不相等,故D 错误;故答案选A .[点睛]本题主要考查了平行四边形的性质,准确进行分析是解题的关键.8. 多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A. 极差是47B. 众数是42C. 中位数是58D. 每月阅读数量超过40有4个月[答案]C[解析][分析]根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.[详解]A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.9.在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D的值可以是( )A. 1∶2∶3∶4B. 1∶2∶2∶1C. 1∶2∶1∶2D. 1∶1∶2∶2[答案]C[解析][分析]根据平行四边形的性质得到∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.详解]如图,∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A∶∠B∶∠C∶∠D的值可以是1∶2∶1∶2.故选C.[点睛]本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能根据平行四边形的性质进行判断是解此题的关键,题目比较典型,难度适中.10.一个三级台阶,它的每一级的长宽和高分别为20、、,和是这个台阶两个相对的端点,点有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点最短路程为()A. 481B. 25C.D.[答案]B[解析][分析]先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.[详解]如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长AB.由勾股定理得:2AB =220+()2[233]+⨯=225, 解得:25AB =.故选:B .[点睛]本题考查了平面展开-最短路径问题以及勾股定理的应用,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.11. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A. 12B. 24C. 123D. 163[答案]D[解析]如图,连接BE,∵在矩形ABCD 中,AD∥BC ,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD 沿EF 翻折点B 恰好落在AD 边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF -∠BEF=120°-60°=60°.在Rt△ABE 中,3∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD 的面积=AB•AD=23×8=163.故选D .考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.12.如图,在ABC ∆中,90ACB ∠=︒,是BC 的中点,DE BC ⊥,//CE AD ,若2AC =,30ADC ∠=︒,①四边形ACED 是平行四边形;②BCE ∆是等腰三角形;③四边形ACEB 的周长是10213+;则以上结论正确的是( )A. ①②③B. ①②C. ①③D. ②③[答案]A[解析][分析] 证明AC ∥DE ,再由条件CE ∥AD 可证明四边形ACED 是平行四边形;根据线段的垂直平分线证明AE=EB 可得△BCE 是等腰三角形;首先利用三角函数计算出AD=4,CD=23再算出AB 长可得四边形ACEB 的周长是10+13[详解]①∵∠ACB=90°,DE ⊥BC ,∴∠ACD=∠CDE=90°,∴AC ∥DE ,∵CE ∥AD ,∴四边形ACED 是平行四边形,故①正确;②∵D 是BC 的中点,DE ⊥BC ,∴EC=EB ,∴△BCE 是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=cos30AD ⋅︒=23, ∵四边形ACED 是平行四边形, ∴CE=AD=4, ∵CE=EB ,∴EB=4,DB=23,∴BC=43,∴AB=()2222243213AC BC +=+=,∴四边形ACEB 的周长是10213+,故③正确;综上,①②③均正确,故选:A .[点睛]本题主要考查了平行四边形判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.等腰三角形的判定方法.二.填空题13.计算:273-=_____.[答案]23[解析][详解]解:原式=33323-=.故答案为23.14.如图,在▱ABCD 中,BE⊥AB 交对角线AC 于点E,若∠1=20°,则∠2的度数为__.[答案]110°.[解析]根据平行四边形的性质可得AB ∥CD ,根据平行线的性质可得∠1=∠CAB=20°,因BE ⊥AB ,可得∠EBA=90°,所以∠2=∠EBA+∠CAB=90°+20°=110°.15.某招聘考试分笔试和面试两种,其中笔试按40%,面试按60%计算加权平均数作为总成绩,小王笔试成绩分,面试成绩分,那么小王的总成绩是_______分.[答案]87[解析][分析]根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.[详解]∵笔试按40%,面试按60%,∴总成绩是()9040%+8560%=87⨯⨯分,故答案是87分.[点睛]本题主要考查加权平均数的知识点,准确分析是解题的关键.16.如图,在直角坐标系中,已知点A (﹣3,0),B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为_____.[答案](8076,0)[解析][分析]先利用勾股定理求得AB 的长,再找到图形变换规律为:△OAB 每连续3次后与原来的状态一样,然后求得△2020的横坐标,进而得到答案.[详解]∵A (-3,0),B (0,4),∴OA=3,OB=4,∴22OA OB +=5,∴△ABC 的周长=3+4+5=12,图形变换规律为:△OAB 每连续3次后与原来的状态一样,∵2020÷3=673…1,∴△2020的直角顶点是第673个循环组后第一个三角形的直角顶点,∴△2020的直角顶点的横坐标=673×12=8076,∴△2020的直角顶点坐标为(8076,0)故答案为(8076,0).[点睛]本题主要考查图形的变换规律,勾股定理,解此题的关键在于准确理解题意找到题中图形的变化规律.三.解答题17.计算:⎛ ⎝[答案]8[解析][分析]先利用乘法分配律计算,再利用平方差公式计算,最后把结果相加即可.[详解]解:原式=12-6+(5-3)=6+2=8.[点睛]本题考查了实数的混合运算,解题的关键是熟练运用乘法公式,注意运算顺序.18.先化简,再求值:2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭,其中x =[答案]21x x -,2 [解析]分析]原式括号中两项通分并利用同分母分式的加法法则计算,再利用除法法则变形,约分得到最简结果,把的值代入计算即可求出值.[详解]2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭2(1)21(1)(1)(1)x x x x x x x x x ⎡⎤+-=÷-⎢⎥---⎣⎦2(1)(1)(1)1x x x x x x +-=⋅-+ 21x x =-, 当2x =时,原式21x x =- 2(2)2-1= 2(21)(21)(21)+=-+ 222=+[点睛]本题考查了分式的化简求值以及分母有理化,熟练掌握运算法则是解本题的关键.19.如图,在长方形ABCD 中,将△ABC 沿AC 对折至△AEC 位置,CE 与AD 交于点F .(1)试说明:AF =FC ;(2)如果AB =3,BC =4,求AF 的长.[答案](1)证明见解析;(2)258. [解析][分析](1)观察图形,可得AE=DC ,又∵∠FEA=∠DFC ,∠AEF=∠CDF ,由全等三角形判定方法证△AEF ≌△CDF ,即得EF=DF ,从而得到AF =FC ;(2)在Rt △CDF 中应用勾股定理即可得.[详解]解:(1)证明:由矩形性质可知,AE=AB=DC ,根据对顶角相等得,∠EFA=∠DFC ,而∠E=∠D=90°,∴由AAS 可得,△AEF ≌△CDF .∴AF =FC.(2)设FA=x ,则FC=x ,FD=4x -,在Rt △CDF 中,CF 2=CD 2+DF 2,即()222x 34x =+-,解得x=258. [点睛]本题考查翻折变换(折叠问题),矩形的性质,全等三角形的判定与性质,勾股定理.20.某学校举行演讲比赛,选出了名同学担任评委,并事先拟定从如下个方案中选择合理的方案来确定每个演讲者的最后得分(满分为分):方案1:所有评委所给分平均数,方案2:在所有评委所给分中,去掉一个最高分和一个最低分然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性.先对某个同学的演讲成绩进行了统计实验.如图是这个同学的得分统计图: 分别按上述个方案计算这个同学演讲的最后得分.[答案]方案一:7.8分;方案二:8分;方案三:8分;方案四:8分和8.4分[解析][分析]方案1:平均数=总分数10;方案2:平均数=去掉一个最高分和最低分的总分数8;方案3:10个数据,中位数应是第5个和第6个数据的平均数;方案4:求出评委给分中,出现次数最多的分数;[详解]方案1最后得分:()1 5.2+7.0+7.8+38+38.4+9.8=7.810⨯⨯⨯. 方案2最后得分:()17.0+7.8+38+38.4=88⨯⨯⨯. 方案3最后得分:8+8=82. 方案4最后得分:次数最多的分数是8分和8.4分.[点睛]本题主要考查了数据分析的知识点应用,准确判断各个数是解题的关键.21.平行四边形ABCD 中,AF CH =,DE BG =.求证:EG 和HF 互相平分.[答案]见解析[解析][分析]先证四边形EFGH 是平行四边形,再利用平行四边形的性质,即可得证.[详解]证明:∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D ,AD=BC ,AB=DC ,又∵AF=CH ,DE=BG ,∴DH=BF ,AE=CG ,∵AE=CG ,∠A=∠C ,AF=CH ,∴△AEF ≌△CGH ,∴EF=GH ,∵DH=BF ,∠B=∠D ,DE=BG ,∴△DEH ≌△BGF ,∴EH=FG ,∵EF=GH ,EH=FG ,∴四边形EFGH 是平行四边形.∴EG 和HF 互相平分.[点睛]本题考查了三角形全等的判定和性质、平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.22.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某个角度的方向以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗[答案]乙船沿南偏东30°方向航行.[解析][分析]首先根据速度和时间计算出AO 、BO 的路程,再根据勾股定理逆定理证明∠AOB =90°,进而可得答案.[详解]解:由题意得:甲船的路程:AO =8×2=16(海里), 乙船的路程:BO =15×2=30(海里), ∵222301634+=,∴∠AOB =90°, ∵AO 是北偏东60°方向,∴BO 是南偏东30°. 答:乙船航行的方向是南偏东30°. [点睛]本题主要考查了勾股定理逆定理,以及方向角,解题关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c 满足222+=a b c ,那么这个三角形就是直角三角形.23.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=60°,∠DCE=20°,求∠CBE的度数.[答案](1)证明见解析;(2)∠CBE=70°.[解析][分析](1)证明AD∥BC,AD=BC,FH∥BC,FH=BC;(2)∠CBE是等腰△CBE的底角,求出顶角∠ECD即可.[详解](1)证明:∵BF=BE,CG=CE,∴BC∥12FG,BC=12FG又∵H是FG的中点,∴FH∥12FG,FH=12FG,∴BC∥FH,且BC=FH,又∵四边形ABCD是平行四边形,∴AD∥BC,∴AD∥FH,∴四边形AFHD是平行四边形;(2)∵四边形ABCD是平行四边形,∠BAE=60°, ∴∠BAE=∠DCB=60°,又∵∠DCE=20°,∴∠ECB=∠DCB-∠DCE=60°-20°=40°,∵CE=CB,∴∠CBE=∠BEC=12(180°-∠ECB)=12(180°-40°)=70°.[点睛]此题考查了平行四边形的判定.考查平行四边形的判定方法,具体选用哪种方法,需要根据已知条件灵活选择;把所求角与已知角集中到同一个三角形中.24.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE、GC.(1)试猜想AE与GC的数量关系与位置关系;(2)将正方形DEFG绕点按顺时针方向旋转,使点落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.[答案](1)AE=GC,AEGC;(2)成立,见解析[解析][分析](1)由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,AE=CG,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,AE=CG,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°-∠6,即∠7+∠CEH=90°,由此得证.[详解](1)答:AE=GC,AE⊥GC;证明:如图1中,延长GC交AE于点H.在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,∴∠1=∠2,AE=GC,∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°-(∠1+∠3)=180°-90°=90°,∴AE⊥GC.故答案为:AE=GC,AE⊥GC;(2)答:成立;证明:如图2中,延长AE和GC相交于点H.在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°-∠3;∴△ADE≌△CDG,∴∠5=∠4,AE=CG,又∵∠5+∠6=90°,∠4+∠7=180°-∠DCE=180°-90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.[点睛]本题主要考查了旋转的性质、正方形的性质以及全等三角形的判定和性质.需要注意的是:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.。

人教版数学八年级下册《期中考试卷》(含答案)

人教版数学八年级下册《期中考试卷》(含答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共计40分)1. 在二次根式2x -中,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤ 2. 下列根式中属于最简二次根式的是( )A. 12B. 8C. 27D. 21a + 3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 4. 计算33008÷,结果( ) A 403B. 402C. 203D. 202 5. 如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能..是( )A. AE =CFB. BE =FDC. BF =DED. ∠1=∠26. 如图所示,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32°,则∠ABC 、∠CAB 的度数分别为( ).A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°7. 实数在数轴上的位置如图所示,化简22(1)(2)p p-+-=( )A. B. 3 C. 3p- D. 18. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 59. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的()A. 8与14B. 10与14C. 18与20D. 10与3810. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是()A. 105B.2105C.255D.355二、填空题(每题4分,共计24分)11. 1326⨯=____________. 12. 比较大小:1010-__________13-(填“>”、“=”、“<”) 13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.15. 如图,将有一边重合两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.三、解答题(共计86分)17. 计算:1325045183(2)2(13)(26)(221)+-18. 已知:ABC ∆中的三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.19. 21点.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.答案与解析一、选择题(每题4分,共计40分)1. ,字母x 的取值范围是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤[答案]C[解析][分析]根据二次根式意义,被开方数是非负数,列出不等式,解不等式得到答案.[详解]解:由题意得,x-2≥0,解得x≥2,故选:C[点睛]本题考查的是二次根式有意义的条件,掌握二次根式的意义,被开方数是非负数是解题的关键. 2. 下列根式中属于最简二次根式的是( )[答案]D[解析][分析]根据最简二次根式的两个条件进行判断,即可得出结论.[详解]A =2,不是最简二次根式,错误;B =不是最简二次根式,错误;C ,不是最简二次根式,错误;D ,正确;故选D .[点睛]本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3. 下列各组数中,不是勾股数的为( )A. 3,4,5B. 6,8,10C. 5,12,13D. 5,7,10 [答案]D[解析][分析]满足222+=a b c 的三个正整数,称为勾股数,由此判断即可.[详解]解:、222435+=,此选项是勾股数; 、2226810+=,此选项是勾股数; 、22251213+=,此选项是勾股数;、2225710+≠,此选项不是勾股数.故选:.[点睛]此题主要考查了勾股数,关键是掌握勾股数的定义.4. 结果为( )A. B. C. D. [答案]D[解析][分析]利用二次根式的乘除法运算法则进行运算即可.[详解]原式===, 故选:D .[点睛]本题考查二次根式的乘除运算,熟练掌握二次根式的乘除运算法则是解答的关键.5. 如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能..是( )A. AE=CFB. BE=FDC. BF=DED. ∠1=∠2[答案]A[解析]试题分析:因为四边形ABCD是平行四边形,所以AB//CD,AB=CD,所以∠ABD=∠CDB,所以要使△ABE≌△CDF,若添加条件:∠1=∠2,可以利用ASA证明△ABE≌△CDF,所以D正确,若添加条件:BE=FD,可以利用SAS证明△ABE≌△CDF,所以B正确,若添加条件:BF=DE,可以得到BE=FD,可以利用SAS证明△ABE≌△CDF,所以C 正确;若添加条件:AE=CF,因为∠ABD=∠CDB,不是两边的夹角,所以不能证明△ABE≌△CDF,所以A错误,故选A.考点:1.平行四边形的性质2.全等三角形的判定.6. 如图所示,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°,则∠ABC、∠CAB的度数分别为().A. 28°,120°B. 32°,120°C. 120°,28°D. 120°,32°[答案]C[解析][分析][详解]解:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠BAD+∠D=180°.∵∠D=120°,∠CAD=32°,∴∠ABC=∠D=120°,∠BAD=60°,∴∠CAB=∠BAD﹣∠CAD=60°﹣32°=28°.故选C.7. 实数在数轴上的位置如图所示,化简22-+-=( )(1)(2)p pp- D. 1A. B. 3 C. 3[答案]D[解析][分析]根据数轴确定p的取值范围,再利用二次根式的性质化简即可.[详解]由数轴可得,1<p<2,∴p-1>0,p-2<0,22--,p p(1)(2)故选:D.[点睛]本题主要考查二次根式的化简,判断出代数式的正负是解题关键.8. 如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. 4B. 3C. 2D. 5[答案]A[解析]分析] 设BN=x ,则由折叠的性质可得DN=AN=9-x ,根据中点的定义可得BD=3,在Rt △BND 中,根据勾股定理可得关于x 的方程,解方程即可求解.[详解]解:设BN=x ,由折叠的性质可得DN=AN=9-x ,∵D 是BC 的中点,∴BD=3,在Rt △NBD 中,x 2+32=(9-x )2,解得x=4.即BN=4.故选A .[点睛]本题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强. 9. 平行四边形的两条对角线长分别是、,一边长为12,则、可能是下列各组中的( )A. 8与14B. 10与14C. 18与20D. 10与38[答案]C[解析][分析] x、y是平行四边形的两条对角线的长,则它们的一半与平行四边形长为12的边构成三角形,根据三角形三边关系中“三角形的任意两边之和大于第三边”即可从选项中判定出正解的答案.[详解]解:∵平行四边形的对角线互相平分,此平行四边形的两对角线长为x、y∴这两条对角线的一半就是x2,y2∴这两条对角线的一半与边长为12的边组成的三角形的三边为:x2、y2、12 根据三角形任意两边之和大于第三边得: A选项中149212=8+2<,不符合;B选项中1014122=+2,不符合;C选项中182019122=>+2,符合;D选项中1038172=<+122,不符合. 故选:C[点睛]本题考查的知识点有两个:一是平行四边形的对角线互相平分,一是三角形的三边关系,综合运用这两个知识点逐个判定是解题的基本方法.10. 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高是( )A. 105 2105255 355[答案]D[解析][分析]先求出△ABC 的面积,再根据勾股定理求出AC 的长度,即可求出AC 边上的高.[详解]1113222121112222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= 22125AC =+=AC 边上的高133525225ABC SAC =÷÷=⨯= 故答案为:D .[点睛]本题考查了三角形的高的问题,掌握勾股定理、三角形面积公式是解题的关键. 二、填空题(每题4分,共计24分)11.=____________.[答案[解析][分析] 利用二次根式的乘除法运算法则进行运算即可.[详解]原式=====[点睛]本题考查了二次根式的运算,熟练掌握二次根式的乘除法运算法则是解答的关键.12. 比较大小:__________13-(填“>”、“=”、“<”) [答案]>[解析][分析]先将这两个数分别平方,通过比较两个数的平方的大小即可得解.[详解]解:∵21()1010-=,211()39-=且11109<,∴1103<,∴13>- 故答案为:>.[点睛]此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.13. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.[答案]13cmcm[解析][分析]设直角三角形的第三条边为c ,分c 为斜边和12cm 为斜边两类进行讨论,根据勾股定理计算即可.[详解]解:设直角三角形的第三条边为c ,当c 为斜边时,2251213c =+= ;当12cm 为斜边时,22125119c =-=.故答案为:13cm 或119cm[点睛]本题考查了勾股定理和直角三角形分类讨论思想.由于条件没有指明直角边和斜边,故要分类讨论,同时要注意直角三角形斜边最长,5cm 不可能为斜边,故分两类讨论.14. 在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.[答案][解析][分析]连接AC ,利用1sin 2ABC S AB BC B ∆=••求出ABC ∆的面积,再求出ABCD 的面积. [详解]解:连接AC ,如图:∵30B ∠=︒,BC 10cm =,6AB cm =,∴111sin 61015222ABC S AB BC B ∆=••=⨯⨯⨯=; ∴215230ABCD ABC S S ∆==⨯=.故答案为:30.[点睛]本题考查了解直角三角形,平行四边形的性质,以及求三角形的面积,解题的关键是利用1sin 2ABC S AB BC B ∆=••求出三角形的面积.15. 如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点表示的数是-2,1AC BC BD ===,若以点为圆心、AD 的长为半径画弧,与数轴交于点(点位于点右侧),则点表示的数为________.[答案]32-[解析][分析]首先根据勾股定理求出AB 、AD 的长,再根据圆的半径相等可知AD=AE ,再根据数轴上两点间距离的公式即可得出答案.[详解]根据勾股定理得:2AB =,3AD =,∴3AE =,∴23OE =-∴点表示的数为23-+.故答案为:23-+[点睛]此题主要考查了勾股定理,以及数轴与实数,解题时求数轴上两点间的距离应让较大的数减去较小的数即可,本题的关键是求出AE 的长.16. 如图,▱ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 的延长线上,AE ∥BD ,EF ⊥BC ,EF=3,则AB 的长是_____.[答案]1[解析][分析]根据平行四边形性质推出AB=CD ,AB ∥CD ,得出平行四边形ABDE ,推出DE=DC=AB ,根据直角三角形性质求出CE 长,即可求出AB 的长.[详解]∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=CD.∵AE ∥BD ,∴四边形ABDE 是平行四边形.∴AB=DE=CD ,即D 为CE 中点.∵EF ⊥BC ,∴∠EFC=90°.∵AB ∥CD ,∴∠DCF=∠ABC=60°.∴∠CEF=30°.∵EF=,∴CE=2∴AB=1三、解答题(共计86分)17. 计算:(2)2(11)+-[答案](1);(2)9;[解析][分析](1)先化简根式,然后再合并同类根式即可;(2)先算乘法和完全平方,再去括号,计算加减即可.[详解](1==+(2)2(13)(26)(221)+---26618(8421)=-+---+232942=--+229-=.[点睛]本题主要考查了二次根式的混合运算,关键是掌握计算顺序和运算法则.18. 已知:ABC ∆中三条中位线的长分别为5cm 、6cm 、10cm ,求这个三角形的周长.[答案]42.cm[解析][分析]根据三角形中位线定理可分别求得三角形各边的长,从而不难求得其周长.[详解]∵三角形的三条中位线的长分别是5cm 、6cm 、10cm ,∴三角形的三条边分别是10cm 、12cm 、20cm .∴这个三角形的周长=10+12+20=42cm .[点睛]此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 19. 作图题:在数轴上画出表示21+的点.[答案]作图见解析[解析]分析]由题意,作斜边为2的等腰直角三角形,以数1为圆心画弧,与数轴正方向的交点为所求.[详解]解:如图所示,点A 为21+的点;[点睛]本题考查的是实数与数轴,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.20. 如图,在Rt△ABC 中,∠C=90°,∠A=30°,AC=2求斜边AB 的长.[答案]433. [解析][分析]设BC=x,则AB=2x,再根据勾股定理求出x 值,进而得出结论.[详解]∵在Rt △ABC 中,∠C=90°,∠A=30°,AC=2, ∴设BC=x ,则AB=2x,∵AC 2+BC 2=AB 2,即22+x 2=(2x)2,解得x=233, ∴AB=2x=433. [点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21. 如图,在ABC ∆中,13AB =,14BC =,AD 是BC 边上的高,12AD =,求AC 的长.[答案]15.AC =[解析][分析]利用勾股定理先求出BD ,进而求得DC ,再用勾股定理求得AC 即可.[详解]∵AD 是BC 上的高,∴AD BC ⊥,在Rt ABD ∆中,222213125BD AB AD =-=-=,∴9CD BC BD =-=,∴在Rt ADC ∆中,222212915AC AD CD =+=+=.[点睛]本题考查勾股定理,会利用勾股定理解直角三角形是解答的关键.22. 如图,在平行四边形ABCD 中,若AB=6,AD=10,∠ABC 的平分线交AD 于点E,交CD 的延长线于点F,求DF 的长.[答案]4[解析][分析]首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB ∥DC ,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF ﹣CD 即可算出DF 的长.[详解]∵四边形ABCD 为平行四边形,∴AB=DC=6,AD=BC=10,AB ∥DC .∵AB ∥DC,∴∠1=∠3,又∵BF 平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=CF ﹣DC=10﹣6=4.[点睛]本题考查了平行四边形的性质;等腰三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.23. (1)定义新运算:对于任意实数,a b ,都有()1a b a a b ⊕=-+.例如,数字2和5在该新运算下结果为.计算如下:25⊕=()22515⨯-+=-.(1)求()37-⊕的值;(2)请你模仿(1),定义一种新运算,使得实数642+和322-的运算结果为2020.写出你定义的新运算,并写出计算过程.[答案](1)31; (2)见解析 [解析][分析](1)根据新定义即可求解;(2)根据平方差公式即可构造新定义运算求解.[详解]解:(1)(37)⊕-()()3371=-⨯--+31=.(2)答案不唯一,合理即可.如:定义新运算:对于任意实数,a b ,都有2018a b ab *=+. (642)(322)+*-(62)(32)2018=+-+2020=.[点睛]此题主要考查新定义运算,解题的关键是熟知平方差公式的运用.。

人教版八年级下册数学《期中检测试题》及答案解析

人教版八年级下册数学《期中检测试题》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线2.式子21xx -在实数范围内有意义的条件是( ) A. 1x ≥B. 1x >C. 0x <D. 0x ≤3.已知一组数据a,b,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A. 3,2B. 3,4C. 5,2D. 5,44.命题“关于x 的一元二次方程210x bx ++=,必有实数解”是假命题.则在下列选项中,可以作为反例的是( ) A. 3b =-B. 2b =-C. 1b =-D. 2b =5.若m 是关于x 方程x 2﹣2012x ﹣1=0的根,则(m 2﹣2012m +3)•(m 2﹣2012m +4)的值为( ) A. 16B. 12C. 20D. 306.如图,D ,E ,F 分别是△ABC 各边的中点,AH 是高,若ED =6cm ,那么HF 的长为( )A. 5 cmB. 6 cmC. 10 cmD. 不能确定7.我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒60元下调至52元,若设每次平均降价的百分率为x ,由题意可列方程为( ) A. 52+52x 2=60 B. 52(1+x )2=60 C. 60﹣60x 2=52 D. 60(1﹣x )2=528.把代数式()111a a--中的1a -移到根号内,那么这个代数式等于()A. 1a --B.1a - C. 1a -D. 1a --9.如图,菱形ABCD 的边长为2,且∠ABC =120°,E 是BC 的中点,P 为BD 上一点,且△PCE 的周长最小,则△PCE 的周长的最小值为( )A.3+1B.7+1 C. 23+1 D. 27+110.已知如图,矩形ABCD 中AB=4cm ,BC=3cm ,点P 是AB 上除A ,B 外任一点,对角线AC ,BD 相交于点O ,DP ,CP 分别交AC ,BD 于点E ,F 且△ADE 和BCF 面积之和4cm 2,则四边形PEOF 的面积为( )A. 1cm 2B. 1.5cm 2C. 2cm 2D. 2.5cm 2二.填空题(共10小题)11.如果y 44x x --则2x +y 值是_______. 12.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______. 13.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2+3m +n =_____.14.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草.则种植花草的面积是____________米²;15.如图,E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF,若∠BDC=81°,则∠C=_____.16.直角坐标系中,已知A(3,2),作点A关于y轴对称点A1,点A1关于原点对称点A2,点A2关于x轴对称点A3,A3关于y轴对称点A4,……,按此规律,则点A2019的坐标为_____.17.三角形的每条边的长都是方程2680-+=的根,则三角形的周长是.x x18.如图,若菱形ABCD的顶点A.B的坐标分别为(6,0),(﹣4,0),点D在y轴正半轴上,则点C的坐标是_____.19.如图,四边形ABCD和四边形ACEF都是平行四边形,EF经过点D,若平行四边形ABCD的面积为S1,平行四边形ACEF的面积为S2,则S1与S2的大小关系为S1_____S2.20.如图,在矩形ABCD中,BC=4,点F是CD边上的中点,点E是BC边上的动点.将△ABE沿AE折叠,点B 落在点M处;将△CEF沿EF折叠,点C落在点N处.当AB的长度为_____时,点M与点N能重合时.三.解答题(共7小题)21.计算(1)220-5+35(2)3112-41144⎛⎫⨯ ⎪ ⎪⎝⎭22.解下列方程: (1)(x ﹣1)(x ﹣3)=8; (2)2(x ﹣3)2=x 2﹣9.23.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表: 输入汉字个数(个) 132 133 134 135 136 137 甲班人数人) 1 0 2 4 1 2 乙班人数(人) 014122请分别判断下列同学是说法是否正确,并说明理由. (1)两个班级输入汉字个数的平均数相同; (2)两个班学生输入汉字的中位数相同众数也相同; (3)甲班学生比乙班学生的成绩稳定.24.如图,平行四边形ABCD ,对角线,AC BD 交于点,点,E F 分别是,AB BC 的中点,连接EF 交BD 于,连接OE(1)证明:四边形COEF 平行四边形(2)点是哪些线段的中点,写出结论,并选择一组给出证明.25.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为________万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为元,则该销售公司该月盈利________万元(用含的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利销售利润+返利)26. 如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,AB ⊥AC ,AB=3cm ,BC=5cm .点P 从A 点出发沿AD 方向匀速运动速度为lcm/s ,连接PO 并延长交BC 于点Q .设运动时间为t (s )(0<t <5) (1)当t 为何值时,四边形ABQP 是平行四边形?(2)设四边形OQCD 的面积为y (cm 2),当t=4时,求y 的值.27.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点,交AC 于点.已知,3,5CD BE CD BE ⊥==,求BC DE +值.小明发现,过点作//EF DC ,交BC 的延长线于点,构造BEF ∆,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =; (2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.答案与解析一.选择题(共10小题)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线[答案]C [解析] [分析]根据把一个图形绕某一点旋转180,如果旋转后图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.[详解]A 、不是轴对称图形,是中心对称图形,故此选项错误; B 、是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,是中心对称图形,故此选项正确; D 、不是轴对称图形,不是中心对称图形,故此选项错误; 故选C .[点睛]此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2.1x -在实数范围内有意义的条件是( ) A 1x ≥ B. 1x >C. 0x <D. 0x ≤[答案]B [解析] [分析]根据二次根式有意义的条件即可求出答案. [详解]]解:由题意可知:x-1>0, ∴x >1, 故答案为:x >1[点睛]本题考查二次根式及分式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.3.已知一组数据a,b,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A. 3,2 B. 3,4C. 5,2D. 5,4[答案]B [解析]试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.4.命题“关于x 的一元二次方程210x bx ++=,必有实数解”是假命题.则在下列选项中,可以作为反例的是( ) A. 3b =- B. 2b =-C. 1b =-D. 2b =[答案]C [解析][详解]∵方程210x bx ++=,必有实数解,22440b ac b ∴-=-≥ ,解得:2b ≤-或2b ≥,又∵命题“关于的一元二次方程210x bx ++=,必有实数解”是假命题,∴可以作为反例的是1b =-,故选C . 5.若m 是关于x 的方程x 2﹣2012x ﹣1=0的根,则(m 2﹣2012m +3)•(m 2﹣2012m +4)的值为( ) A. 16 B. 12C. 20D. 30[答案]C [解析][分析]根据一元二次方程的解的定义得到m2﹣2012m﹣1=0,变形得m2﹣2012m=1,然后整体代入的方法计算.[详解]解:根据题意得程m2﹣2012m﹣1=0,所以m2﹣2012m=1,所以(m2﹣2012m+3)•(m2﹣2012m+4)=(1+3)(1+4)=20.故选:C.[点睛]本题考查一元二次方程的解以及整体代入思想,掌握整体代入思想是解题的关键.6.如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为( )A. 5 cmB. 6 cmC. 10 cmD. 不能确定[答案]B[解析][分析]根据D、E、F分别是△ABC各边的中点,可知DE为△ABC的中位线,根据DE的长度可求得AC的长度,然后根据直角三角形斜边的中线等于斜边的一半,可得HF=12AC,即可求解.[详解]∵D、E分别是△ABC各边的中点, ∴DE为△ABC的中位线,∵ED=6cm,∴AC=2DE=2×6=12(cm),∵AH⊥CD,且F为AC的中点,∴HF=12AC=6cm.故选:B.[点睛]此题考查三角形的中位线定理、直角三角形斜边中线定理,熟记定理并熟练运用解题是关键.7.我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒60元下调至52元,若设每次平均降价的百分率为x ,由题意可列方程为( ) A. 52+52x 2=60 B. 52(1+x )2=60 C. 60﹣60x 2=52 D. 60(1﹣x )2=52[答案]D [解析] [分析]若设每次平均降价的百分率为x ,根据某种药品经过两次降价后,由每盒60元下调至52元,可列方程求解. [详解]解:设每次平均降价的百分率为x , 60(1﹣x )2=52. 故选:D .[点睛]本题考查列一元二次方程,关键设出下降的生产率,经过两次变化,从而可列出方程. 8.把代数式()111a a--中的1a -移到根号内,那么这个代数式等于()A. 1a --B. 1a -C. 1a -D. 1a --[答案]A [解析]试题解析:(a-1)11a -=-(1-a)11a-=1a --. 故选A .9.如图,菱形ABCD 的边长为2,且∠ABC =120°,E 是BC 的中点,P 为BD 上一点,且△PCE 的周长最小,则△PCE 的周长的最小值为( )A.3 B.7+1 37+1[答案]B[解析][分析]由菱形ABCD中,∠ABC=120°,易得△BCD是等边三角形,继而求得∠ADE的度数;连接AE,交BD于点P;首先由勾股定理求得AE的长,即可得△PCE周长的最小值=AE+EC.[详解]解:∵菱形ABCD中,∠ABC=120°,∴BC=CD=AD=2,∠C=180°﹣∠ABC=60°,∠ADC=∠ABC=120°,∴∠ADB=∠BDC=12∠ADC=60°,∴△BCD是等边三角形, ∵点E是BC的中点,∴∠BDE=12∠BDC=30°,∴∠ADE=∠ADB+∠BDE=90°,∵四边形ABCD是菱形,∴BD垂直平分AC,∴P A=PC,∵△PCE的周长=PC PE CE++,若△PCE的周长最小,即PC+PE最小,也就是P A+PE最小,即A,P,E三点共线时,∵DE=CD•sin60°=3,CE=12BC=1,∴在Rt△ADE中,227AE AD DE=+=,∴△PCE周长为:PC+PE+CE=P A+PE+CE=AE+CE=71+,故选:B.[点睛]本题考查了菱形的性质、最短路线问题、等边三角形的性质,熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.10.已知如图,矩形ABCD中AB=4cm,BC=3cm,点P是AB上除A,B外任一点,对角线AC,BD相交于点O ,DP ,CP 分别交AC ,BD 于点E ,F 且△ADE 和BCF 的面积之和4cm 2,则四边形PEOF 的面积为( )A. 1cm 2B. 1.5cm 2C. 2cm 2D. 2.5cm 2[答案]A [解析]试题解析:因为4AEDBFCS S+=2cm ,所以2EOD FOCS S+=2cm ,而3CODS=2cm ,所以6231PEOF S =--=四边形2cm ,故本题应选A.二.填空题(共10小题)11.如果y 44x x --则2x +y 的值是_______. [答案]9 [解析]解:由题意得x=4,y=1,则2x +y=9. 12.小明用S 2= 110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______. [答案]30 [解析] [分析]根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和. [详解]解:∵S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2], ∴平均数为3,共10个数据, ∴x 1+x 2+x 3+…+x 10=10×3=30. 故答案为30.[点睛]本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大. 13.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2+3m +n =_____.[答案]5.[解析][分析]根据根与系数的关系可知m+n=﹣2,又知m是方程的根,所以可得m2+2m﹣7=0,最后可将m2+3m+n变成m2+2m+m+n,最终可得答案.[详解]解:∵设m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,∵m是原方程的根,∴m2+2m﹣7=0,即m2+2m=7,∴m2+3m+n=m2+2m+m+n=7﹣2=5,故答案为:5.[点睛]本题考查了根与系数的关系,熟练掌握一元二次方程根与系数的关系是解决本题的关键.14.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草.则种植花草的面积是____________米²;[答案]1421[解析][分析]如图,根据平移的性质,种植花草的面积等于图中小矩形的面积,根据矩形的面积公式计算即可.[详解]如图,根据平行的性质,种植花草的面积等于图中小矩形的面积,∴种植花草的面积=(50-1)(30-1)=1421m2.故答案1421.[点睛]本题考查了图形的平移的性质,把小路进行平移,得到种植花草的面积等于图中小矩形的面积是解题的关键.15.如图,E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF,若∠BDC=81°,则∠C=_____.[答案]66°.[解析][分析]折叠就有全等,就有相等的边和角,根据平行四边形的性质和等腰三角形的性质,可以把要求的角转化在一个三角形中,由三角形的内角和列方程解得即可.[详解]解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,AB∥CD,∴∠ADF=∠FBC,∠ABD=∠BDC=81°,∵EF=FD,∴∠FED=∠FDE,由折叠得:∠ABE=∠EBF=12∠ABD=40.5°,∠A=∠EFB,设∠C=x,则∠DBC=∠ADB=12x,在△BDC中,由内角和定理得:81°+x+12x=180°,解得:x=66°,故答案为:66°.[点睛]本题考查折叠的性质、平行四边形的性质以及三角形内角和定理等内容,解题的关键是折叠的性质的运用.16.直角坐标系中,已知A(3,2),作点A关于y轴对称点A1,点A1关于原点对称点A2,点A2关于x轴对称点A 3,A 3关于y 轴对称点A 4,……,按此规律,则点A 2019的坐标为_____. [答案](3,2). [解析] [分析]根据题目已知条件,写出A 1、A 2、A 3的坐标,找出规律,即可解决问题. [详解]解:作点A 关于y 轴对称点为A 1,是(﹣3,2); 作点A 1关于原点的对称点为A 2,是(3,﹣2); 作点A 2关于x 轴的对称点为A 3,是(3,2). 显然此为一循环,按此规律,2019÷3=673, 则点A 2019的坐标是(3,2), 故答案为:(3,2).[点睛]本题考查了关于原点对称的点的坐标,关于坐标轴对称点的坐标,解答此题需熟悉:两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数;两个点关于y 轴对称,则横坐标互为相反数,纵坐标不变;两个点关于原点对称,则横坐标、纵坐标都是互为相反数.17.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . [答案]6或10或12 [解析] [分析]首先用因式分解法求得方程根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算. [详解]由方程2680x x -+=,得=2或4. 当三角形的三边是2,2,2时,则周长是6; 当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去; 当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10. 综上所述此三角形的周长是6或12或10.18.如图,若菱形ABCD 的顶点A .B 的坐标分别为(6,0),(﹣4,0),点D 在y 轴正半轴上,则点C 的坐标是_____.[答案](﹣10,8)[解析][分析]由菱形的性质可求AB=AD=10,OA=6,由勾股定理可得OD=8,即可求点C坐标.[详解]解:∵菱形ABCD的顶点A,B的坐标分别为(6,0),(﹣4,0),∴AB=AD=10,OA=6,∴228=-=,OD AD OA∴点D(0,8),∵CD∥AB,∴CD=10,∴点C(﹣10,8),故答案为:(﹣10,8).[点睛]本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.如图,四边形ABCD和四边形ACEF都是平行四边形,EF经过点D,若平行四边形ABCD的面积为S1,平行四边形ACEF的面积为S2,则S1与S2的大小关系为S1_____S2.[答案]=.[解析][分析]由题意可知2ABCDABCSS=,2ACEFADC SS =△,而S △ABC =S △ADC ,进而可得S 1与S 2的大小关系.[详解]解:∵四边形ABCD 和四边形ACEF 都是平行四边形, ∴2ABCDABCSS=,2ACEFADC SS =△,∵S △ABC =S △ADC , ∴S 1=S 2, 故答案为:=.[点睛]本题考查了平行四边形的性质以及三角形面积公式的运用,熟记平行四边形被一条对角线分成的两个三角形面积相等是解题的关键.20.如图,在矩形ABCD 中,BC =4,点F 是CD 边上的中点,点E 是BC 边上的动点.将△ABE 沿AE 折叠,点B 落在点M 处;将△CEF 沿EF 折叠,点C 落在点N 处.当AB 的长度为_____时,点M 与点N 能重合时.[答案]2. [解析] [分析]设AB =CD =2m .在Rt △ADF 中 利用勾股定理构建方程即可解决问题. [详解]解:设AB =CD =2m .由题意:BE =EM =EC =2,CF =DF =FM =m ,AN =AM =2m , ∴AF =3m ,∵四边形ABCD 是矩形, ∴AD =BC =4,在Rt △ADF 中,∵AD 2+DF 2=AF 2, ∴42+m 2=(3m )2, 解得2m =或2-(舍弃),∴AB =2m =故答案为.[点睛]本题考查折叠的性质,解题的关键是根据勾股定理构建方程求解.三.解答题(共7小题)21.计算(1)(2[答案](1)(2)14[解析] [分析](1)先化简,再合并同类二次根式;(2)先算乘法,再化简二次根式,然后合并即可.[详解]解:(1)-=2255+3-(2111=244-. [点睛]本题考查了二次根式的化简与运算,属于基础题型,熟练掌握二次根式的运算法则和化简的方法是解题的关键. 22.解下列方程: (1)(x ﹣1)(x ﹣3)=8; (2)2(x ﹣3)2=x 2﹣9.[答案](1)x 1=5,x 2=﹣1;(2)x 1=3,x 2=9. [解析] [分析](1)先去括号,把方程化为一般形式,再根据因式分解法即可求出答案;(2)利用平方差公式将等号右边因式分解,再移项,提取公因式x-3即可求出答案.[详解]解:(1)(x﹣1)(x﹣3)=8,整理得,x2﹣4x﹣5=0,分解因式得:(x-5)(x+1)=0,则x-5=0或x+1=0,解得:x1=5,x2=﹣1;(2)2(x﹣3)2=x2﹣9,分解因式得:(x﹣3)(x﹣9)=0,则x﹣3=0或x﹣9=0,解得:x1=3,x2=9.[点睛]本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).23.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:请分别判断下列同学是说法是否正确,并说明理由.(1)两个班级输入汉字个数的平均数相同;(2)两个班学生输入汉字的中位数相同众数也相同;(3)甲班学生比乙班学生的成绩稳定.[答案]说法(1)(3)正确,说法(2)错误.[解析][分析]根据平均数、中位数、众数以及方差的计算方法,分别求出,就可以分别判断各个说法是否正确.[详解]解:(1)由平均数的定义知,甲班学生的平均成绩为:13213421354136137213510+⨯+⨯++⨯=,乙班学生的平均成绩为:13313441351362137213510+⨯++⨯+⨯=,所以他们的平均数相同.故说法(1)正确;(2)甲班学生的成绩按从小到大排列:132、134、134、135、135、135、135、136、137、137,可见其中位数是135;乙班学生的成绩按从小到大排列:133、134、134、134、134、135、136、136、137、137,可见其中位数是134.5,所以两组学生成绩的中位数不相同,甲班学生成绩的众数是135,乙班学生成绩的众数是134,所以两组学生成绩的众数不相同; 故说法(2)错误;(3)2222221=[(132135)2(134135)4(135135)(136135)2(137135)]210S ⨯-+-+-+-+-=甲, 2222221=[(133135)4(134135)(135135)2(136135)2(137135)] 2.710S ⨯-+-+-+-+-=甲, ∴甲班学生比乙班学生的成绩方差小, ∴甲班学生比乙班学生的成绩稳定. 故说法(3)正确;故答案为:说法(1)(3)正确,说法(2)错误.[点睛]本题考查平均数、方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.24.如图,平行四边形ABCD ,对角线,AC BD 交于点,点,E F 分别是,AB BC 的中点,连接EF 交BD 于,连接OE(1)证明:四边形COEF 是平行四边形(2)点是哪些线段的中点,写出结论,并选择一组给出证明.[答案](1)见解析;(2)G 是线段OB 的中点,也是EF 的中点,证明见解析[解析][分析](1)根据三角形的中位线定理可得EF 与AC 的数量关系和位置关系,再由平行四边形的性质即可证得EF 与CO 的关系,进一步即可证得结论;(2)根据三角形中位线定理即可得出结论.[详解]解:(1)证明:∵,E F 分别是,AB BC 中点,∴EF AC 且12EF AC =, ∵ABCD 是平行四边形,∴AO CO =,∴CO EF =,∴四边形COEF 是平行四边形.(2)G 是线段OB 的中点,也是EF 的中点.证明:∵EF AC ,E 为AB 中点,∴G 为OB 中点.∴FG 、GE 分别是△BCO 、△BAO 的中位线, ∴11,22FG CO GE AO ==, ∵AO =CO ,∴FG GE =,即G 为EF 的中点.[点睛]本题考查了平行四边形的判定和三角形的中位线定理,熟练掌握平行四边形的判定方法和三角形的中位线定理是解题的关键.25.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为________万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为元,则该销售公司该月盈利________万元(用含的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利销售利润+返利)[答案](1)24.6;(2)(5m -121);(3)7[解析][分析](1)根据题意每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,即可得出当月售出3辆汽车时,每辆汽车的进价;(2)先表示出当月售出5辆汽车时每辆汽车的进价,再根据利润=售价-进价即可求得该月盈利;(3)首先表示出每辆汽车的销售利润,再利用当0≤x≤10,当x>10时,分别得出答案.[详解]解:(1)∵当月仅售出1辆汽车,则该辆汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,∴该公司当月售出3辆汽车,则每辆汽车的进价为25-2×0.2=24.6万元;故答案为:24.6;(2)∵当月售出5辆汽车,∴每辆汽车的进价为25-4×0.2=24.2万元,∴该月盈利为5(m-24.2)=5m-121,故答案为:(5m-121);(2)设需要售出x辆汽车,由题意可知,每辆汽车的销售利润为:25.6-[25-0.2(x-1)]=(0.2x+0.4)(万元),当0≤x≤10,根据题意,得x•(0.2x+0.4)+0.6x=16.8,整理,得x2+5x-84=0,解这个方程,得x1=-12(不合题意,舍去),x2=7,当x>10时,根据题意,得x•(0.2x+0.4)+1.2x=16.8,整理,得x2+8x-84=0,解这个方程,得x1=-14(不合题意,舍去),x2=6,因为6<10,所以x2=6舍去.答:需要售出7辆汽车.[点睛]此题主要考查了一元二次方程的应用,根据题意正确表示出每部汽车的销售利润是解题关键.26.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动速度为lcm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.[答案](1)当t=2.5s 时,四边形ABQP 是平行四边形,理由详见解析;(2)5.4cm 2.[解析][分析](1)求出AP BQ =和//AP BQ ,根据平行四边形的判定得出即可;(2)先求出高AM 和ON 的长度,再求出DOC ∆和OQC ∆的面积,再求出答案即可.[详解](1)当 2.5t s =时,四边形ABQP 是平行四边形,理由如下:∵四边形ABCD 是平行四边形∴//,,5,,AD BC AB CD AD BC cm AO CO AO OC =====∴PAO QCO ∠=∠在APO ∆和CQO ∆中,PAO QCO AO CO POA QOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()APO CQO ASA ∆≅∆∴ 2.5AP CQ cm ==, 2.5()1AP t s == ∵5BC cm =∴5 2.5 2.5BQ cm cm cm AP =-==即,//AP BQ AP BQ =∴四边形ABQP 是平行四边形故当 2.5t s =时,四边形ABQP 是平行四边形;(2)过A 作AM BC ⊥于M ,过O 作ON BC ⊥于N∵,3,5AB AC AB cm BC cm ⊥==∴在Rt ABC ∆中,由勾股定理得:224AC BC AB cm =-=由三角形的面积公式得:1122BAC S AB AC BC AM ∆=⋅=⋅,即1134522AM ⨯⨯=⨯ ∴ 2.4AM cm =∵,ON BC AM BC ⊥⊥∴//AM ON∵AO OC =∴MN CN =∴1 1.22ON AM cm == 在BAC ∆和DCA ∆中,AC AC BC AD AB CD =⎧⎪=⎨⎪=⎩∴()BAC DCA SSS ∆≅∆∴21346()2DCA BAC S S cm ∆∆==⨯⨯= ∵AO OC =∴DOC ∆的面积为2132DCA S cm ∆= 当4t s =时,4AP CQ cm ==∴OQC ∆的面积为21 1.24 2.4()2cm ⨯⨯= ∴23 2.4 5.4()y cm =+=故y 的值为25.4cm .[点睛]本题考查了平行四边形的性质和判定、三角形的面积、全等三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.27.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点,交AC 于点.已知,3,5CD BE CD BE ⊥==,求BC DE +的值.小明发现,过点作//EF DC ,交BC 的延长线于点,构造BEF ∆,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =;(2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.[答案](1)详见解析;34(3)60[解析][分析](1)由DE ∥BC ,EF ∥DC ,可证得四边形DCFE 是平行四边形,从而问题得以解决;(2)由DC ⊥BE ,四边形DCFE 是平行四边形,可得Rt △BEF ,求出BF 的长,证明BC+DE=BF ;(3)连接AE ,CE ,由四边形ABCD 是平行四边形,四边形ABEF 是矩形,易证得四边形DCEF 是平行四边形,继而证得△ACE 是等边三角形,问题得证.[详解](1)证明:∵DE ∥BC ,EF ∥DC ,∴四边形DCFE 是平行四边形.∴DE=CF .(2)解:由于四边形DCFE 是平行四边形,∴DE=CF ,DC=EF ,∴BC+DE=BC+CF=BF .∵DC ⊥BE ,DC ∥EF ,∴∠BEF=90°.在Rt △BEF 中,∵BE=5,CD=3,∴BF=22225=3=34BE EF ++.(3)连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB ∥DC .∵四边形ABEF 是矩形, ∴AB ∥FE ,BF=AE . ∴DC ∥FE .∴四边形DCEF 是平行四边形. ∴CE ∥DF .∵AC=BF=DF ,∴AC=AE=CE .∴△ACE 是等边三角形. ∴∠ACE=60°.∵CE ∥DF ,∴∠AGF=∠ACE=60°.[点睛]本题考查了平行四边形的判定与性质、矩形的性质、等边三角形的判定与性质以及勾股定理.连接AE 、CE 构造等边三角形是关键.。

最新人教版八年级下册数学《期中测试题》(含答案)

最新人教版八年级下册数学《期中测试题》(含答案)

2021年人教版数学八年级下册期中测试学校________ 班级________ 姓名________ 成绩________一、选择题1. 式子1a +有意义,则实数a 的取值范围是( ) A. a ≥-1 B. a ≠2 C. a ≥-1且a ≠2 D. a >22. 三角形的三边长 a 、b 、c 满足a 2+ b 2 -c 2= 0 ,则此三角形是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形 3. 下列计算正确的是( )A. 1233-=B. 235+=C. 3553-=D. 32252+= 4. 四边形ABCD 的对角线AC 与BD 相交于点O ,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是( )A. //AD BCB. OA OC =,OB OD =C. //AD BC ,AB DC =D. AC BD ⊥5. 在正比例函数3y mx =-中,函数y 的值随x 值的增大而增大,则点(,2)Q m 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 如图,菱形ABCD 的边长为4,∠DAB =60°,E 为BC 的中点,在对角线AC 上存在一点P ,使△PBE 的周长最小,则△PBE 的周长的最小值为 ( )A. 23B. 4C. 232D. 423+二、耐心填一填,一锤定音!7. 计算7373的结果等于_____.8. 已知一个直角三角形的两条直角边长分别为5cm 、12cm ,那么第三条斜边的长是 _________9. 四边形ABCD 中,已知AD ∥BC ,要使四边形ABCD 为平行四边形,需要增加的边的条件是_________.10. 如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_______11. 小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离y (m )与小雪离开出发地的时间x (min )之间的函数图象如图所示,则当小松刚到家时,小雪离图书馆的距离为____米.12. 如图,矩形ABCD 中,AB=6,BC=8,点E 是BC 边上一点,连接AE ,把B 沿AE 折叠,使点B 落在点B '处.当CB E '∆为直角三角形时,则AE 的长为________.三、解答题13. 计算:(1145205(2)2(21)(21)(122)++14. 如图,正方形网格中每个小正方形边长都是l ,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)画出一个平行四边形,使其面积为6;(2)画出一个菱形,使其面积为4.(3)画出一个正方形,使其面积5.15. 已知y+1与x+3成正比例,且当x=5时,y=3.(1) 求y 与x 之间的函数关系式;(2) 当y=1时,求x 的值.16. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别为AO ,CO 的中点,求证:BF ∥DE17. 如图,四边形ABCD 是平行四边形,点E 、B 、D 、F 在同一直线上,且BE =DF .求证:四边形AECF 是平行四边形.18. 如图,四边形ABCD 是平行四边形, ,AE BC AF CD ⊥⊥,垂足分别为,E F ,且BE DF =.(1)求证:四边形ABCD 是菱形;(2)连接EF 并延长,交AD 的延长线于点G ,若30,2CEG AE ︒∠==,求EG 的长.19. 如图,直线1l 的解析式为:33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A ,B ,直线1l ,2l 交于点C .(1)求直线2l 的解析表达式;(2)求△ADC 的面积.20. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E(1)证明:四边形ACDE 是平行四边形;(2)若AC=8,BD=6,求△ADE 的周长.21. 小明星期天上午8:00从家出发到离家36千米的书城买书,他先从家出发骑公共自行车到公交车站,等了12分钟的车,然后乘公交车于9:48分到达书城(假设在整个过程中小明骑车的速度不变,公交车匀速行驶,小明家、公交车站、书城依次在一条笔直的公路旁).如图是小明从家出发离公交车站的路程y (千米)与他从家出发的时间x (时)之间的函数图象,其中线段AB 对应的函数表达式为y =kx +6.(1)求小明骑公共自行车的速度;(2)求线段CD 对应的函数表达式;(3)求出发时间x 在什么范围时,小明离公交车站的路程不超过3千米?22. 如图,矩形ABCD 的对角线AC ,BD 相交于点O ,将COD ∆沿CD 所在直线折叠,得到CED ∆.(1)求证:四边形OCED 是菱形;(2)若2AB =,当四边形OCED 是正方形时,OC 等于多少?(3)若3BD =,30ACD ∠=︒,P 是CD 边上的动点,Q 是CE 边上的动点,那么PE PQ +的最小值是多少?23. 感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =; 拓展:在图①中,若G 在AD ,且45GCE ︒∠=,则GE BE GD =+成立吗?为什么?运用:如图②在四边形ABCD 中,//()AD BC BC AD >,90A B ︒∠=∠=,16AB BC ==,E 是AB 上一点,且45DCE ︒∠=,4BE =,求DE 的长.答案与解析一、选择题1.有意义,则实数a 的取值范围是( ) A. a ≥-1B. a ≠2C. a ≥-1且a ≠2D. a >2【答案】C【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可.【详解】解:由题意得,a 10,a 2+≥≠解得,a ≥-1且a ≠2,故答案为:C.【点睛】本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.2. 三角形的三边长 a 、b 、c 满足a 2+ b 2 -c 2= 0 ,则此三角形是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形 【答案】B【解析】【分析】根据a 2+b 2-c 2=0得到a 2+b 2=c 2,根据勾股定理逆定理即可得到结论.【详解】解:∵a 2+b 2-c 2=0,∴a 2+b 2=c 2,∴此三角形是直角三角形.故选B . 【点睛】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边a 2+b 2=c 2,那么这个三角形就是直角三角形.3. 下列计算正确的是( )= =C. 3=D. 3+=【答案】A【解析】 分析:根据同类二次根式的定义及合并的方法逐项计算即可.详解:A. ==,故正确;B. 与不是同类二次根式,不能合并,故不正确;C. =D. 3+=不是同类二次根式,不能合并,故不正确;故选A.点睛:本题考查了同类二次根式的定义和同类二次根式的合并,熟练掌握同类二次根式的定义和同类二次根式的合并的方法是解答本题的关键.化成最简二次根式后被开方式相同的二次根式是同类二次根式;合并的方法是把系数相加减,根号和被开方式不变.4. 四边形ABCD 的对角线AC 与BD 相交于点O ,下列四组条件中,一定能判定四边形ABCD 为平行四边形的是( )A. //AD BCB. OA OC =,OB OD =C. //AD BC ,AB DC =D. AC BD ⊥【答案】B【解析】【分析】根据平行四边形的判定方法逐一进行分析判断即可.【详解】A.只有一组对边平行无法判定四边形是平行四边形,故错误;B. OA OC =,OB OD =,根据对角线互相平分的四边形是平行四边形,可以判定,故正确;C. //AD BC ,AB DC =,一组对边平行,一组对边相等的四边形可能是平行四边形也可能是等腰梯形,故错误;D. 对角线互相垂直不能判定四边形是平行四边形,故错误,故选B.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.5. 在正比例函数3y mx =-中,函数y 的值随x 值的增大而增大,则点(,2)Q m 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】 根据正比例函数的性质可得30->m ,解不等式可得m 的取值范围,再根据各象限内点的坐标符号即可解答. 【详解】正比例函数3y mx =-中,函数y 的值随x 值的增大而增大,∴30->m解得:m <0∴点(,2)Q m 在第二象限故选B.【点睛】本题主要考查正比例函数,解题关键是熟练掌握正比例函数的性质.6. 如图,菱形ABCD 的边长为4,∠DAB =60°,E 为BC 的中点,在对角线AC 上存在一点P ,使△PBE 的周长最小,则△PBE 的周长的最小值为 ( )A. 23B. 4C. 232D. 423+【答案】C【解析】【分析】 如下图,△BEP 的周长=BE+BP+EP ,其中BE 是定值,只需要BP+PE 为最小值即可,过点E 作AC 的对称点F ,连接FB ,则FB 就是BP+PE 的最小值.【详解】如下图,过点E 作AC 的对称点F ,连接FB ,FE ,过点B 作FE 的垂线,交FE 的延长线于点G∵菱形ABCD 的边长为4,点E 是BC 的中点∴BE=2∵∠DAB=60°,∴∠FCE=60°∵点F 是点E 关于AC 的对称点∴根据菱形的对称性可知,点F 在DC 的中点上则CF=CE=2∴△CFE 是等边三角形,∴∠FEC=60°,EF=2∴∠BEG=60°∴在Rt △BEG 中,EG=1,3∴FG=1+2=3∴在Rt △BFG 中,()2233+3根据分析可知,BF=PB+PE∴△PBE 的周长32故选:C【点睛】本题考查菱形的性质和利用对称性求最值问题,解题关键是利用对称性,将BP+PE 的长转化为FB 的长. 二、耐心填一填,一锤定音! 7. 计算7373的结果等于_____.【答案】4【解析】【分析】利用平方差公式进行计算,即可得到答案.【详解】解:73+73-=22(7)(3)-=73-=4;故答案为:4.【点睛】本题考查了二次根式的混合运算,平方差公式,解题的关键是熟练掌握运算法则进行解题. 8. 已知一个直角三角形的两条直角边长分别为5cm 、12cm ,那么第三条斜边的长是 _________【答案】13cm【解析】【分析】根据勾股定理计算即可.【详解】∵三角形是直角三角形,且两条直角边长分别为5cm 、12cm∴斜边长:225+12=13cm故答案为:13cm【点睛】本题考查勾股定理,掌握勾股定理求算是解题关键.9. 四边形ABCD 中,已知AD ∥BC ,要使四边形ABCD 为平行四边形,需要增加的边的条件是_________.【答案】//AB CD (答案不唯一)【解析】【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可得出答案.【详解】根据平行四边形的判定,可再添加一个条件://AB CD故答案为://AB CD (答案不唯一)【点睛】本题考查平行四边形的判定,掌握常见的判定方法是解题关键.10. 如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_______【答案】15°【解析】【分析】由正方形的性质和等边三角形的性质可得BC=CD=AD=AB、∠ADC=∠BCD=∠CBA =∠BAD= 90°,AE=DE=AD, ∠ADE=∠DEA=∠EAD=60°;再说明△ABE是等腰三角形,最后根据等腰三角形的性质解答即可.【详解】解:∵正方形ABCD∴BC=CD=AD=AB, ∠ADC=∠BCD=∠CBA =∠BAD= 90°∵等边三角形ADE∴AE=DE=AD, ∠ADE=∠DEA=∠EAD=60°∴AB=AE,∠BAE=∠BAD+∠EAD=150°∴∠AEB=1801801501522BAE-∠-==.故答案为15°.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质以及等量代换思想,掌握运用等量代换思想是解答本题的关键.11. 小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离y(m)与小雪离开出发地的时间x(min)之间的函数图象如图所示,则当小松刚到家时,小雪离图书馆的距离为____米.【答案】1500.【解析】【分析】分析图象:点A表示出发前两人相距4500米,即家和图书馆相距4500米;线段AB表示小雪已跑步出发,两人相距距离逐渐减小,到5分钟时相距3500米,即小雪5分钟走了1000米,可求小雪跑步的速度;线段BC表示小松5分钟后开始出发;点C表示两人相距1000米时,小雪改为步行,可设小雪跑步a分钟,则后面(35﹣a)分钟步行,列方程可求出a,然后用4500减1000再减去小雪走的路程可求出此时小松骑车走的路程,即求出小松的速度;点D表示两人相遇;线段DE表示两人相遇后继续往前走,点E表示小松到达家,可用路程除以小松的速度得到此时为第几分钟;线段EF表示小雪继续往图书馆走;点F表示35分钟时小雪到达图书馆.【详解】由图象可得:家和图书馆相距4500米,小雪的跑步速度为:(4500﹣3500)÷5=200(米/分钟),∴小雪步行的速度为:200×12=100(米/分钟),设小雪在第a分钟时改为步行,列方程得:200a+100(35﹣a)=4500解得:a=10∴小松骑车速度为:(4500﹣200×10﹣1000)÷(10﹣5)=300(米/分钟)∴小松到家时的时间为第:4500÷300+5=20(分钟)此时小雪离图书馆还有15分钟路程,100×15=1500(米)故答案为1500.【点睛】本题考查函数及其图象,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系,进而求出有用的数据.12. 如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把B沿AE折叠,使点B落在点B'处.当CB E'∆为直角三角形时,则AE的长为________.【答案】35或62【解析】【分析】根据折叠可得线段的边和角,当△CB'E为直角三角形时,可能由两种情况即①当∠CB′E=90°时②当∠CEB′=90°时,分别画出相应的图形,由相似三角形和正方形及勾股定理求出结果.【详解】解:(1)当∠CB ′E=90°时,如图:由折叠得:BE=B ′E ,Rt △ABC 中,AC=226810+=,∵∠B=∠CB ′E=90°,∠ECB ′=∠ACB ,∴△EB ′C ∽△ABC ,∴EC B E AC AB'=, 设BE=x ,则EC=8-x ,则8106x x -=,解得:x=3, 即:BE=3,在Rt △ABE 中,AE=223635+=,(2)当∠CEB ′=90°时,由折叠得:BE=B ′E ,AB=AB ′,∠BEA=∠B ′EA=12(180°-90°)=45° ∴四边形ABEB ′是正方形,∴AB=BE=B ′E=B ′A=6,在Rt △ABE 中,226662+=,故答案为:3562 【点睛】考查矩形的性质、正方形的性质、轴对称的性质以及勾股定理等知识,分类讨论各种可能的情况是全面准确解决问题的关键.三、解答题13. 计算:(1)1 45205 -+(2)2(21)(21)(122)-+-+【答案】(1)65;(2)632-.【解析】【分析】(1)先将二次根式化为最简二次根式,再计算二次根式的加减法即可;(2)先计算完全平方公式、二次根式的乘法,再计算二次根式的加减法即可.【详解】(1)原式52535-=+65=;(2)原式2(2)221(2222122)=-+++⨯--2221(24122)=-+++--322(32)=-+-32232=-+-632=-.【点睛】本题考查了二次根式的加减法与乘法、完全平方公式等知识点,熟记各运算法则是解题关键.14. 如图,正方形网格中的每个小正方形边长都是l,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)画出一个平行四边形,使其面积6;(2)画出一个菱形,使其面积为4.(3)画出一个正方形,使其面积为5.【答案】(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)平行四边形面积为6,则可以为底边长为3,高为2,具体图形如下;(2)菱形面积为4,则对角线长度为2和4,据此可画出菱形;(3)要使正方形面积为5,则正方形的边长为5.【详解】(1)图形如下:(2)图形如下:(3)图形如下:【点睛】本题考查根据条件绘制四边形,注意在绘制前,需要根据四边形的特点,适当进行分析,以辅助完成绘图.15. 已知y+1与x+3成正比例,且当x=5时,y=3.(1) 求y与x之间的函数关系式;(2) 当y=1时,求x 的值.【答案】(1)y=12x +0.5;(2)当y =1时,x 的值也为1. 【解析】试题分析: (1)由1y +与3x +成正比例,设()13.y k x +=+把x 与 y 的值代入求出k 的值,即可确定出 y 与x 函数关系;(2)把1y =代入计算即可求出x 的值.试题解析:(1)设y +1=k (x +3),把x =5,y =3代入得:3+1=k (5+3),解得12k =, 则11(3)2y x +=+, 即y 与x 之间的函数关系式为11.22y x =+ (2)把y =1代入得:11 1.22x +=,解得x =1. 16. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别为AO ,CO 的中点,求证:BF ∥DE【答案】证明见解析.【解析】【分析】先根据平行四边形的性质可得,OB OD OA OC ==,再根据线段中点的定义可得OE OF =,然后根据三角形全等的判定定理与性质可得OBF ODE ∠=∠,最后根据平行线的判定即可得证.【详解】四边形ABCD 是平行四边形,OB OD OA OC ∴==点E ,F 分别为AO ,CO 的中点 11,22OE OA OF OC ∴== OE OF ∴=在OBF 和ODE 中,OB OD BOF DOE OF OE =⎧⎪∠=∠⎨⎪=⎩()OBF ODE SAS ∴≅OBF ODE ∴∠=∠//BF DE ∴.【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质、平行线的判定等知识,熟练掌握并灵活运用各性质与判定定理是解题关键.17. 如图,四边形ABCD 是平行四边形,点E 、B 、D 、F 在同一直线上,且BE =DF .求证:四边形AECF 是平行四边形.【答案】见解析.【解析】【分析】连接AC ,利用对角线互相平分的四边形为平行四边形进行证明即可.【详解】证明:连接AC ,交BD 于点O ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵BE =DF ,∴OE=OF .∴四边形AECF 是平行四边形.【点睛】本题考查了平行四边形的性质和判定的综合运用.根据条件,灵活选择恰当的方法进行证明,往往能简化证明思路和过程,本题从平行四边形对角线进行证明是最简明的方法.18. 如图,四边形ABCD 是平行四边形, ,AE BC AF CD ⊥⊥,垂足分别为,E F ,且BE DF =.(1)求证:四边形ABCD 是菱形;(2)连接EF 并延长,交AD 的延长线于点G ,若30,2CEG AE ︒∠==,求EG 的长.【答案】(1)详见解析;(2)4.【解析】【分析】 (1)根据平行四边形的性质可得对角相等,再利用角角边证明△ABE ≌△ADF 即可.(2)由平行得出∠G=30°,再根据30°特殊三角形的比求出EG 即可.【详解】(1)∵四边形ABCD 是平行四边形,∴∠D=∠B,∵AE ⊥BC,AF ⊥CD,∴∠AEB=∠AFD,又∵BE=DF ,∴△ABE ≌△ADF(AAS),∴AB=AD,∴平行四边形ABCD 是菱形.(2)∵AG//BC,∴∠G=∠CEG=30°,∠GAE=∠AEB=90°,∵AE=2,∴EG=2AE=4.【点睛】本题考查菱形的判定和三角形全等的判定和性质及特殊的直角三角形,关键在于结合图形熟练运用基础知识.19. 如图,直线1l 的解析式为:33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A ,B ,直线1l ,2l 交于点C .(1)求直线2l 的解析表达式;(2)求△ADC 的面积.【答案】(1)362y x =-;(2)92 【解析】【分析】(1)设2l 的解析式为y kx b =+,由图联立方程组求出k ,b 的值.(2)已知1l 的解析式,令y=0求出D 点坐标,联立方程组,求出交点C 的坐标,继而可求出ADC S △.【详解】(1)设直线2l 的表达式为y kx b =+由题意知:直线2l 过A 、B 两点,由图可知:A (4,0),B (3,32-) 将A 、B 两点代入,可得:403 32 k bk b+=⎧⎪⎨+=-⎪⎩解得326kb⎧=⎪⎨⎪=-⎩∴求直线2l的解析表达式为362y x=-.(2)由题意知:直线1l的解析式为:33y x=-+,将y=0代入,-3x+3=0得x=1∴D点坐标为(1,0)联立方程33362y xy x=-+⎧⎪⎨=-⎪⎩得x=2,y=-3∴C(2,-3)∵AD=3,C(2,-3)∴193322ADCS=⨯⨯-=【点睛】此题考查的是一次函数的性质,三角形面积的计算等有关知识,利用图象上点的坐标得出解析式是解题关键.20. 如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【答案】(1)证明见解析;(2)18.【解析】【详解】解:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.21. 小明星期天上午8:00从家出发到离家36千米的书城买书,他先从家出发骑公共自行车到公交车站,等了12分钟的车,然后乘公交车于9:48分到达书城(假设在整个过程中小明骑车的速度不变,公交车匀速行驶,小明家、公交车站、书城依次在一条笔直的公路旁).如图是小明从家出发离公交车站的路程y(千米)与他从家出发的时间x(时)之间的函数图象,其中线段AB对应的函数表达式为y=kx+6.(1)求小明骑公共自行车的速度;(2)求线段CD对应的函数表达式;(3)求出发时间x在什么范围时,小明离公交车站的路程不超过3千米?【答案】(1)10千米/小时;(2)y=30x﹣24;(3)0.3≤x≤0.9【解析】【分析】(1)根据线段AB对应的函教表达式为y=kx+6和函数图象中的数据,可以求得k的值,然后即可得到点A 的坐标,从而可以求得小明骑公共自行车的速度;(2)根据题意,可以得到点C和点D的坐标,然后即可求得线段CD对应的函数表达式;(3)根据前面求出的函数解析式,可以得到出发时间x 在什么范围时,小明离公交车站的路程不超过3千米.【详解】解:(1)∵线段AB 对应的函教表达式为y =kx+6,点(0.6,0)在y =kx+6上,∴0=0.6k+6,得k =﹣10,∴y =﹣10x+6,当x =0时,y =6,∴小明骑公共自行车的速度为6÷0.6=10(千米/小时),答:小明骑公共自行车的速度是10千米/小时;(2)∵点C 的横坐标为:0.6+1260=0.8, ∴点C 的坐标为(0.8,0),∵从8:00到9:48分是1.8小时,点D 的纵坐标是36﹣6=30,∴点D 的坐标为(1.8,30),设线段CD 对应的函数表达式是y =mx+n , 0.801.830m n m n +=⎧⎨+=⎩,得3024m n =⎧⎨=-⎩, 即线段CD 对应的函数表达式是y =30x ﹣24;(3)令﹣10x+6≤3,得x ≥0.3,令30x ﹣24≤3,得x ≤0.9,即出发时间x 在0.3≤x ≤0.9范围时,小明离公交车站的路程不超过3千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数关系式,利用一次函数的性质和数形结合的思想解答.22. 如图,矩形ABCD 的对角线AC ,BD 相交于点O ,将COD ∆沿CD 所在直线折叠,得到CED ∆.(1)求证:四边形OCED 是菱形;(2)若2AB =,当四边形OCED 是正方形时,OC 等于多少?(3)若3BD =,30ACD ∠=︒,P 是CD 边上的动点,Q 是CE 边上的动点,那么PE PQ +的最小值是多少?【答案】(1)证明见详解;(2;(3)4. 【解析】【分析】 (1)根据四边相等的四边形是菱形即可判断.(2)由勾股定理得出,得出AB=AC ,由等腰三角形的性质得出BD ⊥AC ,即可得出结论;(3)作OQ ⊥CE 于Q ,交CD 于P ,此时PE+PQ ;由折叠的性质得出∠DCE=∠DCO ,PE=PO ,得出PE+PQ=PO+PQ=OQ ,由直角三角形的性质得出CQ=12OC=34即可. 【详解】(1)证明:∵四边形ABCD 是矩形,∴AC 与BD 相等且互相平分,∴OC=OD ,∵△COD 关于CD 的对称图形为△CED ,∴OD=ED ,EC=OC ,∴OD=ED=EC=OC ,∴四边形OCED 是菱形.(2)解:∵四边形ABCD 是矩形,AB=2,∴AB=CD=2,OD=OC又∵OCED 是正方形∴OD ⊥OC∴△OCD 为等腰直角三角形∴OC=2 (3)解:作OQ ⊥CE 于Q ,交CD 于P ,如图所示:此时PE+PQ 的值最小为4;理由如下: ∵△COD 沿CD 所在直线折叠,得到△CED ,∴∠DCE=∠DCO ,PE=PO ,∴PE+PQ=PO+PQ=OQ ,∵AC=BD=3,∴OC=OD=32 ∴∠DCO=∠ACD=30°,∴∠DCE=30°,∴∠OCQ=60°,∴∠COQ=30°,CQ=12OC=34,OQ=3CQ=33. 即PE+PQ 的最小值为33. 故答案为:33.【点睛】本题考查了翻折变换的性质、矩形的性质、菱形的判定和性质、正方形的判定、勾股定理以及垂线段最短等知识;熟练掌握翻折变换的性质和菱形的判定与性质是解题的关键.23. 感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =; 拓展:在图①中,若G 在AD ,且45GCE ︒∠=,则GE BE GD =+成立吗?为什么?运用:如图②在四边形ABCD 中,//()AD BC BC AD >,90A B ︒∠=∠=,16AB BC ==,E 是AB 上一点,且45DCE ︒∠=,4BE =,求DE 的长.【答案】感知:见详解;拓展:成立,理由见详解;运用:DE=13.6.【解析】【分析】感知:利用已知条件,可证出△BCE≌△DCF(SAS),即CE=CF;拓展:由△BEC≌△DFC,可得∠BCE=∠DCF,即可求∠GCF=∠GCE=45°,且GC=GC,EC=CF可证△ECG≌△GCF,则结论可求.运用:过点C作CF⊥AD于F,可证四边形ABCF是正方形,根据拓展的结论可得DE=DF+BE=4+DF,根据勾股定理列方程可求DF的长,即可得DE的长.【详解】感知:证明:如图1中,在正方形ABCD中,∵BC=CD,∠B=∠CDF=90°,BE=DF,∴△CBE≌△CDF(SAS),∴CE=CF;拓展:成立,∵∠GCE=45°,∴∠BCE+∠GCD=45°,∵△BEC≌△DFC,∴∠BCE=∠DCF,∴∠DCF+∠GCD=45°,即∠GCF=45°,∴∠GCE=∠GCF,且GC=GC,CE=CF,∴△GCE≌△GCF(SAS),∴EG=GF,∴EG=GD+DF=BE+GD;运用:如图:过点C作CF⊥AD于F,∵AD∥BC,∠B=90°,∴∠A=90°,∵∠A=∠B=90°,FC⊥AD,∴四边形ABCF是矩形,且AB=BC=16,∴四边形ABCF是正方形,∴AF=16,由拓展可得DE=DF+BE,∴DE=4+DF在△ADE中,AE2+DA2=DE2.∴(16-4)2+(16-DF)2=(4+DF)2.解得DF=9.6.∴DE=4+9.6=13.6.【点睛】本题考查四边形综合题,正方形的性质,勾股定理,全等三角形的判定和性质,构造正方形利用拓展的结论解决问题是本题的关键.。

八年级数学下册期中考试卷

八年级数学下册期中考试卷

2019年八年级数学下册期中考试卷【】多做练习题和试卷,可以使学生了解各种类型的题目, 使学生在练习中做到举一反三。

在此查字典数学网为您提供2019年八年级数学下册期中考试卷, 希望给您学习带来帮助, 使您学习更上一层楼!2019年八年级数学下册期中考试卷一、选择题(每小题3分, 共3分8=24分)1.在、、、、、中分式的个数有 ( )A.2个B.3个C.4个D.5个2.利用分式的基本性质将变换正确的是 ( )A. B. C. D.xx2-2x=xx-2x3.函数y= 的图象经过点(2, 8), 则下列各点不在y= 图象上的是( )A: (4, 4) B: (-4, -4) C: (8, 2) D: (-2, 8)4、对分式 , , 通分时, 最简公分母是 ( )A.24x2y3B.12x2y2C.24xy2D.12xy25.对于反比例函数 , 下列说法不正确的是( )A、点(-2, -1)在它的图象上。

B、它的图象在第一、三象限。

C.当x0时, y随x的增大而增大。

D、当x0时, y随x的增大而减小。

6、若分式的值为0, 则x的值是( )A.-3B.3C.3D.07、已知下列四组线段:①5, 12, 13 ; ②15, 8, 17 ; ③1.5, 2, 2.5 ; ④。

其中能构成直角三角形的有( )A.四组B.三组C.二组D.一组8、如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块, 一只蚂蚁要从顶点A出发, 沿长方体的表面爬到和A 相对的顶点B处吃食物, 那么它需要爬行的最短路线的长是( )A. B. C. D.二、填空题(每小题3分, 共3分6=18分)9、计算: 2-2 =10、自从扫描隧道显微镜发明后, 世界上便诞生了一门新学科, 这就是纳米技术, 已知52个纳米的长度为0.000 000 052米, 用科学记数法表示的这个数为_________________________________米。

人教版八年级数学下册期中考试卷

人教版八年级数学下册期中考试卷

初中数学试卷灿若寒星整理制作2015-2016年下学期八年级数学期中考试卷班级__________姓名____________座号________成绩______一、选择题(每小题4分,共32分) 1、下列运算正确的是( )A 、9=±3B 、2)5(-=-5C 、2)7(-=7D 、2)3(-=-3 2、在实数范围内,若x+11有意义,则x 的取值范围是( ) A 、x ≤-1 B 、x <-1 C 、x >-1 D 、x ≥-1 3、下列条件中,能判定四边形是平行四边形的是( ) A 、一组对角相等 B 、对角线互相平分 C 、一组对边相等 D 、对角线互相垂直 4、若02)1(2=-++y x 则(x+y)2012的值为( ) A 、1 B 、-1 C 、2012 D 、-20125、在平行四边形ABCD 中,∠A :∠B:∠C:∠D=2:3:2:3, 则∠D=( )A 、360B 、1080C 、720D 、6006、设2=a ,3=b ,用含a,b 的式子表示6,则下列表示正确的是( ) A 、ab 2 B 、2ab C 、ab D 、a 2b7、如图所示,在菱形ABCD 中,∠B=600,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A 、14B 、15C 、16D 、178、直角三角形两直角边长的和为7,面积为6,则斜边长为( )第7题A 、5B 、37C 、7D 、38 二、填空题(每小题4分,共计32分) 9、化简24=______________10、当x=2时,112+-x x =______________11、如图,D 、E 、F 分别为△ABC 三边的中点,则图中平行四边形的个数为______________12、如图,在平行四边形ABCD 中,AC 平分∠DAB ,AB=4,则平行四边形ABCD 的周长为______________。

13、如果最简二次根式a 3与15是同类二次根式,则a=_______14、连结矩形四边中点所得四边形是______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册期中测试题
1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( ) A .16 B .17 C .16或17 D .10或12
2. 已知实数x ,y 满足|x −4|+(y −8)2
=0,则以x ,y 的值为两边长的等腰三角形的周长是( ) A .20或16 B .20 C .16 D .以上答案均不对 3.三角形的三边长分别为 2
2
a b +、2ab 、2
2
a b -(a b 、都是正整数),则这个三角形是( )
A .直角三角形
B . 钝角三角形
C .锐角三角形
D .不能确定 4. 如图,在Rt△ABC 中,∠B=90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点
E .已知∠BAE=10°,则∠C 的度数为( )
A .30° B.40° C.50° D.60°
5. 如图,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,若CD =n ,
AB =m ,则ΔABD 的面积是( )A .mn 31 B .mn 2
1
C .mn
D .2mn
6. 下列式子:①5<7;②2x >3;③y ≠0;④x ≥5;⑤2a+l ;⑥1
13
x ->;⑦x =1.其中是不等式的有( ). A .3个 B .4个 C .5个 D .6个
7. 下列变形中,错误的是( ). A .若3a+5>2,则3a >2-5 B .若213x ->,则2
3x <-
C .若115x -<,则x >-5
D .若1115x >,则5
11
x > 8. 不等式6x 2x 34-≥-的非负整数解有( ). A . 1个 B .2个 C .3个 D .4个 9. 现有若干本连环画册分给小朋友,如果每人分8本,那么不够分,现在每人分7本,还多10本,则小朋友人数最少有 ( ) A.7人 B. 8人 C. 10人 D.11人 10. 不等式32015
x
-<
≤的整数解有( ).A .4个 B .3个 C .2个 D .1个 11.有以下现象:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动,其中属于平移的是( ). A .①③ B.①② C.②③ D .②④
12. 如图,△ABC 是等边三角形,D 为BC 边上的点,∠BAD =15°,△ABD 经旋转后到达△ACE 的位置,那么旋转了( ). A .75° B .60° C .45° D .15°
13. 已知△ABC 中,∠A=90°,角平分线BE 、CF 交于点O ,则∠BOC= _________ . 14. 当x_____时,代数式-3x +5的值不大于4. 15. 不等式组⎩⎨
⎧<+≥+3
20
1x x 的整数解是_______.
AB 、BC 、弧CO 、弧OA 所围
成的面积是__________cm 2
. 18. 如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1重合,则AC = cm .
19. △ABC 中,∠A 是∠B 的2倍,∠C 比∠A+∠B 还大12°,那么∠B= ___° 20.已知13y x =-+,234y x =-,如果1y >2y ,则x 的取值范围是_______
21. 有10名菜农,每名可种茄子3亩或辣椒2亩,已知茄子每亩的收入是0.5万元,辣椒每亩的
收入是0.8万元,要使总收入不低于15.6万元,则最多只能安排________名菜农种茄子. 22.如图,在△ABC
中,∠C=90°,∠A=30°,
CD =
2cm , AB 的垂直平分线MN 交AC 于D ,连结BD ,
则AC 的长是___________cm .
23.如图,△ABC 的周长为32,且AB=AC ,AD ⊥BC 于D ,△ACD 的周长为24,那么AD
的长为 .
24.如图,在△ABC 中,∠C =90°,
DE
⊥AB ,∠
1=∠2,且AC =6cm ,那么线段BE 是△ABC 的 ,AE +DE = 。

25. 如图,在△ ABC 中,AD ⊥BC ,BE ⊥AC ,垂足分别为D 、E ,AD 与BE 相交于点F ,若BF=AC ,求∠ABC 的大小.
26. 如图,△ABC 中,∠C=Rt ∠,AD 平分∠BAC 交BC 于点D ,BD :DC=2:1,BC=7.8cm ,求D 到AB 的距离.
24.已知△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交BC 的延长线于F .求证:∠BAF=∠ACF .
28. 解下列不等式(组),并把不等式的解集表示在数轴上. (1)4(1)33(21)x x -+≤+
(2)125
336
x --<≤
29. 如图,在正方形网格上有一个△ABC . (1)作出△ABC 关于点O 的中心对称图形 △A′B′C′(不写作法,但要标出字母); (2)若网格上的最小正方形边长为1, (3)求出△ABC 的面积.
30. 如图所示,根据图中信息.
(1)你能写出m 、n 的值吗? (2)你能写出P 点的坐标吗?
(3)当x 为何值时,1y >2y ?
31.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为张. (1)写出零星租碟方式应付金额
(元)与租碟数量(张)之间的函数关系式; (2)写出会员卡租碟方式应付金额
(元 )与租碟数量(张)之间的函数关系式;
(3)小彬选取哪种租碟方式更合算?
32.
某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.
(1)求该校八年级学生参加社会实践活动的人数;
(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满.....).请你计算本次社会实践活动所需车辆的租金.。

相关文档
最新文档