八年级下册期中测试题(含答案)

合集下载

人教版八年级下册数学《期中检测试题》附答案

人教版八年级下册数学《期中检测试题》附答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第I 卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. ,字母x 取值必须满足( ) A. 0x ≥B. 0x ≤C. 1≥xD. 1x ≥-2. 下列二次根式中,最简二次根式是( )A.B.C.D.3. 下列计算中,正确的是( )A.B.C.D.﹣34. 方程240x x -=的解是( ) A. 4x =B. 2x =C. 124,0x x ==D. 0x =5. 用配方法将方程26110?x x +-=变形,正确的是( ) A. 2(3)20x -= B. 2(3)2x -= C. 2(3)2x += D. 2(3)20x +=6. 已知关于的一元二次方程2(1)210a x x --+=有实数根,则的取值范围是( ) A. 2a ≤B. 2a >C. 2a ≤且1a ≠D. 2a <-7. 已知一个直角三角形的两边长分别3和4,则第三边长是( ) A. 5B. 7C. 25D. 5或78. 已知方程22610x x +-=的两个实数根为12,x x ,则1211+x x 的值为( ) A. -3 B. 3 C. 6D. -69. 某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是,那么可列出的方程是( ) A. ()21001364x += B. ()()210010011001364x x ++++= C. ()210012364x +=D. ()()2100100112364x x ++++=10. 如图,在Rt △ABC 中,∠ACB =90°,AE 为△ABC 的角平分线,且ED ⊥AB ,若AC =6,BC =8,则ED 的长( )A. 2B. 3C. 4D. 511. 直线:(3)2l y m x n =--+(m ,n 为常数)的图象如图,化简︱3m -︱-244n n -+得( )A. 5m n --B. 1n m -+C. m n 1--D. 5m n +-12. △ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B ∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A. 2个B. 3个C. 4个D. 5个第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每题3分,共18分)13. 计算4812-结果是_____.14. 如图,在一个高为5m ,长为13m 的楼梯表面铺地毯,则地毯的长度至少是_______.15.271m +,则m = .16. 等腰三角形的顶角为120︒,底边上的高为2,则它的周长为_____.17. 若关于x 的一元二次方程()2215360m x x m m -+++-=的常数项为-2,则m 的值为 .18. 若关于x 方程()()220ax a b b a x +-+-=有两个相等的实数根,则a :b = .三、解答题(本大题共8小题,满分66分.解答题应写出文字说明、证明过程或演算步骤.)19. 计算:(11182432(2188222220. 解下列方程:(1)()2943-=-x x (2)231x x -=21. 已知:21,21a b ==,求:(1)a -b 的值;(2)ab 的值;(3)a bb a-的值. 22. 如图,在4x4的正方形网格中,每个小正方形的边长都为1.求:(1)△ABC 的周长;(2)∠ABC 度数. 23. 已知关于x 的方程22210x kx k ++-=.(1)试说明:无论k 取何值时,方程总有两个不相等实数很; (2)如果方程有一个根为-3,试求22122019k k ++的值.24. 一架梯子AB 长25米,如图斜靠在一面墙上,梯子底端B 离墙7米. (1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?25. 已知,,a b c 是△ABC 的三边长,关于的一元二次方程x 2+2b 有两个相等的实数根,关于的方程322cx b a +=的根为0x =.(1)试判断△ABC 的形状;(2)若,a b 是关于一元二次方程230x mx m +-=的两个实数根,求的值.26. 某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个. (1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元?答案与解析第I 卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. ,字母x 的取值必须满足( ) A. 0x ≥ B. 0x ≤C. 1≥xD. 1x ≥-[答案]D [解析] [分析]根据二次根式有意义的条件:被开方数是非负数即可求解. [详解]解:由题意得x+1≥0, 解得:1x ≥-, 故选:D .[点睛]本题考查二次根式有意义的条件,掌握知识点是解题关键. 2. 下列二次根式中,最简二次根式是( )[答案]A [解析] [分析]利用最简二次根式定义判断即可.[详解]解:A 、原式为最简二次根式,符合题意;B 2,不是最简二次根式;C =不是最简二次根式;D 不是最简二次根式;故选:A .[点睛]本题考查的是最简二次根式的概念,掌握被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式是解题的关键. 3. 下列计算中,正确的是( )A. B.=3 ﹣3[答案]C [解析] [分析]根据二次根式的性质和乘除法运算法则,对每个选项进行判断,即可得到答案.[详解]解:A 、,不能合并,故A 错误;B 、18=,故B 错误;C 3=,故C 正确;D 3==,故D 错误; 故选择:C.[点睛]本题考查了二次根式的性质,二次根式的乘除运算,以及同类二次根式的定义,解题的关键是熟练掌握二次根式的性质,以及熟记乘除法运算的运算法则. 4. 方程240x x -=的解是( ) A. 4x = B. 2x =C. 124,0x x ==D. 0x =[答案]C [解析] [分析]先提取公因式变形为(4)0x x -=即可求解.[详解]解:由题意可知240x x -=可变形为:(4)0x x -=, ∴124,0x x ==, 故选:C .[点睛]本题考查一元二次方程的解法,熟练掌握一元二次方程的解法,其解法包括:直接开平方法、配方法、公式法、因式分解法,本题采用因式分解法求解速度较快. 5. 用配方法将方程26110?x x +-=变形,正确的是( ) A. 2(3)20x -= B. 2(3)2x -= C 2(3)2x += D. 2(3)20x += [答案]D [解析] [分析]在本题中,把常数项-11移项后,应该在左右两边同时加上一次项系数6的一半的平方.[详解]把方程x 2 +6x -11=0的常数项移到等号的右边,得到x 2 +6x =11, 方程两边同时加上一次项系数一半的平方,得到x 2 +6x +9=11+9, 配方得(x +30)2 =20. 故选D .[点睛]本题考查了配方法解一元二次方程.6. 已知关于的一元二次方程2(1)210a x x --+=有实数根,则的取值范围是( ) A. 2a ≤ B. 2a >C. 2a ≤且1a ≠D. 2a <-[答案]C [解析] [分析]根据方程有两个实数根列出关于a 的不等式,求出a 的取值范围即可. [详解]解:∵关于x 的一元二次方程(a -1)x 2-2x +1=0有两个实数根,∴1044(1)0a a -≠⎧⎨=--⎩,解得a ≤2且a ≠1. 故选:C .[点睛]本题考查的是根的判别式,熟知一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 的关系是解答此题的关键.7. 已知一个直角三角形的两边长分别3和4,则第三边长是( ) A. 5C. 25D. 5[答案]D [解析] [分析]根据勾股定理可以求得第三边长. [详解]5== ∴第三边长是5. 故选D .[点睛]本题考查勾股定理的应用,熟练掌握勾股定理及其变形是解题关键.8. 已知方程22610x x +-=的两个实数根为12,x x ,则1211+x x 的值为( ) A. -3 B. 3C. 6D. -6[答案]C [解析] [分析]根据一元二次方程根与系数关系得出123x x +=-,1212x x =-,将1211+x x 通分,代入数值即可求解. [详解]∵方程2610x x +-=的两个实数根为12,x x , ∴123x x +=-,1212x x =-,∴121212113612x x x x x x +-+===-, 故选:C .[点睛]本题考查了一元二次方程根与系数关系、分式的化简求值,熟练掌握根与系数关系是解答的关键. 9. 某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是,那么可列出的方程是( ) A ()21001364x += B. ()()210010011001364x x ++++= C. ()210012364x += D. ()()2100100112364x x ++++=[答案]B [解析] [分析]设月平均增长的百分率是x ,则该超市二月份的营业额为100(1+x )万元,三月份的营业额为100(1+x )2万元,根据该超市第一季度的总营业额是364万元,即可得出关于x 的一元二次方程,此题得解.[详解]解:设月平均增长的百分率是x ,则该超市二月份的营业额为100(1+x )万元,三月份的营业额为100(1+x )2万元,依题意,得:100+100(1+x )+100(1+x )2=364. 故选B .[点睛]本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 10. 如图,在Rt △ABC 中,∠ACB =90°,AE 为△ABC 的角平分线,且ED ⊥AB ,若AC =6,BC =8,则ED 的长( )A. 2B. 3C. 4D. 5[答案]B [解析][分析]根据勾股定理和角平分线的性质,以及直角三角形全等的判定和性质解答即可. [详解]解:∵在Rt △ABC 中,∠ACB=90°,AC=6,BC=8, ∴22226810ABAC BC ,∵AE 为△ABC 的角平分线,∠ACB=90°,ED ⊥AB , ∴DE=CE ,在Rt △ADE 和Rt △ACE 中, ∵AE=AE ,DE=CE ,∴Rt △ADE ≌Rt △ACE (HL ), ∴AD=AC=6, ∴BD=10-6=4,设DE=x ,则CE=x ,BE=8-x , 在Rt △BDE 中, DE 2+BD 2=BE 2, 即x 2+42=(8-x )2, 解得x=3, 所以ED 的长是3, 故选:B .[点睛]本题考查了勾股定理、角平分线的性质以及直角三角形全等的判定和性质.解题的关键是能够根据勾股定理得出AB 和DE 的长,能够根据角平分线的性质得出DE=CE,能够证明两个直角三角形全等的判定. 11. 直线:(3)2l y m x n =--+(m ,n 为常数)的图象如图,化简︱3m -︱-244n n -+得( )A. 5m n --B. 1n m -+C. m n 1--D. 5m n +-[答案]A [解析][分析]根据一次函数的图像,可得30m -<,20n -+>,解得3m <,2n >,然后对代数式进行化简,即可得到答案.[详解]解:由图可知,直线从左到右是下降趋势,且直线与y 的正半轴有交点,∴30m -<,20n -+>,∴3m <,2n >,∴︱3m -=(3)m --=3(2)m n -+--=32m n -+-+=5m n --;故选择:A.[点睛]本题考查了一次函数的性质,以及绝对值的意义、二次根式的性质,解题的关键是利用一次函数的性质正确求出m 、n 的范围,从而正确进行化简.12. △ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( )①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B ∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A. 2个B. 3个C. 4个D. 5个[答案]D[解析][分析]根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案.[详解]解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确;∵2()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确;∵∠A =∠B ∠C ,得∠B=∠A+∠C ,∵∠A+∠B+∠C=180°,∴∠B=90°,故③正确;∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°, ∴318090123C ∠=︒⨯=︒++,故④正确; ∵222111()()()453+≠,则⑤不能构成直角三角形,故⑤错误;∵222102426+=,则⑥能构成直角三角形,故⑥正确;∴能构成直角三角形的有5个;故选择:D.[点睛]本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形. 第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每题3分,共18分)13. 计算4812-的结果是_____.[答案]23[解析][分析]先将二次根式化简,然后合并同类二次根式即可.[详解]解:原式432323=-=故答案为:23.[点睛]此题考查的是二次根式的减法,掌握合并同类二次根式法则是解决此题的关键.14. 如图,在一个高为5m ,长为13m 的楼梯表面铺地毯,则地毯的长度至少是_______.[答案]17米[解析][分析]在直角三角形ABC中,已知AB,BC,根据勾股定理即可求得AC的值,根据题意求地毯长度即求得AC+BC 即可.[详解]将水平地毯下移,竖直地毯右移即可发现:地毯长度为直角三角形ABC的两直角边之和,即AC+BC,在直角△ABC中,已知AB=13米,BC=5米,且AB为斜边,则根据勾股定理22-=12(米),故地AB BC毯长度为AC+BC=12+5=17(米).故答案为17米[点睛]本题考查勾股定理的应用,解题的关键是知道求地毯长度即求AC+BC.m+,则m=.15. 271[答案]2[解析][分析]27化为最简二次根式33再根据同类二次根式的定义得到m+1=3,然后解方程即可.[详解]27=33∴m+1=3,∴m=2,故答案为:2.[点睛]本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式,掌握知识点是解题关键.16. 等腰三角形的顶角为120︒,底边上的高为2,则它的周长为_____.+[答案]843[解析][分析]根据等腰三角形的性质可分别求得腰长和底边的长,从而不难求得三角形的周长.[详解]解:∵等腰三角形的顶角为120°,底边上的高为2,∴腰长=4,底边的一半∴周长=4+4+2×故答案为[点睛]本题考查勾股定理及等腰三角形的性质的综合运用.17. 若关于x 的一元二次方程()2215360m x x m m -+++-=的常数项为-2,则m 的值为 . [答案]-4[解析][分析]由常数项为,求出m 的值,再结合10m -≠,即可得到答案.[详解]解:根据题意,由常数项为,则∴2362m m +-=-,解得:4m =-或1m =,∵10m -≠,∴1m ≠,∴4m =-;故答案为:4-.[点睛]本题考查了解一元二次方程,一元二次方程的定义,解题的关键是熟练掌握解一元二次方程的方法. 18. 若关于x 的方程()()220ax a b b a x +-+-=有两个相等的实数根,则a :b = . [答案]17-或1 [解析][分析] 根据题意,由根的判别式列出方程进行计算,即可求出答案.[详解]解:∵关于x 的方程()()220ax a b b a x +-+-=有两个相等的实数根,∴2()42()0b a a a b ∆=--•-=,∴22760a ab b -++=,方程两边同时除以2b ,则27()610a a b b-+•+=, 设a bm =,则27610m m -+•+=, 解得:17m =-或1m =, ∴17a b =-或1a b=; 故答案为:17-或1. [点睛]本题考查了解一元二次方程,根的判别式,解题的关键是熟练掌握运算法则进行解题.三、解答题(本大题共8小题,满分66分.解答题应写出文字说明、证明过程或演算步骤.) 19. 计算:(1(2[答案](1) (2)2[解析][分析](1)根据二次根式运算法则,先化成最简二次根式,然后再运算即可;(2)根据二次根式的运算法则,先乘除后加减运算即可求解.[详解]解:(1)原式=42⨯+==(2)原式21=+3=31=-2=[点睛]本题考查了二次根式的加减乘除混合运算,熟练掌握二次根式的运算法则及运算顺序是解决此类题的关键.20. 解下列方程:(1)()2943-=-x x (2)231x x -=[答案](1)1213x x ==, (2)116+=x ,216-=x [解析][分析] (1)先整理方程,然后因式分解即可得出答案;(2)将常数项移到方程的左边,然后利用公式法求解即可.详解](1)解:整理得:x 2-4x +3=0,分解因式得:(x -1)(x -3)=0,可得x -1=0或x -3=0,解得:x 1=1,x 2=3;(2)23=1x x -解:原方程可化为2310x x --=∵ a =3,b =-1,c =-1,∴△=()2(1)431--⨯⨯-=13>0, ∴方程有两个不相等的实数根x ==,∴116+=x ,216=x . [点睛]本题考查了解一元二次方程,掌握方程解法是解题关键.21. 已知:1,1a b ==,求:(1)a -b 的值;(2)ab 的值;(3)a b b a-的值. [答案](1)-2 (2)1 (3)-[解析][分析](1)直接把a 、b 的值代入计算,即可得到答案;(2)直接把a 、b 的值代入计算,即可得到答案;(3)先求出a+b 的值,然后把分式进行化简,再整体代入计算,即可得到答案.[详解]解:(1)a -b =1)-11=-2;(2) ab = 1)=221-=1;(3)∵a +b 1=a -b =-2,ab =1 ∴22a b a b b a ab--= =()()a b a b ab+-=(2)-=-;[点睛]本题考查了二次根式的混合运算,分式的混合运算,分式的化简求值,以及平方差公式,解题的关键是熟练掌握运算法则进行解题.22. 如图,在4x4的正方形网格中,每个小正方形的边长都为1.求:(1)△ABC 的周长;(2)∠ABC 度数.[答案](1)355;(2)90°[解析][分析](1)分别求出AB 、BC 和AC 的长即可求得周长;(2)根据勾股定理逆定理即可求得.[详解]解:(1)AB 2242=25+,BC 22251=+AC 2234=5+,∴△ABC 的周长=555=355;(2)∵AC 2=25,AB 2=20,BC 2=5,∴AC 2=AB 2+BC 2,∴∠ABC =90°.[点睛]本题考查了勾股定理和勾股定理逆定理,熟练掌握勾股定理是解题关键.23. 已知关于x 的方程22210x kx k ++-=.(1)试说明:无论k 取何值时,方程总有两个不相等的实数很;(2)如果方程有一个根为-3,试求22122019k k ++的值.[答案](1)证明见解析; (2)k=2,2051或k=4,2099[解析][分析](1)由△=(2k)2-4×1×(k2-1)=4>0可得答案;(2)将x=-3代入方程得k2-6k+8=0,求得k的值,代入原式计算可得.[详解]解:(1)∵△= (2k)2-4(k2-1)=4k2-4k2+4=4>0∴无论k取何值时,方程总有两个不相等的实数根.(2)把x=-3代入原方程得(-3)2-6k+k2-1=0k2-6k+8=0(k-2)(k-4)=0k=2或k=4当k=2时,2k2+12k+2019=2051当k=4时,2k2+12k+2019=2099[点睛]本题考查根的判别式,解一元二次方程.(1)中解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型;(2)中理解方程的解得定义,并能熟练解一元二次方程是解题关键.24. 一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?[答案](1)24米;(2)梯子底部在水平方向不是滑动了4米,而是8米.[解析][分析](1)应用勾股定理求出AC的高度,即可求解;(2)应用勾股定理求出B ′C 的距离即可解答.[详解](1)如图,在Rt △ABC 中AB 2=AC 2+BC 2,得AC =2222257AB BC -=-=24(米)答:这个梯子的顶端距地面有24米.(2)由A 'B '2=A 'C 2+CB '2,得B 'C =2222'''25(244)A B A C -=--=15(米),∴BB '=B 'C ﹣BC =15﹣7=8(米).答:梯子底部在水平方向不是滑动了4米,而是8米.[点睛]本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.25. 已知,,a b c 是△ABC 的三边长,关于的一元二次方程x 2+2b 有两个相等的实数根,关于的方程322cx b a +=的根为0x =.(1)试判断△ABC 的形状;(2)若,a b 是关于的一元二次方程230x mx m +-=的两个实数根,求的值.[答案](1)等边三角形;(2)-12[解析][分析](1)因为方程有两个相等的实数根即△=0,由△=0可以得到一个关于a ,b 的方程,再结合方程3cx+2b=2a 的根为x=0,代入即可得到一关于a ,b 的方程,联立即可得到关于a ,b 的方程组,可求出a ,b 的关系式;(2)根据(1)求出的a=b ,得到方程x 2+mx-3m=0有两个相等的实数根,从而得到关于m 的方程,解方程即可求出m .[详解]解:(1)∵关于x 的一元二次方程x 2+b x+2c-a=0有两个相等的实数根,∴Δ= 2(2b -4×1×(2c-a)=0,∴a+b=2c.又∵关于x的方程3cx+2b=2a的根为x=0,∴a=b,∴a=b=c,即△ABC是等边三角形.(2)∵a,b是关于x的一元二次方程x2+mx-3m=0的两个实数根,又由(1)知a=b,∴方程x2+mx-3m=0有两个相等的实数根,∴Δ=m2+4×3m=0,解得m=0或m=-12.当m=0时,方程x2+mx-3m=0可化为x2=0,解得x1=x2=0.又由a,b,c是△ABC的三边长,得a>0,b>0,c>0,故m=0不符合题意:当m=-12时,方程x2+mx-3m=0可化为x2-12x+36=0,解得x1=x2=6,可知m=-12符合题意.故m的值为-12.[点睛]本题主要考查了一元二次方程的判别式与方程的解得定义,是一个比较简单的问题.26. 某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个.(1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元? [答案](1)580;(2)70;(3)50[解析][分析](1)由“这种书包的售价每上涨1元,其销售量就减少10个”进行解答;(2)根据“售价+月销量减少的个数÷10”进行解答;(3)设销售价格应定为x元,根据“这种书包的售价每上涨1元,其销售量就减少10个”列出方程并解答.[详解](1)当售价为42元时,每月可以售出的个数为600-10×(42-40)=580(个),答:每月可售出580个;(2)当书包的月销售量为300个时,每个书包的价格为:40+(600-300)÷10=70(元);答:每个书包的定价为70元;(3)设销售价格应定为元,则(x-30)[600-10(x-40)]=10000,解得x1=50,x2=80,当x=50时,销售量为500个;当x=80时,销售量为200个.答:为体现“薄利多销”的销售原则,销售价格应定为50元.[点睛]本题考查了一元二次方程的应用,解题的关键是分别表示出销量和单价,用销量乘以单价表示出利润即可.。

人教版八年级下册数学《期中检测试卷》(含答案)

人教版八年级下册数学《期中检测试卷》(含答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x –2<4C. 1x <2D. 4x –3<2y –72. 在△ABC 中,已知CA =CB ,∠A =45°,BC =5,则AB 的长为( ) A. 2 B. 5 C. 52 D. 253. 不等式3x ≥-的解集在数轴上表示为( ) A. B. C. D.4. 到三角形三条边距离都相等的点是这个三角形的( )A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点5. 等腰三角形的一个角是40°,则它的底角是( ) A. 40° B. 40°或70° C. 80°或70° D. 70° 6. 如果a b >,那么下列不等式中正确是( )A 2323a b +>+ B. 55a b < C. 22a b ->- D. 22a b -<- 7. 下列命题的逆命题是假命题的是( )A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除8. 如图,点D 、E 分别在△ABC 的边AC 、BC 上,且DE 垂直平分AC ,若△ABE 的周长为13,AD =5,则△ABC 的周长是( )A. 18B. 23C. 21D. 269. 对于任意实数a 、b ,定义一种运算:a ※b =ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x >2,则不等式的解为( )A. x >1B. x >2C. x <1D. x <210. 如图,△ABC 是等边三角形,AB=12,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,则BE+CF 的长是( )A. 6B. 5C. 12D. 8二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号) 13. 如图,已知OA =OB =OC ,BC ∥AO ,若∠A =36°,则∠B 度数为_____.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.三.解答题15. 解不等式:1﹣3(x ﹣1)<8﹣x .16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.23. 如图,△ABC 中,AB =AC ,D 为BC 边中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示: 品名 厂家批发价(元/个)商场零售价(元/个) 篮球 140180 足球 110140(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个? 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明答案与解析一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x–2<4C. 1x<2 D. 4x–3<2y–7[答案]B[解析][分析]根据一元一次不等式的概念,从未知数的次数、个数及不等式两边的代数式是否为整式的角度来解答.[详解]A、不含未知数,错误;B、符合一元一次不等式的定义,正确;C、分母含未知数,错误;D、含有两个未知数,错误.故选B.2. 在△ABC中,已知CA=CB,∠A=45°,BC=5,则AB的长为( )C. D.[答案]C[解析][分析]根据等腰直角三角形的性质利用特殊角的三角函数值求解即可;[详解]解:∵CA=CB,∠A=45°,∴∠B=∠A=45°,∴∠C=90°,∵BC=5,BC=,故选:C.[点睛]本题主要考查了解直角三角形的应用,准确计算是解题的关键.x≥-的解集在数轴上表示为()3. 不等式3A. B. C. D.[答案]A[解析][分析]根据不等式解集的表示方法即可判断.x≥-的解集在数轴上表示为[详解]3故选A.[点睛]此题主要考查不等式解集的表示,解题的关键是熟知不等式的在数轴上的表示方法.4. 到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点[答案]D[解析]分析]根据角的平分线上的点到角的两边的距离相等可得答案.[详解]解:∵角平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.[点睛]该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.5. 等腰三角形的一个角是40°,则它的底角是( )A. 40°B. 40°或70°C. 80°或70°D. 70°[答案]B[解析][分析]分40︒的角为等腰三角形的顶角和40︒的角为等腰三角形的底角两种情况,再根据三角形的内角和定理、等腰三角形的定义即可得.[详解]根据等腰三角形的定义,分以下两种情况:(1)当40︒的角为等腰三角形的顶角时, 则底角18040702;(2)当40︒的角为等腰三角形的底角时,则底角为40︒;综上,它的底角是40︒或70︒,故选:B .[底角]本题考查了等腰三角形的定义、三角形的内角和定理,依据题意,正确分两种情况讨论是解题关键. 6. 如果a b >,那么下列不等式中正确的是( )A. 2323a b +>+B. 55a b <C. 22a b ->-D. 22a b -<- [答案]A[解析][分析]根据不等式性质解答即可;[详解]解:∵a >b∴22a b >∴2323a b +>+,则A 正确∵a >b∴5a >5b ;22a b -<-;22a b ->-故B 、C 、D 错误 故应选A[点睛]本题考查了不等式的性质来,解答关键是注意不等号改变方向的条件.7. 下列命题的逆命题是假命题的是()A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除[答案]C[解析][分析]先写出各命题的逆命题,分析是否为真命题,从而利用排除法得出答案.[详解]解:(1)逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么同旁内角互补,是真命题;(2)逆命题为:能被2整除的数是偶数,是真命题;(3)逆命题为:如果两个角相等,那么它们是直角,是假命题;(4)逆命题为:如果一个数能被8整除,那么这个数也能被4整除,是真命题.故选C[点睛]此题主要考查了命题的逆命题和命题的真假判断,判断命题的真假关键是要熟悉课本中的性质定理.8. 如图,点D、E分别在△ABC的边AC、BC上,且DE垂直平分AC,若△ABE的周长为13,AD=5,则△ABC 的周长是( )A. 18B. 23C. 21D. 26[答案]B[解析][分析]根据线段垂直平分线性质可得AC=2AD,AE=CE,根据三角形周长得AB+AC=13,故△ABC的周长为AB+BC+AC;[详解]解:∵DE垂直平分AC,AD=5,∴AC=2AD=10,AE=CE,∵△ABE的周长为13,∴AB+BE+AE=AB+CE+BE=AB+AC=13,∴△ABC的周长为AB+BC+AC=13+10=23,故选:B.[点睛]考核知识点:线段垂直平分线.理解线段垂直平分线性质和三角形周长公式是关键.9. 对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x>2,则不等式的解为( )A. x>1B. x>2C. x<1D. x<2[答案]B[解析][分析]根据新定义运算的公式计算即可;[详解]解:∵2※x>2,∴2x﹣2+x﹣2>2,解得x>2,故选:B.[点睛]本题主要考查了新定义运算,准确理解和计算是解题的关键.10. 如图,△ABC是等边三角形,AB=12,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF的长是()A. 6B. 5C. 12D. 8[答案]A[解析][分析]先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF 的值.[详解]设BD=x ,则CD=20-x ,∵△ABC 是等边三角形,∴∠B=∠C=60°.∴BE=cos60°•BD=2x , 同理可得,CF= 122x -, ∴BE+CF= 12622x x -+=. 故选A .[点睛]本题考查的是等边三角形的性质,及锐角三角函数的知识,难度不大,有利于培养同学们钻研和探索问题的精神.二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.[答案]8x >-.[解析][分析]将不等式两边同时减去6,即可得到答案.[详解]62x +>-,26x ∴>--,即8x >-,故答案为:8x >-.[点睛]本题考查不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号)[答案 [解析][分析]设AC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.[详解]解:如图,设AC=x,∵在△ABC中,∠C=90°,∠B=30°,∴AB=2AC=2x,由勾股定理得:AC2+BC2=AB2,即x2+52=(2x)2,解得:x=533,即AB=2×533=1033,故答案为:1033.[点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13. 如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B的度数为_____.[答案]72°[解析][分析]根据OA=OC,得到∠ACO=∠A,又因为BC∥AO,推出∠BCA=∠A,求出∠BCO的度数,再根据OB=OC,得到∠B=∠OCB,即可解决本题.[详解]解:∵OA=OC∴∠ACO=∠A=36°∵BC∥AO∴∠BCA=∠A=36°∴∠BCO=72°∵OB=OC∴∠B=∠OCB=72°故答案为:72°.[点睛]本题主要考查了平行线的性质以及等腰三角形的性质,熟悉平行线以及等腰三角形的性质是解决本题的关键.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.[答案]5[解析][分析]设这个篮球队赢了x场,则最多平(x-1)场,最多输(x-2)场,由该篮球队共打12场比赛,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.[详解]解:设这个篮球队赢了x场,则最多平(x﹣1)场,最多输(x﹣2)场,根据题意得:x+(x﹣1)+(x﹣2)≥12,解得:x≥5.∴这个篮球队最少贏了5场.故答案为:5.[点睛]考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题15. 解不等式:1﹣3(x﹣1)<8﹣x.[答案]x>﹣2[解析][分析]先去括号,移项,再合并同类项,系数化为1,即可求得不等式的解集.[详解]解:1﹣3(x﹣1)<8﹣x去括号得,1﹣3x+3<8﹣x移项得,﹣3x+x<8﹣3﹣1合并同类项得,﹣2x<4系数化为1得,x>﹣2故此不等式的解集为:x>﹣2.[点睛]本题主要考查不等式的解法,熟练不等式的解法以及注意不等号符号的改变是解决本题的关键.16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).[答案]详见解析.[解析][分析]根据过直线外一点作一直直线垂线的方法即可得出结论.[详解]解:如图所示,直线CD即为所求.[点睛]本题考查作图-基本作图,解题关键是熟知线段垂直平分线的作法.17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.[答案]证明见解析[解析][分析]根据OA=OB,得∠A=∠B=60°;根据AB∥DC,得出对应角相等,从而求得∠C=∠D=60°,根据等边三角形的判定就可证得结论.[详解]解:∵OA=OB,∴∠A=∠B=60°,又∵AB∥DC,∴∠A=∠C=60°,∠B=∠D=60°,∴△OCD是等边三角形.[点睛]本题考查等边三角形的判定.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.[答案]见解析[解析][分析]首先假设三角形的一个外角不等于与它不相邻的两个内角的和,根据三角形的内角和等于180°,得到矛盾,所以假设不成立,进而证明三角形的一个外角等于与它不相邻的两个内角的和.[详解]已知:如图,∠1是△ABC的一个外角,求证:∠1=∠A+∠B,证明:假设∠1≠∠A+∠B,△ABC中,∠A+∠B+∠2=180°,如下图所示:∴∠A+∠B=180°﹣∠2,∵∠1+∠2=180°,∴∠1=180°﹣∠2,∴∠1=∠A+∠B,与假设相矛盾,∴假设不成立,∴原命题成立即:∠1=∠A+∠B.[点睛]本题考查了反证法的运用,反证法的一般解题步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围[答案]1a[解析][详解]解:∵4(x+2)-5=3a+2,∴4x+8-5=3a+2∴x=3a-1 4,∴3a-14≤12,∴a≤1.20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.[答案]6cm.[解析]分析]根据含30度角的直角三角形性质求出BC和BD,再相减即可.[详解]∵△ABC中∠ACB=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,∠B=60°,∵∠BCD=∠A=30°,∴∠B+∠BCD=60°+30°=90°,∴∠CDB=90°,∴BD=12BC=2cm,∴AD=AB-BD=8cm-2cm=6cm.[点睛]此题考查含30度角的直角三角形性质的应用,解题关键在于掌握在直角三角形中,如果有一个角等于30度,那么它所对的直角边等于斜边的一半.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.[答案]9或4[解析][分析]先利用不等式的性质解出不等式,再得出不等式的负整数解,最后将其代入代数式求解即可.[详解]解:不等式去分母得:6+3x+3≥12﹣2x﹣14,移项合并得:5x≥﹣11,解得:x≥﹣2.2,∴不等式的负整数解为﹣2,﹣1,当x=﹣2时,原式=(-2+1)2-4×(-2)=1+8=9;当x=﹣1时,原式=(-1+1)2-4×(-1)=4.故代数式(x+1)2﹣4x的值为9或4.[点睛]本题考查了不等式解法以及求代数式的值,掌握基本运算法则是解题的关键.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.[答案]27[解析][分析]利用已知得出在Rt△BCD中,∠A=30°,DB=4,在直角△DEC中利用勾股定理进而得出EC的长.[详解]如图,∵AD⊥DB,∠A=30°,∴∠1=60°,∵BD平分∠ABC,∴∠3=∠1=60°,∴∠4=30°,又∵∠BCD=90°,DB=4,∴BC=12BD=2,22BD BC3∴∠CDE=∠2+∠4=90°,∵DE=BE,∠1=60°,∴DE=DB =4, ∴EC=22DE CD +=224(23)+=27.[点睛]此题主要考查了勾股定理、含30度角的直角三角形、角平分线的性质等知识点.解题时须注意勾股定理应用的前提条件是在直角三角形中.23. 如图,△ABC 中,AB =AC ,D 为BC 边的中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.[答案](1)见解析;(2)S △ABC =12.[解析][分析](1)根据等腰三角形的性质得到∠DAC =∠DAB ,AD ⊥BC 根据余角的性质即可得到结论;(2)根据三角形的面积公式和三角形的中线把三角形面积分为面积相等的两部分即可得到结论.[详解](1)∵AB =AC ,D 为BC 边的中点∴AD ⊥BC ,12BAD CAD BAC ∠=∠=∠ ∴∠B +∠BAD =90°∵DE ⊥AB∴∠B +∠EDB =90°∴1EDB BAD BAC 2∠=∠=∠ 即∠BAC =2∠EDB(2)∵AB =AC =6,DE =2∴16262ABD S =⨯⨯=∵D为BC边的中点∴S△ADC=S△ADB=6∴S△ABC=12[点睛]本题考查等腰三角形“三线合一”,同角的余角相等.在等腰三角形中,顶角的角平分线,底边的中线,底边的高线,三条线互相重合.熟练掌握这一性质是解决此题的关键.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示:(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个?[答案](1)60只;(2)40个.[解析][分析](1)设采购员购进篮球x个,则足球购进为(100-x)个,根据表格的批发价,列出不等式即可解决本题;(2)设篮球a个,则足球是(100﹣a)个,一个篮球的利润为40元,一个足球的利润为30元,再分别乘对应的数量,相加后大于等于3400,列出不等式,即可解决.[详解]解:(1)设采购员购进篮球x个,根据题意得:140x+110(100﹣x)≤12800解得x≤60所以x的最大值是60.答:采购员最多购进篮球60个;(2)设篮球a个,则足球是(100﹣a)个根据题意得:(180﹣140)a+(140﹣110)(100﹣a)≥3400解得:a≥40则采购员最少可购进篮球40个.答:采购员最少可购进篮球40个.[点睛]本题主要考查了一元一次不等式的应用题,能够读懂题意以及合理的设出未知数是解决本题的关键. 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明[答案](1)详见解析;(2) AC 垂直平分BE[解析][分析](1)证明AC 是∠EAB 的角平分线,根据角平分线的性质即可得到结论;(2)先写出BE 与AC 的关系,再根据题意和图形,利用线段的垂直平分线的判定即可证明.[详解](1)证明:∵AD=CD ,∴∠DAC=∠DCA ,∵AB ∥CD ,∴∠DCA=∠CAB ,∴∠DAC=∠CAB ,∴AC 是∠EAB 的角平分线,∵CE ⊥AE ,CB ⊥AB ,∴CE=CB ;(2)AC 垂直平分BE ,证明:由(1)知,CE=CB ,∵CE ⊥AE ,CB ⊥AB ,∴∠CEA=∠CBA=90°,在Rt △CEA 和Rt △CBA 中,CE CB AC AC =⎧⎨=⎩, ∴Rt △CEA ≌Rt △CBA (HL ),∴AE=AB ,CE=CB ,∴点A 、点C 在线段BE 的垂直平分线上, ∴AC 垂直平分BE .[点睛]本题考查等腰三角形的性质、角平分线的性质、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.。

八年级下册期中语文试卷(含答案)

八年级下册期中语文试卷(含答案)

八年级下册期中试卷一、文言文阅读(24分)(一)默写(10分)1.八月湖水平,_____________ 。

(孟浩然《望洞庭湖赠张丞相》)2. _______________,儿女共沾巾。

(王勃《送杜少府之任蜀州》)3. _______________,君子好逑。

(《关雎》)4.______________ ,悠悠我思。

(《子衿》)5.《小石潭记》中,描写游鱼动态的句子是“__________ ,____________ ”。

(二)阅读下面诗歌,完成6-7题。

(4分)蒹葭蒹葭苍苍,白露为霜。

所谓伊人,在水一方。

溯洄从之,道阻且长。

溯游从之,宛在水中央。

蒹葭萋萋,白露未晞。

所谓伊人,在水之湄。

溯洄从之,道阻且跻。

溯游从之,宛在水中坻。

蒹葭采采,白露未已。

所谓伊人,在水之涘。

溯洄从之,道阻且右。

溯游从之,宛在水中沚。

6.本诗出自诗歌总集_________ ,其中“风”里面收集的诗歌都是各地的______ 。

(2分)7.下列理解不正确的一项是 ( )(2分)A.此诗用芦苇、霜露、秋水等自然意象组成一幅清秋晨景图,并笼罩着一种凄清的气氛。

B.诗中“蒹葭”“水”和“伊人”的形象交相辉映,起兴的事物与吟咏的对象形成和谐的画面。

C.这首诗动静结合,描摹传神,伊人忽隐忽现,若即若离,给人留下了更生动、鲜明的印象。

D.“溯洄从之”“溯游从之”两句在三个诗节中的重复,直接表现出主人公对意中人的思念和勇敢追求。

(三)阅读下面两段选文,完成8-11题。

(10分)【甲】桃花源记晋太元中,武陵人捕鱼为业。

缘溪行,忘路之远近。

忽逢桃花林,夹岸数百步,中无杂树,芳草鲜美,落英缤纷。

渔人甚异之,复前行,欲穷其林。

林尽水源,便得一山,山有小口,仿佛若有光。

便舍船,从口入。

初极狭,才通人。

复行数十步,豁然开朗。

土地平旷,屋舍俨然,有良田、美池、桑竹之属。

阡陌交通,鸡犬相闻。

其中往来种作,男女衣着,悉如外人。

黄发垂髫,并怡然自乐。

见渔人,乃大惊,问所从来。

八年级语文下册期中测试卷(及参考答案)

八年级语文下册期中测试卷(及参考答案)

八年级语文下册期中测试卷(及参考答案)满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列加点字读音完全正确的一项是()A.镌.刻(juàn)遗嘱.(zhǔ)咆哮.(xiào)水皆缥.碧(piǎo)B.桅.杆(wéi)翘首(qiáo)刹.那(chà)凛冽.(liè)C.要塞.(sè)悄.然(qiǎo)溃.退(kuì)殚.精竭虑(dān)D.承载.(zǎi)娴.熟(xián)澎湃.(pài)屏.息敛声(bǐng)3、下列句子中加点的成语使用不正确的一项是()A.今年十一假期,前来秦始皇陵兵马俑游玩的人络绎不绝....。

B.小草虽然是微不足道....的角色,它却以顽强的生命力为世人所钦佩和赞颂。

C.列夫·托尔斯泰的小说,情节起伏跌宕,抑扬顿挫....。

D.上海一人工湖惊现巨幅“中国地图”,这一巧妙设计可谓独具匠心。

.....4、下列句子没有语病的一项是()A.散文通常写自然风物、社会风云的一角,写名士凡人的片段事迹,抒写一缕情思,传达某种趣味。

B.政府不断继续加大公共服务事业,如关注教育均衡、食品安全等问题,这些都与老百姓的生活密切相关。

C.我们常说的知识改变命运,实则是知识改变了你对整个世界的认知,从而对每一件事的态度。

D.在第26届“汤姆斯杯”羽毛球锦标赛上,中国男队折戟沉沙,其原因是队伍青黄不接的缘故。

5、对下列句子使用修辞手法的判断正确的一项是()A.山河睡了而风景醒着,春天睡了而种子醒着。

(洛夫《湖南大雪——赠长沙李元洛》)(排比)B.风声在云外呼唤着,远山也在送青了。

(张晓风《到山中去》)(反复)C.五十岁上下的女人站在我面前,两手搭在髀间,没有系裙,张着两脚,正像一个画图仪器里细脚伶仃的圆规。

(鲁迅《故乡》)(比喻)D.在我们面前,天边远处仿佛有一片紫色的阴影从海里钻出来。

八年级数学下册期中测试卷(含答案)

八年级数学下册期中测试卷(含答案)

八年级数学下册期中测试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.估计6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.式子:①2>0;②4x +y ≤1;③x +3=0;④y -7;⑤m -2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个5.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .20 6.已知1112a b -=,则ab a b-的值是( ) A .12 B .-12 C .2 D .-27.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)1.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为________.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM BN=,连接AC 交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是________.6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x yx y+=⎧⎨-=⎩(2)143()2()4xyx y x y⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:22169211x x xx x⎛⎫-++-÷⎪+-⎝⎭,其中2x=.3.已知222111x x xAx x++=---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.4.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、C5、D6、D7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、(3,7)或(3,-3)3、60°或120°4、145、36、1三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、13xx-+;15.3、(1)11x-;(2)14、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。

人教版数学八年级下册《期中检测题》附答案解析

人教版数学八年级下册《期中检测题》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列图形中,是轴对称图形,但不是中心对称图形的是( ) A. B. C. D.2.下列四组线段中,可以构成直角三角形的是( )A. 6,15,17B. 1.5,2,2.5C. 5,10,12D. 1,2,3 3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )A. 88°,108°,88°B. 88°,104°,108°C. 88°,92°,92°D. 88°,92°,88°4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A. 当AB BC =时,它是菱形B. 当AC BD ⊥时,它是菱形C. 当90ABC ︒∠=时,它是矩形D. 当AC BD =时,它是正方形5. 如图,已知在△ABC中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E,BC=5,DE=2,则△BCE的面积等于( )A 10 B. 7 C. 5 D. 46.已知,如图,长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A. 6cm 2B. 8 cm 2C. 10 cm 2D. 12 cm 27.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则所有正方形的面积的和是( 2)cm .A. 28B. 49C. 98D. 1478.如图,分别以直角ABC 斜边AB ,直角边AC 为边向ABC 外作等边ABD △和等边ACE △,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,90ACB ∠=︒,30BAC ∠=︒.给出如下结论:①EF ⊥AC ; ②四边形ADFE 为菱形; ③4AD AG =; ④14FH BD =; 其中正确结论的是( )A ①②③ B. ②③④ C. ①③④ D. ①②④二、填空题9.若直角三角形的两直角边的长分别为a 、b ,3a -(b ﹣4)2=0,则该直角三角形的斜边长为_____. 10.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm,则菱形的边长是______cm .11.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠BED =____度.12.如图,□ABCD 的对角线AC 、BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是_______.13.如图:在Rt ABC ∆中,CD 是斜边AB 上中线,若20A ∠=︒,则BDC ∠=_________.14.生活经验表明:靠墙摆放梯子时,若梯子底端离墙约为梯子长度的13时,则梯子比较稳定.现有一长度为9 m 的梯子,当梯子稳定摆放时,它的顶端能到达8.5 m 高的墙头吗?____(填“能”或“不能”).15.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形、菱形),其中可用两块能完全重合的含有30°角的三角板拼成的所有图形是________.16.如图,OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2…依此法继续作下去,得20142015OP P S ∆=____.三、解答题17.已知一个正多边形内角和比外角和多720°,求此多边形的边数及每一个内角的度数.18.已知:如图,GB =FC ,D 、E 是BC 上两点,且BD =CE ,作GE ⊥BC ,FD ⊥BC ,分别与BA 、CA 的延长线交于点G ,F .求证:GE =FD .19.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE .∠E =50°,求∠BAO 的大小.20.如图,已知四边形ABCD 是平行四边形,点E 、B 、D 、F 在同一直线上,且BE=DF .求证:AE ∥CF .21.在如图的方格纸中,△ABC 的三个顶点都在格点上.(1)若111A B C ∆与△ABC 关于点成中心对称,请画出111A B C ∆.(2)求四边形11ABA B 的面积.22.已知:如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG//DB 交CB 的延长线于G .(1)求证:△ADE ≌△CBF ;(2)若四边形BEDF 是菱形,求证四边形AGBD 是矩形.23.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,(1)A处是否会受到火车的影响,并写出理由(2)如果A处受噪音影响,求影响的时间.24.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)求∠PED的度数.25.已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD 同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①请直接写出线段DG与PC的数量关系(不要求证明);②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.26.如图,在平行四边形ABCD中,AB = 6cm ,BC = 12cm ,∠B = 30︒,点P 在BC 上由点B向点C 出发,速度为每秒2cm;点Q 在边AD上,同时由点D 向点A 运动,速度为每秒1cm ,当点P 运动到点C时,P 、Q 同时停止运动,连接PQ,设运动时间为t秒.(1)当t为何值时四边形ABPQ 为平行四边形?(2)当t为何值时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三?(3)连接AP ,是否存在某一时刻t,使∆ABP 为等腰三角形?并求出此刻t的值.答案与解析一、选择题1.下列图形中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.[答案]B[解析]试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可得:A、C、D既是轴对称图形,也是中心对称图形,只有B是轴对称图形,但不是中心对称图形.考点:轴对称图形、中心对称图形.2.下列四组线段中,可以构成直角三角形的是()A. 6,15,17B. 1.5,2,2.5C. 5,10,12D. 12,3[答案]B[解析][分析]根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判断即可.[详解]解:、22261517+≠,该三角形不是直角三角形,不合题意;、222+=,该三角形是直角三角形,符合题意;1.522.5、222+≠,该三角形不是直角三角形,不合题意;51012、222+≠,该三角形不是直角三角形,不合题意.123故选:B[点睛]本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )A. 88°,108°,88°B. 88°,104°,108°C. 88°,92°,92°D. 88°,92°,88°[答案]D[解析][分析]两组对角分别相等的四边形是平行四边形,根据所给的三个角的度数可以求出第四个角,然后根据平行四边形的判定方法验证即可.[详解]解: 当三个内角度数依次是88°,108°,88°时,第四个角是76°,故A 不是平行四边形; 当三个内角度数依次是88°,104°,108°时,第四个角是60°,故B 不是平行四边形;当三个内角度数依次是88°,92°,92°时,第四个角是88°,而C 中相等的两个角不是对角,故C 不是平行四边形;,当三个内角度数依次是88°,92°,88°时,第四个角是92°,D 中满足两组对角分别相等,故D 是平行四边形. 故选D .[点睛]此题主要考查平行四边形的判定:两组对角分别相等的四边形是平行四边形.注意角对应的位置关系,并不是有两组角相等的四边形就是平行四边形.4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A. 当AB BC =时,它是菱形B. 当AC BD ⊥时,它是菱形C. 当90ABC ︒∠=时,它是矩形D. 当AC BD =时,它是正方形 [答案]D[解析][分析]根据特殊平行四边形的判定方法判断即可.[详解]解:有一组邻边相等的平行四边形是菱形,A 选项正确;对角线互相垂直的平行四边形是菱形,B 选项正确;有一个角是直角的平行四边形是矩形,C 选项正确;对角线互相垂直且相等的平行四边形是正方形,D 选项错误.故答案为D[点睛]本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.5.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC,交CD 于点E,BC=5,DE=2,则△BCE 的面积等于( )A. 10B. 7C. 5D. 4[答案]C[解析] 试题分析:如图,过点E 作EF⊥BC 交BC 于点F,根据角平分线的性质可得DE=EF=2,所以△BCE 的面积等于1152522BC EF ⨯⨯=⨯⨯=,故答案选C .考点:角平分线的性质;三角形的面积公式.6.已知,如图,长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A. 6cm 2B. 8 cm 2C. 10 cm 2D. 12 cm 2[答案]A[解析][分析]首先根据翻折的性质得到ED=BE,用AE表示出ED,BE的长度,然后在Rt△ABE中利用勾股定理求出AE 的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.[详解]解:∵将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知:AB2+AE2=BE2.∴32+AE2=(9﹣AE)2.解得:AE=4cm.∴△ABE的面积为:12×3×4=6(cm2).故选:A.[点睛]此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.7.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是(2)cm.A. 28B. 49C. 98D. 147[答案]D[解析][分析]根据勾股定理即可得到正方形A 的面积加上B 的面积等于E 的面积,同理,C,D 的面积的和是F 的面积,E,F 的面积的和是M 的面积.即可求解.[详解]解:根据勾股定理可得:S A +S B =S E ,S C +S D =S M ,S E +S F =S M所以,所有正方形的面积的和是正方形M 的面积的3倍:即49×3=147cm 2.故选D[点睛]理解正方形A,B 的面积的和是E 的面积是解决本题的关键.若把A,B,E 换成形状相同的另外的图形,这种关系仍成立.8.如图,分别以直角ABC 的斜边AB ,直角边AC 为边向ABC 外作等边ABD △和等边ACE △,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,90ACB ∠=︒,30BAC ∠=︒.给出如下结论: ①EF ⊥AC ; ②四边形ADFE 为菱形; ③4AD AG =; ④14FH BD =; 其中正确结论的是( )A. ①②③B. ②③④C. ①③④D. ①②④[答案]C[解析][分析] 根据已知先判断ABC EFA ∆≅∆,则AEF BAC ∠=∠,得出EF AC ⊥,由等边三角形的性质得出30BDF ∠=︒,从而证得DBF EFA ∆≅∆,则AE DF =,再由FE AB =,得出四边形ADFE 为平行四边形而不是菱形,根据平行四边形的性质得出4AD AG =,从而得到答案.[详解]解:ACE ∆是等边三角形,60EAC ∴∠=︒,AE AC =,30BAC ∠=︒,90FAE ACB ∴∠=∠=︒,2AB BC =, F 为AB 的中点,2AB AF ∴=,BC AF ∴=,ABC EFA ∴∆≅∆,FE AB ∴=,30AEF BAC ∠=∠=︒,又∵60EAC ∠=︒,EF AC ∴⊥,故①正确,EF AC ⊥,90ACB ∠=︒,//HF BC ∴, F 是AB 的中点,12HF BC ∴=, 12BC AB =,AB BD =, 14HF BD ∴=,故④说法正确;AD BD =,BF AF =,90DFB ∴∠=︒,30BDF ∠=︒,90FAE BAC CAE ∠=∠+∠=︒,DFB EAF ∴∠=∠,EF AC ⊥,30AEF ∴∠=︒,BDF AEF ∴∠=∠,()DBF EFA AAS ∴∆≅∆,AE DF ∴=,FE AB =,四边形ADFE 为平行四边形,AE EF ≠,四边形ADFE 不是菱形;故②说法不正确;∵四边形ADFE 为平行四边形,12AG AF ∴=, 14AG AB ∴=, AD AB =,则4AD AG =,故③说法正确,综上所述:正确结论的是①③④.故选.[点睛]本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.二、填空题9.若直角三角形的两直角边的长分别为a 、b ,(b ﹣4)2=0,则该直角三角形的斜边长为_____. [答案]5[解析][分析]直接利用偶次方的性质以及二次根式的性质得出a ,b 的值,再利用勾股定理得出斜边长.[详解]()240b -=, 3,4a b ∴==.5=.故答案为5.[点睛]本题主要考查了勾股定理以及二次根式的性质,正确得出a ,b 的值是解题关键.10.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm,则菱形的边长是______cm .[答案[解析]分析:根据菱形的面积公式求出另一对角线的长.然后因为菱形的对角线互相垂直平分,利用勾股定理求出菱形的边长.详解:由菱形的面积公式,可得另一对角线长12×2÷4=6,∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长=22cm.23=13故答案为13.点睛:此题主要考查菱形的性质和菱形的面积公式,关键是掌握菱形的两条对角线互相垂直.11.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED=____度.[答案]45[解析][分析]根据正三角形和正方形的性质可得∠EAB=150°,AE=AB,,从而得出∠AEB的大小,进而得出∠BE D的大小.[详解]∵四边形ABCD是正方形,△AED是正三角形∴∠EAD=60°,∠AED=60°,∠DAB=90°,AE=AD=AB∴△AEB是等腰三角形,∠EAB=150°∴∠AEB=∠ABE=15°∴∠BED=45°故答案为:45°[点睛]本题考查正方形和正三角形的性质,解题关键利用正三角形和正方形的性质,得出∠AEB=∠ABE.12.如图,□ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是_______.[答案]9.[解析][详解]试题分析:解:∵E 为AD 中点,四边形ABCD 是平行四边形,∴DE=AD=BC ,DO=BD ,AO=CO ,∴OE=CD , ∵△BCD 的周长为18,∴BD+DC+BC=18,∴△DEO 的周长是DE+OE+DO=(BC+DC+BD )=×18=9,故答案为9.考点:平行四边形的性质;三角形中位线定理.13.如图:在Rt ABC ∆中,CD 是斜边AB 上的中线,若20A ∠=︒,则BDC ∠=_________.[答案]40︒[解析][分析] 先根据直角三角形斜边中线的性质得出12CD AD AB ==,则有20DCA A ∠=∠=︒,最后利用三角形外角的性质即可得出答案.[详解]∵在Rt ABC ∆中,CD 是斜边AB 上的中线,, ∴12CD AD AB ==.∵20A ∠=︒,∴20DCA A ∠=∠=︒,∴40BDC DCA A ∠=∠+∠=︒.故答案为:40︒.[点睛]本题主要考查直角三角形斜边中线的性质,等腰三角形的性质和三角形外角的性质,掌握直角三角形斜边中线的性质,等腰三角形的性质和三角形外角的性质是解题的关键.14.生活经验表明:靠墙摆放梯子时,若梯子底端离墙约为梯子长度的13时,则梯子比较稳定.现有一长度为9 m 的梯子,当梯子稳定摆放时,它的顶端能到达8.5 m 高的墙头吗?____(填“能”或“不能”).[答案]不能[解析][分析]根据梯子的长度得到梯子距离墙面的距离,然后用勾股定理求出梯子的顶端距离地面的高度后与8.5比较即可作出判断.[详解]解:∵梯子底端离墙约为梯子长度的13,且梯子的长度为9米, ∴梯子底端离墙约为梯子长度为9×13=3米,==∵8.5<,∴梯子的顶端不能到达8.5米高的墙头.故答案为:不能.[点睛]本题考查了勾股定理的应用,解题的关键是根据习惯和告诉的梯子的长度求出梯子的底端距离墙面的距离.15.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形、菱形),其中可用两块能完全重合的含有30°角的三角板拼成的所有图形是________.[答案]①③④⑤[解析][分析]当把完全重合含有30角的两块三角板拼成的图形有三种情况:①把短直角边重合拼图;②把长直角边重合拼图;③把斜边重合拼图;可得六种拼图,进行判断即可.[详解]解:如图,把完全重合的含有30角的两块三角板拼成的图形共有六种情况,其中可以拼出等边三角形,等腰三角形(腰与底边不相等),矩形,平行四边形(不含矩形、菱形).故答案为:①③④⑤.[点睛]本题考查了图形的剪拼接,关键是在解题时要注意分类讨论,得出拼成的所有图形.16.如图,OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2…依此法继续作下去,得20142015OP P S ∆=____.[答案]20152[解析][分析] 根据勾股定理和已知条件,找出线段长度的变化规律,从而求出2014OP 的长度,然后根据三角形的面积公式求面积即可.[详解]解:∵OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 12212OP PP +=再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2221123OP PP +=又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3222234OP P P +=∴P n P n+1=1,OP n 1n +∴P 2014P 2015=1,OP 2014201412015+=∴20142015OP P S ∆=12P 2014P 2015·OP 20142015故答案为:20152.[点睛]此题考查的是利用勾股定理探索规律题,找到线段长度的变化规律并归纳公式是解决此题的关键.三、解答题17.已知一个正多边形内角和比外角和多720°,求此多边形的边数及每一个内角的度数.[答案]8边形,每一个内角为135°[解析][分析]先根据内外角和的关系,得出内角和,再利用内角和公式确定边数,最后得出每一个内角大小.[详解]∵内角和比外角和多720°∴内角和=720°+360°=1080°设多边形的边数为n则:(n-2)×180=1080解得:n=8∵是正多边形∴每个内角=1080135 8︒=︒[点睛]本题考查多边形的内角和公式,解题关键是通过外角和求解出内角和的大小.18.已知:如图,GB=FC,D、E是BC上两点,且BD=CE,作GE⊥BC,FD⊥BC,分别与BA、CA的延长线交于点G,F.求证:GE=FD.[答案]见详解[解析][分析]根据“HL ”证明Rt △GEB ≌Rt △FDC ,问题得证.[详解]解:证明:∵BD=CE ,∴BE=CD ,∵GE ⊥BC ,FD ⊥BC ,∴∠GEB=∠FDC=90°,∵GB =FC ,∴Rt △GEB ≌Rt △FDC ,∴GE =FD .[点睛]本题考查了三角形全等的证明,当三角形为直角三角形时,直角可以作为一个条件应用,也可以考虑用“HL ”进行证明.19.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE .∠E =50°,求∠BAO 的大小.[答案]40BAO ∠=︒[解析][分析]先证明四边形BECD 是平行四边形,得到50ABO E ∠=∠=︒,再根据菱形性质得到AC BD ⊥,根据直角三角形两锐角互余得到40BAO ∠=︒.[详解]证明:四边形ABCD 是菱形,AB CD ∴=,//AB CD ,又BE AB =,BE CD ∴=,//BE CD ,四边形BECD 是平行四边形,//BD CE ∴,50ABO E ∴∠=∠=︒,又四边形ABCD 是菱形,AC BD ∴⊥,9040BAO ABO∴∠=︒-∠=︒.[点睛]本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.20.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE∥CF.[答案]AE∥CF(过程见详解)[解析][分析]根据平行四边形的对边相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠ABD=∠CDB,然后求出∠ABE=∠CDF,再利用“SAS”证明△ABE和△CDF全等,根据全等三角形对应角相等证明即可.[详解]解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,∵AB CDABE CDF BE DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS).∴∠E=∠F,∴AE∥CF.[点睛]本题考查平行四边形的性质;全等三角形的判定和性质及平行线的判定.21.在如图的方格纸中,△ABC 的三个顶点都在格点上.(1)若111A B C ∆与△ABC 关于点成中心对称,请画出111A B C ∆.(2)求四边形11ABA B 的面积.[答案](1)见解析;(2)14.[解析][分析](1)根据中心对称的定义,找到各点的对应点,然后顺次连接即可;(2)根据平行四边形的面积公式求解即可.[详解](1)如图;(2)由图可知:AB=A 1B 15A 1B=AB 1=7,∴四边形11ABA B 是平行四边形,∴四边形11ABA B 的面积是72⨯=14.[点睛]本题考查了中心对称的性质,以及平行四边形的判定与性质,熟练掌握中心对称的性质是解答本题的关键.22.已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG//DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,求证四边形AGBD是矩形.[答案](1)见详解;(2)见详解.[解析][分析](1)证三角形全等根据边角边即可证明;(2)先证明ADBG是平行四边形再证明有一个角是直角的平行四边形是矩形即可证明;[详解](1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠BAD=∠C,AD//BC,又∵E、F分别为边AB、CD的中点,∴AE=12AB,CF=12CD,∴AE=CF,∴△ADE≌△CBF(SAS);(2)∵AD//BC,AG//DB,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴BE=DE,∵E、F分别为边AB、CD的中点, ∴AE=BE,∴BE=DE=AE,∴∠ADE=∠EAD,∠EDB=∠EBD,∵∠EAD+∠EDA+∠EDB+∠EBD=180°,∴∠EDA+∠EDB=90°,∴∠ADB=90°,∴四边形ADBG是矩形,[点睛]本题考查平行四边形的性质,菱形的性质,矩形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识型.23.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,(1)A处是否会受到火车的影响,并写出理由(2)如果A处受噪音影响,求影响的时间.[答案](1)见解析;(2)16秒.[解析][分析](1)过点A作AC⊥ON,求出AC的长,即可判断是否受影响;(2)设当火车到B点时开始对A处有噪音影响,直到火车到D点噪音才消失,根据勾股定理即可求出BD的长,即可求出影响的时间.[详解](1)如图,过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米<200,故受到火车的影响,(2)当火车到B点时开始对A处有噪音影响,此时AB=200,∵AB=200,AC=120,利用勾股定理得出BC=160,同理CD=160.即BD=320米,∴影响的时间为3201620秒.[点睛]此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的应用.24.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)求∠PED的度数.[答案](1)见解析;(2)45°[解析][分析](1)根据正方形的性质四条边都相等可得BC=CD,对角线平分一组对角,可得∠ACB=∠ACD,然后利用“边角边”证明△PBC和△PDC全等,根据全等三角形对应边相等可得PB=PD,然后等量代换即可得证;(2)根据全等三角形对应角相等可得∠PBC=∠PDC,根据等边对等角可得∠PBC=∠PEB,从而得到∠PDC=∠PEB,再根据∠PEB+∠PEC=180°,求出∠PDC+∠PEC=180°,然后根据四边形的内角和定理求出∠DPE=90°,判断出△PDE是等腰直角三角形,根据等腰直角三角形的性质求解即可.[详解](1)∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD,在△PBC和△PDC中,∵BC CDACB ACD PC PC=∠=∠=⎧⎪⎨⎪⎩,∴△PBC≌△PDC(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)∵四边形ABCD是正方形,∴∠BCD=90°,∵△PBC≌△PDC,∴∠PBC=∠PDC,∵PE=PB,∴∠PBC=∠PEB,∴∠PDC=∠PEB,∵∠PEB+∠PEC=180°,∴∠PDC+∠PEC=180°,在四边形PECD中,∠EPD=360°−(∠PDC+∠PEC)−∠BCD=360°−180°−90°=90°,又∵PE=PD,∴△PDE是等腰直角三角形,∴∠PED=45°.[点睛]本题主要考查正方形的性质,三角形全等的判定和性质定理,四边形的内角和等于360°以及等腰直角三角形的性质,熟练掌握正方形的性质,三角形全等的判定和性质定理,四边形的内角和等于360°以及等腰直角三角形的性质是解题的关键.25.已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD 的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①请直接写出线段DG与PC的数量关系(不要求证明);②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.[答案](1)①DG=2PC,理由见解析;②见解析;(2)四边形PEFD是菱形,理由见解析.[解析][分析](1)①结论:DG=2PC,如图1中,作PM⊥AD于M.只要证明四边形PMDC是矩形,推出PC=DM,再证明MG=MD即可解决问题.②由四边形PMDC是矩形得CD=PM,由△ADF≌△MPG,推出PG=PF,进而可得DP=PF,再证明DF∥PE,推出四边形PEFD是平行四边形,再结合PD=PE即可证明四边形PEFD是菱形;(2)如图2中,作PM⊥AD于M.则四边形CDMP是矩形,CD=PM,由△ADF≌△MPG,推出DP=PG=PE =PF,再证明DF∥PE,推出四边形PEFD是平行四边形,由PD=PE,即可证明四边形PEFD是菱形.[详解]解:(1)①结论:DG=2PC.理由:如图1中,作PM⊥AD于M.∵四边形ABCD是正方形,∴∠C=∠CDM=∠DMP=90°,AD=CD,∴四边形DCPM是矩形,∴PC=DM,∵PD=PG,PM⊥DG,∴MG=MD,∴DG=2PC.线段DG与PC的数量关系为DG=2PC.②∵四边形CDMP 矩形,∴CD =PM ,∵AD =CD ,∴AD =PM ,∵DF ⊥PG ,∴∠DAF =∠PMG =∠GHD =90°,∴∠ADF +∠AFD =90°,∠ADF +∠PGM =90°,∴∠AFD =∠PGM ,在△ADF 和△MPG 中,AFD PGM FAD PMG AD PM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GMP ,∴DF =PG∵PG =PE =PD ,∴DP =PG =PE =PD ,∵∠FHG =∠EPG =90°,∴DF ∥PE ,∴四边形PEFD 是平行四边形,∵PD =PE ,∴四边形PEFD 是菱形.(2)结论:四边形PEFD 是菱形.理由:如图2中,作PM ⊥AD 于M .则四边形CDMP 是矩形,CD =PM ,∵∠DAF =∠PMG =∠DHG =90°,∴∠ADF +∠AFD =90°,∠G +∠GDH =90°,∵∠ADF =∠GDH ,∴∠AFD =∠G ,∵AD =CD ,CD =PM ,∴AD =PM ,在△ADF 和△MPG 中,AFD G FAD PMG AD PM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△MPG ,∴DP =PG =PE =PD ,∵∠FHG =∠EPG =90°,∴DF ∥PE ,∴四边形PEFD 是平行四边形,∵PD =PE ,∴四边形PEFD 是菱形.[点睛]本题考查旋转变换、等腰三角形的性质、正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,属于中考常考题型. 26.如图,在平行四边形 ABCD 中,AB = 6cm ,BC = 12cm ,∠B = 30︒,点P 在 BC 上由点B 向点C 出发,速度为每秒2cm ;点Q 在边AD 上,同时由点 D 向点 A 运动,速度为每秒1cm ,当点 P 运动到点C 时,P 、Q 同时停止运动,连接 PQ ,设运动时间为t 秒.(1)当t 为何值时四边形 ABPQ 为平行四边形?(2)当t 为何值时,四边形 ABPQ 的面积是四边形 ABCD 的面积的四分之三?(3)连接 AP ,是否存在某一时刻t ,使∆ABP 为等腰三角形?并求出此刻t 的值.[答案](1)当4t =时,四边形ABPQ 是平行四边形;(2)当6t =时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三;(3)存在,当3t =333,ABP ∆为等腰三角形[解析][分析](1)利用平行四边形的对边相等得AQ BP =,建立方程求解即可;(2)分别表示出四边形ABPQ 和四边形ABCD 面积,利用面积关系即可求出;(3)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.[详解]解:(1)由P 、Q 的运动方式得:(2)=BP t cm ,DQ t =cm ,∵当点P 运动到点C 时,P 、Q 同时停止运动,∴06t <≤,在平行四边形 ABCD 中,BC = 12cm ,∴12AD BC ==cm ,则(12)=-AQ t cm ,若四边形 ABPQ 为平行四边形,则BP AQ =,即212=-t t ,解得:4t =,∴当4t =时,四边形ABPQ 是平行四边形;(2)如图 1,过点作AE BC ⊥于,在Rt ABE △中,30B ∠=︒,6AB =cm ,3AE ∴=cm ,四边形ABCD 是平行四边形,BC = 12cm ,∴12336=⋅=⨯=ABCD S BC AE cm 2,由(1)得:(2)=BP t cm ,(12)=-AQ t cm ,∴S 四边形ABPQ =113()(212)3(18)222+⋅=+-⨯=+BP AQ AE t t t cm 2, 若四边形ABPQ 的面积是四边形ABCD 的面积的四分之三, 即33183624+=⨯t ,解得:6t =, ∴当6t =时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三;(3)存在某一时刻t ,使ABP △为等腰三角形,若ABP △为等腰三角形,则AB BP =或AP BP =或AB AP =, ①当AB BP =时,则6BP =cm ,即26t =,解得:3t =;②当AP BP =时, 如图 2 ,过作PM 垂直于AB ,垂足为点M ,∵AP BP =,PM ⊥AB , ∴132==BM AB cm , 30B ∠=︒,∴23BP =cm ,则223=t ,解得:3t =,③当AB AP =时,如图3,∵AB AP =,AE BC ⊥,∴E 为BP 中点,则BP =2BE ,在Rt ABE △中,30B ∠=︒,6AB =cm ,AE =3cm , ∴33BE =,263==BP BE ,则263=t 解得:33t =,所以,当3t =3或33,ABP ∆为等腰三角形.[点睛]本题是四边形综合题,主要考查了平行四边形的性质、含30的直角三角形的性质,等腰三角形的定义,解题的关键是熟练运用这些性质和运用分类讨论的思想思考问题.。

八年级数学下册期中测试卷及完整答案

八年级数学下册期中测试卷及完整答案

八年级数学下册期中测试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±3 3.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则+a b的值是()A.﹣1 B.1 C.﹣5 D.56.估计()-⋅1230246的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.39.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的不等式组5310x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是________. 2.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.分解因式:3x -x=__________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.5.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =________.6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是________.三、解答题(本大题共6小题,共72分)1.解分式方程(1)21324x x x -+-=0 (2)13222x x x-+=--2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中a=(3-5)0+-113⎛⎫ ⎪⎝⎭-2(-1).3.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、A6、B7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、﹣33、x (x+1)(x -1)4、25、2456、85三、解答题(本大题共6小题,共72分)1、(1)x=﹣1;(2)x=23.2、-33a +,;12-.3、(1)略;(2)4或4+.4、(1)DE=3;(2)ADB S 15∆=.5、略6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。

八年级语文(下册期中)试卷含参考答案

八年级语文(下册期中)试卷含参考答案

八年级语文(下册期中)试卷含参考答案满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列各组词语中字形和加点字注音完全正确的一项是()A.要塞.(sài)泻气深恶.痛绝(è)震撼人心B.悄.然(qiāo)缅怀翘.首以待(qiáo)诚皇诚恐C.绯.红(fēi)燥热屏.息敛声(bǐng)眼花缭乱D.炽.热(zhì)胆怯杳.无消息(yǎo)和言悦色3、下列句中加点成语使用不正确的一项是( )A.我们去采访那位老兵,当年惊心动魄....的战争场面,他还是记忆犹新。

B.恒大队锐不可当....,尤其是那几位年轻中国小将的表现,让人们看到了中国足球的未来。

C.冯小刚导演的电影《芳华》热播以来,广大市民对该节目的热衷程度可谓迫在..眉睫..。

D.站在左宗棠故居前,我不禁浮想联翩....,时空转换,似乎看见了这位伟人驰骋疆场的英姿。

4、下列句子有语病的一项是()A.孩子无不希望得到父母的褒奖,这对其自尊心的培养具有至关重要的作用。

B.今年判阅语文微写作的老师要求必须读过《红楼梦》《老人与海》等原著。

C.南方科技大学校园开放日16日举行,来自多个省市的近千名考生和家长冒雨前来。

D.英国的莎士比亚、狄更斯等世界级文豪对中国文坛有着深远的影响。

5、下面没有运用修辞手法的一项是( )A.无可奈何花落去,似曾相识燕归来。

B.争渡,争渡,惊起一滩鸥鹭。

C.感时花溅泪,恨别鸟惊心。

D.浅尝辄止不像是法布尔的做事风格。

6、根据下列对联所描写的景物特征,按四季先后排序正确的是()①翡翠屏开槐影茂,鸳鸯池涨藕花香。

②红点桃花千朵嫩,青描柳色万枝新。

③梅试朔风舒骥足,雪呈瑞色映芳樽。

④丹桂香飘赏心乐事,蟾宫月满美景良辰。

A.②①④③B.③①②④C.②④①③D.④①②③7、古诗文默写。

⑴晴川历历汉阳树,_______________________。

(《黄鹤楼》)⑵__________________,猎马带禽归。

八年级数学下册期中测试卷及答案【完整版】

八年级数学下册期中测试卷及答案【完整版】

八年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =46.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.因式分解:a 2-9=_____________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系. 销售量y (千克) …34.8 32 29.6 28 … 售价x (元/千克) … 22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、B7、D8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、03、(a+3)(a ﹣3)4、135°5、56、42.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =- 2、1a b-+,-1 3、3p =,1q =.4、(1)DE=3;(2)ADB S 15∆=.5、(5a 2+3ab )平方米,63平方米6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。

2023年人教版八年级数学下册期中测试卷及答案【完整版】

2023年人教版八年级数学下册期中测试卷及答案【完整版】

2023年人教版八年级数学下册期中测试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .42.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .03.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .6.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a -- 4.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米10.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为( )A .150°B .130°C .120°D .100°二、填空题(本大题共6小题,每小题3分,共18分)116________.2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.若m =201520161-,则m 3﹣m 2﹣2017m +2015=________. 4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,依据尺规作图的痕迹,计算∠α=_______°. 6.已知:如图,OAD ≌OBC ,且∠O =70°,∠C =25°,则∠AEB =______度.三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.(1)已知x 35y 352x 2-5xy +2y 2的值. (2)先化简,再求值:222222x y x y x xy y x xy x y ⎛⎫--÷ ⎪-+--⎝⎭,其中x =221-,y =22-3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在△ABC 中,∠B=40°,∠C=80°,AD 是BC 边上的高,AE 平分∠BAC ,(1)求∠BAE 的度数;(2)求∠DAE 的度数.5.在杭州西湖风景游船处,如图,在离水面高度为5m 的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13m ,此人以0.5m/s 的速度收绳.10s 后船移动到点D 的位置,问船向岸边移动了多少m ?(假设绳子是直的,结果保留根号)6.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、A5、B6、A7、A8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、22、k<6且k ≠33、40304、()()2a b a b ++.5、56.6、120三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、(1)42,(2)13+-3、(1)略(2)1或24、(1) ∠BAE=30 °;(2) ∠EAD=20°.5、(12m6、(1)2400个, 10天;(2)480人.。

人教版数学八年级下册《期中检测试卷》(含答案)

人教版数学八年级下册《期中检测试卷》(含答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1.若a>b,则下列不等式成立的是( )A. a2>b2B. 1﹣a>1﹣bC. 3a﹣2>3b﹣2D. a﹣4>b﹣32.如图,在Rt△ABD中,∠BDA=90°,AD=BD,点E在AD上,连接BE,将△BED绕点D顺时针旋转90°,得到△ACD,若∠BED=65°,则∠ACE的度数为( )A. 15°B. 20°C. 25°D. 30°3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形4.下列命题是真命题是( )A. 如果x2>0,则x>0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等5.如图,在等边△ABC中,点D、E分别是BC、AB边上的点,且AE=BD,AD与CE交于点F,则∠DFC的度数为( )A. 45°B. 60°C. 65°D. 75°6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24 B. 20 C. D.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. 10.若31x x +-有意义,则x 的取值范围是__. 11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.13.若一个长方形长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.14.如图,在△ABC 中,AB =5,AC =3,AD 、AE 分别是它的角平分线和中线,过点C 作CG ⊥AD ,垂足为点F ,连接EF ,则EF =__.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)19.在平面直角坐标系中,△ABC 位置如图所示,三个顶点的坐标分别为:A (1,2)、B (2,3)、C (3,0).(1)现将△ABC 先向左平移5个单位长度,再向上平移2个单位长度,得到△A 1B 1C 1,请在平面直角坐标系中画出△A 1B 1C 1.(2)此时平移的距离是 ;(3)在平面直角坐标系中画出△ABC 关于点O 成中心对称的△A 2B 2C 2.20.某市为治理污水,需要铺设一段全长为3000m污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).答案与解析一、选择题1.若a >b ,则下列不等式成立的是( )A. a 2>b 2B. 1﹣a >1﹣bC. 3a ﹣2>3b ﹣2D. a ﹣4>b ﹣3[答案]C[解析][分析]根据不等式的基本性质即可判断.[详解]A :当a b < 时不成立,错误;B :0a b <<时不成立,错误;C :符合不等式的基本性质,正确;D :33a b ->- ,错误.故答案选:C[点睛]本题考查不等式的基本性质,理解不等式的基本性质是解题关键.2.如图,在Rt△ABD 中,∠BDA=90°,AD=BD,点E 在AD 上,连接BE,将△BED 绕点D 顺时针旋转90°,得到△ACD ,若∠BED=65°,则∠ACE 的度数为( )A. 15°B. 20°C. 25°D. 30°[答案]B[解析][分析] 根据旋转的性质得出:65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形,从而求解.[详解]∵90BDA ∠=︒,将△BED 绕点D 顺时针旋转90°,得到△ACD ,∠BED=65°∴65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形∴45ECD ∠=︒∴20ACE ACD ECD ∠=∠-=︒故答案选:B[点睛]本题考查旋转的性质,掌握相关的线段与角度的转换是解题关键.3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形[答案]C[解析][分析]根据多边形的外角和为360︒和内角和公式()1802n ︒- 进行求算即可.[详解]∵一个多边形内角和与外角和的比为5:2,且多边形的外角和为360︒∴这个多边形的内角和为900︒∴()1802=900n ︒-︒∴7n =故答案选:C[点睛]本题考查多边形内角和公式与多边形外角和,掌握多边形内角和公式以及多边形的外角和为360︒是解题关键.4.下列命题是真命题的是( )A. 如果x 2>0,则x >0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等[答案]D[解析][分析]根据不等式的性质、轴对称图形、中心对称图形和全等三角形的判定进行一一判断即可.[详解]A :当0x <时,满足20x >,错误;B :根据轴对称图形的概念知:平行四边形不是轴对称图形,错误;C :根据中心对称图形的概念知:等边三角形不是中心对称图形,错误;D :如图:当,AC DF AG DH ==时:∴()ACG DFH HL ∆≅∆∴CG FH =∴CB FE =∴()ACB DFE SAS ∆≅∆ ,D 正确故答案选:D[点睛]本题考查不等式的性质、轴对称图形、中心对称图形和全等三角形的判定,掌握相关的性质与概念以及判定方法是解题关键.5.如图,在等边△ABC 中,点D 、E 分别是BC 、AB 边上点,且AE =BD ,AD 与CE 交于点F ,则∠DFC 的度数为( )A. 45°B. 60°C. 65°D. 75°[答案]B[解析][分析] 根据题目中的条件判断ABD CAE ∆≅∆,再利用外角定理得出DFC FAC ACF ∠=∠+∠,转化角度从而得出答案.[详解]∵ABC ∆是等边三角形,且AE BD =∴,60AB AC B EAC =∠=∠=︒∴ABD CAE ∆≅∆(SAS)∴BAD ACF ∠=∠∴=60DFC FAC ACF FAC BAD BAC ∠=∠+∠∠+∠=∠=︒故答案选:B .[点睛]本题考查等边三角形的性质以及全等三角形的判定,掌握相关的角度转化是解题关键.6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h [答案]D[解析][分析]设工作总量为单位“1”,分别表示出甲乙的工作效率,再根据工作总量=工作效率×工作时间建立方程即可求解.[详解]解:设工作总量为单位“1”, 设甲、乙两人一起完成这项工程所需的时间为xh∵甲独做ah 完成,乙单独做bh 完成 ∴甲乙的工作效率分别为11,a b根据题意可得:111x a b ⎛⎫+=⎪⎝⎭ 解得:ab x a b=+ 故答案选:D[点睛]本题考查一元一次方程工程问题,将工作总量设为单位“1”以及建立等量关系是解题关键. 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24B. 20C.D.[答案]A[解析]试题解析:∵x +y =3,2229x xy y ∴++=, 12xy =, ()223339124.x y ∴+=-=故选A.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9[答案]D[解析][分析] 连接AD ,根据等腰直角三角形的性质以及BE=AF 得出ADE CDF ∆≅,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.[详解]解:连接AD ,如图:∵∠A=90°,AB=AC=6,点D 是BC 中点,BE=AF∴,45,AE CF BAD B C AD BD DC =∠=∠=∠=︒==∴ADE CDF ∆≅(SAS )∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S ∆∆∆∆∆∆=+=+==四 又∵166182ABC S ∆== ∴1=92ABC AEDF S S ∆=四 故答案选:D[点睛]本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. [答案]1,2[解析][分析]分别解不等式求出公共部分,然后求正整数解.[详解]解:21023x x x +>⎧⎨>-⎩①②由①得:12x >- 由②得:3x < ∴不等式组的解集为:132x -<< ∴正整数解为:1,2故答案为:1,2.[点睛]本题考查一元一次不等式组的整数解,掌握不等式组的求解是解题关键.10.若1x -有意义,则x 的取值范围是__. [答案]x ≥﹣3且x ≠1[解析][分析]根据二次根式和分式有意义的条件进行求算.[详解]二次根式有意义的条件是被开方数是非负数:303x x +≥⇒≥-分式有意义的条件是分母不为零:101x x -≠⇒≠∴x 的取值范围是:3x ≥-且1x ≠故答案为:3x ≥-且1x ≠.[点睛]本题考查了式子有意义的条件,掌握二次根式有意义的条件是被开方数是非负数、分式有意义的条件是分母不为零是解题关键.11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.[答案]3+3[解析][分析]过点D 作DH AF ⊥交AF 于H,根据∠B =45°,∠C =30°,以及DE,FG 分别为AB,AC 的垂直平分线得出60,30AFD DAF ∠=︒∠=︒,再根据特殊角解直角三角形即可.[详解]过点D 作DH AF ⊥交AF 于H,如图:∵45,30B C ∠=︒∠=︒,DE,FG 分别为AB,AC 的垂直平分线∴,,,AD BD AF FC B BAD C FAC ==∠=∠∠=∠∴60,30AFD DAF ∠=︒∠=︒又∵1DF =∴13,222FH DH AD AH ====∴2AD BD AF FC AH HF ====+=∴BC 的长为:故答案为:[点睛]本题考查垂直平分线的性质以及直角三角形中特殊角的应用,掌握相关的线段与角的转化是解题关键.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.[答案]a >4[解析][分析]根据函数关系式求出与y 轴的交点,再根据图象与y 轴的交点在x 轴上方建立不等式求解.[详解]对于关于x 的一次函数y =x +3a ﹣12令0x =,解得:312y a =-∴该图象与y 轴的交点为()0,312a -又∵图象与y 轴的交点在x 轴上方∴3120a ->解得:4a >故答案为:4a >[点睛]本题考查了一次函数与y 轴的交点特征,掌握一次函数与y 轴的交点求算是解题关键.13.若一个长方形的长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.[答案]48[解析]分析]根据一个长方形长、宽分别为a 、b ,周长为12,面积为8,可以得到a+b 的值和ab 的值,从而可以得到a 2b+ab 2的值.[详解]解:∵一个长方形的长、宽分别为a、b,周长为12,面积为8,∴2(a+b)=12,ab=8,∴a+b=6,ab=8,∴a2b+ab2=ab(a+b)=8×6=48,故答案为:48.[点睛]本题考查因式分解的应用,解题的关键是明确题意,求出a+b的值和ab的值.14.如图,在△ABC中,AB=5,AC=3,AD、AE分别是它的角平分线和中线,过点C作CG⊥AD,垂足为点F,连接EF,则EF=__.[答案]1[解析][分析]首先证明AG=AC,再证明EF是△BCG的中位线,根据EF=12BG即可解决问题.[详解]解:∵∠DAG=∠DAC,AD⊥AFC,∴∠AFC=∠AFG=90°,∴∠AGC+∠GAF=90°,∠ACG+∠CAF=90°, ∴∠AGC=∠ACG,∴AG=AC=3,GF=FC,∵BE=CE,∴EF=12BG=12(ABAG)=12×(53)=1,故答案为:1.[点睛]本题考查三角形中位线定理、等腰三角形的判定和性质、角平分线的定义,中线的定义等知识,解题的关键是根据已知条件证明△AGC 是等腰三角形,属于中考常考题型.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.[答案]±6 [解析][分析]根据完全平方公式:()2222a ab b a b ±+=± 去分类讨论即可.[详解]完全平方公式:()2222a ab b a b ±+=± ∴()2293x mx x -+=±∴6m =±故答案为:6±[点睛]本题考查完全平方公式,掌握相关公式是解题关键.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.[答案]8[解析][分析]判断出△ADF 是等腰三角形,△ABE 是等腰三角形,DF 的长度,继而得到EC 的长度,在Rt △BGE 中求出GE ,继而得到AE ,求出△ABE 的周长,根据EF=12AE ,求出EF 即可得出△EFC 的周长. [详解]∵在▱ABCD 中,AB=CD=6,AD=BC=9,∠BAD 的平分线交BC 于点E ,∴∠BAF=∠DAF ,∵AB ∥DF ,AD ∥BC ,∴∠BAF=∠F=∠DAF ,∠BAE=∠AEB ,∴AB=BE=6,AD=DF=9,∴△ADF 是等腰三角形,△ABE 是等腰三角形,∵AD ∥BC ,∴△EFC 是等腰三角形,且FC=CE ,∴EC=FC=9﹣6=3,在△ABG 中,BG ⊥AE ,AB=6,BG=,∴=2,∴AE=2AG=4, 又∵12EF AE =, ∴EF=2,∴△CEF 的周长为EF+CE+CF=2+3+3=8.故答案为:8.[点睛]本题考查等腰三角形的判定与性质;平行四边形的性质和勾股定理的应用. 三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. [答案](1)﹣1≤x <2;(2)12a +,13[解析][分析](1)分别解每一个不等式,再求出公共部分;(2)先将式子进行化简,再代入求值.[详解](1)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①② 由①得:()()2213516x x --+≤ ,解得:1x ≥- ;由②得:2x <∴不等式组的解集为:12x -≤<(2)原式=()()()()22222222a a a a a a a ⎡⎤-+--⨯⎢⎥-+-⎢⎥⎣⎦=()222a a a a a -⨯-+ =12a + 根据题意:不能取0,2 ∴当1a =时,原式=11=1+23 [点睛]本题考查一元一次不等式组以及分式的化简求值,注意分式化简求值最终取值需满足分母不为零. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)[答案](1)(x +3)2(x 2﹣4x ﹣9);(2)(m ﹣1)(m ﹣2)2[解析][分析](1)利用平方差公式进行因式分解,即可得到答案;(2)先提公因式,然后利用完全平方公式进行因式分解,即可得到答案.[详解]解:(1)原式=(x 2+x +5x +9)(x 2+x ﹣5x ﹣9)=(x +3)2(x 2﹣4x ﹣9);(2)原式=(m ﹣1)[(m ﹣1)2﹣2(m ﹣1)+1]=(m ﹣1)(m ﹣2)2.[点睛]本题考查了因式分解,解题的关键是熟练掌握提公因式、平方差公式、完全平方公式进行因式分解.19.在平面直角坐标系中,△ABC的位置如图所示,三个顶点的坐标分别为:A(1,2)、B(2,3)、C(3,0).(1)现将△ABC先向左平移5个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在平面直角坐标系中画出△A1B1C1.(2)此时平移的距离是;(3)在平面直角坐标系中画出△ABC关于点O成中心对称的△A2B2C2.[答案](1)见解析;(229[解析][分析](1)利用点平移的坐标规律写出点A、B、C平移后的对应点A1、B1、C1,然后描点即可得到△A1B1C1.(2)利用勾股定理计算;(3)利用关于原点对称的点的坐标特征写出点A、B、C的对应点A2、B2、C2,然后描点即可得到△A2B2C2.[详解]解答:解:(1)如图,△A1B1C1为所作;(2)225229+=29(3)如图,△A2B2C2为所作.[点睛]本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.20.某市为治理污水,需要铺设一段全长为3000m的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?[答案]实际每天铺设25m长管道.[解析]试题分析:解:设原计划每天铺设x m管道,则实际每天铺设5 (125%)4x x +=,故300030003054x x-=,解得x=20.经检验,x=20是原方程的解,且符合题意,5254x∴=,∴实际每天铺设25m长管道.考点:分式方程应用点评:本题难度中等,主要考查学生运用分式方程解决工程问题的实际应用能力.注意检验增根情况.21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?[答案]①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社[解析][分析]设甲旅行社的收费为y1,乙旅行社的收费为y2,然后讨论:若y1>y2,y1=y2,y1<y2,分别求出对应的x的取值范围,即可判断选择哪家旅行社.[详解]解:设甲旅行社的收费为y1,乙旅行社的收费为y2,根据题意得,y1=2×1000+0.7×1000x=700x+2000,y2=(x+2)×0.8×1000=800x+1600,若y1>y2,即700x+2000>800x+1600,解得x<4;若y1=y2,即700x+2000=800x+1600,解得x=4;若y1<y2,即700x+2000<800x+1600,解得x>4.∴①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社.[点睛]本题考查了一次函数的应用:根据题意列出一次函数关系式y=kx+b(k≠0),然后比较函数值的大小得到对应的x的取值范围,从而确定省钱的方案.22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.[答案](1)见解析;(2)见解析.[解析][分析](1)利用垂直的定义结合角平分线的性质以及互余的性质得出∠4=∠5,进而得出答案;(2)根据题意分别得出CF∥EH,CF=EH,进而得出答案.[详解]证明(1)如图所示:∵∠ACB=90°,CD⊥AB垂足为D,∴∠1+∠5=90°,∠2+∠3=90°,又∵∠AE平分∠CAB,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CF=CE;(2)∵AE平分∠CAB,CE⊥AC,EH⊥AB,∴CE=EB,由(1)知,CF=CE,∴CF=EH,∵CD⊥AB,EH⊥AB,∴∠CDB=90°,∠EHB=90°,∴∠CDB=∠EHB,∴CD∥EH,即CF∥EH,∴四边形CFHE是平行四边形.[点睛]本题考查了平行四边形的性质、角平分线性质等知识点的应用,熟练应用等腰三角形的性质是解题关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).[答案](1)见解析;(2)AD=CF,且AD⊥CF;(3)见解析;(4)不可能[解析][分析](1)∠CAB=∠CBA=45︒,且BF∥AC,则∠FBE=∠CAB=45︒,则∠DBF=90︒,又DE⊥AB,则∠BDE=45︒,则△BDF为等腰直角三角形,∴DB=BF,又D为BC中点,所以CD=BF.即可证明△ACD≌△CBF.(2)由△ACD≌△CBF可判断,AD=CF,又∠CAD=∠BCF,则∠CGD=90︒,所以AD⊥CF.(3)由(1)知AB垂直平分DF,由三线合一知△ADF是等腰三角形,则AD=AF,由(2)知AD=CF,所以AF=CF,即可证明.(4)在Rt△A C D中易知,AD>AC,又AD=AF=CF,所以△ACF不可能是等边三角形.[详解](1)证明:∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵BF∥AC,∴∠FBE=∠CAB=45°,∴∠CBF=90°,又DE⊥AB,∴∠FDB=45°,∴∠DFB=45°,∴BD=BF,又D为BC中点,∴CD=BF,在△ACD和△CBF中,CD BF ACD CBF AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF ;(2)∵△ACD ≌△CBF ,∴AD =CF ,∠CAD=∠BCF ∴∠CAD+∠CDA=∠BCF+∠CDA=90︒ ∴AD ⊥CF故答案为:AD =CF 且AD ⊥CF ;(3)由(2)知∵DF ⊥AE ,DE =EF ,由三线合一可知,△ADF 是等腰三角形 ∴AD =AF ,∵AD =CF ,∴AF =CF ,∴△ACF 是等腰三角形;(4)在Rt △ACF 中,AC <AD , 由(2)知,AD=AF∴AC <AF ,∴△ACF 不可能是等边三角形, 故答案为:不可能.[点睛]本题考查了三角形的全等的判定和性质,等腰三角形的判定等知识点,熟练掌握相关知识点是解题关键.。

八年级数学下册期中试卷含答案

八年级数学下册期中试卷含答案

八年级数学下册期中试卷含答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是( )A .±2B .2C .﹣2D .162.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .67.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.因式分解:2218x -=__________.32|1|0a b -++=,则2020()a b +=_________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是________.6.如图,在正方形ABCD的外侧,作等边DCE,则AEC∠的度数是__________.三、解答题(本大题共6小题,共72分)1.解方程:21133x xx x=+++.2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.2222444424x x xx x x x⎛⎫---÷⎪-+--⎝⎭.3.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c13分,求3a-b+c的平方根.4.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.5.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DE(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C5、D6、C7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、72、2(x+3)(x﹣3).3、14、145、186、45︒三、解答题(本大题共6小题,共72分)1、32 x=-2、x+2;当1x=-时,原式=1.3、3a-b+c的平方根是±4.4、(1)见解析(2)成立(3)△DEF为等边三角形5、(1)略;(2)8.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

2024年八年级地理下册期中测试卷及答案【完整】

2024年八年级地理下册期中测试卷及答案【完整】

2024年八年级地理下册期中测试卷及答案【完整】(时间:60分钟分数:100分)班级:姓名:分数:一、选择题(共25个小题,每题2分,共50分)1、长江被誉为“黄金水道”,是因为长江()A.径流量大 B.航运价值大 C.水力资源丰富 D.矿产资源丰富2、撒哈拉以南非洲的主要人种是()A.白种人B.黄种人C.黑种人D.混血种人3、当北京天安门广场上五星红旗随着太阳升起时,新疆帕米尔高原上还是满天繁星,主要是因为地球()A.自东向西的自转B.自西向东的自转C.自西向东的公转D.自东向西的公转4、有关香港的表述,正确的是( )①位于珠江口西侧②是国际贸易中心、金融中心③由香港岛和九龙两部组成④通过京广线与北京相连⑤山地多,平原少,用地紧张⑥气候湿润,淡水充足A.①③⑤B.②⑤C.②④⑥D.⑤⑥5、“才从塞北踏冰雪,又向江南看杏花”反映的气候影响因素是()A.海陆位置 B.纬度位置 C.地形地势D.人类活动6、“一方水土养一方人”,我国各地区都有自己的人文地理特色。

符合“旱地种小麦,喜食面食,有民居四合院…”的是()A.西北地区B.北方地区C.南方地区D.青藏地区7、某地区位于暖温带,半湿润区,一般种植小麦和玉米,是我国三大棉区之一,该地区是()A.东北平原 B.华北平原 C.长江中下游平原 D.新疆南部8、我国工业从“中国制造”迈向“中国创造”的关键因素是()A.完善的基础设施B.雄厚的农业基础支撑C.丰富的资源与能源D.领先技术与人才优势9、当乌苏里江旭日东升时,帕米尔高原还是繁星满天,形成这种现象的主要原因是()A.我国经度跨度大B.我国纬度跨度大C.我国地形复杂多样D.我国地势落差大10、秦岭—淮河以北和以南的河流比较,以北的河流显著的特点是()A.水量更丰富 B.含沙量小C.汛期更长D.有结冰期11、我国地理学家胡焕庸提出了一条著名的人口地理界线是()A.秦岭——淮河 B.黑河——腾冲 C.长城沿线 D.0℃等温线12、关于黄土高原的形成,已得到广泛支持的说法是()A.冰川 B.地震 C.风成说 D.火山灰堆积13、传统的欧洲民居房顶很多修成尖锥形,主要是因为()A.避开风力 B.气候常年湿润 C.美观大方 D.避雷14、(题文)鲁菜、川菜、湘菜都是中国著名的菜系,其正宗来源地分别是()A.山东省四川省湖南省 B.河北省四川省甘肃省C.河北省福建省湖南省 D.山东省福建省甘肃省15、下列农作物中,主要种植在北方地区的是()A.水稻、甘蔗B.甜菜、大豆C.棉花、水稻D.小麦、甘蔗16、我国少数民族与传统节日或民俗搭配正确的是()A.彝族的长鼓舞B.苗族的摔跤C.蒙古族的那达慕大会D.壮族的泼水节17、印度有“世界办公室”之称,服务外包产业发展迅速,该产业的特点是()①信息技术含量高②利润高③资源消耗小④不需要劳动力.A.①②③B.②③④C.①③④D.①②④18、世界上最大的群岛国家是()A.菲律宾 B.印度尼西亚 C.日本 D.马来西亚19、关于板块构造和板块运动的叙述,正确的是()A.阿拉伯半岛属于亚欧板块 B.台湾岛属于太平洋板块C.红海是板块碰撞挤压形成的 D.喜马拉雅山脉是板块碰撞挤压形成的20、下列诗句中能够反映地球形状是球体的是()A.随风潜入夜,润物细无声 B.欲穷千里目,更上一层楼C.黄河之水天上来,奔流到海不复回 D.飞流直下三千尺,疑是银河落九天21、下面四幅图中, 地球自转方向正确的是()A.B.C.D.22、我们生活的大洲——亚洲绝大部分位于()A.东半球、南半球B.东半球、北半球C.西半球、南半球D.西半球、北半球23、图中,①②③④地均位于大西洋两岸的陆地,则②大洲是()A.欧洲 B.南美洲 C.非洲 D.北美洲24、下图中数码所代表的地形区名称是 ( )A.①黄土高原②华北平原B.①四川盆地②长江中下游平原C.①青藏高原②云贵高原D.①内蒙古高原②东北平原25、下列山脉中,为我国陆地地势第一、二级阶梯分界线的是()A.太行山B.祁连山C.贺兰山D.雪峰山二、综合题(第1题12分,第2题10分,第3题15分,第4题13分,共50分)1、读中国局部区域简图,分析回答下列问题。

八年级语文下册期中测试卷及答案【完整】

八年级语文下册期中测试卷及答案【完整】

八年级语文下册期中测试卷及答案【完整】满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下列词语中加点的字,每组读音都不相同的一项是()A.吆喝./喝.彩鲜.腴/屡见不鲜.舐犊.情深/穷兵黩.武B.踌躇./踟蹰.蹒.跚/瞒.天过海重峦叠.嶂/喋.喋不休C.斟酌./着.色顽强./强.词夺理摩肩接踵./德高望重.D.辟.邪/辟.谣差.事/差.之毫厘塞.翁失马/敷衍塞.责3、下列句子中成语使用恰当的二项是()A.虽然敌人来势凶猛,简直锐不可当,但我军顽强战斗,终于击溃了敌人的疯狂进攻。

B.下岗后,她开了一个小饭馆,整日兢兢业业,惨淡经营,收入还算不错。

C.这一别具匠心的设计,赢得了评委的一致好评。

D.最近几年,各种各样的电脑学习班越来越多,简直到了汗牛充栋的程度。

4、下列句子没有语病的一项是()A.经过表决、推举、讨论等一系列程序,出席职工代表大会的人选顺利产生。

B.近视患者都应该接受专业医师的检查,选配合适的眼镜,切忌不要因为怕麻烦、爱漂亮而不戴眼镜。

C.为了防止这类交通事故的发生,我校加强了交通安全的教育和管理。

D.“中国诗词大会”节目受到人们的喜爱,是因为其形式新颖,有文化内涵的原因。

5、对下列各句修辞手法的判断不正确的一项是()A.因为我在这里不但得到优待,又可以免念“秩秩斯干幽幽南山”了。

(借代)B.夹着潺潺的船头激水的声音,在左右都是碧绿的豆麦田地的河流中,飞一般径向赵庄前进了(夸张)C.回望戏台在灯火光中,却又如初来未到时候一般,又漂渺得像一座仙山楼阁,满被红霞罩着了。

(比喻)D.那航船,就像一条大白鱼背着一群孩子在浪花里蹿。

(拟人)6、将下列句子组成一段话,排序正确的是()①“柴门闻犬吠,风雪夜归人”,是江南雪夜,更深人静后的景况。

②“前村深雪里,昨夜一枝开”又到了第二天的早晨,和狗一样喜欢雪的村童来报告村景了。

③一提到雨,也就必然的要想到雪:“晚来天欲雪,能饮一杯无?”自然是江南日暮的雪景。

人教版八年级下册数学《期中检测卷》(含答案)

人教版八年级下册数学《期中检测卷》(含答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列根式中,不是最简二次根式是( ) A. 5 B. 33 C. 12 D. 102. 下列运算正确的是( )A. 111x y x y +=+ B. 2353()p q p q -=- C. a b ab ⋅=,(0,0)≥≥a b D.222()a b a b +=+3. 在□ABCD 中,∠A :∠B=7:2,则∠C 的度数是( ).A. 70°B. 280°C. 140°D. 105°4. 判断下列几组数能作为直角三角形的三边长的是( )A. 8,10,7B. 2,3,4C. 12,15,20D. 3,1,2 5. 如图,菱形ABCD 中,130D ∠=︒,则1∠=( )A. 30B. 25︒C. 20︒D. 15︒6. 下列性质中,矩形不一定具有的是( )A. 对角线相等B. 对角线互相平分C. 4个内角相等D. 一条对角线平分一组对角7. 如图,已知四边形ABCD 是正方形,E 是AB 延长线上一点,且BE=BD ,则∠BDE 的度数是()A. 22.5°B. 30°C. 45°D. 67.5°8. 如图,在矩形COED 中,点D 的坐标是(2,3),则CE 的长是()A 13 B. 22 C. 4 D. 109. 如图,在22 的方格中,小正方形的边长是1,点、、都在格点上,则AC边上的高为()A. 5B. 322C.355D.3210. 在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A. 中位数是2B. 众数是17C. 平均数是2D. 方差是211. 如图,长方形的长为15,宽为10,高为20,点离点的距离为5,蚂蚁如果要沿着长方形的表面从点爬到点,需要爬行的最短距离是()A. 35B. 1055+C. 25D. 521 12. 如图,矩形ABCD 中,22BC =,42AB =,点是对角线AC 上的一动点,以BP 为直角边作等腰Rt BPQ ∆(其中90PBQ ∠=︒),则PQ 的最小值是( )A. 8105B. 855C. 25D. 210二、填空题13. 计算:218-=__________.14. 已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________. 15. 如图,要为一段高为6米,长为10米的楼梯铺上红地毯,则红地毯至少要___________米长.16. 如图,Rt ABC 中,90 28ACB A D ∠=︒∠=,,是AB 的中点,则DCB ∠=________________度.17. 如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=24,BD=10,则菱形ABCD的高DE=____.18. 如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于_____.三、解答题19. 计算:①4545842+-+;②12xy xy⨯÷20. 如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD直角三角形.21. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.22. 如图,一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米.(1)求BC的长;(2)梯子滑动后停在DE位置,当AE为多少时,AE与BD相等?23. 正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.∠交AD于点F,AEBF于点O,交BC于点E,连接EF.24. 已知,如图,在平行四边形ABCD中,BF平分ABC(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=3,求四边形ABCD的面积.25. 阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,但是由于1<2<2,所以2的整数部分为1,将2减去其整数部分1,差就是小数部分21-,根据以上的内容,解答下面的问题:(1)5的整数部分是______,小数部分是______;(2)12+的整数部分是______,小数部分是_____;+整数部分是x,小数部分是y,求x﹣3y的值.(3)若设2326. 如图,在边长为10的菱形ABCD中,对角线BD=16,对角线AC,BD相交于点G,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)求对角线AC长及菱形ABCD的面积.(2)如图①,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由.(3)如图②,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由;若变化,请探究OE,OF之间的数量关系.答案与解析一、选择题1. 下列根式中,不是最简二次根式的是( )A. B.C. D.[答案]C[解析][分析]根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式,由此判断各选项可得出答案.[详解]解:A ,不符合题意;B 、3是最简二次根式,不符合题意;C 不是最简二次根式,符合题意;D 是最简二次根式,不符合题意;故选:C .[点睛]本题考查最简二次根式的知识,属于基础题,注意掌握二次根式的满足的两个条件. 2. 下列运算正确的是( )A. 111x y x y +=+B. 2353()p q p q -=- =,(0,0)≥≥a b D. 222()a b a b +=+[答案]C[解析][分析]根据分式的加、减法法则,积的乘方,实数的运算法则求解即可.[详解]解:选项A :11++=+=y x x y x y xy xy xy,故选项A 错误; 选项B :2363()-=-p q p q ,故选项B 错误;选项C :当,a b 均大于等于0时=故选项C 正确;选项D :222()+2+=+a b a b ab ,故选项D 错误故答案为:C.[点睛]本题考查了分式的加减运算、整式的乘除、实数的运算等,熟练的掌握运算法则是解决此类题的关键. 3. 在□ABCD 中,∠A :∠B=7:2,则∠C 的度数是( ).A. 70°B. 280°C. 140°D. 105° [答案]C[解析][分析]由平行四边形ABCD 可知∠A+∠B=180°,依据∠A :∠B=7:2,可求得∠A 的度数,根据∠A=∠C 即可求得∠C 的度数.[详解]∵四边形ABCD 为平行四边形,∴∠A+∠B=180°,∠A=∠C ,∵∠A :∠B=7:2,∴∠A=180°×79=140°, ∴∠C=140°,故选:C .[点睛]本题主要考查了平行四边形的性质,解题时注意平行四边形的对角相等,邻角互补.4. 判断下列几组数能作为直角三角形的三边长的是( )A. 8,10,7B. 2,3,4C. 12,15,20 1,2 [答案]D[解析][分析]验证选项中每组数据,看两条较短边的平方和是否等于最长边的平方,若等于则为直角三角形,否则就不是直角三角形.[详解]解:选项A :两条较短边平方和为:7²+8²=49+64=113≠10²,故选项A 错误;选项B :两条较短边平方和为:2²+3²=13≠4²,故选项B 错误;选项C :两条较短边平方和为:12²+15²=144+225=369≠20²,故选项C 错误选项D :两条较短边平方和为:1²+(3)²=4=2²,故选项D 正确.故答案为:D.[点睛]本题考查勾股定理的逆定理,如果两条较短边的平方和等于最长边的平方,则此三角形为直角三角形. 5. 如图,菱形ABCD 中,130D ∠=︒,则1∠=( )A. 30B. 25︒C. 20︒D. 15︒[答案]B[解析][分析] 直接利用菱形的性质得出//DC AB ,1DAC ∠=∠,进而结合平行四边形的性质得出答案.[详解]解:四边形ABCD 是菱形,//DC AB ∴,1DAC ∠=∠,130D ∠=︒,18013050DAB ∴∠=︒-︒=︒,11252DAB ∴∠=∠=︒. 故选:B .[点睛]此题主要考查了菱形的性质,正确得出DAB ∠的度数是解题关键.6. 下列性质中,矩形不一定具有的是( )A. 对角线相等B. 对角线互相平分C. 4个内角相等D. 一条对角线平分一组对角[答案]D[解析][分析]本题主要应用矩形的性质,即对角线相等且互相平分,四个角都是直角,对边平行且相等,进行解答即可.[详解]解:B是一般的平行四边形的性质,A、C都是矩形特有的性质,D是菱形的性质,矩形不一定具有;故选:D.[点睛]本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,但是菱形特有的性质,矩形不一定具有.7. 如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是()A. 22.5°B. 30°C. 45°D. 67.5°[答案]A[解析][分析]由条件可得BE=BD,即得∠BED=∠BDE,根据正方形性质得∠ABD=45°,∠BED+∠BDE=∠ABD=45°,从而求得∠BDE.[详解]解:∵正方形ABCD,AD=AB,∴∠ABD=45°,∵BE=BD,∴∠BED=∠BDE,∴∠BED+∠BDE=∠ABD=45°,∴2∠BDE=45°,∴∠BDE=22.5°,故选:A.[点睛]本题考查了正方形的性质、等腰三角形底角相等的性质,根据∠BED=∠BDE和∠BED+∠BDE=∠ABD=45°是解题的关键.8. 如图,在矩形COED 中,点D 的坐标是(2,3),则CE 的长是()A. 13B. 22C. 4D. 10[答案]A[解析][分析]直接利用D点坐标再利用勾股定理得出DO的长,再利用矩形性质得出答案.[详解]解:如图,连接OD,∵点D的坐标是(2,3),∴22+1323∵四边形OEDC是矩形,∴13故选:A.[点睛]此题主要考查了矩形的性质,正确应用勾股定理是解题关键.9. 如图,在22⨯的方格中,小正方形的边长是1,点、、都在格点上,则AC边上的高为()532235 D. 32[答案]C[解析][分析] 先用间接法求出△ABC 的面积,然后求出AC 的长度,根据面积公式即可求出AC 边上的高.[详解]解:根据题意,得:11132211212422222ABC S ∆=⨯-⨯⨯-⨯⨯⨯=--=, ∵22125AC =+=又12ABC S AC h ∆=•, ∴AC 边上的高:3223525ABC S h AC∆⨯===;故选:C.[点睛]本题考查了勾股定理与网格问题,解题的关键是利用勾股定理求出AC 的长度,以及间接法求出△ABC 的面积.10. 在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数0 1 2 3 4 人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A. 中位数是2B. 众数是17C. 平均数是2D. 方差是2[答案]A[解析]试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.11. 如图,长方形的长为15,宽为10,高为20,点离点的距离为5,蚂蚁如果要沿着长方形的表面从点爬到点,需要爬行的最短距离是()A. 35B. 1055C. 25D. 21[答案]C[解析][分析]要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.[详解]解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB=2222BD AD++,=1520=25只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10;在直角三角形ABD中,根据勾股定理得:∴AB=2222++,BD AD=1025=529只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30;在直角三角形ABC中,根据勾股定理得:∴AB=2222=305=537++,AC BC∵25<529<537,∴蚂蚁爬行的最短距离是25,故选:C.[点睛]本题主要考查勾股定理的应用,两点之间线段最短,关键是将长方体侧面展开,然后利用两点之间线段最短解答.12. 如图,矩形ABCD 中,22BC =,42AB =,点是对角线AC 上的一动点,以BP 为直角边作等腰Rt BPQ ∆(其中90PBQ ∠=︒),则PQ 的最小值是( )A. 8105B. 855C. 25D. 210[答案]B[解析][分析]根据题意可得当BP 最短时,PQ 值最小,即BP ⊥AC 时,PQ 最小.利用面积法计算BP 长度,即可得PQ 长度.[详解]解:∵△BPQ 是等腰直角三角形,若PQ 最小,则BP 值最小即可.∵点P 是对角线AC 上的一动点,B 点是定点,∴当BP ⊥AC 时,BP 最短.在Rt △ABC 中,AC=22210AB BC += ,根据三角形的面积公式,11224221022BP ⨯⨯=⨯⨯,解得4105BP =, 此时PQ 的最小值为22855BP BQ +=.故选B.[点睛]此题考查矩形的性质、勾股定理以及垂线段最短,解题的关键是根据图形特征转化最短线段.二、填空题13. 计算:218-=__________.[答案]22-[解析][分析]先将18化成最简二次根式,然后再进行加减运算即可.[详解]解:原式=23222-=-.故答案为:22-.[点睛]本题考查二次根式的加减运算,熟练掌握运算法则是解决此类题的关键.14. 已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________.[答案]3[解析][分析]由直角三角形中30°角所对的直角边等于斜边的一半,可求出30°角对应的直角边,再由勾股定理可知求出另一直角边,进而求出斜边上的高.[详解]解:如下图所示,BC=4,∠B=30°,∠C=60°由直角三角形中,30°角所对的直角边等于斜边的一半知:AC=12BC=2由勾股定理知:2222=422 3.-=-=AB BC AC在Rt△ABH中,AH=123故答案为:3.[点睛]本题考查了直角三角形中30°角所对的直角边等于斜边的一半、勾股定理等相关知识,熟练掌握直角三角形的性质是解题的关键.15. 如图,要为一段高为6米,长为10米的楼梯铺上红地毯,则红地毯至少要___________米长.[答案]14[解析][分析]根据平移的性质,地毯的长度实际是所有台阶的长加上台阶的高,因此结合题目的条件可得出答案.[详解]根据平移不改变线段的长度,可得地毯的长=台阶的长+台阶的高,则红地毯至少要6+22106-=6+8=14米.故答案为14[点睛]本题考查了生活中平移知识的应用,利用勾股定理求出台阶的水平长度是关键.16. 如图,Rt ABC 中,90 28ACB A D ∠=︒∠=,,是AB 的中点,则DCB ∠=________________度.[答案]62[解析][分析]根据直角三角形斜边上的中线等于斜边的一半可知CD AD =,根据等腰三角形的性质可知A ACD ∠=∠,进而即可得解.[详解]∵在Rt ABC ∆中,D 是AB 的中点 ∴12CD AD DB AB === ∴ADC ∆是等腰三角形∴A ACD ∠=∠∵28A ∠=︒∴28ACD ∠=︒∵90ACB ∠=︒∴902862DCB ∠=︒-︒=︒故答案为:62.[点睛]本题主要考查了直角三角形斜边上中线的性质,以及等腰三角形性质等相关知识,熟练掌握三角形的相关知识是解决本题的关键.17. 如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =24,BD =10,则菱形ABCD 的高DE =____.[答案]12013[解析][分析]由菱形的性质求出AO 、BO 的值,再由勾股定理求出AB 的值,然后根据面积法即可求出DE 的值.[详解]∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=12,BO=5,∴AB=2251213+=,∵1122AB DE OA BD ⋅=⋅, ∴12×13×DE=12×12×10, ∴DE=12013.故答案12013. [点睛]此题考查了菱形的性质,勾股定理,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.18. 如图,在矩形ABCD 中,AB=3,AD=4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 等于_____.[答案]125[解析][分析] [详解]解:设AC 与BD 相交于点O ,连接OP ,过D 作DM ⊥AC 于M ,∵四边形ABCD 是矩形,∴,AC=BD ,∠ADC=90°.∴OA=OD . ∵AB=3,AD=4,∴由勾股定理得:22345+= .∵1134522ACD S DM ∆=⨯⨯=⨯⋅ ,∴DM=125. ∵AOD APO DPO S S S ∆∆∆=+,∴111222AO DM AO PE DO PF ⋅⋅=⋅+⋅ . ∴PE+PF=DM=125.故选B . 三、解答题19. 计算: ①4545842+-+; ②12xy x y⨯÷ [答案]①7522+;②2.[解析]分析]①先化简二次根式,再合并同类二次根式即可;②利用二次根式的乘法和除法法则(,(0,0)(0,0)a a a b ab a b a b b b ⋅==≥>)进行化简即可. [详解]解:①原式=45352242+-+=7522+;②原式=12xy x y⋅÷ =21=2.[点睛]本题考查二次根式的加减混合运算和二次根式的乘除混合运算.二次根式的加减运算,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并;二次根式的乘除运算,系数的积(商)作为积(商)的系数,被开方数的积(商)作为积(商)的被开方数.20. 如图,在Rt △ABC 中,∠BCA =90°,AC =12,AB =13,点D 是Rt △ABC 外一点,连接DC ,DB ,且CD =4,BD =3.(1)求BC 的长;(2)求证:△BCD 是直角三角形.[答案](1)5;(2)详见解析.[解析][分析](1)在Rt△ABC中,根据勾股定理即可求得BC的长;(2)利用勾股定理逆定理即可证明△BCD是直角三角形.[详解](1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=BC2,∴△BCD是直角三角形.[点睛]本题考查勾股定理及其逆定理.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握定理是解题关键.21. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.[答案](1)详见解析;(2)九()1班成绩好些;(3)九()1班的成绩更稳定,能胜出.[解析][分析]()1由条形图得出两班的成绩,根据中位数、平均数及众数分别求解可得;()2由平均数相等得前提下,中位数高的成绩好解答可得;()3分别计算两班成绩的方差,由方差小的成绩稳定解答.[详解]解:()1九()1班5位同学的成绩为:75、80、85、85、100,其中位数为85分;九()2班5位同学的成绩为:70、100、100、75、80,九()2班的平均数为70100100758085(5++++=分),其众数为100分,补全表格如下:平均数中位数众数九()1班85 85 85 九()2班85 80 100 ()2九()1班成绩好些,两个班的平均数都相同,而九()1班的中位数高,在平均数相同的情况下,中位数高的九()1班成绩好些.()3九()1班的成绩更稳定,能胜出.()(22222211[(7585)(8085)(8585)(8585)10085)70(5S ⎤=⨯-+-+-+-+-=⎦九分2), ()(22222221[(7085)(10085)(10085)(7585)8085)160(5S 九⎤=⨯-+-+-+-+-=⎦分2), ()()2212S S 九九∴<,九()1班的成绩更稳定,能胜出.[点睛]本题考查了平均数、中位数、众数和方差的意义即运用方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22. 如图,一架长5米的梯子AB ,顶端B 靠在墙上,梯子底端A 到墙的距离AC =3米.(1)求BC 的长;(2)梯子滑动后停在DE 的位置,当AE 为多少时,AE 与BD 相等?[答案](1)4m ;(2)1m.[解析][分析](1)直接在Rt △ABC 中应用勾股定理即可作答;(2)先设AE=x,然后根据题意用x 表示出CD 和CE 的长,然后使用勾股定理即可完成解答.[详解]解:(1)∵一架长5米的梯子AB ,顶端B 靠在墙上,梯子底端A 到墙的距离AC =3米,∴BC 2253-(m ),答:BC 的长为4m ;(2)当BD =AE ,则设AE =x ,故(4-x )2+(3+x )2=25解得:x 1=1,x 2=0(舍去),故AE=1m.[点睛]本题主要考查了勾股定理得应用,正确的找到直角三角形和相应边的长是解答本题的关键.23. 正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.[答案](1)见解析;(2)5 2 .[解析][分析](1)由折叠可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.[详解](1)∵△DAE逆时针旋转90°得到△DCM∴DE=DM ∠EDM=90°∴∠EDF + ∠FDM=90°∵∠EDF=45°∴∠FDM =∠EDM=45°∵DF= DF∴△DEF≌△DMF∴EF=MF …(2) 设EF=x ∵AE=CM=1∴ BF=BM-MF=BM-EF=4-x∵ EB=2在Rt △EBF 中,由勾股定理得222EB BF EF +=即2222(4)x x +-=解之,得 52x = 24. 已知,如图,在平行四边形ABCD 中,BF 平分ABC ∠交AD 于点F ,AEBF 于点O ,交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)若AE=6,BF=8,CE=3,求四边形ABCD 的面积.[答案](1)答案见解析;(2)1925. [解析][分析] (1)由BF 平分∠ABC 得到∠ABF=∠EBF ,由AD ∥BC ,得到∠EBF=∠AFB ,进而得到△ABF 为等腰三角形,得到AB=AF ;由AE ⊥BF ,可证明△ABO ≌△EBO ,得到BE=AB ,进而可证明四边形ABEF 为菱形;(2)由(1)中四边形ABEF 为菱形,过A 点作AH ⊥BC 于H 点,根据菱形等面积法求出AH 的长,进而求出平行四边形ABCD 的高,进而求出其面积.[详解]解:(1)证明:∵四边形ABCD 为平行四边形,且F 在AD 上,E 在BC 上∴AF ∥BE∴∠EBF=∠AFB∵BF 是∠ABE 的角平分线∴∠EBF=∠ABF∴∠ABF=∠AFB∴△ABF 为等腰三角形,且AF=AB又AE ⊥BF ,∴∠AOB=∠EOB=90°在△AOB 和△EOB 中:=90⎧∠=∠⎪=⎨⎪∠=∠⎩ABO EBO BO BOAOB EOB ,∴△AOB 和△EOB(ASA) ∴AB=BE又AB=AF∴BE=AF ,且BE ∥AF ,∴四边形ABEF 为平行四边形又AB=BE ,∴四边形ABEF 为菱形.(2)过A 点作AH ⊥BC 于H 点,如下图所示∵四边形ABEF 为菱形∴AE ⊥BF ,且BO=12BF=4,OE=12AE=3 ∴在Rt △BOE 中:2222==43=5++BE BO OE 由菱形等面积法:1=2⨯⨯BE AH BF AE ,代入数据得: AH=245∴平行四边形ABCD 的高为245 ∴24192==(53)55平行四边形⨯+⨯=ABCD S BC AH . 故答案为:1925. [点睛]本题考查了菱形的判定方法、菱形的面积公式等,熟练掌握特殊四边形的判定方法及性质是解决此类题的关键.25. 阅读下面的文字,2是无理数,而无理数是无限不循环小数,2的小数部分我们不可能全部地写出来,但是由于12<2,21,21,差就是1,根据以上的内容,解答下面的问题:(1的整数部分是______,小数部分是______;(2)1+的整数部分是______,小数部分是_____;(3)若设2+整数部分是x,小数部分是y,求x的值.[答案]解:(1)22;(2)21;(3.[解析][分析](1)的取值范围即可得答案;(2)的取值范围,再得出的取值范围,即可得答案;(3)先估算出,得出x、y的值,再代入求值即可.[详解](1)∵4<5<9,即,2,-2.故答案为22(2)∵1<2<4,∴<2,∴<3,的整数部分是2,-1.故答案为21(3)∵1<3<4,∴,∴,∵2+x,小数部分是y,∴x=3,y=-1,∴x﹣3y=3-3(3-1)=3.[点睛]此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算,“夹逼法”是估算的一般方法,也是常用方法.26. 如图,在边长为10的菱形ABCD中,对角线BD=16,对角线AC,BD相交于点G,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)求对角线AC的长及菱形ABCD的面积.(2)如图①,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由.(3)如图②,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由;若变化,请探究OE,OF之间的数量关系.[答案](1)12;96 (2)答案见解析(3)答案见解析[解析][分析](1)根据菱形的对角线互相垂直平分求出BG,再利用勾股定理列式求出AG,然后根据AC=2AG计算即可得解;再根据菱形的面积等于对角线乘积的一半列式计算即可得解;(2)连接AO,根据S△ABD=S△ABO+S△ADO列式计算即可得解;(3)连接AO,根据S△ABD=S△ABO-S△ADO列式整理即可得解.[详解]解:(1)在菱形ABCD中,AG=CG,AC⊥BD,BG=12BD=12×16=8,由勾股定理得AG22221086AB BG--=, 所以AC=2AG=2×6=12.所以菱形ABCD的面积=12AC·BD=12×12×16=96.(2)不发生变化.理由如下:如图①,连接AO,则S△ABD=S△ABO+S△AOD,所以12BD·AG=12AB·OE+12AD·OF,即12×16×6=12×10·OE+12×10·OF.解得OE+OF=9.6,是定值,不变.(3)发生变化.如图②,连接AO,则S△ABD=S△ABO-S△AOD,所以12BD·AG=12AB·OE-12AD·OF.即12×16×6=12×10·OE-12×10·OF.解得OE-OF=9.6,是定值,不变.所以OE+OF的值发生变化,OE,OF之间的数量关系为OE-OF=9.6.[点睛]本题主要考查了菱形性质,主要利用了菱形的对角线互相垂直平分的性质,(2)(3)作辅助线构造出两个三角形是解题的关键.。

人教版八年级下册数学《期中检测题》含答案解析

人教版八年级下册数学《期中检测题》含答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共16小题)1.,必须满足( ) A. 52x ≥-B. 52x ≤-C. 为任何实数D. 为非负数2.下列根式中, ( )3.小明在一次射击训练时,连续10次的成绩为6次10环、4次9环,则小明这10次射击的平均成绩为( ) A. 9.6环B. 9.5环C. 9.4环D. 9.3环4.下列运算正确的是( )213C. =D. 25.甲、乙、丙、丁四人各进行了6次跳远测试,他们的平均成绩相同,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则跳远成绩最稳定的是( ) A. 甲B. 乙X. 丙∆. 丁6.对于函数22y x =-+,下列结论正确的是( ) A. 它的图像必经过点(1,2)- B. 当1x >时,0y <C. 的值随值的增大而增大D. 的图像经过第一、二、三、象限7.已知一次函数y kx b =+图象如图所示,则不等式0kx b +<的解集为( )A. 5x >B. 5x <C. 4x >D. 4x <8.关于12的叙述,错误..的是( ) A.12是有理数B. 面积为12的正方形的边长是12C.12=23D. 在数轴上可以找到表示12的点9.如图,在平面直角坐标系中,矩形ABCD 的顶点A (6,0),C (0,4)点D 与坐标原点O 重合,动点P 从点O 出发,以每秒2个单位的速度沿O ﹣A ﹣B ﹣C 的路线向终点C 运动,连接OP 、CP ,设点P 运动的时间为t 秒,△CPO 的面积为S ,下列图象能表示t 与S 之间函数关系的是( )A.B.C.D.10.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是( ) A. 平均数、中位数 B. 众数、中位数C. 平均数、方差D. 中位数、方差11.估计1832⨯+的运算结果应在( ) A. 1到2之间B. 2到3之间C. 3到4之间D. 4到5之间12.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( ) A. 3B. 4C. 5D. 913.A ,B 两地相距20km ,甲乙两人沿同一条路线从 地到 地,如图反映的是二人行进路程 (km )与行进时间()之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上,在这些说法中,正确的有( )A. 1个B. 2个C. 3个D. 4个14.直线y=-2x+m 与直线y=2x -1的交点在第四象限,则m 的取值范围是( ) A. m >-1B. m <1C. -1<m <1D. -1≤m≤115.直线:(3)2l y m x n =-+-(, 为常数)的图象如图,化简:︱3m -244n n -+( )A. 5m n --B. 5C. -1D. 5m n +-16.在平面直角坐标系中,已知直线y =﹣34x +3与x 轴、y 轴分别交于A 、B 两点,点C 在线段OB 上,把△ABC 沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( ) A. (0,﹣34) B. (0,43) C. (0,3) D. (0,4)二.填空题(共4小题)17.将直线21y x =-向上平移个单位,得到直线_______. 18.函数()125m y m x-=-+是关于的一次函数,则m =__________.19.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________. 20.如图,直线142y x =+与坐标轴交于A,B 两点,在射线AO 上有一点P ,当△APB 是以AP 为腰的等腰三角形时,点P 的坐标是________________.三.解答题(共5小题)21.计算:(1)(π﹣3)0205(﹣1)﹣1; (2)2(253)(52)(52)--22.已知函数y =(2m +1)x +m -3. (1)若函数图象经过原点,求m 值(2)若函数的图象平行于直线y =3x -3,求m 的值(3)若这个函数是一次函数,且y 随着x 增大而减小,求m 的取值范围.23.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到学生人数为________,图2中的值为_________.(2)本次调查获取样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?24.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.25.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的14?若存在求出此时点M的坐标;若不存在,说明理由.答案与解析一.选择题(共16小题)1.,必须满足()A.52x≥- B.52x≤- C. 为任何实数 D. 为非负数[答案]A[解析][分析]根据二次根式有意义的条件可得2x+5≥0,再解不等式即可.[详解],则2x+5≥0,解得:52x≥-.故选A.[点睛]本题考查二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.下列根式中,( )[答案]C[解析][分析]首先根据二次根式的化简法则将二次根式化简,经化简后如果被开方数相同,则能进行合并.[详解]A、原式=3,合并;B、原式;C、原式,;D、原式,故选C.3.小明在一次射击训练时,连续10次的成绩为6次10环、4次9环,则小明这10次射击的平均成绩为( ) A. 9.6环 B. 9.5环C. 9.4环D. 9.3环[答案]A [解析] [分析]根据题目中的数据和加权平均数的计算方法,可以求得小明这10次射击的平均成绩. [详解]解:小明这10次射击的平均成绩为:110(10×6+9×4)=9.6(环), 故选:A .[点睛]本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法. 4.下列运算正确的是( )213C. =D. 2[答案]C [解析] [分析]根据同类二次根式的定义、二次根式的乘、除法公式和二次根式的性质逐一判断即可.[详解]A .不是同类二次根式,故本选项错误;B . ≠213,故本选项错误;C . ()428=⨯⨯=⨯=故本选项正确;D . 2-2,故本选项错误.故选C .[点睛]此题考查的是二次根式的运算,掌握同类二次根式的定义、二次根式的乘、除法公式和二次根式的性质是解决此题的关键.5.甲、乙、丙、丁四人各进行了6次跳远测试,他们的平均成绩相同,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则跳远成绩最稳定的是( ) A. 甲 B. 乙C. 丙D. 丁[答案]D [解析] [分析]根据方差的意义求解可得.[详解]解:∵S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45, ∴S 丁2<S 丙2<S 乙2<S 甲2, ∴跳远成绩最稳定的是丁, 故选:D .[点睛]本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 6.对于函数22y x =-+,下列结论正确的是( ) A. 它的图像必经过点(1,2)- B. 当1x >时,0y <C. 的值随值的增大而增大D. 的图像经过第一、二、三、象限[答案]B [解析] [分析]根据一次函数的定义以及性质对各项进行判断即可. [详解]A.将1x =-代入22y x =-+中,解得4y =,错误;B.当1x =时0y =,因为20-<,所以y 随着x 的增大而减小,即当1x >时,0y <,正确;C. 因为20-<,所以y 随着x 的增大而减小,错误;D.该函数图象经过第一、二、四象限,错误; 故答案为:B .[点睛]本题考查了一次函数的问题,掌握一次函数的定义以及性质是解题的关键.7.已知一次函数y kx b =+的图象如图所示,则不等式0kx b +<的解集为( )A. 5x >B. 5x <C. 4x >D. 4x <[答案]C [解析] [分析]根据图象得出一次函数图象和x 轴的交点坐标为(4,0),y 随x 的增大而减小,再得出不等式的解集即可. [详解]解:∵从图象可知:一次函数图象和x 轴的交点坐标为(4,0),y 随x 的增大而减小, ∴不等式kx+b <0的解集是x >4, 故选:C .[点睛]本题考查了一次函数与一元一次不等式、一次函数的性质等知识点,能熟记一次函数的性质是解此题的关键.8.12的叙述,错误..的是( ) 12是有理数B. 面积为1212 12=3D. 12的点 [答案]A [解析]12,A 项错误,故答案选A. 考点:无理数.9.如图,在平面直角坐标系中,矩形ABCD的顶点A(6,0),C(0,4)点D与坐标原点O重合,动点P从点O出发,以每秒2个单位的速度沿O﹣A﹣B﹣C的路线向终点C运动,连接OP、CP,设点P运动的时间为t 秒,△CPO的面积为S,下列图象能表示t与S之间函数关系的是( )A.B.C.D.[答案]B[解析][分析]根据动点运动的起点位置、关键转折点,结合排除法,可得答案.[详解]解:∵动点P从点O出发,以每秒2个单位的速度沿O﹣A﹣B﹣C的路线向终点C运动,△CPO的面积为S∴当t=0时,OP=0,故S=0∴选项C、D错误;当t=3时,点P和点A重合,∴当点P在从点A运动到点B的过程中,S的值不变,均为12,故排除A,只有选项B符合题意.故选:B.[点睛]本题考查了动点问题的函数图象,数形结合及正确运用排除法,是解题的关键.10.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是()A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 中位数、方差[答案]B[解析][分析]由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.[详解]由表可知,年龄为15岁与年龄为16岁的频数和为3051510--=,故该组数据的众数为14岁,中位数为:1414142+=(岁),关于年龄的统计量不会发生改变的是众数和中位数,故选B.[点睛]考查频数(率)分布表,加权平均数,中位数,众数,掌握中位数以及众数概念是解题的关键.11.1832( )A 1到2之间 B. 2到3之间 C. 3到4之间 D. 4到5之间[答案]C[解析][分析]先计算出原式,再进行估算即可.[详解的数值在1-2之间,所以3-4之间.故选C .12.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( )A. 3B. 4C. 5D. 9[答案]C[解析][分析]先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可.[详解]解:∵一组数据4,m ,5,n ,9的众数为9,∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6, 45965m n ++++= ∴12m n +=∴m ,n 中一个是9,另一个是3∴这组数按从小到大排列为:3,4,5,9,9.∴这组数的中位数为:5.故选:C.[点睛]本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.13.A ,B 两地相距20km ,甲乙两人沿同一条路线从 地到 地,如图反映的是二人行进路程 (km )与行进时间()之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上,在这些说法中,正确的有( )A. 1个B. 2个C. 3个D. 4个[答案]A[解析][分析] 根据题意结合图象依次判断即可.[详解]①甲始终是匀速行进,乙的行进不是匀速的,正确;②乙用了4个小时到达目的地,错误;③乙比甲先出发1小时,错误;④甲在出发4小时后被乙追上,错误,故选:A.[点睛]此题考查一次函数图象,正确理解题意,会看函数图象,将两者结合是解题的关键.14.直线y=-2x+m 与直线y=2x -1的交点在第四象限,则m 的取值范围是( )A. m >-1B. m <1C. -1<m <1D. -1≤m≤1[答案]C[解析] 试题分析:联立,解得,∵交点在第四象限,∴,解不等式①得,m >﹣1,解不等式②得,m <1,所以,m 的取值范围是﹣1<m <1.故选C .考点:两条直线相交或平行问题.15.直线:(3)2l y m x n =-+-(, 为常数)的图象如图,化简:︱3m -244n n -+( )A. 5m n --B. 5C. -1D. 5m n +-[答案]A[解析] [详解]根据一次函数图像可得: 30m -<, 20n ->,解得3m <, 2n >,所以︱3m -()22443232325n n m n m n m n m n -+=--=---=--+=--, 故选A .. 16.在平面直角坐标系中,已知直线y =﹣34x +3与x 轴、y 轴分别交于A 、B 两点,点C 在线段OB 上,把△ABC 沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )A. (0,﹣34) B. (0,43) C. (0,3) D. (0,4)[答案]B[解析][分析]设C (0,n ),过C 作CD ⊥AB 于D ,先求出A ,B 的坐标,分别为(4,0),(0,3),得到AB 的长,再根据折叠的性质得到AC 平分∠OAB ,得到CD =CO =n ,DA =OA =4,则DB =5﹣4=1,BC =3﹣n ,在Rt △BCD 中,利用勾股定理得到n 的方程,解方程求出n 即可.[详解]解:设C (0,n ),过C 作CD ⊥AB 于D ,如图,对于直线y =﹣34x+3, 当x =0,得y =3;当y =0,x =4,∴A (4,0),B (0,3),即OA =4,OB =3,∴AB =5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,∴AC 平分∠OAB ,∴CD =CO =n ,则BC =3﹣n ,∴DA =OA =4,∴DB =5﹣4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3﹣n )2,解得n =43, ∴点C 的坐标为(0,43). 故选:B .[点睛]本题考查了求直线与坐标轴交点的坐标的方法:分别令x=0或y=0,求对应的y 或x 的值;也考查了折叠的性质和勾股定理. 二.填空题(共4小题)17.将直线21y x =-向上平移个单位,得到直线_______.[答案]23y x =+[解析][分析]根据平移k 不变,b 值加减即可得出答案.[详解]平移后解析式为:y=2x−1+4=2x+3,故答案为y=2x+3[点睛]此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质18.函数()125m y m x-=-+是关于的一次函数,则m =__________. [答案]-2[解析][分析]根据一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1,即可得出m 的值.[详解]根据一次函数的定义可得:m-2≠0,|m|-1=1,由|m|-1=1,解得:m=-2或2,又m-2≠0,m≠2,则m=-2.故答案为:-2.[点睛]此题考查一次函数的定义,解题关键在于掌握其定义,难度不大,注意基础概念的掌握.19.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________.[答案] (1). 20 (2). 12[解析] ∵x =10, ∴1233x x x ++=10, 设21x ,22x ,23x 的方差为, 则1232223x x x y ++==2×10=20, ∵22221231(10)(10)(10)3s x x x ⎡⎤=-+-++⎣⎦ ,∴22221231(2)(2)(2)S x y x y x y n '⎡⎤=-+-+-⎣'⎦ =132221234(10)4(10)4(10)x x x ⎡⎤-+-++⎣⎦ =4×3=12.故答案为20;12.点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.20.如图,直线142y x =+与坐标轴交于A,B 两点,在射线AO 上有一点P ,当△APB 是以AP 为腰的等腰三角形时,点P 的坐标是________________.[答案]()()3,0,458,0-[解析][分析]把x=0,y=0分别代入函数解析式,即可求得相应的y 、x 的值,则易得点A 、B 的坐标;根据等腰三角形的判定,分两种情况讨论即可求得.[详解]当y=0时,x=-8,即A(-8,0),当x=0时,y=4,即B(0,4),∴OA=8,OB=4在Rt △ABO 中,2245AO BO +=若5则5∴点5若AP'=BP',在Rt △BP'O 中,BP'2=BO 2+P'O 2=16+(AO-BP')2.∴BP'=AP'=5∴OP'=3∴P'(-3,0)综上所述:点故答案为([点睛]本题考查了一次函数图象上点的坐标特征,等腰三角形的性质,利用分类思想解决问题是解题的关键.三.解答题(共5小题)21.计算:(1)(π﹣3)0(﹣1)﹣1;(2)2--[答案](1)-2;(2)[解析][分析](1)先计算零指数幂、计算二次根式的除法和负整数指数幂,再计算加减可得;(2)先利用完全平方公式和平方差公式计算,再计算加减可得.[详解]解:(1)原式=1﹣1=1﹣2﹣1=﹣2;(2)原式=﹣(5﹣2)= 3=20+.[点睛]本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.22.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值(2)若函数的图象平行于直线y=3x-3,求m的值(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.[答案](1)m=3;(2)m=1;(3)m<﹣1.2[解析]试题分析:(1)把原点坐标(0,0)代入函数关系式,即可求得m的值;(2)根据图象平行的一次函数的一次项系数相同即可得到关于m的方程,解出即可;(3)根据一次函数的性质即可得到关于m的不等式,解出即可.(1)由题意得,,;(2)由题意得,,;(3)由题意得,,考点:本题考查的是一次函数的性质点评:解答本题的关键是熟练掌握一次函数的性质:当时,y随x的增大而增大;当时,y随x的增大而减小.23.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?[答案](1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;[解析][分析](1)求直方图中各组人数和即可求得跳绳得学生人数,利用百分比的意义求得m即可;(2)利用平均数、众数、中位数的定义求解即可;(3)利用总人数乘以对应的百分比即可求得;[详解](1)本次抽取到的学生人数为:4+5+11+14+16=50(人);m%=1450x100%=28%,∴=28;故答案为:①50;②28;(2)观察条形统计图得,本次调查获取的样本数据的平均数849510111114121610.6650x⨯+⨯+⨯+⨯+⨯==,∴本次调查获取的样本数据的平均数为10.66,∵在这组样本数据中,12出现了16次,∴众数为12,∵将这组数据按从小到大排列后,其中处于中间位置的两个数都为11,∴中位数为:11+11=11 2,(3)800×32%=256人;答:我校八年级模拟体测中得12分的学生约有256人;[点睛]本题主要考查了中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图,掌握中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图是解题的关键.24.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.[答案](1)A奖品的单价是10元,B奖品的单价是15元;(2)当购买A种奖品75件,B种奖品25件时,费用W 最小,最小为1125元.[解析]试题分析:(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x的取值范围,由一次函数的性质就可以求出结论.试题解析:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,由题意,得 3260{5395x y x y +=+=, 解得:1015x y =⎧⎨=⎩. 答:A 奖品的单价是10元,B 奖品的单价是15元;(2)由题意,得W=10m+15(100-m)=-5m+1500∴()515001150{? 3100m m m -+≤≤-, 解得:70≤m≤75.∵m 是整数,∴m=70,71,72,73,74,75.∵W=-5m+1500,∴k=-5<0,∴W 随m 的增大而减小,∴m=75时,W 最小=1125.∴应买A 种奖品75件,B 种奖品25件,才能使总费用最少为1125元. 考点:1.一次函数的应用;2.二元一次方程组的应用;3.一元一次不等式组的应用. 25.如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA 相交于点A (4,2),动点M 在线段OA 和射线AC 上运动.(1)求直线AB 的解析式.(2)求△OAC 的面积.(3)是否存在点M ,使△OMC 的面积是△OAC 的面积的14?若存在求出此时点M 的坐标;若不存在,说明理由.[答案](1)y =﹣x +6;(2)S △OAC =12;(3)存在,M 的坐标是:M 1(1,12)或M 2(1,5)或M 3(﹣1,7) [解析][分析](1)利用待定系数法即可求得函数的解析式;(2)求得C 的坐标,即OC 的长,利用三角形的面积公式即可求解;(3)当△OMC 的面积是△OAC 的面积的14时,根据面积公式即可求得M 的横坐标,然后代入解析式即可求得M 的坐标.[详解]解:(1)设直线AB 的解析式是y kx b =+, 根据题意得:4260k b k b +=⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线的解析式是:y x 6=-+;(2)在y =﹣x +6中,令x =0,解得:y =6,OAC 1S 64122∆=⨯⨯=; (3)设OA 解析式是y =mx ,则4m =2, 解得:1m 2=, 则直线的解析式是:12y x =, ∵当△OMC 的面积是△OAC 的面积的14时, ∴当M 的横坐标是1414⨯=, 在12y x =中,当x =1时,y =12,则M 的坐标是1(1,)2; 在y x 6=-+中,x =1则y =5,则M 的坐标是(1,5).则M的坐标是:M1(1,12)或M2(1,5).当M的横坐标是:﹣1,在y x6=-+中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M坐标是:M1(1,12)或M2(1,5)或M3(﹣1,7).[点睛]本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.。

八年级语文下册期中测试卷及答案【完整版】

八年级语文下册期中测试卷及答案【完整版】

八年级语文下册期中测试卷及答案【完整版】满分:120分考试时间:120分钟一、语言的积累与运用。

(35分)1、下面词语中加点字注音完全正确的一项是()A.棹.zhào船蛮横.héng 怒不可遏.è接踵.zhǒng而至B.眼眶.kuàng 彷.páng徨挑拨离间.jiàn 拾.shè级而上C.晦.huì暗寒噤.jìn 强.qiáng词夺理目眩.xuàn神迷D.衍.yán射浩劫.jié纷至沓.tà来纵横驰骋.chěng3、下列句子中加点的成语使用正确的一项是()A.到新学校后,班集体相敬如宾....的和谐氛围让雷洋很快适应了新的学习环境。

B.端午节如期而至,嘉陵江上美轮美奂....的龙舟大赛成为炎炎夏日里广安人民关注的焦点。

C.阅读是源头活水,课堂是半亩方塘,只有把活水引入方塘,语文教学才能清澈如许,这是不言而喻....的。

D.由于他入木三分....的启发,我对人生有了较深刻的认识。

4、下列句子中,没有语病的一项是()A.这可能是因为传统教育的目的并不是寻求新知识,而是适应一个固定的社会制度。

B.一个实验能否成功需要的是眼光、勇气和毅力。

C.真正的格物致知精神,不但对应付今天的世界环境不可缺少,而且研究学术也是不可少的。

D.希望我们这一代对于格物和致知有新的认识和思考,使得实验精神真正地变成中国文化。

5、对下列各句使用的修辞手法及其作用的理解,不正确的一项是()A.卷云丝丝缕缕地漂浮着,有时像一片白色的羽毛,有时像一块洁白的绫纱。

理解:这句话连续用了比喻的修辞方法,生动形象地说明了卷云的形状及其洁白和轻盈的特点。

B.在受教育之前,我正像大雾里的航船,既没有指南针也没有探测仪,无从知道海港已经临近。

理解:运用比喻、拟人的修辞方法,生动形象地写出了海伦当时的痛苦、迷茫。

八年级下册语文期中测试卷(含答案)

八年级下册语文期中测试卷(含答案)

八年级下册语文期中测试卷(含答案) 八年级语文期中试卷一、积累与运用(20分)1.古诗文默写(12分)1) 蒹葭萋萋,所谓伊人,溯回从之,溯游从之。

2) 忽逢桃花林,夹岸数百步,中无杂树。

3) 悠悠我心。

4) 微君之躬。

5) 气蒸XXX,端居XXX。

6) 人们常用唐代诗人XXX《送杜少府之任蜀州》中的诗句“相去万余里,同居一江水”表达朋友虽然相距遥远却如在身边的感情。

2.下列文学常识说法正确的一项是(2分)A.《诗经》的“风”是各地民歌民谣,“雅”是祭祀XXX,用于宫廷宗庙祭祀,“颂”是正统的宫廷乐歌,用于宴会的典礼。

B.XXX,原名XXX,著作有小说集《呐喊》《彷徨》《朝花夕拾》等。

C.《小石潭记》的“记”和《答谢中书书》的“书”都是文体。

D.《诗经》是最早的诗歌总集,我国现实主义源头,汇集从西周到战国中叶诗歌305篇。

3.阅读下面文字,按要求作答。

(6分)在一个村庄里,住着一位聪明睿智的老人,村里有什么疑难问题都来向他请教。

有个调皮的孩子,想要故意为难那位老人。

他捉了一只小鸟,握在手掌里,跑去问:“老爷爷,听说您是最有智慧的人,不过我却不相信。

如果您能猜出我手中的鸟是死是活,我就相信了。

”老人注视着小孩子狡黠的眼睛,心中有数,如果他回答小鸟是活的,小孩会暗中加劲把小鸟掐死;如果他回答是死的,小孩就会张开双手让小鸟飞走。

老人拍了拍小孩的肩膀笑着说:“这只小鸟的死活,就全看你的了!”1) 为文中1处加点字选择正确读音,给2处选择符合文意的汉字,只填序号(2分)1处:蒹葭萋萋(A.jiān B.qiān)2处:老人最有智慧的人(A.聪明睿智 B.鸡皮鹤发)2) 从文中甲乙处选择符合语境的词语填入横线,只填序号。

(2分)甲:请教XXX:询问3) 文中划线句有一处语病,请将修改后的句子写在横线上。

(2分)原句:每个人的前途和命运,就像那只小鸟一样,你完全掌握在自己的手中。

修改句:每个人的前途和命运,就像那只小鸟一样,完全掌握在自己的手中。

八年级下册数学期中考试题及答案解析

八年级下册数学期中考试题及答案解析

八年级下册数学期中考试题及答案解析一、选择题1.要使二次根式有意义,则x应满足()A.x≥3B.x>3C.x≥﹣3D.x≠3【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数是非负数即可求解.【解答】解:根据题意得: x﹣3≥0,解得:x≥3.故选A.【点评】本题考查了二次根式有意义的条件,是一个基础题,需要熟练掌握.2.下列方程是一元二次方程的是()A.x﹣3=2xB.x2﹣2=0C.x2﹣2y=1D.【考点】一元二次方程的定义.【分析】根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】A、 x﹣3=2x是一元一次方程,故此选项错误;B、 x2﹣2=0是一元二次方程,故此选项正确;C、 x2﹣2y=1是二元二次方程,故此选项错误;D、 +1=2x,是分式方程,故此选项错误.故选: B.【点评】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.3.下列运算中,结果正确的是()A.=±6B.3﹣=3C.D.【考点】二次根式的混合运算.【分析】根据二次根式的性质、加法、乘法、除法法则逐一计算后即可判断.【解答】解: A、 =6,此选项错误;B、 3﹣=2,此选项错误;C、×=,此选项错误;D、 ==,此选项正确;故选: D.【点评】本题主要考查二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35B.50,35C.50,50D.15,50【考点】众数;中位数.【分析】根据众数、中位数的定义,结合表格数据进行判断即可.【解答】解:捐款金额学生数最多的是50元,故众数为50;共45名学生,中位数在第23名学生处,第23名学生捐款50元,故中位数为50;故选C.【点评】本题考查了众数及中位数的知识,解答本题的关键是熟练掌握众数及中位数的定义.5.下列二次根式中的最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【解答】解: A、 =2,故不是最简二次根式,本选项错误;B、 =2,故不是最简二次根式,本选项错误;C、 =,故不是最简二次根式,本选项错误;D、是最简二次根式,本选项正确.故选D.【点评】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.6.将方程x2+4x+3=0配方后,原方程变形为()A.(x+2)2=1B.(x+4)2=1C.(x+2)2=﹣3D.(x+2)2=﹣1【考点】解一元二次方程﹣配方法.【分析】把常数项3移项后,应该在左右两边同时加上一次项系数4的一半的平方.【解答】解:移项得,x2+4x=﹣3,配方得,x2+4x+4=﹣3+4,即(x+2)2=1,故选A.【点评】本题考查了解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上一个月增长的百分数相同,则每月的平均增长率为()A.10%B.15%C.20%D.25%【考点】一元二次方程的应用.【专题】增长率问题.【分析】利用关系式:一月份的营业额×(1+增长率)2=三月份的营业额,设出未知数列出方程解答即可.【解答】解:设这两个月的营业额增长的百分率是x.200×(1+x)2=288,解得: x1=﹣2.2(不合题意舍去),x2=0.2,答:每月的平均增长率为20%.故选: C.【点评】此题考查一元二次方程的应用;得到三月份营业额的关系式是解决本题的关键.8.已知关于x的方程kx2+(1﹣k)x﹣1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=﹣1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解【考点】根的判别式;一元一次方程的解.【分析】利用k的值,分别代入求出方程的根的情况即可.【解答】解:关于x的方程kx2+(1﹣k)x﹣1=0,A、当k=0时,x﹣1=0,则x=1,故此选项错误;B、当k=1时,x2﹣1=0方程有两个实数解,故此选项错误;C、当k=﹣1时,﹣x2+2x﹣1=0,则(x﹣1)2=0,此时方程有两个相等的实数解,故此选项正确;D、由C得此选项错误.故选: C.【点评】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键.9.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两相异实根,则k的取值范围是()A.k<B.k<且k≠1C.0<k<D.k≠1【考点】根的判别式;一元二次方程的定义.【专题】计算题.【分析】根据一元二次方程的定义和根的判别式的意义得到k﹣1≠0且△=(﹣2)2﹣4(k﹣1)×3>0,然后解两个不等式即可得到满足条件的k的范围.【解答】解:根据题意得k﹣1≠0且△=(﹣2)2﹣4(k﹣1)×3>0,所以k<且k≠1.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.10.若α,β是方程x2﹣2x﹣2=0的两个实数根,则α2+β2的值为()A.10B.9C.8D.7【考点】根与系数的关系.【分析】根据根与系数的关系得到α+β=2,αβ=﹣2,再利用完全平方公式变形得α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.【解答】解:根据题意得α+β=2,αβ=﹣2,所以α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣2)=8.故选C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c= 0(a≠0)的两根时,x1+x2=﹣,x1x2=.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.二、填空题:(本题有10小题,每小题3分,共30分)11.当x=2时,二次根式的值是1.【考点】二次根式的性质与化简.【专题】计算题.【分析】把x=2代入二次根式后利用二次根式的性质化简即可.【解答】解:当x=2时,==1.故答案为1.【点评】本题考查了二次根式的性质与化简,注意结果为最简二次根式或整式.12.方程x2﹣1=0的根为x1=1,x2=﹣1.【考点】解一元二次方程﹣直接开平方法.【分析】直接利用开平方法解方程得出答案.【解答】解: x2﹣1=0则x2=1,解得;x1=1,x2=﹣1.故答案为: x1=1,x2=﹣1.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.13.已知关于x的方程x2+kx+3=0的一个根为x=3,则k为﹣4.【考点】一元二次方程的解.【分析】把x=3代入已知方程列出关于k的一元一次方程,通过解该方程求得k 的值.【解答】解:依题意得: 32+3k+3=0,解得k=﹣4.故答案是:﹣4.【点评】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是S甲2=0.90平方环,S乙2=1.22平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是甲.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,比较出甲和乙的方差大小即可.【解答】解:∵s甲2=0.90,S乙2=1.22,∴s甲2<s乙2,∴成绩较稳定的是甲.故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.已知数据2,3,4,4,a,1的平均数是3,则这组数据的众数是4.【考点】众数;算术平均数.【分析】根据平均数和众数的概念求解.【解答】解:∵这组数据的平均数为,∴=3,解得: x=4,则众数为: 4.故答案为4.【点评】本题考查了平均数和众数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.16.下列二次根式,不能与合并的是②(填写序号即可).①;②;③.【考点】同类二次根式.【专题】计算题.【分析】先把各二醋很式化为最简二次根式,然后根据同类二次根式的定义判断哪些二次根式与为同类二次根式即可.【解答】解: ==2,==4,==3,所以、与为同类二次根式,它们可以合并.故答案为②.【点评】本题考查了同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.合并同类二次根式的方法:只合并根式外的因式,即系数相加减,被开方数和根指数不变.17.同学们对公园的滑梯很熟悉吧!如图是某公园“六•一”前新增设的一台滑梯,该滑梯高度AC=2m,滑梯AB的坡比是1: 2,则滑梯AB的长是米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据坡比求出BC,在Rt△ABC中,根据勾股定理可求出斜边AB的长度.【解答】解:由题意知,AC: BC=1;2,且AC=2,故BC=4.在Rt△ABC中,,即滑梯AB的长度为米.【点评】此题主要考查学生对坡度的掌握及勾股定理的运用能力.18.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为1米.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设小道进出口的宽度为x米,然后利用其种植花草的面积为532平方米列出方程求解即可.【解答】解:设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)= 532,整理,得x2﹣35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.故答案为: 1.【点评】本题考查了一元二次方程的应用,解题的关键是根据种植花草的面积为532m2找到正确的等量关系并列出方程.19.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是﹣1.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a﹣1≠0.【解答】解:∵关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,∴x=0满足该方程,且a﹣1≠0.∴a2﹣1=0,且a≠1.解得a=﹣1.故答案是:﹣1.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.20.三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则此三角形周长是13.【考点】解一元二次方程﹣因式分解法;三角形三边关系.【专题】计算题;分类讨论.【分析】求出方程的解,有两种情况: x=2时,看看是否符合三角形三边关系定理;x=4时,看看是否符合三角形三边关系定理;求出即可.【解答】解: x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为: 13.【点评】本题考查了三角形的三边关系定理和解一元二次方程等知识点,关键是确定第三边的大小,三角形的两边之和大于第三边,分类讨论思想的运用,题型较好,难度适中.三、解答题(共5题,共40分)21.计算(1)(2).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和二次根式的性质计算.【解答】解:(1)原式=4﹣3﹣2=﹣;(2)原式=3﹣1﹣3=﹣1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.解下列方程(1)x2﹣4x=0(2)x2﹣6x+8=0.【考点】解一元二次方程﹣因式分解法.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣4x=0,x(x﹣4)=0,x=0,x﹣4=0,x1=0,x2=4;(2)x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.23.A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图一:ABC笔试859590口试8085(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4: 3: 3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.【考点】加权平均数;扇形统计图;条形统计图.【专题】图表型.【分析】(1)结合表一和图一可以看出: A大学生的口试成绩为90分;(2)A的得票为300×35%=105(张),B的得票为300×40%=120(张),C的得票为:300×25%=75(张);(3)分别通过加权平均数的计算方法计算A的成绩,B的成绩,C的成绩,综合三人的得分,则B应当选.【解答】解:(1)A大学生的口试成绩为90;补充后的图如图所示:ABC笔试859590口试908085(2)A的票数为300×35%=105(张),B的票数为300×40%=120(张),C的票数为300×25%=75(张);(3)A的成绩为=92.5(分)B的成绩为=98(分)C的成绩为=84(分)故B学生成绩最高,能当选学生会主席.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.如图,在5×5的正方形网格中,每个小正方形的边长都是1,在所给网格中按下列要求画出图形:(1)已知点A在格点(即小正方形的顶点)上,画一条线段AB,长度为,且点B 在格点上;(2)以上题中所画线段AB为一边,另外两条边长分别是3,2,画一个三角形AB C,使点C在格点上(只需画出符合条件的一个三角形);(3)所画的三角形ABC的AB边上高线长为(直接写出答案)【考点】勾股定理.【专题】作图题.【分析】(1)根据勾股定理可知使线段AB为直角边为2和1的直角三角形的斜边即可;(2)作出另外两条边长分别是3,2的三角形ABC即可;(3)根据三角形的面积公式即可得到所画的三角形ABC的AB边上高线长.【解答】解:(1)如图所示:(2)如图所示:(3)三角形ABC的AB边上高线长为:×3×2×2÷=3×2÷=.故答案为:.【点评】本题考查了勾股定理、此题要读懂题目要求,设计画图方案也比较灵活,目的培养学生运算能力,动手能力.25.诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为12 0元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元;(用x 的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)根据:销售量=原销售量+因价格下降而增加的数量,每件利润=实际售价﹣进价,列式即可;(2)根据:总利润=每件利润×销售数量,列方程求解可得;(3)根据(2)中相等关系列方程,判断方程有无实数根即可得.【解答】解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利4 0﹣x元,故答案为:(20+2x),(40﹣x);(2)根据题意,得:(20+2x)(40﹣x)=1200解得: x1=20,x2=10答:每件童装降价20元或10元,平均每天赢利1200元;(3)不能,∵(20+2x)(40﹣x)=2000此方程无解,故不可能做到平均每天盈利2000元.【点评】本题主要考查一元二次方程的实际应用,理解题意找到题目蕴含的等量关系是列方程求解的关键.26.已知实数a满足|2012﹣a|+=a,则a﹣20122=2013.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得a﹣2013≥0,进而可得a≥2013,然后再根据绝对值的性质可得a﹣2012+=a,整理可得=2012,然后再两边进行平方即可.【解答】解:∵a﹣2013≥0,∴a≥2013,∴|2012﹣a|+=a,a﹣2012+=a,=2012,a﹣2013=20122,∴a﹣20122=2013,故答案为: 2013.【点评】此题主要考查了二次根式有意义,关键是掌握二次根式中的被开方数是非负数.27.(2016秋•昌江区校级期末)若方程(x﹣1)(x2﹣2x+m)=0的三个根可以作为一个三角形的三边之长,则m的取值范围:<m≤1.【考点】根与系数的关系;解一元二次方程﹣因式分解法;三角形三边关系.【专题】计算题.【分析】先根据因式分解法得到x﹣1=0或x2﹣2x+m=0,设x2﹣2x+m=0的两根为a、 b,根据判别式和根与系数的关系得到△=4﹣4m≥0,a+b=2,ab=m>0,解得0<m≤1.【解答】解:∵(x﹣1)(x2﹣2x+m)=0,∴x﹣1=0或x2﹣2x+m=0,∴原方程的一个根为1,设x2﹣2x+m=0的两根为a、 b,则△=4﹣4m≥0,a+b=2,ab=m,又∴|a﹣b|==<1,∴4﹣4m<1,解得m>,∴<m≤1.故答案为:<m≤1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.28.已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于﹣9.【考点】二次根式的混合运算.【分析】观察已知等式可知,含有m2﹣2m,n2﹣2n的结构,可以将已知条件移项,平方即可.【解答】解:由m=1+,得(m﹣1)2=2,即m2﹣2m=1,故7m2﹣14m=7,同理,得3n2﹣6n=3,代入已知等式,得(7+a)(3﹣7)=8,解得a=﹣9.【点评】本题考查了二次根式的灵活运用,直接将m、 n的值代入,可能使运算复杂,可以先求部分代数式的值.29.一次选拔考试的及格率为25%,及格者的平均分数比规定的及格分数多15分,不及格者的平均分数比规定的及格分数少25分,又知全体考生的平均分数是60分,求这次考试规定的及格分数是多少?【考点】一元一次方程的应用.【专题】应用题.【分析】本题中的相等关系是:及格的总得分+不及格的总得分=全体考生的总分,根据此关系列方程求解.【解答】解:设考生人数为a人,及格分数为x分.则: 25%a(x+15)+75%a(x﹣25)=60a解得: x=75.答:这次考试规定的及格分数是75分.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.30.(2015•蓬安县校级自主招生)已知△ABC的两边AB、 AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,第三边BC=5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求此时△ABC的周长.【考点】勾股定理;根与系数的关系;等腰三角形的性质.【专题】计算题.【分析】(1)先解方程可得x1=k+1,x2=k+2,若△ABC是直角三角形,且BC是斜边,那么有(k+1)2+(k+2)2=52,易求k,结合实际意义可求k的值;(2)由(1)得x1=k+1,x2=k+2,若△ABC是等腰三角形,则x1=BC或x2=BC,易求k=4或3,再分两种情况求周长.【解答】解:(1)根据题意得[x﹣(k+1)][x﹣(k+2)]=0,解得,x1=k+1,x2=k+2,若△ABC是直角三角形,且BC是斜边,那么有(k+1)2+(k+2)2=52,解得k1=2,k2=﹣5(不合题意舍去),∴k=2;(2)①如果AB=AC,△=(2k+3)2﹣4(k2+3k+2)=04k2+12k+9﹣4k2﹣12k﹣8=1≠0,不可能是等腰三角形.②如果AB=5,或者AC=5x1=5,52﹣(2k+3)×5+k2+3k+2=0k2﹣7k+12=0(k﹣4)(k﹣3)=0k=4或者k=3(都符合题意)k=4时:x2﹣11x+30=0(x﹣5)(x﹣6)=0,∴AB=5,AC=6,周长L=5+5+6=16,k=3时:x2﹣9x+20=0(x﹣4)(x﹣5)=0,∴AB=4,AC=5,周长L=4+5+5=14.【点评】本题考查了勾股定理、等腰三角形的判定、解方程.解题的关键是注意分情况讨论.31.设直线nx+(n+1)y=(n为自然数)与两坐标轴围成的三角形面积为Sn (n=1,2,…2014),则S1+S2+…+S2014的值为.【考点】一次函数图象上点的坐标特征.【专题】规律型.【分析】依次求出S1、 S2、 Sn,就发现规律: Sn=,然后求其和即可求得答案.注意=﹣.【解答】解:∵直线nx+(n+1)y=,∴y=﹣x+,当n=1时,直线为y=﹣x+,∴直线与两坐标轴的交点为(0,),(,0),∴S1=××==1﹣;当n=2时,直线为y=﹣x+,∴直线与两坐标轴的交点为(0,),(,0),∴S2=××=×=﹣;当n=3时,直线为y=﹣x+,∴直线与两坐标轴的交点为(0,),(,0),∴S3=××=﹣;…,Sn=﹣,∴S1+S2+S3+…+S2014=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为:.【点评】本题考查的是一次函数图象上点的坐标特点,根据题意找出规律是解答此题的关键.32.甲、乙、丙三位同学进行立定跳远比赛,每人轮流跳一次称为一轮,每轮按名次从高到低分别得3分、 2分、 1分(没有并列名次).他们一共进行了五轮比赛,结果甲共得14分;乙第一轮得3分,第二轮得1分,且总分最低.那么丙得到的分数是9分.【考点】整数问题的综合运用.【专题】推理填空题;方案型.【分析】甲共得14分.那么甲应是4次都得最高分3分,一次得2分,乙第一轮得3分,第二轮得1分,那么剩下的分数只有4个2分,4个1分.丙的5场比赛最好成绩是得4个2分,一个1分,共9分,那么乙得分是3+4=7分,符合总分最低.【解答】解:由于共进行了5轮比赛,且甲共得14分.那么甲的5次得分应该是4次3分,一次2分;已知乙第一轮得3分,第二轮得1分,那么可确定的甲、乙、丙的得分为:甲:①2分,②3分,③3分,④3分,⑤3分;乙:①3分,②1分;丙:①1分,②2分;因此乙、丙的后三轮比赛得分待定,由于乙的得分最低,因此丙的得分情况必为:丙:①1分,②2分,③2分,④2分,⑤2分;即丙的总得分为1+2+2+2+2=9分.故答案为9.【点评】本题主要考查整数问题的综合应用,解决本题的关键是判断出剩余场数及相应的分数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册期中测试题完形填空(共20小题,计20分)One of the world’s most dangerous sport is mountain climbing, and one of the popular 21 ________ for this is the Himalayas. The Himalayas runs along the southwestern part of China. 22______ all the mountains, Qomolangma rises the highest and is the most famous. A girl 23. _______ Weiwei, from Tieyi Middle School, got to the top of Qomolangma in 2018. Now she is studying in Peking University and she loves climbing very much.It is 8,844.43 meters high and so is very dangerous to climb. Thick cloud cover the top and snow fall very 24._______ . Even 25.________ serious difficulties include freeze weather conditions and heavy storms. It is also very hard to take 26.______ air as you get near the top.The first people to reach the top were two foreigners. And the first Chinese team did so in 1960, while the first woman to 27._______was from Japan in 1975. The spirit of these climbers 28.________ us that we should never give up 29._______ to achieve our dreams. It also shows that humans can sometimes be 30. ________than the force of nature.21. A. place B. places C. activity D. activities22. A. In B. From C. At D. Of23. A. is called B. called C. calls D. was called24. A. harder B. hardly C. hard D. hardest25. A. much B. more C. many D. most26. A. in B. out C. away D. off27. A. succeed B. success C. successful D. succeeding28. A. shows B. show C. showed D. was showing29. A. to try B. try C. trying D. to trying30. A. strong B. stronger C. strongest D. more strong第二节:阅读下面一篇短文,理解大意,然后从各小题的四个选项中选出一个最佳答案,使短文连贯完整。

Little Tommy lived in a village with his grandpa. Each morning, his grandpa got up early sitting at the kitchen table reading his book. One day, Tommy asked, “Grandpa, I try 31.______ the book just like you but I don’t understand it, and I forgot what I do 32______ I close the book. What’s the meaning of reading them?”Grandpa pointed to 33_______ old coal basket in the corner and sa id, “Take this basket down to the river and bring me back a basket of water.” Tommy 34___ as he was told. Of course, he brought back an empty basket.Grandpa laughed and said, “You will have to move a little faster next time.” Tommy tried again. This time he ran 35_____ but the result was the same. “Grandpa, it was impossible to carry water in a basket.” “Tommy, I don’t think you are trying hard enough. Why do you give up so easily?” With a lot of 37________ in mind, Tommy decided to have a last try. This t ime he did iteven more quickly, 37________ no matter how hard he tried, it still made no difference.“See, Grandpa, it’s useless.” Tommy shouted 38______ he got into the house, out of breath.“So you think it’s useless? “The old man said, “Look at your basket.” Tommy looked at his basket and 39_____ the first time realized that it was different. The basket was clean, inside and out.“Tommy, that’s what happens when you read books. You 40_____ not understand or remember everything, but when you read it, you will be changed, inside and out.”31. A. read B. to read C. look D. to look32. A. as long as B. as soon as C. as fast as D. as much as33.A. a B. an C. / D. the34. A. did B. do C. does D. doing35. A. faster B. quicker C. more happily D. more slowly36. A. answers B. questions C. problems D. hobbies37. A. but B. so C. and D. or38. A. though B. unless C. when D. if39. A. in B. for C. with D. about40. A. can B. might C. could D. need阅读理解(共15小题,计15分)第一节:阅读下面一篇短文,判断下列句子是否否呵短文内容,符合的用“A”表示,不符合的用”B”表示。

ADo you know what the White House is? Perhaps some of you do, while others don’t.The White House is a house in washing ton. The president of the U.S.A. lives in it. It’s really white. But do you know why the White House is white? The story happened in 1812. That year England was at war with America. The British army got to Washington and set the president’s house on fire. In 1814, in order to hide the marks of the fire, the stone walls of the president’s house were painted white and it h as been the “White House” ever since.41. The White House is a house for the presidents of the U.S.A.42. England fought with America in 1814.43. The House called “White House” because it is covered with snow.44. The White House was painted white because it was once on fire and was with marks.45. “Ever since” means once.第二节:阅读下面短文,从各小题所给的四个选项中选出能回答所提问题或完成所给橘子的一个最佳答案。

BOne day a poor farmer was taking a bag of rice to town. Suddenly the bag fell from his horse on the road. He didn’t know what to do about it because it was too heavy for him to lift (举起) by himself. He only hoped that somebody would soon pass by and help him.Just at this moment a man riding a horse came up to him. But the farmer was very disappointed(失望的)when he saw who he was. It was the great man living nearby. The farmer had hoped to ask another farmer or a poor man like him.But to his surprise, the great man got off his horse as soon as he came nearer. He said to the farmer, “I see you need help, friend. How good it is that I’m here just at the right time,” Then he took one end of the bag, the farmer took the other. They together lifted and put it on the horse.“Sir,” asked the farmer, “how can I pay you?”“It’s quite easy,” the great man answered with a smile, “Wherever you see anyone in trouble, do the same for him.”47. Why was the farmer very disappointed when he saw the great man? Because he thought the great man .A. couldn’t help himB. could take away his bagC. could take away his horseD. couldn’t see him49. What can we infer (推断) from this passage?A. No one helped the farmer.B. The great man needed help to lift his bag of rice.C. The farmer didn’t pay the great man.D. The farmer was disappointed when he saw the man riding a horse.CThere were three big fish in the lake. One of them, Demo, was wise; another one,Jimmy, was half-wise; Martin, the third one, was stupid.Some fishermen came to the bank of the lake with their nets. The three fish saw them.Demo decided at once to leave, to make the long and difficult trip to the ocean. He thought, "I won't discuss with these two about this. They love this place so much that they call it home and will stay on. How silly they are! They still haven't realized we are in great danger now. Their ignorance will cost them their lives."Seeing the wise fish had left, Jimmy thought, "My guide has gone and now I've lost my chance to escape." He felt sorry for it and then thought, "What can I do to save myself from these men and their nets? Perhaps I should pretend to be already dead, giving myself totally to the water." So he did that. He went up and down with the water, helpless, within arm's reach of thefishermen."Look at this! The best and biggest fish is dead." One of the men lifted him by the tail, and threw him up on the ground. He rolled over and over and moved secretly toward the water, and then, back in.The third fish was aimlessly jumping about, trying to escape with his speed and clevernes. The net, of course, finally closed around him, and as he lay in the hot fryingpan bed, he thought, "If I get out of this, I'll never live again in the limits of the lake. Next time, the ocean!I'll make it m y home."50. The passage is a _________.A. diaryB. storyC. noticeD. letter51. The underlined word “ignorance” in the passage means “_______”in Chinese.A.冲动B.勇气C. 愚昧D.疏忽52. Who was caught by the fishermen at last?A. DemoB. JimmyC. MartinD. Martin and JimmyDIf you go to Hong Kong by air,you will arrive at Hong Kai Take Airport. Because there was not enough land,this was built out into the sea. It is in the part of Hong Kong called Colon. Colon is one of the two big cities in Hong Kong.The other city is Hong Kong itself. It is on an island. You can get there by ship or through a tunnel (隧道) under the sea. Much of Hong Kon g is farmland and mountains.The population of Hong Kong is over six million. Chinese and English are spoken by many people. Clothes,computers,radios and TVs are made in Hong Kong. You can buy all kinds of things,such as watches and computers there.People from all over the world travel to Hong Kong every year. You can watch dog-racing or motor-racing. Some places are quiet and beautiful. When you are hot and tired,there are small cool gardens to rest in. There are also a lot of hotels to live in. Hong Kong is also a good place for wonderful Chinese food. You can enjoy many kinds of food,for example,fish,vegetables and the famous Beijing Duck. There is certainly a lot to see and to do in Hong Kong.53. The airport was built out into the sea because .A.it is near the seaB. there was not enough landC. planes arrive safelyD.it would be good54. Most people in Hong Kong speak .A. neither Chinese nor EnglishB. Chinese as their second languageC. English onlyD. Chinese and English55. The main idea of the fourth paragraph is “”.A. Dog racing is interestingB. Beijing Duck is famousC. Chinese food is famousD. Hong Kong is a good place to travel第二卷(共45分)完成句子。

相关文档
最新文档