高考小题分项练 13统计与统计案例

合集下载

2020新课标高考数学典型习题专项训练:统计与统计案例

2020新课标高考数学典型习题专项训练:统计与统计案例

统计与统计案例[A 组 夯基保分专练]一、选择题1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20 000人,其中各种态度对应的人数如下表所示:最喜爱 喜爱 一般 不喜欢 4 8007 2006 4001 600为此要进行分层抽样,那么在分层抽样时,每类人中应抽选出的人数分别为( )A .25,25,25,25B .48,72,64,16C .20,40,30,10D .24,36,32,8解析:选D.法一:因为抽样比为10020 000=1200,所以每类人中应抽选出的人数分别为4 800×1200=24,7 200×1200=36,6 400×1200=32,1 600×1200=8.故选D.法二:最喜爱、喜爱、一般、不喜欢的比例为4 800∶7 200∶6 400∶1 600=6∶9∶8∶2, 所以每类人中应抽选出的人数分别为66+9+8+2×100=24,96+9+8+2×100=36,86+9+8+2×100=32,26+9+8+2×100=8,故选D.2.(2019·湖南省五市十校联考)在某次赛车中,50名参赛选手的成绩(单位:min)全部介于13到18之间(包括13和18),将比赛成绩分为五组:第一组[13,14),第二组[14,15),…,第五组[17,18],其频率分布直方图如图所示,若成绩在[13,15)内的选手可获奖,则这50名选手中获奖的人数为( )A .39B .35C .15D .11解析:选D.由频率分布直方图知成绩在[15,18]内的频率为(0.38+0.32+0.08)×1=0.78,所以成绩在[13,15)内的频率为1-0.78=0.22,则成绩在[13,15)内的选手有50×0.22=11(人),即这50名选手中获奖的人数为11,故选D.3.(2019·武汉市调研测试)某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A —结伴步行,B —自行乘车,C —家人接送,D —其他方式.并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,求本次抽查的学生中A 类人数是( )A .30B .40C .42D .48解析:选A.由条形统计图知,B —自行乘车上学的有42人,C —家人接送上学的有30人,D —其他方式上学的有18人,采用B ,C ,D 三种方式上学的共90人,设A —结伴步行上学的有x 人,由扇形统计图知,A —结伴步行上学与B —自行乘车上学的学生占60%,所以x +42x +90=60100,解得x =30,故选A. 4.(2019·广东六校第一次联考)某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y (单位:kW ·h)与气温x (单位:℃)之间的关系,随机选取了4天的用电量与当天气温,并制作了如下对照表:x (单位:℃) 17 14 10 -1 y (单位:kW ·h)243438a由表中数据得线性回归方程y =-2x +60,则a 的值为( ) A .48 B .62 C .64D .68解析:选C.由题意,得x =17+14+10-14=10,y =24+34+38+a 4=96+a4.样本点的中心(x ,y )在回归直线y ^=-2x +60上,代入线性回归方程可得96+a 4=-20+60,解得a =64,故选C.5.(2019·郑州市第二次质量预测)将甲、乙两个篮球队各5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是( )A .甲队平均得分高于乙队的平均得分B .甲队得分的中位数大于乙队得分的中位数C .甲队得分的方差大于乙队得分的方差D .甲、乙两队得分的极差相等解析:选C.由题中茎叶图得,甲队的平均得分x 甲=26+28+29+31+315=29,乙队的平均得分x 乙=28+29+30+31+325=30,x 甲<x 乙,选项A 不正确;甲队得分的中位数为29,乙队得分的中位数为30,甲队得分的中位数小于乙队得分的中位数,选项B 不正确;甲队得分的方差s 2甲=15×[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=185,乙队得分的方差s 2乙=15×[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2,s 2甲>s 2乙,选项C 正确;甲队得分的极差为31-26=5,乙队得分的极差为32-28=4,两者不相等,选项D 不正确.故选C.6.(多选)CPI 是居民消费价格指数(consumer price index)的简称.居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.如图是根据国家统计局发布的2017年6月—2018年6月我国CPI 涨跌幅数据绘制的折线图(注:2018年6月与2017年6月相比较,叫同比;2018年6月与2018年5月相比较,叫环比),根据该折线图,则下列结论错误的是 ( )A .2018年1月至6月各月与去年同期比较,CPI 有涨有跌B .2018年2月至6月CPI 只跌不涨C .2018年3月以来,CPI 在缓慢增长D .2017年8月与同年12月相比较,8月环比更大解析:选ABC.A 选项,2018年1月至6月各月与去年同期比较,CPI 均是上涨的,故A 错误;B 选项,2018年2月CPI 是增长的,故B 错误;C 选项,2018年3月以来,CPI 是下跌的,故C 错误;D 选项,2017年8月CPI 环比增长0.4%,12月环比增长0.3%,故D 正确.故选ABC.二、填空题7.如图是某学校一名篮球运动员在10场比赛中所得分数的茎叶图,则该运动员在这10场比赛中得分的中位数为________,平均数为________.解析:把10场比赛的所得分数按顺序排列为5,8,9,12,14,16,16,19,21,24,中间两个为14与16,故中位数为14+162=15,平均数为110(5+8+9+12+14+16+16+19+21+24)=14.4.答案:15 14.48.已知一组数据x 1,x 2,…,x n 的方差为2,若数据ax 1+b ,ax 2+b ,…,ax n +b (a >0)的方差为8,则a 的值为________.解析:根据方差的性质可知,a 2×2=8,故a =2. 答案:29.给出下列四个命题:①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,如果7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23;②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同; ③若一组数据a ,0,1,2,3的平均数为1,则其标准差为2;④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y ^=a ^+b ^x ,其中a ^=2,x =1,y =3,则b ^=1.其中真命题有________(填序号).解析:在①中,由系统抽样知抽样的分段间隔为52÷4=13,故抽取的样本的编号分别为7号、20号、33号、46号,故①是假命题;在②中,数据1,2,3,3,4,5的平均数为16(1+2+3+3+4+5)=3,中位数为3,众数为3,都相同,故②是真命题;在③中,因为样本的平均数为1,所以a +0+1+2+3=5,解得a =-1,故样本的方差为15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2,标准差为2,故③是假命题;在④中,回归直线方程为y ^=b ^x +2,又回归直线过点(x ,y ),把(1,3)代入回归直线方程y ^=b ^x +2,得b ^=1,故④是真命题.答案:②④ 三、解答题10.(2019·兰州市诊断考试)“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人数逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数; (2)根据上表的数据,填写下列2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“热烈参与马拉松”与性别有关?附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )(n 为样本容量)20 000×40200=4 000.(2)2×2列联表为K 2=200×(3540×160×140×60≈7.292>6.635,故能在犯错误的概率不超过0.01的前提下认为“热烈参与马拉松”与性别有关.11.(2019·武汉市调研测试)中共十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了更好地制定2019年关于加快提升农民年收入,力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入(单位:千元)并制成如下频率分布直方图:(1)根据频率分布直方图,估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示).(2)由频率分布直方图,可以认为该贫困地区农民年收入X 服从正态分布N (μ,σ2),其中μ近似为年平均收入x ,σ2近似为样本方差s 2,经计算得s 2=6.92.利用该正态分布,解决下列问题:(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii)为了调研“精准扶贫,不落一人”的落实情况,扶贫办随机走访了1 000位农民.若每个农民的年收入相互独立,问:这1 000位农民中年收入不少于12.14千元的人数最有可能是多少?附:参考数据与公式6.92≈2.63,若X ~N (μ,σ2),则 ①P (μ-σ<X ≤μ+σ)≈0.682 7; ②P (μ-2σ<X ≤μ+2σ)≈0.954 5; ③P (μ-3σ<X ≤μ+3σ)≈0.997 3.解:(1)x =12×0.04+14×0.12+16×0.28+18×0.36+20×0.10+22×0.06+24×0.04=17.40(千元).(2)由题意,X ~N (17.40,6.92). (i)P (X >μ-σ)≈12+0.682 72≈0.841 4,μ-σ≈17.40-2.63=14.77, 即最低年收入大约为14.77千元.(ii)由P (X ≥12.14)=P (X ≥μ-2σ)≈0.5+0.954 52≈0.977 3,得每个农民的年收入不少于12.14千元的事件的概率为0.977 3,记这1 000位农民中年收入不少于12.14千元的人数为ξ,则ξ~B (103,p ),其中p =0.977 3,于是恰好有k 位农民的年收入不少于12.14千元的事件的概率是P (ξ=k )=C k 103p k (1-p )103-k ,从而由P (ξ=k )P (ξ=k -1)=(1 001-k )×pk ×(1-p )>1,得k <1 001p ,由P (ξ=k )P (ξ=k +1)=(k +1)(1-p )(1 000-k )p>1,得k >1 001p -1,而1 001p =978.277 3, 所以,977.277 3<k <978.277 3,由此可知,在所走访的1 000位农民中,年收入不少于12.14千元的人数最有可能是978. 12.(2019·洛阳市统考)某学校高三年级共有4个班,其中实验班和普通班各2个,且各班学生人数大致相当.在高三第一次数学统一测试(满分100分)成绩揭晓后,教师对这4个班的数学成绩进行了统计分析,其中涉及试题“难度”和“区分度”等指标.根据该校的实际情况,规定其具体含义如下:难度=4个班平均分100,区分度=实验班平均分-普通班平均分100.(1)现从这4个班中各随机抽取5名学生,根据这20名学生的数学成绩,绘制茎叶图如下:请根据以上样本数据,估计该次考试试题的难度和区分度;(2)为了研究试题的区分度与难度的关系,调取了该校上一届高三6次考试的成绩分析数据,得到下表:考试序号 1 2 3 4 5 6 难度x 0.65 0.71 0.73 0.76 0.77 0.82 区分度y0.120.160.160.190.200.13①用公式r =∑i =1 (x i -x )(y i -y )∑ni =1(x i -x )2∑ni =1(y i -y )2计算区分度y 与难度x 之间的相关系数r (精确到0.001);②判断y 与x 之间相关关系的强与弱,并说明是否适宜用线性回归模型拟合y 与x 之间的关系.参考数据:∑6i =1x i y i =0.713 4, ∑6i =1 (x i -x )2∑6i =1 (y i -y )2≈0.009 2.解:(1)由茎叶图知,实验班这10人的数学总成绩为860分,普通班这10人的数学总成绩为700分,故这20人的数学平均成绩为860+70020=78(分),由此估计这4个班的平均分为78分, 所以难度=78100=0.78.由86010=86估计实验班的平均分为86分,由70010=70估计普通班的平均分为70分, 所以区分度=86-70100=0.16.(2)①由于∑ni =1 (x i -x )(y i -y ) =∑ni =1 (x i y i -yx i -xy i +xy ) =∑ni =1x i y i -y ∑ni =1x i -x ∑ni =1y i +nx y =∑n i =1x i y i -nx y -nx y +nx y =∑n i =1x i y i -nx y , 且∑6i =1x i y i =0.713 4, ∑6i =1(x i -x )2∑6i =1 (y i -y )2 ≈0.009 2,6x y =6×0.74×0.16=0.710 4, 所以r =∑6i =1 (x i -x )(y i -y )∑6i =1(x i -x )2∑6i =1 (y i -y )2=∑6i =1x i y i -6x y∑6i =1(x i -x )2∑6i =1 (y i -y )2≈0.713 4-0.710 40.009 2≈0.326.②由于r ≈0.326∈[0.30,0.75),故两者之间相关性非常一般,不适宜用线性回归模型拟合y 与x 之间的关系,即使用线性回归模型来拟合,效果也不理想.[B 组 大题增分专练]1.(2019·济南市七校联合考试)“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南Q 镇2009~2018年梅雨季节的降雨量(单位:mm)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:(1)“梅实初黄暮雨深”,请用样本平均数估计Q 镇明年梅雨季节的降雨量;(2)“江南梅雨无限愁”,Q 镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成),而乙品种杨梅2009~2018年的亩产量(单位:kg)与降雨量的发生频数(年)如2×2列联表所示(部分数据缺失),请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?(完善列联表,并说明理由)降雨量亩产量[200,400)[100,200)∪[400,500]总计 <600 2 ≥600 1 总计10附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .P (K 2≥k 0)0.50 0.40 0.25 0.15 0.10 k 00.4550.7081.3232.0722.706解:(1)0.1. 所以用样本平均数估计Q 镇明年梅雨季节的降雨量为150×0.2+250×0.4+350×0.3+450×0.1=30+100+105+45=280(mm).(2)根据频率分布直方图可知,降雨量在[200,400)内的频数为10×100×(0.003+0.004)=7.进而完善列联表如下.降雨量亩产量[200,400)[100,200)∪[400,500]总计 <600 2 2 4 ≥600 5 1 6 总计7310K 2=10×(2×1-5×2)7×3×4×6=8063≈1.270<1.323. 故认为乙品种杨梅的亩产量与降雨量有关的把握不足75%.而甲品种杨梅受降雨量影响的把握超过八成,故老李来年应该种植乙品种杨梅受降雨量影响更小.2.(2019·佛山模拟)表中的数据是一次阶段性考试某班的数学、物理原始成绩: 学号 1 2 34 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 数学117128 96 113 136 139 124 124 121 115 115 123 125 117 123 122 132 129 96 105 106 120 物理 8084838589819178859172 7687827982848963737745学号 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 数学108137 87 95 108 117 104 128 125 74 81 135 101 97 116 102 76 100 62 86 120 101 物理 768071577265697955567763707563596442627765学号为22号的A 同学由于严重感冒导致物理考试发挥失常,学号为31号的B 同学因故未能参加物理学科的考试,为了使分析结果更客观准确,老师将A ,B 两同学的成绩(对应于图中A ,B 两点)剔除后,用剩下的42个同学的数据作分析,计算得到下列统计指标:数学学科平均分为110.5,标准差为18.36,物理学科的平均分为74,标准差为11.18,数学成绩x 与物理成绩y 的相关系数r =0.822 2,回归直线l (如图所示)的方程为y ^=0.500 6x +18.68.(1)若不剔除A ,B 两同学的数据,用全部44人的成绩作回归分析,设数学成绩x 与物理成绩y 的相关系数为r 0,回归直线为l 0,试分析r 0与r 的大小关系,并在图中画出回归直线l 0的大致位置.(2)如果B 同学参加了这次物理考试,估计B 同学的物理分数(精确到个位).(3)就这次考试而言,学号为16号的C 同学数学与物理哪个学科成绩要好一些?(通常为了比较某个学生不同学科的成绩水平,可按公式Z i =x i -xs统一化成标准分再进行比较,其中x i 为学科原始成绩,x 为学科平均分,s 为学科标准差)解:(1)r 0<r ,说明理由可以是①离群点A ,B 会降低变量间的线性关联程度;②44个数据点与回归直线l 0的总偏差更大,回归效果更差,所以相关系数更小; ③42个数据点与回归直线l 的总偏差更小,回归效果更好,所以相关系数更大; ④42个数据点更加贴近回归直线l ; ⑤44个数据点与回归直线l 0更离散. 其他言之有理的理由均可.(直线l 0的斜率须大于0且小于l 的斜率,具体位置稍有出入没关系,无需说明理由) (2)将x =125代入y ^=0.500 6x +18.68中, 得y =62.575+18.68≈81,所以估计B 同学的物理分数大约为81分.(3)由表中数据知C 同学的数学原始成绩为122分,物理原始成绩为82分, 则数学标准分Z 16=x 16-x s 1=122-110.518.36=11.518.36≈0.63,物理标准分Z ′16=y 16-y s 2=82-7411.18=811.18≈0.72, 因为0.72>0.63,所以C 同学物理成绩比数学成绩要好一些.3.(2019·济南市模拟考试)某客户准备在家中安装一套净水系统,该系统为三级过滤,使用寿命为十年.如图所示,两个一级过滤器采用并联安装,二级过滤器与三级过滤器为串联安装.其中每一级过滤都由核心部件滤芯来实现.在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立),三级滤芯无需更换.若客户在安装净水系统的同时购买滤芯,则一级滤芯每个80元.二级滤芯每个160元.若客户在使用过程中单独购买滤芯,则一级滤芯每个200元,二级滤芯每个400元.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中图1是根据200个一级过滤器更换的滤芯个数制成的柱状图,表1是根据100个二级过滤器更换的滤芯个数制成的频数分布表.二级滤芯更换的个数5 6频数6040以200个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以100个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30的概率;(2)记X表示该客户的净水系统在使用期内需要更换的一级滤芯总数,求X的分布列及数学期望;(3)记m,n分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数,若m+n=28,且n∈{5,6},以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定m,n的值.解:(1)由题意可知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30,则该套净水系统中的两个一级过滤器均需更换12个滤芯,二级过滤器需要更换6个滤芯.设“一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30”为事件A,因为一个一级过滤器需要更换12个滤芯的概率为0.4,二级过滤器需要更换6个滤芯的概率为0.4,所以P(A)=0.4×0.4×0.4=0.064.(2)由柱状图可知,一个一级过滤器需要更换的滤芯个数为10,11,12,对应的概率分别为0.2,0.4,0.4,由题意,X可能的取值为20,21,22,23,24,并且P(X=20)=0.2×0.2=0.04,P(X=21)=0.2×0.4×2=0.16,P(X=22)=0.4×0.4+0.2×0.4×2=0.32,P(X=23)=0.4×0.4×2=0.32,P(X=24)=0.4×0.4=0.16.所以X的分布列为X 2021222324P 0.040.160.320.320.16E(X)=20×0.04(3)因为m+n=28,n∈{5,6},所以若m=22,n=6,则该客户在十年使用期内购买各级滤芯所需总费用的期望值为22×80+200×0.32+400×0.16+6×160=2 848.若m=23,n=5,则该客户在十年使用期内购买各级滤芯所需总费用的期望值为23×80+200×0.16+5×160+400×0.4=2 832.故m,n的值分别为23,5.4.某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.根据过去50周的资料显示,该地周光照量X(单位:小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量y(千克)与使用某种液体肥料的质量x(千克)之间的关系为如图所示的折线图.(1)依据折线图,是否可用线性回归模型拟合y与x的关系?请计算相关系数r并加以说明(精确到0.01);(若|r|>0.75,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量X限制,并有如下关系:周光照量X(单位:小时)30<X<5050≤X≤70X>70光照控制仪运行台数32 1则该台光照控制仪周亏损1 000元.以频率作为概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附相关系数公式:r=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2∑i=1n(y i-y)2,参考数据:0.3≈0.55,0.9≈0.95.解:(1)由已知数据可得x=2+4+5+6+85=5,y=3+4+4+4+55=4.因为∑i=15(x i-x)(y i-y)=(-3)×(-1)+0+0+0+3×1=6,∑i =15(x i -x )2=(-3)2+(-1)2+02+12+32=25,∑i =15(y i -y )2=(-1)2+02+02+02+12=2,所以相关系数r =∑i =15(x i -x )(y i -y )∑i =15(x i -x )2∑i =15(y i -y )2=625×2=910≈0.95. 因为|r |>0.75,所以可用线性回归模型拟合y 与x 的关系.(2)记商家周总利润为Y 元,由条件可知至少需安装1台,最多安装3台光照控制仪. ①安装1台光照控制仪可获得周总利润3 000元. ②安装2台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润Y =3 000-1 000=2 000(元),P (Y =2 000)=1050=0.2,当30<X ≤70时,2台光照控制仪都运行,此时周总利润Y =2×3 000=6 000(元),P (Y =6 000)=4050=0.8,故Y 的分布列为③安装3台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润 Y =1×3 000-2×1 000=1 000(元). P (Y =1 000)=1050=0.2.当50≤X ≤70时,有2台光照控制仪运行,此时周总利润 Y =2×3 000-1×1 000=5 000(元), P (Y =5 000)=3550=0.7,当30<X <50时,3台光照控制仪都运行,周总利润Y =3×3 000=9 000(元),P (Y =9 000)=550=0.1, 故Y 的分布列为综上可知,为使商家周总利润的均值达到最大,应该安装2台光照控制仪.。

(完整版)高三复习高中数学统计案例习题(有详细答案)

(完整版)高三复习高中数学统计案例习题(有详细答案)

2015年高三复习高中数学统计案例习题(有详细答案)一.选择题(共15小题)1.(2014•四川模拟)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.(2014•湖北模拟)某社区现有480个住户,其中中等收入家庭200户、低收入家庭160户,其他为高收入家庭.在建设幸福广东的某次分层抽样调查中,高收入家庭被抽取了6户,则该社区本次被抽取的总户数为()A.20 B.24 C.30 D.363.(2014•湖南一模)从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,324.(2014•锦州一模)为了研究一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm),根据所得数据画出的样本频率分布直方图如图,那么在这片树木中底部周长大于100cm的株树大约中()A.3000 B.6000 C.7000 D.80005.(2014•许昌二模)在样本频率分布直方图中,共有五个小长方形,这五个小长方形的面积由小到大成等差数列{a n}.已知a2=2a1,且样本容量为300,则小长方形面积最大的一组的频数为()A.100 B.120 C.150 D.2006.(2014•云南模拟)已知一组数据如图所示,则这组数据的中位数是()A.27.5 B.28.5 C.27 D.287.(2014•青浦区三模)已知图1、图2分别表示A、B两城市某月1日至6日当天最低气温的数据折线图(其中横轴n表示日期,纵轴x表示气温),记A、B两城市这6天的最低气温平均数分别为和,标准差分别为s A和s B,则它们的大小关系是()A.>,sA>s B B.>,sA<s BC.<,sA<s BD.<,sA>s B8.(2014•天门模拟)如图是根据变量x,y的观测数据(x i,y i)(i=1,2,…10)得到的散点图,由这些散点图可以判断变量x,y具有相关关系的图是()A.①②B.①④C.②③D.③④9.(2014•邯郸二模)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程,利用下表中数据推断a的值为()零件数x(个)10 20 30 40 50加工时间y(min)62 a 75 81 89A.68.2 B.68 C.69 D.6710.(2013•福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.12011.(2013•陕西)对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为()A.0.09 B.0.20 C.0.25 D.0.4512.(2013•辽宁)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.6013.(2012•成都一模)某小区有125户高收入家庭、280户中等收入家庭、95户低收人家庭.现采用分层抽样的方法从中抽取100户,对这些家庭社会购买力的某项指标进行调查,则中等收入家庭中应抽选出的户数为()A.70 户B.17 户C.56 户D.25 户14.(2012•泸州一模)某校高三680名学生(其中男生360名、女生320名)在学术报告厅听了应考心理讲座,为了解有关情况,学校用分层抽样的方法抽取了一个样本,已知该样本中的女生人数为16名,那么该样本中的男生人数为()A.15 B.16 C.17 D.1815.(2012•绵阳二模)要从60人中抽取6人进行身体健康检查,现釆用分层抽样方法进行抽取,若这60人中老年人和中年人分别是40人,20人,则老年人中被抽取到参加健康检查的人数是()A.2人B.3人C.4人D.5人二.解答题(共15小题)16.为了了解学生的身体发育情况,某校对年满16周岁的60名男生的身高进行测量,其结果如下:身高(m)1.57 1.59 1.60 1.62 1.63 1.64 1.65 1.66 1.68人数 2 1 4 2 3 4 2 7 6身高(m)1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77人数8 7 4 3 2 1 2 1 1(1)根据上表,估计这所学校,年满16周岁的男生中,身高不低于1.65m且不高于1.71m的约占多少?不低于1.63m 的约占多少?(2)将测量数据分布6组,画出样本频率分布直方图;(3)根据图形说出该校年满16周岁的男生在哪一范围内的人数所占的比例最大?如果年满16周岁的男生有360人,那么在这个范围的人数估计约有多少人?17.改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,…,2005年编号为5,数据如下:年份(x) 1 2 3 4 5人数(y) 3 5 8 11 13求y关于x的回归方程=x+所表示的直线必经的点.18.甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取4次,绘制成茎叶图如图:甲乙9 7 78 1 2 8 535(Ⅰ)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(Ⅱ)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.19.下表是某单位在2013年1﹣5月份用水量(单位:百吨)的一组数据:月份x 1 2 3 4 5用水量y 4.5 4 3 2.5 1.8(Ⅰ)若由线性回归方程得到的预测数据与实际检验数据的误差不超过0.05,视为“预测可靠”,通过公式得,那么由该单位前4个月的数据中所得到的线性回归方程预测5月份的用水量是否可靠?说明理由;(Ⅱ)从这5个月中任取2个月的用水量,求所取2个月的用水量之和小于7(单位:百吨)的概率.参考公式:回归直线方程是:,.20.某校高三数学竞赛初赛考试后,对考生的成绩进行统计(考生成绩均不低于90分,满分为150分),将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…,第六组[140,150],如图为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人.(Ⅰ)求第四和第五组频率,并补全频率分布直方图;(Ⅱ)若不低于120分的同学进入决赛,不低于140分的同学为种子选手,完成下面2×2列联表(即填写空格处的数据),并判断是否有99%的把握认为“进入决赛的同学成为种子选手与专家培训有关”.[120,140)[140,150]合计参加培训8 8未参加培训合计 4附:K2=P(K2≥k0)0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001K0 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.82821.为了了解某中学高二女生的身高情况,该校对高二女生的身高进行了一次随机抽样测量,所得数据整理后列出了频率分布表如下:(单位:cm)(1)表中m、n、M、N所表示的数分别是多少?(2)绘制频率分布直方图;(3)估计该校女生身高小于162.5cm的百分比.22.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求x值;(2)(理科)从成绩不低于80分的学生中随机的选取2人,该2人中成绩在90以上(含90分)的人数记为ξ,求ξ的概率分布列及数学期望Eξ.(文)从从成绩不低于80分的学生中随机的选取3人,该3人中至少有2人成绩在90以上(含90分)的概率.23.某网站针对2014年中国好声音歌手A,B,C三人进行网上投票,结果如下观众年龄支持A 支持B 支持C20岁以下200 400 80020岁以上(含20岁)100 100 400(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.(2)在支持C的人中,用分层抽样的方法抽取6人作为一个总体,从这6人中任意选取2人,求恰有1人在20岁以下的概率.24.某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:组号第一组第二组第三组第四组第五组分组[50,60)[60,70)[70,80)[80,90)[90,100](Ⅰ)求图中a的值;(Ⅱ)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;(Ⅲ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?25.从某实验中,得到一组样本容量为60的数据,分组情况如下:(Ⅰ)求出表中m,a的值;分组5~15 15~25 25~35 35~45频数 6 2l m频率 a 0.05(Ⅱ)估计这组数据的平均数.26.某校高三文科分为四个班.高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(1)问各班被抽取的学生人数各为多少人?(2)求平均成绩;(3)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率.27.在参加世界杯足球赛的32支球队中,随机抽取20名队员,调查其年龄为25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28.(1)填写下面的频率分布表(2)并画出频率分布直方图.(3)据此估计全体队员在哪个年龄段的人数最多?占总数的百分之几?分组频数频率20.5~22.522.5~24.524.5~26.526.5~28.528.5~30.5合计28.如图是调查某地某公司1000名员工的月收入后制作的直方图.(1)求该公司员工的月平均收入及员工月收入的中位数;(2)在收入为1000至1500元和收入为3500至4000元的员工中用分层抽样的方法抽取一个容量15的样本,员工甲、乙的月收入分别为1200元、3800元,求甲乙同时被抽到的概率.29.某市为了解全市居民日常用水量的分布情况,现采用抽样调查的方式,获得了n位居民某年的月均用水量(单位:t),样本统计结果如图表:(Ⅰ)分别求出x,n,y的值;(Ⅱ)若从样本中月均用水量在[5,6]内的5位居民a,b,c,d,e中任选2人作进一步的调查研究,求居民a被选中的概率.分组频数频率[0,1)25 y[1,2)0.19[2,3)50 x[3,4)0.23[4,5)0.18[5,6] 530.为了分析某次考试数学成绩情况,用简单随机抽样从某班中抽取25名学生的成绩(百分制)作为样本,得到频率分布表如下:分数[50,60)[60,70)[70,80)[80,90)[90,100]频数2 3 9 a 1频率0.08 0.12 0.36 b 0.04(Ⅰ)求样本频率分布表中a,b的值,并根据上述频率分布表,在下表中作出样本频率分布直方图;(Ⅱ)计算这25名学生的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)从成绩在[50,70)的学生中任选2人,求至少有1人的成绩在[60,70)中的概率.参考答案与试题解析一.选择题(共15小题)1.(2014•四川模拟)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样考点:分层抽样方法.专题:阅读型.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.2.(2014•湖北模拟)某社区现有480个住户,其中中等收入家庭200户、低收入家庭160户,其他为高收入家庭.在建设幸福广东的某次分层抽样调查中,高收入家庭被抽取了6户,则该社区本次被抽取的总户数为()A.20 B.24 C.30 D.36考点:分层抽样方法.专题:计算题.分析:根据社区里的高收入家庭户和高收入家庭户要抽取的户数,得到每个个体被抽到的概率,用求到的概率乘以低收入家庭户的户数,得到结果.解答:解:∵区现有480个住户,高收入家庭120户,抽取了6户∴每个个体被抽到的概率是∴该社区本次被抽取的总户数为=24,故选B.点评:本题考查分层抽样方法,这种题目类型是高考题目中一定会出现的题目,运算量不大,是一个必得分题目.3.(2014•湖南一模)从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,32考点:系统抽样方法.专题:计算题.分析:由系统抽样的特点知,将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,这时间隔一般为总体的个数除以样本容量.从所给的四个选项中可以看出间隔相等且组距为10的一组数据是由系统抽样得到的.解答:解:从50枚某型导弹中随机抽取5枚,采用系统抽样间隔应为=10,只有B答案中导弹的编号间隔为10,故选B.点评:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本.4.(2014•锦州一模)为了研究一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm),根据所得数据画出的样本频率分布直方图如图,那么在这片树木中底部周长大于100cm的株树大约中()A.3000 B.6000 C.7000 D.8000考点:频率分布直方图.专题:概率与统计.分析:在频率分布表中,频数的和等于样本容量,频率的和等于1,每一小组的频率等于这一组的频数除以样本容量.频率分布直方图中,小矩形的面积等于这一组的频率.底部周长小于100cm的矩形的面积求和乘以样本容量即可.解答:解:由图可知:底部周长小于100cm段的频率为(0.01+0.02)×10=0.3,则底部周长大于100cm的段的频率为1﹣0.3=0.7那么在这片树木中底部周长大于100cm的株树大约10000×0.7=7000人.故选C.点评:本小题主要考查样本的频率分布直方图的知识和分析问题以及解决问题的能力.统计初步在近两年高考中每年都以小题的形式出现,基本上是低起点题.5.(2014•许昌二模)在样本频率分布直方图中,共有五个小长方形,这五个小长方形的面积由小到大成等差数列{a n}.已知a2=2a1,且样本容量为300,则小长方形面积最大的一组的频数为()A.100 B.120 C.150 D.200考点:频率分布直方图.专题:概率与统计.分析:根据直方图中的各个矩形的面积代表了频率,各个矩形面积之和为1,求出小长方形面积最大的一组的频率,再根据频数=频率×样本容量,求出频数即可.解答:解:∵直方图中的各个矩形的面积代表了频率,这5个小方形的面积由小到大构成等差数列{a n},a2=2a1,∴d=a1,a3=3a1,a4=4a1,a5=5a1根据各个矩形面积之和为1,则a1+a2+a3+a4+a5=15a1=1∴a1=,小长方形面积最大的一组的频率为a5=5×=根据频率=可求出频数=300×=100故选:A.点评:本题考查了频率、频数的应用问题,各小组频数之和等于样本容量,各小组频率之和等于1.6.(2014•云南模拟)已知一组数据如图所示,则这组数据的中位数是()A.27.5 B.28.5 C.27 D.28考点:众数、中位数、平均数.专题:概率与统计.分析:利用中位数的定义即可得出.解答:解:这组数据为16,17,19,22,25,27,28,30,30,32,36,40的中位数是=27.5.故选:A.点评:本题考查了中位数的定义及其计算方法,属于基础题.7.(2014•青浦区三模)已知图1、图2分别表示A、B两城市某月1日至6日当天最低气温的数据折线图(其中横轴n表示日期,纵轴x表示气温),记A、B两城市这6天的最低气温平均数分别为和,标准差分别为s A和s B,则它们的大小关系是()A.>,sA>s B B.>,sA<s BC.<,sA<s BD.<,sA>s B考点:众数、中位数、平均数.专题:概率与统计.分析:本题可以由折线图上的数据做出两个城市的平均气温和方差,也可以根据两个折线图的高低和变化的趋势即波动的大小,得到结果.解答:解:由折线图可知A市的平均气温是,B市的平均气温是=11.7,由折线图也可以看出B市的气温较高,可以看出B市的气温的变化不大,方差较小;故选D.点评:本题考查了折线图以及平均数和方差的求法;求两组数据的平均值和方差是研究数据常做的两件事,平均值反映数据的平均水平,而方差反映数据的波动大小,从两个方面可以准确的把握数据的情况.8.(2014•天门模拟)如图是根据变量x,y的观测数据(x i,y i)(i=1,2,…10)得到的散点图,由这些散点图可以判断变量x,y具有相关关系的图是()A.①②B.①④C.②③D.③④考点:散点图.专题:计算题.分析:通过观察散点图可以知道,y随x的增大而减小,各点整体呈下降趋势,x与y负相关,u随v的增大而增大,各点整体呈上升趋势,u与v正相关.解答:解:由题图③可知,y随x的增大而减小,各点整体呈下降趋势,x与y负相关,由题图④可知,u随v的增大而增大,各点整体呈上升趋势,u与v正相关.故选D.点评:本题考查散点图,是通过读图来解决问题,考查读图能力,粗略的反应两个变量之间的关系,是不是线性相关,是正相关还是负相关.9.(2014•邯郸二模)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程,利用下表中数据推断a的值为()零件数x(个)10 20 30 40 50加工时间y(min)62 a 75 81 89A.68.2 B.68 C.69 D.67考点:线性回归方程.专题:计算题;概率与统计.分析:由题意,将20代入可得68.2,故可能值为68.解答:解:由题意,y=0.68×20+54.6=68.2,又由表可知加工时间y(min)都是以整数记,故a可能为68,故选B.点评:本题考查了线性回归方程的应用及数学问题与实际问题的转化,属于基础题.10.(2013•福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.120考点:频率分布直方图.专题:图表型.分析:根据频率分布直方图,成绩不低于60分的频率,然后根据频数=频率×总数可求出所求.解答:解:根据频率分布直方图,成绩不低于60(分)的频率为1﹣10×(0.005+0.015)=0.8.由于该校高一年级共有学生600人,利用样本估计总体的思想,可估计该校高一年级模块测试成绩不低于60(分)的人数为600×0.8=480人.故选B.点评:本小题主要考查频率、频数、统计和概率等知识,考查数形结合、化归与转化的数学思想方法,以及运算求解能力.11.(2013•陕西)对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为()A.0.09 B.0.20 C.0.25 D.0.45考点:频率分布直方图.分析:在频率分布表中,频数的和等于样本容量,频率的和等于1,小矩形的面积等于这一组的频率,则所以面积和为1,建立等量关系即可求得长度在[25,30)内的频率即得.解答:解:设长度在[25,30)内的频率为a,根据频率分布直方图得:a+5×0.02+5×0.06+5×0.03=1⇒a=0.45.则根据频率分布直方图估计从该批产品中随机抽取一件,则其为二等品的概率为0.45.故选D.点评:本小题主要考查样本的频率分布直方图的知识和分析问题以及解决问题的能力.统计初步在近两年高考中每年都以小题的形式出现,基本上是低起点题.12.(2013•辽宁)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.60考点:频率分布直方图.专题:概率与统计.分析:由已知中的频率分布直方图,我们可以求出成绩低于60分的频率,结合已知中的低于60分的人数是15人,结合频数=频率×总体容量,即可得到总体容量.解答:解:∵成绩低于60分有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20则成绩低于60分的频率P=(0.005+0.010)×20=0.3,又∵低于60分的人数是15人,则该班的学生人数是=50.故选B.点评:本题考查的知识点是频率分布直方图,结合已知中的频率分布直方图,结合频率=矩形的高×组距,求出满足条件的事件发生的频率是解答本题的关键.13.(2012•成都一模)某小区有125户高收入家庭、280户中等收入家庭、95户低收人家庭.现采用分层抽样的方法从中抽取100户,对这些家庭社会购买力的某项指标进行调查,则中等收入家庭中应抽选出的户数为()A.70 户B.17 户C.56 户D.25 户考点:分层抽样方法.专题:概率与统计.分析:由分层抽样的计算方法:中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得出答案.解答:解:由已知可得中等收入家庭中应抽选出的户数==56.故选C.点评:本题考查了分层抽样,掌握分层抽样的计算方法是解决问题的关键.14.(2012•泸州一模)某校高三680名学生(其中男生360名、女生320名)在学术报告厅听了应考心理讲座,为了解有关情况,学校用分层抽样的方法抽取了一个样本,已知该样本中的女生人数为16名,那么该样本中的男生人数为()A.15 B.16 C.17 D.18考点:分层抽样方法.专题:计算题.分析:设该样本中的男生人数为x,则由分层抽样的定义和方法可得=,由此解得x 的值.解答:解:设该样本中的男生人数为x,则由分层抽样的定义和方法可得=,解得x=18,故选D.点评:本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.15.(2012•绵阳二模)要从60人中抽取6人进行身体健康检查,现釆用分层抽样方法进行抽取,若这60人中老年人和中年人分别是40人,20人,则老年人中被抽取到参加健康检查的人数是()A.2人B.3人C.4人D.5人考点:分层抽样方法.专题:计算题.分析:先求出每个个体被抽到的概率,用该层的个体数乘以每个个体被抽到的概率,就等于该层应抽取的个体数.解答:解:每个个体被抽到的概率等于=,老年人中被抽取到参加健康检查的人数是40×=4,故选C.点评:本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.二.解答题(共15小题)16.为了了解学生的身体发育情况,某校对年满16周岁的60名男生的身高进行测量,其结果如下:身高(m)1.57 1.59 1.60 1.62 1.63 1.64 1.65 1.66 1.68人数 2 1 4 2 3 4 2 7 6身高(m)1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77人数8 7 4 3 2 1 2 1 1(1)根据上表,估计这所学校,年满16周岁的男生中,身高不低于1.65m且不高于1.71m的约占多少?不低于1.63m 的约占多少?(2)将测量数据分布6组,画出样本频率分布直方图;(3)根据图形说出该校年满16周岁的男生在哪一范围内的人数所占的比例最大?如果年满16周岁的男生有360人,那么在这个范围的人数估计约有多少人?考点:频率分布直方图;频率分布表.专题:概率与统计.分析:(1)根据上表求出身高不低于1.65m且不高于1.71m的频率与不低于1.63m的频率;(2)将测量数据分组,求频数与频率,列出频率分布表,画出频率分布直方图;(3)根据图形得出正确的结论以及估计结果.解答:解:(1)根据上表得,身高不低于1.65m且不高于1.71m的频率是=≈0.567,∴约占总体的56.7%;不低于1.63m的频率是1﹣=1﹣0.15=0.85,约占总体的85%;(2)将测量数据分布6组,∴=0.033,∴组距是0.04,计算频数与频率,列出频率分布表,如下;分组频数频率156.5﹣160.5 7 0.11160.5﹣164.5 9 0.15164.5﹣168.5 15 0.25168.5﹣172.5 22 0.37172.5﹣176.5 6 0.10176.5﹣180.5 1 0.02合计60 1.00画出样本频率分布直方图,如图所示;(3)根据图形知,该校年满16周岁的男生在168.5﹣172.5内的人数所占的比例最大,如果年满16周岁的男生有360人,那么在这个范围的人数估计约为360×0.37=133人.点评:本题考查了频率分布直方图的应用问题,也考查了列表和画图的能力,解题时应根据图中数据进行有关的计算,是基础题.17.改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,…,2005年编号为5,数据如下:年份(x) 1 2 3 4 5人数(y) 3 5 8 11 13求y关于x的回归方程=x+所表示的直线必经的点.考点:回归分析的初步应用.专题:计算题;概率与统计.分析:求平均值,回归直线必过样本点的中心.解答:解:==3,==8,故回归方程=x+所表示的直线必经过点(3,8).点评:本题考查了回归分析,回归直线必过样本点的中心,同时考查了平均数的求法,属于基础题.18.甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取4次,绘制成茎叶图如图:甲乙9 7 78 1 2 8 535(Ⅰ)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(Ⅱ)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.考点:茎叶图;众数、中位数、平均数;极差、方差与标准差.专题:概率与统计.分析:(I)由茎叶图知甲乙两同学的成绩分别为:甲:82 81 79 88 乙:85 77 83 85.利用“列举法”及其古典概型的概率计算公式即可得出.(II)分别计算出甲乙的平均成绩及其方差即可得出.。

高考数学统计与统计案例.doc

高考数学统计与统计案例.doc

高考数学统计与统计案例1.小吴一星期的总开支分布如图 1 所示,一星期的食品开支如图 2 所示,则小吴一星期的鸡蛋开支占总开支的百分比为()A.1%B.2%C.3%D.5%C[ 由图 1 所示,食品开支占总开支的 30%,由图 2 所示,鸡蛋开支占食品开支的30 = 1 ,30+40+100+80+ 50 101∴鸡蛋开支占总开支的百分比为30%×10=3%.故选 C.]2.(2019 德·州模拟 )某人到甲、乙两市各7 个小区调查空置房情况,调查得到的小区空置房的套数绘成了如图所示的茎叶图,则调查中甲市空置房套数的中位数与乙市空置房套数的中位数之差为()A.4B. 3C.2D.1B[ 由茎叶图可以看出甲、乙两市的空置房的套数的中位数分别是79,76,因此其差是 79- 76=3,故选 B.]3.某工厂对一批新产品的长度(单位: mm)进行检测,如图是检测结果的频率分布直方,据此估批品的中位数()A.20B. 25C.22.5D.22.75C[ 品的中位数出在概率是 0.5 的地方 . 自左至右各小矩形面依次0.1,0.2,0.4,⋯⋯,中位数是 x,由 0.1+0.2+0.08 ·(x-20)=0.5,得 x= 22.5,故 C.]4.(2019 ·三明模 )在某次高中数学中,随机抽取 90 名考生,其分数如所示,若所得分数的平均数,众数,中位数分 a, b, c, a,b,c 的大小关系 ()A.b<a<c B.c<b<aC.c<a<b D.b<c<a2 50+ 60D [算得平均a=593,众数b=50,中位数c= 2 =55,故b<c<a, A.]5.(2019 南·充模 )如表是我国某城市在2017 年 1 月份至 10 月份各月最低温与最高温 (℃ )的数据一表.月份 1 2 3 4 5 6 7 8 9 10最高温 5 9 9 11 17 24 27 30 31 21最低温-12 - 3 1 - 2 7 17 19 23 25 10 已知城市的各月最低温与最高温具有相关关系,根据一表,下列的是 ()A.最低温与最高温正相关B.每月最高温与最低温的平均在前8 个月逐月增加C.月温差 (最高温减最低温 )的最大出在 1 月D.1 月至 4 月的月温差 (最高温减最低温 )相于 7 月至 10 月,波性更大B[ 根据意,依次分析:于 A ,知城市的各月最低温与最高温具有相关关系,由数据分析可得最低温与最高温正相关, A 正确;于B,由表中数据,每月最高温与最低温的平均依次:-3.5,3,5,4.5,12,20.5,23,26.5,28,15.5,在前 8 个月不是逐月增加, B ;于 C,由表中数据,月温差依次: 17,12,8,13,10,7,8,7,6,11;月温差的最大出在 1 月,C 正确;于 D,有 C 的,分析可得 1 月至 4 月的月温差相于 7 月至 10 月,波性更大, D 正确;故B.]6.某中学的高中女生体重y(位: kg)与身高 x(位: cm)具有性相关关系,根据本数据 (x i, y i )(i =1,2,3,⋯, n),用最小二乘法近似得到回直^方程 y=0.85x-85.71,下列中不正确的是()A.y 与 x 具有正性相关关系––B.回直本点的中心( x , y )C.若中学某高中女生身高增加 1 cm,其体重增加0.85 kgD.若中学某高中女生身高160 cm,可断定其体重必50.29 kg^D[ 因回直方程 y=0.85x-85.71 中 x 的系数 0.85>0,因此 y 与 x 具有正性相关关系,所以 A 正确;由最小二乘法及回直方程的求解––可知回直本点的中心( x , y ),所以 B 正确;由于用最小二乘法得到的回直方程是估,而不是具体,若中学某高中女生身高增加 1 cm,其体重增加0.85 kg,所以 C 正确, D 不正确. ]7.(2018 ·永州三模 )党的十九大告明确提出:在共享等域培育增点、形成新能.共享是公众将置源通社会化平台与他人共享,而得收入的象.考察共享企活度的影响,在四个不同的企各取两个部行共享比,根据四个企得到的数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()D[ 根据四个列联表中的等高条形图可知,图中 D 中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.]8.(2019 ·州模拟惠)已知 x 与 y 之间的几组数据如下表:x 1 2 3 4 5 6y 0 2 1 3 3 4假设根据上表数据所得的线性回归方程为^ ^ ^y= b +若某同学根据上表中的x a.前两组数据 (1,0)和 (2,2)求得的直线方程为y= b′ x+a′,则以下结论正确的是()^ ^ ^ ^A.b>b′, a>a′B.b>b′, a<a′^ ^ ^ ^C.b<b′, a>a′D.b<b′, a<a′C[ 由两组数据 (1,0)和(2,2)可求得直线方程为 y=2x-2,b′=2,a′=-^ 2.而利用线性回归方程的公式与已知表格中的数据,可求得 b =5 ^ – ^– 13 5==7,a= y -b x =6-771^^×2=-3,所以 b<b′,a>a′.]9.(2019 天·津模 )某校高中共有 720 人,其中理科生 480 人,文科生 240 人,采用分抽的方法从中抽取 90 名学生参加研,抽取理科生的人数________.48060[由分抽的定得抽取理科生的人数720×90=60.]–10.已知本数据x1,x2,⋯, x n的平均数 x = 5,本数据2x1+1,2x2 +1,⋯, 2x n+1 的平均数 ________.11[ 由 x1,x2,⋯,x n的平均数 x= 5,得 2x1+1,2x2+1,⋯,2x n+1 的平–均数 2 x +1= 2× 5+ 1= 11.]11.某学校随机抽取部分新生其上学所需(位:分 ),并将所得数据制成率分布直方(如 ),其中,上学所需的范是[0,100] ,本数据分 [0,20),[20,40),[40,60), [60,80), [80,100],(1)中的 x= ________;(2)若上学所需不少于 1 小的学生可申在学校住宿,校600 名新生中估有 ________名学生可以申住宿.0.0125 72[(1) 由率分布直方知20x= 1-20×(0.025+ 0.0065+ 0.003 +0.003),解得 x=0.0125.(2)上学不少于 1 小的学生的率0.12,因此估有0.12×600=72(人)可以申住宿. ]12.以下四个命题,其中正确的序号是________.①从匀速传递的产品生产流水线上,质检员每20 分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;^③在线性回归方程 y=0.2x+12 中,当解释变量x 每增加一个单位时,预报^变量 y平均增加 0.2 个单位;④对分类变量 X 与 Y 的统计量 K2来说, K2越小,“ X 与 Y 有关系”的把握程度越大.②③[①是系统抽样;对于④,统计量 K2越小,说明两个相关变量有关系的把握程度越小. ]。

高三一轮复习专题训练:统计、统计案例(最新题,14页)

高三一轮复习专题训练:统计、统计案例(最新题,14页)

2 分层抽样的关键是根据样本特征的差异进行分层,实质是等比例抽样,求解此类问
------ 珍贵文档 ! 值得收藏! ------
------ 精品文档 ! 值得拥有! ------
题需先求出抽样比 —— 样本容量与总体容量的比, 则各层所抽取的样本容量等于该层个体总 数与抽样比的乘积 .
三、预测押题不能少
解析: 由题意知, 0.15(x+ 1)+ 0.2- 0.15 x- 0.2= 0.15. 答案: 0.15
统计与概率的交汇
统计与统计案例的主要内容是随机抽样、 样本估计总体、 变量的相关性、 回归分析和独 立性检验, 该部分内容在高考中占有一定的位置, 近两年高考中由单纯考查统计及统计案例 转化为与概率交汇命题且背景贴近生活,角度新颖,试题多为解答题,难度中档.
D. b^<b′, a^<a′
[解析 ] 由 (1,0), (2,2) 求 b′ , a′,则
2- 0 b′ = = 2,a′ = 0-2× 1=- 2.
2- 1 由上表数据求 b^, a^,
6
xiyi= 0+ 4+ 3+12+ 15+24= 58,
i=1
13 x = 3.5, y = 6 ,
6
x2i = 1+Βιβλιοθήκη 4+ 9+ 16+ 25+ 36= 91,
3n 60= 260,解得 n=13.
(2)将某班的 60 名学生编号为: 01,02,…, 60,采用系统抽样方法抽取一个容量为 5 的 样本,且随机抽得的一个号码为 04,则剩下的四个号码依次是 ________.
解析: 依据系统抽样方法的定义知,将这 60 名学生依次按编号每 12 人作为一组,即
1. (1) 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为

高考数学复习:统计与统计案例

高考数学复习:统计与统计案例

针对该校“选择考”情况,2020年与2018年比较,下列说法正确的是
√A.获得A等级的人数增加了
√B.获得B等级的人数增加了1.5倍
C.获得D等级的人数减少了一半
D.获得E等级的人数相同
解析 设2018年参加“选择考”的总人数为x,则2020年参加“选择考”
的总人数为2x,根据图表得出2018年和2020年各个等级的人数如表所示.
SO2
[0,50]
PM2.5
(50,150]
(150,475]
[0,35]
32
18
4
(35,75]
6
8
12
(75,115]
3
7
10
(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过 150”的概率;
解 由表格可知,该市100天中,空气中的PM2.5浓度不超过75,且SO2 浓度不超过150的天数为32+6+18+8=64,
考情分析
KAO QING FEN XI
高考对本讲内容的考查往往以实际问题为背景,考查随机抽样与用样 本估计总体,线性回归方程的求解与运用,独立性检验问题.常与概 率综合考查,中等难度.

考点一

考点二

考点三

专题强化练
1 考点一 统计图表
PART ONE
核心提炼
频率
频率
1.频率分布直方图中横坐标表示组距,纵坐标表示组距,频率=组距×组距.
SO2 PM2.5
[0,150]
(150,475]
[0,75]
64
16
(75,115]
10
10
规律 方法
独立性检验的关键 (1)根据2×2列联表准确计算K2,若2×2列联表没有列出来, 要先列出此表. (2)K2的观测值k越大,对应的假设H0成立的概率越小,H0不 成立的概率越大.

2021届高考数学(理)复习之小题必练12 统计与统计案例(理)-学生版

2021届高考数学(理)复习之小题必练12 统计与统计案例(理)-学生版

统计与统计案例是高中数学的重要内容,高考主要考查排列组合,二项式定理,随机抽样,用样本估计总体,变量的相关性,随机事件的概率,古典概型,几何概型,回归分析,独立性检验,离散型随机变量的分布列、期望、方差,正态分布.考查重点是用样本估计总体,古典概率,离散型随机变量的分布列、期望、方差,应用回归分析与独立性检验思想方法解决简单实际问题的能力.试题强调应用性,以实际问题为背景,构建数学模型,突出考查统计与概率的思想和考生的数据处理能力及应用意识.1.【2020全国Ⅰ卷】某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)i ix y(1,2,20)i=得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y a bx=+B.2y a bx=+C.xy a be=+D.lny a b x=+2.【2020全国Ⅲ卷】在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p,且411iip==∑,则下面四种情形中,对应样本的标准差最大的一组是()A.140.1p p==,230.4p p==B.140.4p p==,230.1p p==C.140.2p p==,230.3p p==D.140.3p p==,230.2p p==一、选择题.1.近年来,随着“一带一路”倡议的推进,中国与沿线国家旅游合作越来越密切,中国到“一带一路”沿线国家的游客人也越来越多,如图是20132018-年中国到“一带一路”沿线国家的游客人次情况,则下列说法正确的是( )①20132018-年中国到“一带一路”沿线国家的游客人次逐年增加②20132018-年这6年中,2014年中国到“一带一路”沿线国家的游客人次增幅最小 ③20162018-年这3年中,中国到“一带一路”沿线国家的游客人次每年的增幅基本持平 A .①②③B .②③C .①②D .③2.盒子里装有大小相同的2个红球和1个白球,从中随机取出1个球,取到白球的概率是( ) A .13B .12C .23D .13.设随机变量ξ的分布列如下:其中1a ,2a ,…,6a 构成等差数列,则16a a ⋅的( ) A .最大值为19B .最大值为136C .最小值为19D .最小值为1364.某同学进行3分投篮训练,若该同学投中的概率为12,他连续投篮n 次至少得到3分的概率大于0.9, 那么n 的最小值是( ) A .3B .4C .5D .65.为了调查患胃病是否与生活不规律有关,在患胃病与生活不规律这两个分类变量的计算中,下列说法正确的是( )A .k 越大,“患胃病与生活不规律没有关系”的可信程度越大B .k 越大,“患胃病与生活不规律有关系”的可信程度越小。

高考数学关于统计及统计案例练习试题

高考数学关于统计及统计案例练习试题

高考数学关于统计及统计案例练习试题高考数学关于统计及统计案例练习试题人生多磨难,要为自己鼓掌,别让迟疑阻滞了脚步,别让哀痛苍白了心灵。

下面是我共享的高考数学关于统计及统计案例练习试题,欢迎大家练习!选择题1.对某商店一个月内每天的顾客人数进行统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53答案:A 命题立意:本题考查中位数、众数、极差等特征数与茎叶图,难度中等.解题思路:利用相关概念求解.由茎叶图可知,第15个数据是45,第16个数据是47,所以30天中的顾客人数的中位数是45和47的平均数,即为46.消逝次数最多的是45,故众数是45;最大数据68与最小数据12的差是56,即极差是56,故选A.2.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:接受简洁随机抽样法,将零件编号为00,01,02,…,99,从中抽出20个;接受系统抽样法,将全部零件分成20组,每组5个,然后每组中随机抽取1个;接受分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个,则( )A.不论实行哪种抽样方法,这100个零件中每个被抽到的概率都是B.两种抽样方法,这100个零件中每个被抽到的概率都是,并非如此C.两种抽样方法,这100个零件中每个被抽到的概率都是,并非如此D.接受不同的抽样方法,这100个零件中每个被抽到的概率各不相同答案:A 解题思路:由于简洁随机抽样法、系统抽样法与分层抽样法均是等可能性抽样,因此不论实行哪种抽样方法,这100个零件中每个被抽到的概率都是,故选A.3.从某中学一、二两个班中各随机抽取10名同学,测量他们的身高(单位:cm)后获得身高数据的茎叶图如图甲,在这20人中,记身高在[150,160),[160,170),[170,180),[180,190]的人数依次为A1,A2,A3,A4,图乙是统计样本中身高在确定范围内的人数的程序框图,则下列说法正确的是( )A.甲可知一、二两班中平均身高较高的是一班,图乙输出的S的值为18B.甲可知一、二两班中平均身高较高的是二班,图乙输出的S的值为16C.甲可知一、二两班中平均身高较高的是二班,图乙输出的S的值为18D.甲可知一、二两班中平均身高较高的是一班,图乙输出的S的值为16答案:C 命题立意:本题主要考查统计与程序框图的相关学问,统计问题与程序框图的结合有可能成为高考命题的热点,此类题目考查的方式多样,难度适中.在该题中对程序框图的考查主要体现在对其循环结构的考查.此类题目易消逝的`问题主要是不能从整体上精确把握程序框图,无法确定赋值语句、输出语句中各个变量与实际问题的联系,从而不能确定程序框图所要解决的实际问题中的相关数据.所以解决此类问题首先要明确程序框图中的各类数据与实际问题中数据之间的对应关系,精确把握实际问题中数据的实际意义.解题思路:由茎叶图可知,一班同学身高的平均数为170.3,二班同学身高的平均数为170.8,故二班同学的平均身高较高.由题意可知,A1=2,A2=7,A3=9,A4=2,由程序框图易知,最终输出的结果为S=7+9+2=18.4.下表是降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,依据表中供应的数据,求出y关于x的线性回归方程=0.7x+0.35,那么表中m的值为( ) x 3 4 5 6 y 2.5 m 4 4.5 A.4 B.3.5C.3D.4.5答案:C 命题立意:本题考查统计的相关学问,难度中等.解题思路:依题意得=×(3+4+5+6)=4.5,=(2.5+m+4+4.5)=,由于回归直线必经过样本中心点,于是有=0.7×4.5+0.35,解得m=3,故选C.5.某调查机构对本市学校生课业负担状况进行了调查,设平均每人每天做作业的时间为x分钟.有1 000名学校生参加了此项调查,调查所得数据用程序框图处理,若输出的结果是680,则平均每天做作业的时间在0~60分钟内的同学的频率是( )A.680B.320C.0.68D.0.32答案:D 解题思路:程序框图统计的是作业时间为60分钟以上的同学的数量,因此由输出结果为680知,有680名同学的作业时间超过60分钟,因此作业时间在0~60分钟内的同学总数有320人,故所求频率为0.32.6.两组各7名同学体重(单位:kg)数据的茎叶图.设,两组数据的平均数依次为1,2,标准差依次为s1和s2,那么( )A.12,s1s2B.12,s1s2 D.12,s13.841,因此有95%的把握认为“成果与班级有关系”.(3)抽取两次所得编号的基本事件为(1,1),(1,2),(1,3),…,(1,6),(2,1),(2,2),(2,3),…,(2,6),…,(6,1),(6,2),(6,3),…,(6,6),共36个.编号之和为6的倍数的基本事件为(1,5),(2,4),(3,3),(4,2),(5,1),(6,6),共6个.因此两次编号之和为6的倍数的概率为.【高考数学关于统计及统计案例练习试题】。

统计与统计案例练习题及知识点总结(全面)-高考数学

统计与统计案例练习题及知识点总结(全面)-高考数学

统计与统计案例练习题与知识点总结1.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.68⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于⨯频率组距组距.2.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.0500.0100.001k3.8416.63510.828【答案】(1)75%;60%;(2)能.【分析】本题考查频率统计和独立性检验,属基础题,根据给出公式计算即可【详解】(1)甲机床生产的产品中的一级品的频率为15075% 200=,乙机床生产的产品中的一级品的频率为12060% 200=.(2)()22400150801205040010 6.63527013020020039K⨯-⨯==>>⨯⨯⨯,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.1.随机抽样(1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)分层抽样:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.用样本的频率分布估计总体分布(1)在频率分布直方图中,纵轴表示频率/组距,数据落在各小组内的频率用各小长方形的面积表示.各小长方形的面积的总和等于1.(2)频率分布折线图和总体密度曲线①频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.②总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.(3)茎叶图茎是指中间的一列数,叶是从茎的旁边生长出来的数.3.用样本的数字特征估计总体的数字特征(1)众数:一组数据中出现次数最多的数.(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.(3)平均数:x=x1+x2+…+x nn,反映了一组数据的平均水平.(4)标准差:是样本数据到平均数的一种平均距离,s=1[x1-x2+x2-x2+…+x n-x2].n[(x1-x)2+(x2-x)2+…+(x n-x)2](x n是样本数据,n是样本容量,x是样本平均数).(5)方差:s2=1n4.相关关系与回归方程(1)相关关系的分类①正相关在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.②负相关在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(2)线性相关关系如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(3)回归方程①最小二乘法求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫做最小二乘法.②回归方程方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ^,b ^是待定参数.(4)回归分析①定义:对具有相关关系的两个变量进行统计分析的一种常用方法.②样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中(x ,y )称为样本点的中心.③相关系数当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.5.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.(2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为2×2列联表y 1y 2总计x 1a b a +b x 2c d c +d 总计a +cb +da +b +c +d构造一个随机变量K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d 为样本容量.(3)独立性检验:利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验.1.如图为国家统计局2021年1月19日发布的2020年各季度社会消费品零售总额及增速,则下列说法:①各季度社会消费品零售总额增速最快的是4季度;②各季度社会消费品零售总额增速最快的是2季度;③各季度社会消费品零售总额增量最大的是4季度;④各季度社会消费品零售总额增量最大的是2季度.其中所有正确说法的序号为()A.①④B.②③C.①③D.②④2.下图是2020年我国居民消费价格月度涨跌幅度图(来源于国家统计局网站)下列说法错误的是()A.1~12月月度同比的平均值为2.55B .1~12月月度环比的平均值为负数C .1~12月月度同比整体为下降趋势D .1~12月月度环比的方差大于月度同比的方差3.已知相关变量x 和y 的散点图如图所示,若用()11ln y b k x =⋅与22y kx b =+拟合时的相关系数分别为12,r r 则比较12,r r 的大小结果为()A .12r r >B .12r r =C .12r r <D .不确定4.下列说法中错误的个数是①某校共有女生2021人,用简单随机抽样的方法先剔除21人,再按系统抽样的方法抽取为200人,则每个女生被抽到的概率为110;②由样本数据得到的回归直线方程y bx a =+$$$必经过样本中心点()x y ;③如果落在回归直线上的样本点越多,则回归直线方程的拟合效果就越好;④在一个2×2列联表中,由计算得出220.21K =,而()210.8280.001P K ≥≈,则在犯错误的概率不超过0.001的前提下认为这两个变量之间有相关关系.()A .1B .2C .3D .45.质检机构为检测一大型超市某商品的质量情况,从编号为1~120的该商品中利用系统抽样的方法抽8件进行质检,若所抽样本中含有编号67的商品,则下列编号一定被抽到的是()A .112B .53C .38D .96.2020年是全面实现小康社会目标的一年,也是全面打赢脱贫攻坚战的一年,某研究性学习小组调查了某脱贫县的甲、乙两个家庭,对他们过去6年(2014年到2019年)的家庭收入情况分别进行统计,发现他们的收入逐年增长,得到这两个家庭的年人均纯收入(单位:百元/人)茎叶图.对甲、乙两个家庭的年人均纯收入(以下分别简称“甲”“乙”)情况的判断,不正确的是()A.过去的6年,“甲”的极差小于“乙”的极差B.过去的6年,“甲”的平均值小于“乙”的平均值C.过去的6年,“甲”的中位数小于“乙”的中位数D.过去的6年,“甲”的平均增长率小于“乙”的平均增长率7.为了普及新冠肺炎知识,增强疫情防控意识,某学校从高一和高二两个年级各抽取5位同学参加新冠肺炎知识测试,得分(十分制)情况如下表所示,则下列描述正确的是()高一年级组高二年级组得分45678得分569频数11111频数311A.高一年级组数据的平均数为6分,高二年级组数据的平均数为5分B.两组数据的中位数都是6分C.高一年级组数据的极差小于高二年级组数据的极差D.高一年级组成绩的方差小于高二年级组成绩的方差8.某中学2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:则下列结论正确的是()A.与2015年相比,2018年一本达线人数减少B .与2015年相比,2018年二本达线人数增加了0.5倍C .2015年与2018年艺体达线人数相同D .与2015年相比,2018年不上线的人数有所增加9.m 个数据的平均数为a ,中位数为b ,方差为c .若将这m 个数据均扩大到原来的2倍得到一组新数据,则下列关于这组新数据的说法正确的是()A .平均数为aB .中位数为2bC D .方差为2c10.已知变量y 关于x 的回归方程为0.5bx y e -=,其一组数据如表所示:若5x =,则预测y 值可能为()x1234ye3e 4e 6e A .5e B .112e C .7e D .152e 11.给出下列说法:①回归直线ˆˆˆy bx a =+恒过样本点的中心(x y ,且至少过一个样本点;②两个变量相关性越强,则相关系数||r 就越接近1;③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程ˆ20.5yx =-中,当解释变量x 增加一个单位时,预报变量ˆy 平均减少0.5个单位.其中说法正确的是()A .①②④B .②③④C .①③④D .②④12.在一次对性别与是否说谎有关的调查中,得到如下数据,根据表中数据判断如下结论中正确的是()性别说谎不说谎总计男6713女8917总计141630A .在此次调查中有95%的把握认为是否说谎与性别有关B .在此次调查中有99%的把握认为是否说谎与性别有关C .在此次调查中有99.5%的把握认为是否说谎与性别有关D .在此次调查中没有充分证据显示说谎与性别有关13.下列四个命题中,正确的有()①两个变量间的相关系数r 越小,说明两变量间的线性相关程度越低;②命题“x ∃∈R ,使得210x x ++<”的否定是:“对x ∀∈R ,均有210x x ++>”;③命题“p g ∧为真”是命题“p q ∨为真”的必要不充分条件;④若函数322()3f x x ax bx a =+++在1x =-有极值0,则2a =,9b =或1a =,3b =.A .0B .1C .2D .314.某中学共有1000人,其中男生700人,女生300人,为了了解该校学生每周平均体育锻炼时间的情况以及经常进行体育锻炼的学生是否与性别有关(经常进行体育锻炼是指:周平均体育锻炼时间不少于4小时),现在用分层抽样的方法从中收集200位学生每周平均体育锻炼时间的样本数据(单位:小时),其频率分布直方图如图.已知在样本数据中,有40位女生的每周平均体育锻炼时间超过4小时,根据独立性检验原理()附:()()()()()22n ad bc K a c b d a d b c -=++++,其中n a b c d =+++.()20P K k ≥0.100.050.010.0050k 2.7063.8416.6357.879A .有95%的把握认为“该校学生每周平均体育锻炼时间与性别无关”B .有90%的把握认为“该校学生每周平均体育锻炼时间与性别有关”C .有90%的把握认为“该校学生每周平均体育锻炼时间与性别无关”D .有95%的把握认为“该校学生每周平均体育锻炼时间与性别有关”15.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2B.0.4C.0.5D.0.616.设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01B.0.1C.1D.1017.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为A.5,5B.3,5C.3,7D.5,718.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次[0,200](200,400](400,600]空气质量等级1(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.0500.0100.001k 3.841 6.63510.82819.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.P(K2≥k)0.0500.0100.001k 3.841 6.63510.82820.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:是否需要志愿性别男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由附:1.C 【分析】根据折线统计图比较各季度社会消费品零售总额增速,可判断①②的正误;计算各季度社会消费品零售总额增量,可判断③④的正误.【详解】第1季度社会消费品零售总额增速为19.0%-,第2季度社会消费品零售总额增速为 3.9%-,第3季度社会消费品零售总额增速为0.9%,第4季度社会消费品零售总额增速为4.6%,故①正确,②错误;第2季度社会消费品零售总额增量为9.377.86 1.51-=(万亿元),第3季度社会消费品零售总额增量为10.119.370.74-=(万亿元),第4季度社会消费品零售总额增量为11.8710.11 1.76-=(万亿元).故③正确,④错误.故选:C.2.D 【分析】根据图表数据计算平均数,然后判断A 和B ;根据图表数据的变化趋势判断C 和D.【详解】同比平均数:()5.4 5.2 4.3 3.3 2.4 2.5 2.7 2.4 1.70.50.50.72.5512++++++++++-+=,环比平均数:()()()()()()1.40.8 1.20.90.80.10.60.40.20.30.60.20.02512++-+-+-+-++++-+-+=-,1-12月月度同比的平均值为2.55,选项A 正确;1~12月月度环比的平均值为0.025-,选项B 正确;观察图表可以得出,1~12月月度同比整体为下降趋势,选项C 正确;1~12月月度环比的波动小于月度同比的波动,选项D 错误.故选:D .3.C 【分析】由散点图可知,对数形式的拟合程度高,再根据负相关,比较两个相关系数大小.【详解】由散点图可知,()11ln y b k x =拟合比用22y k x b =+拟合的程度高,故12r r >;又因为此关系为负相关,1212,r r r r ∴->-<故选:C 4.B 【分析】由古典概型的特征可判断①;由回归直线方程的特征可判断②③;由独立性检验思想可判断④.【详解】①错误,古典概率中,每个个体被抽的概率都是一样的,都等于2002021;②正确由回归直线方程的特征可知回归直线方程y bx a =+$$$必经过样本中心点(),x y ;③错误,落在回归直线附近的样本点越多,则回归直线方程的拟合效果越好;④正确,当220.21K =,而()210.8280.001P K ≥≈,则在犯错误的概率不超过0.001的前提下认为这两个变量之间有相关关系所以错误个数为2.故选:B.5.A 【分析】根据系统抽样的特征,结合所给编号求出第一组抽取商品编号,即可求解.【详解】由题意知,组距为120158=,设第一组抽取编号为k ,则第n 组抽取的编号为15(1)n k -+,样本中含有编号67的商品,即15(51)67k ⨯-+=,可得7k =,因为1577112⨯+=,即第8组中抽取商品的编号为112.故选:A 6.B 【分析】对茎叶图进行数据分析,分别计算极差、平均数、中位数、及平均增长率,依次判断四个选项.【详解】对于A ,甲的极差为42366-=,乙的极差为41347-=,所以“甲”的极差小于“乙”的极差,A 正确;对于B ,甲的平均数是1230(363737384042)66⨯+++++=,乙的平均数为1228(343638394041)66⨯+++++=,所以“甲”的平均值大于“乙”的平均值,B 错误;对于C ,甲的中位数是1(3738)37.52⨯+=,乙的中位数是1(3839)38.52⨯+=,所以,“甲”的中位数小于“乙”的中位数,C 正确;对于D ,设过去6年甲的平均增长率为x ,则()636142x +=,解得:1x =-,即过去61-;1-.因为42413634<,所以“甲”的平均增长率小于“乙”的平均增长率,D 正确.故选:B.7.D 【分析】根据表中数据,依次讨论各选项即可得答案.【详解】对于A 选项,高一年级和高二年级的平均分均为6分,故A 选项错误;对于B 选项,高一年级的中位数是6,高二年级的中位数是5,故B 选项错误;对于C 选项,高一年级的极差为4,高二年级的极差为3,故高一年级组数据的极差大于高二年级组数据的极差,故C 选项错误;对于D 选项,高一年成绩的方差为()()()()()2222221465666768625S ⎡⎤=-+-+-+-+-=⎣⎦,高二年级成绩的方差为()()()222213566696 2.45S ⎡⎤=-+-+-=⎣⎦,满足,故D 选项正确;故选:D 8.D 【分析】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S ,观察柱状统计图,找出各数据,再利用各数量间的关系列式计算得到【详解】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S.对于选项A :2015年一本达线人数为0.28S ,2018年一本达线人数为0.24×1.5S =0.36S ,可见一本达线人数增加了,故A 错误;对于选项B :2015年二本达线人数为0.32S ,2018年二本达线人数为0.4×1.5S =0.6S ,显然2018年二本达线人数不是增加了0.5倍,故B 错误;对于选项C :2015年和2018年艺体达线率没变,但是人数是不相同的,故C 错误;对于选项D :2015年不上线人数为0.32S ,2018年不上线人数为0.28×1.5S=0.42S ,不达线人数有所增加,故D 正确.故选:D 9.B 【分析】m 个12,,,n x x x 数据的平均数为a ,中位数为b ,方差为c .若将这m 个数据均扩大到原来的2倍得到一组新数据122,2,,2n x x x ,根据平均数、中位数、方差、标准差的定义进行判断即可.【详解】m 个12,,,n x x x 数据的平均数为a ,中位数为b ,方差为c .若将这m 个数据均扩大到原来的2倍得到一组新数据122,2,,2n x x x ,则由于平均数为所有数之和除以m ,故平均数变为2a ,故A 错;中位数为这组数从小到大排列后中间的那个数或中间两数和的平均数,由于每个数都变为原来2倍,所以中位数也变为原来的2倍,即2b ,故B 对;方差描述的是这组数的波动情况,12,,,n x x x 的方差为c ,则122,2,,2n x x x 的方差为224c c =2c =,故C,D 错;故选:B 【点睛】熟悉平均数、中位数、方差、标准差的概念,特别是一组数据扩大某个倍数或增加某个数值的情况下,平均数、中位数、方差、标准差的变化.10.D 【分析】将回归方程左右同时取对数得:ln 0.5y bx =-,看作回归直线的形式,由回归直线过样本中心点可构造方程求得b ,由此得到回归方程;将5x =代入回归方程即可求得结果.【详解】由0.5bx y e-=得:ln 0.5y bx =-,346ln ln ln ln 12340.544e e e e b ++++++∴=⋅-,解得: 1.6b =,∴回归方程为 1.60.5x y e -=,若5x =,则1580.52y e e -==.故选:D.【点睛】关键点点睛:本题考查非线性回归中的预估值的求解,解题关键是能够通过对指数型回归模型左右同时取对数,将其变为线性回归的形式来进行求解.11.B 【分析】①中,根据回归直线方程的特征,可判定是不正确;②中,根据相关系数的意义,可判定是是正确的;③中,根据方差的计算公式,可判定是正确的;④中,根据回归系数的含义,可判定是正确的.【详解】对于①中,回归直线ˆˆˆy bx a =+恒过样本点的中心(x y ,但不一定过一个样本点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数||r 就越接近1,所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程ˆ20.5yx =-中,当解释变量x 增加一个单位时,预报变量ˆy平均减少0.5个单位,所以是正确的.故选:B.【点睛】本题主要考查了统计知识的相关概念及判定,其中解答中熟记回归直线方程的特征,回归系数的含义,相关系数的意义,以及方程的计算方法是解答的关键,属于基础题.12.D 【解析】根据上表数据可求得20.027 1.323k ≈<,再结合课本上的概率附表可知在此次调查中没有充分证据显示说谎与性别有关,故选D 13.A 【分析】根据相关系数的定义可知①错误;根据特称命题(又叫存在性命题)的否定可知②错误;根据真值表即可判断“p q ∧为真”是命题“p q ∨为真”的充分不必要条件,故③错误;由条件可得,(1)0,(1)0,f f '-=-=解得a=2,b=9或a=1,b=3,经检验,当a=1,b=3时,22()3633(1)0f x x x x '=++=+≥恒成立,此时()f x 没有极值点,故④错误。

2023届高考数学专项(统计与统计案例)历年经典真题、模拟题练习(附答案)

2023届高考数学专项(统计与统计案例)历年经典真题、模拟题练习(附答案)
100
s2 =
s=√0.029 6=0.02 √74 0.17.
^
二乘估计分别为:

∑ ( -)( -)
1

∑ ( -)2
1
^
,

^
.
^ ^
x+ 的斜率和截距的最小
答案解析
1.解 (1)根据产值增长率频数分布表得,所调查的 100 个企业中产值增长率不低于 40%的
14 7
=0.21.
100
企业频率为
2
=0.02.
100
2023 届高考数学专项(统计与统计案例)历年经典
真题、模拟题练习
1.某行业主管部门为了解本行业中小企业的生产情况,随机调查了 100 个企业,得到这些企业第一季
度相对于前一年第一季度产值增长率 y 的频数分布表.
y 的 [[0.20, [0.40, [0.60,
[0,0.20)
0.40) 0.60) 0.80)

参考公式:样本相关系数 r=

∑ (xi -x)(yi -y)
∑ -
1
n
2
∑ ( -)
i 1
1

2
∑ ( -)
1


1
2
2 -

;
2
∑ 2 -
1
^
对于一组具有线性相关关系的数据(xi,yi)(i=1,2,…,n),其经验回归直线
1

∑ -
1

∑ 2 -
2
^
,
^

.
1
4.(历年ꞏ山东潍坊一模)在对人体的脂肪含量和年龄之间的关系的研究中,科研人员获得了一些年龄

【高考复习】2020年高考数学(文数) 统计、统计案例 小题练(含答案解析)

【高考复习】2020年高考数学(文数)  统计、统计案例 小题练(含答案解析)

【高考复习】2020年高考数学(文数)统计、统计案例 小题练一、选择题1.某公司一种型号的产品近期销售情况如下表:根据上表可得到回归直线方程y ^=0.75x +a ^,据此估计,该公司7月份这种型号产品的销售额约为( )A .19.5万元B .19.25万元C .19.15万元D .19.05万元2.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n)都在直线y =0.5x +1上,则这组样本数据的样本相关系数为( )A .-1B .0C .0.5D .14.已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x ,方差为s 2,则( )A .x =4,s 2<2 B .x =4,s 2>2 C .x >4,s 2<2 D .x >4,s 2>25.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .1406.某工厂对一批新产品的长度(单位:mm)进行检测,如图是检测结果的频率分布直方图,据此估计这批产品长度的中位数为( )A.20B.25C.22.5D.22.757.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是( )A.甲B.乙C.丙D.丁8.研究人员随机调查统计了某地1000名“上班族”每天在工作之余使用手机上网的时间,并将其绘制为如图所示的频率分布直方图,若同一组数据用该区间的中点值作代表,则可估计该地“上班族”每天在工作之余使用手机上网的平均时间是( )A.1.78小时B.2.24小时C.3.56小时D.4.32小时9.生产车间的甲、乙两位工人生产同一种零件,这种零件的标准尺寸为85 mm,现分别从他们生产的零件中各随机抽取8件检测,其尺寸用茎叶图表示如图(单位:mm),则估计( )A.甲、乙生产的零件尺寸的中位数相等B.甲、乙生产的零件质量相当C.甲生产的零件质量比乙生产的零件质量好D.乙生产的零件质量比甲生产的零件质量好10.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为()A.3,5 B .5,5 C .3,7 D .5,711.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()12.为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系.设其回归直线方程为y ^=b ^x +a ^.已知∑i =110x i =225,∑i =110y i =1600,b ^=4.该班某学生的脚长为24,据此估计其身高为( )A .160B .163C .166D .170二、填空题13.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.14.采用系统抽样方法从600人中抽取50人做问卷调查,为此将他们随机编号为001,002,…,600,分组后在第一组采用简单随机抽样的方法抽得的号码为003,抽到的50人中,编号落入区间[001,300]的人做问卷A ,编号落入区间[301,495]的人做问卷B ,编号落入区间[496,600]的人做问卷C ,则抽到的人中,做问卷C 的人数为________.15.高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第1组中随机抽取的号码为5,则在第6组中抽取的号码为________.16.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.17.某学校三个社团的人员分布如下表(每名同学只参加一个社团):学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果合唱社被抽出12人,则这三个社团人数共有________.18.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的25,为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人.答案解析1.答案为:D解析:由表可知x =15×(2+3+4+5+6)=4,y =15×(15.1+16.3+17+17.2+18.4)=16.8,则样本中心点(4,16.8)在线性回归直线上,故16.8=0.75×4+a ^,得a ^=13.8.故当x =7时,y ^=0.75×7+13.8=19.05.故选D .2.答案为:D ;解析:由于线性回归方程中x 的系数为0.85,因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本点的中心(x ,y ),因此B 正确.由线性回归方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确.当某女生的身高为170 cm 时, 其体重估计值是58.79 kg ,而不是具体值,因此D 不正确.3.答案为:D解析:由题设知,这组样本数据完全正相关,故其相关系数为1.故选D .4.答案为:A解析:∵某7个数的平均数为4,∴这7个数的和为4×7=28,∵加入一个新数据4,∴x =28+48=4;又∵这7个数的方差为2,且加入一个新数据4,∴这8个数的方差s 2=7×2+(4-4)28=74<2.故选A .5.答案为:D ;解析:由频率分布直方图,知这200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.故选D .6.答案为:C解析:自左至右各小矩形的面积依次为0.1,0.2,0.4,0.15,0.15,设中位数是x ,则由0.1+0.2+0.08·(x-20)=0.5,得x =22.5.选C .7.答案为:C解析:由表格中数据,可知丙平均环数最高,且方差最小,说明丙技术稳定,且成绩好.选C .8.答案为:C解析:(1×0.12+3×0.2+5×0.1+7×0.08)×2=3.56.9.答案为:D.解析:甲的零件尺寸是:93,89,88,85,84,82,79,78; 乙的零件尺寸是:90,88,86,85,85,84,84,78;故甲的中位数是:85+842=84.5,乙的中位数是:85+852=85;故A 错误;根据数据分析,乙的数据稳定,故乙生产的零件质量比甲生产的零件质量好, 故B ,C 错误.10.答案为:A.解析:由题意,甲组数据为56,62,65,70+x,74,乙组数据为59,61,67,60+y,78, 要使两组数据中位数相等,有65=60+y ,所以y=5,又平均数相同,则56+62+65+70+x +745=59+61+67+65+785,解得x=3.11.答案为:A.解析:由分组可知C ,D 一定不对;由茎叶图可知[0,5)有1人,[5,10)有1人, 所以第一、二小组频率相同,频率分布直方图中矩形的高应相等,可排除B.12.答案为:C ;解析:∵∑i =110x i =225,∴x =110∑i =110x i =22.5.∵∑i =110y i =1600,∴y =110∑i =110y i =160.又b ^=4,∴a ^=y -b ^x =160-4×22.5=70.∴回归直线方程为y ^=4x +70. 将x =24代入上式得y ^=4×24+70=166.故选C .13.答案为:90;解析:由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为89+89+90+91+915=90.14.答案为:8;解析:由于60050=12,抽到的号码构成以3为首项,以12为公差的等差数列,因此得等差数列的通项公式为a n =3+(n -1)×12=12n-9,由496≤12n-9≤600,解得42112≤n≤50912,又由于n 是正整数,因此43≤n≤50,所以抽到的人中,做问卷C 的人数为8,所以答案为8.15.答案为:45;解析:64名学生,平均分成8组,则每组的人数为8.依据系统抽样方法,所抽取的学生号码必成等差数列,则在第1组中随机抽取的号码为5,那么在第6组中抽取的号码为5+(6-1)×8=45.16.答案为:18;解析:∵样本容量总体个数=60200+400+300+100=350,∴应从丙种型号的产品中抽取350×300=18(件).17.答案为:150;解析:据题意,得这三个社团共有30÷1245+15=150(人).18.答案为:36;解析:根据题意可知样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36(人).。

统计与统计案例小题突破练-高三数学二轮专题复习

统计与统计案例小题突破练-高三数学二轮专题复习

冲刺高考二轮统计与统计案例小题突破练(原卷+答案)一、单项选择题1.已知某地区中小学生人数比例和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法随机抽取1%的学生进行调查,其中被抽取的小学生有80人,则样本容量和该地区的高中生近视人数分别为() A.200,25 B.200,2 500C.8 000,25 D.8 000,25002.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.国外新冠肺炎疫情形势严峻,国内疫情传播风险加大,为了更好地抗击疫情,国内进一步加大新冠疫苗的接种力度.某制药企业对某种新冠疫苗开展临床接种试验,若使用该疫苗后的抗体呈阳性,则认为该新冠疫苗有效.该企业对参与试验的1 000名受试者的年龄和抗体情况进行统计,结果如下图表所示:年龄频率[20,30)0.20[30,40)0.30[40,50)0.10[50,60)0.20[60,70)0.10[70,80]0.10则下列结论正确的是( )A .在受试者中,50岁以下的人数为700B .在受试者中,抗体呈阳性的人数为800C .受试者的平均年龄为45岁D .受试者的疫苗有效率为80%4.下图是根据某班学生在一次数学考试中的成绩画出的频率分布直方图,则由直方图得到的25%分位数为( )A .66.5B .67C .67.5D .685.已知一组数据:x 1,x 2,x 3的平均数是5,方差是4,则由2x 1+1,2x 2+1,2x 3+1和11 这四个数据组成的新数据组的方差是( )A .16B .14C .12D .116.某新能源汽车销售公司统计了某款汽车行驶里程x (单位:万千米)对应维修保养费用y (单位:万元)的四组数据,这四组数据如下表:行驶里程x /万千米 1 2 4 5 维修保养费用y /万元 0.50 0.90 2.30 2.70若用最小二乘法求得回归直线方程为y ^ =0.58x +a ^,则估计该款汽车行驶里程为6万千米时的维修保养费是( )A .3.34万元B .3.62万元C .3.82万元D .4.02万元7.通过随机询问某中学110名中学生是否爱好跳绳,得到如下列联表:已知χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),P (χ2≥10.828)=0.001,根据小概率值α=0.001的χ2独立性检验,以下结论正确的为( )A .爱好跳绳与性别有关B .爱好跳绳与性别有关,这个结论犯错误的概率不超过0.001C .爱好跳绳与性别无关D .爱好跳绳与性别无关,这个结论犯错误的概率不超过0.0018.为研究变量x ,y 的相关关系,收集得到下面五个样本点(x ,y ):x 5 6.5 7 8 8.5 y 9 8 6 4 3若由最小二乘法求得y 关于x 的回归直线方程为y ^ =-1.8x +a ^,则据此计算残差为0的样本点是( )A .(5,9)B .(6.5,8)C .(7,6)D .(8,4)二、多项选择题9.下列统计量中,能度量样本x 1,x 2,…,x n 的离散程度的是( ) A .样本x 1,x 2,…,x n 的标准差 B .样本x 1,x 2,…,x n 的中位数 C .样本x 1,x 2,…,x n 的极差 D .样本x 1,x 2,…,x n 的平均数10.有一组样本数据x 1,x 2,…,x n ,由这组数据得到新样本数据y 1,y 2,…,y n ,其中y i =x i +c (i =1,2,…,n ),c 为非零常数,则( )A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同11.某车间加工某种机器的零件数x 与加工这些零件所花费的时间y 之间的对应数据如下表所示:x /个 10 20 30 40 50 y /min 62 68 75 81 89由表中的数据可得回归直线方程y ^ =b ^x +54.9,则以下结论正确的有( ) A .相关系数r >0B .b ^=0.67C .零件数10,20,30,40,50的中位数是30D .若加工60个零件,则加工时间一定是95.1 min12.小李上班可以选择公交车、自行车两种交通工具,他分别记录了100次坐公交车和骑车所用时间(单位:分钟),得到下列两个频率分布直方图:基于以上统计信息,则( )A .骑车时间的中位数的估计值是22分钟B .骑车时间的众数的估计值是21分钟C .坐公交车时间的中位数的估计值是20分钟D .坐公交车时间的平均数的估计值小于骑车时间的平均数的估计值 三、填空题13.如图是调查某学校高一年级男、女学生是否喜欢徒步运动而得到的等高条形图,阴影部分表示喜欢徒步的频率.已知该年级男生500人、女生400名(假设所有学生都参加了调查),现从所有喜欢徒步的学生中按分层抽样的方法抽取23人,则抽取的男生人数为________.14.为了解某社区居民的2021年家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x (万元) 8.2 8.6 10.0 11.3 11.9 支出y (万元) 6.2 7.5 8.0 t 9.8根据上表可得回归直线方程y ^=0.76x +0.4,则t =________.15.定义一个同学数学成绩优秀的标准为“连续5次数学考试成绩均不低于120分(满分150分)”.现有甲、乙、丙三位同学连续5次数学考试成绩的数据(数据都是正整数)的描述:①甲同学的5个数据的中位数为125,总体均值为128; ②乙同学的5个数据的中位数为127,众数为121;③丙同学的5个数据的众数为125,极差为10,总体均值为125. 则数学成绩一定优秀的同学是________.16.在对某中学高一年级学生每周体育锻炼时间的调查中,采用随机数法,抽取了男生30人,女生20人. 已知男同学每周锻炼时间的平均数为17小时,方差为11;女同学每周锻炼时间的平均数为12小时,方差为16. 依据样本数据,估计本校高一年级学生每周体育锻炼时间的方差为________.参考答案1.解析:由扇形分布图结合分层抽样知识易知样本容量为8040% =200,则样本中高中生的人数为200×25%=50,易知总体的容量为501%=5 000,结合近视率条形图得该地区高中生近视人数为5 000×50%=2 500. 故选B. 答案:B 2.解析:由统计图可知,讲座前这10位社区居民问卷答题的正确率分别为65%,60%,70%,60%,65%,75%,90%,85%,80%,95%.对于A 项,将这10个数据从小到大排列为60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,因此这10个数据的中位数是第5个与第6个数的平均数,为70%+75%2=72.5%>70%,A 错误.对于B 项,由统计图可知,讲座后这10位社区居民问卷答题的正确率分别为90%,85%,80%,90%,85%,85%,95%,100%,85%,100%,所以讲座后这10位社区居民问卷答题的正确率的平均数为110×(90%+85%+80%+90%+85%+85%+95%+100%+85%+100%)=89.5%>85%,B 正确.对于C 项,讲座后这10位社区居民问卷答题的正确率的方差s 2后 =110×[(90%-89.5%)2+(85%-89.5%)2+…+(85%-89.5%)2+(100%-89.5%)2]=42.2510 000 ,所以标准差s 后=6.5%.讲座前这10位社区居民问卷答题的正确率的平均数为110×(60%+60%+65%+65%+70%+75%+80%+85%+90%+95%)=74.5%,所以讲座前这10位社区居民问卷答题的正确率的方差为s 2前 =110×[(60%-74.5%)2+(60%-74.5%)2+…+(90%-74.5%)2+(95%-74.5%)2]=142.2510 000,所以标准差s 前≈11.93%.所以s 前>s 后,C 错误.对于D 项,讲座前问卷答题的正确率的极差为95%-60%=35%,讲座后问卷答题的正确率的极差为100%-80%=20%,D 错误.故选B.答案:B3.解析:50岁以下1 000×(0.2+0.3+0.1)=600人,A 选项错误.在受试者中,抗体呈阳性的人数为600×0.9+400×0.85=880,B 选项错误.受试者的平均年龄为25×0.2+35×0.3+45×0.1+55×0.2+65×0.1+75×0.1=45,C 选项正确.受试者的疫苗有效率为8801 000×100%=88%,D 选项错误.故选C. 答案:C4.解析:第一组的频率为0.010×10=0.1,前两组的频率之和为(0.010+0.020)×10=0.3,知25%分位数在第二组[60,70)内,故25%分位数为60+10×0.25-0.10.2=67.5.故选C. 答案:C5.解析:由已知得x 1+x 2+x 3=15,(x 1-5)2+(x 2-5)2+(x 3-5)2=12,则新数据的平均数为14 (2x 1+1+2x 2+1+2x 3+1+11)=2(x 1+x 2+x 3)+3+114=11,所以方差为14[(2x 1+1-11)2+(2x 2+1-11)2+(2x 3+1-11)2+(11-11)2],=14 [4(x 1-5)2+4(x 2-5)2+4(x 3-5)2]=(x 1-5)2+(x 2-5)2+(x 3-5)2=12, 故选C. 答案:C6.解析:由已知x - =1+2+4+54 =3,y - =0.5+0.9+2.3+2.74=1.6,所以1.6=0.58×3+a ^ ,a ^ =-0.14,即y ^=0.58x -0.14,x =6时,y ^=0.58×6-0.14=3.34, 故选A. 答案:A7.解析:a +b =40+20=60,c +d =20+30=50,a +c =40+20=60, b +d =20+30=50,ad -bc =40×30-20×20=800,n =110,χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ) =110×800260×50×60×50 ≈7.822<10.828,故爱好跳绳与性别无关,这个结论犯错误的概率不超过0.001, 故选D. 答案:D8.解析:由题意可知,x - =5+6.5+7+8.5+85 =7,y - =9+8+6+4+35=6,所以回归方程的样本中心点为(7,6),因此有6=-1.8×7+a ^ ⇒a ^=18.6,所以y ^=-1.8x +18.6,在收集的5个样本点中,(7,6)一点在y ^=-1.8x +18.6上,故计算残差为0的样本点是(7,6).故选C. 答案:C9.解析:由标准差的定义可知,标准差考查的是数据的离散程度; 由中位数的定义可知,中位数考查的是数据的集中趋势; 由极差的定义可知,极差考查的是数据的离散程度; 由平均数的定义可知,平均数考查的是数据的集中趋势. 答案:AC10.解析:A :E (y )=E (x +c )=E (x )+c 且c ≠0,故平均数不相同,错误;B :若第一组中位数为x i ,则第二组的中位数为y i =x i +c ,显然不相同,错误;C :D (y )=D (x )+D (c )=D (x ),故方差相同,正确; D :由极差的定义知:若第一组的极差为x max -x min ,则第二组的极差为y max -y min =(x max+c )-(x min +c )=x max -x min ,故极差相同,正确.答案:CD11.解析:由表中的数据,得x - =10+20+30+40+505=30,y -=62+68+75+81+895 =75,将x - ,y - 代入y ^ =b ^ x +54.9,得b ^=0.67,选项A ,B 均正确, 10,20,30,40,50的中位数是30,选项C 正确;当x =60时,y ^=0.67×60+54.9=95.1,所以加工时间约是95.1 min ,而非一定是95.1min ,选项D 错误.故选ABC. 答案:ABC12.解析:在骑车时间频率分布直方图中,设骑车时间的中位数为a 1, 所以有0.1×2+0.2×(a 1-20)=0.5⇒a 1=21.5,因此选项A 不正确; 骑车时间的众数的估计值为21分钟,因此选项B 正确; 设骑车时间的平均数为b 1,b 1=(19×0.1+21×0.2+23×0.15+25×0.05)×2=21.6;在坐公交车时间频率分布直方图中,设坐公交车时间的中位数为a 2,因为(0.025+0.05+0.075+0.1)×2=0.5,所以a 2=20,因此选项C 正确; 设坐公交车时间的平均数为b 2,b 2=(13×0.025+15×0.05+17×0.075+19×0.1+21×0.1+23×0.075+25×0.05+27×0.025)×2=20,因为b 1>b 2,所以选项D 正确, 故选BCD. 答案:BCD13.解析:根据等高条形图可知: 喜欢徒步的男生人数为0.6×500=300,喜欢徒步的女生人数为0.4×400=160,所以喜欢徒步的总人数为300+160=460,按分层抽样的方法抽取23人,则抽取的男生人数为300460×23=15人.答案:1514.解析:分别求出收入和支出的平均数,可得:x - =8.2+8.6+10.0+11.3+11.95=10,y - =6.2+7.5+8.0+9.8+t 5 =31.5+t 5,代入y ^=0.76x +0.4可得:31.5+t 5=0.76×10+0.4,解得:t =8.5. 答案:8.515.解析:在①中,甲同学的5个数据的中位数为125,总体均值为128,可以找到很多反例,如118,119,125,128,150,故甲同学的数学成绩不一定优秀; 在②中,乙同学的5个数据的中位数为127,众数为121,所以前三个数为121,121,127,则后两个数肯定大于127,故乙同学的数学成绩一定优秀;在③中,丙同学的5个数据的众数为125,极差为10,总体均值为125,最大值与最小值的差为10,若最大值为129,则最小值为119.即119,125,125,127,129,故丙同学的数学成绩不一定优秀.综上,数学成绩一定优秀的同学只有乙. 答案:乙16.解析:根据平均数的计算公式,全班的平均数为z - =17×30+12×2030+20=15,设男同学为x 1,x 2,…,x 30,女同学为y 1,y 2,…,y 20,答案:19。

高考数学三轮增分练 高考小题分项练13 统计与统计案例 理

高考数学三轮增分练 高考小题分项练13 统计与统计案例 理

高考小题分项练13 统计与统计案例1.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为( ) A .10 B .9 C .8 D .7答案 A解析 因为高一学生210人,从高一学生中抽取的人数为7,所以每2107=30(人)抽取1人,所以从高三学生中抽取的人数应为30030=10.故选A.2.某学校有男学生400名,女学生600名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取男学生40名,女学生60名进行调查,则这种抽样方法是( ) A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 答案 D解析 总体由男生和女生组成,比例为400∶600=2∶3,所抽取的比例也是2∶3,故拟从全体学生中抽取100名学生进行调查,采用的抽样方法是分层抽样法, 故选D.3.设x 1=18,x 2=19,x 3=20,x 4=21,x 5=22,将这五个数据依次输入下面的程序框图进行计算,则输出的 S 值及其统计意义分别是( )A .S =2,即5个数据的方差为2B .S =2,即5个数据的标准差为2C .S =10,即5个数据的方差为10D .S =10,即5个数据的标准差为10 答案 A解析 ∵S =15[(18-20)2+(19-20)2+(20-20)2+(21-20)2+(22-20)2]=2,∴选A.4.某地市高三理科学生有15 000名,在一次调研测试中,数学成绩ξ服从正态分布N (100,σ2),已知P (80<ξ≤100)=0.35,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取( )A .5份B .10份C .15份D .20份 答案 C解析 因为数学成绩ξ服从正态分布,且均值μ=100,所以P (ξ≥120)=P (ξ≤80)=0.5-P (80<ξ≤100)=0.5-0.35=0.15,根据分层抽样,应该抽100×0.15=15(份). 5.有以下四个命题①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在回归直线方程y^=0.2x+12中,当变量x每增加1个单位时,变量y一定增加0.2个单位;④对于两分类变量X与Y,求出其统计量K2,K2越小,我们认为“X与Y有关系”的把握程度越小.其中正确的是( )A.①④ B.②③C.①③ D.②④答案D解析①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①不正确;②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1,满足线性相关的定义,故②正确;③在回归方程y^=0.2x+12中,当变量x每增加1个单位时,变量y平均增加0.2个单位,故③不正确;对于两分类变量X 与Y,求出其统计量K2,K2越小,我们认为“X与Y有关系”的把握程度越小,是随机变量K2的观测值的特点,故④正确,故选D.6.观察下列各图,其中两个分类变量x,y之间关系最强的是( )答案 D7.已知变量x ,y 的取值如下表所示:如果y 与x 线性相关,且线性回归方程为y ^=b ^x +2,则b ^的值为( ) A .1 B.32 C.45 D.56答案 A解析 由表格,得x =5,y =7,代入线性回归方程,得7=5b ^+2,解得b ^=1,故选A. 8.每吨生铁成本y (元)和废品率x %之间的线性回归方程为y ^=2x +256,这表明( ) A .y 与x 的相关系数为2 B .y 与x 的关系是函数关系C .废品率每增加1%,生铁成本每吨大约增加2元D .废品率每增加1%,生铁成本大约增加258元答案C解析y与x的相关系数为|r|≤1,排除A;y与x的关系是相关关系,排除B;废品率每增加1%,生铁成本每吨大约增加2元,C正确.9.某疾病研究所想知道吸烟与患肺病是否有关,于是随机抽取1 000名成年人调查是否吸烟及是否患有肺病,得到2×2列联表,经计算得K2=5.231,已知在假设吸烟与患肺病无关的前提条件下,P(K2≥3.841)=0.05,P(K2≥6.635)=0.01,则该研究所可以( )A.有95%以上的把握认为“吸烟与患肺病有关”B.有95%以上的把握认为“吸烟与患肺病无关”C.有99%以上的把握认为“吸烟与患肺病有关”D.有99%以上的把握认为“吸烟与患肺病无关”答案A解析根据P(K2≥3.841)=0.05,P(K2≥6.635)=0.01,故有95%的把握认为“吸烟与患肺病有关”,即A正确.10.有以下四个命题:①在回归分析中,可用R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;③若数据x1,x2,x3,…,x n的方差为1,则2x1,2x2,2x3,…,2x n的方差为2;④对分类变量x与y的随机变量K2的观测值k来说,k越小,判断“x与y有关系”的把握程度越大.其中真命题的个数为( )A.1 B.2 C.3 D.4答案B解析①根据相关指数的意义可知①正确;②根据相关系数的意义可知②正确;③方差应为4,故③错误;④K2的观察值越小,x与y有关系的把握程度越小,故④错误.故正确的命题有2个,故选B.11.下面的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A.710 B.45 C.25 D.910 答案 B解析 设污损的数字为a ,甲平均成绩为88+89+90+91+925=90,乙的平均成绩为83+83+87+90+a +995=88.4+a 5,只有在a =9或a =8时,88.4+a5≥90,因此所求概率为10-210=45.故选B.12.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A.11 B.11.5C.12 D.12.5答案C解析由频率分布直方图可估计样本重量的中位数在第二组,设中位数比10大x,由题意可得0.06×5+x×0.1=0.5,得x=2,所以中位数为12,故选C.13.将某班参加社会实践编号为1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为6的样本,已知5号,21号,29号,37号,45号学生在样本中,则样本中还有一名学生的编号是________.答案13解析因为系统抽样的特点是等距离抽样,因为45-37=37-29=29-21=8,所以样本中还有一名学生的编号为5+8=13.14.如图是某学校抽取的学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率依次成等差数列,第2个小组的频数为10,则抽取的学生人数为________.答案 40解析 前3个小组的频率和为1-(0.037 5+0.012 5)×5=0.75,所以第2小组的频率为13×0.75=0.25.所以抽取的学生人数为100.25=40.15.某班50人的一次竞赛成绩的频数分布如下:[60,70),3人;[70,80),16人;[80,90),24人;[90,100],7人.利用组中数据可估计本次比赛该班的平均分为________. 答案 82解析 平均分为65×350+75×1650+85×2450+95×750=82.16.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图如图所示,记甲、乙、丙所调查数据的标准差分别为s 1,s 2,s 3则它们的大小关系为________.(用“>”连接)答案s1>s2>s3解析根据三个频率分布直方图知:第一组两端的数据较多,偏离平均数远,最分散,其方差最大;第二组的数据是单峰的,每一个小长方形的差别较小,数据分布均匀,方差比第一组的方差小;第三组绝大部分的数据都在平均数左右,数据最集中,故方差最小.综上可得:s1>s2>s3.。

高考数学一轮复习 专题10.2 统计与统计案例(练)

高考数学一轮复习 专题10.2 统计与统计案例(练)

专题10.2 统计与统计案例1.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有________辆.【答案】1700【解析】2000(0.0350.030.02)101700⨯++⨯=2.为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h )如下表:使用寿命 [)500,700 [)700,900 [)900,1100 [)1100,1300 []1300,1500只数52344253根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h 的灯泡只数是 ▲ . 【答案】1700 【解析】由题意得:25350001700100+⨯= 3.如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为▲________.【解析】950)002.0004.0(30=⨯+⨯4.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则月收入在[2500,3000)范围内的应抽出 ▲ 人.【答案】25【解析】由题意得:0.000550010025⨯⨯=5.甲、乙两位选手参加射击选拔赛,其中连续5轮比赛的成绩(单位:环)如下表:则甲、乙两位选手中成绩最稳定的选手的方差是 ▲ .【答案】0.02【解析】甲、乙两位选手5轮比赛的成绩的平均数皆为10,方差分别为222221[0.20.10.100.2]0.025S =++++=甲,2222321[0.60.30.80.30.2]0.025S =++++>乙,因此甲、乙两位选手中成绩最稳定的选手为甲,其方差是0.026.某校有教师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有教师中抽取一个容量为n 的样本;已知从女学生中抽取的人数为80人,则n 的值为 . 【答案】196 【解析】由题意知,80,196.200120010001000n n ==++7.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 .0.0005300035000.00030.0004200015000.00020.0001400025001000月收入(元)频率/组距(第6题)【解析】∵630=15,∴在高二年级学生中应抽取的人数为40×15=8.8.已知一组正数x 1,x 2,x 3,x 4的方差s 2=14(x 12+x 22+x 32+x 42-16),则数据x 1+2,x 2+2,x 3+2,x 4+2的平均数为 . 【答案】49.某公司10位员工的月工资(单位:元)为1x ,2x ,…,10x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为 . 【答案】100x +,2s【解析】由题得:12101010x x x x x +++=⨯=L ;222221210()()()1010x x x x x x s s -+-++-=⨯=L 若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为: 均值1210(100)(100)(100)10x x x y ++++⋅⋅⋅++=12101210(100)(100)(100)()101001010100100101010x x x x x x x x ++++⋅⋅⋅++++⋅⋅⋅++⨯+⨯====+方差2221210[(100)(100)][(100)(100)][(100)(100)]10x x x x x x +-+++-++⋅⋅⋅++-+=222221210()()()101010x x x x x x s s -+-++-===L10.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为 . 【答案】100【解析】()70350015*********n =+⨯=. 11.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为01到50的袋装奶粉中抽取5袋进行检验,现将50袋奶粉按编号顺序平均分成5组,用每组选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号,若第4组抽出的号码为36,则第1组中用抽签的方法确定的号码是 .【答案】06【解析】因为按系统抽样方法选取的编号依次构成一个等差数列,且公差为10,所以由41363a a d ==+得:16,a =因此确定的号码是06.12.设样本数据1210,,,x x x L 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数, 1,2,,10i =L ),则12,10,y y y L 的均值和方差分别为 . 【答案】1+,4a2221210(1)(1)(1)4041010x x x -+-++-===L13.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为 . 【答案】25,17,814.下图1是某县参加2011年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1,A2,…,A n(如A2表示身高(单位:cm)在[150,155)内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个程序框图.现要统计身高在160 cm~180 cm(含160 cm,不含180 cm)内的学生人数,那么在程序框图中的判断框内应填写的条件是________.图2【答案】i≤7。

2019届高考理数小题专练:(13)统计与统计案例

2019届高考理数小题专练:(13)统计与统计案例

小题专练(13)统计与统计案例1.从某年级500名学生中抽取60名学生进行体重的统计分析,就这个问题来说,下列说法正确的是( )A.500名学生是总体B.每个被抽查的学生是个体C.抽取的60名学生的体重是一个样本D.抽取的60名学生的体重是样本容量【解析】选C.研究的是学生的体重,不是学生本人,所以A,B都不对,D中样本容量是60,不是体重.2.(2016·泰安模拟)简单随机抽样的结果( )A.完全由抽样方式所决定B.完全由随机性所决定C.完全由人为因素所决定D.完全由计算方法所决定【解析】选B.根据简单随机抽样的定义,总体中每个个体被抽到的机会相等,因此抽样结果只与随机性有关.3.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6解析:因为40800=120,故各层中依次抽取的人数分别为160×120=8,320×120=16,200×120=10,120×120=6.答案:D4.(2018·西安质检)采用系统抽样方法从1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,…,1 000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.抽到的50人中,编号落入区间[1,400]的人做问卷A,编号落入区间[401,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12 B.13C.14 D.15解析:1 000÷50=20,故由题意可得抽到的号码构成以8为首项,以20为公差的等差数列,且设此等差数列的通项公式为a n =8+(n -1)×20=20n -12.由751≤20n -12≤1 000,解得38.15≤n ≤50.6.再由n 为正整数可得39≤n ≤50,且n ∈Z ,故做问卷C 的人数为12.故应选A. 答案:A5.(2018·合肥质检)一次数学考试后,某老师从自己所带的两个班级中各抽取5人,记录他们的考试成绩,得到如图所示的茎叶图.已知甲班5名同学成绩的平均数为81,乙班5名同学成绩的中位数为73,则x -y 的值为( ) A .2 B .-2 C .3D .-3解析:由题意得72+77+80+x +86+905=81⇒x =0,易知y =3,∴x -y =-3,故选D. 答案:D6.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x 的值等于( )A .0.12B .0.012C .0.18D .0.018解析:依题意,0.054×10+10x +0.01×10+0.006×10×3=1,解得x =0.018,故选D. 答案:D7.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56B.60C.120 D.140解析:由频率分布直方图可知,这200名学生每周的自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.故选D.答案:D8.(2016·怀化模拟)某医疗研究所为了检验某种血清能否起到预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,利用2×2列联表计算得K2≈3.918.附表:则作出“这种血清能起到预防感冒的作用”出错的可能性不超过( )A.95%B.5%C.97.5%D.2.5%【解析】选B.因为观测值K2≈3.918>3.841,所以对照题目中的附表,得出错的可能性不超过5%.9.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=12x+1上,则这组样本数据的样本相关系数为()A.-1 B.0C.12D .1解析:所有点均在直线上,则样本相关系数最大即为1,故选D. 答案:D10.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( ) A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5D.y ^=-0.3x +4.4解析:依题意知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确. 答案:A11.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元D .12.2万元解析:∵x =10.0,y =8.0,b ^=0.76,∴a ^=8-0.76×10=0.4,∴回归方程为y ^=0.76x +0.4,把x =15代入上式得,y ^=0.76×15+0.4=11.8(万元),故选B. 答案:B12.根据如下样本数据:得到的回归方程为y ^=b x +a .若样本点的中心为(5,0.9),则当x 每增加1个单位时,y ( ) A .增加1.4个单位 B .减少1.4个单位 C .增加7.9个单位D .减少7.9个单位解析:依题意得,y =a +b -25=0.9,故a +b =6.5①;又样本点的中心为(5,0.9),故0.9=5b +a ②,联立①②,解得b =-1.4,a =7.9,即y ^=-1.4x +7.9,可知当x 每增加1个单位时,y 减少1.4个单位,故选B. 答案:B13.(2016·济宁模拟)某市居民2011~2015年家庭年平均收入x(单位:万元)与年平均支出y(单位:万元)的统计资料如表所示:根据统计资料,居民家庭年平均收入的中位数是 ,家庭年平均收入与年平均支出有 线性相关关系.【解析】由中位数的定义知,总体个数为奇数个时按大小顺序排列后中间一个是中位数,而偶数个时需取中间两数的平均数.由统计资料可以看出,当年平均收入增多时,年平均支出也增多,因此两者之间具有正线性相关关系. 答案:13 正14.车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程=0.67x+54.9.现发现表中有一个数据看不清,请你推断出该数据的值为 .【解析】由已知可计算求出=30,而回归直线方程必过点(,),则=0.67×30+54.9=75,设模糊数据为a,则=75,计算得a=68.答案:6815.(2018·唐山质检)为了研究某种细菌在特定环境下随时间变化的繁殖规律,得到了下表中的实验数据,计算得回归直线方程为y ^=0.85x -0.25.由以上信息,可得表中c 的值为________.解析:x=3+4+5+6+75=5,y=2.5+3+4+4.5+c5=14+c5,代入回归直线方程得14+c5=0.85×5-0.25,解得c=6.答案:616.(2016·宁波模拟)某班有48名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分数和方差分别是、.【解题提示】列出前后的方差公式对比,利用整体代换的思想求解.【解析】易得没有改变,=70,而s2==75,s′2===75-=75-25=50.答案:70 50。

2021届高考数学-统计与统计案例提分练(详解)

2021届高考数学-统计与统计案例提分练(详解)

2021届高考数学-统计与统计案例提分练(详解)1.完成下列抽样调查,较为合理的抽样方法依次是()①从30件产品中抽取3件进行检查;②某校高中三个年级共有2460人,其中高一830人、高二820人、高三810人,为了了解学生对数学的建议,拟抽取一个容量为300的样本;③某剧场有28排,每排有32个座位,在一次报告中恰好坐满了听众,报告结束后,为了了解听众意见,需要请28名听众进行座谈.A.①简单随机抽样,②系统抽样,③分层抽样B.①分层抽样,②系统抽样,③简单随机抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①简单随机抽样,②分层抽样,③系统抽样【答案】D【解析】①中,总体数量不多,适合用简单随机抽样;②中,某校高中三个年纪共有2460人,其中高一830人、高二820人、高三810人,适合于分层抽样;③中,总体数量较多且编号有序,适合于系统抽样.故选D.2.调查机构对某高科技行业进行调查统计,得到该行业从业者学历分布饼状图、从事该行业岗位分布条形图,如图所示.给出下列三种说法:①该高科技行业从业人员学历为博士的占一半以上;②该高科技行业中从事科技岗位的人数超过总人数的30%;③该高科技行业中从事运营岗位的人员主要是本科生.其中正确的个数为()A.0个B.1个C.2个D.3个【答案】C【解析】在①中,由该行业从业者学历分布饼状图得到:该高科技行业人员中学历为博士的占一半以上,故①正确;一、选择题在②中,由从事该行业岗位分布条形图得到:在高科技行业中从事科技岗位的人数超过总人数的30%, 故②正确;在③中,由该行业从业者学历分布饼状图、从事该行业岗位分布条形图,无法得到该高科技行业中从事运营岗位的人员主要是本科生,故③错误.故选C .3.某市为最大限度的吸引“高精尖缺”人才,向全球“招贤纳士”,推进了人才引入落户政策,随着人口增多,对住房要求也随着而来,而选择购买商品房时,住户对商品房的户型结构越来越重视,因此某商品房调查机构随机抽取n 名市民,针对其居住的户型机构和满意度进行了调查,如图1调查的所有市民中四居室共200户,所占比例为13,二居室住户占16,如图2是有分层抽样的方法从所有调查的市民的满意度问卷中,抽取10%的调查结果绘制成的统计图,则下列说法正确的是( )A .样本容量为70B .样本中三居室住户共抽取了25户C .根据样本可估计对四居室满意的住户有70户D .样本中对三居室满意的有15户【答案】D【解析】如图1调查的所有市民中四居室共200户,所占比例为13,二居室住户占16, ∴20060013=,二居室有16001006⨯=户,三居室有300户, 由频率分布直方图和扇形统计图得:在A 中,样本容量为60010%60n =⨯=,故A 错误;在B 中,样本中三居室住户共抽取了30010%30⨯=户,故B 错误;在C 中,根据样本可估计对四居室满意的住户有20040%80⨯=户,故C 错误;在D 中,样本中对三居室满意的有30010%50%15⨯⨯=户,故D 正确,故选D .4.如图是某市2017年3月1日至3月16日的空气质量指数趋势统计图,空气质量指数(AQI )小于100表示空气质量油量,空气质量指数大于200表示空气重度污染,则关于该市这16日的空气质量,下列说法不正确的是()A.出现过连续4天空气重度污染B.空气重度污染的频率为0.5C.相邻两天空气质量指数之差的最大值195D.空气质量指数的平均值小于200【答案】C∼日这4天连续重度污染,故A正确;【解析】依题意,根据图中信息,121516天中有8天重度污染,故B正确;-=≠,故C错误;相邻两天空气质量指数之差的最大的为7日和8日,最大值为2608317719516个数据中大于200和小于200的各有8个,大于200的8个数据接近200,而小于200的8个数据与200相差较大,故平均值小于200,故D正确,故选C.5.如图是某赛季甲,乙两名篮球运动员9场比赛所得分数的茎叶图,则下列说法错误的是()A.甲所得分数的极差为22B.乙所得分数的中位数为18C.两人所得分数的众数相等D.甲所得分数的平均数低于乙所得分数的平均数【答案】D-=,A正确;【解析】甲所得分数的极差为331122乙所得分数的中位数为18,B正确;甲所得分数的众数为22,乙所得分数的众数为22,C正确,故选D.6.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,10;乙:8,9,9,9,10;。

数学高考复习统计与统计案例专题训练(含答案)

数学高考复习统计与统计案例专题训练(含答案)

数学高考复习统计与统计案例专题训练(含答案)[40,50),[50,60].将日均收看该类体育节目时间不低于40分钟的观众称为体育迷,则图中x的值为()A.0.01B.0.02C.0.03D.0.04[答案] A[解析] 由题设可知(0.005+x+0.012+0.02+0.025+0.028)10=1,解得x=0.01,选A.4.(2019东北三校二模)在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A、B两样本的下列数字特征对应相同的是()A.平均数B.标准差C.众数D.中位数[答案] B[解析] 因为A组数据为:42,43,46,52,42,50B组数据为:37,38,41,47,37,45.可知平均数、众数、中位数都发生了变化,比原来A组数据对应量都减小了5,但标准差不发生变化,故选B.5.(2019石家庄质检)等差数列x1,x2,x3,,x9的公差为1,若以上述数据x1,x2,x3,,x9为样本,则此样本的方差为()A. B. C.60 D.30[答案] A[解析] 令等差数列为1,2,39,则样本的平均值=5,S2=[(1-5)2+(2-5)2++(9-5)2]==.6.(文)(2019郑州市第二次质检)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元) 4 5 6 7 8 9 销量y(件) 90 84 83 80 75 68 由表中数据,求得线性回归方程为=-4x+a.若在这些样本点中任取一点,则它在回归直线左下方的概率为()A. B. C. D.[答案] B[解析] ==,==80,回归直线过点(,80),a=106,=-4x+106,点(5,84),(9,68)在回归直线左下方,故所求概率P==.(理)(2019河北衡水中学二调)关于统计数据的分析,有以下几个结论,其中正确的个数为()利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高;将一组数据中的每个数据都减去同一个数后,期望与方差均没有变化;调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查是分层抽样法;已知随机变量X服从正态分布N(3,1),且P(24)=0.682 6,则P(X4)等于0.158 7某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为15人.A.2B.3C.4D.5[答案] A[解析] 正确,错误,设样本容量为n,则=,n=30,故错.二、填空题7.(2019吉林九校联合体二模)将某班的60名学生编号为:01,02,,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.[答案] 16,28,40,52[解析] 依据系统抽样方法的定义得知,将这60名学生依次按编号每12人作为一组,即01~12、13~24、、49~60,当第一组抽得的号码是04时,剩下的四个号码依次是16,28,40,52(即其余每一小组所抽出来的号码都是相应的组中的第四个号码).8.(2019龙岩模拟)10名工人某天生产同一零件,生产的件数分别是10,12,14,14,14,15,15,16,16,17,设这10个数的中位数为a,众数为b,则a-b=________.[答案] 0.5[解析] 从数据中可以看出,众数b=14,且中位数a==14.5,a-b=14.5-14=0.5.9.(2019烟台质检)为了解某校高三学生身体状况,用分层抽样的方法抽取部分男生和女生的体重,将男生体重数据整理后,画出了频率分布直方图,已知图中从左到右前三个小组频率之比为123,第二小组频数为12,若全校男、女生比例为32,则全校抽取学生数为________.[答案] 80[解析] 第四小组和第五小组的频率之和是5(0.0125+0.0375)=0.25,故前三个小组的频率之和是0.75,则第二小组的频率是0.25,则抽取的男生人数是120.25=48人,抽取的女生人数是48=32人,全校共抽取80人.三、解答题10.(文)(2019东北三省三校二模)某个团购网站为了更好地满足消费者需求,对在其网站发布的团购产品展开了用户调查,每个用户在使用了团购产品后可以对该产品进行打分,最高分是10分.上个月该网站共卖出了100份团购产品,所有用户打分的平均分作为该产品的参考分值,将这些产品按照得分分成以下几组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到的频率分布直方图如图所示.(1)分别求第三,四,五组的频率;(2)该网站在得分较高的第三,四,五组中用分层抽样的方法抽取了6个产品作为下个月团购的特惠产品,某人决定在这6个产品中随机抽取2个购买,求他抽到的两个产品均来自第三组的概率.[解析] (1)第三组的频率是0.1502=0.3;第四组的频率是0.1002=0.2;第五组的频率是0.0502=0.1(2)设抽到的两个产品均来自第三组为事件A,由题意可知,从第三、四、五组中分别抽取3个,2个,1个.不妨设第三组抽到的是A1,A2,A3;第四组抽到的是B1,B2;第五组抽到的是C1,所含基本事件总数为:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,C1},{A2,B1},{A2,B2},{A2,C1},{A3,B1},{A3,B2},{A3,C1},{B1,B2},{B1,C1},{B2,C1}所以P(A)==.(理)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;(3)若将频率视为概率,对甲同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为,求的分布列及数学期望E().[解析] (1)作出茎叶图如下:(2)派甲参赛比较合适,理由如下:甲=(702+804+902+8+9+1+2+4+8+3+5)=85乙=(701+804+903+5+0+0+3+5+0+2+5)=85.S=[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88 -85)2+(93-85)2+(95-85)2]=35.5S=[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90 -85)2+(92-85)2+(95-85)2]=41甲=乙,SP1,派乙参赛比较合适.(3)记甲同学在一次数学竞赛中成绩高于80分为事件A,则P(A)==,随机变量的分布列为0 1 2 3 P E()=0+1+2+3=.(或E()=np=3=)数学2019年高考复习统计与统计案例专题训练及答案解析的全部内容就是这些,查字典数学网希望考生可以取得优异的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学小题分项练习(十三) 统计与统计案例
1.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为( ) A .10 B .9 C .8 D .7
答案 A
解析 因为高一学生210人,从高一学生中抽取的人数为7,所以每210
7=30(人)抽取1人,
所以从高三学生中抽取的人数应为300
30
=10.故选A.
2.某学校有男学生400名,女学生600名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取男学生40名,女学生60名进行调查,则这种抽样方法是( ) A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 答案 D
解析 总体由男生和女生组成,比例为400∶600=2∶3,所抽取的比例也是2∶3,故拟从全体学生中抽取100名学生进行调查,采用的抽样方法是分层抽样法, 故选D.
3.设x 1=18,x 2=19,x 3=20,x 4=21,x 5=22,将这五个数据依次输入下面的程序框图进行计算,则输出的 S 值及其统计意义分别是( )
A .S =2,即5个数据的方差为2
B .S =2,即5个数据的标准差为2
C .S =10,即5个数据的方差为10
D .S =10,即5个数据的标准差为10 答案 A
解析 ∵S =1
5[(18-20)2+(19-20)2+(20-20)2+(21-20)2+(22-20)2]=2,∴选A.
4.某地市高三理科学生有15 000名,在一次调研测试中,数学成绩ξ服从正态分布N (100,σ2),已知P (80<ξ≤100)=0.35,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取( )
A .5份
B .10份
C .15份
D .20份 答案 C
解析 因为数学成绩ξ服从正态分布,且均值μ=100,
所以P (ξ≥120)=P (ξ≤80)=0.5-P (80<ξ≤100)=0.5-0.35=0.15,根据分层抽样,应该抽100×0.15=15(份). 5.有以下四个命题
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②两个随机变量相关性越强,则相关系数的绝对值越接近于1;
③在回归直线方程y^=0.2x+12中,当变量x每增加1个单位时,变量y一定增加0.2个单位;
④对于两分类变量X与Y,求出其统计量K2,K2越小,我们认为“X与Y有关系”的把握程度越小.
其中正确的是( )
A.①④B.②③
C.①③D.②④
答案 D
解析①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①不正确;②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1,满足线性相关的定义,故②正确;③在回归方程y^=0.2x+12中,当变量x每增加1个单位时,变量y平均增加0.2个单位,故③不正确;对于两分类变量X 与Y,求出其统计量K2,K2越小,我们认为“X与Y有关系”的把握程度越小,是随机变量K2的观测值的特点,故④正确,故选D.
6.观察下列各图,其中两个分类变量x,y之间关系最强的是( )
答案 D
7.已知变量x,y的取值如下表所示:
x 45 6
y 867
如果y 与x 线性相关,且线性回归方程为y ^
=b ^
x +2,则b ^
的值为( ) A .1 B.32 C.45 D.56
答案 A
解析 由表格,得x =5,y =7,代入线性回归方程,得7=5b ^+2,解得b ^
=1,故选A. 8.每吨生铁成本y (元)和废品率x %之间的线性回归方程为y ^
=2x +256,这表明( ) A .y 与x 的相关系数为2 B .y 与x 的关系是函数关系
C .废品率每增加1%,生铁成本每吨大约增加2元
D .废品率每增加1%,生铁成本大约增加258元 答案 C
解析 y 与x 的相关系数为|r |≤1,排除A ;y 与x 的关系是相关关系,排除B ;废品率每增加1%,生铁成本每吨大约增加2元,C 正确.
9.某疾病研究所想知道吸烟与患肺病是否有关,于是随机抽取1 000名成年人调查是否吸烟及是否患有肺病,得到2×2列联表,经计算得K 2=5.231,已知在假设吸烟与患肺病无关的前提条件下,P (K 2≥3.841)=0.05,P (K 2≥6.635)=0.01,则该研究所可以( ) A .有95%以上的把握认为“吸烟与患肺病有关” B .有95%以上的把握认为“吸烟与患肺病无关” C .有99%以上的把握认为“吸烟与患肺病有关” D .有99%以上的把握认为“吸烟与患肺病无关” 答案 A
解析 根据P (K 2≥3.841)=0.05,
P (K 2≥6.635)=0.01,故有95%的把握认为“吸烟与患肺病有关”,即A 正确.
10.有以下四个命题:
①在回归分析中,可用R 2的值判断模型的拟合效果,R 2越大,模型的拟合效果越好; ②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
③若数据x 1,x 2,x 3,…,x n 的方差为1,则2x 1,2x 2,2x 3,…,2x n 的方差为2;
④对分类变量x 与y 的随机变量K 2的观测值k 来说,k 越小,判断“x 与y 有关系”的把握程度越大.
其中真命题的个数为( ) A .1 B .2 C .3 D .4 答案 B
解析 ①根据相关指数的意义可知①正确;②根据相关系数的意义可知②正确;③方差应为4,故③错误;④K 2的观察值越小,x 与y 有关系的把握程度越小,故④错误.故正确的命题有2个,故选B.
11.下面的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )
A.7
10 B.45 C.25 D.910
答案 B
解析 设污损的数字为a ,甲平均成绩为
88+89+90+91+92
5
=90,乙的平均成绩为
83+83+87+90+a +995=88.4+a 5,只有在a =9或a =8时,88.4+a
5
≥90,因此所
求概率为10-210=4
5
.故选B.
12.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )
A .11
B .11.5
C .12
D .12.5
答案 C
解析 由频率分布直方图可估计样本重量的中位数在第二组,设中位数比10大x ,由题意可得0.06×5+x ×0.1=0.5,得x =2,所以中位数为12,故选C.
13.将某班参加社会实践编号为1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为6的样本,已知5号,21号,29号,37号,45号学生在样本中,则样本中还有一名学生的编号是________. 答案 13
解析 因为系统抽样的特点是等距离抽样, 因为45-37=37-29=29-21=8,所以样本中还有一名学生的编号为5+8=13.
14.如图是某学校抽取的学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率依次成等差数列,第2个小组的频数为10,则抽取的学生人数为________.
答案 40
解析 前3个小组的频率和为1-(0.037 5+0.012 5)×5=0.75,所以第2小组的频率为13
×0.75=0.25.
所以抽取的学生人数为10
0.25
=40.
15.某班50人的一次竞赛成绩的频数分布如下:[60,70),3人;[70,80),16人;[80,90),24人;[90,100],7人.利用组中数据可估计本次比赛该班的平均分为________. 答案 82
解析 平均分为65×350+75×1650+85×2450+95×7
50
=82.
16.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图如图所示,记甲、乙、丙所调查数据的标准差分别为s 1,s 2,s 3则它们的大小关系为________.(用“>”连接)
答案s1>s2>s3
解析根据三个频率分布直方图知:第一组两端的数据较多,偏离平均数远,最分散,其方差最大;第二组的数据是单峰的,每一个小长方形的差别较小,数据分布均匀,方差比第一组的方差小;第三组绝大部分的数据都在平均数左右,数据最集中,故方差最小.综上可得:
s1>s2>s3.。

相关文档
最新文档