高中数学人教A版选修4-1 (31)
人教A版高中数学选修4-1课件:1.2.平行线分线段成比例定理
![人教A版高中数学选修4-1课件:1.2.平行线分线段成比例定理](https://img.taocdn.com/s3/m/323387d4f61fb7360a4c6513.png)
A D
L1
E A
D
L2 L1
E
L2 C L3 B
B
C L3
A B C
l
l D E F
l1 l2
l3
除此之外,还有其它对应线段成比例吗?
反比
合比
合比
反比
?Hale Waihona Puke 合比三、定理的运用
例1(一、基础题) 1、已知:L1∥L2∥L3则:
A B
D
E
L1 L2
AB BC AB DE
DE () ()EF BC () EF ()
已知:如图,DE//BC分别交AB、AC于点D、 E.求证:
A
(图形语言)
法2:为了证明,需用平行 线分线段成比例定理.故作 CG//AB,且与DE的延长线交 于点G.
D B
E C
G
证明:过点C作CG//AB,且与DE的延长线交于点G. ∵DE//BC,∴AD:AB=AE:AC ∵CG//AB,∴DE:DG=AE:AC ∵四边形DEFB为平行四边形,∴DG=BC.
l1 a1
A B
D E
L1
A (D) B E
L1 L2 2 L3
L2
F 1 L3
C
C
F
D
A
L1 L2
D B (E)
A
L1 L2 4 L3
B
C
E
F
L3
3
C
F
平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例.
若将下图中的直线L2看成是平行于△ABC的边 BC的直线,那么可得: 推论:平行于三角形一边的直线截其他两边( 或两边的延长线)所得的对应线段成比例.
2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)
![2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)](https://img.taocdn.com/s3/m/25d7ef2d4b35eefdc8d3330b.png)
(2)推论1:经过圆心且 垂直于切线 的直线必经过切点.
(3)推论2:经过切点且 垂直于切线 的直线必经过圆心.
2.圆的切线的判定方法 (1)定义:和圆只有一个公共点的直线是圆的切线.
利用圆的切线的性质来证明或进行有关的计算有时需
添加辅助线,其中连接圆心和切点的半径是常用辅助线, 从而可以构造直角三角形,利用直角三角形边角关系求解, 或利用勾股定理求解,或利用三角形相似求解等.
1. AB是圆O的直径,D为圆O上一点, 过D作圆O的切线交AB的延长线于点C,
若DA=DC,求证:AB=2BC.
∠BOD 是 BD 所对的圆心角,
∠BCD=45° , ∴∠BOD=90° . ∵∠ADB 是△BCD 的一个外角, ∴∠DBC=∠ADB-∠ACB =60° -45° =15° , ∴∠DOC=2∠DBC=30° , 从而∠BOC=120° , ∵OB=OC,∴∠OBC=∠OCB=30° .
在△OEC 中,因为∠EOC=∠ECO=30° , ∴OE=EC, 在△BOE 中,因为∠BOE=90° ,∠EBO=30° . ∴BE=2OE=2EC, CE CD 1 ∴BE=DA= , 2 ∴AB∥OD,∴∠ABO=90° , 故 AB 是△BCD 的外接圆的切线.
交⊙O于点E,PA=AO=OB=1. (1)求∠P的度数; (2)求D切点,∴OC⊥PC,△POC 为直角三角形. ∵OC=OA=1,PO=PA+AO=2, OC 1 ∴sin ∠P= PO= .∴∠P=30° . 2 (2)∵BD⊥PD,∴在 Rt△PBD 中, 由∠P=30° ,PB=PA+AO+OB=3, 3 得 BD= . 2 连接 AE.则∠AEB=90° ,∴AE∥PD. ∴∠EAB=∠P=30° ,∴BE=ABsin 30° =1, 1 ∴DE=BD-BE= . 2
人教A版高中数学选修4-1课件 平行线平分线段定理课件
![人教A版高中数学选修4-1课件 平行线平分线段定理课件](https://img.taocdn.com/s3/m/ae17602da76e58fafbb00327.png)
请同学们独立完成证明过程
A
E
B
达标检测
1、已知梯形ABCD中,AB//DC,E为AD中点,EF//BC,求证:BC=2EF.
2、已知梯形ABCD 中,AD//BC,∠ ABC=90°,M是 CD的中点,求证:A M=BM.
3、已知AC⊥ AB,DB⊥ AB,O是CD的中点,求证:OA=OB.
4、在ABC中,D为AB的中点, DE//BC.求证:DE=BC.
11
11
11
A
l1
l2
B
l3
C
l4
D
A1 ? B1 ? C1
?
D1
小组讨论,完成证明
分析:
∵ 如图 ,l ∥l ∥l 且 AB =BC
1
2
3
∴ A B =B C
11
11
∵ 如图,直线l ∥l ∥l 且 BC = CD
2
3
4
∴B C =C D
11
11
A
定理辨析
D
E
1、如图ΔABC中点 D、E三等分AB,D F//EG//BC, DF、EG分别交AC 于点F、G,
从特殊到一般
1、已知:直线l //l //l ,AC//A C 且AB =BC 求证 : A B =B C
1
2
3
11
11
11
A
l1
B
l2
l3
C
A1 B1 C1
问题:从图形中我们能够找到哪些平行四边形吗?
预设:
四边形ABA B 为平行四边形 11
四边形BCC B 为平行四边形 11
问题:我们能否利用平行四边形性质得到 A B B C ?
人教A版高中数学选修4-1全册课件
![人教A版高中数学选修4-1全册课件](https://img.taocdn.com/s3/m/0b997dbb763231126fdb110f.png)
● 在三角形ABF中, ● ∵AF∥ME,且M为AB的中点, ● ∴E为BF的中点,故BE=EF. ● 同理,在三角形CDE中, ● ∵CE∥NF,且N为CD的中点, ● ∴F为DE的中点,故DF=EF. ● ∴BE=EF=FD.
●
平行线等分线段定理应在有线段的中点时应用,在没有
线段的中点时应先构造线段的中点,然后才能应用定理及其推论证题.
● A.AE=CE ● B.BE=DE ● C.CE=DE ● D.CE >DE ● 【答案】C
● 4.如图所示,AB∥CD∥EF且AO=OD=DF,BC=6,则BE等于( )
● A.9
B.10
● C.11
D.12
● 【答案】A
•平行线等分线段定理
● 【例1】 如图所示,已知M,N分别是▱ABCD的边AB,CD的中点,CM 交BD于点E,AN交BD于点F,请你探讨三条线段BE,EF,FD之间的关系, 并给出证明.
点击进入WORD链接
●第2课时 平行线分线段成比例定理
● 1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段
________.
成比例
● 2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对
应线段________.
成比例
3.比例的性质:
(1)比例的基本性质:若 bd≠0,则ab=dc⇔_a_d_=__bc___.特殊
1.如图所示,a∥b∥c,那么下列结论中错误的是( ) A.由 AB=BC 可得 FG=GH B.由 AB=BC 可得 OB=OG C.由 CE=2CD 可得 CA=2BC D.由 GH=12FH 可得 CD=DE 【答案】B
•经过三角形一边的中点与另一 边平行的直线必平分第三边
人教A版2019高中数学选修4-1教学案:第一讲 一 平行线等分线段定理_含答案
![人教A版2019高中数学选修4-1教学案:第一讲 一 平行线等分线段定理_含答案](https://img.taocdn.com/s3/m/2069ed972cc58bd63186bd56.png)
一平行线等分线段定理[对应学生用书P1]1.平行线等分线段定理(1)如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.(2)用符号语言表述:已知a ∥b ∥c ,直线m 、n 分别与a 、b 、c 交于点A 、B 、C 和A ′、B ′、C ′(如图),如果AB =BC ,那么A ′B ′=B ′C ′.[说明](1)定理中的平行线组是指每相邻的两条距离都相等的一组特殊的平行线;它是由三条或三条以上的平行线组成的.(2)“相等线段”是指在“同一条直线”上截得的线段相等. 2.平行线等分线段定理的推论[对应学生用书P1][例1] 已知如图,直线l 1∥l 2∥l 3∥l 4,l ,l ′分别交l 1,l 2,l 3,l 4于A ,B ,C ,D ,A 1,B 1,C 1,D 1,AB =BC =CD .求证:A 1B 1=B 1C 1=C 1D 1.[思路点拨] 直接利用平行线等分线段定理即可. [证明] ∵直线l 1∥l 2∥l 3,且AB =BC , ∴A 1B 1=B 1C 1.∵直线l 2∥l 3∥l 4且BC =CD , ∴B 1C 1=C 1D 1, ∴A 1B 1=B 1C 1=C 1D 1.平行线等分线段定理的应用非常广泛,在运用的过程中要注意其所截线段的确定与对应,分析存在相等关系的线段,并会运用相等线段来进行相关的计算与证明.1.已知:如图,l1∥l 2∥l 3,那么下列结论中错误的是( ) A .由AB =BC 可得FG =GH B .由AB =BC 可得OB =OG C .由CE =2CD 可得CA =2BC D .由GH =12FH 可得CD =DE解析:OB 、OG 不是一条直线被平行线组截得的线段. 答案:B2.如图,已知线段AB ,求作线段AB 的五等分点.作法:如图,(1)作射线AC ;(2)在射线AC 上依任意长顺次截取AD =DE =EF =FG =GH ;(3)连接HB ;(4)过点G ,F ,E ,D 分别作HB 的平行线GA 1,F A 2,EA 3,DA 4,分别交AB 于点A 1,A 2,A 3,A 4.则A 1,A 2,A 3,A 4就是所求的五等分点. 证明:过点A 作MN ∥HB , 则MN ∥DA 4∥EA 3∥F A 2∥GA 1∥HB . 又AD =DE =EF =FG =GH ,∴AA 4=A 4A 3=A 3A 2=A 2A 1=A 1B (平行线等分线段定理).[例2] 交AD 的延长线于E .求证:AG =2DE .[思路点拨] AF =FC ,GF ∥EC →AG =GE →△BDG ≌△CDE →AG =2DE [证明] 在△AEC 中, ∵AF =FC ,GF ∥EC , ∴AG =GE . ∵CE ∥FB ,∴∠GBD =∠ECD ,∠BGD =∠E . 又BD =DC , ∴△BDG ≌△CDE .故DG =DE ,即GE =2DE , 因此AG =2DE .此类问题往往涉及平行线等分线段定理的推论1的运用,寻找便于证明三角形中线段相等或平行的条件,再结合三角形全等或相似的知识,达到求解的结果.3.如图,在▱ABCD 中,对角线AC 、BD 相交于O ,OE 平行于AB 交BC 于E ,AD =6,求BE 的长.解:因为四边形ABCD 是平行四边形, 所以OA =OC ,BC =AD . 又因为AB ∥DC ,OE ∥AB , 所以DC ∥OE ∥AB . 又因为AD =6,所以BE =EC =12BC =12AD =3.4.已知:AD 是BC 边上的中线,E 是AD 的中点,BE 的延长线交AC 于点F . 求证:AF =13AC .证明:如图,过D 作DG ∥BF 交AC 于G .在△BCF 中,D 是BC 的中点, DG ∥BF ,∴G 为CF 的中点.即CG =GF .在△ADG 中,E 是AD 的中点,EF ∥DG , ∴F 是AG 的中点.即AF =FG . ∴AF =13AC .[例3] 已知,如图,梯形ABCD 中,AD ∥BC ,∠ABC =90°,M 是CD的中点,求证: AM =BM .[思路点拨] 解答本题应先通过作辅助线构造推论2的应用条件. [证明] 过点M 作ME ∥BC 交AB 于点E , ∵AD ∥BC , ∴AD ∥EM ∥BC .又∵M 是CD 的中点, ∴E 是AB 的中点. ∵∠ABC =90°, ∴ME 垂直平分AB . ∴AM =BM .有梯形且存在线段中点时,常过该点作平行线,构造平行线等分线段定理的推论2的基本图形,进而进行几何证明或计算.5.若将本例中“M 是CD 的中点”与“AM =BM ”互换,那么结论是否成立?若成立,请给予证明.解:结论成立.证明如下: 过点M 作ME ⊥AB 于点E , ∵AD ∥BC ,∠ABC =90°, ∴AD ⊥AB ,BC ⊥AB . ∵ME ⊥AB ,∴ME ∥BC ∥AD . ∵AM =BM ,且ME ⊥AB ,∴E 为AB 的中点,∴M 为CD 的中点.6.已知:如图,▱ABCD 的对角线AC 、BD 交于点O ,过点A ,B ,C ,D ,O 分别作直线a 的垂线,垂足分别为A ′,B ′,C ′,D ′,O ′;求证:A ′D ′=B ′C ′.证明:∵▱ABCD 的对角线AC ,BD 交于O 点, ∴OA =OC ,OB =OD .∵AA ′⊥a ,OO ′⊥a ,CC ′⊥a , ∴AA ′∥OO ′∥CC ′.∴O ′A ′=O ′C ′. 同理:O ′D ′=O ′B ′.∴A ′D ′=B ′C ′.[对应学生用书P3]一、选择题1.梯形ABCD 中,AB ∥CD ,E ,F 分别是AD ,BC 的中点,且EF =2 cm ,则AB +CD 等于( )A .1 cmB .2 cmC .3 cmD .4 cm解析:由梯形中位线定理知EF =12(AB +CD ),∴AB +CD =4 cm. 答案:D2.如图,AD 是△ABC 的高,E 为AB 的中点,EF ⊥BC 于F ,如果DC =13BD ,那么FC 是BF 的( )A.53倍 B.43倍 C.32倍 D.23倍 解析:∵EF ⊥BC ,AD ⊥BC ,∴EF ∥AD . 又E 为AB 的中点,由推论1知F 为BD 的中点, 即BF =FD .又DC =13BD ,∴DC =23BF .∴FC =FD +DC =BF +DC =53BF .答案:A3.梯形的中位线长为15 cm ,一条对角线把中位线分成3∶2两段,那么梯形的两底长分别为( )A .12 cm 18 cmB .20 cm 10 cmC .14 cm 16 cmD .6 cm 9 cm解析:如图,设MP ∶PN =2∶3,则MP =6 cm ,PN =9 cm.∵MN 为梯形ABCD 的中位线,在△BAD 中,MP 为其中位线, ∴AD =2MP =12 cm. 同理可得BC =2PN =18 cm. 答案:A4.梯形的一腰长10 cm ,该腰和底边所形成的角为30°,中位线长为12 cm ,则此梯形的面积为( )A .30 cm 2B .40 cm 2C .50 cm 2D .60 cm 2解析:如图,过A 作AE ⊥BC ,在Rt △ABE 中,AE =AB sin 30°=5 cm.又已知梯形的中位线长为12 cm ,∴AD +BC =2×12=24(cm). ∴梯形的面积S =12(AD +BC )·AE=12×5×24=60 (cm 2). 答案:D 二、填空题5.如图所示,已知a ∥b ∥c ,直线m 、n 分别与a 、b 、c 交于点A 、B 、C 和A ′、B ′、C ′,如果AB =BC =1,A ′B ′=32,则B ′C ′=________.解析:直接利用平行线等分线段定理. 答案:326.如图,在△ABC 中,E 是AB 的中点,EF ∥BD ,EG ∥AC 交BD 于G ,CD =12AD ,若EG =2 cm ,则AC =______;若BD =10 cm ,则EF =________.解析:由E 是AB 的中点,EF ∥BD ,得EG =12AD =FD =2 cm ,结合CD =12AD ,可以得到F 、D 是AC 的三等分点, 则AC =3EG =6(cm).由EF ∥BD ,得EF =12BD =5(cm).答案:6 cm 5 cm7.如图,梯形ABCD 中,AD ∥BC ,E 为AB 的中点,EF ∥BC ,G 是BC 边上任一点,如果S △GEF =2 2 cm 2,那么梯形ABCD 的面积是________cm 2.解析:因为E 为AB 的中点,EF ∥BC , 所以EF 为梯形ABCD 的中位线, 所以EF =12(AD +BC ),且△EGF 的高是梯形ABCD 高的一半, 所以S 梯形ABCD =4S △EGF =4×2 2 =82(cm 2). 答案:8 2 三、解答题8.已知△ABC 中,D 是AB 的中点,E 是BC 的三等分点(BE >CE ),AE 、CD 交于点F . 求证:F 是CD 的中点.证明:如图,过D 作DG ∥AE 交BC 于G ,在△ABE 中,∵AD =BD ,DG ∥AE , ∴BG =GE .∵E 是BC 的三等分点, ∴BG =GE =EC .在△CDG 中,∵GE =CE ,DG ∥EF , ∴DF =CF .即F 是CD 的中点.9.如图,先把矩形纸片ABCD 对折后展开,并设折痕为MN ;再把点B 叠在折痕线上,得到Rt △AB 1E .沿着EB 1线折叠,得到△EAF .求证:△EAF 是等边三角形.证明:因为AD∥MN∥BC,AM=BM,所以B1E=B1F.又因为∠AB1E=∠B=90°,所以AE=AF,所以∠B1AE=∠B1AF.根据折叠,得∠BAE=∠B1AE,所以∠BAE=∠B1AE=∠B1AF=30°,所以∠EAF=60°,所以△EAF是等边三角形.10.已知:梯形ABCD中,AD∥BC,四边形ABDE是平行四边形,AD的延长线交EC于F.求证:EF=FC.证明:法一:如图,连接BE交AF于O,∵四边形ABDE是平行四边形,∴BO=OE.又∵AF∥BC,∴EF=FC.法二:如图,延长ED交BC于点H,∵四边形ABDE是平行四边形,∴AB∥ED,AB∥DH,AB=ED.又∵AF∥BC,∴四边形ABHD是平行四边形.∴AB=DH.∴ED=DH.∴EF=FC.法三:如图,延长EA交CB的延长线于M,∵四边形ABDE是平行四边形,∴BD∥EA,AE=BD.又AD∥BC.∴四边形AMBD是平行四边形.∴AM=BD.∴AM=AE. ∴EF=FC.。
新人教A版高中数学教材目录(必修+选修)【很全面】
![新人教A版高中数学教材目录(必修+选修)【很全面】](https://img.taocdn.com/s3/m/abcf69da4028915f814dc20b.png)
人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
高中数学人教A版选修4-1课件:2-3圆的切线的性质及判定定理
![高中数学人教A版选修4-1课件:2-3圆的切线的性质及判定定理](https://img.taocdn.com/s3/m/f2fc849dd4d8d15abf234e1e.png)
课堂篇 合作学习 探究一 探究二 探究三 当堂检测
(1)证明:如图,连接OD,BD. ∵BC,CD是☉O的切线, ∴OB⊥BC,OD⊥CD. ∴∠OBC=∠ODC=90°. 又∵OB=OD,OC=OC, ∴Rt△OBC≌Rt△ODC. ∴BC=CD.又∵OB=OD,∴OC⊥BD. ∵AB为☉O的直径,∴∠ADB=90°, 即AD⊥BD.∴AD∥OC. (2)解:∵AD∥OC,∴∠A=∠BOC. 又∠ADB=∠OBC=90°, ������������ ������������ ∴△ABD∽△OCB.∴ = .
课前篇 自主预习
1.切线的性质定理及其推论 (1)性质定理:圆的切线垂直于经过切点的半径. (2)推论1:经过圆心且垂直于切线的直线必经过切点. (3)推论2:经过切点且垂直于切线的直线必经过圆心. 名师点拨1.圆的切线的性质定理及其两个推论可以用一个定理 叙述出来,即如果一条直线满足以下三个条件中的任意两个,那么 就一定满足第三个.它们是:①垂直于切线;②过切点;③过圆心. 2.利用圆的切线的性质定理及其两个推论,可以解决两条直线的 垂直、直线经过点、点在直线上等证明问题.
思考辨析 判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画 “×”. (1)垂直于半径的直线是圆的切线. ( ) (2)切线和圆心的距离等于圆的半径. ( ) (3)圆的切线与圆只有一个公共点. ( ) (4)经过直径的一端且垂直于这条直径的直线是圆的切线. ( ) 答案:(1)× (2)√ (3)√ (4)√
课堂篇 合作学习 探究一 探究二 探究三 当堂检测
变式训练1如图,△ABC为等腰三角形,O是底边BC的中点,☉O与腰 AB相切于点D.求证:AC与☉O相切. 证明:连接OD,过点O作OE⊥AC,垂足为E. ∵☉O与AB相切于点D, ∴OD⊥AB,且OD等于圆的半径. ∵△ABC为等腰三角形,O是底边BC的中点, ∴∠B=∠C,OB=OC. 又∠ODB=∠OEC=90°,∴△ODB≌△OEC. ∴OE=OD,即OE是☉O的半径, 即圆心O到直线AC的距离等于半径. 故AC与☉O相切.
人教A版2019高中数学选修4-1教学案:第一讲 四 直角三角形的射影定理_含答案
![人教A版2019高中数学选修4-1教学案:第一讲 四 直角三角形的射影定理_含答案](https://img.taocdn.com/s3/m/39e23b1dfe4733687f21aa55.png)
四直角三角形的射影定理[对应学生用书P14]1.射影(1)点在直线上的正射影:从一点向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影.(2)线段在直线上的正射影:线段的两个端点在这条直线上的正射影间的线段.(3)射影:点和线段的正射影简称为射影.2.射影定理(1)文字语言:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.(2)图形语言:如图,在Rt△ABC中,CD为斜边AB上的高,则有CD2=AD·BD,AC2=AD·AB,BC2=BD·AB.[对应学生用书P14][例1]如图,在Rt△ABC中,CD为斜边AB上的高,若AD=2 cm,DB=6 cm,求CD,AC,BC的长.[思路点拨]在直角三角形内求线段的长度,可考虑使用勾股定理和射影定理.[解]∵CD2=AD·DB=2×6=12,∴CD=12=23(cm).∵AC2=AD·AB=2×(2+6)=16,∴AC=16=4(cm).∵BC2=BD·AB=6×(2+6)=48,∴BC=48=43(cm).故CD、AC、BC的长分别为2 3 cm,4 cm,4 3 cm.(1)在Rt△ABC中,共有AC、BC、CD、AD、BD和AB六条线段,已知其中任意两条,便可求出其余四条.(2)射影定理中每个等积式中含三条线段,若已知两条可求出第三条.1.如图,在Rt△ABC中,∠C=90°,CD是AB上的高.已知BD=4,AB=29,试求出图中其他未知线段的长.解:由射影定理,得BC2=BD·AB,∴BC=BD·AB=4×29=229.又∵AD=AB-BD=29-4=25.且AC2=AB2-BC2,∴AC=AB2-BC2=292-4×29=529.∵CD2=AD·BD,∴CD=AD·BD=25×4=10.2.已知:CD是直角三角形ABC斜边AB上的高,如果两直角边AC,BC的长度比为AC∶BC=3∶4.求:(1)AD∶BD的值;(2)若AB=25 cm,求CD的长.解:(1)∵AC2=AD·AB,BC2=BD·AB,∴AD·AB BD·AB=AC2BC2.∴ADBD=(ACBC)2=(34)2=916.(2)∵AB=25 cm,AD∶BD=9∶16,∴AD=99+16×25=9(cm),BD=169+16×25=16(cm).∴CD=AD·BD=9×16=12(cm).[例2]DG⊥BE,F、G分别为垂足.求证:AF·AC=BG·BE.[思路点拨]先将图分解成两个基本图形(1)(2),再在简单的图形中利用射影定理证明所要的结论.[证明]∵CD垂直平分AB,∴△ACD和△BDE均为直角三角形,且AD=BD.又∵DF⊥AC,DG⊥BE,∴AF·AC=AD2,BG·BE=DB2.∵AD2=DB2,∴AF·AC=BG·BE.将原图分成两部分来看,就可以分别在两个三角形中运用射影定理,实现了沟通两个比例式的目的.在求解此类问题时,关键就是把握基本图形,从所给图形中分离出基本图形进行求解或证明.3.如图所示,设CD是Rt△ABC的斜边AB上的高.求证:CA·CD=BC·AD.证明:由射影定理知:CD2=AD·BD,CA2=AD·AB,BC2=BD·AB.∴CA·CD=AD2·BD·AB=AD·BD·AB,BC·AD=AD·AB·BD.即CA·CD=BC·AD.4.Rt△ABC中有正方形DEFG,点D、G分别在AB、AC上,E、F在斜边BC上.求证:EF2=BE·FC.证明:过点A作AH⊥BC于H.则DE∥AH∥GF.∴DE AH =BE BH ,GF AH =FC CH . ∴DE ·GF AH 2=BE ·FCBH ·CH. 又∵AH 2=BH ·CH , ∴DE ·GF =BE ·FC . 而DE =GF =EF , ∴EF 2=BE ·FC .[对应学生用书P15]一、选择题1.已知Rt △ABC 中,斜边AB =5 cm ,BC =2 cm ,D 为AC 上一点,DE ⊥AB 交AB 于E ,且AD =3.2 cm ,则DE =( )A .1.24 cmB .1.26 cmC .1.28 cmD .1.3 cm解析:如图,∵∠A =∠A ,∴Rt △ADE ∽Rt △ABC , ∴AD AB =DEBC, DE =AD ·BC AB =3.2×25=1.28.答案:C2.已知直角三角形中两直角边的比为1∶2,则它们在斜边上的射影比为( ) A .1∶2 B .2∶1 C .1∶4D .4∶1解析:设直角三角形两直角边长分别为1和2,则斜边长为5,∴两直角边在斜边上的射影分别为15和45. 答案:C3.一个直角三角形的一条直角边为3 cm ,斜边上的高为2.4 cm ,则这个直角三角形的面积为( )A .7.2 cm 2B .6 cm 2C .12 cm 2D .24 cm 2解析:长为3 cm 的直角边在斜边上的射影为32-2.42=1.8(cm),由射影定理知斜边长为321.8=5(cm), ∴三角形面积为12×5×2.4=6(cm 2).答案:B4.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足,若CD =6 cm ,AD ∶DB =1∶2,则AD 的值是( )A .6 cmB .3 2 cmC .18 cmD .3 6 cm解析:∵AD ∶DB =1∶2, ∴可设AD =t ,DB =2t . 又∵CD 2=AD ·DB ,∴36=t ·2t ,∴2t 2=36,∴t =32(cm),即AD =3 2 cm. 答案:B 二、填空题5.若等腰直角三角形的一条直角边长为1,则该三角形在直线l 上的射影的最大值为________.解析:射影的最大值即为等腰直角三角形的斜边长. 答案: 26.如图所示,四边形ABCD 是矩形,∠BEF =90°,①②③④这四个三角形能相似的是________.解析:因为四边形ABCD 为矩形, 所以∠A =∠D =90°.因为∠BEF =90°,所以∠1+∠2=90°. 因为∠2+∠3=90°,所以∠1=∠3. 所以△ABE ∽△DEF . 答案:①③7.在△ABC 中,∠A =90°,AD ⊥BC 于点D ,AD =6,BD =12,则CD =__________,AC =__________,AB 2∶AC 2=__________.解析:如图,AB 2=AD 2+BD 2,又AD =6,BD =12, ∴AB =6 5.由射影定理可得,AB 2=BD ·BC , ∴BC =AB 2BD=15.∴CD =BC -BD =15-12=3. 由射影定理可得,AC 2=CD ·BC , ∴AC =3×15=3 5. ∴AB 2AC 2=BD ·BC CD ·BC =BD CD =123=4. 答案:3 35 4∶1 三、解答题8.如图:在Rt △ABC 中,CD 是斜边AB 上的高,DE 是Rt △BCD 斜边BC 上的高,若BE =6,CE =2.求AD 的长是多少.解:因为在Rt △BCD 中,DE ⊥BC ,所以由射影定理可得:CD 2=CE ·BC , 所以CD 2=16, 因为BD 2=BE ·BC , 所以BD =6×8=4 3.因为在Rt △ABC 中,∠ACB =90°, CD ⊥AB ,所以由射影定理可得: CD 2=AD ·BD ,所以AD =CD 2BD =1643=433.9.如图,在△ABC 中,CD ⊥AB 于D ,且CD 2=AD ·BD ,求证:∠ACB=90°.证明:∵CD ⊥AB , ∴∠CDA =∠BDC =90°. 又∵CD 2=AD ·BD , 即AD ∶CD =CD ∶BD ,∴△ACD ∽△CBD .∴∠CAD =∠BCD . 又∵∠ACD +∠CAD =90°, ∴∠ACB =∠ACD +∠BCD =∠ACD +∠CAD =90°.10.已知直角三角形周长为48 cm ,一锐角平分线分对边为3∶5两部分. (1)求直角三角形的三边长;(2)求两直角边在斜边上的射影的长. 解:(1)如图,设CD =3x ,BD =5x ,则BC =8x , 过D 作DE ⊥AB , 由题意可得, DE =3x ,BE =4x , ∴AE +AC +12x =48. 又AE =AC ,∴AC =24-6x ,AB =24-2x . ∴(24-6x )2+(8x )2=(24-2x )2, 解得:x 1=0(舍去),x 2=2. ∴AB =20,AC =12,BC =16, ∴三边长分别为:20 cm,12 cm,16 cm. (2)作CF ⊥AB 于F 点, ∴AC 2=AF ·AB .∴AF =AC 2AB =12220=365(cm);同理:BF =BC 2AB =16220=645(cm).∴两直角边在斜边上的射影长分别为365 cm ,645cm.[对应学生用书P16]近两年高考中,由于各地的要求不同,所以试题的呈现形式也不同.但都主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;一般试题难度不大,解题中要注意观察图形特点,巧添辅助线对解题可起到事半功倍的效果.在使用平行线分线段成比例定理及其推论时,一定要搞清有关线段或边的对应关系,切忌搞错比例关系.1.如图,在梯形ABCD 中,AB ∥CD ,AB =4,CD =2,E ,F 分别为AD ,BC 上的点,且EF =3,EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为________.解析:由CD =2,AB =4,EF =3, 得EF =12(CD +AB ),∴EF 是梯形ABCD 的中位线,则梯形ABFE 与梯形EFCD 有相同的高,设为h , 于是两梯形的面积比为 12(3+4)h ∶12(2+3)h =7∶5. 答案:7∶52.如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若AB =3AD ,则CEEO的值为________.解析:连接AC ,BC ,则∠ACB =90°. 设AD =2,则AB =6, 于是BD =4,OD =1.如图,由射影定理得CD 2=AD ·BD =8,则CD =2 2. 在Rt △OCD 中,DE =OD ·CD OC =1×223=223.则CE =DC 2-DE 2= 8-89=83, EO =OC -CE =3-83=13.因此CE EO =8313=8.答案:8[对应学生用书P16]的直线上截得的线段所呈现的规律,主要用来证明比例式成立、证明直线平行、计算线段的长度,也可以作为计算某些图形的周长或面积的重要方法,其中,平行线等分线段定理是线段的比为1的特例.[例1] 如图,在△ABC 中,DE ∥BC ,DH ∥GC . 求证:EG ∥BH . [证明] ∵DE ∥BC ,AC AB∵DH ∥GC ,∴AH AC =ADAG .∴AE ·AB =AC ·AD =AH ·AG . ∴AE AH =AGAB.∴EG ∥BH . [例2] 如图,直线l 分别交△ABC 的边BC ,CA ,AB 于点D ,E ,F ,且AF =13AB ,BD =52BC ,试求EC AE.[解] 作CN ∥AB 交DF 于点N ,并作EG ∥AB 交BC 于点G ,由平行截割定理,知BF CN =DB DC ,CN AF =EC AE,两式相乘,得BF CN ·CN AF =DB DC ·ECAE ,即EC AE =BF AF ·DC DB. 又由AF =13AB ,得BFAF =2,由BD =52BC ,得DC DB =35,所以EC AE =2×35=65.角关系.其应用非常广泛,涉及到多种题型,可用来计算线段、角的大小,也可用来证明线段、角之间的关系,还可以证明直线之间的位置关系.其中,三角形全等是三角形相似的特殊情况.[例3] 如图所示,AD 、CF 是△ABC 的两条高线,在AB 上取一点P ,使AP =AD ,再从P 点引BC 的平行线与AC 交于点Q .求证:PQ =CF .[证明] ∵AD 、CF 是△ABC 的两条高线, ∴∠ADB =∠BFC =90°. 又∠B =∠B ,∴△ABD ∽△CBF .CF CB又∵PQ ∥BC ,∴△APQ ∽△ABC . ∴PQ BC =AP AB .∴AP PQ =AB BC .∴AD CF =AP PQ. 又∵AP =AD ,∴CF =PQ .[例4] 四边形ABCD 中,AB ∥CD ,CE 平分∠BCD ,CE ⊥AD 于点E ,DE =2AE ,若△CED 的面积为1,求四边形ABCE 的面积.[解] 如图,延长CB 、DA 交于点F ,又CE 平分∠BCD ,CE ⊥AD .∴△FCD 为等腰三角形,E 为FD 的中点. ∴S △FCD =12FD ·CE=12×2ED ·CE =2S △CED =2, EF =ED =2AE . ∴F A =AE =14FD .又∵AB ∥CD , ∴△FBA ∽△FCD . ∴S △FBA S △FCD =(F A FD)2=(14)2=116.∴S △FBA =116×S △FCD =18. ∴S 四边形ABCE =S △FCD -S △CED -S △FBA =2-1-18=78.系,此定理常作为计算与证明的依据,在运用射影定理时,要特别注意弄清射影与直角边的对应关系,分清比例中项,否则在做题中极易出错.[例5] 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,DE ⊥AC于E ,EF ⊥AB 于F .求证:CE 2=BD ·DF .[证明] ∵∠ACB =90°,DE ⊥AC ,∴DE ∥BC .∴BD CE =ABAC .同理:CD ∥EF ,∴CE DF =ACAD .∵∠ACB =90°,CD ⊥AB , ∴AC 2=AD ·AB . ∴AC AD =ABAC . ∴CE DF =BD CE. ∴CE 2=BD ·DF .[对应学生用书P41] (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,已知AA ′∥BB ′∥CC ′,AB ∶BC =1∶3,那么下列等式成立的是( )A .AB =2A ′B ′ B .3A ′B ′=B ′C ′ C .BC =B ′C ′D .AB =A ′B ′解析:∵AA ′∥BB ′∥CC ′,∴AB BC =A ′B ′B ′C ′=13.∴3A ′B ′=B ′C ′. 答案:B2.如图,∠ACB =90°.CD ⊥AB 于D ,AD =3、CD =2,则AC ∶BC 的值是( )A .3∶2B .9∶4 C.3∶ 2D.2∶ 3解析:Rt △ACD ∽Rt △CBD ,∴AC BC =AD CD =32.答案:A3.在Rt △ABC 中,CD 为斜边AB 上的高,若BD =3 cm ,AC =2 cm ,则CD 和BC 的长分别为( )A. 3 cm 和3 2 cm B .1 cm 和 3 cm C .1 cm 和3 2 cm D. 3 cm 和2 3 cm 解析:设AD =x ,则由射影定理得x (x +3)=4, 即x =1(负值舍去), 则CD =AD ·BD =3(cm), BC =BD ·AB =3(3+1)=23(cm). 答案:D4.如图,在△ABC 中,∠BAC =90°,AD 是斜边BC 上的高,DE 是△ACD 的高,且AC =5,CD =2,则DE 的值为( )A.2215B.215C.3215D.2125解析:AC 2=CD ·BC , 即52=2×BC , ∴BC =252.∴AB =BC 2-AC 2= 2524-52=5212. ∵DE AB =DC BC ,∴DE =2215. 答案:A5.如图所示,给出下列条件:①∠B =∠ACD ;②∠ADC =∠ACB ;③AC CD =ABBC ;④AC 2=AD ·AB .其中单独能够判定△ABC ∽△ACD 的个数为( )A .1B .2C .3D .4解析:①由∠B =∠ACD ,再加上公共角∠A =∠A ,可得两个三角形相似;②由∠ADC =∠ACB ,再加上公共角∠A =∠A ,可得两个三角形相似;③AC CD =ABBC,而夹角不一定相等,所以两个三角形不一定相似;④AC 2=AD ·AB 可得AC AD =ABAC ,再加上公共角∠A =∠A ,可得两个三角形相似.答案:C6.如图,DE ∥BC ,S △ADE ∶S 四边形DBCE =1∶8,则AD ∶DB 的值为( )A .1∶4B .1∶3C .1∶2D .1∶5解析:由S △ADE ∶S 四边形DBCE =1∶8 得S △ADE ∶S △ABC =1∶9. ∵DE ∥BC , ∴△ADE ∽△ABC . ∴(ADAB )2=S △ADE S △ABC =19. ∴AD AB =13,AD DB =12. 答案:C7.△ABC 和△DEF 满足下列条件,其中不一定使△ABC 与△DEF 相似的是( ) A .∠A =∠D =45°38′,∠C =26°22′,∠E =108° B .AB =1,AC =1.5,BC =2,DE =12,EF =8,DF =16 C .BC =a ,AC =b ,AB =c ,DE =a ,EF =b ,DF =c D .AB =AC ,DE =DF ,∠A =∠D =40° 解析:A 中∠A =∠D ,∠B =∠E =108°, ∴△ABC ∽△DEF ;B 中AB ∶AC ∶BC =EF ∶DE ∶DF =2∶3∶4; ∴△ABC ∽△EFD ; D 中AB AC =DEDF,∠A =∠D , ∴△ABC ∽△DEF ;而C 中不能保证三边对应成比例. 答案:C8.在Rt △ACB 中,∠C =90°.CD ⊥AB 于D .若BD ∶AD =1∶4,则tan ∠BCD 的值是( ) A.14 B.13 C.12D .2解析:由射影定理得CD 2=AD ·BD ,又BD ∶AD =1∶4. 令BD =x ,则AD =4x (x >0), ∴CD 2=4x 2,∴CD =2x ,tan ∠BCD =BD CD =x 2x =12. 答案:C9.在▱ABCD 中,E 为CD 上一点,DE ∶CE =2∶3,连接AE 、BE 、BD 且AE 、BD 交于点F ,则S △DEF ∶S △EBF ∶S △ABF =( )A .4∶10∶25B .4∶9∶25C .2∶3∶5D .2∶5∶25解析:∵AB ∥CD , ∴△ABF ∽△EDF . ∴DE AB =DF FB =25. ∴S △DEF S △ABF =(25)2=425.又△DEF 和△BEF 等高. ∴S △DEF S △EBF =DF FB =25=410. 答案:A10.如图,已知a ∥b ,AF BF =35,BCCD =3.则AE ∶EC =( )A.125 B.512 C.75D.57解析:∵a ∥b ,∴AE EC =AG CD ,AF BF =AGBD .∵BCCD =3,∴BC =3CD ,∴BD =4CD . 又AF BF =35, ∴AG BD =AF BF =35.∴AG 4CD =35.∴AG CD =125. ∴AE EC =AG CD =125. 答案:A二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.如图,D ,E 分别是△ABC 边AB ,AC 上的点,且DE ∥BC ,BD =2AD ,那么△ADE的周长∶△ABC 的周长等于________.解析:∵DE ∥BC ,∴△ADE ∽△ABC . ∵BD =2AD ,∴AB =3AD .∴AD AB =13. ∴△ADE 的周长△ABC 的周长=AD AB =13.答案:1312.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5, DE =6,则BF =________.解析:∵DE ∥BC , ∴DE BC =AE AC ,∴BC =DE ·AC AE =6×53=10, 又DF ∥AC ,∴DE =FC =6. ∴BF =BC -FC =4. 答案:413.如图,在△ABC 中,DE ∥BC ,BE 与CD 相交于点O ,直线AO 与DE 、BC 分别交于N 、M ,若DN ∶MC =1∶4,则NE ∶BM =________,AE ∶EC =________.解析:OD OC =DN MC =14,∴OE OB =OD OC =14. ∴NE BM =OE OB =14. 又DE BC =OD OC =14, ∴AE AC =DE BC =14. ∴AE ∶EC =1∶3. 答案:1∶4 1∶314.阳光通过窗口照到室内,在地面上留下2.7 m 宽的亮区(如图所示),已知亮区一边到窗下的墙角距离CE =8.7 m ,窗口高AB =1.8 m ,那么窗口底边离地面的高BC 等于________m.解析:∵BD ∥AE ,∴BCAB =CDDE .∴BC =AB ·CDDE.∵AB =1.8 m ,DE =2.7 m ,CE =8.7 m , ∴CD =CE -DE =8.7-2.7=6(m). ∴BC =1.8×62.7=4(m).答案:4三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,△ABC 中,BC 的中点为D ,∠ADB和∠ADC 的平分线分别交AB 、AC 于点M 、N .求证:MN ∥BC .证明:∵MD 平分∠ADB , ∴AD BD =AM MB. ∵ND 平分∠ADC ,∴AD DC =ANNC .∵BD =DC , ∴AM MB =AD BD =AD DC =AN NC. ∴MN ∥BC .16.(本小题满分12分)如图,已知:△ABC 中,AB =AC ,AD 是中线,P 是AD 上一点,过C 作CF ∥AB ,延长BP 交AC 于E ,交CF 于F ,求证:BP 2=PE ·PF .证明:连接PC , ∵AB =AC ,AD 是中线,∴AD 是△ABC 的对称轴,故PC =PB , ∠PCE =∠ABP . ∵CF ∥AB , ∴∠PFC =∠ABP , 故∠PCE =∠PFC , ∵∠CPE =∠FPC , ∴△EPC ∽△CPF , 故PC PF =PE PC, 即PC 2=PE ·PF , ∴BP 2=PE ·PF .17.(本小题满分12分)如图,四边形ABCD 是平行四边形,P 是BD 上任意一点,过P 点的直线分别交AB 、DC 于E 、F ,交DA 、BC 的延长线于G 、H .(1)求证:PE ·PG =PF ·PH ;(2)当过P 点的直线绕点P 旋转到F 、H 、C 重合时,请判断PE 、PC 、PG 的关系,并给出证明.解:(1)证明:∵AB ∥CD ,∴PE PF =PB PD .∵AD ∥BC ,∴PH PG =PBPD ,∴PE PF =PHPG.∴PE ·PG =PH ·PF . (2)关系式为PC 2=PE ·PG .证明:由题意可得到右图, ∵AB ∥CD , ∴PE PC =PBPD. ∵AD ∥BC ,∴PC PG =PBPD .∴PE PC =PCPG,即PC 2=PE ·PG . 18.(本小题满分14分)某生活小区的居民筹集资金1 600元,计划在一块上、下两底分别为10 m 、20 m 的梯形空地上种植花木(如图).(1)他们在△AMD 和△BMC 地带上种植太阳花,单位为8元/m 2,当△AMD 地带种满花后(图中阴影部分)共花了160元,请计算种满△BMC 地带所需的费用;(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?解:(1)∵四边形ABCD 为梯形,∴AD ∥BC . ∴△AMD ∽△CMB ,∴S △AMD S △CMB =(AD BC )2=14.∵种植△AMD 地带花费160元, ∴S △AMD =1608=20(m 2).∴S △CMB =80(m 2).∴△CMB 地带的花费为80×8=640元. (2)S △ABM S △AMD =BM DM =BC AD =2, ∴S △ABM =2S △AMD =40(m 2). 同理:S △DMC =40(m 2).所剩资金为:1600-160-640=800元, 而800÷(S △ABM +S △DMC )=10(元/m 2). 故种植茉莉花刚好用完所筹集的资金.。
高中数学人教A版选修4-1学案第1讲 4 直角三角形的射影定理 Word版含解析
![高中数学人教A版选修4-1学案第1讲 4 直角三角形的射影定理 Word版含解析](https://img.taocdn.com/s3/m/6a384481fd0a79563d1e7233.png)
四直角三角形的射影定理
.了解射影定理的推导过程.
.会用射影定理进行相关计算与证明.(重点、难点)
[基础·初探]
教材整理射影的相关概念
阅读教材“探究”以上部分,完成下列问题.
.点在直线上的正射影:从一点向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影.
.线段在直线上的正射影,是指线段的两个端点在这条直线上的正射影间的线段.
.射影:点和线段的正射影简称为射影.
教材整理射影定理
阅读教材~“习题”以上部分,完成下列问题.
.文字语言
直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.
.图形语言
如图--,在△中,为斜边上的高,
图--
则有=·.
=·.
=·.
如图--,在△中,⊥,⊥于且=,则·=( )
图--
..
..不确定
【解析】由射影定理·===.
【答案】
[质疑·手记]
预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:
疑问:
解惑:
疑问:
解惑:
疑问:
解惑:
[小组合作型]
. ()求∶的值;
()若=,求的长.。
人教A版高中数学选修4-1-1.1 平行线等分线段定理-课件(共17张PPT)
![人教A版高中数学选修4-1-1.1 平行线等分线段定理-课件(共17张PPT)](https://img.taocdn.com/s3/m/9a12e1a9fab069dc502201ca.png)
2、已知:直线,l1∥l2∥l3,AB=BC 求证;A1B=BC1
AB BC
A
l1
B
l2
l3
C
A1
?B1 ?C1
图1
l1
A1
A
?
3 1
l2
B
l3
2 4
?
C
C1
图2
图1
图2
练习
3、已知如图3,直线 l1∥l2∥l3,AB=BC。l1
A1 A E
3
求证; A1B1=B1C1
l2
形是平行四边形。
分析:1、证CM∥AN 2、证BE=EF 3、证DF=EF
A
M
B
? ?F ? E
D
N
C
练习 已知:如图,梯形ABCD中,AD∥BC,
∠ABC=90。M是CD的中点。
C
求证:AM=BM
M D
分析:过M点作ME∥AD交AB
于点E
A
B
又∵在梯形ABCD中,MD=有M线C 段中点E时,常过
∴AE=EB
该点作平行线,构造
易证ME是AB的垂直平分线平 及行 推线 论等的分基线本段图定形理。
如图:有块直角三角形菜地,分配给张,王,
李三家农民耕种,已知张,王,李三家人口分
别为2人,4人,6人,菜地分配方法按人口比
例,并要求每户土地均有一部分紧靠水渠AB,
P处是三家合用的肥料仓库,所以点P必须是三
l
A1 A2 A3
图1
l
B1 l1 B2 l2
B3 l3
l
A1 A2 A3
l
B1 B2
l1 l2
B3 l3
2017年春季学期新人教A版高中数学选修4-1--第四节 相交弦与切割线定理学案作业
![2017年春季学期新人教A版高中数学选修4-1--第四节 相交弦与切割线定理学案作业](https://img.taocdn.com/s3/m/82c5e7260912a216147929bc.png)
第四节相交弦与切割线定理一.知识梳理1.相交弦定理:圆内两条相交弦,的积相等。
2. 割线定理:从圆外一点引圆的两条割线,的两条线段长的积相等。
3.切割线定理:从圆外一点引圆的切线和割线,切线长是的比例中项。
二.例题选讲例1:如图所示,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC 相交于点P.•(1)求证:AD∥EC;•(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.例2:如图,已知AB 是半圆的直径,D 是AB 上的一点,CD AB, CD 交半圆于点E,CT是半圆的切线. T 是切点,CB 交半圆于F.求证:BE 2+CT 2=BC 2练习1 已知:P是⊙O的直径CB的延长线上的一点,PA和⊙O相切于A,若PA=15,PB =5。
(1)求tan ∠ABC 的值;(2)弦AD 使∠BAD =∠P ,求AD 的长。
练习2.E 是圆内的两条弦AB,CD 的交点,直线EF//CB,交AD 的延长线于F,FG 切圆于G.求证:(1)△DFE ∽△EFA; (2)EF=FG练习3如图,PA 切⊙O 于A ,割线PBC 交⊙O 于B 、C 两点,D 为PC 的中点,且AD 延长线交⊙O 于E ,又EA DE BE 2⋅=求证:(1)PA=PD ;第四节 相交弦与切割线定理 作业1、如图1,AB 是⊙O 的直径,P 是AB 延长线上一点,PC 切⊙O 于点C ,PC=3,PB=1,。
=)(DE AD 2BD 2 2⋅则⊙O 的半径为 .2、如图2,PAB 是⊙O 的割线,AB=4,AP=5,⊙O 的半径为6,则PO=3、如图3,点P 是⊙O 的直径BA 延长线上一点,PC 与⊙O 相切于点C ,CD ⊥AB ,垂足为D ,连结AC 、BC 、OC ,那么下列结论中正确结论的个数有个①PC 2=P A·PB;②PC·OC=OP·CD;③OA 2=OD·OP;④OA(CP -CD )=AP·CD.4、如图4,已知⊙O 的切线PC 与直径BA 的延长线相交于点P ,C 是切点,过A 的切线交PC 于D ,如果CD ∶PD=1∶2,DA=2,那么⊙O 的半径OC= .5、 如图,PC 是⊙O 的切线, C 为切点,PAB 为割线,4,PC =8,PB =30B ∠=,则BC =_________6、 如图,AB ,CD 是半径为a 的圆O 的两条弦,它们相交于AB 的中点P ,PD=2a/3,∠OAP=30°,则CP =______. 7、 如图,PQ 为半圆O 的直径,A 为以OQ 为直径的半圆A 的圆心,⊙O 的弦PN 切⊙A 于点N ,8,PN =则⊙A 的半径为__________ 8如图,AB 、CD 是圆的两条平行弦,BE ∥AC ,并交CD 于E ,交圆于F ,过A 点的切线交DC 的延长线于P ,PC =ED =1,PA =2.(1)求AC 的长;A B P C · 图1 O AO D PC B┐图3B图4 A B P O图2图5 图6 图7(2)求证:EF=BE.9.如图,PA切⊙O于点A,割线PBC交⊙O于点B,C,∠APC的角平分线分别与AB,AC相交于点D,E,求证:(1)AD=AE;(2)AD2=DB·EC.10.已知在Rt△ABC中,∠C=90°,∠A的外角平分线交BC的延长线于D 交△ABC的外接圆O于E,DF切⊙O于F,求证。
人教A版高中数学选修4-1课件高二:2.1圆周角定理
![人教A版高中数学选修4-1课件高二:2.1圆周角定理](https://img.taocdn.com/s3/m/4825ab6b3c1ec5da50e27068.png)
此题必须先证 AD,AB 所在△ABD 为直角三角形,此时连接 BD,可由直 径所对的圆周角为 90°,这样就得到了所需的条件.
25
首页
J 基础知识 ICHU ZHISHI
Z S 重点难点 HONGDIAN NANDIAN
随堂练习
UITANG LIANXI
1 2345
1.如图所示,在☉O 中,∠BAC=25°,则∠BOC 等于( )
A.25°
B.50°
C.30°
D.12.5°
解析:根据圆周角定理,得∠BOC=2∠BAC=50°.
点都可得到相等的圆周角∠C=∠D=∠E.也可以由角找弧,再由弧找角,如
图(2),AD 平分∠BAC,得∠1=∠2,∠1 对������������,∠2 对������������,∠3 也对������������,故∠1=
∠2=∠3.如果要证△DBE∽△DAB,无疑两个相等的角为此提供了条件.
7
图(1)
图(2)
12
首页
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
温馨提示(1)圆心角的度数和它所对的弧的度数相等,但并
不是“圆心角等于它所对的弧”; (2)“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”; (3)由弦相等推出弧相等时,这里的弧要求同是优弧或同是劣弧,一般选
������������������所对的圆心角为 2×75°=150°.又������������������ 和 ������������������所对圆心角的和是周角 360°, ∴������������������所对圆心角是 360°-150°=210°,
高中数学人教A版选修(4-1)2.4 同步练习 《弦切角的性质》(人教)
![高中数学人教A版选修(4-1)2.4 同步练习 《弦切角的性质》(人教)](https://img.taocdn.com/s3/m/690dc6c904a1b0717ed5dd1c.png)
《弦切角的性质》同步练习一、选择题1.P在⊙O 外,PM 切⊙O 于C ,PAB 交⊙O 于A ,B ,则( )A .∠MCB =∠B B .∠PAC =∠PC .∠PCA =∠BD .∠PAC =∠BCA2.如图,PC 与⊙O 相切于C 点,割线PAB 过圆心O ,∠P =40°,则∠ACP 等于( )A .20°B .25°C .30°D .40°3.如图,AB 是⊙O 的直径,EF 切⊙O 于C ,AD ⊥EF 于D ,AD =2,AB =6,则AC 的长为( )A .2B .3C .2 3D .44.如图,AB 是⊙O 的直径,P 在AB 的延长线上,PD 切⊙O 于C 点,连接AC ,若AC =PC ,PB =1,则⊙O 的半径为( )A .1B .2C .3D .4PE 分别切⊙O 于B ,C ,若∠ACE =40°,则∠P =________.6.如图,点P 在圆O 直径AB 的延长线上,且PB =OB =2,PC 切圆O 于C 点,CD ⊥AB 于D点,则CD =________.7.如图,过圆O 外一点P 分别作圆的切线和割线交圆于A ,B ,且PB =7,C 是圆上一点使得BC =5,∠BAC =∠APB ,则AB =________.8.如图,AB 是半圆O 的直径,C 是圆周上一点(异于A ,B),过C 作圆O 的切线l ,过A 作直线l 的垂线AD ,垂足为D ,AD 交半圆于点E.求证:CB =CE.9.如图所示,△ABC 内接于⊙O ,AB =AC ,直线XY 切⊙O 于点C ,弦BD ∥XY ,AC ,BD 相交于点E.(1)求证:△ABE ≌△ACD ;(2)若AB =6 cm ,BC =4 cm ,求AE 的长.答案和解析一、选择题1.P 在⊙O 外,PM 切⊙O 于C ,PAB 交⊙O 于A ,B ,则( )A .∠MCB =∠B B .∠PAC =∠PC .∠PCA =∠BD .∠PAC =∠BCA解析:选C 由弦切角定理知∠PCA =∠B.2.如图,PC 与⊙O 相切于C 点,割线PAB 过圆心O ,∠P =40°,则∠ACP 等于( )A .20°B .25°C .30°D .40°解析:选B 连接OC.∵PC 切⊙O 于C 点,∴OC ⊥PC.∵∠P =40°,∴∠POC =50°.连接BC ,则∠B =12∠POC =25°, ∴∠ACP =∠B =25°.3.如图,AB 是⊙O 的直径,EF 切⊙O 于C ,AD ⊥EF 于D ,AD =2,AB =6,则AC 的长为( )A .2B .3C .2 3D .4解析:选C 连接BC ,则∠ACB =90°,又AD ⊥EF ,∴∠ADC =90°,即∠ADC =∠ACB ,又∵∠ACD =∠ABC ,∴△ABC ∽△ACD ,∴AC AD =AB AC, ∴AC2=AD ·AB =12,即AC =2 3.4.如图,AB 是⊙O 的直径,P 在AB 的延长线上,PD 切⊙O 于C 点,连接AC ,若AC =PC ,PB =1,则⊙O 的半径为( )A .1B .2C .3D .4解析:选A连接BC.∵AC =PC ,∴∠A =∠P.∵∠BCP =∠A ,∴∠BCP =∠P.∴BC =BP =1.由△BCP ∽△CAP 得PC PA =PB PC. ∴PC2=PB ·PA ,即AC2=PB ·PA.而AC2=AB2-BC2,设⊙O 半径为r ,则4r2-12=1·(1+2r),解得r =1.PE 分别切⊙O 于B ,C ,若∠ACE =40°,则∠P =________.解析:连接BC ,∵AB 是⊙O 的直径,∴∠ACB =90°.又∠ACE =40°,∴∠PCB =∠PBC =50°.∴∠P =80°.答案:80°6.如图,点P 在圆O 直径AB 的延长线上,且PB =OB =2,PC 切圆O 于C 点,CD ⊥AB 于D 点,则CD =________.解析:连接OC.∵PC 切⊙O 于C 点,∴OC ⊥PC.∵PB =OB =2,OC =2.∴PC =2 3.∵OC ·PC =OP ·CD ,∴CD =2×234= 3. 答案: 37.如图,过圆O 外一点P 分别作圆的切线和割线交圆于A ,B ,且PB =7,C 是圆上一点使得BC =5,∠BAC =∠APB ,则AB =________.解析:由PA 为⊙O 的切线,BA 为弦,得∠PAB =∠BCA ,又∠BAC =∠APB ,于是△APB ∽△CAB ,所以PB AB =AB BC. 而PB =7,BC =5,故AB2=PB ·BC =7×5=35,即AB =35.答案:358.如图,AB 是半圆O 的直径,C 是圆周上一点(异于A ,B),过C 作圆O 的切线l ,过A 作直线l 的垂线AD ,垂足为D ,AD 交半圆于点E.求证:CB =CE.证明:连接AC ,BE ,在DC 延长线上取一点F ,因为AB 是半圆O 的直径,C 为圆周上一点, 所以∠ACB =90°,即∠BCF +∠ACD =90°.又因为AD ⊥l ,所以∠DAC +∠ACD =90°.所以∠BCF =∠DAC.又因为直线l 是圆O 的切线,所以∠CEB =∠BCF ,又∠DAC =∠CBE ,所以∠CBE =∠CEB ,所以CB =CE.9.如图所示,△ABC 内接于⊙O ,AB =AC ,直线XY 切⊙O 于点C ,弦BD∥XY ,AC ,BD 相交于点E.(1)求证:△ABE ≌△ACD ;(2)若AB =6 cm ,BC =4 cm ,求AE 的长.解:(1)证明:因为XY 是⊙O 的切线,所以∠1=∠2.因为BD ∥XY ,所以∠1=∠3,所以∠2=∠3.因为∠3=∠4,所以∠2=∠4.因为∠ABD =∠ACD ,又因为AB =AC ,所以△ABE ≌△ACD.(2)因为∠3=∠2,∠ABC =∠ACB ,所以△BCE ∽△ACB ,所以BC AC =CE CB, 即AC ·CE =BC2.因为AB =AC =6 cm ,BC =4 cm ,所以6·(6-AE)=16.所以AE =103(cm).。
最新人教A版高中数学教材目录(全)
![最新人教A版高中数学教材目录(全)](https://img.taocdn.com/s3/m/884d9dfb9b89680203d825f5.png)
人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
人教A版高中数学教材目录(全)
![人教A版高中数学教材目录(全)](https://img.taocdn.com/s3/m/0311708769eae009581becdb.png)
创作编号:BG7531400019813488897SX 创作者: 别如克*必修1第一章 集合与函数概念 1.1 集合1.2 函数及其表示 1.3 函数的基本性质第二章 基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数 2.3 幂函数第三章 函数的应用 3.1 函数与方程3.2 函数模型及其应用必修2第一章 空间几何体 1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章 直线与方程3.1 直线的倾斜角与斜率 3.2 直线的方程3.3 直线的交点坐标与距离公式 必修3第一章 算法初步1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例阅读与思考 割圆术第二章 统计 2.1 随机抽样阅读与思考 一个著名的案例阅读与思考 广告中数据的可靠性阅读与思考 如何得到敏感性问题的诚实反应2.2 用样本估计总体 阅读与思考 生产过程中的质量控制图2.3 变量间的相关关系 阅读与思考 相关关系的强与弱第三章 概率3.1 随机事件的概率阅读与思考 天气变化的认识过程3.2 古典概型 3.3 几何概型必修4第一章 三角函数 1.1 任意角和弧度制创作编号:BG7531400019813488897SX 创作者: 别如克*1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图象与性质 1.5 函数y=Asin (ωx+ψ) 1.6 三角函数模型的简单应用第二章 平面向量 2.1 平面向量的实际背景及基本概念 2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章 三角恒等变换 3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章 解三角形1.1正弦定理和余弦定理 1.2应用举例 1.3实习作业第二章 数列2.1数列的概念与简单表示法 2.2等差数列2.3等差数列的前n 项和 2.4等比数列2.5等比数列的前n 项和第三章 不等式3.1不等关系与不等式3.2一元二次不等式及其解法 3.3二元一次不等式(组)与简单的线性规划问题 3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题 3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念创作编号:BG7531400019813488897SX创作者:别如克*3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形作编号:BG7531400019813488897SX作者:别如克*第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步作编号:BG7531400019813488897SX创作者: 别如克*1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章 统计 2.1 随机抽样2.2 用样本估计总体 2.3 变量的相关性第三章 概率 3.1 随机现象3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用必修四第一章 基本初等函(Ⅱ) 1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章 平面向量 2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积 2.4 向量的应用第三章 三角恒等变换 3.1 和角公式3.2 倍角公式和半角公式 3.3 三角函数的积化和差与和差化积必修五 第一章 解直角三角形 1.1 正弦定理和余弦定理1.2 应用举例第二章 数列 2.1 数列2.2 等差数列 2.3 等比数列第三章 不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用 3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章 常用逻辑用语 1.1 命题与量词1.2 基本逻辑联结词 1.3 充分条件、必要条件与命题的四种形式第二章 圆锥曲线与方程 2.1 椭圆2.2 双曲线 2.3 抛物线第三章 导数及其应用3.1 导数3.2 导数的运算 3.3 导数的应用选修1-2第一章 统计案例 第二章 推理与证明 第三章 数系的扩充与复数的引入 第四章 框图选修4-5第一章 不等式的基本性质和证明的基本方法 1.1 不等式的基本性质和一元二次不等式的解法 1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法第二章 柯西不等式与排序不等式及其应用 2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学) 2.4 最大值与最小值问题,优化的数学模型第三章 数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式作编号:BG7531400019813488897SX作编号:BG7531400019813488897SX 作者: 别如克*作者: 别如克*。
人教A版高中数学选修4-1-第一讲--一-平行线等分线段定理-课件(共27张PPT)
![人教A版高中数学选修4-1-第一讲--一-平行线等分线段定理-课件(共27张PPT)](https://img.taocdn.com/s3/m/270f897966ec102de2bd960590c69ec3d5bbdbf1.png)
过程与方法
1.通过初中学习平行线的性质和判定定理, 进一步学习一组平行线等分线段定理以及两个推论.
2.培养化归思想,从特殊到一般,再到特殊.
情感态度与价值观
1.通过平行线等分线段定理证明,体会数 学证明的必要性.
2.通过课堂学习培养敢于结合以前所学知 识,推导出新的知识或性质,有利于深刻理解.
教学重难点
求证:B1B2=B2B3
分析
l l’
A1 A2 A3
B1
C2
B2 B3
C3
l1 l2
l3
“角角边”
B1C2//B2C3
△B1C2B2≌△B2C3B3
B1B2=B2B3
知识要 点
平行线等分线段定理
如果一组平行线在一条直线上截得的 线段相等,那么在其他直线上截得的线段也 相等.
小练习
已知:ΔABC,D是AB的中点,DE//BC
求证: AE=EC 证明: 因为AD=BD,DE//BC
A DE
根据平行线等分线段定理,得:
B
C
AE=EC.
能推出
思
什么结论?
考
知识要 点
平行线等分线段定理
推论1:经过三角形一边的中点与另一边 平行的直线必平分第三边.
小练习
已知:梯形ABCD,E是AB的中点,
求证:CF=DF.
A
C
证明: 因为AE=BE,AC//BD E
3、平行线等分线段定理和推论的应用
(1)把线段n等分. (2)证明在同一直线上的线段相等.
A AD
?
EF
?
E
F
?
B B
CB
? C
随堂练习
1.判断题
2016-2017学年高中数学人教A版选修4-1课件:第二讲 四 弦切角的性质
![2016-2017学年高中数学人教A版选修4-1课件:第二讲 四 弦切角的性质](https://img.taocdn.com/s3/m/3e88da2a31126edb6f1a109d.png)
解:(1)证明:如图,连接BC. ∵直线CD与⊙O相切于点C, ∴∠DCA=∠B. ∵AC平分∠DAB, ∴∠DAC=∠CAB. ∴∠ADC=∠ACB.
∵AB为⊙O的直径, ∴∠ACB=90°. ∴∠ADC=90°,即AD⊥CD. (2)∵∠DCA=∠B,∠DAC=∠CAB, ∴△ADC∽△ACB. AD AC ∴ AC=AB, ∴AC2=AD· AB. ∵AD=2,AC= 5, 5 ∴AB=2.
5.如图,AD是△ABC的角平分线,经过点 A,D的⊙O和BC切于点D,且AB,AC 与⊙O相交于点E,F,连接DF,EF. 求证:(1)EF∥BC; (2)DF2=AF· BE. 证明:(1)∵⊙O切BC于点D,
∴∠CAD=∠CDF. ∵AD是△ABC的角平分线, ∴∠BAD=∠CAD. 又∵∠BAD=∠EFD, ∴∠EFD=∠CDF. ∴EF∥BC.
四
弦切角的性质
弦切角定理 (1)文字语言叙述: 弦切角等于它 所夹的弧 所对的圆周角. (2)图形语言叙述: 如图,AB与⊙O切于A点,则∠BAC= ∠D .
[说明]
弦切角的度数等于它所夹弧度数的一半,圆
周角的度数等于它所对的弧的度数的一半,圆心角的度数 等于它所对弧的度数.
弦切角定理
[例1]
» ,过C点的圆的切线与 AC = BD 如图,已知圆上的 ¼
CE CD → CD= CF → 结论
[证明]
连接CA,CB.
∵PA,PB是⊙O的切线, ∴∠CAP=∠CBA,∠CBP=∠CAB. 又CD⊥AB,CE⊥PA,CF⊥PB, ∴Rt△CAE∽Rt△CBD, Rt△CBF∽Rt△CAD, CA CE CB CF ∴CB=CD,CA=CD. CE CD ∴CD= CF, 即CD2=CE· CF.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前自主导学
当堂双基达
堂互动探究
课时作
菜 单
新课标 · 数学
选修4-7
【自主解答】
在因素范围[1 000,2 000] 内,用 0.618 法
安排试验,第一个试点 x1, 满足 x1=1 000+0.618(2 000-1 000)=1 618. 第二个试点 x2 满足, x2=1 000+2 000-1 618=1 382. 试验结果,如果 x1 的效果比 x2 好,消去 x2=1 382 以下 部分,则第三个试点 x3 满足, x3=2 000+1 382-1 618=1 764. 示意图如下:
1.如何通过缩小存优范围来寻找最佳点?
当堂双基达
【提示】 先在因素范围[a, b]内任选两点各做一次试验, 根据试验结果确定好点与差点,在差点处把区间 [a, b]分成两 段,截掉不含好点的一段,留下存优范围[a1,b1],再在[a1,
堂互动探究
课时作 b1]内重复上述过程,从而达到可使存优范围逐步缩小的目的.
菜 单
新课标 · 数学
选修4-7
前自主导学
2.在黄金分割法——0.618 法中,如果两个试点的结果
当堂双基达
一样,应如何舍去区间? 【提示】 当两个试点的结果一样时,可同时舍去两个
试点外侧的区间.
堂互动探究
课时作
菜 单
新课标 · 数学
选修4-7
3.在存优范围[a,x1]内取第三个试点 x3,则 x3 与 x2 的 相对位置如何? 【提示】 如图所示:
前自主导学
当堂双基达
堂互动探究
课时作
菜 单
新课标 · 数学
选修4-7
前自主导学
当堂双基达
0.618 法满足的原则是: (1)每次要进行比较的两个试验点,应关于相应试验区间 的中点对称; (2) 每次舍去的区间长占舍去前的区间长的比例数应相 同.
堂互动探究
课时作
菜 单
新课标 · 数学
选修4-7
前自主导学
堂互动探究
课时作
菜 单
新课标 · 数学
选修4-7
④再将第三次试验结果与第一点比较,如果仍然是第一
前自主导学
当堂双基达 点好些,则去掉 1 764 g 以上部分,如果第三点好些,则去掉
1 618 g 以下部分.假设第三点好些,则在留下部分 (即[1 618,2 000])找出第三点(即 1 764)的对称点做第四次试验.第四点加 入量为:2 000-1 764+1 618=1 854(g). ⑤第四次试验后,再与第二点比较,并取舍.在留下部
选修4-7
前自主导学
1.黄金分割常数
当堂双基达
(1)在试验中为最快地达到或接近最佳点,在安排试点时, 最好把握两个原则: a+ b 对称 ; ①使两个试点关于[a,b]的中心 2 ②保证每次舍去的区间占舍去前的区间的比例数相同 . 5-1 0.618 (2)黄金分割常数常用 É 表示,且 É = ≈ . 2
前自主导学
当堂双基达
堂互动探究
0.618(2-1)=1.618,或 2-(2-1)×0.618=1.382. 【答案】 D
课时作
菜 单
新课标 · 数学
选修4-7
2.假设因素区间为[0,1],取两个试点 0.1 和 0.2,则对峰 值在 (0,0.1) 内的单峰函数,两次试验存优范围缩小到区间 ________上.( A.[0,0.1] C.[0,0.2] ) B.[0.1,1] D.[0.2,1]
________.
占舍去前的区间的比例数为 0.8. 【答案】 0.8
堂互动探究
课时作
菜 单
新课标 · 数学
选修4-7
前自主导学
当堂双基达 4.用 0.618 法确定试点时,经过 4 次试验后,存优范围
缩小为原来的________. 【解析】 由 n 次试验后的精度 ´ n=0.618n-1 可知,4 次 后的精度为 0.6183,即存优范围缩小为原来的 0.6183. 【答案】 0.6183
菜 单
堂互动探究
课时作
新课标 · 数学
选修4-7
(2012·浏阳模拟)用 0.618 法寻找试验的最优加入量时,若
前自主导学
当堂双基达 当前存优范围是[2,3],好点是 2.382,则此时要做试验的加入
量值是________. 【解析】 由题意可知,此时要做试验的加入量值为 2
+3-2.382=2.618. 【答案】 2.618
当堂双基达
①定义:用存优范围与原始范围的 比值 来衡量一种试 验方法的效率,这个比值叫做精度,即 n 次试验后的精度为 n次试验后的存优范围 ´ n= . 原始的因素范围
n-1 0.618 ②0.618 法中,n 次试验后的精度 ´ n= .
堂互动探究
课时作
菜 单
新课标 · 数学
选修4-7
前自主导学
堂互动探究
课时作
菜 单
新课标 · 数学
选修4-7
前自主导学
当堂双基达
课时作业(二)
堂互动探究
课时作
菜 单
本小节结束 请按ESC键返回
菜 单
堂互动探究
课时作
新课标 · 数学
选修4-7
0.618法的应用
前自主导学
调酒师为了调制一种鸡尾酒,每 100 kg 烈性酒 当堂双基达
中需要加入柠檬汁的量为 1 000 g 到 2 000 g 之间,现准备用 黄金分割法找到它的最优加入量. (1)写出这个试验的操作流程. (2)达到精度 0.001 需要多少次试验?
新课标ቤተ መጻሕፍቲ ባይዱ· 数学
选修4-7
三
黄金分割法 ——0.618 法 1.黄金分割常数
前自主导学
当堂双基达
2.黄金分割法——0.618 法
1.了解 0.618 法进行试验设计的原理. 堂互动探究 课标解读 2.掌握用 0.618 法解决不限定次数的优选问题,从 课时作 而找到试验区间中的最佳点.
菜 单
新课标 · 数学
堂互动探究
课时作
【答案】 161.8 或 138.2
菜 单
新课标 · 数学
选修4-7
1.假设因素区间为[1,2],用 0.618 法选取的第一个试点 是( ) A.1.618 C.1.382 【解析】 B.1.5 D.1.618 或 1.382 用 0.618 法选取的第一个试点为 x1 = 1 +
前自主导学
当堂双基达
堂互动探究
结合黄金分割常数原理可知 x2,x3 关于区间[a,x1]的中
课时作
a+x1 心 2 对称且 x3 在 x2 的左侧.
菜 单
新课标 · 数学
选修4-7
用0.618法确定试点 为了提高某产品的质量,对影响质量的一个因 素进行优选.已知此因素范围为[1 000 ,2 000] ,用 0.618 法 安排试验,第一个和第二个试点安排在何处?如果第一 点效 果比第二点好,第三个试点应选在何处? 【思路探究】 第一个试点确定在因素范围的 0.618 处, 后续试点可以用“加两头,减中间”来确定.
堂互动探究
量也按下面公式计算):加两头,减中间.即第二点的加入量 课时作 为: 1 000+2 000-1 618=1 382(g).
菜 单
新课标 · 数学
选修4-7
前自主导学
③比较两次试验结果,如果第二点比第一点好,则去掉 当堂双基达
1 618 g 以上的部分:如果第一点较好,则去掉 1 382 g 以下 部分.假定试验结果第一点较好,那么去掉1 382 g 以下的部 分,即存优范围为 [1 382,2 000],在此范围找出第一点 (即 1 618) 的对称点做第三次试验.即第三次试验的加入量为: 2 000-1 618+1 382=1 764(g).
堂互动探究
课时作
菜 单
新课标 · 数学
选修4-7
【思路探究】 (1)利用 0.618 法确定第一个试点 x1―→ 利用对称性确定第二个试点 x2―→ 利用 xn=小+大-xm 来确定第 n 个试点 (2)确定精度―→求试验次数 【自主解答】 用一张纸条表示 1 000~2 000 g,以1 000 为起点标出刻度.
堂互动探究
课时作
分用同样方法继续试验,直至找到最佳点为止.
菜 单
新课标 · 数学
选修4-7
(2)精度 Ã≤0.001. 所以 0.618n-1≤0.001,得 n≥lg 0.001/lg 0.618 +1,即 n≥16. 故需要 16 次试验.
前自主导学
当堂双基达
黄金分割法适用目标函数为单峰的情形,第 1 试验点确 定在因素范围的 0.618 处,后续试点可以用“加两头、减中 间”的方法来确定.
堂互动探究
课时作
菜 单
新课标 · 数学
选修4-7
(教材第 10 页习题 1.3 第 3 题) 举出现实生活或学习过程中可应用 0.618 法寻找最佳点
前自主导学
当堂双基达
的例子. 已知一种材料的最佳加入量在 100 g 到 200 g 之间.若用 0.618 法安排试验,则第一次试点的加入量可以 是________g. 【命题意图】 本题主要考查了优选法中的黄金分割法
(2)确定试点的方法 类别 第一试点 第二试点 … 第 n 试点
当堂双基达
小+0.618 x = 小+大 计算 x1= 2 -x1 方式 ×(大-小)
原理 用黄金分割 法确定 x1
xn= 小+大 … -x m
加两头减中间 … 加两头减中间
堂互动探究
课时作
菜 单
新课标 · 数学
选修4-7
前自主导学
(3)精度
前自主导学