2013年中考数学模拟试题(1)及答案

合集下载

2013年中考数学第一次模拟考试题(含答案邯郸市)

2013年中考数学第一次模拟考试题(含答案邯郸市)

2013年中考数学第一次模拟考试题(含答案邯郸市)锛掞紣锛??涓€銆?閫夋嫨棰?1銆佸湪-3锛?1锛?锛??锛?A 銆?3 B銆?1 C銆? D銆? 2涓哄渾鐨勬槸锛?锛?3锛?A銆佸繀鐒朵簨浠?B銆侀殢鏈轰簨浠?C銆佺‘瀹氫簨浠?D4锛?A 銆?B銆?x+2y=6xy C銆?D銆?5BC缁忚繃鍙樻崲寰楀埌鈻矰EF锛?A銆佹妸鈻矨BC缁曠偣C閫嗘椂閽堟柟鍚戞棆杞?0o 锛屽啀鍚戜笅骞崇Щ2鏍?B 銆佹妸鈻矨BC缁曠偣C椤烘椂閽堟柟鍚戞棆杞?0o锛屽啀鍚戜笅骞崇Щ5鏍?C 銆佹妸鈻矨BC鍚戜笅骞崇Щ4鏍硷紝鍐嶇粫鐐笴閫嗘椂閽堟柟鍚戞棆杞?80o D 銆佹妸鈻矨BC鍚戜笅骞崇Щ5鏍硷紝鍐嶇粫鐐笴椤烘椂閽堟柟鍚戞棆杞?80o6銆佷笉绛夊紡缁?鐨勮В闆嗕负锛?锛?A銆?<X<2 B銆亁>1 C銆亁<2 D銆亁<1鎴杧>2 7?脳4鐨勭煩褰㈢綉鏍间腑锛屾瘡鏍煎皬姝f柟褰㈢殑杈归暱閮芥槸1锛岃嫢鈻矨BC屽垯tan鈭燗BC鐨勫€间负A銆?B銆?C銆?D銆? 8AB OD B,鍨傝冻涓篗锛屼笅鍒楃粨璁轰笉鎴愮珛鐨勬槸锛?锛?A锛嶤M=DM B銆佸姬CB= B C銆佲垹ACD=鈭燗DC D銆丱M=MB9銆佽嫢,鍒?鐨勫€兼槸锛?锛?A銆? B銆?6 C銆? D銆? 10銆侀偗閮稿競瀵瑰煄у5绫虫牻1妫碉紝鍒欐爲鑻楃己21妫碉紝濡傛灉姣忛殧6绫虫牻1妫碉紝鍒欐爲x锛?A銆?锛坸+21-1锛?6锛坸-1锛?B銆?锛坸+21锛?6锛坸-1锛?C銆?锛坸+21-1锛?6x D銆?锛坸+21锛?6x 11D涓衡柍ABC鍐呬竴鐐癸紝CD骞冲垎鈭燗CB锛孊E D,鍨傝冻涓篋锛屼氦AC浜庣偣E锛屸垹A=鈭燗BE,C=5,BC=3,鍒橞D鐨勯暱涓猴紙锛?A銆?.5 B銆?.5 C銆? D銆?12ABC暱涓?鐨勫皬姝f柟褰㈢粍鎴愮殑锛屽弽姣斾緥鍑芥暟OABC鐨勪腑蹇僂锛屽弽姣斾緥鍑芥暟杩嘇B BC浜庣偣N?鈶犲弻鏇茬嚎鐨勮В鏋愬紡涓?鈶′C=2NC鈶e弽姣斾緥鍑芥暟嬪嚱鏁?鐨勫?鍏朵腑姝g‘鐨勭粨璁烘槸锛?A銆佲憼鈶?B銆佲憼鈶?C銆佲憽鈶?D銆佲憿鈶?13銆?= 14鏈夋剰涔夛紝鍒檟鐨勫彇鍊艰寖鍥存槸銆?15銆佹瘝绾块暱涓?锛屽簳闈㈠渾鐨勭洿寰勪负2鐨勫渾閿ョ殑渚ч銆?16涓庣洿绾?鐩镐氦浜庣偣P锛?锛?锛夛紝鍒欏叧浜巟鐨勪笉绛夊紡鐨勮В闆嗕负銆?172cm锛?cm锛?cm锛?cm鐨勫洓鏍规湪鏉★紝灏忓己鎷垮嚭浜嗕竴鏍?cm闀跨殑鏈銆?18鎰忛潪闆跺疄鏁皒锛寉瀹氫箟鐨勬柊杩愮畻鈥?鈥? ,鍑忔硶鐨勮繍绠楋紝宸茬煡锛?锛屽垯= 銆?涓夈€佽В19銆佸厛鍖栫畝锛屽湪姹傚€硷細锛屽叾涓?20銆佹煇鏍′负浜嗚В锛?锛夛紙2娊鍙栫殑浜斾釜绛夌骇鎵€鍗犳瘮渚嬪拰浜烘暟鍒嗗竷鎯呭喌锛岀粯鍒跺嚭涔濆勾绾э紙1?锛夌彮鐨勭粺璁¤〃銆?锛?т汉鏁?锛?锛変節锛?锛夌彮銆佷節锛?锛屼腑浣嶆暟鍒嗗埆涓?锛??21銆佹煇瀛︽牎璁″垝鍒╃敤鏆戝亣浜嬩欢锛堝叡60澶繘琛岀矇鍒凤紝鐜版湁鐢蹭箼涓や釜宸ョ▼闃熸潵鎵垮寘锛岃皟鏌ュ彂鐜帮細涔欓槦鍗曠嫭瀹屾垚宸ョ▼鐨勬椂闂存槸鐢查槦鐨?.5鍊嶏紱鐢层€佷箼涓ら槦鍚堜綔瀹屾垚宸ョ▼闇€瑕?0澶╋紱鐢查槦姣忓ぉ鐨勫伐浣滆垂鐢ㄤ负1000鍏冿紝涔欓槦姣忓ぉ鐨勫伐浣滆垂鐢ㄤ负600锛?锛夌敳銆佷箼涓ら槦鍗曠嫭瀹屾垚杩欓」宸ョ▼鍚勯渶澶氬皯澶╋紵锛?锛夆憼鈶′粠璧22BCD E锛孎涓鸿竟BC銆丆D涓婄殑鐐癸紝涓擟E=CF E锛孉F锛屸垹ABC E浜庣偣G锛岃繛G銆?(1)姹傝瘉锛欰G=CG 锛?锛夋眰璇侊細CG F (3)G=CG锛屽垯鈻矨BE涓庘柍BGE?23銆佽幏鎮夆€滆帿瑷€鑾峰緱浜?012?00鍏冮挶鍒颁功搴楄喘涔拌帿瑷€浣滃搧渚?閮ㄥ垎涔︾睄鍜?涔﹀悕鍘熶环锛堝厓锛?銆婅洐銆?37.5 銆婄敓姝荤柌鍔炽€?15 銆婄孩楂樼脖瀹舵棌銆?21 鑻ユ潕20細锛?锛夎喘涔般€婄孩楂樼脖瀹舵棌銆嬬殑鎬讳环涓?鍏冿紙鐢ㄥ惈x锛寉鐨勪唬鏁板紡琛ㄧず锛?锛?伴噺鐨?鍊嶏紝璇峰啓鍑簑鍏充簬x鐨勫嚱鏁板叧绯诲紡锛屽苟姹傚嚭銆婅洐銆(3)鑻ユ潕鑰佸笀鍦ㄤ功鍩庤喘涔颁簡浠ヤ笂?50?24BCD AD C锛屸垹BCD=90o,宸茬煡AB=5锛孊C=6,cosB= 銆傜偣O鐢辩偣B鍚戠偣C浠ユ瘡绉?C t OB涓哄崐寰勭殑鈯橭涓嶢B杈逛氦浜庣偣P銆?锛?锛夋眰AD鐨勯暱锛?锛夊綋t=AD鏃讹紝濡傚浘锛?锛夛紝姹侭P鐨勯暱锛?锛夌偣O杩愬姩鐨勮繃绋嬩腑锛岃繃鐐笵鐨勭洿绾緿Q涓庘姍O鐩稿垏浜庣偣Q锛屼氦BC浜庣偣E3锛夛紝褰揇Q B鏃讹紝姹倀鐨勫€笺€?25BCA锛?锛?锛夈€佺偣B(1.0),鎶涚墿绾?缁忚繃鐐笴銆?锛?锛夋眰鐐笴鐨勫潗鏍囧拰鎶涚墿绾跨殑瑙f瀽寮?锛?锛夎嫢鎶涚墿绾跨殑瀵圭О杞翠簬AB鐨勪氦鐐逛负M锛屾眰鈻矨CM鐨勯潰绉?锛?锛夎嫢灏嗏柍ABC娌緼B缈绘姌锛岀偣C囩▼锛?鑻ュ皢鈻矨BC娌緽C缈绘姌锛岀偣A嚎涓婏紵鐩存帴鍐欏嚭缁撴灉锛?26銆佸皾璇曟帰绌讹細灏忓紶鍦ㄦ暟瀛﹀疄璺垫椿鍔ㄤ腑锛岀敾浜嗕竴涓猂t鈻矨BC锛屼娇鈭燗CB=90o锛孊C=1锛孉C=2BC涓哄崐寰勭敾寮т氦AB浜庣偣D锛岀劧鍚庝互A 涓哄渾蹇冧互AD C浜庣偣E E= 锛E2 =AC C,,璇峰悓瀛︿滑楠岃瘉灏忓紶鐨勫彂鐜版槸?鎷撳睍寤朵几锛?AC鍙婄偣E 锛屾帴鐫€鏋勯€燗E=EF=CF F锛屽緱鍒颁笅鍥撅紝璇曞畬鎴愪互涓嬮棶棰橈細鈶犳眰璇佲柍ACF鈭解柍FCE 鈶℃眰鈭燗鐨勫害鏁帮紱鈶㈡眰cos鈭燗搴旂敤杩佺Щ锛?鍒╃敤涓婇潰鐨勭粨璁猴紝鐩存帴鍐欏嚭锛?鈶犲崐寰勪负2鐨勫渾鍐呮帴姝e崄杈瑰舰鐨勮竟闀夸负鈶¤竟闀夸负2锛掞紣锛??垎鏍囧噯涓€銆侀€夋嫨棰橈細1銆丄銆€銆€2銆丆3銆丅銆€銆€4銆丆5銆丅銆€銆€6銆丄7銆丄銆€銆€8銆丏9銆丅銆€銆€10銆丄11銆丏銆€銆€12銆丅?鍒嗭紝鍏?8鍒嗭級13. 1 銆€銆€14. x鈮?1 15. 3蟺銆€銆€16. x鈮? 17. 銆€銆€18. 4锛?涓夈€佽В绛?2鍒嗭級19.瑙o細= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?褰揳=-1,b= 鏃讹紝鍘熷紡=4+ 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?20.锛?锛?锛?锛塁銆丅锛汣銆丆鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?锛夊洜涓轰腑浣嶆暟鐩稿悓锛屼絾锛?锛夌殑浼楁暟灏忎簬锛?锛夌殑浼楁暟锛屾墍浠ユ垜璁や负锛?锛夋洿鍠︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?紭鍔f寜A銆丅銆丆銆丏銆丒鐢遍珮鍒颁綆銆傝嫢瀛︾敓浠嶢绛夌骇缁煎悎鑰冭檻璁や负锛?锛夊ソ涔熷彲缁欐弧鍒嗐€?21.瑙o細锛?鎴愰渶x澶╋紝鍒欎箼鍗曠嫭瀹屾垚闇€1.5x鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?瑙e緱x=50锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?=50В锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?鍒?.5x=75锛?鎵€浠ョ敳銆佷箼涓ら槦鍗曠嫭瀹屾垚杩欓」宸ョ▼鍚勯渶50銆?5澶┿€?鈥︹€︹€︹€︹€︹€?6鍒?锛?锛夆憼鍥犱负瀛︽牎鍋囨湡涓?0澶╋紝鐢茬殑瀹屾垚鏃堕棿涓?0澶╋紝灏忎簬60澶╋紱涔欑殑瀹屾垚鏃堕棿涓?5澶╋紝澶т簬60澶╋紝鎵€浠ヤ粠鏃堕棿涓婅€冭檻搴旈€夋嫨鐢查槦锛涒€︹€︹€︹€︹€︹€?7鍒?鈶$敳鎵€闇€鐨勮祫閲戯細50脳1000=50000鍏冿紱涔欐墍闇€璧勯噾锛?5脳600=45000鍏冿紱45000锛?0000 鎵€浠ヤ粠璧勯噾瑙掑害鑰冭檻搴旈€夋嫨涔欓槦銆傗€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?21. 璇佹槑锛?锛?BCD?鈭碅B=BC 鍙堚埖鈭燗BG=鈭燙BG锛孊G=BG 鈭粹柍AGB鈮屸柍CGB锛圫AS锛?鈭碅G=CG 鈥︹€︹€︹€︹€︹€︹€?2鍒?锛?锛夎繛缁揂C 鈥︹€︹€︹€︹€︹€︹€?3鍒?鈭靛洓杈瑰舰ABCD?鈭粹垹DCA=鈭燘CA 鍙堚埖CF=CE锛孋A=CA 鈭粹柍AFC鈮屸柍AEC锛圫AS锛?鈭粹垹FAC=鈭燛AC 鈭礎G=CG 鈭粹垹EAC=鈭燝CA 鈭粹垹FAC=鈭燝CA 鈭碈G F 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?锛?锛夆埖BG=CG 鈭粹垹GBC=鈭燝CB 鈭碘柍AGB鈮屸柍CGB 锛堝凡璇侊級鈭粹垹GAB=鈭燝CB 鈭粹垹GAB=鈭燝BC 鍙堚埖鈭燗EB=鈭燗EB 鈭粹柍ABE鈭解柍BGE 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?23.锛?锛?20-21x-21y 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?锛?锛墄=2锛?0-x-y锛夛紝y=20-1.5x锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?w=37.5x+15y+21锛?0-x-y锛?25.5x+300锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?瑙e緱锛?鍥犱负x,鎵€浠ヨ兘涔?︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?锛? 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?24.1锛夎繃鐐笰浣淎E C浜庣偣E锛?鈭礎B=5锛宑osB= 鈭碆E=AB osB=3 鈭碋C=BC-BE=3 鈥︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?鈭礎D C锛屸垹BCD=90掳鈭粹垹C=鈭燚=鈭燗EC=90掳鈭村洓杈瑰舰AECD?鈭碅D=3 鈥︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?锛?锛夆埖AD=3 鈭村綋t =AD鏃讹紝OB=3 杩囩偣O浣淥F P浜庣偣F 鈭碆F= BP 鈭礳osB= 鈭碆F=BO osB= 鈭碆P= 鈥︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?锛?Q 鈭礑Q B锛孉D C 鈭村洓杈瑰舰ABED鈭碆E=AD=3锛孌E=AB=5 鈭碈D= =4 鈭礏O=t 鈭碠E=3-t 鈭电洿绾緿Q涓庘姍O鐩稿垏浜庣偣Q 鈭粹垹OQE=鈭燙=90掳鈭碘垹OEQ=鈭燚EC锛?鈭粹柍OQE鈭解柍DCE 鈭?鈭?鈭磘= 鈥︹€︹€︹€︹€︹€︹€︹€︹€?9鍒?25. 瑙o細锛?锛夎繃C鐐逛綔CE鈭碘柍ABC 涓虹瓑鑵扮洿瑙掍笁瑙掑舰鈭碅B=AC 鈭?ABC=900 鍦≧t鈻矨OB涓?鈭燨AB+鈭燗BO=900 鈭碘垹ABO+鈭?CBE=900 鈭粹垹OAB=鈭燙BE 鈭碘垹CEB=鈭燗OB=900 鈭粹柍AOB鈮屸柍BEC 鈥︹€︹€︹€︹€︹€︹€?1鍒?鈭碆E=AO CE=OB 鈭礎(0,2)B(1,0) 鈭碅O=2 BO=1 鈭碆E=2 CE=1 鈭碠E=3 鈭?C(3,1) 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?甯﹀叆y=ax2-ax-2鍥惧儚涓?鈭碼= 鈭磞= x2- x-2 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?锛?=- =- = 鈥︹€︹€︹€︹€︹€?4鍒?AB浜庣偣F 鈭寸偣M鐨勫潗鏍囦负锛?锛?锛?鈭寸偣M鏄疧B鐨勪腑鐐?鈭礛F?鈭碏鏄疉B鐨勪腑鐐?鈭靛湪Rt鈻矨OB AB= = 鈭碨鈻矨CM= S鈻矨BC = 脳脳脳= 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?7鍒?锛?BC 娌緼B缈绘姌鍚庡緱鍒扳柍ABD锛?杩囩偣D浣淒M锛?锛夛紝鈭礏D=BC锛屸垹MBD=鈭燛BC锛屸垹DMB=鈭燙EB=90掳锛?鈭粹柍DBM 鈮屸柍CBE锛?鈭碆M=BE=2锛孌M=CE=1锛?鈭碊锛?1锛?1偣D鍦?鎶涚墿绾縴= x2- x-2涓婏紱鈥︹€︹€︹€︹€︹€︹€?鍒?灏嗏柍ABC娌緽C缈绘姌锛岀偣A涓嶅湪璇ユ姏鐗╃嚎涓娿€傗€︹€︹€︹€︹€︹€︹€?0鍒?26.锛?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?AE2=6-2 ,AC C=6-2 ,鈭寸?鈥︹€︹€︹€︹€︹€︹€?2鍒?鈶犫埖AE2=AC C锛?鈭?鈭礎E=FC 鈭?鍙堚埖鈭燘=鈭燘鈭粹柍ACF鈭解柍FEC 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?5鍒?鈶♀埖鈻矨CF鈭解柍FEC锛屼笖EF=FC 鈭碅C=AF 鈭礎E=EF 鈭粹垹A=鈭燗FE 鈭粹垹FEC=2鈭燗鈭礒F=FC 鈭粹垹C=2鈭燗鈭粹垹AFC=鈭燙=2鈭燗鈭碘垹AFC+鈭燙+鈭燗=180掳鈭粹垹A=36掳鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?鈶㈣繃鐐笷浣淔MB B浜庣偣M 鐢憋紙1E= 锛孍B= 鈭礒F=FB 鈭碝E= 鈭碅M= 鈭碿os鈭燗= = 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?10鍒?锛?锛夆憼鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?11鍒?鈶?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?12鍒?。

2013年中考数学模拟题(含答案)

2013年中考数学模拟题(含答案)

2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。

10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。

三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。

甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。

2013年中考数学模拟卷(一)(有答案)

2013年中考数学模拟卷(一)(有答案)

2013年中考数学模拟卷(一)(时间:120分 满分:120分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列实际问题中的数据是近似数的有【 】①我国人口总数为:122389万人,②.某本书共有304页,③.九年级某班学生共有53人,④.圆周率 3.14π≈ ⑤.若干千克苹果平均分给若干个人,每人大约得3.33千克 A .①④⑤ B.②⑤ C.③④ D.① ② 2.下列各式运算正确的是【 】A. 235a a a +=B. 235a a a = C.235()a a = D .1025a a a ÷= 3. 把点1(23)P -,向右平移3个单位长度再向下平移2个单位长度到达点2P 处,则2P 的坐标是 【 】A.(51)-, B.(15)--, C.(55)-, D.(11)--, 4. 已知线段a 、b 、c 并有a>b>c,则组成三角形满足的条件是 【 】A .a+b>c B.a+c>b C.a-b<c D .b-c<a5.如图,为测楼房BC 的高,在距离楼房30米的A 处,测得楼顶的仰角为α,则楼高BC 的高为 【 】 A.30tan α米; B.30tan α米; C.30sin α米; D.30sin α米.6.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是 【 】 A .13 B .12 C .34 D .237.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是【 】8. 如图,一张矩形纸片,沿折痕CE 分别作两次不同情况的折叠,①顶点B 落在AD 边上(如图1);②顶点B 落在矩形ABCD 的内部(如图2).那么∠1+∠2与∠3+∠4的大小 关系是【 】A .∠1+∠2=∠3+∠4 B.∠1+∠2<∠3+∠4 C .∠1+∠2>∠3+∠4 D.不能确定二、填空题 (本大题共8小题,每小题3分,共24分)9. ( 在下面(Ⅰ)、(Ⅱ)两题中任选一题,若两题都做按第(Ⅰ)题计分)(Ⅰ).2sin60°·tan30°=(Ⅱ).利用计算器计算:2sin42°≈ (保留4个有效数字) 10.不等式x -3<0的最大整数解是11.如图,在△ABC 中,E 、F 分别是AB 、AC 上点,当∠1+∠2+∠B+∠C=300°时,∠A= 度.12.如图.AB 是⊙O 的切线,∠B=30°,则 OA ︰OB= 13. 写一个不等式(组),使它的整数解有且仅有:-1、-2,则这个不等式(组)可以是__________________.14. 观察下列各直角坐标系中的正方形ABCD ,点P(x,y)是四条边上的点,且x ,y 都是整数,由图中所包含的规律,可得第n 个图中满足条件的点P 个数是_____________(用含n 的代数式表示).15.如图:已知直线AB ∥y 轴,且直线AB 分别与函数2y x = (x>0)、ky x= (x>0)的图象交于A 、B 两点,并知△AOB 的面积2.5,则k=16.如图中,∠ABC=60,∠B DE=∠C=45,DF=1, AB=1+3,DE ⊥AB,分别交AB 于F,BC 于E,则下列结论: ①AF =EF ;②△ADF ≌△EBF ;③21=AE BD ; ④△DBE ∽△CEA 中,正确结论的序号.......是 (多填或错填得0分,少填酌情给分) . 三、(本大题共3小题,第17题6分,第18、19均为7分,共20分).17. 求代数式的值:)2422(4222+---÷--x x x x x x ,其中22+=x18.如图,在△ABC 中,AB=5,AD=4,BD=DC=3,且DE AB 于E ,DF ⊥AC 于F.(1)请你写出图中与A 点有关的三个不同类型的正确结论; (2)DE 与DF 在数量上有何关系?并证明之.19.某班同学上学期全部参加了捐款献爱心活动,个人捐款额见 如下统计图,资助对象金额分配情况见如下统计表(1)补填统计表中的空白;(2)求该班学生个人捐款额的中位数和众数;(3)求捐款额多于15元的学生数占全班人数的百分数; (4)根据统计表中的数据画出扇形统计图.四、(本大题共2小题,每小题8分,共16分)20. 在平行四边形ABCD 中,对角线AC ,BD 交于O 点(BD>AC ),E 、F 是BD 上的两点. (1) 当点E 、F 满足条件: 时,四边形AECF 是平行四边形(不必证明); (2)当点E 、F 满足条件: 时,四边形AECF 是矩形,并加以证明.资助对象灾区 民众 重病 学生 孤老 病者 捐助金额 (元)13518921.现有三个数:1、3、5,要添加一数,使得它们的平均数增大,平均数增大多少,只能通过如图所示的自由转盘来决定,你认为添加一个什么数可能性较大?五、(本大题共2小题,第22题8分,第23题9分,共17分)22.在⊙O中,AB是非直径弦,弦CD⊥AB,(1)当CD经过圆心时(如图1)∠AOC+∠DOB= 度;(2)当CD不经过圆心时(如图2), ∠AOC+∠DOB的度数与(1)的情况相同吗?试说明你的理由.23. 在购买课桌椅时,设购买套数为x(套),总费用为y(元).现有两种购买方案:方案一:若学校赞助出售单位10000元,则该校所购课桌椅的价格为每套40元;(总费用=赞助费+课桌椅费)方案二:购买课桌椅方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤200时,y与x的函数关系式为;当x>200时,y与x的函数关系式为;(2)如果购买课桌椅超过200套,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两校分别采用方案一、方案二购买课桌椅共500套,花去总费用计40000元,求甲、乙两校各购买课桌椅多少套.六、(本大题共2小题,第24题9分,第25题10分,共19分)24.有一张梯形纸片ABCD,DC∥AB,∠DAB=90°,将△ADC沿AC折叠,点D恰好落在BC的中点E上(如图1)(1)求证:∠DAC=∠EAB;(2)当上底DC=10cm时,求梯形两腰AD、BC的长;(3)若过E作EF⊥AB于F,现将这张梯形纸片沿AE、EF剪成三块,然后按如图2所示拼成四边形HDAE(对应部分有相同的编号),那么四边形HDAE是什么特殊四边形(不证明)?并请你在图3中画出两条分割线(虚线),同样将梯形纸分成三块,然后拼成一个正六边形,要求仿图2方法画出拼图.25.在直角坐标系中,△ABC 的顶点坐标为A (4,6),B (2,3),C (5,3).将△ABC 绕点C 顺时针旋转180°后得到△11CB A .(1)求A 1,B 1的坐标;(2)已知坐标系中有抛物线y=ax 2-10ax+24a (a ≠0) ①求该抛物线与x 轴的交点坐标,并说明这两交点分别与A 点有何位置关系(从对称角度来说明)?②当抛物线经过点B 时,能否确定一定经过点B 1,说说你的理由;③若点P 是该抛物线的顶点,是否存在一个实数a,使△BPB 1与△BAC 相似,若存在,求出P 点坐标,若不存在,说明其理由.2013年中考数学模拟卷(一)参考答案一、选择题(本大题共8小题,每小题3分,共24分)1. A,2. B,3. C4. C,5. A ,6. C7. D ,8. A 二、填空题 (本大题共8小题,每小题3分,共24分)9. (Ⅰ). 1,(Ⅱ) 1.338 10. 2 11. 30 12. 1︰2 13.如:10250x x +≤⎧⎨+>⎩14. 4n , 15. -3 16.①②④三、(本大题共3小题,第17题6分,第18、19均为7分,共20分).17. 解: 原式=2242222+-÷--x xx x x x =错误!不能通过编辑域代码创建对象。

2013年数学中考模拟试题及答案

2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。

设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。

11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。

2013届中考数学模拟试题(含答案)

2013届中考数学模拟试题(含答案)

2013届中考数学模拟试题(含答案)一、选择题本大题共8小题,每小题3分,共24分.1.一元二次方程x(x-2)=2-x的根是()A.-1B.2C.1和2D.-1和22.下列各式中,正确的是()A.(-3)2=-3B.-32=-3C.(±3)2=±3D.32=±33.如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为() A.2B.23C.4D.434.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax2+bx+c=0的一个根5.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8B.4C.10D.56.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定7.已知二次函数的图象(-0.7≤x≤2)如右图所示.关于该函数在所给自变量x的取值范围内,下列说法正确的是()A.有最小值1,有最大值2B.有最小值-1,有最大值1C.有最小值-1,有最大值2D.有最小值-1,无最大值8.如右图,正五边形ABCDE中,对角线AC、AD与BE分别相交于点N、M.下列结论错误的是()A.四边形NCDE是菱形B.四边形MNCD是等腰梯形C.△AEM与△CBN相似D.△AEN与△EDM全等二、填空题本大题共10小题,每小题3分,共30分.9.已知一组数据:4,-1,5,9,7,6,7,则这组数据的极差是. 10.如图,□ABCD中,∠A=120°,则∠1=°.11.如图,河堤横断面迎水坡AB的坡比是1:3,则坡角∠A=°.12.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=°.13.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x名学生,根据题意,列出方程为.14.如图,△ABC中,AB=AC=13,BC=10,D为BC中点,DE⊥AB于E,则DE=.15.如图,梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=30°,则sin∠BAD=.16.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形(即阴影部分)的面积之和为cm2(结果保留π).17.如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你所确定的b的值是(写出一个值即可).18.边长为2的两种正方形卡片如上图①所示,卡片中的扇形半径均为2.图②是交替摆放A、B两种卡片得到的图案.若摆放这个图案共用两种卡片21张,则这个图案中阴影部分图形的面积和为(结果保留π).三、解答题19.(本题满分8分)(1)计算:(3+6)(2-1)-3tan30°-2cos45°. (2)已知关于x的方程kx2=2(1-k)x-k有两个实数根,求k的取值范围. 20.(本题满分8分)如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.21.(本题满分8分)某校初三所有学生参加2011年初中毕业英语口语、听力自动化考试,现从中随机抽取了部分学生的考试成绩,进行统计后分为A、B、C、D四个等级,并将统计结果绘制成如下的统计图.请你结合图中所提供的信息,解答下列问题:(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D 级:15分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所占的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校初三共有850名学生,试估计该年级A级和B级的学生共约为多少人.22.(本题满分8分)在不透明的口袋中,有四只形状、大小、质地完全相同的小球,四只小球上分别标有数字12,2,4,-13.小明先从盒子里随机取出一只小球(不放回),记下数字作为平面直角坐标系内点的横坐标;再由小华随机取出一只小球,记下数字作为平面直角坐标系内点的纵坐标.(1)用列表法或画树状图,表示所有这些点的坐标;(2)小刚为小明、小华两人设计了一个游戏:当上述(1)中的点在正比例函数y=x图象上方时小明获胜,否则小华获胜.你认为这个游戏公平吗?请说明理由.23.(本题满分10分)小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果精确到1mm)24.(本题满分10分)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴相交于点A(-2,0)和点B,与y轴相交于点C,顶点D(1,-92).(1)求抛物线对应的函数关系式;(2)求四边形ACDB的面积;(3)若平移(1)中的抛物线,使平移后的抛物线与坐标轴仅有两个交点,请直接写出一个平移后的抛物线的关系式.25.(本题满分10分)如图,AB是⊙O的直径,点A、C、D在⊙O上,过D作PF∥AC交⊙O于F、交AB于E,且∠BPF=∠ADC.(1)判断直线BP和⊙O的位置关系,并说明你的理由;(2)当⊙O的半径为5,AC=2,BE=1时,求BP的长.26.(本题满分10分)某专买店购进一批新型计算器,每只进价12元,售价20元.多买优惠:凡一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元.例如:某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.设一次性购买计算器为x只,所获利润为y元.(1)若该专卖店在确保不亏本的前提下进行优惠销售,试求y与x(x >10)之间的函数关系式,并写出自变量x的取值范围;(2)若该专买店想获得200元的销售利润,又想让消费者多获得实惠,应将每只售价定为多少元?(3)某天,顾客甲买了42只新型计算器,顾客乙买了52只新型计算器,店主却发现卖42只赚的钱反而比卖52只赚的钱多,你能用数学知识解释这一现象吗?27.(本题满分12分)如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=32,求AG、MN的长.28.(本题满分12分)如图a,在平面直角坐标系中,A(0,6),B(4,0).(1)按要求画图:在图a中,以原点O为位似中心,按比例尺1:2,将△AOB缩小,得到△DOC,使△AOB与△DOC在原点O的两侧;并写出点A的对应点D的坐标为,点B的对应点C的坐标为;(2)已知某抛物线经过B、C、D三点,求该抛物线的函数关系式,并画出大致图象;(3)连接DB,若点P在CB上,从点C向点B以每秒1个单位运动,点Q在BD上,从点B向点D以每秒1个单位运动,若P、Q两点同时分别从点C、点B点出发,经过t秒,当t为何值时,△BPQ是等腰三角形?九年级数学参考答案及评分说明一、选择题1~4DBCD5~8DBCC三、解答题19.(1)原式=3-3×33-2×22……3分=3-3-1=-1.……4分(2)原方程可化为kx2-2(1-k)x+k=0,b2-4ac=4-8k,……2分∵方程有两个实数根,∴b2-4ac≥0,即4-8k≥0,∴k≤1/2.……3分∵k≠0,∴k的取值范围是k≤1/2,且k≠0.……4分20.证:(1)由□ABCD,得AD=BC,AD∥BC.……2分由BE=DF,得AF=CE,∴AF=CE,AF∥CE.……3分∴四边形AECF是平行四边形;……4分(2)由菱形AECF,得AE=EC,∴∠EAC=∠ACE.……5分由∠BAC=90°,得∠BAE=∠B,∴AE=EB.……7分∴BE=AE=EC,BE=5.……8分21.(1)右图所示;……2分(2)10%;……4分(3)72°;……6分(4)561.……8分22.(1)用表格列出这些点所有可能出现的结果如下:……4分1/224-1/31/2(1/2,2)(1/2,4)(1/2,-1/3)2(2,1/2)(2,4)(2,-1/3)4(4,1/2)(4,2)(4,-1/3)-1/3(-1/3,1/2)(-1/3,2)(-1/3,4)(2)在正比例函数y=x图象上方的点有:(1/2,2)、(1/2,4)、(2,4)、(-1/3,1/2)、(-1/3,2)、(-1/3,4).……6分∴P(小明获胜)=1/2,P(小华获胜)=1/2.∴这个游戏是公平的.……8分23.解:作BE⊥l于点E,DF⊥l于点F.……2分∵∠α+∠DAF=180°-∠BAD=180°-90°=90°,∠ADF+∠DAF=90°,∴∠ADF=∠α=36°.根据题意,得BE=24mm,DF=48mm.……4分在Rt△ABE中,sinα=BE/AB,∴AB=BE/sin36°=40(mm).……6分在Rt△ADF中,cos∠ADF=DF/AD,∴AD=DF/COS36°=60(mm).8分∴矩形ABCD的周长=2(40+60)=200(mm).……10分24.(1)设二次函数为y=a(x-1)2-9/2,……1分求得,a=1/2,……3分∴y=1/2(x-1)2-9/2.……4分(2)令y=0,得x1=-2,x2=4,∴B(4,0),……6分令x=0,得y=-4,∴C(0,-4),……7分S四边形ACDB=15.∴四边形ACDB的面积为15.……8分(3)如:向上平移9/2个单位,y=1/2(x-1)2;向上平移4个单位,y=1/2(x-1)2-1/2;向右平移2个单位,y=1/2(x-3)2-9/2;向左平移4个单位y=1/2(x+3)2-9/2.(写出一种情况即可).……10分25.(1)直线BP和⊙O相切.……1分理由:连接BC,∵AB是⊙O直径,∴∠ACB=90°.……2分∵PF∥AC,∴BC⊥PF,则∠PBH+∠BPF=90°.……3分∵∠BPF=∠ADC,∠ADC=∠ABC,得AB⊥BP,……4分所以直线BP和⊙O相切.……5分(2)由已知,得∠ACB=90°,∵AC=2,AB=25,∴BC=4.……6分∵∠BPF=∠ADC,∠ADC=∠ABC,∴∠BPF=∠ABC,由(1),得∠ABP=∠ACB=90°,∴△ACB∽△EBP,……8分∴ACBE=BCBP,解得BP=2.即BP的长为2.……10分当x=50时,20-(50—10)×0.1=16(元),当x=40时,20-(40—10)×0.1=17(元).……6分∵16<17,∴应将每只售价定为16元.……7分(3)y=-0.1x2+9x=-0.1(x-45)2+202.5.①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤90时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=42时,y1=201.6元,当x=52时,y2=197.6元.……9分∴y1>y2.即出现了卖46只赚的钱比卖50只嫌的钱多的现象. (10)分27.(1)由∠BAD=∠ABC=∠ADC=90°,得矩形ABCD,……2分由AB=AD,得四边形ABCD是正方形.……3分(2)MN2=ND2+DH2.……4分理由:连接NH,由△ABM≌△ADH,得AM=AH,BM=DH,∠ADH=∠ABD=45°,∴∠NDH=90°,……6分再证△AMN≌△AHN,得MN=NH,……7分∴MN2=ND2+DH2.……8分(3)设AG=x,则EC=x-4,CF=x-6,由Rt△ECF,得(x-4)2+(x-6)2=100,x1=12,x2=-2(舍去)∴AG=12.……10分由AG=AB=AD=12,得BD=122,∴MD=92,设NH=y,由Rt△NHD,得y2=(92-y)2+(32)2,y=52,即MN=52.……12分28.(1)画图1分;C(-2,0),D(0,-3).……3分(2)∵C(-2,0),B(4,0).设抛物线y=a(x+2)(x-4),将D(0,-3)代入,得a=3/8.……5分∴y=3/8(x+2)(x-4),即y=3/8x2-3/4x-3.……6分大致图象如图所示.……7分(3)设经过ts,△BPQ为等腰三角形,此时CP=t,BQ=t,∴BP=6-t.∵OD=3,OB=4,∴BD=5.①若PQ=PB,过P作PH⊥BD于H,则BH=1/2BQ=1/2t,由△BHP∽△BOD,得BH:BO=BP:BD,∴t=48/13s.……9分②若QP=QB,过Q作QG⊥BC于G,BG=1/2(6-t).由△BGQ∽△BOD,得BG:BO=BQ:BD,∴t=30/13s.……10分③若BP=BQ,则6-t=t,t=3s.……11分∴当t=48/13s或30/13s或3s时,△BPQ为等腰三角形.……12分。

2013年河北省中考数学模拟一试卷(含答案)

2013年河北省中考数学模拟一试卷(含答案)

下午5时早上10时l m123第5题2013年河北省中考数学模拟试题一一、选择题(本大题共有12小题,1—6每小题2分,7—12每题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的) 1.16的平方根是( ) A .4B .-4C .±4D .±82.下列运算正确的是( )A .743)(x x =B .532)(x x x =⋅-C .34)(x x x -=÷- D. 23x x x +=3.下面的图形中,既是轴对称图形又是中心对称图形的是 ( )4.某学习小组为了解本城市500万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( ) A .该调查的方式是普查 B .本地区只有40个成年人不吸烟 C .样本容量是50 D .本城市一定有100万人吸烟 5.如图,l ∥m ,∠1=115°,∠2=95°,则∠3= A .120° B .130° C .140° D .150°6.如图,⊙O 是△ABC 的外接圆,∠OCB =400,则∠A 的度数等于( ) A .60° B . 50° C .45° D .40°7.已知圆锥的底面半径为1cm ,母线长为3cm ,则圆锥的侧面积是( ) A. 6cm 2B. 3πcm 2C .6πcm 28..已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是()A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根9.如图所示,已知在三角形纸片ABC 中,BC =3,AB =6,∠BCA =90°.在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为( ) A 、6B 、3C 、错误!未找到引用源。

2013年中考模拟数学试卷数学答案

2013年中考模拟数学试卷数学答案
(2)由全等及三线合一得AO⊥BC,(5分)
∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.

2013年中考数学模拟试卷001(含答案)

2013年中考数学模拟试卷001(含答案)

南通市2013年中考数学模拟考试试卷(如皋)(考试时间:120分钟满分:150分)一、选择题(本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) . 的倒数是✌.15.-15.-.. 下列运算结果正确的是✌.⌧ ·⌧ = ⌧ .☎⌧✆ = ⌧ .☎-⌧ ✆ =⌧ .⌧ ⌧=⌧. 已知 ♋= ,则 ♋的余角为✌.  .  .  . . 在△✌☹△ ☜☞中,在给出下列四组条件:①✌= ☜, =☜☞,✌= ☞;②✌= ☜,∠ =∠☜, =☜☞;③∠ =∠☜, =☜☞,∠ =∠☞;④✌= ☜,✌= ☞,∠ =∠☜.其中,能使△✌☹△ ☜☞的条件共有✌. 组 . 组 . 组 . 组. 某课外小组的同学们在社会实践活动中调查了 户家庭某月的用电量,如下表所示:✌. ,  . ,  . ,  . , . 解集在数轴上表示为如图所示的不等式组是✌.3,2x x <-⎧⎨≥⎩ .3,2x x <-⎧⎨≤⎩ .3,2x x >-⎧⎨≥⎩.3,2x x >-⎧⎨≤⎩. 根据如图提供的信息,可知一个杯子的价格是✌. 元 . 元 . 元 . 元 . 已知:二次函数⍓=⌧ - ⌧+♋,下列说法错误..的是 ✌.当⌧ 时,⍓随⌧的增大而减小 .若图象与⌧轴有交点,则♋≤.当♋= 时,不等式⌧ - ⌧+♋ 的解集是 ⌧ .若将图象向上平移 个单位,再向左平移 个单位后过点( ,- ),则♋=-. 如图,直角三角形纸片✌的∠ °,将三角形纸片沿着图示的中位线☜剪开,然后把剪开的两部分重新拼接成不重叠的图形,下列选项中不能..拼出的图形是 (第 题)(第 题)✌✌.平行四边形 .矩形.等腰梯形 .直角梯形.如图,两个反比例函数⍓=1k x和⍓=2k x (其中 )在第一象限内的图象依次是 和 ,设点 在 上,  ⌧轴于点 ,交 于点✌,  ⍓轴于点 ,交于点 ,则四边形 ✌的面积为✌. + . - . · .12k k 二、填空题(本大题共 小题,每小题 分,共 分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) .月球表面温度,中午是 ℃,半夜是- ℃,则半夜比中午低是 ℃..用科学记数法表示  . .函数⍓ 12x -+中,自变量⌧的取值范围是 . .如图,点✌, , 都在⊙ 上,若∠ = °,则∠✌= °..一只自由飞行的小鸟,将随意地落在如图所示方格地面上(每个小方格都是边长相等的正方形),则小鸟落在阴影方格地面上的概率为 ..如图热气球的探测器显示,从热气球上看一栋高楼顶部的仰角为 °,看这栋高楼底部的俯角为 °,若热气球与高楼水平距离为 ❍,则这栋楼的高度为 ❍.(第 题)✌☜ (第 题)· ✌(第 题)(第 题)(第 题).把两个相同的矩形按如图所示的方式叠合起来,若它们的长与宽分别为 ♍❍与 ♍❍,则重叠部分的面积为 ♍❍ .则♌的取值范围是 .三、解答题(本大题共 小题,共 分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤).(本小题满分 分)计算☎⇨- ✆ tan 602︒- 11()2-..(本小题满分 分)计算262393m m m m -÷+--..(本小题满分 分)如图,在△✌和△✌☜中,∠ ✌=∠ ✌☜= °,✌=✌,✌=✌☜,点 , ,☜三点在同一直线上,连结 .( )求证:△ ✌☹△ ✌☜;( )试猜想 , ☜有何特殊位置关系,并证明..(本小题满分 分)某校 名初二年级学生进行数学测验,从中随机抽取部分学生的成绩(得分取正整数,满分为 分)进行统计,请你根据下面尚未完成并有局部污染的频率分布表和频率分布直方图(如图).回答下列问题: ( )被抽取调查的学生成绩的数量为 ; ( )补全频数分布直方图;( )请估计该校初二年级学生在这次数学测验中优秀学生人数约为多少名?( 分b (第 题)(第 题)✌☜以上为优秀).(本小题满分 分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.( )请用树形图法或列表法,求恰好选中甲、乙两位同学的概率.( )若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率..(本小题满分 分)如图,在正方形网络图中建立一直角坐标系,一条圆弧经过网络点✌, , ,请在网格中进行下列操作:( )请在图中标出该圆弧所在圆心点 的位置,点 坐标为 ;()连接✌, ,则⊙ 的半径为 (结果保留根号),扇形 ✌的圆心角度数为 °;( )若扇形 ✌是某一个圆锥的侧面展开图,则该圆锥的底面半径为 (结果保留根号).分组 频数 频率 ❞  ❞  ❞   ❞   ❞ ? ?合计??频数 组距成绩(分)   (第 题).(本小题满分 分)已知关于⌧的方程⌧ - ♋⌧-♋+ ♌= ,其中♋,♌为实数.( )若此方程有一个根为 ♋☎♋ ✆,判断♋与♌的大小关系并说明理由;( )若对于任何实数♋,此方程都有实数根,求♌的取值范围..(本小题满分 分)如图 ,在底面积为●♍❍ 、高为 ♍❍的长方体水槽内放入一个圆柱形烧杯.以恒定不变的流量先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止.此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变.水槽中水面上升的高度♒(单位:♍❍)与注水时间♦(单位:♦)之间的函数关系如图 所示.( )写出函数图象中点✌、点 的实际意义; ( )求烧杯的底面积;( )若烧杯的高为 ♍❍,求注水的速度及注满水槽所用的时间..(本小题满分 分)在平面内,按图 方式摆放着三个正方形✌、 ☜☞☝和 ☠☞,其中点 , ,☜, ,☠依次位于直线●上.( )请在图 中过点☝画✌的垂线,交✌的延长线于点☟.判断△ ☟☝与△ ☜图(第 题)♒图♦☎(第 题) ✌☜☞☠☝● (图 )✌☜☞☠☝ ●(图 )是否全等,并说明理由.( )在图 中,已知正方形✌的面积为 ,正方形 ☜☞☝的面积为 ,求△✌☝的面积.( )让图 中的点☜在线段 上移动(点☜不与点 , 重合),且四边形✌、 ☜☞☝和 ☠☞依然是正方形,如图 ,其中哪些三角形的面积始终与△✌☝的面积相等?请直接写出所有符合条件的三角形..(本小题满分 分)已知抛物线⍓ -☎❍- ✆⌧ +☎❍- ✆⌧+❍ - ❍+ 与⌧轴交于点✌和点 ☎点 在点✌的右边✆,与⍓轴交于点 ( , ).以✌为直径画半 ✋☎⌧轴下方部分✆,在半圆上任取一点 ,过点 作半 ✋的切线,并且交抛物线于点P,✈☎点 在点✈的右边✆,交⌧轴于点☠.( )求抛物线的解析式及✌, 两点的坐标;( )若直线与⌧轴相交所成的角为 ,求直线 ✈的解析式;( )过点✌, 作半 ✋的切线,交直线 ✈于点 、E,若☜∶  ∶ ,求点 的坐标;☎4✆是否存在点 ,使得✋✈ ✌?若存在,请求出 的坐标;若不存在,请说明理由.⍓。

2013 年中考数学模拟试卷参考答案

2013 年中考数学模拟试卷参考答案

1 1 1 1 6( x 2) 2 x x(6 x) x 2 x 6 2 2 2 2 当 4 x 6 时,△EPQ 的面积等于梯形 ABPQ 的面积减去△AEQ 和△BEP 的面积 1 1 1 y 4( x 10 x) 2(10 x) 2 x 10 2 2 2 y
1 2
3 2
15. 4 3 3或4 3 3 三、解答题(本大题共 11 小题,共 88 分) 17(本题 6 分) 解:△= 62 4 7 8
16. 2 2 2或2 - 2 2
x1
6 8 6 8 3 2, x2 3 2 2 2
18(本题 9 分)
2013 年中考数学模拟试卷参考答案
一、选择题(每小题 2 分,共 12 分) 题号 答案 1 B 2 D 3 D 4 B 5 D 6 B
二、填空题(每小题 2 分,共 20 分) 7. 4 11.9.0 8.圆柱体(此题答案不唯一) 12.( 1,3 ) 9. 1或 1 13. 10. 6 14. m 1且m
4x 1 x 解不等式 3 4 x 6 x 6
得 3 x 1 满足条件的整数 a 的值为-2、-1、0、1 但由
a2 1 a 2 2a 1 1 知 a 1 a2 a a
a -1、0、1
所以满足条件的整数 a 的值只有-2
a2 1 a 2 2a 1 1 a 1 a2 a a (a 1) 2 1 (a 1)(a 1) a 1 a (a 1) a (a 1) 1 a 1 a (a 1) a 1 1 a 1 a a a 1 = 当a 2时,原式= 1
y1 950 250 x, y2 300( x 0.5)

2013年中考数学模拟试题和答案

2013年中考数学模拟试题和答案

数 学 试 卷(一)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1.|65-|=( ) A .65+B .65-C .-65-D .56-2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( )A .35-B .sin88°C .tan46°D .215- 4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A .4 B .5 C .6 D .10 5.二次函数y=(2x-1)2+2的顶点的坐标是( ) A .(1,2) B .(1,-2) C .(21,2) D .(-21,-2)6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( ) A .3场 B .4场 C .5场 D .6场 7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( ) A .7 B .8 C .9 D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5 二、填空题(每小题3分,共24分)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 . 10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 . 12.一个四边形中,它的最大的内角不能小于 . 13.二次函数x x y 2212+-=,当x 时,0<y ;且y 随x 的增大而减小.14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BC DE= . 15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A +∠B +∠C =__________度. 16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D 两点,则图中阴影部分 的面积是 cm 2.三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:01)32009(221245cos 4)21(8--⨯÷-︒-+-18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭19.已知:如图,梯形ABCD 中,A B ∥CD ,E 是BC 的中点,直线AE 交DC 的延长线于点F .(1)求证:△ABE ≌△FCE ; (2)若BC ⊥AB ,且BC =16,AB =17,求AF 的长.CA20.观察下面方程的解法x4-13x2+36=0解:原方程可化为(x2-4)(x2-9)=0∴(x+2)(x-2)(x+3)(x-3)=0∴x+2=0或x-2=0或x+3=0或x-3=0∴x1=2,x2=-2,x3=3,x4=-3你能否求出方程x2-3|x|+2=0的解?四、(每小题10分,共20分)21.(1)顺次连接菱形的四条边的中点,得到的四边形是.(2)顺次连接矩形的四条边的中点,得到的四边形是.(3)顺次连接正方形的四条边的中点,得到的四边形是.(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由.22.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用右图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)23.(本题12分)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?24.(本题12分)甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离(2)甲轮船后来的速度.25.(本题12分)如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?26.(本题14分)如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.2009年中考模拟题 数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C . 二、填空题(每小题3分,共24分)9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227; 14.2115.90;16.π49三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.解:原式=222224222⨯⨯-⨯-+ -1 ...............4分 =822222--+ -1=-7 .............................6分18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭解:原式=)1(])1()1)(1(1[2-⨯--++x x x x ).............................4分 xx x x x x 211)1(]111[=++-=-⨯-++................................8分19.(1)证明: ∵E 为BC 的中点 ∴BE =CE ∵AB ∥CD∴∠BAE =∠F ∠B =∠FCE∴△ABE ≌△FCE .............................4分解:由(1)可得:△ABE≌△FCE∴CE=AB=15,CE=BE=8,AE=EF∵∠B=∠BCF=90°根据勾股定理得AE=17∴AF=34.............................8分20.解:原方程可化为|x|2-3|x|+2=0.............................3分∴(|x|-1)(|x|-2)=0∴|x|=1或|x|=2∴x=1,x=-1,x=2,x=-2 .............................10分四.(每小题10分,共20分)21.解:(1)矩形;(2)菱形,(3)正方形.............................6分(4)小青说的不正确如图,四边形ABCD中AC⊥BD,AC=BD,BO≠DO,E、F、G、H分别为AD、AB、BC、CD的中点显然四边形ABCD不是正方形但我们可以证明四边形ABCD是正方形(证明略)所以,小青的说法是错误的..............................10分22.解:(1)10分.............................2分(2)90分.............................4分(3)89分.............................6分(4)89×10%+90×30%+96×60%=93.5李刚的总评分应该是93.5分..............................10分23.小强和小亮的说法是错误的,小明的说法是正确的....................2分不妨设小明首先抽签,由树状图可知,共出现6种等可能的结果,其中小明、小亮、小强抽到A 签的情况都有两种,概率为31,同样,无论谁先抽签,他们三人抽到A 签的概率都是31.所以,小明的说法是正确的..............................12分24.解:(1)作BD ⊥AC 于点D由题意可知:AB =30×1=30,∠BAC =30°,∠BCA =45° 在Rt △ABD 中∵AB =30,∠BAC =30°∴BD =15,AD =ABcos30°=153 在Rt △BCD 中, ∵BD =15,∠BCD =45° ∴CD =15,BC =152 ∴AC =AD +CD =153+15即A 、C 间的距离为(153+15)海里.............................6分 (2)∵AC =153+15轮船乙从A 到C 的时间为1515315 =3+1由B 到C 的时间为3+1-1=3 ∵BC =152∴轮船甲从B 到C 的速度为3215=56(海里/小时)答:轮船甲从B到C的速度为56海里/小时..............................12分七、25.解:(1)老师说,三个同学中,只有一个同学的三句话都是错的,所以丙的第一句话和老师的话相矛盾,因此丙的第一句话是错的,同时也说明甲、乙两人中有一个人是全对的;............................2分(2)如果丙的第二句话是正确的,那么根据抛物线的对称性可知,此抛物线的对称轴是直线x=2,这样甲的第一句和乙的第一句就都错了,这样又和(1)中的判断相矛盾,所以乙的第二句话也是错的;根据老师的意见,丙的第三句也就是错的.也就是说,这条抛物线一定过点(-1,0);.............................6分(3)由甲乙的第一句话可以断定,抛物线的对称轴是直线x=1,抛物线经过(-1,0),那么抛物线与x轴的两个交点间的距离为4,所以乙的第三句话是错的;由上面的判断可知,此抛物线的顶点为(1,-8),且经过点(-1,0)设抛物线的解析式为:y=a(x-1)2-8∵抛物线过点(-1,0)∴0=a(-1-1)2-8解得:a=2∴抛物线的解析式为y=2(x-1)2-8即:y=2x2-4x-6.............................12分八、(本题14分)26.【探究】证明:过点F作GH∥AD,交AB于H,交DC的延长线于点G∵AH∥EF∥DG,AD∥GH∴四边形AHFE和四边形DEFG都是平行四边形∴FH=AE,FG=DE∵AE=DE∴FG=FH∵AB∥DG∴∠G=∠FHB,∠GCF=∠B∴△CFG≌△BFH2013年中考数学模拟试题和答案- 11 - / 11 ∴FC =FB .............................4分【知识应用】过点C 作CM ⊥x轴于点M ,过点A 作AN ⊥x轴于点N ,过点B 作BP ⊥x轴于点P则点P 的坐标为(x2,0),点N 的坐标为(x1,0)由探究的结论可知,MN =MP∴点M 的坐标为(221x x +,0) ∴点C 的横坐标为221x x + 同理可求点C 的纵坐标为221y y + ∴点C 的坐标为(221x x +,221y y +).............................8分 【知识拓展】 当AB 是平行四边形一条边,且点C 在x轴的正半轴时,AD 与BC 互相平分,设点C 的坐标为(a,0),点D 的坐标为(0,y)由上面的结论可知:-6+a=4+0,-1+0=5+b∴a=10,b=-6∴此时点C 的坐标为(10,0),点D 的坐标为(0,-6)同理,当AB 是平行四边形一条边,且点C 在x轴的负半轴时求得点C 的坐标为(-10,0),点D 的坐标为(0,6)当AB 是对角线时点C 的坐标为(-2,0),点D 的坐标为(0,4).............................14分。

2013年历年初三数学中考模拟题及答案

2013年历年初三数学中考模拟题及答案

2013届中考模拟试题数 学一、仔细选一选(本大题有10小题,每小题3分,共30分。

请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分) 1、下列一元二次方程中,没有实数根的是( )A.2210x x +-= B.2x +22x+2=0C.210x += D.220x x -++=2、如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到△A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( )A .120°B .90°C .60°D .30°3、在成都市二环路在某段时间内的车流量为30.6万辆,用科学记数法表示为() A .430.610⨯辆 B .33.0610⨯辆C .43.0610⨯辆D .53.0610⨯辆4、给出下列命题:(1)平行四边形的对角线互相平分; (2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分; (4)对角线互相垂直的四边形是菱形. 其中,真命题的个数是( )A.4 B.3 C.2 D.1 5、下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =- A .①② B .②③ C .②④ D .①③ 6、在△ABC 中,90C ∠=o,若4BC =,2sin 3A =,则AC 的长是( )A.6B.C.D.7、若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)在反比例函数xy 1-=的图像上,则( )_1_ A _1_ A(第13题图)A. y 1>y 2 >y 3 B.y 3> y 2 >y 1 C.y 2 >y 1 >y 3 D. y 1 >y 3> y 2 8、如图,EF 是圆O 的直径,5cm OE =,弦8cm MN =则E ,F 两点到直线MN 距离的和等于( ) A.12cm B.6cmC.8cm D.3cm9、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( ) A.抛物线的开口向上 B.抛物线的对称轴是直线1x = C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0) 10、反比例函数k y x=的图象如左图所示,那么二次函数221y kx k x =--的图象大致为 ( )二、填空题:(每小题4分,共16分)11、2008年8月5日,奥运火炬在成都传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,65,80,70,95,100,则这组数据的中位数是 . 12、方程2(34)34x x -=-的根是 .A .B. C.D .(第8题图)13、如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .14、在Rt △ABC 中,90C ∠=o,D 为BC 上一点,30DAC ∠=o ,2BD =,AB =AC 的长是.三、(第15题每小题6分,第16题6分,共18分) 15、解答下列各题:(1)计算:323+—2)(-+2cos30°—23—(2)解方程:2430x x +-=.17、把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5、)洗匀后正面朝下放在桌面上。

2013年中考数学模拟试题及参考答案

2013年中考数学模拟试题及参考答案

2013年中考数学模拟考试数学试题一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.-2的相反数是A.-2B.2C.-21 D.212.已知两圆的半径分别为6和4,圆心距为7,则两圆的位置关系是 A .相交B .内切C .外切D .内含3.下列计算中,正确的是( )A .42232a a a =+ B .()52322x x x -=-⋅ C .()53282a a -=- D .22326x x xm m=÷4.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是A .1个B . 2个C . 3个D . 4个 5.下列说法正确的是A .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖 6.下面四个几何体中,左视图是四边形的几何体共有A. 1个B. 2个C. 3个D. 4个7.如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°,得A B O ''△ ,则点A '的坐标为A .(3,1)B .(3,2)C .(2,3)D .(1,3)y C 2C 1C y 24 3B8.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2011个正方形的面积为 ( ) A .201035()2⨯B .201195()4⨯ C . 200995()4⨯ D .402035()2⨯二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.去年冬季的某一天,学校一室内温度是8℃,室外温度是2-℃,则室内外温度相差 ▲ ℃.10.国家游泳中心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为 ▲ 平方米. 11.五边形的内角和为 ▲ 度.12.已知反比例函数的图象经过点A (6,-1),请你写出该函数的表达式 ▲ . 13.已知二元一次方程组⎩⎨⎧=-=-52832y x y x ,则y x -的值为 ▲ .14.不等式组30210x x -<⎧⎨-⎩≥的解集是 ▲ .15.在如图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段能构成三角形的概率为_____▲____.16.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °.17.已知圆锥的底面半径是3cm ,母线长为6cm ,则这个圆锥的侧面积为_ ▲ .cm 2.(结果保留π)B 题)yxO BCA (第18题)OAC(第16题)·(第15题)18.如图,A 、B 是双曲线 y = k x(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= ▲ .三、解答题(本大题共有10小题,共74分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题6分)计算:(1)200821(1)()162---+; (2)2311()11x x x x--⋅-+. 20.(本题6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下: 组 别 噪声声级分组 频 数 频 率 1 44.5——59.5 4 0.1 2 59.5——74.5 a 0.2 3 74.5——89.5 10 0.25 4 89.5——104.5 bc 5 104.5——119.56 0.15 合 计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________; (2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?21.(本题6分)小晶和小红玩掷骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,小晶赢;点数之和等于7.小红赢;点数之和是其它数,两人不分胜负.问他们两人谁获胜的概率大?请你用“画树状图”或“列表”的方法加以分析说明.22.(本题6分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?23.(本题8分)如图,点E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE .(第24题)(第22题)蔬菜种植区域前 侧 空 地F EDCBA(第23题)(1)求证:△AFD ≌△CEB(2)四边形ABCD 是平行四边形吗?请说明理由.24.(本题8分)如图15,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50米.现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求缆绳AC 的长(结果精确到0.1m )(参考数据:2 1.41≈,3 1.73≈) 25.(本题8分)如图,A (-1,0)、B (2,-3)两点在二次函数y 1=ax 2+bx -3与一次函数y 2=-x +m 图像上。

2013年广东省中考数学模拟试题(一)和答案

2013年广东省中考数学模拟试题(一)和答案

2013年广东省中考全真模拟试题(一)一、选择题(本大题5小题,每小题3分,共15分) 1. 下列各式中与2是同类二次根式是()ABCD2.已知点(,3)A a -是点(2,)B b -关于原点O 的对称点,则a +b 的值为( )A 、6B 、5-C 、5D 、6±3.下列汽车标志中,是中心对称图形的是( )A. B.C D4.用配方法解一元二次方程2430x x -+=时可配方得( )A.2(2)7x -= B.2(2)1x -= C.2(2)1x += D.2(2)2x += 5.如图,O ⊙是ABC △的外接圆,已知50ABO ∠=°,则ACB ∠的大小为( )A .40°B .30°C .45°D .50°二、填空题(本大题5小题,每小题4分,共20分). 6的平方根是 .7.方程x (x -1)=2(x -1)的解为 .8.如图2,⊙O 的直径为10cm ,圆心O 到弦AB 的距离OM 的长为3cm ,则弦AB 的 长是 。

9.已知点P 到⊙O 的最近距离是3cm 、最远距离是7cm ,则此圆的半径是 。

10.如上图,PA 、PB 分别切⊙O 于A 、B ,PA=10cm ,C 是劣弧AB 是的点(不 与点A 、B 重合),过点C 的切线分别交PA 、PB 于点E 、F 。

则△PEF 的周长为 .(第5题)图2三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:20100(1)|(2-+---12.解方程: x(x-2)+x-2=013.如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC ① 将△ABC 向x 轴正方向平移5个单位得△A 1B 1C 1,② 再以O 为旋转中心,将△A 1B 1C 1旋转180°得△A 2B 2C 2,画出平移和旋转后的图形,并标明对应字母.14.求值:()x x x x x 224422+÷+++,其中x =2.15.关于x 的一元二次方程230x x k --=有两个不相等的实数根. (1)求k 的取值范围.(2)请选择一个k 的负整数值,并求出方程的根.四、解答题(二)(本大题4小题,每小题7分,共28分)16. 2010年5月中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重要战略决策部署,为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施维护和建设,以后逐年增加,计划到2010年当年用于城市基础设施维护与建设资金达到8.45亿元。

2013年历年初三数学中考模拟试卷及答案

2013年历年初三数学中考模拟试卷及答案

2013年中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号涂在答题卡相应位......置.上) 1.51-的绝对值是( ▲ ) A .-5 B .15 C .15- D . 52.下列图形是生活中常见的道路标识,其中不是..轴对称图形的是( ▲ )A .B .C .D .3.下列运算正确的是( ▲ )A .22a a a =+B .4226)3(a a =C .49)23)(23(2-=-+-a a aD .ab ba ab 2=+4.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的主视图是( ▲ )A .两个外离的圆B .两个相交的圆C .两个外切的圆D .两个内切的圆5. 将不等式组x 1x 3≥⎧⎨≤⎩的解集在数轴上表示出来,正确的是( ▲ ) A. B.C. D.6.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .想了解某种饮料中含色素的情况,宜采用抽样调查C .数据1,1,2,2,3的众数是3D .一组数据的波动越大,方差越小7. 若直线y 3x m =+经过第一、三、四象限,则抛物线2y (x m)1=-+的顶点必在 ( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限8. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ▲ )二、填空题(本大题共有10小题,每小题3分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 4的算术平方根为 ▲ .10.若代数式21-+x x 的值为零,则x = ▲ . 11.分解因式:y xy -= ▲ . 12.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m , 其最小直径用科学计数法表示约为 ▲ m .13.如图,过CDF ∠的一边DC 上的点E 作直线AB ∥DF ,若110AEC ∠=o,则CDF ∠的度数为 ▲ o .14. 已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是 ▲ .15.如图,AB 是⊙O 的直径,圆心O 到弦BC 的距离是1,则AC 的长是 ▲ .第13题 第15题 第18题16. 某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ▲ .17.将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .18. 如图所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为 ▲ .三、解答题(本大题共有10小题,共计96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:()10230sin 3-︒-+-π;(2)化简:2242(1)44a a a a-÷-++.20.(本题满分8分)某班从2名男生和2名女生中随机抽取学生参加学校举行的“我的中国梦”演讲比赛,求下列事件的概率:(1)抽取1名,恰好是男生;(2)抽取2名,恰好是1名女生和1名男生.21(本题满分8分)小敏为了解我市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.如图,点E ,F 在平行四边形ABCD 的对角线AC上,AE =CF .(1)证明:ABE ∆≌CDF ∆;(2)猜想:BE 与DF 平行吗?对你的猜想加以证明.23.(本题满分10分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一不明国籍的渔船C ,求此时渔船C 与海监船B 的距离是多少.(结果保留根号)24.(本题满分10分)如图, Rt ABC △中,90ABC ∠=°,以AB 为直径作半圆⊙O 交AC于点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆⊙O 的切线;(2)若︒=∠30BAC ,DE =2,求AD 的长.A B C D E F·先锋岛大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?26.(本题满分10分)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O 作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为▲时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到一个新抛物线,试判断新抛物线经过平移变换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.定义:如图1,射线OP 与原点为圆心,半径为1的圆交于点P ,记xOP α∠=,则点P 的横坐标叫做角α的余弦值,记作cos α;点P 的纵坐标叫做角α的正弦值,记作sin α;纵坐标与横坐标的比值叫做角α的正切值,记作tan α.如:当ο45=α时, 点P 的横坐标为ο45cos =22, 纵坐标为ο45sin=22,即P (22,22). 又如:在图2中,α-=∠ο90xOQ (α为锐角), PN ⊥y 轴,QM ⊥x 轴,易证OPN OQM ∆≅∆, 则Q 点的纵坐标)90sin(α-ο等于点P 的横坐标cos α,得)90sin(α-ο= cos α. 解决以下四个问题:(1)当60α=o 时,求点P 的坐标;(2)当α是锐角时,则cos α+sin α ▲ 1(用>或<填空),(sin α)2 + (cos α)2= ▲ ;(3)求证:sin(90)cos αα+=o (α为锐角);(4)求证:1cos tan2sin ααα-=(α为锐角).图1 图2已知,把Rt△ABC和Rt△DEF按图1摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°,DE=DF,AC=8,BC=6,EF=10.如图2,△DEF从图1位置出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从点A出发,沿AB以每秒1个单位的速度向点B匀速运动,AC与△DEF 的直角边相交于点Q,当E到达终点B时,△DEF与点P同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)当D在AC上时,求t的值;(2)在P点运动过程中,是否存在点P,使△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)连接PE,设四边形APEQ的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.参考答案1-8 BBDC ABBC9.2 10.-1 11.y(x-1) 12.8×10-8 13.70 14.-1 15.216.204205.0420=--xx 17.24 18.949 19.(1) 1 ; (2)2+a a 20.(1)21; (2)32 21.(1)50; (2)57.6度 (3)29222.(1)证明略; (2)平行,证明略23.21024.(1)证明略;(2)6 25.(1)y=-10x+300 ; (2)设超市每星期销售这种文具可获得利润为w 元,w=y(x-8)=-10(x-19)2+1210, 当x=19时,最高利润为1210元26.(1)-1;(2)①B (2,4)②过点C 作CG ⊥FB 的延长线于点G ,∵∠AOE+∠EAO=90°,∠FBO+∠CBG=90°,∠AOE=∠FBO ,∴∠EAO=∠CBG ,在△AEO 和△BGC 中,,∴△AEO ≌△BGC (AAS ), ∴CG=OE=,BG=AE=.∴x c =2﹣=,y c =4+=,∴点C (,), 设过A (﹣,)、B (2,4)两点的抛物线解析式为y=﹣x 2+bx+c ,由题意得,,解得,∴经过A 、B 两点的抛物线解析式为y=﹣x 2+3x+2,当x=时,y=﹣()2+3×+2=,所以点C 也在此抛物线上,故经过A 、B 、C 三点的抛物线解析式为y=﹣x 2+3x+2=﹣(x ﹣)2+. 平移方案:先将抛物线y=﹣x 2向右平移个单位,再向上平移个单位得到抛物线y=﹣(x。

2013年数学中考模拟试题(含答案)共两套

2013年数学中考模拟试题(含答案)共两套

2013年数学中考模拟试题一、选择题:(本大题共10题,每小题3分,共30分;每小题只有一个正确答案,请 把正确答案的字母代号填在下面的表内,否则不给分) 1. 下列各数(-2)0 , - (-2), (-2)2, (-2)3中, 负数的个数为 ( ) A.1 B. 2 C. 3 D. 42.下列图形既是轴对称图形, 又是中心对称图形的是:( )3. 资料显示, 2005年“十 一”黄金周全国实现旅游收入 约463亿元,用科学记数法表示463亿这个数是:( )A. 463×108B. 4.63×108C. 4.63×1010D. 0.463×10114.“圆柱与球的组合体”如左图所示,则它的三视图是( )A .B .C. D5. 10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是()A .284+x B .542010+x C .158410+x D .1542010+x 6. 二次函数y = ax 2+ bx +c 的图象如图所示, 则下列结论正确的是: ( )A. a >0,b <0,c >0B. a <0,b <0,c >0C. a <0,b >0,c <0D. a <0,b >0,c >07.一个均匀的立方体六个面上分别标有数字1,2,3,4,5,6,如图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面数字的21的概率主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图是( ) A .61 B .31 C .21 D .326题图 7题图题图8中∠C=108°BE 平分∠ABC ,则∠AEB 等于 ( ) A . 180° B .36° C . 72° D . 108°9.如图,在△ABC 中,∠C =90°,AC >BC ,若以AC 为底面圆的半径,BC 为高的圆锥的侧面积为S 1,若以BC 为底面圆的半径,AC 为高的圆锥的侧面积为S 2 , 则( ) A .S 1 =S 2 B .S 1 >S 2 C .S 1 <S 2 D .S 1 ,S 2的大小大小不能确定10.在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离B 、外切C 、内切D 、相交(本大题共5题,每小题3分,共15分;请把答案填在下表内相应的题号下,否则不给分)11.为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计湖里有鱼 ________条.12. 如图,D 在AB 上,E 在使△ABE ≌△12题图13.如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则圆环的面积为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 013年中考数学模拟试题(一)时间:100分钟 满分:120分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.-12的绝对值是( )A .2B .-13 C.12 D .-122.下列运算正确的是( ) A .a +a =a 2 B .(-a 3)2=a 5 C .3a ·a 2=a 3 D .(2a )2=2a 23.如图M1-1所示几何体的主视图是( )图M1-14.如图M1-2,将△ABC 绕着点C 顺时针旋转50°后得到△A ′B ′C ′.若∠A =40°,∠B ′=110°,则∠BCA ′的度数是( )图M1-2A .110°B .80°C .40°D .30° 5.将二次函数y =x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为( )A .y =x 2-1B .y =x 2+1 C .y =(x -1)2 D .y =(x +1)26.已知点P (a +1,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( )A .a <-1B .-1<a <32C .-32<a <1D .a >327.下列图形中,既是轴对称图形又是中心对称图形的是( )8.如图M1-3,已知D ,E 在△ABC 的边上,DE ∥BC ,∠B =60°,∠AED =40°,则∠A 的度数为( )图M1-3A .100°B .90°C .80°D .70°9.依次连接任意四边形各边的中点,得到一个特殊图形(可认为是一般四边形的性质),则这个图形一定是( )A .平行四边形B .矩形C .菱形D .梯形10.如图M1-4,在等腰梯形ABCD 中,BC ∥AD ,AD =5,DC =4,DE ∥AB 交BC 于点E ,且EC =3,则梯形ABCD 的周长是( )图M1-4A .26B .25C .21D .20二、填空题(本大题共6个小题,每小题4分,共24分) 11.使式子m -2有意义的最小整数m 是________________________________________________________________________.12.若代数式-4x 6y 与x 2n y 是同类项,则常数n 的值为__________. 13.如图M1-5,在等边三角形ABC 中,AB =6,D 是BC 上一点,且BC =3BD ,△ABD 绕点A 旋转后得到△ACE ,则CE 的长度为__________.图M1-514.若A (x 1,y 1)和B (x 2,y 2)在反比例函数y =2x的图象上,且0<x 1<x 2,则y 1与y 2的大小关系是y 1________y 2.15.如图M1-6,双曲线y =kx(k >0)与⊙O 在第一象限内交于P ,Q 两点,分别过P ,Q两点向x 轴和y 轴作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为____________.图M1-616.如图M1-7,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB ,若EC =1,则EF =__________.图M1-7三、解答题(一)(本大题共3小题,每小题5分,共15分)17.计算:2-2sin45°-(1+8)0+2-1.18.如图M1-8,在△ABC 中,AB =AC ,∠ABC =72°.(1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法); (2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.图M1-819.观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭;第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭;第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;……请解答下列问题:(1)按以上规律列出第5个等式:a 5=____=____;(2)用含有n 的代数式表示第n 个等式:a n =____=____(n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.四、解答题(二)(本大题共3小题,每小题8分,共24分)20.如图M1-9,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A 、B 的坐标分别是A (3,2),B (1,3).△AOB 绕点O 逆时针旋转90°后得到△A 1OB 1.(直接填写答案)(1)点A 关于点O 中心对称的点的坐标为________________________________________________________________________;(2)点A 1的坐标为________;(3)在旋转过程中,点B 经过的路径为弧BB 1,那么弧BB 1的长为________.图M1-921.如图M1-10,直线y =2x -6与反比例函数y =kx()x >0的图象交于点A (4,2),与x 轴交于点B .(1)求k 的值及点B 的坐标;(2)在x 轴上是否存在点C ,使得AC =AB ?若存在,求出点C 的坐标;若不存在,请说明理由.图M1-1022.如图M1-11,小山岗的斜坡AC 的坡度是tan α=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数。

参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).图M1-11五、解答题(三)(本大题共3小题,每小题9分,共27分)23.有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同.将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y ).(1)用树状图或列表法表示(x ,y )所有可能出现的结果;(2)求使分式x 2-3xy x 2-y 2+yx -y 有意义的(x ,y )出现的概率;(3)化简分式x 2-3xy x 2-y 2+yx -y,并求使分式的值为整数的(x ,y )出现的概率.24.如图M1-12,在矩形纸片ABCD 中,AB =6,BC =8.把△BCD 沿对角线BD 折叠,使点C 落在C ′处,BC ′交AD 于点G ;E ,F 分别是C ′D 和BD 上的点,线段EF 交AD 于点H ,把△FDE 沿EF 折叠,使点D 落在D ′处,点D ′恰好与点A 重合.(1)求证:△ABG ≌△C ′DG ; (2)求tan ∠ABG 的值;(3)求EF的长.图M1-1225.(1)按语句作图并回答:作线段AC(AC=4),以A为圆心,a为半径作圆,再以C为圆心,b为半径作圆(a<4,b<4,圆A与圆C交于B,D两点),连接AB,BC,CD,DA.若能作出满足要求的四边形ABCD,则a,b应满足什么条件?(2)若a=2,b=3,求四边形ABCD的面积.2013年中考数学模拟试题(一)1.C 2.D 3.B 4.B 5.A 6.B 7.B 8.C 9.A 10.C 11.2 12.3 13.2 14.> 15.4 16.217.解:原式=2-2×22-1+12=-12.图D9718.解:(1)作图如图D97:(2)∵在△ABC 中,AB =AC ,∠ABC =72°, ∴∠A =180°-2∠ABC =180°-144°=36°. ∵BD 是∠ABC 的平分线,∴∠ABD =12∠ABC =12×72°=36°.∵∠BDC 是△ABD 的外角, ∴∠BDC =∠A +∠ABD =36°+36°=72°.19.解:(1)19×11 12×⎝⎛⎭⎫19-111 (2)1()2n -1×(2n +1) 12×⎝⎛⎭⎫12n -1-12n +1(3)a 1+a 2+a 3+a 4+…+a 100=12×⎝⎛⎭⎫1-13+12×⎝⎛⎭⎫13-15+12×⎝⎛⎭⎫15-17+…+12×⎝⎛⎭⎫1199-1201 =12×⎝⎛⎭⎫1-13+13-15+15-17+…+1199-1201 =12×⎝⎛⎭⎫1-1201=12×200201=100201. 20.解:(1)(-3,-2) (2)(-2,3) (3)102π21.解:(1)∵点A (4,2)在反比例函数y =k x ()x >0的图象上,∴把(4,2)代入反比例函数y =kx,得k =8.把y =0代入y =2x -6中,可得x =3. ∴B 点坐标是(3,0). (2)存在.假设存在,设C 点坐标是(a,0),则∵AB =AC ,∴(4-a )2+(2-0)2=(4-3)2+(2-0)2,即(4-a )2+4=5. 解得a =5或a =3(此点与点B 重合,舍去). ∴点C 的坐标是(5,0).22.解:∵在Rt △ABC 中,AB BC =tan α=34,∴BC =43AB .∵在Rt △ADB 中,ABBD=tan26.6°=0.5,∴BD =2AB .∵BD -BC =CD =200(米).∴2AB -43AB =200(米),解得AB =300米.答:小山岗的高度为300米.23.解:(1)用列表法表示(x ,y )所有可能出现的结果如下:-2 -1 1 -2 (-2,-2) (-1,-2) (1,-2) -1 (-2,-1) (-1,-1) (1,-1) 1 (-2,1) (-1,1)(1,1) (2)∵(x ,y )所有可能出现的结果共有9种情况,而使分式x 2-3xy x 2-y 2+yx -y有意义的(x ,y )共有(-1,-2),(1,-2),(-2,-1),(-2,1)4种情况,∴使分式x 2-3xy x 2-y 2+y x -y有意义的(x ,y )出现的概率是49.(3)x 2-3xy x 2-y 2+y x -y =x 2-3xy (x +y )(x -y )+y (x +y )(x +y )(x -y )=x 2-2xy +y 2(x +y )(x -y )=(x -y )2(x +y )(x -y )=x -y x +y. ∵在使分式x 2-3xy x 2-y 2+yx -y有意义的4种情况中,值为整数的(x ,y )有(1,-2),(-2,1)2种情况,∴使x 2-3xy x 2-y 2+y x -y分式的值为整数的(x ,y )出现的概率是29.24.(1)证明:∵△BDC ′由△BDC 翻折而成, ∴∠C ′=∠BAG =90°,C ′D =AB =CD ,∠AGB =∠DGC ′,∴∠ABG =∠GDC ′. 在△ABG 和△C ′DG 中,∵∠BAG =∠C ,AB =C ′D ,∠ABG =∠GDC ′,∴△ABG ≌△C ′DG (ASA).(2)解:∵由(1)可知△ABG ≌△C ′DG ,∴GD =GB . ∴AG +GB =AD .设AG =x ,则GB =8-x .在Rt △ABG 中,∵AB 2+AG 2=BG 2,即62+x 2=(8-x )2,解得x =74.∴tan ∠ABG =AGAB=746=724. (3)解:∵△AEF 是△DEF 翻折而成,∴EF 垂直平分AD .∴HD =12AD =4.∵tan ∠ABG =tan ∠ADE =724.∴EH =HD ×724=4×724=76.∵EF 垂直平分AD ,AB ⊥AD ,∴HF 是△ABD 的中位线.∴HF =12AB =12×6=3.∴EF =EH +HF =76+3=256.25.解:(1)作图如图D98.能作出满足要求的四边形ABCD ,则a ,b 应满足的条件是a +b >4.图D98图D99(2)连接BD ,交AC 于E ,如图D99.∵⊙A 与⊙C 交于B ,D ,∴AC ⊥DB ,BE =DE . 设CE =x ,则AE =4-x . ∵BC =b =3,AB =a =2,∴由勾股定理,得BE 2=32-x 2=22-(4-x )2.解得x =218.∴BE =32-⎝⎛⎭⎫2182=3158.∴四边形ABCD 的面积S △BCD 2×12×AC ×BE =4×3158=3152.答:四边形ABCD 的面积是3152.。

相关文档
最新文档