最新人教版九年级上数学期末模拟试题(二)及答案
人教版九年级数学期末考试综合复习测试题(含答案)
人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。
人教版九年级(上)期末数学模拟试卷(含答案2套试题) (2)
人教版九年级(上)期末数学模拟试题一.选择题(共16 小题,满分42 分)1.tan30°的值为()A.B.C.D.2.若,则的值为()A.B.C.D.3.抛物线y=(x﹣2)2+3 的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)4.如图,△ABC 中,DE∥BC,=,AE=2cm,则AC 的长是()A.2cm B.4cm C.6cm D.8cm5.如图所示是一个直角三角形的苗圃,由一个正方形花坛和两块直角三角形的草皮组成.如果两个直角三角形的两条斜边长分别为4 米和6 米,则草皮的总面积为()平方米.A.3 B.9 C.12 D.246.在平面直角坐标系中,平移二次函数y=x2+4x+3 的图象能够与二次函数y=x2的图象重合,则平移方式为()A.向左平移2 个单位,向下平移1 个单位B.向左平移2 个单位,向上平移1 个单位C.向右平移2 个单位,向下平移1 个单位D.向右平移2 个单位,向上平移1 个单位7.如图,△ABC 的三个顶点分别在正方形网格的格点上,则tan C 的值是()A.B.C.D.8.如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,她了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25m,BD=1.5m,且AB、CD 与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2m B.2.5m C.2.4m D.2.1m9.对于抛物线y=﹣(x+2)2+3,下列结论中正确结论的个数为()①抛物线的开口向下;②对称轴是直线x=﹣2;③图象不经过第一象限;④当x>2 时,y 随x 的增大而减小.A.4 B.3 C.2 D.110.如图,钓鱼竿AC 长6m,露在水面上的鱼线BC 长m,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60°B.45°C.15°D.90°11.如图,在⊙O 中,AB、AC 为互相垂直且相等的两条弦,则下列说法中正确的有()①点C、O、B 一定在一条直线上;②若点E、点D 分别是CA、AB 的中点,则OE=OD;③若点E 是CA 的中点,连接CO,则△CEO 是等腰直角三角形.A.3 个B.2 个C.1 个D.0 个12.用一条长40cm 的绳子怎样围成一个面积为75cm2的矩形?设矩形的一边为x 米,根据题意,可列方程为()A.x(40﹣x)=75 B.x(20﹣x)=75 C.x(x+40)=75 D.x(x+20)=75 13.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ax>0;②2a+b>0;③abc<0;④4a﹣2b+c<0;⑤a+b+c>0.其中正确的个数是()A.2 个B.3 个C.4 个D.5 个14.已知一个半圆的圆心O在坐标原点,直径在x轴上,且与y轴交于点(0,1),该半圆的任意一条半径与半圆交于点P,过P 作PN 垂直于x 轴,N 为垂足,则∠OPN 的平分线一定经过点()A.(1,0)B.(﹣1,0)C.(0,﹣)D.(0,﹣1)15.如图,已知A 是双曲线y=(x>0)上一点,过点A 作AB∥x 轴,交双曲线y=﹣(x<0)于点B,若OA⊥OB,则的值为()A.B.C.D.16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD边重合,完成第二次旋转;……在这样连续6 次旋转的过程中,点B,M 间的距离不可能是()A.0.5 B.0.6 C.0.7 D.0.8二.填空题(共3 小题,满分10 分)17.如图,AB 是⊙O 的直径,点C、D 在圆上,∠D=65°,则∠BAC 等于度.18.已知关于x 的函数y=(m﹣1)x2+2x+m 图象与坐标轴只有2 个交点,则m=.19.如图,E 是正方形ABCD 边AB 的中点,连接CE,过点B 作BH⊥CE 于F,交AC 于G,交AD 于H,下列说法:①=;②点F 是GB 的中点;③AG=AB;④S△AHG =S.其中正确的结论的序号是.△ABC三.解答题(共7 小题,满分68 分)20.(1)解方程:2x2﹣4x﹣1=0(2)计算cos45°+3tan30°﹣2sin60°.21.在“三爱三节”活动中,小明准备从一张废弃的三角形铁片上剪出一个正方形做一个圆柱侧面.如图,四边形DEFG 是△ABC 的内接正方形,D、G 分别在AB、AC 上,E、F 在BC 上,AH 是△ABC 的高,已知BC=20,AH=16,求正方形DEFG 的边长.22.已知抛物线的顶点是A(2,﹣3),且交y轴于点B(0,5),求此抛物线的解析式.23.如图,半圆O 的直径AB=12cm,射线BM 从与线段AB 重合的位置起,以每秒6°的旋转速度绕B 点按顺时针方向旋转至BP 的位置,BP 交半圆于E,设旋转时间为ts(0 <t<15),(1)求E点在圆弧上的运动速度(即每秒走过的弧长),结果保留π.(2)设点C 始终为的中点,过C 作CD⊥AB 于D,AE 交CD、CB 分别于G、F,过F 作FN∥CD,过C 作圆的切线交FN 于N.求证:①CN∥AE;②四边形CGFN 为菱形;③是否存在这样的t 值,使BE2=CF•CB?若存在,求t 值;若不存在,说明理由.24.如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y 轴交于点C.(1)求m 的值及点B 的坐标;(2)求△ABC 的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.25.如图,在Rt△ABC 中,∠BAC=90°,∠B=60°,以边上AC 上一点O 为圆心,OA为半径作⊙O,⊙O 恰好经过边BC 的中点D,并与边AC 相交于另一点F.(1)求证:BD 是⊙O 的切线;(2)若BC=2,E 是半圆上一动点,连接AE、AD、DE.填空:①当的长度是时,四边形ABDE 是菱形;②当的长度是时,△ADE 是直角三角形.26.服装厂批发某种服装,每件成本为65 元,规定不低于10 件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y 与x 之间所满足的函数关系式,并写出x 的取值范围;(2)设服装厂所获利润为w(元),若10≤x≤50(x 为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?参考答案一.选择题(共16 小题,满分42 分)1.【解答】解:tan30°=,故选:B.2.【解答】解:因为,所以b=,把b=代入则=,故选:B.3.【解答】解:y=(x﹣2)2+3 是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.4.【解答】解:∵DE∥BC,∴=,∵,AE=2cm,∴=,∴AC=6(cm),故选:C.5.【解答】解:∵△MDE 是直角三角形,四边形ABCD 是正方形,∴∠MAB=∠BCE=90°,∠M+∠ABM=90°,∠ABM+∠CBE=90°,∴∠M=∠CBE,∴△AMB∽△CBE,∴=,∵MB=6,BE=4,∴===,∵AB =BC , ∴= ,设 CE =2x ,则 BC =3x ,在 Rt △CBE 中,BE 2=BC 2+CE 2,即 42=(3x )2+(2x )2,解得 x = , ∴CE =,AB =BC =,AM = AB = , ∴S 草皮=S △CBE +S △AMB =××+ ××=12.故选:C .6. 【解答】解:二次函数 y =x 2+4x +3=(x +2)2﹣1,将其向右平移 2 个单位,再向上平移 1 个单位得到二次函数 y =x 2. 故选:D .7. 【解答】解:如图 ,tan C = = ,故选:A .8. 【解答】解:连接 OF ,交 AC 于点 E ,∵BD 是⊙O 的切线, ∴OF ⊥BD ,∵四边形 ABDC 是矩形,∴AC ∥BD ,∴OE ⊥AC ,EF =AB ,设圆O 的半径为R,在Rt△AOE 中,AE===0.75 米,OE=R﹣AB=R﹣0.25,∵AE2+OE2=OA2,∴0.752+(R﹣0.25)2=R2,解得R=1.25.1.25×2=2.5(米).答:这扇圆弧形门的最高点离地面的距离是 2.5米.故选:B.9.【解答】解:∵y=﹣(x+2)2+3,∴抛物线开口向下、对称轴为直线x=﹣2,顶点坐标为(﹣2,3),故①、②都正确;在y=﹣(x+2)2+3 中,令y=0 可求得x=﹣2+ <0,或x=﹣2﹣<0,∴抛物线图象不经过第一象限,故③正确;∵抛物线开口向下,对称轴为x=﹣2,∴当x>﹣2 时,y 随x 的增大而减小,∴当x>2 时,y 随x 的增大而减小,故④正确;综上可知正确的结论有4 个,故选:A.10.【解答】解:∵sin∠CAB===,∴∠CAB=45°.∵==,∴∠C′AB′=60°.∴∠CAC′=60°﹣45°=15°,鱼竿转过的角度是15°.故选:C.11.【解答】解:①∵∠A=90°,∴∠A 所对的弦是直径,∴点C、O、B 一定在一条直线上,故正确;②根据相等的弦所对的弦心距也相等可知当点E、点D 分别是CA、AB 的中点时,则OE=OD 正确;③∵OD⊥AB 于D,OE⊥AC 于E,∵AD=AB,AE=AC,∠ADO=∠AEO=90°,∵AB⊥AC,∴∠DAE=90°,∴四边形ADOE 是矩形,∵AB=AC,∴AD=AE,∴四边形ADOE 是正方形,∴OE=AE=CE,∴△CEO 是等腰直角三角形,故正确,故选:A.12.【解答】解:设长为xcm,∵长方形的周长为40cm,∴宽为=(20﹣x)(cm),得x(20﹣x)=75.故选:B.13.【解答】解:∵抛物线与x 轴有两个交点,∴△=b2﹣4ac>0,故①正确;∵抛物线开口向下,∴a<0,∵对称轴x=﹣=1.5>1,∴2a+b>0,故②正确;∵a<0,﹣>0,∴b>0,∵抛物线与y 轴的交点在x 轴的下方,∴c<0,∴abc>0,故③错误;∵x=﹣2 时,y<0,∴4a﹣2b+c<0,故④正确∵x=1 时,y>0,∴a+b+c>0,故⑤正确;故选:C.14.【解答】解:如图,设∠OPN 的角平分线与y 轴交于M 点,∵PM 是角平分线,∴∠1=∠2,∵PN⊥x 轴,∴PN∥y 轴,∴∠1=∠3,∴∠2=∠3,∴OP=OM,即OM 等于半径,∴M点坐标为(0,﹣1).故选:D.15.【解答】解:∵A 点在双曲线y=(x>0)上一点,∴设A(,m),∵AB∥x 轴,B 在双曲线y=﹣(x<0)上,∴设B(﹣,m),∴OA2=+m2,BO2=+m2,∵OA⊥OB,∴OA2+BO2=AB2,∴+m2+ +m2=(+ )2,∴m2=,∴===,∴=,故选:C.16.【解答】解:如图,在这样连续6 次旋转的过程中,点M 的运动轨迹是图中的红线,观察图象可知点B,M 间的距离大于等于2﹣小于等于1,故选:A.二.填空题(共3 小题,满分10 分)17.【解答】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠D=65°,∠B 与∠D 是对的圆周角,∴∠D=∠B=65°,∴∠BAC=90°﹣∠B=25°.故答案为:25.18.【解答】解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x 轴只有一个交点,与Y 轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1 或0 或.19.【解答】解:①∵四边形ABCD 是正方形,∴AB=BC,∠HAB=∠ABC=90°,∵CE⊥BH,∴∠BFC=∠BCF+∠CBF=∠CBF+∠ABH=90°,∴∠BCF=∠ABH,∴△ABH≌△BCE,∴AH=BE,∵E 是正方形ABCD 边AB 的中点,∴BE=AB,∴AH=AD=BC,∴=,∵AH∥BC,∴=,∴;故①正确;②tan∠ABH=tan∠BCF==,设BF=x,CF=2x,则BC=x,∴AH=x,∴BH==x,∵=,∴HG==,∴FG=BH﹣GH﹣BF=﹣﹣x=≠BF,故②不正确;③∵四边形ABCD 是正方形,∴AB=BC,∠ABC=90°,∴AC=AB,∵,∴,∴AG=AC=AB,故③正确;④∵=,∴,,∴=,∴,故④正确;本题正确的结论是:①③④;故答案为:①③④.三.解答题(共7 小题,满分68 分)20.【解答】解:(1)∵a=2,b=﹣4,c=﹣1,= , ,x 2=;∴△=(﹣4)2﹣4×2×(﹣1)=24>0, 则 x = 即 x 1=(2)原式= +3× ﹣2×=+ ﹣=.21. 【解答】解:设正方形 DEFG 的边长为 x ,∵DG ∥BC ,∴△ADG ∽△ABC , ∴=,即 =,解得,x =.2. 【解答】解:∵抛物线的顶点坐标为 A (2,﹣3),∴可设抛物线解析式为 y =a (x ﹣2)2﹣3, 将 B (0,5)代入,得 4a ﹣3=5, 解得 a =2,∴抛物线的解析式为 y =2(x ﹣2)2﹣3 或 y =2x 2﹣8x +5;23. 【解答】(1)解:∵射线 BM 从与线段 AB 重合的位置起,以每秒 6°的旋转速度绕 B点按顺时针方向旋转至 BP 的位置,∴B 一秒 P 转动的圆心角为 12°, ∴每秒走过的弧长为:= πcm ∕s ;(2) ①证明:如图所示:∵点C 始终为的中点,过C 作CD⊥AB 于D,AE 交CD、CB 分别于G、F,过F 作FN ∥CD,过C 作圆的切线交FN 于N.∴∠ACD+∠CAG=∠CGF,∠ABC=∠GAC=∠ACG,∠MCA=∠ABC,∴∠MCA+∠ACG=∠ACD+∠CAG,∴CN∥AE;②证明:∵FN∥CD,CN∥AE;∴四边形CGFN 是平行四边形,∵∠GCF=90°﹣∠ACG,∠CFG=∠EFB=90°﹣∠EBC,∵∠EBC=∠ACD,∴∠GCF=∠GFC,∴CG=GF,∴平行四边形CGFN 为菱形;③解:连接EO,CO.存在,理由如下:∵∠ACF=∠ACB,∠CAF=∠CBA,∴△ACF∽△BCA,∴,∴AC2=BC•CF,∵当t=10s 时,∠AOC=∠AOE=60°,∴∠BOE=60°,∴△AOC,△BOE 都是等边三角形,且此时全等,∴AC=BE,∴BE2=BC•CF.24.【解答】解:(1)∵函数过A(3,0),∴﹣18+12+m=0,∴m=6,∴该函数解析式为:y=﹣2x2+4x+6,∴当﹣2x2+4x+6=0 时,x1=﹣1,x2=3,∴点B的坐标为(﹣1,0);(2)C点坐标为(0,6),;(3)∵S△ABD=S△ABC=12,==12,∴S△ABD∴|h|=6,①当h=6 时:﹣2x2+4x+6=6,解得:x1=0,x2=2∴D点坐标为(0,6)或(2,6),②当h=﹣6 时:﹣2x2+4x+6=﹣6,解得:x1=1+,x2=1﹣∴D点坐标为(1+,﹣6)、(1﹣,﹣6)∴D点坐标为(0,6)、(2,6)、(1+,﹣6)、(1﹣,﹣6).25.【解答】(1)证明:连接OD,如图,∵∠BAC=90°,点D 为BC 的中点,∴DB=DA=DC,∵∠B=60°,∴△ABD 为等边三角形,∴∠DAB=∠ADB=60°,∠DAC=∠C=30°,而OA=OD,∴∠ODA=∠OAD=30°,∴∠ODB=60°+30°=90°,∴OD⊥BC,∴BD 是⊙O 的切线;(2)解:①∵△ABD 为等边三角形,∴AB=BD=AD=CD=,在Rt△ODC 中,OD=CD=1,当DE∥AB 时,DE⊥AC,∴AD=AE,∵∠ADE=∠BAD=60°,∴△ADE 为等边三角形,∴AD=AE=DE,∠ADE=60°,∴∠AOE=2∠ADE=120°,∴AB=BD=DE=AE,∴四边形ABDE 为菱形,此时的长度==π;②当∠ADE=90°时,AE 为直径,点E 与点F 重合,此时的长度==π;当∠DAE=90°时,DE 为直径,∠AOE=2∠ADE=60°,此时的长度==π,所以当的长度为π或π时,△ADE 是直角三角形.故答案为π;π或π.26.【解答】解:(1)当10≤x≤50时,设y与x的函数关系式为y=kx+b,,得,∴当10≤x≤50 时,y 与x 的函数关系式为y=﹣0.5x+105,当x>50 时,y=80,即y 与x 的函数关系式为:y=;(2)由题意可得,w=(﹣0.5x+105﹣65)x=﹣0.5x2+40x=﹣0.5(x﹣40)2+800,∴当x=40 时,w 取得最大值,此时w=800,y=﹣0.5×40+105=85,答:批发该种服装40 件时,服装厂获得利润最大,最大利润是800 元.人教版九年级(上)期末数学模拟试题一.选择题(共12小题,满分36分)1.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.B.C.D.2.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234 B.4312 C.3421 D.42313.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.tan30°的值为()A.B.C.D.5.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣36.下列命题中,逆命题为真命题的是()A.对顶角相等B.若a=b,则|a|=|b|C.同位角相等,两直线平行D.若ac2<bc2,则a<b7.根据下列表格中的对应值,判断一元二次方程x2﹣4x+2=0的解的取值范围是()x0 0.5 1 1.5 2 2.5 3 3.5 4x2﹣4x+2 2 0.25 ﹣1 ﹣1.75 ﹣2 ﹣1.75 ﹣1 0.25 2A.0<x<0.5,或3.5<x<4 B.0.5<x<1,或3<x<3.5C.0.5<x<1,或2<x<2.5 D.0<x<0.5,或3<x<3.58.在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为()A.(2m,2n) B.(2m,2n)或(﹣2m,﹣2n)C.(m,n) D.(m,n)或(﹣m,﹣n)9.若二次函数y1=ax2+bx与一次函数y2=ax+b的图象经过相同的象限,给出下列结论:①a,b同号;②若b<0,则x>1时,y1<y2.则下列判断正确的是()A.①,②都对B.①,②都错C.①对,②错D.①错,②对10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1 B.2 C.3 D.411.如图,在△AOB中,∠BOA=90°,∠BOA的两边分别与函数、的图象交于B、A两点,若,则AO的值为()A.B.2 C.D.12.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是.14.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数最少是.15.计算:﹣|2﹣|=16.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.三.解答题(共7小题,满分42分,每小题6分)17.(6分)x2﹣8x+12=0.18.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.19.(7分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.20.(7分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积.21.(8分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75m,请求出热气球离地面的高度.(参考数据:sin53°≈,cos53°≈,tan53°≈).22.(8分)如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE=PA,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE=度.23.如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵共6个数,大于3的有3个,∴P(大于3)==;故选:D.2.解:时间由早到晚的顺序为4312.故选:B.3.解:A、既是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:A.4.解:tan30°=,故选:B.5.解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选:B.6.【解答】解:A、对顶角相等的逆命题是两个相等的角是对顶角,假命题;B、若a=b,则|a|=|b|的逆命题是若|a|=|b|,则a=b,假命题;C、同位角相等,两直线平行的逆命题是两直线平行,两直线平行,真命题;D、若ac2<bc2,则a<b的逆命题是若a<b,则ac2<bc2,假命题;故选:C.7.解:根据下列表格中的对应值,得x=0.5时,x2﹣4x+2=0.25,x=1.5时,x2﹣4x+2=﹣1;x=3时,x2﹣4x+2=﹣1,x=3.5时,x2﹣4x+2=0.25,判断一元二次方程x2﹣4x+2=0的解的取值范围是0.5<x<1,或3<x<3.5,故选:B.8.解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(﹣2),n×(﹣2)),即(2m,2n)或(﹣2m,﹣2n),故选:B.9.解:由题意a、b同号,当a、b都是负数时,x>1时,y1<y2故①正确,②正确.故选:A.10.解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.11.解:∵∠AOB=90°,∴∠AOC+∠BOD=∠AOC+∠CAO=90°,∠CAO=∠BOD,∴△ACO∽△BDO,∴=()2,∵S△AOC=×2=1,S△BOD=×1=,∴()2==2,∴OA2=2OB2,∵OA2+OB2=AB2,∴OA2+OA2=6,∴OA=2,故选:B.12.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,所以恰好选到经过西流湾大桥的路线的概率==.故答案为.14.解:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.所以组成这个几何体的小正方体的个数最少是6故答案为:615.解:原式=2﹣2+=,故答案为:16.解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.三.解答题(共7小题,满分42分,每小题6分)17.解:x2﹣8x+12=0,分解因式得(x﹣6)(x﹣2)=0,∴x﹣6=0,x﹣2=0,解方程得:x1=6,x2=2,∴方程的解是x1=6,x2=2.18.解:不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;19.解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).20.解:(1)根据题意知,y==﹣x+;(2)根据题意,得:(﹣x+)x=384,解得:x=18或x=32,∵墙的长度为24m,(3)设菜园的面积是S,则S=(﹣x+)x=﹣x2+x=﹣(x﹣25)2+∵﹣<0,∴当x<25时,S随x的增大而增大,∵x≤24,∴当x=24时,S取得最大值,最大值为416,答:菜园的最大面积为416m2.21.解:过A作AD⊥BC,在Rt△ACD中,tan∠ACD=,即CD==AD,在Rt△ABD中,tan∠ABD=,即BD==AD,由题意得:AD﹣AD=75,解得:AD=300m,则热气球离底面的高度是300m.22.解:(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AD=DC,∠ADP=∠CDP,DP=DP,∴△DPA≌△DPC,∴∠DAP=∠DCP,PA=PC,∵PA=PE,∴∠DAP=∠E,∴∠E=∠PCD,∵∠DFE=∠CFP,∴∠CPF=∠EDF,∵∠ABC=∠ADC=65°,∴∠CPE=∠EDF=180°﹣∠ADC=115°故答案为115.23.解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x﹣1)(x﹣3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2﹣4x+3;(2)如图2,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,=S△AOE+S△POE,∴S四边形AOPE=×3×3+PG•AE,=+×3×(﹣m2+5m﹣3),=﹣+,=﹣(m﹣)2+,∵﹣<0,∴当m=时,S有最大值是;(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=或,∴P的坐标为(,)或(,);如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).。
2022年人教版九年级数学上册期末模拟考试(带答案)
2022年人教版九年级数学上册期末模拟考试(带答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.式子有意义, 则实数a的取值范围是()A. a≥-1B. a≠2C. a≥-1且a≠2D. a>22.已知是二元一次方程组的解, 则的算术平方根为()A. ±2B.C. 2D. 43. 下列计算正确的是()A. a2+a3=a5B.C. (x2)3=x5D. m5÷m3=m24.如图, 数轴上的点A, B, O, C, D分别表示数-2, -1, 0, 1, 2, 则表示数的点P应落在A. 线段AB上B. 线段BO上C. 线段OC上D. 线段CD上5.关于x的不等式的解集为x>3, 那么a的取值范围为()A. a>3B. a<3C. a≥3D. a≤36.用配方法解方程时, 配方后所得的方程为()A. B. C. D.7.如图, 点B, C, D在⊙O上, 若∠BCD=130°, 则∠BOD的度数是()A. 50° B. 60° C. 80° D. 100°8.如图, 直线a∥b, 将一个直角三角尺按如图所示的位置摆放, 若∠1=58°, 则∠2的度数为()A. 30°B. 32°C. 42°D. 58°9.扬帆中学有一块长, 宽的矩形空地, 计划在这块空地上划出四分之一的区域种花, 小禹同学设计方案如图所示, 求花带的宽度.设花带的宽度为, 则可列方程为()A. B.C. D.10.如图, 抛物线的对称轴是.下列结论:①;②;③;④, 正确的有()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: ______________.2. 分解因式: 2x2﹣8=_______.3. 函数中自变量x的取值范围是__________.4. (2017启正单元考)如图, 在△ABC中, ED∥BC, ∠ABC和∠ACB的平分线分别交ED于点G、F, 若FG=4, ED=8, 求EB+DC=________.5. 如图, 正方形纸片的边长为12, 是边上一点, 连接. 折叠该纸片, 使点落在上的点, 并使折痕经过点, 得到折痕, 点在上. 若, 则的长为__________.6. 如图, 在Rt△ABC中, ∠ACB=90°, AC=5cm, BC=12cm, 将△ABC绕点B顺时针旋转60°, 得到△BDE, 连接DC交AB于点F, 则△ACF与△BDF的周长之和为_______cm.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 先化简, 再求值: , 其中.3. 如图, 在中, , , D是AB边上一点点D与A, B不重合, 连结CD, 将线段CD绕点C按逆时针方向旋转得到线段CE, 连结DE交BC于点F, 连接BE.求证: ≌;当时, 求的度数.4. 如图, 已知⊙O为Rt△ABC的内切圆, 切点分别为D, E, F, 且∠C=90°, AB=13, BC=12.(1)求BF的长;(2)求⊙O的半径r.5. 随着社会的发展, 通过微信朋友圈发布自己每天行走的步数已经成为一种时尚. “健身达人”小陈为了了解他的好友的运动情况. 随机抽取了部分好友进行调查, 把他们6月1日那天行走的情况分为四个类别: A(0~5000步)(说明: “0~5000”表示大于等于0, 小于等于5000, 下同), B(5001~10000步), C(10001~15000步), D(15000步以上), 统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中, 一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中, “A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人, 请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6. 一商店销售某种商品, 平均每天可售出20件, 每件盈利40元.为了扩大销售、增加盈利, 该店采取了降价措施, 在每件盈利不少于25元的前提下, 经过一段时间销售, 发现销售单价每降低1元, 平均每天可多售出2件.(1)若降价3元, 则平均每天销售数量为________件;(2)当每件商品降价多少元时, 该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.C3.D4.B5.D6.D7、D8、B9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1.a52.2(x+2)(x﹣2)3.4.125.6.42.三、解答题(本大题共6小题, 共72分)1.2、.3. 略;.4、(1)BF=10;(2)r=2.5.(1)30;(2)①补图见解析;②120;③70人.6、(1)26;(2)每件商品降价10元时, 该商店每天销售利润为1200元.。
2022-2023学年人教版九年级数学上学期压轴题汇编专题02 解一元二次方程(解析版)
2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题02 解一元二次方程考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022八下·淮北期末)若实数a ,b ,c 满足0a b c ++=,则( ) A .240b ac -> B .240b ac -< C .240b ac -≥ D .240b ac -≤【答案】C【完整解答】解:∵0a b c ++=, ∴b a c =--,∴()2244b ac a c ac -=---2224a ac c ac =++-222a ac c =-+()20a c =-≥故答案为:C【思路引导】先求出b a c =--,再代入计算求解即可。
2.(2分)(2022八下·柯桥期末)方程(x -2)2= 4(x-2)( ) A .4 B .-2C .4或-6D .6或2【答案】D【完整解答】解:移项得 (x -2)2 - 4(x —2) =0 (x-2)(x-2-4)=0 ∴x -2=0或x-6=0, 解之:x 1=2,x 2=6. 故答案为:D.【思路引导】观察方程的特点:将(x-2)看着整体,方程两边都含有公因式(x-2),因此利用因式分解法解方程.3.(2分)(2022·贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A .0,-2 B .0,0C .-2,-2D .-2,0【答案】B【完整解答】解:根据题意,∵2x =-是一元二次方程220x x m ++=的一个根,把2x =-代入220x x m ++=,则2(2)2(2)0m -+⨯-+=,解得:0m =; ∴220x x +=, ∴(2)0x x +=, ∴12x =-,0x =, ∴方程的另一个根是0x =; 故答案为:B.【思路引导】将x=-2代入方程中可得m 的值,则方程可化为x 2+2x=0,利用因式分解法可得方程的解,据此解答.4.(2分)(2022·仙桃)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =()A .2或6B .2或8C .2D .6【答案】A【完整解答】解:∵关于x 的一元二次方程222410x mx m m -+--=有两个实数根, ∴22Δ=(2)4(41)0m m m ----≥, ∴14m ≥-,∵12 x x ,是方程222410x mx m m -+--=的两个实数根, ∵21212241x x m x x m m +=⋅=--,,又()()121222217x x x x ++-=∴12122()130x x x x +--=把21212241x x m x x m m +=⋅=--,代入整理得,28120m m -+=解得,1226m m ==,故答案为:A.【思路引导】根据方程有两个实数根可得△≥0,代入求解可得m 的范围,根据根与系数的关系可得x 1+x 2=2m ,x 1x 2=m 2-4m-1,然后结合已知条件可得m 的值.5.(2分)(2022·雅安)若关于x 的一元二次方程x 2+6x+c =0配方后得到方程(x+3)2=2c ,则c 的值为( ) A .﹣3 B .0 C .3 D .9【答案】C【完整解答】解:x 2+6x+c =0, 移项得:26x x c +=-,配方得:()239x c +=-, 而(x+3)2=2c , 92c c ∴-=,解得:3c =, 故答案为:C.【思路引导】首先将常数项c 移至右边,然后给两边同时加上一次项系数一半的平方“9”,再对左边的式子利用完全平方公式分解可得(x+3)2=9-c ,结合题意可得9-c=2c ,求解可得c 的值. 6.(2分)(2022九下·泉州开学考)已知x ,y 为实数,且满足 2244x xy y -+= ,记224u x xy y =++ 的最大值为M ,最小值为m ,则 M m += ( ).A .403B .6415C .13615D .315【答案】C【完整解答】解:∵2244x xy y -+= , ∴2244x y xy +=+ ,∴22424u x xy y xy =++=+ ,∵()225444xy xy x y =++-()2244x y =+-≥- ,当且仅当 2x y =- ,即 x = , y =,或 5x =, 5y =- 时,等号成立, ∴xy 的最小值为 45-, ∴22424u x xy y xy =++=+ 最小值为:125,即 125m =, ∵()223444xy xy x y =-+-()2424x y =--≤ ,当且仅当 2x y = 时,即 x =, y =,或 3x =-, 3y =- 时等号成立, ∴xy 的最大值为43, ∴22424u x xy y xy =++=+ 的最大值为203, 即 203M = , ∴20121363515M m +=+= , 故答案为:C.【思路引导】利用已知等式可得 22424u x xy y xy =++=+ ,根据 ()225444xy xy x y =++-=()242x y =--,根据偶次幂的非负性知当且仅当2x y =-时,xy 的最小值为 45-,即可得出 22424u x xy y xy =++=+ 最小值为125 ,即 125m = ;根据 ()223444xy xy x y =-+-()242x y =-- ,根据偶次幂的非负性当且仅当 2x y = 时, xy 的最大值为 43,即得M ,再代入计算即可.7.(2分)(2021七下·娄底期中)无论a ,b 为何值代数式a 2+b 2+6b+11﹣2a 的值总是( ) A .非负数 B .0C .正数D .负数【答案】C【完整解答】解:原式=(a 2﹣2a+1)+(b 2+6b+9)+1 =(a ﹣1)2+(b+3)2+1, ∵(a ﹣1)2≥0,(b+3)2≥0, ∴(a ﹣1)2+(b+3)2+1>0,即原式的值总是正数. 故答案为:C.【思路引导】把含a 的放一块,配成完全平方公式,把含b 的放一块,配成完全平方公式,根据平方的非负性即可得出答案.8.(2分)(2020八上·越秀期末)若 a , b , c 是 ABC ∆ 的三边长,且2220a b c ab ac bc ++---= ,则 ABC ∆ 的形状是( )A .等腰三角形B .等腰直角三角形C .等边三角形D .不能确定【答案】C【完整解答】解:∵2220a b c ab ac bc ++---= , ∴2 222222220a b c ab ac bc ++---= , ∴()222()()0a b b c c a -+-+-= , ∴a=b=c∴这个三角形是等边三角形. 故答案为:C .【思路引导】首先利用完全平方公式对等式进行变形,然后利用平方的非负性得出a 、b 、c 的数量关系,即可判定.9.(2分)(2019九上·涪城月考)若点 (),M m n 是抛物线 2223y x x =-+- 上的点,则 m n -的最小值是( ) A .0 B .158C .238D .3- 【答案】C【完整解答】解:根据题意可得: 把 (),M m n 的坐标代入表达式,即:2223n m m =-+- ,∴22(223)23m n m m m m m -=--+-=-+ ,函数的最值为 244ac b a- ,所以代入得 m n - 的最小值为:238;故答案为:C.【思路引导】根据题意把 (),M m n 的坐标代入表达式,得出 2223n m m =-+- ,求 m n - 的最小值即: 22(223)23m n m m m m m -=--+-=-+ ,求出最小值即可.10.(2分)(2022·海陵模拟)已知3x ﹣y =3a 2﹣6a+9,x+y =a 2+6a ﹣10,当实数a 变化时,x 与y 的大小关系是( ) A .x >y B .x =yC .x <yD .x >y 、x =y 、x <y 都有可能【答案】A【完整解答】解:∵3x﹣y =3a 2﹣6a+9,x+y =a 2+6a ﹣10, ∴()()()223369610x y x y a a a a --+=-+-+-,∴()()22222212192691231x y a a a a a -=-+=-++=-+,∵不论a 为何值,()22311a -+≥, ∴220x y ->, ∴22x y >, ∴x y >. 故答案为:A .【思路引导】先求出()()22222212192691231x y a a a a a -=-+=-++=-+,再求出220x y ->,最后求解即可。
人教版九年级上册数学期末检测试卷(含答案)
人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。
( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。
若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。
10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。
人教版2022-2023学年第一学期九年级数学期末模拟测试题(附答案)
2022-2023学年第一学期九年级数学期末模拟测试题(附答案)一.选择部分(共30分)1.下列函数中y是x的二次函数的是()A.y=﹣2x2B.y=C.y=ax2+bx+c D.y=(x﹣2)2﹣x22.下列图形中,既是轴对称图形又是中心对称图形的有()A.B.C.D.3.若关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.k≤B.k>C.k<且k≠1D.k≤且k≠1 4.已知a>1,点A(a﹣1,y1),B(a,y2),C(a+1,y3)都在二次函数y=﹣2x2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y1<y35.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=1106.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()A.B.C.D.7.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.28.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°9.已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x,y轴的交点分别为A,B,P是其对称轴x=1上的动点,根据图中提供的信息,以下结论中不正确的是()A.2a+b=0B.a>﹣C.△P AB周长的最小值是D.x=3是ax2+bx+3=0的一个根10.二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=1.下列结论:①abc<0;②a+c>b;③4a+c>0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个二.填空题(共33分)11.一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.12.若x1,x2方程x2﹣4x﹣2021=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.13.把二次函数y=2x2﹣1的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.14.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△DEC,连接AD,若∠BAC =25°,则∠BAD=.15.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.16.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.17.已知点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,当﹣2<x≤1时,y的取值范围是.18.如图,⊙O的半径为2,弦AB=,E为弧AB的中点,OE交AB于点F,则OF 的长为.19.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为.20.若一个圆锥的底面半径为1cm,它的侧面展开图的圆心角为90°,则这个圆锥的母线长为cm.21.如图,二次函数y=ax2+bx+c的图象与x轴的两个交点分别为(﹣1,0),(3,0)对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0④8a+c<0,其中正确的有.三.解答题(共57分)22.如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边AB、BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=,BC=2,则⊙O的半径为.23.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABO的三个顶点坐标分别为A(﹣1,3),B(﹣4,3),O(0,0).(1)画出△ABO关于x轴对称的△A1B1O,并写出点A1的坐标;(2)画出△ABO绕点O顺时针旋转90°后得到的△A2B2O,并写出点A2的坐标;(3)在(2)的条件下,求点A旋转到点A2所经过的路径长(结果保留π).24.已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣1=0(1)若该方程有两个实数根,求m的取值范围.(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2﹣10m=2,求m的值.25.已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.26.已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.27.山西转型综合改革示范区的一工厂里,生产的某种产品按供需要求分为十个档次.若生产第一档次(最低档次)的产品,一天可生产76件,每件的利润为10元,每提高一个档次,每件的利润增加2元,每天的产量将减少4件.设产品的档次(每天只生产一个档次的产品)为x,请解答下列问题.(1)用含x的代数式表示:一天生产的产品件数为件,每件产品的利润为元;(2)若该产品一天的总利润为1080元,求这天生产产品的档次x的值.28.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C(0,﹣4)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.参考答案一.选择部分(共30分)1.解:A、是二次函数,故此选项符合题意;B、不是二次函数,故此选项不合题意;C、a=0时,不是二次函数,故此选项不合题意;D、不是二次函数,故此选项不合题意;故选:A.2.解:A.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;B.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;C.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;D.该图形是中心对称图形,不是轴对称图形,故此选项不合题意.故选:C.3.解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.4.解:∵a>1,∴0<a﹣1<a<a+1,∵y=﹣2x2,﹣2<0,∴当x>0时,y随x值的增大而减少,∴y3<y2<y1.故选:C.5.解:设有x个队参赛,则x(x﹣1)=110.故选:D.6.解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故选:D.7.解:连接OA,∵⊙O的直径CD=20,OM:OC=3:5,∴OC=10,OM=6,∵AB⊥CD,∴AM===8,∴AB=2AM=16.故选:C.8.解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.9.解:A、根据图象知,对称轴是直线x=﹣=1,则b=﹣2a,即2a+b=0.故A正确;B、根据图象知,点A的坐标是(﹣1,0),对称轴是直线x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x轴的另一个交点的坐标是(3,0),∴x=3时,y=9a+3b+3=0,∴9a﹣6a+3=0,∴3a+3=0,∵抛物线开口向下,则a<0,∴2a+3=﹣a>0,∴a>﹣,故B正确;C,点A关于x=1对称的点是A′为(3,0),即抛物线与x轴的另一个交点.连接BA′与直线x=1的交点即为点P,则△P AB周长的最小值是(BA′+AB)的长度.∵A(﹣1,0),B(0,3),A′(3,0),∴AB=,BA′=3.即△P AB周长的最小值是+3,故C错误;D、根据图象知,点A的坐标是(﹣1,0),对称轴是直线x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x轴的另一个交点的坐标是(3,0),所以x=3是ax2+bx+3=0的一个根,故D正确;故选:C.10.解:∵函数开口方向向上,a>0,∵对称轴为x=1,则﹣=1,∴b=﹣2a<0,∵与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①错;当x=﹣1时,y=a﹣b+c>0,即a+c>b,故②正确;对称轴为x=1,则﹣=1,即b=﹣2a,由上知,a﹣b+c>0,则a+2a+c>0,即3a+c>0,∴4a+c>a>0,故③正确;由图象可得,当x=1时,函数取得最小值,∴对任意m为实数,有am2+bm+c≥a+b+c,∴am2+bm≥a+b,即a+b≤m(am+b),故④正确.综上,正确的个数有三个.故选:B.二.填空题(共33分)11.解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.12.解:∵x1,x2是方程x2﹣4x﹣2021=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2021=0,即x12﹣4x1=2021,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2021+2×4=2021+8=2029.故答案为:2029.13.解:由“左加右减”的原则可知,将二次函数y=2x2﹣1的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2﹣1;由“上加下减”的原则可知,将抛物线y=2(x+1)2﹣1向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣1﹣2=2(x+1)2﹣3,故答案为:y=2(x+1)2﹣3.14.解:∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°.15.解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.16.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.17.解:∵二次函数y=2(x+1)2﹣3,∴该函数对称轴是直线x=﹣1,当x=﹣1时,取得最小值,此时y=﹣3,∵点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,∴当﹣2<x≤1时,y的取值范围是:﹣3≤y≤5,故答案为:﹣3≤y≤5.18.解:∵E为弧AB的中点,∴OE⊥AB于F,∵AB=2,∴AF=BF=,在Rt△OAF中,OA=2,,故答案为:1.19.解:∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1cm,当点O在点H的左侧,⊙O与直线a相切时,如图1所示:OP=PH﹣OH=4﹣1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,如图2所示:OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm,故答案为:3cm或5cm.20.解:设母线长为lcm,则=2π×1解得:l=4.故答案为:4.21.解:根据图象可得:a>0,c<0,对称轴:x=﹣>0,①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是直线x=1,∴﹣=1,∴b+2a=0,故①错误;②∵a>0,∴b<0,∵c<0,∴abc>0,故②错误;③∵a﹣b+c=0,∴c=b﹣a,∴a﹣2b+4c=a﹣2b+4(b﹣a)=2b﹣3a,又由①得b=﹣2a,∴a﹣2b+4c=﹣7a<0,故此选项正确;④根据图示知,当x=4时,y>0,∴16a+4b+c>0,由①知,b=﹣2a,∴8a+c>0;故④错误;故正确为:③1个.故答案为:③.三.解答题(共57分)22.解:(1)如图直线l,⊙O即为所求.(2)过点O作OE⊥AB于E.设OE=ON=r,∵BM=,BC=2,MN垂直平分线段BC,∴BN=CN=1,∴MN===,∵s△BNM=S△BNO+S△BOM,∴×1×=×1×r+××r,解得,r=.故答案为:.23.解:(1)如图,△A1B1O即为所求,点A1的坐标(﹣1,﹣3);(2)如图,△A2B2O即为所求,点A2的坐标(3,1);(3)点A旋转到点A2所经过的路径长==π24.解:(1)由题意可知:Δ=(2m﹣1)2﹣4(m2﹣1)≥0,∴﹣4m+5≥0,∴m≤;(2)由题意可知:x1+x2=1﹣2m,x1x2=m2﹣1,∵(x1﹣x2)2﹣10m=2,∴(x1+x2)2﹣4x1x2﹣10m=2,∴(1﹣2m)2﹣4(m2﹣1)﹣10m=2,解得:m=;25.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°.∵∠BCD+∠DCE=180°,∴∠BCD=∠DCE=90°.又∵CG=CE,∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′.∵CE=CG,∴CG=AE′.∵四边形ABCD是正方形,∴BE′∥DG,AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.26.(1)证明:如图,连接OA;∵OC=BC,AC=OB,∴OC=BC=AC=OA.∴△ACO是等边三角形.∴∠O=∠OCA=60°,∵AC=BC,∴∠CAB=∠B,又∠OCA为△ACB的外角,∴∠OCA=∠CAB+∠B=2∠B,∴∠B=30°,又∠OAC=60°,∴∠OAB=90°,∴AB是⊙O的切线;(2)解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.27.解(1)一天生产的产品件数为[76﹣4(x﹣1)]=(80﹣4x)件,每件产品的利润为[10+2(x﹣1)]=(8+2x)元,故答案为(80﹣4x),(8+2x);(2)当利润是1080元时,即:[10+2(x﹣1)][76﹣4(x﹣1)]=1080,整理得:﹣8x2+128x+640=1080,解得x1=5,x2=11,因为x=11>10,不符合题意,舍去.因此取x=5,当生产产品的质量档次是在第5档次时,一天的总利润为1080元.28.解:(1)将B、C两点的坐标代入y=x2+bx+c得:,解得:,所以二次函数的表达式为:y=x2﹣3x﹣4;(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣3x﹣4),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;如图,连接PP′,则PE⊥CO于E,∵C(0,﹣4),∴CO=4,又∵OE=EC,∴OE=EC=2∴y=﹣2;∴x2﹣3x﹣4=﹣2,解得:x1=,x2=(不合题意,舍去),∴P点的坐标为(,﹣2).。
人教版九年级数学上册期末模拟试题2套(含答案)
人教部编版九年级数学上册期末试卷(含答案)学校 班级 姓名 考号考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回. 一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的 1.下列图形中,是中心对称图形但不是轴对称图形的是A B C D2. 边长为2的正方形内接于M ,则M 的半径是A .1B .2C 2D .223.若要得到函数()21+2y x =+的图象,只需将函数2y x =的图象 A .先向右平移1个单位长度,再向上平移2个单位长度 B .先向左平移1个单位长度,再向上平移2个单位长度 C .先向左平移1个单位长度,再向下平移2个单位长度 D .先向右平移1个单位长度,再向下平移2个单位长度 4. 点()11,y A x ,()22,y B x 都在反比例函数2y x=的图象上,若120x x <<,则 A .210y y >> B .120y y >>C .210y y <<D .120y y <<5.A ,B 是O 上的两点,OA =1, AB 的长是1π3,则∠AOB 的度数是A .30B . 60°C .90°D .120°6.△DEF 和△ABC 是位似图形,点O 是位似中心,点D ,E ,F分别是OA ,OB ,OC 的中点,若△DEF 的面积是2,则△ABC 的面积是A .2B .4C .6D .87. 已知函数2-y x bx c =++,其中00b c >,<,此函数的图象可以是8.小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:移植棵数(n ) 成活数(m ) 成活率(m/n )移植棵数(n ) 成活数(m ) 成活率(m/n )50 47 0.940 1500 1335 0.890 270 235 0.870 3500 3203 0.915 400 369 0.923 7000 6335 0.905 7506620.88314000126280.902下面有四个推断:①当移植的树数是1 500时,表格记录成活数是1 335,所以这种树苗成活的概率是0.890; ②随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;③若小张移植10 000棵这种树苗,则可能成活9 000棵; ④若小张移植20 000棵这种树苗,则一定成活18 000棵. 其中合理的是A .①③B .①④ C. ②③ D .②④二、填空题(本题共16分,每小题2分) 9.在R t △ABC 中,∠C =90°,1cos 3A =,AB =6,则AC 的长是 . 10.若抛物线22y x x c =++与x 轴没有交点,写出一个满足条件的c 的值: . 11.如图,在平面直角坐标系xOy 中,若点B 与点A 关于点O 中心对称,则点B 的坐标为 .11题图 12题图12. 如图,AB 是O 的弦,C 是AB 的中点,连接OC 并延长交O 于点D .若CD =1,AB =4,则O 的半径是 .13. 某校九年级的4位同学借助三根木棍和皮尺测量校园内旗杆的高度. 为了方便操作和观察,他们用三根木棍围成直角三角形并放在高1m 的桌子上,且使旗杆的顶端和直角三角形的斜边在同一直线上(如图). 经测量,木棍围成的直角三角形的两直角边AB,OA 的长分别为0.7m,0.3m ,观测点O 到旗杆的距离OE 为6 m ,则旗杆MN 的高度为 m .第13题图 第14题图 14.O 是四边形ABCD 的外接圆,AC 平分∠BAD ,则正确结论的序号是 .①AB =AD ; ②BC =CD ; ③AB AD =; ④∠BCA =∠DCA ; ⑤BC CD =15. 已知函数2-2-3y x x =,当-1x a ≤≤时,函数的最小值是-4,则实数a 的取值范围 是 .16.如图,在平面直角坐标系xOy 中,已知()8,0A ,()0,6C ,矩形OABC 的对角线交于点P ,点M 在经过点P 的函数()0ky x x=>的图象上运动,k 的值为 ,OM 长的最小值为 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27,每小题7分,第28题8分)BAC17.计算:2cos30-2sin 45+3tan 60+1-2︒︒︒. 18. 已知等腰△ABC 内接于O , AB =AC ,∠BOC =100°,求△ABC 的顶角和底角的度数.19. 如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 在AB 上,∠DEC =90°. (1)求证:△ADE ∽△BEC .(2)若AD =1,BC =3,AE =2, 求AB 的长.20.在△ABC 中,∠B =135°,AB =22BC =1. (1)求△ABC 的面积; (2)求AC 的长.21.北京2018新中考方案规定,考试科目为语文、数学、外语、历史、地理、思想品德、物理、生化(生物和化学)、体育九门课程.语文、数学、外语、体育为必考科目.历史、地理、思想品德、物理、生化(生物和化学)五科为选考科目,考生可以从中选择三个科目参加考试,其中物理、生化须至少选择一门. (1)写出所有选考方案(只写选考科目);(2)从(1)的结果中随机选择一种方案,求该方案同时包含物理和历史的概率.22.如图,在Rt △ABC 中,∠A =90°,∠C=30°.将△ABC 绕点B 顺时针旋转60°得到△A BC '', 其中点A ', C '分别是点A ,C 的对应点.(1) 作出△A BC ''(要求尺规作图,不写作法,保留作图痕迹); (2)连接AA ',求∠C A A ''的度数.23.如图,以40 m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是 一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位: s )之间具有函数关系2205h t t =-. (1)小球飞行时间是多少时,小球 最高?最大高度是多少?(2)小球飞行时间t 在什么范围时, 飞行高度不低于15 m?24.在平面直角坐标系xOy 中,直线24y x =+与反比例函数ky x=(k ≠0)的图象交于点()3,A a -和点B .(1)求反比例函数的表达式和点B 的坐标; (2)直接写出不等式24k x x+<的解集.25.如图,在△ABC 中,AB =AC ,以AB 为直径的O 与边BC ,AC 分别交于点D ,E .DF 是O 的切线,交AC 于点F .(1)求证:DF ⊥AC ;(2)若AE =4,DF =3,求tan A .26.在平面直角坐标系xOy 中,抛物线y=mx 2﹣2mx+n (m ≠0)与x 轴交于点A, B ,点A 的坐标为(02-,). (1)写出抛物线的对称轴; (2)直线n m x y -4-21=过点B ,且与抛物线的另一个交点为C .①分别求直线和抛物线所对应的函数表达式;②点P 为抛物线对称轴上的动点,过点P 的两条直线l 1: y=x+a 和l 2 : y=-x+ b 组成图形G .当图形G 与线段BC 有公共点时,直接写出点P 的纵坐标t 的取值范围.27. 如图1,在△ABC 中,∠ACB =90°,AC =2,BC =3B 为圆心,3为半径作圆.点P为B 上的动点,连接PC ,作P C PC '⊥,使点P '落在直线BC 的上方,且满足:1:3P C PC '=连接BP ,AP '.(1)求∠BAC 的度数,并证明△AP C '∽△BPC ; (2)若点P 在AB 上时,①在图2中画出△AP’C ; ②连接BP ',求BP '的长;P'BA CPBACP图1 图2(3)点P 在运动过程中,BP '是否有最大值或最小值?若有,请直接写出BP '取得最大值或最小值时∠PBC 的度数;若没有,请说明理由.BAC备用图28.对于平面直角坐标系xOy 中的点M 和图形G ,若在图形G 上存在一点N ,使M ,N 两点间的距离等于1,则称M 为图形G 的和睦点.(1)当⊙O的半径为3时,在点P1(1,0),P21),P3(72,0),P4(5,0)中,⊙O的和睦点是________;(2)若点P(4,3)为⊙O的和睦点,求⊙O 的半径r的取值范围;(3)点A在直线y=﹣1上,将点A向上平移4个单位长度得到点B,以AB为边构造正方形ABCD,且C,D两点都在AB右侧.已知点E),若线段OE上的所有点都是正方形ABCD的和睦点,直接写出点A的横坐标Ax的取值范围.数学答案1-5:ACBCB6-8:DDC9、210、211、(2,-1)12、5213、1514、15、16、17、18、19、20、21、22、23、24、25、26、27、28、部编版九年级数学上册期末试卷(含答案) 考 生 须 知 1. 本试卷共6页,共三道大题,28道小题,满分100分。
人教版九年级数学上册 期末复习(易错题精选、一元二次方程)二套含答案
人教版九年级数学上册期末复习01—易错题精选一、选择题(每小题3分,共24分)1.关于x 的方程22210m x x --+=()有实数解,那么m 的取值范围是( )A .2m ≠B .3m ≤C .3m ≥D .32m m ≤且≠2.某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A .至少有两名学生生日相同B .不可能有两名学生生日相同C .可能有两名学生生日相同,但可能性不大D .可能有两名学生生日相同,且可能性很大3.如图①是33⨯正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )A .4种B .5种C .6种D .7种4.如图,在正方体的表面展开图中,要将a -、b -、c -填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字和均为零的概率为( ) A .12 B .13C .14D .16 5.有两个一元二次方程:2:0M ax bx c ++=,2:0N cx bx a ++=,其中0a c +=,下列四个结论中,错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =6.如图,在ABC △中,AB AC =,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是( )A .线段AE 的中垂线与线段AC 的中垂线的交点B .线段AB 的中垂线与线段AC 的中垂线的交点C .线段AE 的中垂线与线段BC 的中垂线的交点D .线段AB 的中垂线与线段BC 的中垂线的交点7.已知二次函数2y x bx c =++的图象过点1A m (,),3B m (,),若点12M y -(,),21N y -(,),38K y (,)也在二次函数2y x bx c =++的图象上,则下列结论正确的是( )A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.已知抛物线20y ax bx c a =++(>)过20-(,),23(,)两点,那么抛物线的对称轴( ) A .只能是1x =- B .可能是y 轴 C .在y 轴右侧 D .在y 轴左侧二、填空题(每小题4分,共32分)1.请写出一个符合下列全部条件的函数解析式________;(1)图象不经过第三象限;(2)当1x -<时,y 随x 的增大而减小;(3)图象经过点11-(,). 2.若抛物线2y ax c =+与x 轴交于点0A m (,),0B n (,),与y 轴交于点0C c (,),则ABC △称为“抛物三角形”.特别地,当0mnc <时,称ABC △为“倒抛物三角形”,此时a ,c 应分别满足条件________.3.已知圆的两条平行弦分别长6dm 和8dm ,若这圆的半径是5dm ,则两条平行弦之间的距离为________.4.如图,AB 是O e 的弦,6AB =,点C 是O e 上的一个动点,且°45ACB ∠=.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是________.5.有四张正面分别标有数字3-,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为________.6.如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转°60得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是________.7.如图,已知二次函数20y ax bx c a =++(≠)的图象经过点(1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中110x -<<,212x <<,下列结论:①0abc <;②2a b a -<<;③284b a ac +<;④10a -<<,其中正确结论的序号是________.8.如图,已知直线334y x =-+分别交x 轴、y 轴于点A ,B ,P 是抛物线21252y x x =-++上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ BQ =时,a 的值是________.三、解答题(共64分)1.(6分)用四块如图①所示的瓷砖拼铺一个成正方形的地板,使拼铺的图案成轴对称图形或中心对称图形,请你在图②和③中各画出一种拼法.(要求两种拼法各不相同)2.(8分)张彬和王华两位同学为得到一张观看足球比赛的入场券,商量后计划通过转盘游戏来决定,并各自设计了一种方案:张彬:将一个可以自由转动并标有阴影区域面积的转盘(如图①),随意转动,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券;王华:将分成4等分且分别标有数字1,2,3,4的转盘,随意转动两次,当指针所指两个数字之和为偶数,王华得到入场券;否则,张彬得到入场券.(1)使用张彬设计的方案,随机转动转盘一次,指针指向阴影区域的概率是多少?(2)请你运用所学的概率知识,帮助张彬和王华选出公平的游戏方案.3.(11分)如图①所示,AB 是O e 的直径,AC 是弦,直线EF 和O e 相切于点C ,AD EF ⊥,垂足为D .(1)求证:DAC BAC ∠=∠;(2)若把直线EF 向上平行移动,如图②所示,EF 交O e 于G ,C 两点,若题中的其他条件不变,试探究与DAC ∠相等的角是哪一个?说明理由.4.(12分)等腰ABC △的直角边10cm AB BC ==,点P ,Q 分别从A ,C 两点同时出发,均以1cm /秒的相同速度作直线运动,已知P 沿射线AB 运动,Q 沿边BC 的延长线运动,PQ 与直线AC 相交于点D .设P 点运动时间为t ,PCQ △的面积为S .(1)求出S 关于t 的函数关系式;(2)当点P 运动几秒时,PCQ ABC S S =△△?(3)作PE AC ⊥于点E ,当点P ,Q 运动时,线段DE 的长度是否改变?证明你的结论.5.(13分)已知Rt ABO △中,边1AB OB ==,°90ABO ∠=.【问题探究】(1)以AB 为边,在Rt ABO △的右边作正方形ABCD ,如图①,则点O 与点D 的距离为________.(2)以AB 为边,在Rt ABO △的右边作等边三角形ABC ,如图②,求点O 与点C 的距离.【问题解决】(3)若线段1DE =,线段DE 的两个端点D ,E 分别在射线OA ,OB 上滑动,以DE 为边向外作等边三角形DEF ,如图③,则点O 与点F 的距离有没有最大值?如果有,求出最大值;如果没有,说明理由.6.(14分)如图,抛物线2:L y x bx c =++经过A (0,3),B (1,0)4两点,点M 为顶点.(1)求b ,c 的值;(2)将OAB △绕点B 顺时针旋转:①当旋转°90时,点A 落在点C 的位置,将抛物线L 通过向上或向下平移后经过点C .求平移后所得抛物线1L 的表达式;②记OAB △绕点B 顺时针旋转过程中点A 的对应点为A ',点O 的对应点为O ',在抛物线1L 上是否存在A ',使得以点O ,A ,O ',A '为顶点的四边形是平行四边形?若存在,求出点A '的坐标;若不存在,请说明理由.期末复习—易错题精选参考答案一、1.【答案】B2.【答案】C3.【答案】C4.【答案】D5.【答案】D6.【答案】C7.【答案】B8.【答案】D .二、1.【答案】211y x =--()(答案不唯一) 2.【答案】0a <,0c >3.【答案】1dm 7dm 或4.【答案】5.【答案】146.【答案】1.57.【答案】①②8.【答案】4144-+-或或三、1.【答案】答案不唯一.2.【答案】解:(1)根据转盘中阴影部分扇形的圆心角度数和°°°10070170+=则P (指针指向阴影区域)°°1701736036==.(2)由(1)得张彬设计的方案中,张彬得到入场券的概率为1736P =,王华得到入场券的概率为171913636P =-=,则张彬的方案不公平. 利用王华的方案画树状图如下:由树状图得,共有16种等可能的结果,两次数字之和为偶数的有8种,则王华得到入场券的概率为81162P ==,张彬得到入场券的概率为12P =,∴王华的设计方案公平. 3.【答案】(1)证明:如图①,连接OC .EF Q 与O e 相切于点C ,OC EF ∴⊥...AD EF AD OC OCA DAC ∴∴∠=∠Q ⊥,∥.OA OC OCA BAC DAC BAC =∴∠=∠∴∠=∠Q ,,(2)解:BAG ∠与DAC ∠相等.理由如下:如图②,连接BC ,则B AGD ∠=∠.AB Q 是直径,AD EF ⊥,°90BCA GDA ∴∠=∠=,°90B BAC ∴∠+∠=,°90AGD DAG ∠+∠=.BAC DAG ∴∠=∠,BAC CAG DAG CAG ∴∠-∠=∠-∠.即BAG DAC ∠=∠.4.【答案】解:(1)当10t <秒时,P 在线段AB 上,此时CQ t =,10PB t =-.211101022S t t t t ∴=⨯⨯-=-()(). 当10t >秒时,P 在线段AB 的延长线上,此时CQ t =,10PB t =-.211101022S t t t t ∴=⨯⨯-=-()(). (2)1502ABC S AB BC ==Q g △, 211010502PCQ t S t t ∴=-=△当<秒时,(). 整理,得2101000t t -+=,无解.当10t >秒时,2110502PCQ S t t =-=△().整理,得2101000t t --=,解得5t =±.∴当点P 运动5±(秒时,PCQ ABC S S =△△.(3)当点P ,Q 运动时,线段DE 的长度不会改变.证明:过Q 作QM AC ⊥,交直线AC 于点M .易证APE QCM △≌△,2AE PE CM QM ∴====. ∴四边形PEQM 是平行四边形,且DE 是对角线EM 的一半.又EM AC ==Q ,DE ∴=.∴当点P ,Q 运动时,线段DE 的长度不会改变.同理,当点P 在点B 右侧时,DE =综上所述,当点P ,Q 运动时,线段DE 的长度不会改变.5.【答案】(1(2)过点C 作CD OB ⊥,垂足为点D .连接OC ,则°30CBD ∠=.1AB BC ==Q ,∴在Rt CBD △中,12CD =,BD =,1OD ∴=+.∴在Rt CDO △中,OC ==.(3)点O 与点F 的距离有最大值. 作ODE △的外接圆M e ,连接MD ,ME ,MF ,MO ,OF ,则OF MO MF +≤. 设MF 与DE 交于点N .°°4590AOB DME ∠=∴∠=Q ,.1DE =Q ,∴可得M e 的半径为2MD ME MO ===. MD ME =Q ,DF EF =,MF ∴垂直平分DE .1122MN DE ∴==,22NF EF ==.12OF OM MF ∴+=+≤OF ∴最大值. 6.【答案】解:(1)已知抛物线L 经过点A (0,3),B (1,0),将其代入2y x bx c =++,得310c b c =⎧⎨++=⎩,,解得43.b c =-⎧⎨=⎩, 即b ,c 的值分别为4-和3.(2)①根据点A ,B 坐标,可知3OA =,1OB =,如图,将OAB △绕点B 顺时针旋转°90后,可得点C 坐标为(4,1).当4x =时,由243y x x =-+得3y =,可知抛物线L 经过点(4,3),∴将原抛物线沿y 轴向下平移2个单位后过点C .∴平移后的抛物线1L 的表达式为241y x x =-+.②存在.如图,OAB △绕点B 旋转过程中,当点A ',B ,A 三点在同一直线上时满足以点O ,A ,O ',A '为顶点的四边形是平行四边形.AB A B '=Q ,OB O B '=,∴四边形OAO A ''为平行四边形.根据图形的旋转性质,可知3O A OA ''==,1OB O B '==,且°90AOB A O B ''∠=∠=, ∴点A '的坐标为23-(,). 又Q 抛物线1L 的表达式为241y x x =-+,∴抛物线1L 的顶点坐标为23-(,). ∴点A '坐标与抛物线1L 的顶点坐标重合.∴抛物线1L 上存在一点23A '-(,),使得以点O ,A ,O ',A '为顶点的四边形是平行四边形.人教版九年级数学上册期末专项复习02—一元二次方程考点1 巧用一元二次方程的定义及相关概念求值题型1 利用一元二次方程的定义确定字母的取值1.已知231m x -=()是关于x 的一元二次方程,则m 的取值范围是( ) A .3m ≠B .3m ≥C .2m -≥D .23m m -≥且≠2.已知关于x 的方程211210m xm m x +++--=()().(1)m 取何值时,它是一元二次方程?并写出这个方程;(2)m 取何值时,它是一元一次方程?题型2 利用一元二次方程的项的概念求字母的取值1.若一元二次方程2243680a x a x a -+++-=()()没有常数项,则a 的值为________.2.已知关于x 的一元二次方程221510m x x m -++-=()的常数项为0,求m 的值.题型3 利用一元二次方程的根的概念求字母或代数式的值1.已知关于x 的方程20x bx a ++=的一个根是0a a -(≠),则a b -的值为() A .1- B .0 C .1 D .22.已知关于x 的一元二次方程2243160k x x k +++-=()的一个根为0,求k 的值.3.已知实数a 是一元二次方程2201610x x -+=的根,求代数式22120152016a a a +--的值.题型4 利用一元二次方程根的概念解决探究性问题1.已知m ,n 是方程2210x x --=的两个根,是否存在实数a 使22714367m m a n n -+--()()的值等于8?若存在,求出a 的值;若不存在,请说明理由.考点2 一元二次方程的解法归类类型1 限定方法解一元二次方程方法1 形如20x m n n +=()(≥)的一元二次方程用直接开平方法求解1.方程24250x -=的解为()A .25x = B .52x = C .52x =± D .25x =±2.用直接开平方法解下列一元二次方程,其中无解的方程为()A .255x -=B .230x -=C .240x +=D .210x +=()方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解1.用配方法解方程234x x +=,配方后的方程变为()A .227x -=()B .221x +=()C .221x -=()D .222x +=()2.解方程:2420x x +-=.3.已知221016890x x y y -+-+=,求x y的值.方法3 能化成形如0x a x b ++=()()的一元二次方程用因式分解法求解1.一元二次方程22x x x -=-()的根是()A .1-B .0C .1和2D .1-和22.解下列一元二次方程:(1)220x x -=;(2)21690x -=;(3)2441x x =-.方法4 如果一个一元二次方程易于化为它的一般式,则用公式法求解1.用公式法解一元二次方程2124x x =-,方程的解应是()A .x =B .xC .xD .x2.用公式法解下列方程.(1)23170x x +-=();(2)24352x x x --=-.类型2 选择合适的方法解一元二次方程1.方程24490x -=的解为() A .27x = B .72x =C .172x =,272x =-D .127x =,227x =- 2.一元二次方程293x x -=-的根是()A .3B .4-C .3和4-D .3和43.方程135x x +-=()()的解是()A .11x =,23x =-B .14x =,22x =-C .11x =-,23x =D .14x =-,22x = 4.解下列方程.(1)23360y y --=;(2)22310x x -+=.类型3 用特殊方法解一元二次方程方法1 构造法1.解方程:2619100x x ++=.2.若m ,n ,p 满足8m n -=,2160mn p ++=,求m n p ++的值.方法2 换元法a .整体换元1.若280a b a b +++-=()(),则a b +的值为()A .4-或2B .3或32- C .2-或4 D .3或2- 2.已知22260x xy y x y -++--=,则x y -的值是()A .2-或3B .2或3-C .1-或6D .1或6-3.解方程:223220x x ---+=()().4.解方程:123448x x x x ----=()()()().b .降次换元1.解方程:432635623560x x x x -+-+=.c .倒数换元1.解方程:2322x x x x --=-.方法3 特殊值法1.解方程:2013201420152016x x --=⨯()().考点3 根的判别式的四种常见应用题型1 利用根的判别式判断一元二次方程根的情况1.已知关于x 的方程2110kx k x +--=(),下列说法正确的是()A .当0k =时,方程无解B .当1k =时,方程有一个实数解C .当1k =-时,方程有两个相等的实数解D .当0k ≠时,方程总有两个不相等的实数解2.已知方程220x x m --=没有实数根,其中m 是实数,试判断方程2210x mx m m +++=()有无实数根.题型2 利用根的判别式求字母的值或取值范围1.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.2.已知关于x 的一元二次方程2220mx m x -++=(),(1)证明:不论m 为何值,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.题型3 利用根的判别式求代数式的值1.已知关于x 的方程22140x m x +-+=()有两个相等的实数根,求21212m m m--+()的值.2.已知关于x 的一元二次方程2200mx nx m +-=(≠)有两个相等的实数根,求222416mn m n ++-()的值.题型4 利用根的判别式确定三角形的形状1.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程220b c x a b x b a -+-+-=()()有两个相等的实数根,试判断此三角形的形状.2.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程204a c a c x bx -+++=()有两个相等的实数根,试判断此三角形的形状.考点4 一元二次方程与三角形的综合题型1 一元二次方程与三角形三边关系的综合1.三角形的两边长分别为4和6,第三边长是方程27120x x -+=的解,则第三边的长为()A .3B .4C .3或4D .无法确定 2.根据一元二次方程根的定义,解答下列问题.一个三角形两边长分别为3cm 和7cm ,第三边长为cm a ,且整数a 满足210210a a -+=,求三角形的周长.题型2 一元二次方程与直角三角形的结合1.已知一个直角三角形的两条直角边的长恰好是方程217600x x -+=的两个根,则这个直角三角形的斜边长为________.2.已知a ,b ,c 分别是ABC △的三边,当0m >时,关于x 的一元二次方程220c x m b x m ++--=()()有两个相等的实数根,试判断ABC △的形状,并说明理由.3.已知ABC △的三边a ,b ,c 中,1a b =-,1c b =+,又已知关于x 的方程2420120x x b -++=的根恰为b 的值,求ABC △的面积.题型3 一元二次方程与等腰三角形的综合1.等腰三角形一条边的长为3,另两条边的长是关于x 的一元二次方程2120x x k -+=的两个根,则k 的值是()A .27B .36C .27或36D .182.已知关于x 的一元二次方程220a c x bx a c +++-=()(),其中a ,b ,c 分别为ABC △的三边的长.(1)如果1x =-是方程的根,试判断ABC △的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC △的形状,并说明理由;(3)如果ABC △是等边三角形,试求这个一元二次方程的根.考点5 根与系数的关系的四种应用类型 题型1 利用根与系数的关系求代数式的值1.设方程24730x x --=的两根为1x ,2x ,不解方程求下列各式的值. (1)1233x x --()(); (2)211211x xx x +++; (3)12x x -.题型2 利用根与系数的关系构造一元二次方程1.构造一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数.题型3 利用根与系数的关系求字母的值或取值范围1.已知关于x 的一元二次方程22210x mx m --+=的两根的平方和是294,求m 的值.2.已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)若该方程的一个根为1,求a 的值及该方程的另一根.题型4 巧用根与系数的关系确定字母系数的存在性4.已知1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根,是否存在实数k ,使12123222x x x x --=-()()成立?若存在,求出k 的值;若不存在,请说明理由.考点6:可化为一元二次方程的分式方程的应用 题型1 营销问题1.某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完,第二次去采购时发现批发价每件上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件,两批玩具的售价均为2.8元,问:第二次采购玩具多少件?(说明:根据销售常识,批发价应该低于销售价)题型2 行程问题3.从甲站到乙站有150千米,一列快车和一列慢车同时从甲站开出,1小时后快车在慢车前12千米,快车到达乙站比慢车早25分钟,快车和慢车每小时各行驶多少千米?应用3 工程问题4.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天才能完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天;(2)若甲工程队单独施工a 天后,再由甲、乙两工程队合作________天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需收取施工费1万元,乙工程队施工每天需收取施工费2.5万元,那么甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?考点7 几种常见的热门考点 题型1 一元二次方程的根1.若一元二次方程220150ax bx --=有一根为1x =-,则a b +=________.2.若关于x 的一元二次方程20ax bx c ++=有一根为1-,且2a =,求20162015a b c+()的值.题型2 一元二次方程的解法1.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()2.一元二次方程2230x x --=的解是() A .11x =-,23x =B .11x =,23x =-C .11x =-,23x =-D .11x =,23x =3.选择适当的方法解下列方程:(1)21210x x x -+-=()();(2)221327x x x -=+-()().题型3 一元二次方程根的判别式1.若关于x 的方程220x x a ++=不存在实数根,则a 的取值范围是() A .1a <B .1a >C .1a ≤D .1a ≥2.已知关于x 的一元二次方程210x m +-=()有两个实数根,则m 的取值范围是()A .34m -≥ B .0m ≥ C .1m ≥ D .2m ≥3.在等腰三角形ABC 中,三边长分别为a ,b ,c .其中5a =,若关于x 的方程2260x b x b +++-=()() 有两个相等的实数根,求ABC △的周长.题型4 一元二次方程根与系数的关系1.已知α,β是关于x 的一元二次方程22230x m x m +++=()的两个不相等的实数根,且满足111αβ+=-,则m 的值是() A .3B .1C .3或1-D .3-或12.关于x 的方程231210ax a x a -+++=()()有两个不相等的实数根1x ,2x ,且有12121x x x x a +-=-,求a 的值.3.设1x ,2x 是关于x 的一元二次方程222420x ax a a +++-=的两个实数根,当a 为何值时,2212x x +有最小值?最小值是多少?题型5 一元二次方程的应用1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?2.某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个图形,如图所示,甲、乙两点分别从直径的两端点A ,B 出发,以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程1cm ()与时间t s ()满足关系:2131022t t t =+(≥),乙以4cm/s 的速度匀速运动,半圆的长度为21cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多长时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多长时间?题型6 新定义问题1.若1x ,2x 是关于x 的方程20x bx c ++=的两个实数根,且122x x k +=(k 是整数),则称方程20x bx c ++=为“偶系二次方程”.如方程26270x x --=,2280x x --=,227304x x +-=,26270x x +-=,2440x x ++=都是“偶系二次方程”.判断方程2120x x +-=是否是“偶系二次方程”,并说明理由.期末专项复习—一元二次方程答案解析考点1 题型1 1.【答案】D【解析】由题意,得3020m m -⎧⎨+⎩≠,≥,解得2m -≥且3m ≠.2.【答案】解:(1)当21210m m ⎧+=⎨+⎩,≠时,它是一元二次方程,解得1m =.当1m =时,原方程可化为2210x x --=.(2)当22010m m ⎧-⎨+=⎩≠,或者当120m m ++-()≠且211m +=时,它是一无一次方程.解得1m =-或0m =.故当1m =-或0m =时,它是一元一次方程. 题型2 1.【答案】8【解析】由题意得80240.a a -=⎧⎨-⎩,≠解得8a =.2.【答案】由题意,得21010m m ⎧-=⎨-⎩,≠,解得1m =-.题型3 1.【答案】A【解析】∵关于x 的方程20x bx a ++=的一个根是0a a -(≠),20a ab a ∴-+=.10a a b ∴-+=().0a Q ≠,1.a b ∴-=-2.【答案】解:把0x =代入2243160k x x k +++-=(),得2160k -=,解得14k =,24k =-.40k +Q ≠,4k ∴-≠,4k ∴=.3.【答案】解:∵实数a 是一元二次方程2201610x x -+=的根,2201610a a ∴-+=.221201620161a a a a ∴+=-=-,.22222120162015201520152016120162016a aa a a a a a a a a +∴--=--=--=-=-题型41.【答案】解:由题意可知22210210m m n n --=--=,,22227143677232773747m m a n n m m a n n a a ⎡⎤⎡⎤∴-+--=-+--=+-=-+⎣⎦⎣⎦()()()()()()(),由 478a -+=()得9a =-,故存在满足要求的实数a ,且a 的值等于9-.考点2 类型1 方法1 1.【答案】C 2.【答案】C 方法2 1.【答案】C2.【答案】解:22242042262x x x x x x +-=+=+=+=,,(),1222x x =-=-3.【答案】解:2222221016890102516640580x x y y x x y y x y -+-+=-++-+=-+-=,()(),()(),558.8x x y y ∴==∴=,,方法3 1.【答案】D2.【答案】解:(1)21220200 2.x x x x x x -=-===,(),, (2)21233169043430.44x x x x x -=+-==-=,()(),, (3)2221214414410210.2x x x x x x x =--+=-===,,(),方法4 1.【答案】B2.【答案】解:(1)2231703730x x x x +-=-+=(),,224743313b ac ∴-=--⨯⨯=(),12x x x ∴=∴= (2)2243524430x x x x x --=---=,,224444364b ac x ∴-=--⨯⨯-=∴=()(),1231.22x x ∴==-,类型2 1.【答案】C 2.【答案】C 3.【答案】B4.【答案】解:(1)22221919133360200442422y y y y y y y y --=--=-+-=-=-=±,,,(),,122 1.y y ∴==-,(2)2223231043421122x x b ac x ±-+=-=--⨯⨯=∴=⨯,(),,即1211.2x x ∴==, 类型3 方法11.【答案】解:将原方程两边同乘6,得26196600x x +⨯+=()().解得615x =-或64x =-.1252.23x x ∴=-=-,2.【答案】解:因为8m n -=,所以8m n =+.将8m n =+代入2160mn p ++=中,得28160n n p +++=(),所以228160n n p +++=,即 2240n p ++=().又因为240n +()≥,20p ≥,所以400n p +=⎧⎨=⎩,,解得40.n p =-⎧⎨=⎩,所以84m n =+=,所以4400m n p ++=+-+=() 方法2 a1.【答案】A2.【答案】B3.【答案】223220.x x ---+=()()设2x y -=,原方程化为2320y y -+=, 解得121 2.y y ==,当1y =时,213x x -==,, 当2y =时,22 4.x x -==, 原方程的解为1234x x ==,.4.【答案】解:原方程即[][]142348x x x x ----=()()()(),即22545648x x x x -+-+=()().设255y x x =-+,则原方程变为1148y y -+=()(). 解得1277y y ==-,.当2557x x -+=时,解得12x x ==当2557x x -+=-时,254112230∆=--⨯⨯=-()<,方程无实数根.∴原方程的根为12x x = b1.【答案】解:经验证0x =不是方程的根,原方程两边同除以2x ,得22356635620x x x x -+-+=, 即2211635620x x x x +-++=()(). 设1y x x =+,则22212x y x+=-,原方程可变为26235620y y --+=(). 解得152y =,2103y =. 当152x x +=时,解得12x =,212x =;当1103x x +=时,解得33x =,413x =.经检验,均符合题意.∴原方程的解为12x =,212x =,33x =,413x =. c1.【答案】解:设2x y x-=,则原方程化为32y y -=,整理得2230y y --=,∴13y =,21y =-.当3y =时,23x x -=,∴1x =-. 当1y =-时,21x x-=-,∴1x =.经检验,1x =±都是原方程的根, ∴原方程的根为11x =,21x =-. 方法31.【答案】解:方程组2013201620142015x x -=⎧⎨-=⎩,的解一定是原方程的解,解得4029x =.方程组2013201520142016x x -=-⎧⎨-=-⎩,的解也一定是原方程的解,解得2x =-.∵原方程最多有两个实数解, ∴原方程的解为14029x =,22x =-.【解析】解本题也可采用换元法.设2014x t -=,则20131x t -=+,原方程可化为120152016t t +=⨯(),先求出t ,进而求出x . 考点3 题型1 1.【答案】C【解析】当0k =时,方程为一元一次方程,解为1x =;当0k ≠时,因为222141211k k k k k ∆=--⋅-=++=+()()()≥0,所以当1k =时,4∆=,方程有两个不相等的实数解;当1k =-时,0∆=,方程有两个相等的实数解; 当0k ≠时,0∆≥,方程总有两个实数解.故选C . 2.【答案】解:220x x m --=Q 没有实数根,2124440m m ∴∆=--⋅-=+()()<,即1m -<.对于方程2210x mx m m +++=(),2224144m m m m ∆=-⋅+=-()()>,∴方程2210x mx m m +++=()有两个不相等的实数根. 题型21.【答案】解:(1)根据题意得2444242080b ac k k -=--=-()>, 解得25k <.(2)由k 为正整数,可得1k =或2k =.利用求根公式可求出方程的根为1x =- ∵方程的根为整数,∴52k -为完全平方数, ∴k 的值为2.2.【答案】(1)证明:[]22228442m m m m m ∆=-+-=-+=-()(). ∵不论m 为何值,220m -()≥,即0△≥.∴不论m 为何值,方程总有实数根.(2)解:解关于x 的一元二次方程2220mx m x -++=(),得222m m x m +±-=().∴12x m=,21x =. ∵方程的两个根都是正整数,∴2m 是正整数,∴1m =或2m =.又∵方程的两个根不相等,∴2m ≠,∴1m =. 题型31.【答案】解:∵关于x 的方程22140x m x +-+=()两个相等的实数根,∴2214140m ∆=--⨯⨯=(),即214m -=±.∴52m =或32m =-. 当52m =时,25111221216514m m m --==-++(); 当32m =-时,231152********m m m ---==--+-(). 2.【答案】解:由题意可知,22480b ac n m -=+=, ∴28m n =-,∴222222222222222416816168mn mn mn mn mn m n m m n m m n m n n m ====++-+++-++-+(). ∵0m ≠,2228mn n m m∴==-.题型41.【答案】解:∵一元二次方程220b c x a b x b a -+-+-=()()有两个相等的实数根, ∴[]2240a b b c b a ---⋅-=()()(), ∴40a b a c --=()(), ∴a b =或a c =, ∴此三角形是等腰三角形.2.【答案】解:∵方程204a ca c x bx -+++=()有两个相等的实数根, ∴2222404a cb ac b a c -∆=-+⋅=--=()(), 即222b c a +=,∴此三角形是直角三角形. 考点4 题型1 1.【答案】C2.【答案】解:由已知可得410a <<,则a 可取5,6,7,8,9.(第一步) 当5a =时,代入2210215105210a a -+=-⨯+≠,故5a =不是方程的根. 同理可知6a =,8a =,9a =都不是方程的根,7a =是方程的根.(第二步) ∴ABC △的周长是37717cm ++=(). 题型2 1.【答案】132.【答案】解:ABC △是直角三角形.理由如下:原方程可化为20b c x cm bm +-+-=(), 2222444ma m c b c b m a b c ∆--++-=()()=(). ∵0m >,且原方程有两个相等的实数根,∴2220a b c +-=,即222a b c +=∴ABC △是直角三角形.3.【答案】解:将x b =代入原方程,整理得2419120b b -+=,解得14b =,234b =.当14b =时,3a =,5c =,∵222345+=,即222a b c +=,∴ABC △为直角三角形,且°90C ∠=.∴1134622ABC S ab ==⨯⨯=△; 当234b =时,3104a =-<,不合题意,舍去.因此,ABC △的面积为6. 题型3 1.【答案】B2.【答案】解:(1)ABC △是等腰三角形.理由如下:把1x =-入原方程,得20a c b a c +-+-=,所以a b =,故ABC △是等腰三角形.(2)ABC △是直角三角形.理由如下:方程有两个相等的实数根,则2240b a c a c ∆=-+-=()()(),所以2220b a c -+=,所以222a b c =+,故ABC △是直角三角形.(3)如果ABC △是等边三角形,则a b c ==,所以方程可化为2220ax ax +=,所以210ax x +=(),所以方程的解为10x =,21x =-. 考点5 题型11.【答案】解:根据一元二次方程根与系数的关系,有1274x x +=,1234x x =-. (1)12121237333939344x x x x x x --=-++=--⨯+=()()(). (2)2222122111212121212122112121212112====111111x x x x x x x x x x x x x x x x x x x x x x x x x x x x +++++++-+++++++++++++()()()()()()()27372101444=3732144-⨯-+-++()().(3)222121212127397=4=4=4416x x x x x x x x -+--⨯-∴-==Q()()()(),. 题型21.【答案】解:设方程25230x x +-=的两根为1x ,2x , 则1225x x +=-,1235x x =-. 设所求方程为20y py q ++=,其两根为1y ,2y , 令111y x =-,221y x =-.∴121212*********==3x x p y y x x x x x x +=-+=--=+()(),12121211153q y y x x x x ==--==-()(). ∴所求的方程为225+033y y -=,即23250y y +-=. 题型31.【答案】解:设方程两根为1x ,2x ,由已知得1212=221=.2m x x m x x ⎧+⎪⎪⎨-+⎪⎪⎩,∵222121212292=4x x x x x x +=+-(),即221292224m m -+-⨯=(), ∴28330m m +-=. 解得111m =-,23m =.当111m =-时,方程为2211230x x ++=,21142230∆=-⨯⨯<,方程无实数根,∴11m =-不合题意,舍去;当3m =时,方程为22235034250x x --=∆=--⨯⨯-,()()>,方程有两个不相等的实数根,符合题意. ∴m 的值为3.2.【答案】解:(1)∵224121240a a -⨯⨯-=-()>,解得3a <. ∴a 的取值范围是3a <.(2)设方程的另一根为1x ,由根与系数的关系得111212x x a +=-⎧⎨⋅=-⎩,,解得113.a x =-⎧⎨=-⎩,题型44.【答案】解:不存在.理由如下:∵一元二次方程24410kx kx k -++=有两个实数根,∴0k ≠,且24441160k k k k ∆=--⨯+=-()()≥,∴0k <.∵1x ,2x 是方程24410kx kx k -++=的两个实数根, ∴121x x +=,1214k x x k+=.∴212121212922294k x x x x x x x x k+--=+-=-()()(). 又∵12123222x x x x --=-()(), ∴939425k k k +-=-∴=,. 又∵0k <,∴不存在实数k ,使12123222x x x x --=-()()成立. 考点61.【答案】解:方法一:设第二次采购玩具x 件,则第一次采购玩具10x -()件,由题意得1001500.510x x+=-. 整理得211030000x x -+=, 解得150x =,260x =,经检验150x =,260x =都是原方程的解.当50x =时,第二次采购时每件玩具的批发价为150503÷=(元),高于玩具的售价,不合题意,舍去; 当60x =时,第二次采购时每件玩具的批发价为15060 2.5÷=(元),低于玩具的售价,符合题意,因此第二次采购玩具60件.方法二:设第一次采购玩具x 件,则第二次采购玩具10x +()件,由题意得1001500.510x x +=+, 整理得29020000x x -+=, 解得140x =,250x =,经检验,140x =,250x =都是原方程的解.第一次采购40件时,第二次采购401050+=(件),批发价为150503÷=(元),不合题意,舍去; 第一次采购50件时,第二次采购401060+=(件),批发价为15060 2.5÷=(元),符合题意.因此第二次采购玩具60件. 题型23.【答案】解:设慢车每小时行驶x 千米,则快车每小时行驶12x +()千米,依题意得150150251260x x -=+.解得172x =-(不合题意,舍去),260x =.所以1272x +=.∴快车每小时行驶72千米,慢车每小时行驶60千米. 应用34.【答案】解:(1)设乙工程队单独施工x 天完成此项工程,则甲工程队单独施工30x +()天完成此项工程,由题意得1120130x x +=+(),整理,得2106000x x --=, 解得130x =,220x =-.经检验130x =,220x =-都是分式方程的解,但220x =-不符合题意,应舍去,故30x =,3060x +=. 故甲、乙两工程队单独完成此项工程分别需要60天,30天. (2)203a -()(3)由题意得11 2.520643a a +++-()()≤,解得36a ≥.故甲工程队至少要单独施工36天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元. 考点7 题型11.【答案】2015【解析】把1x =-代入方程中得到20150a b +-=,即2015a b +=.2.【答案】解:∵2a =,∴40c -≥且40c -≥,即4c =,则2a =-.又∵1-是一元二次方程20ax bx c ++=的根,∴0a b c -+=,∴242b a c =+=-+=.∴原式201622020154-+==⨯().题型2 1.【答案】D 2.【答案】A3.【答案】解:(1)21210x x x -+-=()(),1120x x x --+=()(), 1310x x --=()(),12113x x ==,.(2)221327x x x -=+-()(),22441327x x x x -+=+-, 2680x x -+=,1224x x ==,.题型3 1.【答案】B 2.【答案】B3.【答案】解:∵关于x 的方程2260x b x b +++-=()()有两个相等的实数根,∴22460b b ∆=+--=()(),∴12b =,210b =-(舍去).当a 为腰时,ABC △周长为55212=++. 当b 为腰时,225+<,不能构成三角形. ∴ABC △的周长为12. 题型4 1.【答案】A2.【答案】解:由题意,得1231a x x a ++=,1221a x x a +=(),∴31211a a a a a++-=-(),∴210a -=,即1a =±.又∵方程有两个不相等的实数根,∴[]2314210a a a ∆=-+-⋅+()()>,即210a -()>,∴1a ≠,∴1a =-.3.【答案】解:∵方程有两个实数根,∴2224420a a a ∆=-+-()()≥,∴12a ≤.又∵122x x a +=-,21242x x a a =+-,∴22221212122224x x x x x x a +=+-=--()(). ∵12a ≤,且2220a -()≥,∴当12a =时,2212x x +的值最小. 此时222121122422x x +=--=(),即最小值为12.【解析】本题中考虑0△≥从而确定a 的取值范围这一过程易被忽略. 题型51.【答案】解:设每件商品降价x 元,则售价为每件60x -()元,每星期的销量为30020x +()件. 根据题意,得6040300206080x x --+=()(). 解得11x =,24x =.又要顾客得实惠,故取4x =,即销售单价为56元. 答:应将销售单价定为56元.2.【答案】解:(1)当4t =时,221313144142222t t =+=⨯+⨯=. 答:甲运动4s 后的路程是14cm . (2)设它们运动了s m ,根据题意, 得21342122m m m ++=.解得:13m =,214m =-(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3s .(3)设它们运动了s n 后第二次相遇,根据题意,得213421322n n n ++=⨯(). 解得17n =,218n =-(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7s . 题型61.【答案】解:不是.理由如下:解方程2120x x +-=,得14x =-,23x =.12432 3.5x x +=+=⨯.∵3.5不是整数,∴方程2120x x +-=不是“偶系二次方程”.。
2024年全新九年级数学上册模拟试卷及答案(人教版)
专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x^3 6x^2 + 9x 1,则f'(x) = ( )A. 3x^2 12x + 9B. 3x^2 12x + 12C. 3x^2 9x + 6D. 3x^2 9x + 92. 若a, b为实数,且a ≠ b,则方程ax^2 + bx + 1 = 0的解为()A. x = 1 或 x = 1B. x = 1 或 x = 1/2C. x = 1 或 x = 1/2D. x = 1 或 x = 1/23. 设集合A = {x | x^2 3x + 2 = 0},集合B = {x | x^2 2x3 = 0},则A ∩ B = ()A. {1, 2}B. {1, 1}C. {2, 1}D. {1, 3}4. 若等差数列{an}的前n项和为Sn = n^2 + n,则a1 = ()A. 1B. 2C. 3D. 45. 在平面直角坐标系中,点P(2, 3)关于原点的对称点为()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 6)二、判断题(每题1分,共5分)1. 方程x^2 4x + 4 = 0的解为x1 = x2 = 2。
()2. 函数f(x) = x^3 3x^2 + 3x 1在区间(∞, +∞)上单调递增。
()3. 若a, b为实数,且a ≠ b,则方程ax^2 + bx + 1 = 0的解必定为实数。
()4. 等差数列的前n项和为Sn = n(a1 + an)/2。
()5. 在平面直角坐标系中,点P(2, 3)关于x轴的对称点为P'(2,3)。
()三、填空题(每题1分,共5分)1. 若函数f(x) = x^3 3x^2 + 3x 1,则f'(x) = _______。
2. 方程x^2 4x + 4 = 0的解为x1 = _______,x2 = _______。
3. 等差数列{an}的前n项和为Sn = n^2 + n,则a1 = _______。
【最新】人教版九年级数学上册期末检测试卷(及答案)
人教版九年级数学上册期末试卷(含答案)(时间:120分钟满分:100分)一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个是符合题意的.1.在平面直角坐标系xOy中,点A的坐标为(4,﹣3),如果射线OA与x轴正半轴的夹角为α,那么∠α的正弦值是()A.B.C.D.2.右图是某个几何体,它的主视图是()A.B.C.D.3.已知△ABC,AC=3,CB=4,以点C为圆心r为半径作圆,如果点A、点B只有一个点在圆内,那么半径r的取值范围是()A.r>3 B.r≥4 C.3<r≤4 D.3≤r≤4 4.如果,那么的结果是()A.﹣B.﹣C.D.5.将抛物线y=x2的图象向上平移3个单位后得到新的图象,那么新图象的表达式是()A.y=(x﹣3)2B.y=(x+3)2C.y=x2﹣3 D.y=x2+36.如图,∠DCE是圆内接四边形ABCD的一个外角,如果∠DCE=75°,那么∠BAD的度数是()A.65°B.75°C.85°D.105°7.一个不透明的盒子中装有20张卡片,其中有5张卡片上写着“三等奖”;3张卡片上写着“二等奖”,2张卡片上写着“一等奖”,其余卡片写着“谢谢参与”,这些卡片除写的字以外,没有其他差别,从这个盒子中随机摸出一张卡片,能中奖的概率为()A.B.C.D.8.李师傅一家开车去旅游,出发前查看了油箱里有50升油,出发后先后走了城市路、高速路、山路最终到达旅游地点,下面的两幅图分别描述了行驶里程及耗油情况,下面的描述错误的是()A.此车一共行驶了210公里B.此车高速路一共用了12升油C.此车在城市路和山路的平均速度相同D.以此车在这三个路段的综合油耗判断50升油可以行驶约525公里二、填空题(本题共16分,每小题2分)9.二次函数y=﹣3x2+5x+1的图象开口方向.10.已知线段AB=5cm,将线段AB以点A为旋转中心,逆时针旋转90°得到线段AB′,则点B、点B′的距离为.11.如图,在平面直角坐标系xOy中有一矩形,顶点坐标分别为(1,1)、(4,1)、(4,3)、(1,3),有一反比例函数y=(k≠0)它的图象与此矩形没有交点,该表达式可以为.12.如图,在△ABC中,DE分别与AB、AC相交于点D、E,且DE∥BC,如果,那么= .13.如图,在△ABC中,∠A=60°,⊙O为△ABC的外接圆.如果BC=2,那么⊙O的半径为.14.下图是某商场一楼与二楼之间的手扶电梯示意图,其中AB、CD 分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯次点B到点C上升的高度h是m.15.如图,在平面直角坐标系xOy中,图形L2可以看作是由图形L1经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由图形L1得到图形L2的过程.16.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是.BA三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.已知:53a b =.求:a bb+.18.计算:2cos30-4sin 45︒︒19.已知二次函数y =x 2-2x -3.(1)将y =x 2-2x -3化成y =a (x -h )2+k 的形式; (2)求该二次函数图象的顶点坐标.20.如图,在△ABC 中,∠B 为锐角, AB=,BC =7,sin 2B =,求AC 的长.21.如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 在AB 上,AD =1,AE =2,BC =3,BE =1.5.求证:∠DEC =90°.22.下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程. 已知:△ABC .求作:在BC 边上求作一点P,使得△PAC ∽△ABC .作法:如图,①作线段AC 的垂直平分线GH ;②作线段AB 的垂直平分线EF,交GH 于点O ; ③以点O 为圆心,以OA 为半径作圆;④以点C 为圆心,CA 为半径画弧,交⊙O 于点D(与点A 不重合); ⑤连接线段AD 交BC 于点P. 所以点P 就是所求作的点.E DCBA ABC根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明: ∵CD=AC,∴CD =.∴∠=∠.又∵∠=∠,∴△PAC∽△ABC ()(填推理的依据).23.在平面直角坐标系xOy中,直线y=x+2 与双曲线kyx相交于点A(m,3).(1)求反比例函数的表达式;(2)画出直线和双曲线的示意图;(3)若P是坐标轴上一点,当OA=PA时.直接写出点P的坐标.24.如图,AB是O的直径,过点B作O的切线BM,点A,C,D分别为O的三等分点,B连接AC,AD,DC,延长AD交BM于点E,CD交AB于点F. (1)求证://CD BM;(2)连接OE,若DE=m,求△OBE的周长.25.在如图所示的半圆中, P是直径AB上一动点,过点P作PC⊥AB 于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为x cm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小聪根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为cm.26.在平面直角坐标系xOy中,抛物线22=++(其中a、c为常y ax ax c数,且a<0)与x轴交于点A()-,与y轴交于点B,此抛物线3,0顶点C到x轴的距离为4.(1)求抛物线的表达式;(2)求CAB∠的正切值;(3)如果点P是x轴上的一点,且ABP CAO∠=∠,直接写出点P的坐标.Array27.在菱形ABCD中,∠ADC=60°,BD是一条对角线,点P在边CD 上(与点C,D不重合),连接AP,平移ADP∆,使点D移动到点C,得到BCQ∆,在BD上取一点H,使HQ=HD,连接HQ,AH,PH. (1)依题意补全图1;(2)判断AH与PH的数量关系及∠AHP的度数,并加以证明;(3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路.(可以不写出计算结果.........)28.在平面直角坐标系xOy 中,点A (x ,0),B (x ,y ),若线段AB 上存在一点Q 满足12QA QB =,则称点Q 是线段AB 的“倍分点”. (1)若点A (1,0),AB =3,点Q 是线段AB 的“倍分点”. ①求点Q 的坐标;②若点A 关于直线y = x 的对称点为A ′,当点B 在第一象限时,求'QA QB; (2)⊙T 的圆心T (0, t ),半径为2,点Q在直线3y x =上,⊙T 上存在点B ,使点Q 是线段AB 的“倍分点”,直接写出t 的取值范围.A B C D P 图1 A B C D 备用图答案一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个是符合题意的.1.【分析】画出图形,根据直角三角形的解法解答即可.【解答】解:过A点作AB⊥x轴,在Rt△OAB中,OA=,∴∠α的正弦值=,故选:A.【点评】此题考查解直角三角形的问题,关键是画出图形,利用勾股定理解答.2.【解答】解:从几何体的正面看可得等腰梯形,故选:C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.【分析】由于AC=3,CB=4,当以点C为圆心r为半径作圆,如果点A、点B只有一个点在圆内时,那么点A在圆内,而点B不在圆内.当点A在圆内时点A到点C的距离小于圆的半径,点B在圆上或圆外时点B到圆心的距离应该不小于圆的半径,据此可以得到半径的取值范围.【解答】解:当点A在圆内时点A到点C的距离小于圆的半径,即:r>3;点B在圆上或圆外时点B到圆心的距离应该不小于圆的半径,即:r ≤4;即3<r≤4.故选:C.【点评】本题考查了点与圆的位置关系,解题的关键是明确半径的大小与位置关系的关系.4.【分析】根据合分比例性质,可得答案.【解答】解:由合分比性质,得==﹣,故选:B.【点评】本题考查了比例的性质,利用合分比性质是解题关键.5.【分析】根据“上加下减”的原则进行解答即可.【解答】解:将抛物线y=x2的图象向上平移3个单位后得到新的图象,那么新图象的表达式是y=x2+3,故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.6.【分析】根据圆内接四边形的性质:圆内接四边形的外角等于它的内对角即可解答.【解答】解:∵四边形ABCD内接于⊙O,∴∠BAD=∠DCE=75°,故选:B.【点评】此题考查了圆内接四边形的性质,熟记圆内接四边形的外角等于它的内对角是解题的关键.7.【分析】能中奖的卡片有5+3+2=10张,根据概率公式计算即可.【解答】解:能中奖的卡片有5+3+2=10张,∴能中奖的概率==,故选:A.【点评】本题考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.8.【分析】找准几个关键点,走了城市路、高速路、山路最终到达旅游地点进行分析解答即可.【解答】解:A、此车一共行驶了210公里,正确;B、此车高速路一共用了45﹣33=12升油,正确;C、此车在城市路的平均速度是30km/h,山路的平均速度是=60km/h,错误;D、以此车在这三个路段的综合油耗判断50升油可以行驶约525公里,正确;故选:C.【点评】本题考查了函数的图象,解答本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(本题共16分,每小题2分)9.二次函数y=﹣3x2+5x+1的图象开口方向向下.【分析】由抛物线解析式可知,二次项系数a=﹣3<0,可知抛物线开口向上.【解答】解:∵二次函数y=﹣3x2+5x+1的二次项系数a=﹣3<0,∴抛物线开口向下.故答案为:向下.【点评】本题考查了抛物线的开口方向与二次项系数符号的关系.当a>0时,抛物线开口向上,当a<0时,抛物线开口向下.10.已知线段AB=5cm,将线段AB以点A为旋转中心,逆时针旋转90°得到线段AB′,则点B、点B′的距离为5cm .【分析】根据旋转变换的性质得到∠BAB′=90°,BA=BA′=5cm,根据勾股定理计算即可.【解答】解:由旋转变换的性质可知,∠BAB′=90°,BA=BA′=5cm,由勾股定理得,BB′==5,故答案为:5cm.【点评】本题考查的是旋转变换的性质、勾股定理,旋转变换的性质:对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角.11.如图,在平面直角坐标系xOy中有一矩形,顶点坐标分别为(1,1)、(4,1)、(4,3)、(1,3),有一反比例函数y=(k≠0)它的图象与此矩形没有交点,该表达式可以为y=.【分析】找出经过(1,1)与(4,3)两点的反比例函数k的值,根据反比例与矩形没有交点确定出k的范围,写出一个满足题意的解析式即可.【解答】解:当反比例函数图象经过(1,1)时,k=1,当反比例函数经过(4,3)时,k=12,∵反比例函数y=(k≠0)它的图象与此矩形没有交点,∴反比例函数k的范围是k<1或k>12且k≠0,则该表达式可以为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及矩形的性质,熟练掌握待定系数法是解本题的关键.12.如图,在△ABC中,DE分别与AB、AC相交于点D、E,且DE∥BC,如果,那么= .【分析】由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质结合,即可求出的值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===.故答案为:.【点评】本题考查了相似三角形的判定与性质,根据找出的值是解题的关键.13.如图,在△ABC中,∠A=60°,⊙O为△ABC的外接圆.如果BC=2,那么⊙O的半径为 2 .【分析】连接OC、OB,作OD⊥BC,利用圆心角与圆周角的关系得出∠BOC=120°,再利用含30°的直角三角形的性质解答即可.【解答】解:连接OC、OB,作OD⊥BC,∵∠A=60°,∴∠BOC=120°,∴∠DOC=60°,∠ODC=90°,∴OC=,故答案为:2.【点评】此题考查三角形的外接圆与外心,关键是利用圆心角与圆周角的关系得出∠BOC=120°.14.下图是某商场一楼与二楼之间的手扶电梯示意图,其中AB、CD 分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯次点B到点C上升的高度h是 4 m.【分析】过C作CE⊥AB,交AB的延长线于E,在Rt△BCE中,易求得∠CBE=30°,已知了斜边BC为8m,根据直角三角形的性质即可求出CE的长,即h的值.【解答】解:过C作CE⊥AB,交AB的延长线于E;在Rt△CBE中,∠CBE=180°﹣∠CBA=30°;已知BC=8m,则CE=BC=4m,即h=4m.【点评】正确地构造出直角三角形,然后根据直角三角形的性质求解,是解决此题的关键.15.如图,在平面直角坐标系xOy中,图形L2可以看作是由图形L1经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由图形L1得到图形L2的过程由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L .【分析】根据旋转的性质,平移的性质即可解决问题;【解答】解:图形L2可以看作是由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L2.故答案为:由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L【点评】考查了坐标与图形变化﹣旋转,平移,对称,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.16.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是相等的圆心角所对的弦相等,直径所对的圆周角是直角.【分析】根据作图知CD为AB的垂直平分线,据此得∠AOC=∠BOC=∠BOD=∠AOD=90°,依据相等的圆心角所对的弦相等可判断四边形ACBD是菱形,再根据直径所对的圆周角是直角可得四边形ACBD 是正方形.【解答】解:由作图知CD为AB的垂直平分线,∵AB为⊙O的直径,∴CD为⊙O的直径,且∠AOC=∠BOC=∠BOD=∠AOD=90°,则AC=BC=BD=AD(相等的圆心角所对的弦相等),∴四边形ACBD是菱形,由AB 为⊙O 的直径知∠ACB=90°(直径所对的圆周角是直角), ∴四边形ACBD 是正方形,故答案为:相等的圆心角所对的弦相等,直径所对的圆周角是直角. 【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握圆心角定理和圆周角定理及正方形的判定.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.解:∵53ab=,∴1a b a b b +=+=53+1=83.………………………5分=222⨯⨯18.解:原式3分………………………4分5分19.解:(1)y=x 2-2x-3=x 2-2x+1-1-3……………………………2分 =(x-1)2-4.……………………3分 (2)∵y=(x-1)2-4,∴该二次函数图象的顶点坐标是(1,-4).………………………5分20.解:作AD ⊥BC 于点D ,∴∠ADB =∠ADC =90°.∵sin 2B =, ∴∠B=∠BAD=45° (2)分B∵AB =32∴AD=BD=3.…………………………3分 ∵BC =7,∴DC=4. ∴在Rt △ACD 中,225AC AD DC =+=.…………………………5分21.(1)证明:∵AB ⊥BC ,∴∠B =90°. ∵AD ∥BC ,∴∠A =90°.∴∠A =∠B .………………2分∵AD =1,AE =2,BC =3,BE =1.5, ∴121.53=.∴AD AEBE BC=∴△ADE ∽△BEC .∴∠3=∠2.………………3分 ∵∠1+∠3=90°,∴∠1+∠2=90°.∴∠DEC =90°.………………5分22.(1)补全图形如图所示:………………2分(2)AC ,∠CAP=∠B ,∠ACP=∠ACB ,有两组角对应相等的两个三角形相似.………………5分23.解:(1)∵直线y=x+2与双曲线ky x=相交于CB A EFGHOPD yx–1–2–3–4–5–6–71234567–1–2–3–4–51234AO点A (m ,3). ∴3=m+2,解得m=1.∴A (1,3)……………………………………1分 把A (1,3)代入k y x=解得k=3,3y x=……………………………………2分(2)如图……………………………………4分(3)P (0,6)或P (2,0) ……………………………………6分 24.证明:(1)∵点A 、C 、D 为O 的三等分点, ∴AD DC AC == , ∴AD=DC=AC. ∵AB 是O 的直径, ∴AB ⊥CD.∵过点B 作O 的切线BM , ∴BE ⊥AB.∴//CD BM .………………………3分 (2) 连接DB.①由双垂直图形容易得出∠DBE=30°,在Rt △DBE 中,由DE=m ,解得BE=2m ,②在Rt △ADB 中利用30°角,解得,………4分 ③在Rt △OBE 中,由勾股定理得出m.…………………5分 ④计算出△OB E 周长为m.………………………6分 25.(1)3.00…………………………………1分∴(2)……………………………………4分 (3)1.50或4.50……………………2分26.解:(1)由题意得,抛物线22y ax ax c =++的对称轴是直线212ax a=-=-.………1分∵a <0,抛物线开口向下,又与x 轴有交点,∴抛物线的顶点C 在x 轴的上方.由于抛物线顶点C 到x 轴的距离为4,因此顶点C 的坐标是()1,4-. 可设此抛物线的表达式是()214y a x =++,由于此抛物线与x 轴的交点A 的坐标是()3,0-,可得1a =-. 因此,抛物线的表达式是223y x x =--+.…………………2分 (2)点B 的坐标是()0,3.联结BC .∵218AB =,22BC =,220AC =,得222AB BC AC +=. ∴△ABC 为直角三角形,90ABC ∠=. 所以1tan 3BC CAB AB ∠==.即CAB 的正切值等于13 (4)分(3)点p 的坐标是(1,0).……6分 27.(1)补全图形,如图所示.………………2分(2)AH 与PH 的数量关系:AH =PH ,∠AHP =120°. 证明:如图,由平移可知,PQ=DC. ∵四边形ABCD 是菱形,∠ADC=60°, ∴AD=DC ,∠ADB =∠BDQ =30°.∴AD=PQ.∵HQ=HD ,∴∠HQD =∠HDQ =30°.∴∠ADB =∠DQH ,∠DHQ=120°. ∴△ADH ≌△PQH.∴AH =PH ,∠AHD =∠PHQ .∴∠AHD+∠DHP =∠PHQ+∠DHP .∴∠AHP=∠DHQ . ∵∠DHQ=120°,∴∠AHP=120°.…………5分 (3)求解思路如下:由∠AHQ=141°,∠BHQ=60°解得∠AHB=81°.a.在△ABH 中,由∠AHB=81°,∠ABD=30°,解得∠BAH=69°.b.在△AHP 中,由∠AHP=120°,AH=PH ,解得∠PAH=30°.c.在△ADB 中,由∠ADB=∠ABD= 30°,解得∠BAD=120°. 由a 、b 、c 可得∠DAP=21°.在△DAP 中,由∠ADP= 60°,∠DAP=21°,AD=1,可解△DAP , 从而求得DP 长.……………………………7分ABCDPHQ28.解:(1)∵A (1,0),AB =3 ∴B (1,3)或B (1,-3)∵12QA QB = ∴Q (1,1)或Q (1,-1)………………3分 (2)点A (1,0)关于直线y = x 的对称点为A ′(0,1) ∴Q A =Q A ′∴QB A Q '21=………………5分 (3)-4≤t ≤4………………7分三、解答题(本题共68分)解答应写出文字说明、演算步骤或证明过程17.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值. 【解答】解:原式=1+2﹣2×﹣4=﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 18.【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.【解答】证明:在△ABC 中,AB=AC ,BD=CD , ∴AD ⊥BC , ∵CE ⊥AB ,x∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.19.【分析】(1)利用配方法先加上一次项系数的一半的平方来凑完全平方式,再把一般式转化为顶点式即可;(2)根据顶点坐标的求法,得出顶点坐标即可;【解答】解:(1)y=x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4.(2)∵y=(x+1)2﹣4,∴该二次函数图象的顶点坐标是(﹣1,﹣4).20.【分析】根据分式的混合运算法则,化简后利用整体的思想代入计算即可.【解答】解:原式=•=•=m(m+1)=m2+m,∵m是方程x2+x﹣3=0的根,∴m2+m﹣3=0,即m2+m=3,则原式=3.21【分析】(1)利用待定系数法即可解决问题;(2)构建方程即可解决问题;【解答】解:(1)∵直线y1=kx(k≠0)与双曲y2=(m≠0)的一个交点为A(2,2),∴k=1,m=4,(2)∵直线y1=x,y2=,由题意:﹣x=x或x﹣=,解得x=±或,∵x>0,∴x=或2,∴P(,0)或(2,0).【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是学会利用构建方程的思想思考问题,属于中考常考题型.22.【分析】如图,由题意△AMN,△BMQ都是直角三角形,作AH⊥BQ 于H,只要求出AH、BH即可利用勾股定理求出AB的长.【解答】解:如图,由题意△AMN,△BMQ都是直角三角形,作AH⊥BQ于H,只要求出AH、BH即可利用勾股定理求出AB的长.易知四边形ANQH是矩形,可得AH=NQ=30米,在Rt△AMN中,根据AN=QH=MN•tan30°=20米,在Rt△MBQ中,BQ=MQ•tan60°=90,可得BH=BQ﹣QH=70米,由此即可解决问题.【点评】本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.【分析】(1)根据根的判别式可得结论;(2)利用求根公式表示两个根,因为该函数的图象与x轴交点的横坐标均为整数,且k为整数,可得k=±1.【解答】(1)证明:△=(k+1)2﹣4k×1=(k﹣1)2≥0∴无论k取任何实数时,该函数图象与x轴总有交点;(2)解:当y=0时,kx2+(k+1)x+1=0,x=,x=,x1=﹣,x2=﹣1,∵该函数的图象与x轴交点的横坐标均为整数,且k为整数,∴k=±1.【点评】本题考查了抛物线与x轴的交点,二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.也考查了二次函数与一元二次方程的关系.24.【分析】(1)连接OE,由AC为圆O的切线,利用切线的性质得到OE 垂直于AC,再由BC垂直于AC,得到OE与BC平行,根据O为DB的中点,得到E为DF的中点,即OE为三角形DBF的中位线,利用中位线定理得到OE为BF的一半,再由OE为DB的一半,等量代换即可得证;(2)设BC=3x,根据题意得:AC=4x,AB=5x,根据cos∠AOE=cosB,可得=,即=,解方程即可;【解答】(1)证明:连接OE,∵AC与圆O相切,∴OE⊥AC,∵BC⊥AC,∴OE∥BC,又∵O为DB的中点,∴E为DF的中点,即OE为△DBF的中位线,∴OE=BF,又∵OE=BD,则BF=BD;(2)解:设BC=3x,根据题意得:AC=4x,AB=5x又∵CF=2,∴BF=3x+2,由(1)得:BD=BF,∴BD=3x+1,∴OE=OB=,AO=AB﹣OB=5x﹣=,∵OE∥BF,∴∠AOE=∠B,∴cos∠AOE=cosB,即=,即=,解得:x=,则圆O的半径为=5.【点评】此题考查了切线的性质,锐角三角函数定义,以及圆周角定理,熟练掌握切线的性质是解本题的关键.25.【分析】(1)如图1﹣1中,连接OD,BD、AN.利用勾股定理求出DM,致力于相似三角形的性质求出MN即可;(2)利用描点法画出函数图象即可;(3)利用图象寻找图象与直线y=x的交点的坐标即可解决问题;【解答】解:(1)如图1﹣1中,连接OD,BD、AN.∵AC=4,OA=3,∴OC=1,在Rt△OCD中,CD==,在Rt△CDM中,DM==,由△AMN∽△DMB,可得DM•MN=AM•BM,∴MN=≈3,故答案为3.(2)函数图象如图所示,(3)观察图象可知,当AC=MN上,x的取值约为2.7.故答案为2.7.【点评】本题考查圆综合题、勾股定理、相似三角形的判定和性质、描点法画函数图象等知识,解题的关键是学会添加常用辅助线,构造直角三角形或相似三角形解决问题,属于中考压轴题.26.【分析】(1)利用图中信息,根据待定系数法即可解决问题;(2)求出y=3时的自变量x的值即可解决问题;(3)当x2﹣x1=3时,易知x1=,此时y=﹣2+3=,可得点P坐标,由此即可解决问题;【解答】解:(1)由图象知抛物线与x轴交于点(1,0)、(3,0),与y轴的交点为(0,3),设抛物线解析式为y=a(x﹣1)(x﹣3),将(0,3)代入,得:3a=3,解得:a=1,∴抛物线解析式为y=(x﹣1)(x﹣3)=x2﹣4x+3;(2)①当y=3时,x2﹣4x+3=3,解得:x1=0,x2=4,∴x2﹣x1=4;②当x2﹣x1=3时,易知x1=,此时y=﹣2+3=观察图象可知当2≤x2﹣x1≤3,求y的取值范围0≤y≤.【点评】本题考查二次函数的性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.(7分)如图1有两条长度相等的相交线段AB、CD,它们相交的锐角中有一个角为60°,为了探究AD、CB与CD(或AB)之间的关系,小亮进行了如下尝试:(1)在其他条件不变的情况下使得AD∥BC,如图2,将线段AB沿AD方向平移AD的长度,得到线段DE,然后联结BE,进而利用所学知识得到AD、CB与CD(或AB)之间的关系:AD+BC=AB ;(直接写出结果)(2)根据小亮的经验,请对图1的情况(AD与CB不平行)进行尝试,写出AD、CB与CD(或AB)之间的关系,并进行证明;(3)综合(1)、(2)的证明结果,请写出完整的结论:AD+BC≥AB .【分析】(1)先判断出BE=AD,DE=AB,利用过直线外一点作已知直线的平行线只有一条判断出点C,B,E在同一条直线上,再判断出CE=AB,即可得出结论;(2)先判断出BE=AD,DE=AB,进而判断出点C,B,E在同一条直线上,再判断出CE=AB,即可得出结论;(3)结合(1)(2)得出的结论即可.【解答】解:(1)如图2,平移AB到DE的位置,连接BE,∴四边形ABED是平行四边形,∴AD=BE,AD∥BD,∵AD∥BC,∴点C,B,E在同一条直线上,∴CE=BC+BE,∵DE∥AB,∴∠CDE=∠1=60°,∵AB=DE,AB=CD,∴CD=DE,∴△CDE是等边三角形,∴CE=AB,∴BC+AD=AB;故答案为:AD+BC=AB;(2)如图1,平移AB到DE的位置,连接BE,∴四边形ABED是平行四边形,∴AD=BE,AD∥BD,∵AD不平行BC,∴点E不在直线BC上,连接CE,∴BC+BE>CE,∵DE∥AB,∴∠CDE=∠2=60°,∵AB=DE,AB=CD,∴CD=DE,∴△CDE是等边三角形,∴CE=AB,∴BC+AD>AB;(3)由(1)(2)直接得出,BC+AD≥AB.故答案为:BC+AD≥AB.28.【分析】(1)根据点P的摇摆区域的定义出图图形后即可作出判断;(2)根据题意分情况讨论,然后根据对称性即可求出此时点P的摇摆角;(3)如果⊙W上的所有点都在点P的摇摆角为60°时的摇摆区域内,此时⊙W与射线PN1相切,设直线PN1与x轴交于点M,⊙W与射线PN1相切于点N,P为端点竖直向下的一条射线PN与x轴交于点Q,根据特殊角锐角三角函数即可求出OM,OW的长度,从而可求出a的范围.【解答】解:(1)根据“摇摆角”作出图形,如图所示,将O、A、B、C四点在平面直角坐标系中描出,后,可以发现,B、C在点P的摇摆区域内,故属于点P的摇摆区域内的点是B、C(2)如图所示,当射线PN1过点D时,由对称性可知,此时点E不在点P的摇摆区域内,当射线PN2过点E时,由对称性可知,此时点D在点P的摇摆区域内,易知:此时PQ=QE,∴∠EPQ=45°,∴如果过点D(1,0),点E(5,0)的线段完全在点P的摇摆区域内,那么点P的摇摆角至少为90°(3)如果⊙W上的所有点都在点P的摇摆角为60°时的摇摆区域内,此时⊙W与射线PN1相切,设直线PN1与x轴交于点M,⊙W与射线PN1相切于点N,P为端点竖直向下的一条射线PN与x轴交于点Q,由定义可知:∠PMW=60°,∵NW=1,PQ=3,∴sin∠PMW=,tan∠PMW=∴MW=,MQ=,∴OM=2﹣,∴OW=OM+MW=2﹣+=2﹣∴此时W的坐标为:(2﹣,0)由对称性可知:当⊙W与射线PN2相切时,此时W的坐标为:(2+,0)∴a的范围为:2﹣≤a≤2+【点评】本题考查圆的综合问题,涉及勾股定理,锐角三角函数,圆的切线判定与性质,等腰直角三角形的性质等知识,综合程度较高,需要学生灵活运用知识.。
人教版九年级2021-2022学年度第一学期期末数学试题及答案(含两套题)
【解析】
解:由当 时有最大值 ,得 时, , ,
反比例函数解析式为 ,
当 时,图象位于第四象限, 随 的增大而增大,
当 时, 最小值为
故选D.
第Ⅱ卷
二、填空题(本题共6小题,每小题4分,共24分)
11.【答案】
【解析】
分析】
根据 判定三角形相似,然后利用相似三角形的性质求解.
【详解】解:∵
15.若 是方程 的一个根,则 的值是________.
16.如图,在直角三角形 中, , 是 边上一点,以 为边,在 上方作等腰直角三角形 ,使得 ,连接 .若 , ,则 的最小值是_______.
三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)
17(6分).解方程: .
14.【答案】
【解析】
【分析】
延长DE交AC于点O,延长BC交DE的延长线于点F,然后根据旋转的性质分别求出∠EAC=55°,∠AED=∠ACB,再根据对顶角相等,可得出∠DFB=∠EAC=55°.
【详解】解:延长DE交AC于点O,延长BC交DE的延长线于点F
由题意可得:∠EAC=55°,∠AED=∠ACB
∴∠AEF=∠ACF
又∵∠AOE=∠FOC
∴∠DFB=∠EAC=55°
故答案为:55°
【点睛】本题考查旋转的性质,掌握旋转图形对应角相等是本题的解题关键.
15.【答案】1
【解析】
【分析】
将 代入方程 ,得到 ,进而得到 , ,然后代入求值即可.
【详解】解:由题意,将 代入方程
∴ , ,
∴
故答案为:1
所有结果发生的可能性都相等.
其中第三次摸出的球是红球(记为事件 )的结果有2种,
2022年部编人教版九年级数学上册期末模拟考试及答案2
2022年部编人教版九年级数学上册期末模拟考试及答案2班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 估计的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间2.已知是二元一次方程组的解, 则的算术平方根为()A. ±2B.C. 2D. 43.如果, 那么代数式的值为()A. B. C. D.4. 一次函数y=kx﹣1的图象经过点P, 且y的值随x值的增大而增大, 则点P 的坐标可以为()A. (﹣5, 3)B. (1, ﹣3)C. (2, 2)D. (5, ﹣1)5.已知am=3, an=4, 则am+n的值为()A. 7B. 12C.D.6. 函数的自变量x的取值范围是()A. , 且B.C.D. , 且7.如图, 点B、F、C、E在一条直线上, AB∥ED, AC∥FD, 那么添加下列一个条件后, 仍无法判定△ABC≌△DEF的是()A. AB=DEB. AC=DFC. ∠A=∠DD. BF=EC8.如图, 是函数上两点, 为一动点, 作轴, 轴, 下列说法正确的是( )①;②;③若, 则平分;④若, 则A. ①③B. ②③C. ②④D. ③④9.根据圆规作图的痕迹, 可用直尺成功找到三角形外心的是()A. B.C. D.10.如图, 小巷左右两侧是竖直的墙, 一架梯子斜靠在左墙时, 梯子底端到左墙角的距离为0.7米, 顶端距离地面2.4米, 如果保持梯子底端位置不动, 将梯子斜靠在右墙时, 顶端距离地面2米, 那么小巷的宽度为()A. 0.7米B. 1.5米C. 2.2米D. 2.4米二、填空题(本大题共6小题, 每小题3分, 共18分)1. 9的平方根是__________.2. 因式分解: _______.3. 已知二次函数y=x2, 当x>0时, y随x的增大而_____(填“增大”或“减小”).4. 如图, 把三角板的斜边紧靠直尺平移, 一个顶点从刻度“5”平移到刻度“10”, 则顶点C平移的距离CC'=_________.5. 如图,已知AB是⊙O的直径,AB=2,C.D是圆周上的点,且∠CDB=30°,则BC的长为______.6. 如图, 在菱形中, 对角线交于点, 过点作于点, 已知BO=4, S菱形ABCD=24, 则__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1, x2满足x12+x22=11, 求k的值.3. 在□ABCD, 过点D作DE⊥AB于点E, 点F在边CD上, DF=BE, 连接AF, BF.(1)求证: 四边形BFDE是矩形;(2)若CF=3, BF=4, DF=5, 求证:AF平分∠DAB.4. 如图, 点A, B, C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上, AB∥x轴, ∠ABC=135°, 且AB=4.(1)填空: 抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2, 当2m﹣5≤x≤2m﹣2时, y的最大值为2, 求m的值.5. 为了提高学生阅读能力, 我区某校倡议八年级学生利用双休日加强课外阅读, 为了解同学们阅读的情况, 学校随机抽查了部分同学周末阅读时间, 并且得到数据绘制了不完整的统计图, 根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时, 中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人, 试估计周末阅读时间不低于1.5小时的人数.6. 某学校为了改善办学条件, 计划购置一批电子白板和台式电脑. 经招投标, 购买一台电子白板比购买2台台式电脑多3000元, 购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况, 购买电子白板和台式电脑的总台数为24, 并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.C3.A4.C5.B6.A7、C8、B9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.±32.a(a+3)(a-3)3、增大.4.55.16.三、解答题(本大题共6小题, 共72分)1.原方程无解.2、(1)k≤;(2)k=﹣1.3.(1)略(2)略4.(1)(m, 2m﹣5);(2)S△ABC =﹣;(3)m的值为或10+2 .5、(1)补全的条形统计图如图所示, 见解析, 被调查的学生周末阅读时间的众数是1.5小时, 中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.6、(1)购买一台电子白板需9000元, 一台台式电脑需3000元;(2)购买电子白板6台, 台式电脑18台最省钱.。
人教版2022-2023学年第一学期九年级数学期末模拟测试题(附答案)
2022-2023学年第一学期九年级数学期末模拟测试题(附答案)一、选择题(共计24分)1.已知sinα=,若α是锐角,则α的度数为()A.30°B.45°C.60°D.90°2.如图所示几何体的主视图是()A.B.C.D.3.圆形物体在阳光下的投影可能是()A.三角形B.圆形C.矩形D.梯形4.如图,l1∥l2∥l3,直线AC和DE分别交l1、l2、l3于点A、B、C和点D、B、E,AB=4,BC=8,DB=3,则DE的长为()A.4B.5C.6D.95.反比例函数y=﹣图象上的两点为(x1,y1),(x2,y2),且x1<x2<0,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定6.如图,图形甲与图形乙是位似图形,点O是位似中心,点A、B的对应点分别为点A′、B′,若OA'=2OA,则图形乙的面积是图形甲的面积的()A.2倍B.3倍C.4倍D.5倍7.如图,四边形ABCD为菱形,若CE为边AB的垂直平分线,则∠ADB的度数为()A.20°B.25°C.30°D.40°8.已知反比例函数的图象在每个象限内y随x的增大而增大,则关于x的一元二次方程的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定二、填空题(共计15分)9.若关于x的方程ax2﹣2ax+1=0的一个根是﹣1,则a的值是.10.如图,在正方形网格中,△AOC的顶点均在格点上,则tan∠CAO的值为.11.在一个不透明的盒子中装有黑球和白球共200个,这些球除颜色外其余均相同,将球搅匀后任意摸出一个球,记下颜色后放回,通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,则盒子中白球有个.12.如图,点A为反比例函数的图象上一点,连接AO并延长交反比例函数的图象于另一点B,过点A、B分别作x轴、y轴的平行线,两平行线交于点C,则△ABC的面积为.13.如图,将矩形ABCD放置在平面直角坐标系的第一象限内,使顶点A,B分别在x轴、y轴上滑动,矩形的形状保持不变,若AB=2,BC=1,则顶点C到坐标原点O的最大距离为.三、解答题(计81分)14.解方程:(2x﹣9)2=5(2x﹣9).15.如图,AD是△ABC的高,cos B=,sin C=,AC=10,求AD及AB的长.16.如图,在四边形ABCD中,AD∥BC,点E在BC上,∠C=∠DEA.(1)求证:△DEC∽△ADE;(2)若CE=2,DE=4,求△DEC与△ADE的周长之比.17.已知反比例函数y=(k为常数).(1)若函数图象在第二、四象限,求k的取值范围;(2)若x>0时,y随x的增大而减小,求k的取值范围.18.如图,在正方形ABCD中,E,F分别为AB,AD上的点,且AE=AF,点M是EF的中,点,连接CM、CF、CE.求证:CM⊥EF.19.《城镇污水处理厂污染物排放标准》中硫化物的排放标准为1.0mg/L.某污水处理厂在自查中发现,所排污水中硫化物浓度超标,因此立即整改,并开始实时监测.据监测,整改开始第60小时时,所排污水中硫化物的浓度为5mg/L;从第60小时开始,所排污水中硫化物的浓度y(mg/L)是监测时间x(小时)的反比例函数,其图象如图所示.(1)求y与x之间的函数关系式;(2)按规定所排污水中硫化物的浓度不超过0.8mg/L时,才能解除实时监测,此次整改实时监测的时间至少要多少小时?20.如图,▱ABCD的对角线AC、BD交于点O,点E在边CB的延长线上,连接AE,且∠EAC=90°,AE2=EB•EC.求证:四边形ABCD是矩形.21.2021年是中国共产党建党100周年,全国各地积极开展以“弘扬红色文化,重走长征路”为主题的教育学习活动,郑州市“二七纪念堂“成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万,5月份接待参观人数增加到12.1万.求这两个月参观人数的月平均增长率.22.一个阳光明媚的午后,王婷和李力两个人去公园游玩,看见公园里有一棵古老的大树,于是,他们想运用所学知识测量这棵树的高度,如图,李力站在大树AB的影子BC的末端C处,同一时刻,王婷在李力的影子CE的末端E处做上标记,随后两人找来米尺测得BC=10米,CE=2米.已知李力的身高CD=1.6米,B、C、E在一条直线上,DC⊥BE,AB⊥BE,请你运用所学知识,帮助王婷和李力求出这棵树的高度AB.23.随着信息技术的迅猛发展,移动支付已成为一种常见的支付方式.在一次购物中,陈老师和陆老师都随机从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付.(1)陆老师选择用“微信”支付的概率是;(2)请用画树状图或列表的方法表示所有结果,并求出两位老师恰好一人用“微信”支付,一人用“银行卡”支付的概率.24.晓琳想用所学知识测量塔CD的高度.她找到一栋与塔CD在同一水平面上的楼房,在楼房的A处测得塔CD底部D的俯角为26.6°,测得塔CD顶部C的仰角为45°,AB ⊥BD,CD⊥BD,BD=30m,求塔CD的高度.(参考数据:sin26.6°≈0.45,c0s26.6°≈0.89,tan26.6°≈0.50)25.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)求这两个函数的表达式;(2)一次函数y=k1x+b的图象交y轴于点C,若点P在反比例函数y=的图象上,使得S△COP=9,求点P的坐标.26.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)当点Q在线段CA上时,如图1,求证:△BPE∽△CEQ;(2)当点Q在线段CA的延长线上时,如图2,△BPE和△CEQ是否相似?说明理由;(3)在(2)的条件下,若BP=1,CQ=,求PQ的长.参考答案一、选择题(共计24分)1.解:∵sinα=,α是锐角,∴α的度数为:45°.故选:B.2.解:由题意知,几何体的主视图为,故选:D.3.解:∵同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.∴圆形物体在阳光下的投影可能是圆形、线段和椭圆形,故选:B.4.解:∵l1∥l2∥l3,∴,∵AB=4,BC=8,DB=3,∴,∴BE=6,∴DE=DB+BE=3+6=9,故选:D.5.解:∵反比例函数y=﹣中,k=﹣6<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵x1<x2<0,∴(x1,y1)、(x2,y2)两点均位于第二象限,∴y1<y2.故选:B.6.解:由题意可得,甲乙两图形相似,且相似比为,根据相似图形的面积比是相似比的平方可得,图形乙的面积是图形甲的面积的4倍,故选:C.7.解:如图,连接AC,∵四边形ABCD为菱形,∴AB=BC=AD,∵CE为边AB的垂直平分线,∴AC=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠ABD=30°,∵AB=AD,∴∠ADB=∠ABD=30°,故选:C.8.解:∵在每一个象限内y随着x增大而增大,∴k<0,∴一元二次方程的判别式Δ=b2﹣4ac=(2k−1)2−4(k2+14)=﹣4k>0,∴方程有两个不相等的实数根,故选:C.二、填空题(共计15分)9.解:∵关于x的方程ax2﹣2ax+1=0的一个根是﹣1,∴a+2a+1=0,∴3a+1=0,解得a=﹣,故答案为:﹣.10.解:∵正方形网格中,△AOC的顶点均在格点上,∴∠ACO=90°,∴,故答案为:.11.解:因为通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,所以摸到白球的概率约为0.2,所以白球有200×0.2=40,故答案为:40.12.解:设点A的坐标为(﹣a,),根据中心对称的性质知点B的坐标为(a,﹣),∴点C的坐标为(a,),∴AC=2a,BC=,则△ABC的面积为:×2a×=12.故答案为:12.13.解:如图,取AB的中点E,连接CE,OE,∵∠AOB=90°,在Rt△AOB中,OE=AB=1,∵∠ABC=90°,AE=BE=CB=1,∴在Rt△CBE中,CE==,∵OC≤CE+OE=1+,∴OC的最大值为1+,即点C到原点O距离的最大值是1+,故答案为:1+.三、解答题(共计81分)14.解:方程移项得:(2x﹣9)2﹣5(2x﹣9)=0,分解因式得:(2x﹣9)(2x﹣9﹣5)=0,所以2x﹣9=0或2x﹣14=0,解得:x1=4.5,x2=7.15.解:在Rt△ACD中,,∵,∴,∴AD=6.在Rt△ABD中,,∴∠B=60°,∴∠BAD=90°﹣∠B=30°.∴,∴,∴.16.证明:(1)∵AD∥BC,∴∠DEC=∠ADE.又∵∠C=∠DEA,∴△DEC∽△ADE.解:(2)∵△DEC∽△ADE,∴△DEC与△ADE的周长之比===.17.解:(1)∵函数图象在第二、四象限,∴k﹣5<0,解得:k<5,∴k的取值范围是k<5;(2)∵若x>0时,y随x的增大而减小,∴k﹣5>0,解得:k>5,∴k的取值范围是k>5.18.证明:∵四边形ABCD是正方形∴AB=AD=BC=CD,∠B=∠D=90°∵AE=AF,∴BE=DF.在△BCE和△DCF中,,∴△BCE≌△DCF(SAS),∴CE=CF,∵点M是EF的中点,∴CM⊥EF.19.解:(1)设y与x之间的函数关系式为,根据题意,得:k=xy=60×5=300,∴y与x之间的函数关系式为.(2)当y=0.8时,.20.证明:∵AE2=EB•EC,∴,又∵∠AEB=∠CEA,∴△AEB∽△CEA,∴∠EBA=∠EAC而∠EAC=90°,∴∠EBA=∠EAC=90°,又∵∠EBA+∠CBA=180°,∴∠CBA=90°,而四边形ABCD是平行四边形,∴四边形ABCD是矩形.21.解:设这两个月参观人数的月平均增长率为x,根据题意,得:10(1+x)2=12.1,解得:x1=0.1=10%,x2=﹣2.1(舍去),答:这两个月参观人数的月平均增长率为10%.22.解:根据题意可得,AC∥DE,∴∠DEC=∠ACB.又∵DC⊥BE,AB⊥BE,即∠DCE=∠ABC=90°,∴△ABC∽△DCE,∴.∵BC=10米,CE=2米,CD=1.6米.∴,∴AB=8米,即这棵树的高度AB为8米.23.解:(1)陆老师选择用“微信”支付的概率是,故答案为:;(2)将“微信”、“支付宝”、“银行卡”三种支付方式分别记为:A、B、C,画树状图如下:共有9种等可能的结果,其中两位老师恰好一人用“微信”支付,一人用“银行卡”支付的结果有2种,∴两位老师恰好一人用“微信”支付,一人用“银行卡”支付的概率为.24.解:过A点作AE⊥CD于E点,由题意得,四边形ABDE为矩形,∵∠DAE=26.6°,BD=30m,∴,∴DE=tan26.6°⋅AE≈0.50×30=15m,∵∠CAE=45°,∴∠ACE=45°,∴AE=EC=30m,∴CD=CE+ED=30+15=45(m),∴塔CD的高度是45m.25.解:(1)把点A(﹣1,4)代入反比例函数得,,∴k2=﹣4,∴反比例函数的表达式为,将点B(4,n)代入得,,∴B(4,﹣1),将A、B的坐标代入y=k1x+b得,解得∴一次函数的表达式为y=﹣x+3.(2)在y=﹣x+3中,令x=0,则y=3,∴直线AB与y轴的交点C为(0,3),设P(x,y),由题意得,∴|x|=6,∴x=6或x=﹣6,当x=6时,,此时点P的坐标为;当x=﹣6时,,此时点P的坐标为.∴点P的坐标或.26.(1)证明:如图1中,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∵∠B=∠C,∴△BPE∽△CEQ;(2)解:结论:△BPE∽△CEQ.理由:如图2中,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,又∵∠B=∠C,∴△BPE∽△CEQ;(3)解:∵△BPE∽△CEQ,∴,∵BE=CE,∴,解得:BE=CE=,∴BC=,∴AB=AC=,∴AQ=CQ﹣AC=,AP=AB﹣BP=3﹣1=2,在Rt△APQ中,PQ=.。
人教版九年级上册数学期末试题(含答案)
人教版九年级上册数学期末试题(含答案)人教版九年级上册数学期末试题(含答案)一、选择题1. 话费问题小明的手机话费每月固定为50元,但每分钟通话费用随通话时间的不同而有所变化。
以下是小明最近三个月的手机账单和通话时间统计,请根据数据选择正确的选项。
```plaintext月份账单总额(元)通话时间(分钟)1月 110 1202月 120 1503月 100 100```A. 1月的每分钟通话费用最高。
B. 3月的通话时间最短。
C. 2月的账单总额最高。
D. 这三个月中,账单总额与通话时间呈正相关关系。
答案:C2. 面积问题某地质博物馆针对不同年龄段的参观者推出了不同的票价政策。
以下是该博物馆的票价表,请根据数据选择正确的选项。
```plaintext年龄段票价(元)12岁以下 5013-18岁 6019-59岁 10060岁以上 80```A. 16岁的学生买一张票需要60元。
B. 60岁的老人买一张票需要50元。
C. 30岁的游客买一张票需要80元。
D. 10岁的儿童买一张票需要60元。
答案:A二、填空题1. 计算(1) 25 × 0.08 = _____答案:2(2) 100 ÷ 0.2 = _____答案:500(3) 125 - 39.8 = _____答案:85.2三、解答题1. 缩放比例今天小明去博物馆参观,他发现博物馆内的一尊雕像高1.8米。
晚上,小明用积木复制了这尊雕像,并将高度缩小到15厘米。
请你计算小明缩放雕像的比例,并用百分数表示。
解答:缩放的比例 = 缩小后的高度 / 原高度 = 15 / 180 = 1 / 12缩放的比例 = 1 / 12 = 8.33...%所以,小明缩放雕像的比例是8.33...%。
2. 配比问题某城市有三所学校,A、B、C。
A学校的学生男女比例为4:6,B 学校的学生男女比例为3:7,C学校的学生男女比例为7:3。
现在要将这三所学校的男生和女生合并成一个班级。
2024年最新人教版九年级数学(上册)模拟考卷及答案(各版本)
2024年最新人教版九年级数学(上册)模拟考卷及答案一、选择题(每题1分,共5分)1. 下列哪个数是实数?()A. √1B. 3.14C. a(a为未知数)D. ∞2. 下列各式中,是同类二次根式的是()A. √2 和√3B. √18 和√8C. √a 和√bD. √5 和√(20)3. 下列函数中,哪一个是一次函数?()A. y = 2x^2B. y = 3x + 1C. y = x^2D. y = √x4. 在直角坐标系中,点A(2, 3)关于原点对称的点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (3, 2)5. 下列各式中,正确的是()A. a^2 + b^2 = (a + b)^2B. (a + b)^2 = a^2 + 2ab + b^2C. (a b)^2 = a^2 2ab b^2D. a^3 + b^3 = (a + b)^3二、判断题(每题1分,共5分)1. 任何两个实数都可以比较大小。
()2. 一元二次方程的解一定是实数。
()3. 一次函数的图像是一条直线。
()4. 两条平行线的斜率相等。
()5. 任意两个相似三角形的面积比等于它们对应边长的平方比。
()三、填空题(每题1分,共5分)1. 若a = 3,则2a 5 = _______。
2. 已知一组数据的方差是9,那么这组数据的标准差是 _______。
3. 一次函数y = 2x + 1的图像与y轴的交点坐标是 _______。
4. 在直角三角形中,若一个锐角的度数是30°,则它的余角的度数是 _______。
5. 若两个相似三角形的面积比是4:9,那么它们对应边长的比是_______。
四、简答题(每题2分,共10分)1. 请简要说明一元二次方程的解法。
2. 简述直角三角形的性质。
3. 什么是二次根式?举例说明。
4. 请解释一次函数图像的特点。
5. 如何判断两个三角形是否相似?五、应用题(每题2分,共10分)1. 某商店举行打折活动,原价200元的商品打8折,请问折后价格是多少?2. 一辆汽车以60km/h的速度行驶,行驶了2小时后,请计算行驶的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凯江中学初三数学期末综合测试题 姓名一、选择题(本大题共12个小题,每小题3分,满分36分)1. 一元二次方程x (x+1)=4(x+1)的根是( ).A .4B .-1C .4和-1D .0和 42. 下列图形中,是中心对称图形的是( ).A B C D3. 下列说法中,正确的是( ). A .垂直于半径的直线是圆的切线 B .经过三点一定可以作圆C .平分弦的直径垂直于弦D .三角形都有一个内切圆4. 已知二次函数y=(a-1)x 2-2x+1的图象与x 轴有两个交点,则a 的取值范围是( ).A .a>2B .a<2且a≠1C .a ≤2且a≠1D .a<-25.下列事件为确定事件的是( ). A .明天一定会下雨 B .买一张2元的体育彩票,不可能中奖500万.C .煮熟的鸭子飞了D .哥哥的身高比弟弟高6. 如图,⊙O 经过点B 、C ,圆心O 在等腰直角三角形ABC 的内部,∠BAC=90°,若OA=1,BC=6,则⊙O 的半径为( ). A .10 B .32 C .13 D . 237.若点P(-1-2a, 2a-4)关于原点对称的点是第一象限内的点,则a 的整数解有( ).A. 1个B. 2个C. 3个D. 4个8. 钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针端转过的弧长是( ).A .310π B .320π C .325π D .335π 9.Rt △ABC 中,∠C=90°,AC=6,BC=8,则Rt △ABC 外接圆半径和内切圆半径的和是( ).A. 8B. 7C. 6D. 5A .-10.5B .2C .-6D .-2.511. 已知一元二次方程:0132=--x x的两个根分别是1x 、2x ,则2111x x +的值为( ).A.3- B. 3 C. 6- D. 612.二次函数y=ax 2+bx+c (a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①abc <0;②4a+b=0;③方程:ax 2+bx+c=0的两根分别为-1和4;④12a+c<0;⑤若(-3,y 1),(6,y 2)是抛物线上两点,则y 1>y 2.其中正确的结论有( ).A .2个B .3个C . 4个D .5个二、填空题(本大题共6个小题,每小题3分,满分18分)13. 若-4是一元二次方程2x 2+7x -k=0的一个根,则k 的值为_________.14. 已知一个圆锥底面的半径为5厘米,高为12厘米. 则此圆锥的侧面展开图的面积为________.15. 小李所在小组共有9人,他们随机排成一列队伍,从1开始按顺序报数,则小李报到奇数的概率是 . 16. 边长为2的正六边形的面积是 。
17. 如果关于x 的一元二次方程:a (x-h )2+k=0(a ,h ,k 均为常数,a ≠0)的两根是x 1=﹣3,x 2=2, 则方程a (x-h+2)2+k=0的两根是 .18. 如图,△DEC 是由△ABC 经过了如下的几何变换而得到的:①以AC 所在直线为对称轴作轴对称,再以C 为旋转中心, 顺时针旋转90;②以C 为旋转中心,顺时针旋转90得△A′B′C′,再以A ′C ′所在直线为对称轴作轴对称;③将 △ABC 向下、向左各平移1个单位,再以AC 的中点为 中心作中心对称.其中正确的变换有 .(只填序号)AECBD三、解答题(本大题共2个题,第19题10分,第20题10分,本大题满分20分)19.运用适当的方法解下列方程:0(1)5x2+2x-1=0 (2)x2+6x+9=7(3)已知关于x的一元二次方程x2-2kx+12k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.20.随着人民生活水平的不断提高,我县家庭轿车的拥有量逐年增加.据统计,我县某小区2011年底拥有家庭轿车40辆,2013年底家庭轿车的拥有量达到90辆.(1)若该小区2011年底到2014年底家庭轿车拥有量的年平均增长率都相同,求该小区到2014年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资12万元再建造若干个停车位.据测算,建造费用分别为室内车位3000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的1.5倍,但不超过室内车位的2倍,求该小区最多可建两种车位共多少个?四、解答题(本大题共2个题,第21题9分,第22题11分,本大题满分20分)21.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段BC在变换到B′C′的过程中扫过区域的面积.22. 经过某十字路口的汽车,可能直行,也可能向左或向右转. 如果这三种可能性大小相同,当三辆汽车经过这个十字路口时:(1)求三辆汽车全部同向而行的概率;(2)求至少有两辆汽车向左转的概率;(3)由于十字路口恰好处于繁华地段,交通繁忙,县交管部门在汽车行驶高峰时段对车流量进行统计,发现汽车在十字路口向右转的频率为52,向左转和直行的频率均为103.目前此路口汽车左转、右转、直行的绿灯亮的时间均为30秒,在绿灯总时间不变的条件下,为缓解交通,请你为此路口三个方向的绿灯时间做出合理的调整.五、几何题(本大题满分12分)23.如图,AB 是⊙O 的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交⊙O 于E ,连接CE.(1)判断CD 与⊙O 的位置关系,并证明你的结论; (2)若AB=10cm ,DC=4cm ,求AC 的长;(3)若E 是弧AC 的中点,⊙O 的半径为5,求图中阴影部分的面积. 六、综合题(本大题满分14分)24.如图,已知抛物线经过点A (-2,0)、B (4,0)、C (0,-8). (1)求抛物线的解析式及其顶点D 的坐标;(2)在抛物线上是否存在点Q(异于点C)使得S △ABQ=S △ABC ?若存在,请求出点Q 的坐标;(3)直线CD 交x 轴于点E ,过抛物线上在对称轴的右边的点P ,作y 轴的平行线交x 轴于点F ,交直线CD于M ,使PM=51EF ,请求出点P 的坐标;中江县初中2014年秋季九年级“一诊”考试数学试题参考答案一、选择题(本大题共12个小题,每小题3分,满分36分)二、填空题(本大题共8个小题,每小题3分,满分24分)13. 414. π65㎝2 15.9516.17. 5,021-==x x18. ①②三、解答题(本大题共2个题,第19题8分,第20题12分,本大题满分20分) 20.(12分)解:(1)设家庭轿车拥有量的年平均增长率为x , 则 90)1(402=+x , ………………………………………………………3分 解得 %50211==x ,252-=x (不合题意,舍去). …………………5分 ∴90(1+50%)=135.即该小区到2014年底家庭轿车将达到135辆. ……………………………6分 (2)设该小区可建室内车位m 个,露天车位n 个. 则 ⎩⎨⎧=+2m ≤ n ≤5.1,121.03.0m n m …………………………………………………………9分由①得 n =120-3m ,代入②得:24≤m ≤3226. …………………………………10分 ∵m 取正整数,∴m =24,25,26.当m =24时,n =48;当m =25时,n =45;当m =26时,n =42. ∴方案一:建室内车位24个,露天车位48个; 方案二:建室内车位25个,露天车位45个;方案三:建室内车位26个,露天车位42个. ………………………………12分 四、解答题(本大题共2个题,第21题9分,第22题11分,本大题满分20分) 21.(9分)解:(1)如图所示:△AB′C′即为所求; ……3分 (2)∵由勾股定理得:AB=5, …………………………4分∴线段BC 在变换到B ′C ′的过程中扫过区域的面积为:4936049036059022πππ=⋅⋅-⋅⋅. ……………………9分22.(11分)解:(1)分别用A ,B ,C 表示向左转、直行, 向右转;根据题意,画出树形图:∵共有27种等可能的结果, …………………………………………………………3分 三辆车全部同向而行的有3种情况,∴P (三车全部同向而行)=91. ……………………………………………………………………5分 (2)∵至少有两辆车向左转的有7种情况,∴P (至少两辆车向左转)=277. ……………………8分(3)∵汽车向右转、向左转、直行的概率分别为103,103,52, ………………………9分∴在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×103=27(秒),直行绿灯亮时间为90×103=27(秒),右转绿灯亮的时间为90×52=36(秒). ………………………………………………………………………………11分 五、几何题(本大题满分12分)23.(1)CD 与⊙O 相切. ……………………………………………………………………1分∵AC 为∠DAB 的平分线, ∴∠DAC=∠OAC.∵OA=OC, ∴∠OAC=∠OCA, ∴∠DAC=∠OCA, ∴OC ∥AD. ………………3分 ∵AD ⊥CD, ∴OC ⊥CD ,∴CD 与⊙O 相切. ……………………………………………………………………5分(2)作OF ⊥AE ,垂足为点F ,则四边形OCDF 是矩形. ………………………………6分所以 OF=DC=4,又 OA=OC=21AB=5,所以 AF=3. ………………………………7分 解一:∴AD =AF +DF =3+5=8, AC =22DC AD +=54. ……………9分解二:作CG ⊥AB 于点G ,则∠FAO=∠COG, ∠AFO=∠CGO, OA=OC.①②∴△OAF ≌△OCG(AAS), …………………7分 ∴OG=AF=3,CG=OF=4,则AG=OA+OG=8,(3)∵AC 为∠DAB 的平分线, ∴=.又E 是的中点, ∴=. ∴= = . ……………………………………10分 ∴EC= BC=AE, ∠AOE=∠COE =∠COB=60°. 由OA=OE=OC 得:△OEC 、△AOE 是等边三角形.∴∠DEC=60°,EC=OA=5,由勾股定理得:DE=25, DC=235. ………………11分 ∵AE=EC. ∴图中两个阴影部分的面积和等于△DCE 的面积. ∴S 阴影=S △DEC=8325235252121=⨯⨯=⋅DC DE . …………………………12分 六、综合题(本大题满分14分)24. 解:(1)根据题意可设抛物线的解析式为y=a (x+1)(x ﹣4).∵点C (0,﹣8)在抛物线y=a (x+2)(x ﹣4)上, ∴﹣8a=﹣8.∴a=1. ∴y=(x+2)(x ﹣4)=x 2﹣2x ﹣8=(x ﹣1)2﹣9.∴抛物线的解析式为y=x 2﹣2x ﹣8, ……………………………………………………4分 顶点D 的坐标为(1,﹣9). ……………………………………………………………5分 (2)存在点Q ,使得S △ABQ =S △ABC .由A (﹣2,0)、B (4,0)、C (0,﹣8)得:AB=6,OC=8.∴S △ABC =248621=⨯⨯. ∴S △ABQ =24, ……………………………………………………………………………7分 令Q (x,y )则:y Q ⨯⨯621=24 ∴8=y Q ,可得:x 2﹣2x ﹣8=±8. …………………………………………………8分 解得:1711+=x ,1712-=x ,03=x ,24=x .∴)8,171(1+Q ;)8,171(2-Q ;)8,2(3-Q . ……………………………………10分 (3)如图,设直线CD 的解析式为y=kx+b .∴⎩⎨⎧-=+-=+980b k b ,解得:⎩⎨⎧-=-=81b k .∴直线CD 的解析式为y=﹣x ﹣8. …………11分 当y=0时,﹣x ﹣8=0,则有x=﹣8. ∴点E 的坐标为(﹣8,0). 设点P 的坐标为(m ,n ),则PM=(m 2﹣2m ﹣8)﹣(﹣m ﹣8)=m 2﹣m ,EF=m ﹣(﹣8)=m+8. …………………………12分 ∵PM=51EF ,∴m 2﹣m=51(m+8). 整理得:5m 2﹣6m ﹣8=0.∴(5m+4)(m ﹣2)=0. 解得:m 1=54-,m 2=2. ……………………………………………………………13分 ∵点P 在对称轴x=1的右边,m>1,∴m=2.此时,n=22﹣2×2﹣8=﹣8.∴点P 的坐标为(2,﹣8). …………………………14分。