2012年湖南省郴州市中考数学试卷
湖南省郴州市2012年中考数学模拟试题 湘教版
湖南省郴州市2012年中考数学模拟试题一考生注意:本试卷共26道小题,时量120分钟,满分120分. 一、填空题(本题共8个小题,每小题3分,满分24分) 1、-8的绝对值是 .2、函数y =2-x 中的自变量x 的取值范围是 .3、△ABC 中,∠A=55︒,∠B=25︒,则∠C= .4、方程112=-x 的解为x = .5、如图,P 为菱形ABCD 的对角线上一点,PE ⊥AB 于点E ,PF ⊥AD 于点F ,PF=3cm ,则P 点到AB的距离是 cm .(第5题) (第6题)6、如图,在Rt △ABC 中,∠C=90︒,AB=10cm ,D 为AB 的中点,则CD= cm .7、已知a 、b 为两个连续整数,且a <7<b ,则b a += .8、在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的。
右边的统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款 元.二、选择题(本题共8个小题,每小题3分,满分24分) 9、下面计算正确的是( )A 、221-=-B 、24±=C 、(3n m ⋅)2=6n m ⋅ D 、426m m m =÷ 10、要反映长沙市一周内每天的最高气温的变化情况,宜采用( )A 、条形统计图B 、扇形统计图C 、折线统计图D 、频数分布直方图 11、若点P (a ,a -4)是第二象限的点,则a 必须满足( ) A 、a <4 B 、a >4 C 、a <0 D 、0<a <4 12、如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是( )A 、文B 、明C 、奥D 、运13、在同一平面直角坐标系中,函数x y 1-=与函数x y =的图象交点个数是( ) A 、0个 B 、1个 C 、2个 D 、3个14、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为( )A 、4.8米B 、6.4米C 、9.6米D 、10米15、如图,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP=5,PA=4,则sin ∠APO 等于( )(第8题)20元 44% 10元 20% 50元16%100元 12% 5元8% 讲文 明 迎 奥 运(第12题)A 、54B 、53C 、34D 、43(第15题)(第16题)16、二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( ) A 、a <0 B 、abc >0 C 、c b a ++>0 D 、ac b 42->0三、解答题(本题共6个小题,每小题6分,满分36分) 17、计算:0)151(30sin 2273--︒+.18、先化简,再求值:a a a-+-21422,其中21=a .19、在下面的格点图中,每个小正方形的边长均为1个单位,请按下列要求画出图形: (1)画出图①中阴影部分关于O 点的中心对称图形; (2)画出图②中阴影部分向右平移9个单位后的图形; (3)画出图③中阴影部分关于直线AB 的轴对称图形.(图①)(图②)(图③)20、解不等式组:⎪⎩⎪⎨⎧-<-≤-xx x 14340121,并将其解集在数轴上表示出来.P O A· ..123-1-2-3-4-5-621、当m 为何值时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根?此时这两个实数根是多少?22、某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1、2、3、4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率.四、解答题(本题共2个小题,每小题8分,满分16分) 23、(本题满分8分)“5²12”汶川大地震后,灾区急需大量帐篷。
湖南省郴州市2012年初中数学中考模拟试题(3)(1)
湖南省郴州市2012年初中数学中考模拟试题(3)本试卷包括试题卷和答题卷. 试题卷1至2页,答题卷3至8页. 本试卷共有七道大题. 考试时间为120分钟,满分120分. 考试结束后,考生将试题卷和答题卷全部交回.试 题 卷考生注意:答试题卷时,按要求将试题卷的答案填在答题卷中的相关答题栏中,不得答在试题卷上. 试题卷共2道大题,16道小题,共54分.一、选择题(本题共10个小题,每小题3分,共30分,每小题提供的选项中只有一项符合题目要求,请将符合题目要求的答案的英文字母的代号填写在答题卷上方相关答题栏中对应题号下的空格内)1. -|2011| 的相反数是 【 】A 、2011B 、-2011C 、1/2011D 、-1/2011 2.下列计算中,正确的是A. 633a a a =+B. 532)(a a =C. 842a a a =⋅D. a a a =÷343.若式子12--x x有意义,则x 的取值范围为 【 】 A. 2≤x B. 2≤x 且1≠x C. 2≥x D. 1≥x4.一个正方体的水晶砖,体积为100cm 3,它的棱长大约在 【 】A. 4cm~5cm 之间B. 5cm~6cm 之间C. 6cm~7cm 之间D. 7cm~8cm 之间5. 以O 为圆心的两个同心圆的半径分别为9cm 和5 cm ,若⊙P 与这两个圆都相切,则下列说法中正确的是【 】(A)⊙P 的半径一定是2cm (B)⊙P 的半径一定是7 cm (C) 符合条件的点P 有2个 (D) ⊙P 的半径是2 cm 或7cm .6.如图1,P 是∠α的边OA 上一点,且点P 的坐标为(3,4),则cos α=【 】A .35 B . 45 C . 34 D . 437.某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25, 这组数据的中位数和众数分别是【 】A. 23,25B. 23,23C. 25,23D. 25,258.如图2,AC 是电杆AB 的一根拉线,测得BC =6米,∠ACB =52°,则拉线AC 的长为【 】 A.6米 B. 6米 C. 6·cos 52°米 D. 6米9.如图3 ,一个扇形铁皮OAB. 已知OA =60cm ,∠AOB =120°,小华将OA 、OB 合拢制成了一个圆锥形烟囱帽(接缝忽略不计),则烟囱帽的底面圆的半径为【 】A. 10cmB. 20cmC. 24cmD. 30cm图2 图310.如图4所示为农村一古老的捣碎器,已知支撑柱AB 的高为0.3米,踏板DE 长为1.6米,支撑点A 到踏脚D 的距离为0.6米,原来捣头点E 着地,现在踏脚D 着地,则捣头点E 上升了 【 】 A 、1.2米 B 、1米 C 、0.8米 D 、1.5米二、填空题(本题共6个小题,每小题4分,共24分,请将解答答案填写在答题卷上方的相关答题对应题号下的空格内) 图4 11. 因式分解:x 2y - 9y 3=12. 我们国家现有人口约1 340 000 000 人,这个数用科学记数法表示为 人. 13.若某人沿坡度ⅰ=3∶4的坡度前进10m ,则他所在的位置比原来的位置升高 m 。
2012年湖南省郴州市中考真题及答案
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
2012年郴州市初中毕业学业考试试卷数 学本试卷共4页,有六道大题,26小题,满分120分,考试时间l20分钟.一、选择题(本大题共8小题,每小题3分,共24分) 1.-3的相反数是A.3B.-3C.13D.13- 2.下列计算正确的是A. 236a a a ⋅= B. 2a a a += C. 236()a a = D. 824a a a ÷= 3. 以下列各组线段为边,能组成三角形的是A. 1cm , 2cm , 4cmB.4cm , 6cm , 8cmC.5cm , 6cm , 12cmD. 2cm , 3cm , 5cm4.下图是由5个相同的小正方体组成的立体图形,它的俯视图是A. B. C. D. 5. 函数12y x =-中自变量x 的取值范围是A. x =2B. x ≠2C. x >2D. x <2 6. 不等式x -2 > 1 的解集是A. x >-1B. x >3C. x <3D. x <-1 7. 抛物线2(1)2y x =-+的顶点坐标是A. (-1,2)B. (-1,-2)C. (1,-2)D. (1,2) 8. 为了解某校2000名师生对我市“三创”工作(创国家园林城市、国家卫生城市、全国文明城市)的知晓情况,从中随机抽取了100名师生进行问卷调查,这项调查中的样本是A. 2000名师生对“三创”工作的知晓情况B. 从中抽取的100名师生C. 从中抽取的100名师生对“三创”工作的知晓情况D. 100二、填空题(本大题共8小题,每小题3分,共24分)5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
2012年郴州市中考语文试卷及答案
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
2012年郴州市初中毕业学业考试试卷(语文)【湖南郴州黄昕郴整理】一、积累与运用(共8小题,28分)1.下列词语中加点字注音完全正确的一项是(2分)A.和煦.xù胆怯.qūe 滑稽. jī忍俊不禁.jìnB.星宿.xìu 赈.灾zhèng 畸.形qí言简意赅.gāiC.惩.罚chéng 唠.叨láo 怪癖.pǐ毛遂.自荐suìD.哽咽.yuè踉.跄liàng 教诲.huì锐不可当.dāng【答案:C 解析:A胆怯(qiè) 忍俊不禁(jīn) B赈(zhèn)灾畸(jī)形D哽咽(y è)】2.下列词语书写完全正确的一项是(2分)A.嘻戏谰言粗制烂造吹毛求疵B.琐屑铿锵人迹罕至锋芒毕露C.销蚀诘问一泄千里根深谛固D.阔绰阴晦冥思暇想相形见绌【答案:B 解析:A嘻--嬉,烂--滥C谛--蒂D暇-遐】3.下列各句加点的成语使用有误的一项是(2分)A.班会上,他侃侃而谈....,出众的口才使得大家对他刮目相看。
B.元旦联欢会上,全校师生欢聚一堂,共享天伦之乐....。
C.北雁南飞,活跃在田间草际的昆虫也销声匿迹....了。
D.在郴州市根雕艺术节展上,惟妙惟肖....的大鹏展翅根雕特别引人注目。
2012年湖南省郴州市中考数学试卷
2012年湖南省郴州市中考数学试卷2012年湖南省郴州市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)4.(2012•郴州)如图是由5个相同的小正方体组成的立体图形,它的俯视图是( )5.(2012•郴州)函数y=中自变量x 的取值范围是( )28.(2012•郴州)为了解某校2000名师生对我市“三创”工作(创国家园林城市、国家卫生城市、全国文明城市)的知晓情况,二、填空题(共8小题,每小题3分,满分24分)9.(2011•海南)分解因式:x 2﹣4= _________ . 10.(2012•郴州)一元一次方程3x ﹣6=0的解是 _________ . 11.(2012•郴州)如图,在菱形ABCD 中,对角线AC=6,BD=8,则这个菱形的边长为 _________ .12.(2012•郴州)按照《联合国海洋法公约》的规定,我国管辖的海域面积约为3000000平方千米,3000000平方千米用科学记数法表示为_________平方千米.13.(2012•郴州)如图,已知AB∥CD,∠1=60°,则∠2=_________度.14.(2012•郴州)如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件_________(只需写一个).15.(2012•郴州)圆锥底面圆的半径为3cm,母线长为9cm,则这个圆锥的侧面积为_________cm2(结果保留π).16.(2012•郴州)元旦晚会上,九年级(1)班43名同学和7名老师每人写了一张同种型号的新年贺卡,放进一个纸箱里充分摇匀后,小红从纸箱里任意摸出一张贺卡,恰好是老师写的贺卡的概率是_________.三、解答题(共6小题,每小题6分,满分36分)17.(2012•郴州)计算:.18.(2010•北海)解方程组.19.(2012•郴州)作图题:在方格纸中:画出△ABC关于直线MN对称的△A1B1C1.20.(2012•郴州)已知反比例函数的图象与直线y=2x相交于A(1,a),求这个反比例函数的解析式.21.(2012•郴州)我市启动”阳光体育“活动以后,各中小学体育活动精彩纷呈,形式多样.某校数学兴趣小组为了解本县八年级学生最喜爱的体育运动项目,对全县八年级学生进行了跳绳、踢毽子、球类、跳舞等运动项目最喜爱人数的抽样调查,并根据调查结果绘制成如图两个不完整的统计图.请你根据图中提供的信息,解答下列问题:(1)这次抽样调查中,共调查了_________名学生;(2)补全条形统计图;(3)根据抽样调查结果,请你估计该县5000名八年级学生中,大约有多少名学生最喜爱球类运动.22.(2012•郴州)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考数据:≈1.414,≈1.732)四、证明题(共1小题,满分8分)23.(2012•郴州)已知:点P是▱ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC于点F.求证:AE=CF.五、应用题(共1小题,满分8分)24.(2012•郴州)某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算?六、综合题(共2小题,每小题10分,满分20分)25.(2012•郴州)如图,已知抛物线y=ax2+bx+c经过A(4,0),B(2,3),C(0,3)三点.(1)求抛物线的解析式及对称轴.(2)在抛物线的对称轴上找一点M,使得MA+MB的值最小,并求出点M的坐标.(3)在抛物线上是否存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.26.(2012•郴州)阅读下列材料:我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=.例:求点P(1,2)到直线y=x﹣的距离d时,先将y=化为5x﹣12y﹣2=0,再由上述距离公式求得d==.解答下列问题:如图2,已知直线y=﹣与x轴交于点A,与y轴交于点B,抛物线y=x2﹣4x+5上的一点M(3,2).(1)求点M到直线AB的距离.(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.2012年湖南省郴州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)4.(2012•郴州)如图是由5个相同的小正方体组成的立体图形,它的俯视图是()5.(2012•郴州)函数y=中自变量x的取值范围是()28.(2012•郴州)为了解某校2000名师生对我市“三创”工作(创国家园林城市、国家卫生城市、全国文明城市)的知晓情况,从中随机抽取了100名师生进行问卷调查,这项调查中的样本是()二、填空题(共8小题,每小题3分,满分24分)9.(2011•海南)分解因式:x2﹣4=(x+2)(x﹣2).10.(2012•郴州)一元一次方程3x﹣6=0的解是x=2.11.(2012•郴州)如图,在菱形ABCD中,对角线AC=6,BD=8,则这个菱形的边长为5.OA=AC=3 BD=4AC=3OB=12.(2012•郴州)按照《联合国海洋法公约》的规定,我国管辖的海域面积约为3000000平方千米,3000000平方千米用科学记数法表示为3×106平方千米.13.(2012•郴州)如图,已知AB∥CD,∠1=60°,则∠2=120度.14.(2012•郴州)如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件此题答案不唯一,如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等(只需写一个).15.(2012•郴州)圆锥底面圆的半径为3cm,母线长为9cm,则这个圆锥的侧面积为27πcm2(结果保留π).=lR16.(2012•郴州)元旦晚会上,九年级(1)班43名同学和7名老师每人写了一张同种型号的新年贺卡,放进一个纸箱里充分摇匀后,小红从纸箱里任意摸出一张贺卡,恰好是老师写的贺卡的概率是.;故答案为:.三、解答题(共6小题,每小题6分,满分36分)17.(2012•郴州)计算:.18.(2010•北海)解方程组.,∴原方程组的解为19.(2012•郴州)作图题:在方格纸中:画出△ABC关于直线MN对称的△A1B1C1.20.(2012•郴州)已知反比例函数的图象与直线y=2x相交于A(1,a),求这个反比例函数的解析式.(可计算出(得.21.(2012•郴州)我市启动”阳光体育“活动以后,各中小学体育活动精彩纷呈,形式多样.某校数学兴趣小组为了解本县八年级学生最喜爱的体育运动项目,对全县八年级学生进行了跳绳、踢毽子、球类、跳舞等运动项目最喜爱人数的抽样调查,并根据调查结果绘制成如图两个不完整的统计图.请你根据图中提供的信息,解答下列问题:(1)这次抽样调查中,共调查了200名学生;(2)补全条形统计图;(3)根据抽样调查结果,请你估计该县5000名八年级学生中,大约有多少名学生最喜爱球类运动.×22.(2012•郴州)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考数据:≈1.414,≈1.732)=20﹣四、证明题(共1小题,满分8分)23.(2012•郴州)已知:点P是▱ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC于点F.求证:AE=CF.五、应用题(共1小题,满分8分)24.(2012•郴州)某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算?六、综合题(共2小题,每小题10分,满分20分)25.(2012•郴州)如图,已知抛物线y=ax2+bx+c经过A(4,0),B(2,3),C(0,3)三点.(1)求抛物线的解析式及对称轴.(2)在抛物线的对称轴上找一点M,使得MA+MB的值最小,并求出点M的坐标.(3)在抛物线上是否存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.﹣a=,y=x+3﹣k=y=,,+,y=x+3y=x+3 x+3=26.(2012•郴州)阅读下列材料:我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=.例:求点P(1,2)到直线y=x﹣的距离d时,先将y=化为5x﹣12y﹣2=0,再由上述距离公式求得d==.解答下列问题:如图2,已知直线y=﹣与x轴交于点A,与y轴交于点B,抛物线y=x2﹣4x+5上的一点M(3,2).(1)求点M到直线AB的距离.(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.x=6=a=,=,此时坐标为(,)﹣××=.参与本试卷答题和审题的老师有:星期八;zhangCF;sjzx;zcx;gsls;zjx111;ZJX;HJJ;HLing;yu123;sks;lantin;未来。
郴州市中考数学试卷
郴州市中考数学试卷摘要:1.郴州市中考数学试卷概述2.试卷结构与内容分析3.试题特点与趋势分析4.对考生的建议正文:【郴州市中考数学试卷概述】郴州市中考数学试卷是每年一度的中考科目之一,其主要目的是为了检验学生在初中阶段学习数学的效果,以便更好地为高中阶段的学习打下基础。
本文将对郴州市中考数学试卷进行分析,帮助学生了解该试卷的结构、内容、试题特点以及趋势,从而更好地备考。
【试卷结构与内容分析】郴州市中考数学试卷分为选择题、填空题、解答题三部分。
1.选择题:共12 题,每题3 分,共计36 分。
这部分主要考察学生对数学基础知识的掌握程度,包括数与式、方程与不等式、函数与图像、统计与概率等内容。
2.填空题:共8 题,每题4 分,共计32 分。
这部分主要考察学生的运算能力、逻辑思维能力和数学应用能力,包括几何与三角形、四边形、圆等内容。
3.解答题:共6 题,共计48 分。
这部分主要考察学生的综合运用能力,包括函数与图像、几何与三角形、四边形、圆等内容。
【试题特点与趋势分析】1.注重基础知识的考察:试题中大部分题目都是对初中数学基础知识的考察,如代数式、方程、函数、几何等。
因此,学生在备考过程中要重视基础知识的学习。
2.注重逻辑思维能力的培养:试题中部分题目涉及到逻辑推理、数学建模等内容,需要学生具备较强的逻辑思维能力。
3.注重数学应用能力的考核:试题中涉及到实际问题,需要学生运用数学知识解决实际问题。
4.试题难度适中:试题难度既照顾到基础知识的掌握,又考虑到选拔人才的需要。
【对考生的建议】1.扎实掌握基础知识:学生要重视基础知识的学习,加强对数学概念、公式、定理的理解。
2.提高逻辑思维能力:学生要通过做一些有挑战性的题目,提高自己的逻辑思维能力。
3.加强数学应用能力的培养:学生要关注生活中的数学问题,学会运用数学知识解决实际问题。
4.注重模拟考试:学生要通过模拟考试,了解自己的弱点,有针对性地进行复习。
湖南省郴州市中考数学试卷
湖南省郴州市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)2017的相反数是()A.﹣2017 B.2017 C.D.﹣2.(3分)下列图形既是轴对称图形又是中心对称图形的是()A. B.C.D.3.(3分)某市今年约有140000人报名参加初中学业水平考试,用科学记数法表示140000为()A.14×104 B.14×103 C.1.4×104D.1.4×1054.(3分)下列运算正确的是()A.(a2)3=a5B.a2•a3=a5 C.a﹣1=﹣a D.(a+b)(a﹣b)=a2+b25.(3分)在创建“全国园林城市”期间,郴州市某中学组织共青团员去植树,其中七位同学植树的棵树分别为:3,1,1,3,2,3,2,这组数据的中位数和众数分别是()A.3,2 B.2,3 C.2,2 D.3,36.(3分)已知反比例函数y=的图象过点A(1,﹣2),则k的值为()A.1 B.2 C.﹣2 D.﹣17.(3分)如图所示的圆锥的主视图是()A. B. C. D.8.(3分)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360° D.270°二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为.10.(3分)函数y=的自变量x的取值范围为.11.(3分)把多项式3x2﹣12因式分解的结果是.12.(3分)为从甲、乙两名射击运动员中选出一人参加市锦标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩都为8.9环,方差分别是S甲2=0.8,S乙2=1.3,从稳定性的角度来看的成绩更稳定.(填“甲”或“乙”)13.(3分)如图,直线EF分别交AB、CD于点E,F,且AB∥CD,若∠1=60°,则∠2=°.14.(3分)已知圆锥的母线长为5cm,高为4cm,则该圆锥的侧面积为cm2(结果保留π)15.(3分)从1、﹣1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是.16.(3分)已知a1=﹣,a2=,a3=﹣,a4=,a5=﹣,…,则a8=.三、解答题(共82分)17.(6分)计算:2sin30°+(π﹣3.14)0+|1﹣|+(﹣1)2017.18.(6分)先化简,再求值:﹣,其中a=1.19.(6分)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.20.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为人,m=,n=;(2)补全条形统计图;(2)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.21.(8分)某工厂有甲种原料130kg,乙种原料144kg.现用这两种原料生产出A,B两种产品共30件.已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获利700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利900元.设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.22.(8分)如图所示,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速公路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100km为半径的圆形区域,请问计划修建的这条高速公路是否穿越保护区,为什么?(参考数据:≈1.73)23.(8分)如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA 是⊙O的半径,且OA=3.(1)求证:AB平分∠OAD;(2)若点E是优弧上一点,且∠AEB=60°,求扇形OAB的面积.(计算结果保留π)24.(10分)设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=,max{0,3}=;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.25.(10分)如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.(1)试求该抛物线表达式;(2)如图(1),过点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.①求证:△ACD是直角三角形;②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?26.(12分)如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.湖南省郴州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017•郴州)2017的相反数是()A.﹣2017 B.2017 C.D.﹣【分析】根据相反数的定义求解即可.【解答】解:2017的相反数是﹣2017,故选:A.【点评】本题考查了相反数,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2017•郴州)下列图形既是轴对称图形又是中心对称图形的是()A. B.C.D.【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形又是中心对称图形,故本选项正确;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•郴州)某市今年约有140000人报名参加初中学业水平考试,用科学记数法表示140000为()A.14×104 B.14×103 C.1.4×104D.1.4×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将140000用科学记数法表示为:1.4×105.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•郴州)下列运算正确的是()A.(a2)3=a5B.a2•a3=a5 C.a﹣1=﹣a D.(a+b)(a﹣b)=a2+b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6,不符合题意;B、原式=a5,符合题意;C、原式=,不符合题意;D、原式=a2﹣b2,不符合题意,故选B【点评】此题考查了整式的混合运算,以及负整数指数幂,熟练掌握运算法则是解本题的关键.5.(3分)(2017•郴州)在创建“全国园林城市”期间,郴州市某中学组织共青团员去植树,其中七位同学植树的棵树分别为:3,1,1,3,2,3,2,这组数据的中位数和众数分别是()A.3,2 B.2,3 C.2,2 D.3,3【分析】众数是一组数据中出现次数最多的数,在这一组数据中3是出现次数最多的,故众数是3;处于这组数据中间位置的那个数是2,那么由中位数的定义可知,这组数据的中位数是2.【解答】解:在这一组数据中3是出现次数最多的,故众数是3;处于这组数据中间位置的那个数是2,那么由中位数的定义可知,这组数据的中位数是2.故选B.【点评】本题为统计题,考查众数与中位数的意义,解题时要细心.6.(3分)(2017•郴州)已知反比例函数y=的图象过点A(1,﹣2),则k的值为()A.1 B.2 C.﹣2 D.﹣1【分析】直接把点(1,﹣2)代入反比例函数y=即可得出结论.【解答】解:∵反比例函数y=的图象过点A(1,﹣2),∴﹣2=,解得k=﹣2.故选C.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)(2017•郴州)如图所示的圆锥的主视图是()A. B. C. D.【分析】主视图是从正面看所得到的图形即可,可根据圆锥的特点作答.【解答】解:圆锥的主视图是等腰三角形,如图所示:故选:A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,主视图是从物体的正面看得到的视图.8.(3分)(2017•郴州)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360° D.270°【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)(2017•郴州)在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为(1,3).【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵点A(2,3)向左平移1个单位长度,∴点A′的横坐标为2﹣1=1,纵坐标不变,∴A′的坐标为(1,3).故答案为:(1,3).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.(3分)(2017•郴州)函数y=的自变量x的取值范围为x≥﹣1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.11.(3分)(2017•郴州)把多项式3x2﹣12因式分解的结果是3(x﹣2)(x+2).【分析】首先提取公因式,再利用平方差公式进行二次分解即可.【解答】解:3x2﹣12=3(x2﹣4)=3(x﹣2)(x+2).故答案为:3(x﹣2)(x+2).【点评】此题主要考查了提公因式法与公式法的综合运用,在分解因式时首先要考虑提取公因式,再考虑运用公式法,注意分解一定要彻底.12.(3分)(2017•郴州)为从甲、乙两名射击运动员中选出一人参加市锦标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩都为8.9环,方差分别是S甲2=0.8,S乙2=1.3,从稳定性的角度来看甲的成绩更稳定.(填“甲”或“乙”)【分析】根据方差的意义即可得.【解答】解:∵S甲2=0.8,S乙2=1.3,∴S甲2<S乙2,∴成绩最稳定的运动员是甲,故答案是:甲.【点评】本题主要考查方差,熟练掌握方差的意义:方差越小,数据的密集度越高,波动幅度越小是解题的关键.13.(3分)(2017•郴州)如图,直线EF分别交AB、CD于点E,F,且AB∥CD,若∠1=60°,则∠2=120°.【分析】两直线平行,同位角相等,据此可得到∠EFD,然后根据邻补角概念即可求出∠2.【解答】解:∵AB∥CD,∴∠DFE=∠1=60°,∴∠2=180°﹣∠DFE=120°.故答案为:120.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.14.(3分)(2017•郴州)已知圆锥的母线长为5cm,高为4cm,则该圆锥的侧面积为15πcm2(结果保留π)【分析】首先利用勾股定理求得圆锥的底面半径,然后利用圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:∵圆锥的高是4cm,母线长5cm,∴勾股定理得圆锥的底面半径为3cm,∴圆锥的侧面积=π×3×5=15πcm2.故答案为:15π.【点评】本题考查圆锥侧面积公式的运用,掌握公式是关键.15.(3分)(2017•郴州)从1、﹣1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是.【分析】列表得出所有等可能的情况数,找出刚好在坐标轴上的点个数,即可求出所求的概率.【解答】解:列表得:所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,所以该点在坐标轴上的概率==,故答案为:.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了点的坐标特征.16.(3分)(2017•郴州)已知a1=﹣,a2=,a3=﹣,a4=,a5=﹣,…,则a8=.【分析】根据已给出的5个数即可求出a8的值;【解答】解:由题意给出的5个数可知:a n=当n=8时,a8=故答案为:【点评】本题考查数字规律问题,解题的关键是正确找出规律,本题属于中等题型.三、解答题(共82分)17.(6分)(2017•郴州)计算:2sin30°+(π﹣3.14)0+|1﹣|+(﹣1)2017.【分析】原式利用特殊角的三角函数值,零指数幂法则,绝对值的代数意义,以及乘方的意义计算即可得到结果.【解答】解:原式=1+1+﹣1﹣1=.【点评】此题考查了实数的运算,零指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.(6分)(2017•郴州)先化简,再求值:﹣,其中a=1.【分析】先根据异分母分式的加法法则化简原式,再将a的值代入即可得.【解答】解:原式=﹣==,当a=1时,原式==.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.19.(6分)(2017•郴州)已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.【分析】由∠ABC=∠ACB可得AB=AC,又点D、E分别是AB、AC的中点.得到AD=AE,通过△ABE≌△ACD,即可得到结果.【解答】证明:∵∠ABC=∠ACB,∴AB=AC,∵点D、E分别是AB、AC的中点.∴AD=AE,在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD.【点评】本题考查了等腰三角形的性质,全等三角形的判定与性质,熟记定理是解题的关键.20.(8分)(2017•郴州)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为500人,m=12,n=32;(2)补全条形统计图;(2)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.【分析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.【解答】解:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,故答案为:500,12,32;(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.【点评】本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.21.(8分)(2017•郴州)某工厂有甲种原料130kg,乙种原料144kg.现用这两种原料生产出A,B两种产品共30件.已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获利700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利900元.设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.【分析】(1)根据两种产品所需要的甲、乙两种原料列出不等式组,然后求解即可;(2)根据总利润等于两种产品的利润之和列式整理,然后根据一次函数的增减性求出最大利润即可.【解答】解:(1)根据题意得:,解得18≤x≤20,∵x是正整数,∴x=18、19、20,共有三种方案:方案一:A产品18件,B产品12件,方案二:A产品19件,B产品11件,方案三:A产品20件,B产品10件;(2)根据题意得:y=:700x+900(30﹣x)=﹣200x+27000,∵﹣200<0,∴y随x的增大而减小,∴x=18时,y有最大值,y最大=﹣200×18+27000=23400元.答:利润最大的方案是方案一:A产品18件,B产品12件,最大利润为23400元.【点评】本题考查了一次函数的应用,一元一次不等式组的应用,读懂题目信息,准确找出题中的等量关系和不等量关系是解题的关键.22.(8分)(2017•郴州)如图所示,C城市在A城市正东方向,现计划在A、C 两城市间修建一条高速公路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100km为半径的圆形区域,请问计划修建的这条高速公路是否穿越保护区,为什么?(参考数据:≈1.73)【分析】作PH⊥AC于H.求出PH与100比较即可解决问题.【解答】解:结论;不会.理由如下:作PH⊥AC于H.由题意可知:∠EAP=60°,∠FBP=30°,∴∠PAB=30°,∠PBH=60°,∵∠PBH=∠PAB+∠APB,∴∠BAP=∠BPA=30°,∴BA=BP=120,在Rt△PBH中,sin∠PBH=,∴PH=PB•sin60°=120×≈103.80,∵103.80>100,∴这条高速公路不会穿越保护区.【点评】本题考查解直角三角形、等腰三角形的判定和性质、勾股定理的应用等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.23.(8分)(2017•郴州)如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.(1)求证:AB平分∠OAD;(2)若点E是优弧上一点,且∠AEB=60°,求扇形OAB的面积.(计算结果保留π)【分析】(1)连接OB,由切线的性质得出OB⊥BC,证出AD∥OB,由平行线的性质和等腰三角形的性质证出∠DAB=∠OAB,即可得出结论;(2)由圆周角定理得出∠AOB=120°,由扇形面积公式即可得出答案.【解答】(1)证明:连接OB,如图所示:∵BC切⊙O于点B,∴OB⊥BC,∵AD⊥BC,∴AD∥OB,∴∠DAB=∠OBA,∵OA=OB,∴∠OAB=∠OBA,∴∠DAB=∠OAB,∴AB平分∠OAD;(2)解:∵点E是优弧上一点,且∠AEB=60°,∴∠AOB=2∠AEB=120°,∴扇形OAB的面积==3π.【点评】本题考查了切线的性质、等腰三角形的性质、平行线的性质、圆周角定理、扇形面积公式等知识;熟练掌握切线的性质和圆周角定理是解决问题的关键.24.(10分)(2017•郴州)设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=5,max{0,3}=3;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.【分析】(1)根据max{a,b}表示a、b两数中较大者,即可求出结论;(2)根据max{3x+1,﹣x+1}=﹣x+1,即可得出关于x的一元一次不等式,解之即可得出结论;(3)联立两函数解析式成方程组,解之即可求出交点坐标,画出直线y=﹣x+2的图象,观察图形,即可得出max{﹣x+2,x2﹣2x﹣4}的最小值.【解答】解:(1)max{5,2}=5,max{0,3}=3.故答案为:5;3.(2)∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)联立两函数解析式成方程组,,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示,观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.【点评】本题考查了二次函数的最值、一次函数的图象、一次函数的性质以及二次函数的图象,解题的关键是:(1)读懂题意,弄清max的意思;(2)根据max{3x+1,﹣x+1}=﹣x+1,找出关于x的一元一次不等式;(3)联立两函数解析式成方程组,通过解方程组求出交点坐标.25.(10分)(2017•郴州)如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.(1)试求该抛物线表达式;(2)如图(1),过点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.①求证:△ACD是直角三角形;②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?【分析】(1)将点A和点C的坐标代入抛物线的解析式可得到关于a、c的方程组,然后解方程组求得a、c的值即可;(2)设P(m,m2+m﹣4),则F(m,﹣m﹣4),则PF=﹣m2﹣m,当PF=OC时,四边形PCOF是平行四边形,然后依据PF=OC列方程求解即可;(3)①先求得点D的坐标,然后再求得AC、DC、AD的长,最后依据勾股定理的逆定理求解即可;②分为△ACD∽△CHP、△ACD∽△PHC两种情况,然后依据相似三角形对应成比例列方程求解即可【解答】解:(1)由题意得:,解得:,∴抛物线的表达式为y=x2+x﹣4.(2)设P(m,m2+m﹣4),则F(m,﹣m﹣4).∴PF=(﹣m﹣4)﹣(m2+m﹣4)=﹣m2﹣m.∵PE⊥x轴,∴PF∥OC.∴PF=OC时,四边形PCOF是平行四边形.∴﹣m2﹣m=4,解得:m=﹣或m=﹣8.当m=﹣时,m2+m﹣4=﹣,当m=﹣8时,m2+m﹣4=﹣4.∴点P的坐标为(﹣,﹣)或(﹣8,﹣4).(3)①证明:把y=0代入y=﹣x﹣4得:﹣x﹣4=0,解得:x=﹣8.∴D(﹣8,0).∴OD=8.∵A(2,0),C(0,﹣4),∴AD=2﹣(﹣8)=10.由两点间的距离公式可知:AC2=22+42=20,DC2=82+42=80,AD2=100,∴AC2+CD2=AD2.∴△ACD是直角三角形,且∠ACD=90°.②由①得∠ACD=90°.当△ACD∽△CHP时,=,即=或=,解得:n=0(舍去)或n=﹣5.5或n=﹣10.5.当△ACD∽△PHC时,=,即=或即=.解得:n=0(舍去)或n=2或n=﹣18.综上所述,点P的横坐标为﹣5.5或﹣10.5或2或﹣18时,使得以点P、C、H为顶点的三角形与△ACD相似.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、平行四边形的性质、勾股定理的逆定理、相似三角形的性质,依据平行线的对边相等列出关于m的方程是解答问题(2)的关键,利用相似三角形的性质列出关于n的方程是解答问题(3)的关键.26.(12分)(2017•郴州)如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短DBE得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.【解答】解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C=BE+DB+DE=AB+DE=4+DE,△DBE由(1)知,△CDE是等边三角形,∴DE=CD,=CD+4,∴C△DBE由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s,综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【点评】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.黑龙江省哈尔滨市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣7的倒数是()A.7 B.﹣7 C.D.﹣2.(3分)下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b23.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.(3分)抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.6.(3分)方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣57.(3分)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B.35°C.34°D.44°8.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=10.(3分)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)将57600000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)把多项式4ax2﹣9ay2分解因式的结果是.14.(3分)计算﹣6的结果是.15.(3分)已知反比例函数y=的图象经过点(1,2),则k的值为.16.(3分)不等式组的解集是.17.(3分)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.18.(3分)已知扇形的弧长为4π,半径为48,则此扇形的圆心角为度.19.(3分)四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为.20.(3分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE ⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.三、解答题(本大题共60分)21.(7分)先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan。
2012年郴州市初中毕业学业考试试卷
2012年郴州市初中毕业学业考试试卷(语文)一、积累与运用(共8小题,28分)1.下列词语中加点字注音完全正确的一项是()(2分)A.和煦.xù胆怯.qūe 滑稽. jī忍俊不禁.jìnB.星宿.xìu 赈.灾 zhèng 畸.形 qí言简意赅.gāiC.惩.罚 chéng 唠.叨láo 怪癖..pǐ毛遂.自荐suìD.哽咽. yuè踉.跄 liàng 教诲. huì锐不可当.dāng2.下列词语书写完全正确的一项是()(2分)A.嘻戏谰言粗制烂造吹毛求疵B.琐屑铿锵人迹罕至锋芒毕露C.销蚀诘问一泄千里根深谛固D.阔绰阴晦冥思暇想相形见绌3.下列各句加点的成语使用有误的一项是()(2分)A.班会上,他侃侃而谈....,出众的口才使得大家对他刮目相看。
B.元旦联欢会上,全校师生欢聚一堂,共享天伦之乐....。
C.北雁南飞,活跃在田间草际的昆虫也销声匿迹....了。
D.在郴州市根雕艺术节展上,惟妙惟肖....的大鹏展翅根雕特别引人注目。
4.下列句子中没有语病的一项是()(2分)A.郴州市第六次人口普查结果显示:桂东县常住人口数量比桂阳县少两倍。
B.阅读课上,我们讨论并阅读了高尔基的《童年》,感触很多。
C.当我们登上苏仙岭的顶峰时,我们有一种心旷神怡的感觉。
D.青年女教师张丽莉舍身勇救学生的事迹报道后,人们无时无刻不关注着她的身体恢复情况。
5.将下列语句依次填入文段的空缺处,正确的选项是()(2分)博览众书是读书的一大要诀。
,可以让我们知悉社会的变迁、民族的盛衰、政治的演变,更新自己的观念;,可以让我们了解名人身处逆境奋发图强,振作自己的志气;,可以让我们体验事物的因果、世道的崎岖、沧桑的演变,增加自己的阅历;,可以让我们怡情养性;读歌赋,可以让我们高尚思想……1读小说2读诗词3读历史4读传记A.1342 B.3412 C.3142 D.41236.下列关于文学常识和名著阅读的表述,正确的一项是()(2分)A.《论语》是春秋战国时期儒家学派的创始人孔子所著的一本书,记录的是孔子的言行。
湖南省郴州市中考数学试卷
湖南省郴州市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) a、b为两个有理数,若a+b<0,且ab>0,则有()A . a,b异号B . a、b异号,且负数的绝对值较大C . a<0,b<0D . a>0,b>02. (2分)﹣()]=中,在()内填上的数是()A .B .C .D .3. (2分)下列各式化简结果为无理数的是()A .B .C .D .4. (2分)如图是一个“众志成城,奉献爱心”的图标,图标中两圆的位置关系是()A . 外离B . 外切C . 相交D . 内切5. (2分)(2018·十堰) 如图,直线y=﹣x与反比例函数y= 的图象交于A,B两点,过点B作BD∥x轴,交y轴于点D,直线AD交反比例函数y= 的图象于另一点C,则的值为()A . 1:3B . 1:2C . 2:7D . 3:106. (2分) (2016七上·兰州期中) 如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A . 的B . 中C . 国D . 梦二、填空题 (共10题;共12分)7. (1分)(2016·乐山) 计算:|﹣5|=________8. (2分)计算:= 2;=________ .9. (2分)在分式中,当y=________时,分式无意义;当y=________时,分式值为零.10. (1分) (2016七上·罗田期中) 已知光的速度为300 000 000米/秒,太阳光到达地球的时间大约是500秒,试计算太阳与地球的距离大约是________千米.(结果用科学记数法表示)11. (1分) (2017九上·禹州期末) 如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数是________度.12. (1分)(2018·无锡模拟) 在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为________.(结果用含有a,b,c的式子表示)13. (1分)(2017·邗江模拟) 如图,在正十边形A1A2A3A4A5A6A7A8A9A10中,连接A1A4、A1A7 ,则∠A4A1A7=________°.14. (1分)方程(x+1)2﹣2(x﹣1)2=6x﹣5的一般形式是________15. (1分)(2013·扬州) 如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD 的周长为________.16. (1分)若a+b=4,ab=1,化简(a﹣2)(b﹣2)的结果是________三、解答题 (共11题;共122分)17. (10分)(2017·莱西模拟) 计算:(1)化简:(2)解不等式组,并求其最小整数解..18. (5分)解方程:+=1.19. (15分)(2018·娄底模拟) 如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明:四边形AHBG是菱形;(3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)20. (10分) (2020九下·碑林月考) 在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小亮从布袋里随机摸出一个小球,记下数字为x,小刚从剩下的3个小球中随机摸出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)若小亮摸出的小球上的数字是2,那么小刚摸出的小球上的数字是4的概率是多少?(2)利用画树状图或列表格的方法,求点P(x,y)在函数y=﹣x+6的图象上的概率.21. (7分)(2017·溧水模拟) 某校学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,随机抽取其中32名学生两次考试考分等级制成统计图(如图),试回答下列问题:(1)这32名学生经过培训,考分等级“不合格”的百分比由________下降到________;(2)估计该校640名学生,培训后考分等级为“合格”与“优秀”的学生共有多少名.22. (5分) (2016九上·盐城期末) 某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)23. (10分)(2017·罗平模拟) 某中学计划从一文体公司购买甲,乙两种型号的小黑板,经洽谈,购买一块甲型小黑板比购买一块乙型小黑板多用20元,且购买2块甲型小黑板和3块乙型小黑板共需440元.(1)求购买一块甲型小黑板、一块乙型小黑板各需多少元?(2)根据该中学实际情况,需从文体公司购买甲,乙两种型号的小黑板共60块,要求购买甲,乙两种型号小黑板的总费用不超过5240元.并且购买甲型小黑板的数量不小于购买乙型小黑板数量的.则该中学从文体公司购买甲,乙两种型号的小黑板有哪几种方案?哪种方案的总费用最低?24. (15分) (2019九下·长兴月考) 某通讯经营店销售A,B两种品牌儿童手机,今年的进货和销售价格如表:A型手机B型手机进货价格(元/只)10001100销售价格(元/只)x1500已知A型手机去年1月份销售总额为4万元,今年经过改造升级后每只销售价比去年增加200元.今年1月份A型手机的销售数量与去年1月份相同,而销售总额比去年1月份增加20%.(1)今年1月份A型手机的销售价是多少元?(2)该店计划6月份再进一批A型和B型手机共50只且B型手机数量不超过A型手机数量的2倍,应如何进货才能使这批儿童手机获利最多?(3)该店为吸引客源,准备增购一种进价为500元的C型手机,预算用8万元购进这三种手机若干只,其中A型与B型的数量之比为1:2,则该店至少可以购进三种手机共多少只?25. (15分)(2018·龙岗模拟) 如图,的半径,AB是弦,直线EF经过点B,于点C,.(1)求证:EF是的切线;(2)若,求AB的长;(3)在的条件下,求图中阴影部分的面积.26. (15分) (2017九下·沂源开学考) 如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)连结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.27. (15分)(2017·渭滨模拟) 如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共12分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共122分)17-1、17-2、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、。
三年中考2010-2012全国各地中考数学试题分类汇编第4章_一元一次方程及其应用(含答案)
【答案】40
5. (2011广东湛江15,4分)若 是关于 的方程 的解,则的值为 .
【答案】
6. (2011湖南湘潭市,13,3分)湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为 元,根据题意,列出方程为______________.
A. B.
C. D.
【答案】A
二、填空题
1. (2011四川重庆,16,4分)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成.乙种盆景由10朵红花、12朵黄花搭配而成.丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了 朵.
【答案】58
11. (2011云南省昆明市,15,3分)某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为__________.
【答案】90%
12. (2011四川自贡,16,4分) 龙都电子商场出售A、B、C三种型号的笔记本电脑,四月份A型电脑的销售额占三种型号总销售额的56%,五月份,B、C两种型号的电脑销售额比四月份减少了m%,A型电脑销售额比四月份增加了23%,已知商场五月份该三种型号电脑的总销售额比四月份增加了12%,则m=_________.
【答案】
三、解答题
1. (2011浙江省舟山,21,8分)目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.
湖南省郴州市中考数学试卷
湖南省郴州市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题(共12小题). (共11题;共22分)1. (2分)如果一个数的平方等于这个数的倒数,那么这个数是()A . 1B . 0C . ±1D . -12. (2分)(2016·景德镇模拟) 关于x的一元二次方程x2﹣4sinα•x+2=0有两个等根,则锐角α的度数是()A . 30°B . 45°C . 60°D . 90°3. (2分)(2016·衢州) 某种生物孢子的直径为0.00052米,用科学记数表示为()A . 0.52×105米B . 5.2×105米C . 5.2×10﹣4米D . 5.2×104米4. (2分)如图下面几何体的左视图是()A .B .C .D .5. (2分)下列运算中,正确的是()A . ﹣(m+n)=n﹣mB . (m3n2)3=m6n5C . m3•m2=m5D . n3÷n3=n6. (2分) (2016七下·老河口期中) 下列各语句:①对顶角相等吗?②延长线段AB;③内错角相等;④垂线段最短.其中真命题有()A . 1个B . 2个C . 3个D . 4个7. (2分) (2019九上·郑州月考) 甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表第一次第二次第三次第四次第五次第六次甲9867810乙879788对他们的训练成绩作如下分析,其中说法正确的是()A . 他们训练成绩的平均数相同B . 他们训练成绩的中位数不同C . 他们训练成绩的众数不同D . 他们训练成绩的方差不同8. (2分) (2019八上·南开期中) 如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有()A . 4对B . 5对C . 6对D . 7对9. (2分)时钟显示为8:30时,时针与分针所夹的角是()A . 90°B . 120°C . 75°D . 84°10. (2分)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是()A . 1.25mB . 10mC . 20mD . 8m11. (2分)在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移3个单位,那么在新坐标系下抛物线的解析式是()A . y=2(x+3)2-3B . y=2(x-3)2+3C . y=2(x-3)2-3D . y=2(x+3)2+3二、填空题:本大题共6小题,每小题3分,共18分. (共6题;共6分)12. (1分)(2017·黄冈模拟) 某一天的最高气温为6℃,最低气温为﹣4℃,那么这天的最高气温比最低气温高________℃13. (1分) (2020九下·西安月考) 分解因式: ________.14. (1分)如图,ABCD是对角线互相垂直的四边形,且0B=OD,请你添加一个适当的条件: ________使ABCD 成为菱形.(只需添加一个即可)15. (1分)(2020·百色模拟) “石头、剪刀、布”是民间广为流传的一种游戏,游戏时甲乙双方每次做“石头”“剪刀”“布”三种手势中的一种,并约定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负须继续比赛.假定甲、乙两人每次都是等可能地做这三种手势,那么一次游戏中乙获胜的概率是________.16. (1分)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为________.17. (1分)如图,若将四根木条钉成的矩形ABCD变形为▱FBCE的形状,EF交CD于点H,已知AB=20cm,BC=30cm,当矩形ABCD的面积是▱FBCE面积的2倍时,四边形FBCH的面积为________三、解答题:本大题共8小题,满分共66分.解答应写出证明过程成演 (共7题;共68分)18. (2分)(2018·甘孜)(1)计算:(2)化简:19. (10分) (2019九上·汕头期末) 已知:关于x的方程x2+kx﹣2=0(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.20. (11分) (2019七下·中山期末) 某校七年级举行“数学计算能力”比赛,比赛结束后,随机抽查部分学生的成绩,根据抽查结果绘制成如下的统计图表组别分数x频数A40≤x<5020B50≤x<6030C60≤x<7050D70≤x<80mE80≤x<9040根据以上信息解答下列问题:(1)共抽查了________名学生,统计图表中,m=________,请补全直方图________;(2)求扇形统计图中“B组”所对应的圆心角的度数;(3)若七年级共有800名学生,分数不低于60分为合格,请你估算本次比赛全年级合格学生的人数21. (10分)(2017·重庆) 如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=4 ,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.22. (10分)(2019·沈阳) 2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购买甲、乙两种树苗,用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗每棵少6元.(1)求甲种树苗每棵多少元?(2)若准备用3800元购买甲、乙两种树苗共100棵,则至少要购买乙种树苗多少棵?23. (10分) (2019九上·农安期中) 如图,在△ABC中,已知AB=AC,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数.24. (15分)(2014·湖州) 如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c >0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC= AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.参考答案一、选择题(共12小题). (共11题;共22分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、填空题:本大题共6小题,每小题3分,共18分. (共6题;共6分)12-1、13-1、14-1、15-1、16-1、17-1、三、解答题:本大题共8小题,满分共66分.解答应写出证明过程成演 (共7题;共68分)18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、。
2012年郴州市初中毕业学业考试试卷及答案
2012年郴州市初中毕业学业考试试卷注意事项:1、答题前,考生务必将自己的姓名、准考证号写在答题卡和该试题卷的封面上,并认真填涂和核对答题卡上的姓名、准考证号和科目;2、选择题部分请按题号用2B铅笔填涂方框,修改时用橡皮擦擦干净,不留痕迹;3、非选择题部分请按题号用0.5毫米黑色签字笔书写,否则作答无效;4、在草稿纸、试题卷上答题无效;5、请勿折叠答题卡,保证字体工整、笔迹清晰、卡面清洁;6、答题完成后,请将试卷、答题卡放在桌上,由监考老师统一收回。
本试题卷共6页,有二道大题,共31道小题,满分100分考试时间90分钟。
一、选择题(本题共有24道小题,每小题2分,共48分,每小题只有一个正确答案或最佳选项)1. 2011年7月1日,庆祝中国共产党成立周年大会在北京人民大会堂隆重举行,中共中央总书记胡锦涛在会上发表重要讲话。
A. 60B. 80C. 90D. 1002.中共中央第十七届中央委员会第六次全体会议于2011年10月15日至18日在北京举行,会议通过了《中共中央关于深化体制改革,推动社会主义大发展大繁荣若干重大问题的决定》A.经济、经济B.文化、文化C.政治、政治D.教育、教育3. 2011年7月23日,北京南至福州的D301次列车与杭州至福州南的D3115次列车在发生列车追尾事故,造成重大伤亡。
A.杭州B.福州C.温州D.绍兴4.据朝鲜官方媒体报道,朝鲜国防委员长于2011年12月17日上午8时30分,因疲劳过度突然去世,享年69岁。
朝鲜发表《告全体党员、人民军官兵和人民书》说,他的突然逝世是"朝鲜党和革命的最大损失,朝鲜人民和整个民族的最大悲痛"。
A.金正日B.金日成C.金正恩D.金永南5.中共中央、国务院2012年2月14日在北京举行2011年度国家科学技术奖励大会,中国科学院院士和中国科学院院士、中国工程院院士吴良铺荣获2011年度国家最高科学技术奖。
A.王振义B.谢家麟 c.师昌绪 D.吴孟超6.有位九年级学生,功课一直很好,可他有些焦虑情绪,经常担心考试过不了关。
XJ湘教版 初一七年级数学 上册第一学期秋季(导学案)第五章 数据的收集与统计图(全章 分课时)
第五章数据的收集与统计图5.1 数据的收集与抽样第1课时全面调查学习目标:1.知道如何设计调查问卷,收集数据;2.能对调查出来的数据利用画记的方法用表格的形式加以简单地处理;3.知道什么是总体、个体,总体与个体之间的关系;4.知道调查的一种方法——全面调查(又称普查)重点:如何设计调查问卷;对数据如何分组。
预习导学——不看不讲学一学:阅读教材P139章首内容,回忆我们小学时曾经学习过的有关数据的收集和统计图的知识。
说一说:与同组同学说一说我们曾经学过的统计图有哪些,如何制作这些统计图,这些统计图有什么作用。
学一学:阅读教材P140至P141第四行,并解决下列问题:1.中学生睡眠时间调查问卷的目的是2.中学生睡眠时间调查问卷的栏目设计是3.中学生睡眠时间调查问卷的栏目设计还可以是4.画记一般用“”字表示,且“”字的每一笔画代表个数据。
5.补全P140的数据表1议一议:1.上面的这些表格可以清楚地反映了同学们 情况,如数据表1中睡眠时间8~8.5h 的同学有 人,占全班人数的 。
2.数据表1中睡眠时间8~9h 的同学有 人,占全班人数的 。
3.根据现代科学文献表明:中学生每天的睡眠时间应保证在8~10小时内,睡眠时间过长或过短都会给中学生的身体健康带来不良影响。
对于睡眠时间过长或过短的同学我的建议是:【归纳总结】1.任何的调查它都有 ,否则是无意义的调查。
2.进行统计调查时首先要设计一个 ,对于收集上来凌乱的数据我们可以进行整理以 的形式呈现出来。
选一选:1.全班50名男生体重)(kg x 分五段进行列表统计:5249<≤x 有3人,5552<≤x 有10人,5855<≤x 有20人,6158<≤x 有13人,则6461<≤x 的人数为( ) A .6 B .4 C .5 D .8 填一填:1.请补全下面收集上来的另一个班60位同学的睡眠时间统计表2:学一学:阅读教材P141第五行至“做一做”,解决下列问题:1.称为总体;2.称为个体;3.叫做全面调查(又称普查;4.个体与总体是关系;议一议:1.在调查某班50名同学的到校方式中得知,有坐汽车、骑自行车、步行这三种方式。
郴州永兴中考数学试卷真题
郴州永兴中考数学试卷真题
1. 选择题
(1) 设函数 f(x) = x^2 + 3x - 4,则 f(2) 的值为多少?
A. -10
B. -4
C. 4
D. 10
(2) 已知∠ABC 是一个锐角,AC = 9cm,BC = 12cm,下列哪个三角形是锐角三角形?
A. ∆ABC
B. ∆CAB
C. ∆BCA
D. ∆ACB
(3) 某市图书馆借出一行纸质书,每天借出量与日期的关系如图所示。
根据图中数据,哪一天借出了最多的书?
A. 1月1日
B. 1月8日
C. 1月15日
D. 1月22日
2. 填空题
(1) 在数轴上,-2 到 3 的绝对值是 _______。
(2) 设直方图中的矩形宽度是 2cm,从左到右依次为 3cm,5cm,1cm,4cm,3cm,它们的面积之和是 _______。
3. 解答题
(1) 解方程组:
2x + y = 7
3x - 2y = 4
(2) 整数 a 和 b 满足 a^2 - b^2 = 45,求 a 和 b 的值,其中 a > b。
以上为郴州永兴中考数学试卷真题的题目部分,希望能帮助你进行复习和提高数学水平。
祝你考试顺利!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年湖南省郴州市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)4.(2012•郴州)如图是由5个相同的小正方体组成的立体图形,它的俯视图是()5.(2012•郴州)函数y=中自变量x的取值范围是()28.(2012•郴州)为了解某校2000名师生对我市“三创”工作(创国家园林城市、国家卫生城市、全国文明城市)的二、填空题(共8小题,每小题3分,满分24分)9.(2011•海南)分解因式:x2﹣4=_________.10.(2012•郴州)一元一次方程3x﹣6=0的解是_________.11.(2012•郴州)如图,在菱形ABCD中,对角线AC=6,BD=8,则这个菱形的边长为_________.12.(2012•郴州)按照《联合国海洋法公约》的规定,我国管辖的海域面积约为3000000平方千米,3000000平方千米用科学记数法表示为_________平方千米.13.(2012•郴州)如图,已知AB∥CD,∠1=60°,则∠2=_________度.14.(2012•郴州)如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件_________(只需写一个).15.(2012•郴州)圆锥底面圆的半径为3cm,母线长为9cm,则这个圆锥的侧面积为_________cm2(结果保留π).16.(2012•郴州)元旦晚会上,九年级(1)班43名同学和7名老师每人写了一张同种型号的新年贺卡,放进一个纸箱里充分摇匀后,小红从纸箱里任意摸出一张贺卡,恰好是老师写的贺卡的概率是_________.三、解答题(共6小题,每小题6分,满分36分)17.(2012•郴州)计算:.18.(2010•北海)解方程组.19.(2012•郴州)作图题:在方格纸中:画出△ABC关于直线MN对称的△A1B1C1.20.(2012•郴州)已知反比例函数的图象与直线y=2x相交于A(1,a),求这个反比例函数的解析式.21.(2012•郴州)我市启动”阳光体育“活动以后,各中小学体育活动精彩纷呈,形式多样.某校数学兴趣小组为了解本县八年级学生最喜爱的体育运动项目,对全县八年级学生进行了跳绳、踢毽子、球类、跳舞等运动项目最喜爱人数的抽样调查,并根据调查结果绘制成如图两个不完整的统计图.请你根据图中提供的信息,解答下列问题:(1)这次抽样调查中,共调查了_________名学生;(2)补全条形统计图;(3)根据抽样调查结果,请你估计该县5000名八年级学生中,大约有多少名学生最喜爱球类运动.22.(2012•郴州)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考数据:≈1.414,≈1.732)四、证明题(共1小题,满分8分)23.(2012•郴州)已知:点P是▱ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC于点F.求证:AE=CF.五、应用题(共1小题,满分8分)24.(2012•郴州)某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算?六、综合题(共2小题,每小题10分,满分20分)25.(2012•郴州)如图,已知抛物线y=ax2+bx+c经过A(4,0),B(2,3),C(0,3)三点.(1)求抛物线的解析式及对称轴.(2)在抛物线的对称轴上找一点M,使得MA+MB的值最小,并求出点M的坐标.(3)在抛物线上是否存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形?若存在,请求出点P 的坐标;若不存在,请说明理由.26.(2012•郴州)阅读下列材料:我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=.例:求点P(1,2)到直线y=x﹣的距离d时,先将y=化为5x﹣12y﹣2=0,再由上述距离公式求得d==.解答下列问题:如图2,已知直线y=﹣与x轴交于点A,与y轴交于点B,抛物线y=x2﹣4x+5上的一点M(3,2).(1)求点M到直线AB的距离.(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.2012年湖南省郴州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)4.(2012•郴州)如图是由5个相同的小正方体组成的立体图形,它的俯视图是()5.(2012•郴州)函数y=中自变量x的取值范围是()28.(2012•郴州)为了解某校2000名师生对我市“三创”工作(创国家园林城市、国家卫生城市、全国文明城市)的知晓情况,从中随机抽取了100名师生进行问卷调查,这项调查中的样本是()二、填空题(共8小题,每小题3分,满分24分)9.(2011•海南)分解因式:x2﹣4=(x+2)(x﹣2).10.(2012•郴州)一元一次方程3x﹣6=0的解是x=2.11.(2012•郴州)如图,在菱形ABCD中,对角线AC=6,BD=8,则这个菱形的边长为5.AC=3OA=BD=412.(2012•郴州)按照《联合国海洋法公约》的规定,我国管辖的海域面积约为3000000平方千米,3000000平方千米用科学记数法表示为3×106平方千米.13.(2012•郴州)如图,已知AB∥CD,∠1=60°,则∠2=120度.14.(2012•郴州)如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件此题答案不唯一,如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等(只需写一个).15.(2012•郴州)圆锥底面圆的半径为3cm,母线长为9cm,则这个圆锥的侧面积为27πcm2(结果保留π).=S=16.(2012•郴州)元旦晚会上,九年级(1)班43名同学和7名老师每人写了一张同种型号的新年贺卡,放进一个纸箱里充分摇匀后,小红从纸箱里任意摸出一张贺卡,恰好是老师写的贺卡的概率是.;故答案为:.三、解答题(共6小题,每小题6分,满分36分)17.(2012•郴州)计算:.18.(2010•北海)解方程组.,原方程组的解为19.(2012•郴州)作图题:在方格纸中:画出△ABC关于直线MN对称的△A1B1C1.20.(2012•郴州)已知反比例函数的图象与直线y=2x相交于A(1,a),求这个反比例函数的解析式.(可计算出(y=.21.(2012•郴州)我市启动”阳光体育“活动以后,各中小学体育活动精彩纷呈,形式多样.某校数学兴趣小组为了解本县八年级学生最喜爱的体育运动项目,对全县八年级学生进行了跳绳、踢毽子、球类、跳舞等运动项目最喜爱人数的抽样调查,并根据调查结果绘制成如图两个不完整的统计图.请你根据图中提供的信息,解答下列问题:(1)这次抽样调查中,共调查了200名学生;(2)补全条形统计图;(3)根据抽样调查结果,请你估计该县5000名八年级学生中,大约有多少名学生最喜爱球类运动.×22.(2012•郴州)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考数据:≈1.414,≈1.732)=20﹣四、证明题(共1小题,满分8分)23.(2012•郴州)已知:点P是▱ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC于点F.求证:AE=CF.,五、应用题(共1小题,满分8分)24.(2012•郴州)某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算?六、综合题(共2小题,每小题10分,满分20分)25.(2012•郴州)如图,已知抛物线y=ax2+bx+c经过A(4,0),B(2,3),C(0,3)三点.(1)求抛物线的解析式及对称轴.(2)在抛物线的对称轴上找一点M,使得MA+MB的值最小,并求出点M的坐标.(3)在抛物线上是否存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形?若存在,请求出点P 的坐标;若不存在,请说明理由.求出对称轴;∴,,x x+3﹣∴,x+3,,x,x+3x+3x x+3∴x+3=+26.(2012•郴州)阅读下列材料:我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是:d=.例:求点P(1,2)到直线y=x﹣的距离d时,先将y=化为5x﹣12y﹣2=0,再由上述距离公式求得d==.解答下列问题:如图2,已知直线y=﹣与x轴交于点A,与y轴交于点B,抛物线y=x2﹣4x+5上的一点M(3,2).(1)求点M到直线AB的距离.(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.d==a=,=,此时坐标为(,)××=.。