新人教版七年级下数学5.3.1-平行线的性质(2)
5.3.1《 平行线的性质》教材解读-人教版数学七年级下册
![5.3.1《 平行线的性质》教材解读-人教版数学七年级下册](https://img.taocdn.com/s3/m/e4af9978d1f34693dbef3e16.png)
5.3.1《平行线的性质》教材解读一、课标内容《课程标准》相关内容:1.在探索直线平行的性质的过程中,掌握平行线的三条性质,并能用它们进行简单的推理和计算。
2.进一步发展空间观念,体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多种形式下的数学活动中,发展合情推理和演绎推理的能力。
3.经历观察、操作、想象、推理、交流等活动,培养学生参与活动和交流合作的意识。
4.敢于发表自己的想法,勇于质疑、敢于创新,养成认真勤奋、独立思考、合作交流等学习习惯,形成严谨求实的科学态度。
二、教材分析(一)教材的地位作用《平行线的性质》是新人教版七年级数学下册第五章第三小节的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。
这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。
它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础。
(二)知识要点及重难点平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
重点:探究平行线的性质。
难点:明确平行线的性质和判定的区别。
三、教材编写特点教材由平行线的判定引入对平行线性质的研究,既渗透了图形的判定和性质之间的互逆关系,又体现了知识的连贯性,平行线的三条性质都是需要证明的,但是为了与学生思维发展水平相适应,性质1是通过操作确认的方式得出的,在性质1的基础上经过进一步推理,得到性质2和性质3,这一过程体现了由实验几何到论证几何的过渡,渗透了简单推理,体现了数学在培养良好思维品质方面的价值。
四、教学建议教材所选的例题及课后练习题1,都是平行线性质的直接运用,较为简单。
练习题2是平行线判定和性质的综合运用,是为了让学生区分判定和性质,推理也比较简单。
考虑到学生还处于几何初步阶段,进度不可过快,教师可以设计一些有两步推理的证明题,让学生填充理由。
在应用知识的过程中,组织学生进行讨论,结合题目的已知条件和结论,让学生自己总结出判定和性质的区别,只有自己构造起的知识,才能真正被灵活应用。
(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)
![(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)](https://img.taocdn.com/s3/m/e299dc8bfd0a79563c1e728f.png)
5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
初一数学下册(人教版)第五章5.3知识点总结含同步练习及答案
![初一数学下册(人教版)第五章5.3知识点总结含同步练习及答案](https://img.taocdn.com/s3/m/0c17c42caaea998fcc220edc.png)
描述:初一数学下册(人教版)知识点总结含同步练习题及答案第五章 相交线与平行线 5.3 平行线的性质一、学习任务1. 能够熟练的运用平行线的性质定理和判定定理解题.2. 发展空间观念、逻辑推理能力和有条理的表达能力.二、知识清单平行线的性质三、知识讲解1.平行线的性质平行线性质① 两条平行线被第三条直线所截,同位角相等;② 两条平行线被第三条直线所截,内错角相等;③ 两条平行线被第三条直线所截,同旁内角互补.平行线间的拐点问题① 已知 ,如图,当点 处于以下位置时, 与 , 的关系是:② 已知 ,如图,当存在 个 点时, 的值.③ 已知 ,如图,当存在 个 点时,, 与 的关系.AB ∥CD E ∠E ∠B ∠D AB ∥CD n E ∠B +∠D +∠+∠+∠+⋯+∠E 1E 2E 3E n AB ∥CD n E ∠B ∠D ∠+∠+∠+⋯+∠E 1E 2E 3E n例题:四、课后作业(查看更多本章节同步练习题,请到快乐学)AB ∥CD如图所示,已知直线 ,,则 _______.解:.AB ∥CD ∠1=50∘∠2=50∘答案:1. 如图,直线 ,直线 与 , 相交,,则 .A .B .C .D .Ba ∥bc a b ∠1=65∘∠2=()115∘65∘35∘25∘答案:2. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 A .先向左转 ,再向左转 B .先向左转 ,再向右转 C .先向左转 ,再向右转 D .先向左转 ,再向左转 B()130∘50∘50∘50∘50∘40∘50∘40∘答案:3. 如图,,直线 分别交 、 于点 、 ,若 ,则 的度数为 .A .B .C .D .DAB ∥CD BC AB CD B C ∠1=50∘∠2()40∘50∘120∘130∘4. 如图,直线 ,, 交直线 于点,,则 的度数是 a ∥b AC ⊥AB AC b C ∠1=60∘∠2()高考不提分,赔付1万元,关注快乐学了解详情。
最新人教版七年级数学下册各章节知识点归纳
![最新人教版七年级数学下册各章节知识点归纳](https://img.taocdn.com/s3/m/4fba38624693daef5ef73da7.png)
七年级数学下册知识点归纳第五章相交线与平行线5.1 相交线一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
5.2 平行线及其判定(一) 平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:平行于同一直线的两条直线互相平行。
5.3.1平行线的性质(2)
![5.3.1平行线的性质(2)](https://img.taocdn.com/s3/m/139c74e7f8c75fbfc77db28c.png)
复习
1、如图,BE是AB的延长线, AD∥BC,AB∥CD,若∠ D=100°, 则∠C= , ∠ A= , ∠ CBE= 。 D C
A
B
E
范例 例1、如图,a∥c, a⊥b,直线c与b 垂直吗?为什么? 转化思想 垂直 b 90° a
90°
垂直
c
巩固 2、 a 、b、 c 为同一平面内的三条 直线,下列判断不正确的是( ) A 若a⊥c , b⊥c ,则a∥b B 若a∥c , b∥c ,则a∥b C 若a∥b , b⊥c ,则a⊥c D 若a⊥b , b⊥c ,则a⊥c
引例
例、如图, AB∥EF, CD∥EF ,试说明 ∠B、∠D、∠BED的大小关系。
A
B
E
C D
F
范例 例2、如图,AB∥CD,试说明∠B、 ∠D 、∠BED之间的大小关系。 A B
E
C D 辅助线:为帮助解题而添加的线
Fቤተ መጻሕፍቲ ባይዱ
辅助线一般画成虚线
巩固 3、如图,AB∥CD,试说明∠B、 ∠D 、∠BED之间的大小关系。 A B E C D
需要辅助线吗?怎样添加?
作业 1、如图,AB∥CD,试说明∠B、 ∠D 、∠BED之间的大小关系。 A B
C E
D
作业 2、如图,AB∥CD,试说明∠ABE、 ∠D 、∠E之间的大小关系。 E
A
B C
D
作业 3、如图,已知三角形ABC,试说 明∠BAC+∠B +∠C=180°。 A
B
C
巩固 5、如图,直线a∥b,那么,三角形 ABC与三角形ABD的面积有什么关系? 为什么? C D a
A E
B F
5.3.1 平行线的性质(导学案)
![5.3.1 平行线的性质(导学案)](https://img.taocdn.com/s3/m/04faddb60b1c59eef9c7b4a9.png)
5.3 平行线的性质5.3.1 平行线的性质一、新课导入1.导入课题:利用同位角、内错角、同旁内角之间的关系可以判定两条直线平行.你还记得这些判定方法分别是如何叙述的吗?反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么关系呢?这就是本节课我们所要研究的内容.(板书课题)2.学习目标:(1)能叙述平行线的三条性质.(2)能运用平行线的三条性质进行简单的推理和计算.3.学习重、难点:重点:对平行线性质的理解及它们与平行线的判定之间的关系.难点:性质2和性质3的推理过程的逻辑表述.二、分层学习1.自学指导:(1)自学内容:课本P18的内容.(2)自学时间:8分钟.(3)自学要求:正确画图、测量、验证、归纳.(4)探究提纲:①画图:画两条平行线a∥b,再画一条截线c与直线a、b相交(如图1所示).②测量:测量这些角的度数,把结果填入表内.③分析:∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?答案:同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,相等.④猜想:两条平行线被第三条直线截得的同位角有什么关系?⑤验证:如果改变截线的位置,你的猜想还成立吗?⑥归纳:a.你能用文字语言表述你发现的结论吗?b.你还能用符号语言表述该结论吗?2.自学:学生按探究提纲进行研讨式学习.3.助学:(1)师助生:①明了学情:了解学生围绕探究提纲进行学习的情况及存在的困惑.②差异指导:对个别学生在学法和认知有偏差时进行点拨引导.(2)生助生:小组内学生之间相互交流,展示成果,查找并纠正不正确的认识或结论.4.强化:(1)平行线的性质1及其几何表述.(2)经历平行线的性质1的探究过程,体会研究几何图形的一般方法.1.自学指导:(1)自学内容:课本P19的内容.(2)自学时间:8分钟.(3)自学要求:阅读教材,重要的部分做好圈点,疑点处做好记号.(4)自学参考提纲:①与平行线的判定类似,你能由性质1推出两条平行线被第三条直线截得的内错角之间的关系吗?a.结合图2,你能写出推理过程吗?b.类比性质1,你能用文字语言表述上面的结论吗?答案:两直线平行,内错角相等.c.你还能用几何语言表述该结论吗?②a.类似地,可以推出平行线关于同旁内角的性质3:两直线平行,同旁内角互补,如图2,用几何语言表述为:∵a∥b,∴∠2+∠4=180°.b.试写出用性质1推出性质3的推理过程.c.试写出用性质2推出性质3的推理过程.③如图3,平行线AB、CD被直线AE所截.a.从∠1=110°,可以知道∠2是多少度吗?为什么?答案:∠2=110°.两直线平行,内错角相等.b.从∠1=110°,可以知道∠3是多少度吗?为什么?答案:∠3=110°.两直线平行,同位角相等.c.从∠1=110°,可以知道∠4是多少度吗?为什么?答案:∠4=70°.两直线平行,同旁内角互补.④如图4,AB∥CD,AE∥CF,∠A=39°,∠C是多少度?为什么?答案:∠C=39°.∵AB∥CD,∴∠C=∠FGB,又∵AE∥CF,∴∠A=∠FGB,∴∠A=∠C=39°.2.自学:同学们可参照自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂巡视了解学生的自学情况,尤其是性质2和性质3的推理过程,看学生能否写出来.②差异指导:对部分感到困难的学生进行点拨引导.(2)生助生:小组内相互交流、研讨、订正.4.强化:(1)平行线的性质1、2、3及其几何表述.(2)判定与性质的区别:从角的关系得到两直线平行,就是判定;从已知直线平行得到角相等或互补,就是性质.(3)练习:课本P20“练习”第1题和第2题.三、评价1.学生学习的自我评价:各小组组长对本组的学习成果和困惑进行总结交流.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):这节课比较成功的地方是:①对教学的方式进行了一定的尝试,注重学生的分析能力,启发学生用不同方法解决问题.②尽量锻炼学生使用规范性的几何语言.不足的是师生之间的互动配合和默契程度有待加强.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)如图,由AB∥CD可以得到(C)A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4第1题图第2题图2.(10分)如图,如果AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=(C)A.180°B.270°C.360°D.540°3.(10分)如图,一条公路两次转弯后,和原来的方向相同,那么如果第一次拐的角是76°,那么第二次拐的角是76度,根据是两直线平行,内错角相等.4.(10分)如图,要在公路的两侧铺设平行管道,如果公路一侧铺设的管道与纵向联通管道的角度为120°,那么,为了使管道对接,另一侧应以60°角度铺设纵向联通管道,根据是两直线平行,同旁内角互补.第3题图第4题图第5题图5.(20分)如图,已知a∥b,c、d是截线,若∠1=80°,∠5=70°,求∠2、∠3、∠4各是多少度?为什么?解:∵a∥b,∴∠2=∠1=80°(两直线平行,内错角相等),∠3=180°-∠5=110°(两直线平行,同旁内角互补).∵∠4=∠3(两直线平行,同位角相等),∴∠4=110°.二、综合运用(20分)6.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=122°,求图中其他角的度数.解:由题意得:∠3=∠1=45°,∠1+∠7=180°,∴∠7=180°-∠1=135°.∴∠8=∠7=135°.又∠4=∠2=122°,∠2+∠5=180°,∴∠5=180°-∠2=58°.∴∠6=∠5=58°.三、拓展延伸(20分)7.如图,直线DE经过点A,DE∥BC,∠B=44°,∠C=57°.(1)∠DAB等于多少度?为什么?(2)∠EAC等于多少度?为什么?(3)∠BAC等于多少度?(4)由(1)、(2)、(3)的结果,你能说明为什么三角形的内角和是180°吗?解:(1)∵DE∥BC,∴∠DAB=∠B=44°(两直线平行,内错角相等).(2)∵DE∥BC,∴∠EAC=∠C=57°(两直线平行,内错角相等).(3)∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC=180°-∠DAB-∠EAC=180°-44°-57°=79°.。
2024年最全面新人教版七年级数学下册教案全册精华版
![2024年最全面新人教版七年级数学下册教案全册精华版](https://img.taocdn.com/s3/m/8db7988c370cba1aa8114431b90d6c85ed3a8871.png)
2024年最全面新人教版七年级数学下册教案全册精华版一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面几何初步6.1:三角形的内角和6.2:三角形的性质6.3:全等三角形6.4:等腰三角形6.5:平行四边形二、教学目标1. 理解并掌握相交线和平行线的性质及判定方法。
2. 掌握三角形内角和定理及三角形的性质,学会运用全等三角形的判定。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用全等三角形的判定方法等腰三角形的性质和应用2. 教学重点:掌握三角形内角和定理理解并运用全等三角形的判定四、教具与学具准备1. 教具:三角板、直尺、圆规、量角器2. 学具:练习本、铅笔、三角板、直尺五、教学过程1. 实践情景引入:引导学生观察教室内的平行线和相交线,激发兴趣提问学生:在生活中,你们还见过哪些平行线和相交线?2. 例题讲解:讲解相交线和平行线的判定方法通过例题,展示三角形内角和定理的应用讲解全等三角形的判定方法及等腰三角形的性质3. 随堂练习:让学生独立完成练习题,巩固所学知识引导学生互相讨论,解决问题4. 知识拓展:介绍平面几何的发展历程拓展平行线和相交线在实际生活中的应用六、板书设计1. 相交线与平行线的判定方法2. 三角形内角和定理3. 全等三角形的判定方法4. 等腰三角形的性质七、作业设计1. 作业题目:练习相交线和平行线的判定计算三角形的内角和判断全等三角形运用等腰三角形的性质解决问题2. 答案:八、课后反思及拓展延伸1. 教学反思:分析学生的学习情况,调整教学方法2. 拓展延伸:鼓励学生课后观察生活中的几何图形,发现数学之美推荐相关书籍和资料,激发学生的学习兴趣组织实践活动,提高学生的实际操作能力重点和难点解析1. 教学难点与重点的确定2. 实践情景引入的设计3. 例题讲解的深度和广度4. 随堂练习的针对性和有效性5. 知识拓展的适时性和适度性6. 作业设计的系统性和层次性7. 课后反思及拓展延伸的实践性一、教学难点与重点的确定(1)难点解析:相交线与平行线的判定和应用是学生容易混淆的部分,需通过直观的教具演示和实际例题讲解,帮助学生建立清晰的概念。
最新新人教版七年级下册数学复习提纲
![最新新人教版七年级下册数学复习提纲](https://img.taocdn.com/s3/m/e83bda37fd0a79563d1e7281.png)
c、应用题1个(6—8分)
第九章不等式与不等式组
9.1不等式
1、用小于号或大于号表示大小关系的式子,叫做不等式。
2、使不等式成立的未知数的值叫做不等式的解。
3、能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集。
4、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
5、不等式的性质:
不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。
9.3一元一次不等式组
6、把两个一元一次不等式合在起来,就组成了一个一元一次不等式组。
6、样本容量:样本中个体的数目称为样本容量.
7、简单随机抽样调查:抽取样本的过程中,总体中的每一个个体都有相等的机会被抽到,
像这样的抽样方法是一种简单的随机抽样。
二、统计图的分类:
1.条形统计图——适用于显示不同对象之间的数量特征,根据长方形(条形)的高度能
直观地看出被统计对象的量的大小、多少等。
2.折线统计图——适用于显示同一事物在不同的数量变化特征,根据折线的变化能直观
的坐标。
第八章二元一次方程组
8.1二元一次方程组
1、方程中含有未知数(如:x和y),并且未知数的指数(或未知项的次数)都是
1,像这样的方程叫做二元一次方程(本知识考点会出现在填空题和选择题中,注意次数
为1和系数不为0)。
2、把两个含有相同未知数二元一次方程合在一起,就组成了一个二元一次方程组。
3、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解(二元
七年级数学下册教学课件《平行线的性质》
![七年级数学下册教学课件《平行线的性质》](https://img.taocdn.com/s3/m/c2c8cb28ce84b9d528ea81c758f5f61fb6362862.png)
d
c
21 a
34
65 b
78
对应训练
1.如图,直线a∥b,c是截线,若∠1=60°,则∠2的度数为 __1_2_0_°_.
2.如图,已知AB∥CD,BC是∠ABD 的平分线,若∠2=64°, 则∠3=__5_8_°__.
探究点2 两直线平行,内错角相等
你能结合图形,由性质1推出两条平行线被第三条直线截得的
内错角之间的关系吗?
c
两条直线平行
21 a
34
同位角相等
转化
内错角相等
65 b
78
探究点2 两直线平行,内错角相等
你能结合图形,由性质1推出两条平行线被第三条直线截得的
内错角之间的关系吗?
c
解:∵a∥b(已知), ∴∠1=∠5(两直线平行,同位角相等).
21 a
34
又∵∠1=∠3(对顶角相等),
∴∠3=∠5(等量代换).
拓展提升
我们生活中经常接触的小刀刀柄外形是一个直角梯形(下底 挖去一小半圆),刀片上、下是平行的.把处于闭合状态的 刀片打开,得到如图所示的图形. (1)若∠1=55°,求∠2的度数; (2)在刀片打开过程中,若∠2始终为钝角,试说明 ∠2=∠1+90°.
解:(1)如图,延长CB交AD于点E. 由题意可知∠BAG=90°,AG∥CE, ∴∠EAG=∠1+∠BAG=55°+90°=145°, ∠EAG=∠DEC. ∴∠DEC=145°. ∵刀片上、下是平行的,即AD∥CF, ∴∠2=∠DEC=145°. (2)由(1)可知 ∠DEC=∠DAG=∠1+∠BAG=∠1+90°, ∠2=∠DEC,∴∠2=∠1+90°.
21 a
新人教版七年级下5.3.1平行线的性质学案
![新人教版七年级下5.3.1平行线的性质学案](https://img.taocdn.com/s3/m/aaadd4cfd5bbfd0a79567372.png)
新人教版七年级下5.3.1平行线的性质学案一、课前自主学习: (一)填空题 1. 如图(1),若l 1∥l 2,∠1=45°,则∠2=_____.2.如图(2),已知直线a ∥b ,c ∥d ,∠1=115°,则∠2=_____,∠3=_____.3.如图(3)已知AB ∥CD ,∠1=100°,∠2=120°,则∠ =_____.4.如图(4)所示,直线a ,b 被c 所截,,现给出下列四个条件:①∠2=∠6;②∠2=∠8;③∠1+∠4=180°;④∠3=∠8.其中能判定a ∥b 的条件的序号是( ) A . ①、② B . ①、③ C . ①、④ D . ③、④5.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是_________. A .第一次向右拐40°,第二次向左拐40° B .第一次向右拐50°,第二次向左拐130° C .第一次向右拐50°,第二次向右拐130° D .第一次向左拐50°,第二次向左拐130° (二)选择题:6.如图(5),已知DE ∥AB ,那么表示∠3的式子是( )A .∠1+∠2-180°B .∠1-∠2C .180°+∠1-∠2D .180°-2∠1+∠27.已知下列命题 ①内错角相等;②相等的角是对顶角;③互补的两个角是一定是一个为锐角,另一个为钝角;④同旁内角互补.其中正确命题的个数为 ( )A .0B .1C .2D .3 8如图(6),可以得到DE ∥BC 的条件是_________.A .∠ACB =∠BAC B .∠ABC +∠BAE =180° C .∠ACB +∠BAD =180° D .∠ACB =∠BAD9. 两条直线被第三条直线所截,若有一对同位角相等,则一对同旁内角的角平分线( ) A .互相垂直 B .互相平行 C .相交但不垂直 D .不能确定 10. 如图(7),如果∠1=∠2,那么下面结论正确的是( )A .AD ∥BCB .AB ∥CDC .∠3=∠4D .∠A =∠C (三)解答题:d c b a 321α21E D C B A 321F E D C B A 87654321c b a 4321D CBA (2) (3) (4) (5) (6) (7)11. 如图(8),已知∠1=∠2,求∠3+∠4的度数.12. 如图(9),已知∠AEC=∠A+∠C,试说明:AB∥CD.课前自主学习答案:1.135°;2.115°,115°;3.20°;4A;.5.A;6.A;7.A;8.B;9.A;10.B;11.解:∵∠1=∠2,∴AB∥CD,∴∠3+∠MND=180°,又∠4+∠MND==180°,∴∠3=∠4;12.解:如图(10)过点E作EF∥AB,∴∠A=∠AEF,∵∠AEC=∠A+∠C∴∠AEC=∠AEF+∠C∴∠AEC-∠AEF=∠C∴∠FEC=∠C∴EF∥CD,∴AB∥CD.二、课堂互动探究(1)知识要点梳理8的度数:可以发现,∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8知识点一:平行线的性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等;知识点二:平行线的性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等;EDCBAF EDCBAa (8)(9)(10)如图(12),a ∥b ,求证:∠1=∠2.∵a ∥b , ∴∠3=∠2, ∵∠1=∠3, ∴∠1=∠2.知识点三:平行线的性质3两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补;如图(13),a ∥b ,求证:∠1+∠2=180°.∵a ∥b , ∴∠3=∠2∵∠3+∠1=180°∴∠1+∠2=180°.(2)典型例题分析例一:如图(14)所示,已知180ABC C ∠+∠=︒,BD 平分,与D ∠相等吗?请说明理由.分析:本题考查的是平行线的判定和性质的应用.由已知可得AB ∥CD ,∠ABD =∠D ,∠ABD =∠DBC ,问题得证.解:∠D =∠DBC .理由如下: ∵180ABC C ∠+∠=︒,∴AB ∥CD , ∴∠D =∠ABD , 又∠ABD =∠DBC , ∴∠D =∠DBC .变式一:已知:如图(15),∠+∠=∠=∠BAP APD 18012,. 求证:∠E=∠F.分析:分析:本题考查的是平行线的判定和性质的应用.证明:,180=∠+∠APD BAP∴AB ∥CD ,∴∠BAP =∠CP A , ∵∠1=∠2,∴∠BAP -∠1=∠CP A -∠2, ∴∠EAP =∠FP A . ∴PF ∥AE , ∴∠E=∠F.DCBAP21F E DCB Ac ac a(14)(15)变式二:已知:如图(16):∠AHF +∠FMD =180°,GH 平分∠AHM ,MN 平分∠DMH 。
人教版数学七年级下册5.3.1平行线的判定(教案)
![人教版数学七年级下册5.3.1平行线的判定(教案)](https://img.taocdn.com/s3/m/d7900402302b3169a45177232f60ddccda38e6f2.png)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用直尺和量角器来验证平行线的判定方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“平行线的判定”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”比如,铁轨或者教室的黑板边缘。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
人教版数学七年级下册5.3.1平行线的判定(教案)
一、教学内容Biblioteka 本节课选自《人教版数学七年级下册》第五章第三节第一部分“5.3.1平行线的判定”。教学内容主要包括以下两点:
1.掌握平行线的定义:在同一平面内,两条直线不相交,且在平面内没有任何其他直线与这两条直线同时相交,则这两条直线互相平行。
2.学会平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
举例解释:在讲解平行线的判定方法时,可以通过具体图形展示同位角、内错角、同旁内角的概念,并通过实际例题让学生练习如何使用这些方法。
2.教学难点
-理解“同一平面”的概念:学生需要理解为什么要在同一平面内讨论直线是否平行,不同平面内的直线是否有平行的可能性。
-判定方法的适用条件:学生需要明确在什么情况下可以使用同位角相等、内错角相等、同旁内角互补这些判定方法,以及这些方法之间的关系。
2024年新版人教版七年级数学下册教案全册
![2024年新版人教版七年级数学下册教案全册](https://img.taocdn.com/s3/m/c73d8a1de55c3b3567ec102de2bd960590c6d9f8.png)
2024年新版人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面直角坐标系6.1:平面直角坐标系6.2:坐标与图形的性质6.3:坐标与图形的变化二、教学目标1. 理解并掌握相交线与平行线的性质和判定方法。
2. 学会运用平面直角坐标系表示点的位置,并分析坐标与图形之间的关系。
3. 能够运用所学知识解决实际问题。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用。
平面直角坐标系的建立和点的坐标表示。
2. 教学重点:理解并运用相交线与平行线的性质。
掌握平面直角坐标系的概念和应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 导入新课实践情景引入:展示实际生活中相交线与平行线的应用场景,如道路、桥梁等。
提问:同学们在生活中见过这样的图形吗?它们有什么特点?2. 新课讲解讲解第五章相交线与平行线的内容,通过示例和练习进行巩固。
讲解第六章平面直角坐标系的概念,以及坐标与图形的关系。
3. 例题讲解解答第五章相交线与平行线的相关例题。
解答第六章平面直角坐标系的相关例题。
4. 随堂练习学生完成第五章相交线与平行线的随堂练习题。
学生完成第六章平面直角坐标系的随堂练习题。
5. 知识巩固学生互相讨论,加深对知识的理解。
六、板书设计1. 黑板左侧:相交线与平行线的性质、判定方法。
2. 黑板右侧:平面直角坐标系的概念、坐标表示方法。
3. 中间部分:例题解答、随堂练习题。
七、作业设计1. 作业题目:第五章相交线与平行线习题:练习判断相交线与平行线,并解释原因。
第六章平面直角坐标系习题:在坐标系中绘制给定坐标的点,并分析坐标与图形的关系。
答案:见教材课后习题答案。
八、课后反思及拓展延伸2. 拓展延伸:鼓励学生探索相交线与平行线在生活中的应用,以及平面直角坐标系在地理、计算机等领域的应用。
2022-2023学年人教版七年级下册数学:5.3.1平行线的性质(2)说课稿
![2022-2023学年人教版七年级下册数学:5.3.1平行线的性质(2)说课稿](https://img.taocdn.com/s3/m/914ac550a9114431b90d6c85ec3a87c240288ac0.png)
2022-2023学年人教版七年级下册数学:5.3.1平行线的性质(2)说课稿一、教学目标1.知识与技能:–掌握平行线的性质:平行线的定义、平行线的判定条件。
–能够判断两条线段是否平行。
2.过程与方法:–通过引入学生日常生活中的场景,激发学生的学习兴趣;–引导学生观察、发现规律,培养学生的思维能力和观察力;–利用演绎法和归纳法进行知识的传递和归纳。
3.情感态度与价值观:–培养学生积极思考和动手实践的能力;–培养学生对数学知识的兴趣和好奇心;–培养学生合作学习的意识和团队精神。
二、教学重难点1.教学重点:–平行线的概念与性质:平行线的定义、平行线的判定条件。
–判断两条线段是否平行的方法。
2.教学难点:–平行线与垂直线之间的关系。
三、教学过程1. 导入新课通过观察一个图形,让学生来判断两根线段是否平行。
引导学生思考并给出自己的判断依据,引入平行线的概念。
2. 探究平行线的性质•引导学生回顾上节课所学习的平行线的定义,让学生复述并展示出来。
•通过给出几个示例,让学生观察线段的位置关系,引导他们尝试总结得出判定两条线段平行的条件。
•引导学生根据已掌握的知识,对给出的几组线段进行判断是否平行。
•分析并总结判断线段平行的方法和条件。
3. 练习和巩固•让学生在黑板上写出用于判断线段平行的条件,并帮助学生梳理知识。
•给学生发放练习册,让学生在课堂上独立完成相关习题。
•点评学生的作业,解答学生存在的问题。
4. 拓展应用•设计一些更加复杂的问题,让学生综合运用平行线的性质进行解答。
•鼓励学生思考,提高解决问题的能力。
5. 总结与展望•对本节课的学习内容进行总结和回顾,强调平行线的性质和判定方法。
•展望下节课的内容,告知学生将学习平行线的性质(3)。
四、板书设计平行线的性质•定义:平行线是在同一个平面内,不相交且无论如何延长也不会相交的两条直线。
•判定条件:1.两条平行线上的任意一对相交线段对顶角相等;2.两条平行线上的任意一对对顶角相等。
2024年新人教版七年级数学下册教案全册
![2024年新人教版七年级数学下册教案全册](https://img.taocdn.com/s3/m/b3d5132ca517866fb84ae45c3b3567ec112ddc00.png)
2024年新人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1:垂直与平分5.2:相交线与平行线的性质5.3:平行线的判定2. 第六章:平面几何初步6.1:三角形的特性6.2:全等三角形6.3:相似三角形二、教学目标1. 理解并掌握相交线、平行线的性质及其判定方法。
2. 掌握三角形的特性,学会运用全等三角形、相似三角形的性质解决问题。
3. 培养学生的空间想象能力、逻辑思维能力和问题解决能力。
三、教学难点与重点1. 教学难点:相交线与平行线的判定方法全等三角形、相似三角形的判定与性质2. 教学重点:掌握垂直与平分、平行线的性质学会运用全等三角形、相似三角形解决问题四、教具与学具准备1. 教具:三角板、量角器、直尺、圆规2. 学具:三角板、量角器、直尺、圆规、练习本五、教学过程1. 引入实践情景:介绍生活中常见的相交线与平行线现象,激发学生学习兴趣。
2. 教学第五章:5.1:讲解垂直与平分的概念,通过例题讲解,让学生掌握相关性质。
5.2:引导学生探索相交线与平行线的性质,进行随堂练习。
5.3:介绍平行线的判定方法,结合例题讲解,巩固知识。
3. 教学第六章:6.1:讲解三角形的特性,通过例题讲解,让学生掌握相关性质。
6.2:介绍全等三角形的判定与性质,结合随堂练习,巩固知识。
6.3:讲解相似三角形的判定与性质,通过例题讲解,让学生学会运用。
六、板书设计1. 相交线与平行线的性质2. 垂直与平分3. 平行线的判定4. 三角形的特性5. 全等三角形、相似三角形的判定与性质七、作业设计1. 作业题目:已知一个三角形的两边和夹角,求第三边。
判断两个三角形是否全等,并说明理由。
2. 答案:八、课后反思及拓展延伸1. 教师应关注学生对相交线、平行线性质的理解,加强随堂练习,巩固知识。
2. 通过拓展延伸,让学生学会运用全等三角形、相似三角形解决实际问题,提高问题解决能力。
3. 鼓励学生进行课后自主学习,探索更多有关平面几何的知识。
5.3.1平行线的性质
![5.3.1平行线的性质](https://img.taocdn.com/s3/m/26d560db240c844769eaeebc.png)
回答:如图
(1)∠3=∠B,则EF∥AB,依据是
同位角相等,两直线平行
(2)∠2+∠A=180°,则DC∥AB, 依据是 同旁内角互补,两直线平行 (3)∠1=∠4,则GC∥EF,依据是
内错角相等,两直线平行
(4) GC∥EF,AB∥EF,则GC∥AB, 依据是 平行于同一直线的两直线平行. (5)EF⊥BC,AB⊥BC,则EF∥AB, 依据是 平面内,垂直于同一直线的两直线平行.
比一比
平行线的“判定”与“性质”有什么不
判定:已知角的关系得平行的关系. 推平行,用判定. 性质:已知平行的关系得角的关系. 知平行,用性质.
已知 判定
同位角相等 内错角相等 同旁内角互补
得到
两直线平行
性质 已知
得到
4.如图,已知AB、CD、EF互相平行,且 ∠ABE =70°,∠ECD = 150°,则 ∠BEC =________.
整理归纳: 平行线的性质 性质1:两直线平行,同位角相等. ∵ a∥b ( 已知 )
∴ ∠1=∠2(两直线平行,同位角相等) 性质2:两直线平行,内错角相等. ∵a∥b( 已知 ) ∴ ∠1=∠3(两直线平行,内错角相等)
性质3:两直线平行,同旁内角互补. ∵a∥b( 已知 ) ∴ ∠1+∠4=180° (两直线 平行,同旁内角互 补)
1.已知:如图,a// b ,那么3与2有什么关系? 解: ∠ 2 = ∠3,理由如下: ∵ a∥b ∴∠1= ∠2( 两直线平行,同位角相等 ) ∠1 又∵∠3 = ___(对顶角相等), ∴∠ 2 = ∠3.
平行线的性质2 两条平行线被第三条直线所截,内错角相等 简单说成:两直线平行,内错角相等。
2020--2021学年人教版数学七年级下册第五章:5.3.1 平行线的性质
![2020--2021学年人教版数学七年级下册第五章:5.3.1 平行线的性质](https://img.taocdn.com/s3/m/8dacdbae27284b73f342505c.png)
平行线的性质一.平行线的判定和性质综合--平行的判定1.如图,CE平分∠BCD,DE平分∠ADC,当∠CED=______°时,AD∥BC.2.如图,已知∠EAC=90∘,∠1+∠2=90,∠1=∠3,∠2=∠4.则DE与BC______(填位置关系)3.如图,E是直线AB,CD内部一点,连接BE,DE,若∠ABE=40°,∠CDE=60°,当∠BED的度数为______度时,AB∥CD.4.已知:如图EF⊥AB于点O,FG交CD于点P,当∠1=30°时,当∠EFG的度数为______度时,AB∥CD5.如图,已知直线c和a、b分别交于A、B两点,点P在直线c上运动.若P点在AB两点之间运动,试探究:当∠1、∠2和∠3之间满足的数量关系是∠2=______时,a∥b.二.平行线的性质--同位角1.如图,直线c与直线a,b相交,且a∥b,∠1=60°,则∠2的度数是()2.如图,AB∥CD,AC∥BD,∠1=28°,则∠2的度数为______°.3.如图,已知AB∥CD,GM∥HN, GM平分∠EGB,若∠MGB=40°.则∠NHD=______°4.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=57°,则∠2的度数是()三.平行线的性质--内错角1.如图,l1∥l2,∠1=110∘,则∠2的度数是()2.如图,直线AB,CD被直线EF所截,AB∥CD,AG平分∠BAE交CD于点G,∠2=30°,则∠1=______度3.一副直角三角板按如图所示的方式摆放,其中点C在FD的延长线上,且AB∥FC,则∠CBD的度数为()4.如图,将一副三角板如图放置,∠BAC=∠ADE=90°,∠B=60°,∠EAD=45°,若AE∥BC,则∠CAD=______度四.平行线的性质--同旁内角1.如图,a∥b,直线c与a,b相交,∠1=120∘,则∠2=______°2.如图:AB∥CD,AE平分∠BAC,CE平分∠ACD,则∠1+∠2=______度3.如图,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数()4.将一副三角板如图放置,∠ABE=30°,∠DAC=45°,若DA∥BC,则∠EBC=______度.五.平行线的性质综合--角度计算1.如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=______°2.如图,直线AB∥CD//EF.若CF平分∠ECD,且满足CF∥BE,∠ECD=80°,则∠ABE的度数为______度.3.如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,则图中∠EGF=______°.4.如图,AC∥BD,∠A=60°,∠C=62°,则∠2=______°,∠3=______°,∠1=______°5.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于点C.若∠O=40°,则∠ECF的度数为______度;∠OCG=______度.六.平行线的性质综合--找相等的角1.如图,AB∥EF,EF∥CD,EG∥BD,则图中与∠1相等的角(除∠1外)共有()2.如图,EG∥BC,CD交EG于点F,那么图中与∠1相等的角共有______个.3.如图,AB∥EF∥CD,GH∥PN,MN∥HK,则图中与∠CHM相等的角(∠CHM 除外)共有()4.如图,AD∥EG∥BC,AC∥EF,则图中与∠1相等的角(不含∠1)有______个七.平行线的性质综合--拐弯问题1.如图,安装某管道,需经过两次拐弯,若要求拐弯后的管道与拐弯前的管道平行,第一次拐弯处的∠B=142°,那么第二次拐弯处的∠C=______°.2.某学生上学路线如图所示,他总共拐了三次弯,最后行车路线与开始的路线相互平行,已知第一次转过的角度,第三次转过的角度,则第二次拐弯角(∠C)的度数是()3.如图所示,一辆汽车,经过两次转弯后,行驶的方向与原来保持平行,如果第一次转过的角度为α,第二次转过的角度为β,则β等于()4.如图,某学员在广场上练习驾驶汽车,第一次向左拐弯15度行驶一段后,第二次向左拐弯13度,再次行驶一段后,那么第三次要向______拐弯______度,则行驶方向与原来行驶方向相同.八.平行线的性质综合--折叠问题1.将长方形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将长方形ABFE与长方形EFCD分别沿折痕MN 和PQ折叠,使点A、点D都与点F重合,展开纸片,若∠AMN=60°,则∠MFP=______°.2.如图,将长方形纸片ABCD折叠,折痕为EF,BC的对应边B′C′与CD交于点P,若∠AEB′=32°,则∠C′FC的度数为______°.3.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=______°.4.如图,把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB =32°,则下列结论中:①∠C′EF=32°,②∠AEC=116°,③∠BGE=64°,④∠BFD=116°,正确的有______.(按从小到大的序号填写)九.平行线的性质综合--三角板问题1.将直尺和直角三角板按如图方式摆放,已知∠1=30∘,则∠2的大小是( )2.将直尺和直角三角板按如图方式摆放,已知∠1=30∘,则∠2的大小是( )3.将直尺和直角三角板按如图方式摆放,已知∠1=35∘,则∠2的大小是( )4.将直尺和直角三角板按如图方式摆放,AB//EF,已知∠1=55∘,则∠2的度数是______度.5.将一副三角板如图放置,使点A在EF上,BC∥EF,则∠ACE的度数为______度.6.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为______度.十.平行线的性质综合--铅笔型1.判断:如图,AB∥CD,∠A+∠E+∠C=180°.______(填“对”或“错”)2.小芳给自己家的小狗乐乐做了一个小木屋,其侧面如图所示.AE//CF,若她已测出∠A=135°,∠C=125°,由于受条件影响,屋顶的∠B的度数无法测出.哥哥看到后说,不用测量,他能算出∠B=______°3.如图,l//m,∠1=115∘,∠2=95∘,则∠3=______°.4.如图,已知AB∥CF,CF∥DE,∠1=120°,∠2=105°,则∠3=______°.5.如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,∠2=______°.十一.平行线的性质综合--锯齿型1.如图,直线AB∥CD,∠1=25∘,∠F=90∘,则∠2的度数为( ).2.如图,已知直线m∥n,∠1=36°,∠2=90°,则∠3的度数为( )3.如图,在△ABC中,∠ABC=90°,直线l1,l2,l3分别经过△ABC的顶点A,B,C,且l1∥l2∥l3,若∠1=40°,则∠2的度数为( )4.如图所示,AB//CD,BF平分∠ABE,DF平分∠CDE,∠BED=80∘,则∠BFD的度数为______°.5.如图所示,AB//CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35∘,那么∠BED的度数为______度.十二.平行线的性质综合--牛角型1.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠DEF=120∘,∠CDE=25∘,则∠BCD的度数是()2.如图,AB//CD,∠B=160°,∠D=120°,则∠E=______°.3.如图,AB//DE,∠ABC=60∘,∠CDE=150∘,则∠BCD=______°.4.如图所示,AB//CD//EF,若∠ABC=50°,∠BCE=20°,则∠CEF=______°.5.如图,EF//AD,AD//BC,CE平分∠BCF,∠DAC=114°,CE、CF是∠ACB 的三等分线,则∠EFC=______°.十三.平行线的性质综合--锄头型1.如图,直线AB//CD,∠B=50∘,∠C=40∘,则∠E等于______度.2.如图,已如AB//CD,若∠A=25∘,∠E=40∘,则∠C=______度.3.如图,直线EF//GH,点A在EF上,AC交GH于点B,若∠EAB=110∘,∠C=60∘,点D在GH上,则∠BDC的度数为______度.4.如图,BC//DE,若∠A=35∘,∠C=24∘,则∠E等于______度.5.如图,a//b,c⊥d,∠1=25∘,则∠2=______度.十四.平行线的性质综合--模型综合1.如图所示,AB∥CD,∠C=125∘,∠E=80∘,则∠A=______°.2.如图,AB//CD,∠P=90∘,∠C=140°,则∠A+∠E的度数为( )3.如图,正五边形ABCD中,11∥12,∠1-∠2的度数为______°(提示:正五边形的每个内角都是108°)4.如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为( )5.如图所示,已知 FC∥AB∥DE,∠α:∠D:∠B=2:3:4,则∠B=______度.6.如图,AB//CD,∠ABE和∠CDE的平分线相交于点F,若∠E=30°,则∠F=______°十五.平行线的性质综合--几个角之间的数量关系1.如图所示,AB∥CD,且点E在射线AB与CD之间,则∠A+∠C______∠AEC (填大于、小于、等于)2.如图,AB∥CD,点E在AB与CD的上方,则∠1+∠2-∠E=______°.3.如图,直线m∥n,则∠1、∠2、∠3、∠4间的数量关系是( )十六.平行线的判定和性质综合--反射问题1.如图,两条平行光线射向平面镜面后被反射,其中一条光线AB反射后的光线是BC,此时∠1=∠2=46°,另一条光线的反射光线EF与镜面的夹角∠3的度数为( )2.根据光反射定律,射到平面镜上的光线与被反射出的光线与平面镜的夹角相同,如图,已知∠AOB的两边OA、OB均为平面反光镜,∠AOB=36°,在OB 上有一个点E,从点E射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠CDE的度数是( )3.如图所示,两平面镜α、β的夹角为60°,入射光线AO平行于β入射到α上,经两次反射后的反射光线O′B平行于α,则∠1的度数为( )4.如图,两平面镜OA,OB的夹角为∠O,入射光线CD平行于OB入射到镜面OA上,经两次反射后的反射光线EF恰好平行于OA,则∠O的度数为______度.5.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=38°,则∠2=______°,∠5=______°十七.平行线的判定和性质综合--角度计算1.如图,已知:AD⊥BC于D,EF⊥BC于F,∠3=∠E=45°,则∠1=______°.2.如图,已知∠1=∠2,∠B=40°,则∠3=______度.3.如图,已知∠1=∠2=∠3=62°,则∠4=()4.如图,∠1=∠2=30°,∠A=60°,则∠ADB=______度.5.如图在三角形ABC中, D,E,F三点分别在AB,AC,BC上,过点D的直线与线段EF的交点为点M,已知2∠1-∠2=150°,2∠2-∠1=30°,∠DEF=∠EFC,∠C =50°,则∠3=______°.6.如图,∠ABC=∠ACB=70°,且∠EAC=2∠ABC,AD平分∠EAC,BD平分∠ABC.则∠ADB=______°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D A
2 1 E
F 3
C B
1.梳理旧知,归纳方法
(2)结合图形回答问题: ②如果DE∥FB,能得到∠1与∠3的关系吗?为什么? 答:∠1=∠3.根据两直线平行,同位角相等.
D A
2 1 E
F 3
C B
1.梳理旧知,归纳方法
(2)结合图形回答问题: ③根据哪两条直线平行可以得到∠A+∠ ABC=180º? 为什么? 答: AD∥CB .根据两直线平行,同旁内角互补.
4.归纳小结 (1)平行线的性质与判定的区别是什么?
(2)在解决具体问题过程中,你能区别
什么时候需要使用平行线的性质,什么时 候需要使用平行线的判定吗?
5.布置作业 教科书 习题5.3 第7、8、14题, 复习题5 第6题
2.综合运用,巩固提高
练习2 已知:如图,∠AGD=∠ACB,
∠1=∠2,CD与EF平行吗?为什么?
答:CD∥EF.
G A 1 2 D E C F B
2.综合运用,巩固提高
理由如下:
A G 1 2 D E C
∵ ∠AGD =∠ACB ,
∴ GD∥BC. ∵∠1和∠3是内错角, ∵∠1=∠2, 3
D A
2 1 E
F 3
C B
1.梳理旧知,归纳方法
问题2 如图,是一块梯形铁片的残余部分,量得
∠A=100º ,∠B=115º ,梯形的另外两个角分别是 多少度?
1.梳理旧知,归纳方法
解:因为梯形上、下两底 AB∥CD , 根据“两直线平行,同旁内角互补”, 可得∠A+∠D =180º ,∠B+∠C =180º . 于是∠D =180º -∠A
5.3.1 平行线的性质(第二课时)
课件说明
本课学习是通过对例题ห้องสมุดไป่ตู้练习的分析和 讲解,巩固平行线性质和判定,培养学生的
推理能力,渗透分析问题的方法.
课件说明
学习目标: (1)平行线的性质与判定的应用. (2)经历例题的分析过程,从中体会转化的思 想和分析问题的方法,进一步培养推理能力,体 会数学在实际生活中的应用.
F
B
∴∠1=∠3(两直线平行,内错角相等).
∴∠2=∠3.
∵∠2和∠3是同位角, ∴ CD∥EF(同位角相等,两直线平行).
3.应用迁移,拓展升华
问题5 如图,潜望镜中的两面镜子是互相平行放 置的,光线经过镜子反射时,∠1=∠2,∠3=∠4, ∠2和∠3有什么关系?为什么进入潜望镜的光线 和离开潜望镜的光线是平行的?
学习重点:
综合应用平行线的性质与判定解决问题.
1.梳理旧知,引入新课
问题1 (1)平行线的性质是什么?
这三个性质中条件和结论分别是什么? 性质1 两直线平行,同位角相等. 性质2 两直线平行,内错角相等. 性质3 两直线平行,同旁内角互补.
1.梳理旧知,归纳方法
(2)结合图形回答问题: ①如果AB∥CD ,∠1与∠2相等吗?为什么? 答:相等.根据两直线平行,内错角相等.
∠BCD,你能发现BE与CF的位置关系吗?说明理由. 答: BE∥CF.
A E
B
F C D
2.综合运用,巩固提高
理由如下:
∵ BE平分∠ABC,
1 ∴ 1 2 ABC. 1 同理 2 BCD. 2
A E B
1
F ∵ AB∥CD, 2 ∴∠ABC=∠BCD. D C ∴∠1=∠2. ∵∠1和∠2是内错角, ∴ BE∥CF(内错角相等,两直线平行).
3.应用迁移,拓展升华
已知条件:如图,AB∥CD,∠1=∠2, ∠3=∠4. 猜想:∠2和∠3有什么关系,并说明理由;
试说明:PM∥NQ.
答:∠2=∠3. 理由如下: ∵ AB∥CD , ∴ ∠2=∠3(两直线平行,内错角相等).
3.应用迁移,拓展升华
已知条件:如图,AB∥CD,∠1=∠2, ∠3=∠4. 试说明:PM∥NQ. 理由如下: ∵∠1=∠2 ,∠3=∠4, 又∵∠2=∠3. ∴∠1=∠2 =∠3=∠4. ∵∠1+∠2 +∠5=180º ,∠3+∠4 +∠6=180º , ∴∠5=∠6. ∵∠5和∠6是内错角, ∴ PM∥NQ (内错角相等,两直线平行).
o =80º =180º -100º ,
∠C =180º - ∠B
=180º -115º =65º.
所以,梯形的另外两个角分别是80º ,65º.
1.梳理旧知,归纳方法
问题3 对比平行线的性质和判定方法,你能说出 它们的区别吗?
判 定 性 质
条件 同位角相等 内错角相等 同旁内角互补 两直线平行
结论 两直线平行 同位角相等 内错角相等 同旁内角互补
2.综合运用,巩固提高
问题4 已知,如图,∠1=∠2,CE∥BF,
试说明: AB∥CD.
理由如下: ∵ CE∥BF, E A B 1 ∴∠1=∠B. ∵∠1=∠2 , 2 C D F ∴∠2=∠B. ∵∠2和∠B是内错角, ∴ AB∥CD(内错角相等,两直线平行).
2.综合运用,巩固提高
练习1 如图,AB∥CD,BE平分∠ABC,CF平分