常州金坛区2018-2019学年八年级月考数学试题(含答案)

合集下载

2018-2019学年八年级下第二次月考数学试卷含答案解析

2018-2019学年八年级下第二次月考数学试卷含答案解析

2018-2019学年八年级(下)第二次月考数学试卷一.选择题(每小题3分,共30分)1.(3分)函数y=,自变量x的取值范围是()A.x>2 B.x<2 C.x≥2 D.x≤22.(3分)直角三角形两直角边边长分别为6和8,则连结这两条直角边中点的线段长为()A.3 B.4 C.5 D.103.(3分)一次函数y=2x﹣3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)在下列命题中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形5.(3分)已知函数y=(m﹣3)x+2,若函数值y随x的增大而减小,则m的取值范围是()A.m>3 B.m<3 C.m≥3 D.m≤36.(3分)已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.7.(3分)将直线y=4x的图象向下平移3个单位长度,所得直线的函数解析式是()A.y=4x+3 B.y=4x﹣3 C.y=4(x+3)D.y=4(x﹣3)8.(3分)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD 一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形9.(3分)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较10.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(每小题2分,共14分)11.(2分)计算: +=.12.(2分)已知菱形的两条对角线长分别是6和8,则这个菱形的面积为.13.(2分)如图,阴影部分是一个正方形,此正方形的面积为cm2.14.(2分)已知矩形ABCD,当满足条件时,它成为正方形(填一个你认为正确的条件即可).15.(2分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.16.(2分)在▱ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB 为x轴,如图建立直角坐标系,则C的坐标是.三.解答题(8大题,共56分)17.(8分)计算:(2﹣)(2+)+(﹣1)2010.18.(8分)先化简,再求值:(1﹣)÷,其中a=+1.19.(8分)如图,在菱形ABCD中,E,F分别是BC,CD上的一点,且BE=DF.求证:AE=AF.20.(8分)已知y与x+2成正比例,且当x=1时,y=6.(1)求y与x之间的函数关系式;(2)若点(m,1)在这个函数图象上,求m.21.(8分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求点C的坐标.(2)若直线AB上的点C在第一象限,且S△BOC22.(8分)电力资源丰富,并且得到了较好的开发.某地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x(度)与相应电费y(元)之间的函数图象如图.(1)月用电量为100度时,应交电费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月用电量为250度时,应交电费多少元?23.(8分)已知直线y=﹣2x+6与x轴交于点A,与y轴交于点B.(1)点A的坐标为,点B的坐标为;(2)求出△AOB的面积;(3)直线AB上是否存在一点C(C与B不重合),使△AOC的面积等于△AOB 的面积?若存在,求出点C的坐标;若不存在请说明理由.24.(8分)在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG 上时,请你帮他求出此时△ADG的面积.25.(8分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.26.(8分)如图,已知一次函数y=﹣x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=MP,MB=OM,OE=ON,ND=NP.(1)b=;(2)求证:四边形BCDE是平行四边形;(3)在直线y=﹣x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.2018-2019学年八年级(下)第二次月考数学试卷参考答案与试题解析一.选择题(每小题3分,共30分)1.(3分)函数y=,自变量x的取值范围是()A.x>2 B.x<2 C.x≥2 D.x≤2【解答】解:由题意得,x﹣2≥0,解得x≥2.故选:C.2.(3分)直角三角形两直角边边长分别为6和8,则连结这两条直角边中点的线段长为()A.3 B.4 C.5 D.10【解答】解:如图,∵两条直角边长分别为6和8,∴斜边==10,∴两条直角边中点线段的长=×10=5.故选:C.3.(3分)一次函数y=2x﹣3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵一次函数y=2x﹣3的k=2>0,b=﹣3<0,∴一次函数y=2x﹣3经过第一、三、四象限,即一次函数y=2x﹣3不经过第二象限.故选:B.4.(3分)在下列命题中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形【解答】解:A、应为两组对边平行的四边形是平行四边形;B、有一个角是直角的四边形是矩形、直角梯形、总之,只要有一个角是直角即可;C、符合菱形定义;D、应为对角线互相垂直平分且相等的四边形是正方形.故选:C.5.(3分)已知函数y=(m﹣3)x+2,若函数值y随x的增大而减小,则m的取值范围是()A.m>3 B.m<3 C.m≥3 D.m≤3【解答】解:∵一次函数y=(m﹣3)x+2,y随x的增大而减小,∴一次函数为减函数,即m﹣3<0,解得:m<3,则m的取值范围是m<3.故选:B.6.(3分)已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.【解答】解:∵一次函数y=kx+b,y随着x的增大而减小∴k<0又∵kb<0∴b>0∴此一次函数图象过第一,二,四象限.故选:A.7.(3分)将直线y=4x的图象向下平移3个单位长度,所得直线的函数解析式是()A.y=4x+3 B.y=4x﹣3 C.y=4(x+3)D.y=4(x﹣3)【解答】解:将直线y=4x的图象向下平移3个单位长度,所得直线的函数解析式是y=4x﹣3,故选:B.8.(3分)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD 一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形【解答】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=AC,EF=BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选:D.9.(3分)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.10.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵一次函数y=﹣x+1中k=﹣<0,b=1>0,∴此函数的图象经过第一、二、四象限,∴一次函数y=﹣x+1的图象不经过的象限是第三象限.故选:C.二、填空题(每小题2分,共14分)11.(2分)计算: +=3.【解答】解:原式=2+=3.12.(2分)已知菱形的两条对角线长分别是6和8,则这个菱形的面积为24.【解答】解:∵菱形的两条对角线长分别是6和8,∴这个菱形的面积为6×8÷2=24故答案为2413.(2分)如图,阴影部分是一个正方形,此正方形的面积为64cm2.【解答】解:由图可知正方形的边长为=8cm,正方形的面积为8×8=64cm2.14.(2分)已知矩形ABCD,当满足条件AB=BC时,它成为正方形(填一个你认为正确的条件即可).【解答】解:根据有一组邻边相等或对角线互相垂直的矩形是正方形,得到应该添加的条件为:AB=BC或BC=CD或CD=DA或DA=AB或AC⊥BD.故答案为:AB=BC.15.(2分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为6.【解答】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,则AB=6.故答案为:6.16.(2分)在▱ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x轴,如图建立直角坐标系,则C的坐标是(4,).【解答】解:点B的坐标为(5,0),过点D作DE⊥x轴于点E,在Rt△ADE中,∠DAE=60°,AD=2,∴AE=1,DE=,故可得点D的坐标为(﹣1,),又∵四边形ABCD是平行四边形,CD=AB=5,∴点C的坐标为(4,),故答案为:(4,).三.解答题(8大题,共56分)17.(8分)计算:(2﹣)(2+)+(﹣1)2010.【解答】解:原式=4﹣3+1×1﹣2=1+1﹣2=0.18.(8分)先化简,再求值:(1﹣)÷,其中a=+1.【解答】解:原式=•=,当a=+1时,原式===.19.(8分)如图,在菱形ABCD中,E,F分别是BC,CD上的一点,且BE=DF.求证:AE=AF.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D.又∵BE=DF,∴△ABE≌△ADF(SAS),(5分)∴AE=AF.(6分)20.(8分)已知y与x+2成正比例,且当x=1时,y=6.(1)求y与x之间的函数关系式;(2)若点(m,1)在这个函数图象上,求m.【解答】解:(1)解:∵y与x+2成正比例,∴设y=k(x+2),∵x=1时,y=6,∴6=k(1+2),解得:k=2,∴y与x的关系式为:y=2x+4;(4)把点(m,1)代入y=2x+4中,得1=2m+4,解得:m=﹣.21.(8分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求点C的坐标.(2)若直线AB上的点C在第一象限,且S△BOC【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),∵直线AB过点A(1,0)、点B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2.(2)设点C的坐标为(x,y),=2,∵S△BOC∴•2•x=2,解得x=2,∴y=2×2﹣2=2,∴点C的坐标是(2,2).22.(8分)电力资源丰富,并且得到了较好的开发.某地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x(度)与相应电费y(元)之间的函数图象如图.(1)月用电量为100度时,应交电费60元;(2)当x≥100时,求y与x之间的函数关系式;(3)月用电量为250度时,应交电费多少元?【解答】解:(1)根据函数图象,知:当x=100时,y=60,故当月用电量为100时,应交付电费60元;故答案为:60(2)设一次函数为y=kx+b,当x=100时,y=60;当x=200时,y=110∴,解得:,所求的函数关系式为:y=0.5x+10(x≥100)(3)当x=250时,y=0.5×250+10=135,∴月用量为250度时,应交电费135元.23.(8分)已知直线y=﹣2x+6与x轴交于点A,与y轴交于点B.(1)点A的坐标为(3,0),点B的坐标为(0,6);(2)求出△AOB的面积;(3)直线AB上是否存在一点C(C与B不重合),使△AOC的面积等于△AOB 的面积?若存在,求出点C的坐标;若不存在请说明理由.【解答】解:(1)当y=0时,﹣2x+6=0,解得x=3,则A(3,0);当x=0时,y=﹣2x+6=6,则B(0,6);故答案为(3,0),(0,6);=×3×6=9;(2)S△OAB(3)存在.设C(t,﹣2t+6),∵△AOC的面积等于△AOB的面积,∴•3•|﹣2t+6|=9,解得t1=6,t2=0(舍去),∴C点坐标为(6,﹣6).24.(8分)在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG 上时,请你帮他求出此时△ADG的面积.【解答】(1)如图1,延长EB交DG于点H,∵四边形ABCD与四边形AEFG是正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE在△ADG与△ABE中,,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,∵△ADG中∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,∵△DEH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,∴DG⊥BE;(2)如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,∵BD是正方形ABCD的对角,∴∠MDA=45°在Rt△AMD中,∵∠MDA=45°,AD=2,∴AM=DM=,在Rt△AMG中,∵AM2+GM2=AG2∴GM=,∵DG=DM+GM=+,=DG•AM=(+)=1+.∴S25.(8分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x 之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.【解答】解:(1)∵8x+6y+5(20﹣x﹣y)=120,∴y=20﹣3x.∴y与x之间的函数关系式为y=20﹣3x.(3分)(2)由x≥3,y=20﹣3x≥3,即20﹣3x≥3可得3≤x≤5,又∵x为正整数,∴x=3,4,5.(5分)故车辆的安排有三种方案,即:方案一:甲种3辆乙种11辆丙种6辆;方案二:甲种4辆乙种8辆丙种8辆;方案三:甲种5辆乙种5辆丙种10辆.(7分)(3)设此次销售利润为W百元,W=8x•12+6(20﹣3x)•16+5[20﹣x﹣(20﹣3x)]•10=﹣92x+1920.∵W随x的增大而减小,又x=3,4,5=16.44万元.∴当x=3时,W最大=1644(百元)答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元.(10分)26.(8分)如图,已知一次函数y=﹣x+b的图象过点A(0,3),点p是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON上分别截取:PC=MP,MB=OM,OE=ON,ND=NP.(1)b=3;(2)求证:四边形BCDE是平行四边形;(3)在直线y=﹣x+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,请求出所有符合的点P的坐标;若不存在,请说明理由.【解答】解:(1)一次函数y=﹣x+b的图象过点A(0,3),3=﹣0+b,解得b=3.故答案为:3;(2)证明:过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,∴∠OMP=∠PNO=∠MON=90°,∴四边形PMON是矩形,∴PM=ON,OM=PN,∠MPN=90°.∵PC=MP,MB=OM,OE=ON,NO=NP,∴PC=OE,CM=NE,ND=BM,PD=OB,在△OBE和△PDC中,,∴△OBE≌△PDC(SAS),BE=DC .在△MBC 和△NDE 中,,∴△MBC ≌△NDE (SAS ),DE=BC .∵BE=DC ,DE=BC , ∴四边形BCDE 是平行四边形;(3)设P 点坐标(x ,y ),当△OBE ≌△MCB 时,四边形BCDE 为正方形,OE=BM ,当点P 在第一象限时,即y=x ,x=y .P 点在直线上,,解得,当点P 在第二象限时,﹣x=y,解得在直线y=﹣x +b 上存在这样的点P ,使四边形BCDE 为正方形,P 点坐标是(2,2)或(﹣6,6).。

2018-2019学年江苏省常州市金坛市八年级(上)期中数学试卷.

2018-2019学年江苏省常州市金坛市八年级(上)期中数学试卷.

2018-2019学年江苏省常州市金坛市八年级(上)期中数学试卷一、选择题(每小题2分,共16分)1. (2分)如图,AABC 栏NDEF , BE = l, EC = 4,则必的长是( )A . 5 B . 6 C . 7 D . 82. (2分)如图,在四边形ABCE 中,。

是8C 的中点,连接AD , AC.若AB = AC , AE = CD, AD = CE t 则图中的全等三角形共有( )B . 2对C . 3对3. (2分)如图,ZCAB = ZDBA,再添加一个条件,D . 4对不一定能判定4. (2分)如图,C . AD=BCD . ZC = ZD 在等腰山中,AB = AC, BDLAC , ZJ5C = 72°,则ZABD 等于()A BA . 18°B . 36°C . 54°D . 64°5. (2分)下列三条线段不能组成直角三角形的是()A . 3 , 4 , 5B . 6 , 8 , 10C . 5 ,156. (2 分)在 RtAABC 中,ZC = 90°,周长为 2412 , 13 D . 5 , 12,斜边与一直角边之比为5:4,则这个直角三角形的面积是()A . 20B . 24C .28D . 307. (2分)如图,中,BD 平分QBC,8C 的中垂线交8C 于点£,交BD 于点、F,连接CF. 若乙4 = 60。

,ZABD = 24°,则七CF 的度数为()36°C . 30°D . 24°8. (2 分)如图, 在 中,AB = AC f ADLBC 于点 D, DE1AC 于点E, CF LAB 于点、F , CF = 6cm,则 DE 的长是(B . 3cmC . 4cmD . 5cm二、埴空题(每小题2分,共20分)9. (2分)若等腰三角形的一个外角是80。

2018-2019学年度八年级上数学月考题

2018-2019学年度八年级上数学月考题

九月份月考八年级数学试题(考试时间:120分钟)1. 下列各组数中是勾股数的是( ).A.2, 3, 4B.6, 8, 10C.8, 11, 12D.10, 14, 152.若△ABC 的三边长分别为9,40,41,则这个三角形的面积为( )A.360B.180C.90D.453.在△ABC 中,AB=13,BC=10,BC 边上的中线AD=12,试判定△ABC 的形状( )A .直角三角形 B.等边三角形 C. 等腰三角形 D.以上都不对4.如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( )A .10米B .15米C .25米D .30米5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D) 6.已知一直角三角形的木版,三边的平方和为1800cm 2,则斜边长为( ).(A )80cm (B)30cm (C)90cm (D120cm.7.直角三角形中,以直角边为边长的两个正方形的面积分别为36和64,那么以斜边为边长的正方形的面积是( )A.54B.100C.72D.1208.下列计算结果正确的是( ) 30°图(A)066.043.0≈ (B)30895≈ (C)4.602536≈ (D)969003≈9.下列各式中,正确的是( ) (A)2)2(2-=- (B) 9)3(2=- (C) 393-=- (D) 39±=±10.有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.A.4B.5C.3D.41二.填空题(每空2分,共2×19=38分)11.如果三角形的三边长a,b,c 满足 ,形.12.一个等腰三角形的两条腰为5米底边为8米,高是 米,这个等腰三角形的面积是 米213.一个等边三角形的边长为a,这个等边三角形的高是面积是 。

2018-2019年第一学期八年级第三次月考数学试卷及答案

2018-2019年第一学期八年级第三次月考数学试卷及答案

2018-2019学年第一学期八年级第三次月考数学试卷一、选择题(共15题,每题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列“表情”中属于轴对称图形的是()A .B .C .D .2.下列各式中,计算结果正确的是()A.(x﹣2)(x﹣2)=x2﹣2 B.(﹣ab﹣c)(c﹣ab)=a2b2﹣c2C.(a+b)(b ﹣a)=a2﹣b2D.(x+y)(﹣x﹣y)=x2﹣y23.已知一个等腰三角形两边长分别为5,6,则它的周长为()A.16 B.17 C.16或17 D.10或124.如图,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠BAD=∠ABC,∠ABD=∠BAC B.AD=BC,BD=ACC.BD=AC,∠BAD=∠ABC D.∠D=∠C,∠BAD=∠ABC第4题图第6题图5.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠06.如图,△ABC中,已知∠B和∠C的平分线相交于点F,经过点F作DE∥BC,交AB于D,交AC于点E,若BD+CE=9,则线段DE的长为()7.已知32xy=⎧⎨=-⎩和21xy=⎧⎨=⎩是二元一次方程30ax by++=的两个解,则一次函数0y ax b a=+≠()的解析式为()A.9B.8C.7D、6A .23y x =--B .239+77y x =C .9+3y x =-D .9377y x =-- 8.关于函数y=-2x +1,下列结论正确的是 ( )A.图象必经过(-2,1)B.y 随x 的增大而增大C.图象经过第一、二、三象限D.当x >12时,y<09.下列图形中,已知∠1=∠2,则可得到AB ∥CD 的是 ( )10.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A.中位数 B.平均数 C.加权平均数 D.众数11.如图,以两条直线1l 、2l的交点坐标为解的方程组是 A .11x y x y-=⎧⎨2-=⎩, B .121x y x y -=-⎧⎨-=-⎩,C .121x y x y -=-⎧⎨-=⎩,D .121x y x y -=⎧⎨-=-⎩,12.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,b+1)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 13.若x ,y 为实数,且+(x ﹣y+3)2=0,则x+y 的值为( ) A .0B .﹣1C .1D .514.如图,在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°, 则∠BAC 的度数为( )A.40°B.45℃C.60°D.70°15.如图所示,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A ,P ,D 为顶点的三角形的面积为y ,则下列图象能大致反映y 与x 的函数关系的是( )O 1- 1 2 3 32 1xy 11题图1l2l -114题图A B C D二、填空题(共6题,每题3分,共18分.把答案填在题中的横线上.) 16.8×2= .17.已知a ,b 满足方程组⎩⎨⎧=+=-5222b a b a ,则3a+b 的值为 .18.直线1+=kx y 与12-=x y 平行,则1+=kx y 的图象不经过 象限. 19.直线经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是 . 20.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B ′重合,AE 为折痕,则EB= . 21.已知两点M (3,5),N (1,1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 的坐标应为 .三、解答题(本大题共7题,共57分,解答应写出文字说明或演算步骤)。

江苏省2018-2019年八年级上第一次月考数学试卷含解析

江苏省2018-2019年八年级上第一次月考数学试卷含解析

八年级(上)第一次月考数学试卷一.选择题(每小题3分,共36分)1.(3分)若三角形的三边长分别为3,4,x,则x的值可能是()A.1 B.6 C.7 D.102.(3分)△ABC中,∠A=60°,∠C=70°,则∠B的度数是()A.50°B.60°C.70°D.90°3.(3分)如图,△BAC的外角∠CAE为120°,∠C=80°,则∠B为()A.60°B.40°C.30°D.45°4.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性5.(3分)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对6.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.87.(3分)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°8.(3分)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB9.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块10.(3分)下列各选项中的两个直角三角形不一定全等的是()A.两条直角边对应相等的两个直角三角形B.两个锐角对应相等的两个直角三角形C.斜边和一条直角边对应相等的两个直角三角形D.有一个锐角及这个锐角的对边对应相等的两个直角三角形全等11.(3分)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°12.(3分)如图,△ABC≌△EBD,AB=3cm,BD=5cm,则CE的长度为()A.3cm B.5cm C.8cm D.2cm二.填空题(每小题3分,共24分)13.(3分)在△ABC中,若AB=5,BC=2,且AC的长为奇数,则AC=.14.(3分)如果一个多边形的内角和为1080°,则它是边形.15.(3分)在直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为.16.(3分)已知图中的两个三角形全等,则∠α的度数是.17.(3分)如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”,需要添加的条件是.18.(3分)如图,△ABC的角平分线AD交BD于点D,∠1=∠B,∠C=66°,则∠BAC的度数是.19.(3分)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=.20.(3分)如图,△ADB≌△ACE,∠E=40°,∠C=25°,则∠DAB=.三.解答题(5小题,共40分)21.(8分)一个多边形的内角和比外角和的3倍多180°,则它是几边形?22.(8分)如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.23.(8分)如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.24.(8分)已知:如图,点B、F、C、E在同一条直线上,AB∥DE,∠A=∠D,BF=EC.求证:AC=DF.25.(8分)如图,两根旗杆AC,BD相距10米,旗杆AC高3米,且AC⊥AB,BD⊥AB,一同学从B点出发向A点走去,当他走到点M时,发现自己刚好走了3米,此时他仰望旗杆的顶点C,D,又发现两条视线CM=DM.(1)求旗杆BD的高为多少米?(2)两条视线CM,DM有怎样的位置关系?请说明理由.参考答案与试题解析一.选择题(每小题3分,共36分)1.(3分)若三角形的三边长分别为3,4,x,则x的值可能是()A.1 B.6 C.7 D.10【解答】解:∵4﹣3=1,4+3=7,∴1<x<7,∴x的值可能是6.故选:B.2.(3分)△ABC中,∠A=60°,∠C=70°,则∠B的度数是()A.50°B.60°C.70°D.90°【解答】解:由三角形内角和定理得:∠B=180°﹣∠A﹣∠C=180°﹣60°﹣70°=50°;故选:A.3.(3分)如图,△BAC的外角∠CAE为120°,∠C=80°,则∠B为()A.60°B.40°C.30°D.45°【解答】解:由三角形的外角性质得:∠CAE=∠B+∠C,∴∠B=∠CAE﹣∠C=120°﹣80°=40°;故选:B.4.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性【解答】解:用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.5.(3分)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对【解答】解:三角形的角平分线、中线一定在三角形的内部,直角三角形的高线有两条是三角形的直角边,钝角三角形的高线有两条在三角形的外部,所以,不一定在三角形内部的线段是三角形的高.故选:C.6.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.8【解答】解:∵|a﹣4|+=0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选:A.7.(3分)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选:B.8.(3分)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB【解答】解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.9.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.10.(3分)下列各选项中的两个直角三角形不一定全等的是()A.两条直角边对应相等的两个直角三角形B.两个锐角对应相等的两个直角三角形C.斜边和一条直角边对应相等的两个直角三角形D.有一个锐角及这个锐角的对边对应相等的两个直角三角形全等【解答】解:A、根据SAS可证明两个直角三角形全等,故此选项不合题意;B、两个锐角对应相等的两个直角三角形不一定全等,故此选项符合题意;C、根据HL定理可判定两个直角三角形全等,故此选项不合题意;D、根据AAS两个直角三角形全等,故此选项不合题意;故选:B.11.(3分)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.12.(3分)如图,△ABC≌△EBD,AB=3cm,BD=5cm,则CE的长度为()A.3cm B.5cm C.8cm D.2cm【解答】解:∵△ABC≌△EBD,∴BE=AB,BC=BD,∵AB=3cm,BD=5cm,∴BE=3cm,BC=5cm,∴EC=5cm﹣3cm=2cm,故选:D.二.填空题(每小题3分,共24分)13.(3分)在△ABC中,若AB=5,BC=2,且AC的长为奇数,则AC=5.【解答】解:根据题意得5﹣2<AC<5+2,即3<AC<7,而AC的长为奇数,所以AC=5.故答案为5.14.(3分)如果一个多边形的内角和为1080°,则它是八边形.【解答】解:设这个多边形的边数为n,则(n﹣2)×180°=1080°,解得n=8,故这个多边形为八边形.故答案为:八.15.(3分)在直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为65°,25°.【解答】解:设这两个锐角的度数分别为x,y,根据题意得,,解得.故答案为:65°,25°.16.(3分)已知图中的两个三角形全等,则∠α的度数是50°.【解答】解:∵两个三角形全等,∴α=50°.故答案为:50°.17.(3分)如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”,需要添加的条件是AB=AC.【解答】解:AB=AC,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),故答案为:AB=AC.18.(3分)如图,△ABC的角平分线AD交BD于点D,∠1=∠B,∠C=66°,则∠BAC的度数是76°.【解答】解:∵△ABC的角平分线AD交BD于点D,∴∠CAD=∠1=∠BAC,∵∠1=∠B,∴∠ADC=∠1+∠B=2∠1,在△ABC中,∠B+2∠1+∠C=180°,∴3∠1=180°﹣∠C=114°,∴∠1=38°,∴∠BAC=2∠1=76°.故答案为76°19.(3分)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.【解答】解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.20.(3分)如图,△ADB≌△ACE,∠E=40°,∠C=25°,则∠DAB=115°.【解答】解:如图,∵∠E=40°,∠C=25°,∠E+C+∠CAE=180°,∴∠CAE=115°,又∵△ADB≌△ACE,∴∠DAB=∠CAE=115°故答案是:115°.三.解答题(5小题,共40分)21.(8分)一个多边形的内角和比外角和的3倍多180°,则它是几边形?【解答】解:设多边形的边数为n,根据题意得:(n﹣2)×180°﹣360°×3=180°,解得:n=9.答:它是九边形.22.(8分)如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.【解答】解:∵∠BAC=90°,AD是边BC上的高,∴AB•AC=BC•AD,∴AD===4.8(cm),即AD的长度为4.8cm;(2)如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,=AB•AC=×6×8=24(cm2).∴S△ABC又∵AE是边BC的中线,∴BE=EC,=S△AEC,∴BE•AD=EC•AD,即S△ABES△ABC=12(cm2).∴S△ABE=∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.23.(8分)如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.【解答】解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.24.(8分)已知:如图,点B、F、C、E在同一条直线上,AB∥DE,∠A=∠D,BF=EC.求证:AC=DF.【解答】证明:∵AB∥DE(已知),∴∠ABC=∠DEF((两直线平行,内错角相等),∵BF=EC(已知),∴BF+FC=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF(全等三角形对应边相等).25.(8分)如图,两根旗杆AC,BD相距10米,旗杆AC高3米,且AC⊥AB,BD⊥AB,一同学从B点出发向A点走去,当他走到点M时,发现自己刚好走了3米,此时他仰望旗杆的顶点C,D,又发现两条视线CM=DM.(1)求旗杆BD的高为多少米?(2)两条视线CM,DM有怎样的位置关系?请说明理由.【解答】解:(1)∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,在Rt△ACM和Rt△BMD中,,∴Rt△ACM≌Rt△BMD(HL),∴AM=BD,∴AM=AB﹣BM=7,∴BD=AM=7;(2)CM⊥DM,理由:∵Rt△ACM≌Rt△BM D,∴∠C=∠BMD,∵∠C+∠AMC=90°,∴∠BMD+∠AMC=90°,∴∠CMD=90°,∴CM⊥DM.。

2018-2019年八年级下第二次月考数学试题(含答案)

2018-2019年八年级下第二次月考数学试题(含答案)

初二年级第二学期第二次月考数学试卷一、 选择题(每小题2分,共30分)1. 下列式子中,属于最简二次根式的是( )A.9B.7 C. 20D.312. 在菱形AB C D 中,∠A :∠B :∠C :∠D 的值可以是( )A. 1:2:3:4B. 1:2:2:1 C . 1:2:1:2 D. 1:1:2:2 3. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5C. 2.4D. 84. 矩形的面积为12cm 2,周长为14cm ,则它的对角线长为( )A. 5cmB. 6cmC.26 cmD. 33cm5. 如图,EF 过矩形AB C D 对角线的交点O ,且分别交AB 、C D 于E 、F ,那么阴影部分的面积是矩形AB C D 的面积的( )A.51 B.41 C. 31 D.1036. 直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( )A. 6cmB. 8.5cmC. 1330cmD. 1360cm7. 下列计算正确的是( )A. 12)3(4916)9)(16(=-⨯-=-⋅=--B.10)10(2-=-C.13585822=+=+D.749)2425)(2425(242522==-+=-8. 如图:在△AB C 中,∠C =90°,AB =13,B C =5,则以A C 为直径的半圆面积为( )A. 6πB. 12πC. 36πD. 18π 9. 下列命题中,真命题是( )A. 两条对角线相等的四边形是矩形B. 两条对角线互相垂直的四边形是菱形C . 两条对角线互相垂直且相等的四边形是矩形 D. 两条对角线互相平分的四边形是平行四边形10. 如图,将一个边长分别为4、8的长方形纸片AB C D 折叠,使C点和A 点重合,则EB 的长是( )A. 3B. 4C.5D. 511. 如图,在直角坐标系中,将长方形OAB C 沿OB 对折,使点A 落在A 1处,已知OA =3,AB =1,则点A 1的坐标是( )A. (23,23) B. (23,3) C.(23,23) D. (21,23) 12. 如图,在△AB C 中,AB =A C =5,D 是B C 上的点,DE ∥AB 于点F ,那么四边形AFDE 的周长是( ) A. 5 B. 10 C. 15 D. 2013. 若顺次连结四边形AB C D 各边中点所得四边形是矩形,则四边形AB C D 必定是( ) A. 菱形 B. 对角线相互垂直的四边形 C. 正方形 D. 对角线相等的四边形14. 直角三角形中一直角边的长为10,另两边长为连续偶数,则直角三角形的周长为( ) A. 49 B. 17 C. 60 D. 不能确定15. 如图所示,正方形AB C D 的面积为12,△ABE 是等边三角形,点E在正方形AB C D 内,在对角线A C 上有一点P ,使PD +PE 的和最小,则这个最小值为( )A. 32B. 62C. 3D.6二、 填空题(每小题3分,共12分)16. 若x 31-在实数范围内有意义,则x 的取值范围是___________________。

2018-2019学年度第一学期八年级数学第三次月考试卷及答案

2018-2019学年度第一学期八年级数学第三次月考试卷及答案

初二数学上册第三次月考试卷姓名 班级 一.选择题(每小题2分,共12分)1.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A.线段CD 的中点B.OA 与OB 的垂直平分线的交点C.OA 与CD 的垂直平分线的交点D.CD 与∠AOB 的平分线的交点第1题图 第2题图2.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( )A.150°B.40°C.80° D .90°3.如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E =( )A.25°B.27°C.30°D.45°4角形完全一样的依据是( )A. S.S.S .B. S.A.S .C.D. A.S.A .第3题图 第4题图图D A CEB ADBO DCBA5.如图,在△ABC中,AB=AC,BE、CF是中线,则由()可得△AFC≌△AEB.A. S.S.S.B. S.A.S.C. A.A.S.D.A.S.A.6.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD 长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP 的根据是()A.S.A.S. B.A.S.A. C.A.A.S. D.S.S.S. 二.填空题(每小题3分,共24分)7.在实数范围内把多项式x2y﹣2xy﹣y分解因式所得的结果是.8.已知a、b、c是三角形的三边长,化简:|a﹣b+c|+|a﹣b﹣c|= .9.已知a﹣b=1,则a2﹣b2﹣2b的值是.10.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M、N在边OB上,PM=PN,若MN=2,则OM的长为.11.已知4y2+my+1是完全平方式,则常数m的值是.12.计算(﹣3a3)2•(﹣2a2)3= .13.一个等腰三角形的一个外角等于110°,则这个三角形的三个角应该为.14.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证(填写序号).①(a+b)2=a2+2ab+b2②(a﹣b)2=a2﹣2ab+b2③a2﹣b2=(a+b)(a﹣b)④(a+2b)(a﹣b)=a2+ab﹣2b2.第10题图第14题图三.解答题(每小题5分,共20分)15.一个多边形的内角和是外角和的3倍,求这个多边形的边数.16、计算:17、计算:(25m2+15m3n﹣20m4)÷(﹣5m2)18、计算:(2a+3b)(2a﹣3b)﹣(a﹣3b)2四.解答题(每小题7分,共28分)19、化简求值(x+2y)2﹣(x+y)(x﹣y),其中.20.分解因式:①6xy2﹣9x2y﹣y3②(a2+b2﹣c2)2﹣4a2b2.21.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.22.如图,△ABC中,AB=AC,AM是BC边上的中线,点N在AM上,求证:NB=NC.23.如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.24.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.五、解答题.(每小题10分,共20分)25.(1)将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法.这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一.例如,求x2+4x+5的最小值.解:原式=x2+4x+4+1=(x+2)2+1∵(x+2)2≥0 ∴(x+2)2+1≥1∴当x=﹣2时,原式取得最小值是1请求出x2+6x﹣4的最小值.(2)非负性的含义是指大于或等于零.在现初中阶段,我们主要学习了绝对值的非负性与平方的非负性,几个非负算式的和等于0,只能是这几个式子的值均为0.请根据非负算式的性质解答下题:已知△ABC的三边a,b,c满足a2﹣6a+b2﹣8b+25+|c﹣5|=0,求△ABC的周长.(3)已知△ABC的三边a,b,c满足a2+b2+c2=ab+bc+ac.试判断△ABC的形状.26.如图,已知△ABC中,AB=AC=18cm,∠B=∠C,BC=12cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,经过t秒后,△BPD与△CQP全等,求此时点Q的运动速度与运动时间t.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B 同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q 第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)参考答案与试题解析一.选择题(共6小题)1 D .2 D . 3.B . 4 D . 5 B . 6 D .二.填空题(共8小题)7.y(x﹣1+)(x﹣1﹣).8.2c.9.1.10.15.11.±4 12.﹣72a12.13 .70°,55°,55°或70°,70°,40°.14.③.三.解答题(共10小题)15.解:设这个多边形是n边形,由题意得:(n﹣2)×180°=360°×3,解得:n=8.答:这个多边形的边数是8.16.2a6b5c5;17. ﹣5﹣3mn+4m2;18. 3a2﹣18b2+6ab 19. (x+2y)2﹣(x+y)(x﹣y),=x2+4y2+4xy﹣(x2﹣y2)=5y2+4xy 把代入上式得:原式=5×+4×(﹣2)×=﹣.20.分解因式:①原式=﹣y(y2﹣6xy+9x2)=﹣y(y﹣3x)2,②原式=(a2+b2﹣c2+2ab)(a2+b2+c2﹣2ab),=[(a+b)2﹣c2][(a﹣b)2﹣c2],=(a+b+c)(a+b﹣c)(a﹣b+c)(a﹣b﹣c).21如图所示,答案不唯一,参见下图.22证明:∵AB=AC,AM是BC边上的中线,∴AM⊥BC.…(2分)∴AM垂直平分BC.∵点N在AM上,∴NB=NC.…(4分)23解:设∠A=x°.∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠A=36°.24证明:(1)在AB上取一点M,使得AM=AH,连接DM,∵,∴△AHD≌△AMD,∴HD=MD,∠AHD=∠AMD,∵HD=DB,∴DB=MD,∴∠DMB=∠B,∵∠AMD+∠DMB=180°,∴∠AHD+∠B=180°,即∠B与∠AHD互补.(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180°,∵∠B+2∠DGA=180°,∠AHD=2∠DGA,∴∠AMD=2∠DGM,又∵∠AMD=∠DGM+∠GDM,∴2∠DGM=∠DGM+∠GDM,即∠DGM=∠GDM,∴MD=MG,∴HD=MG,∵AG=AM+MG,∴AG=AH+HD.25解:(1)x2+6x﹣4=x2+6x+9﹣9﹣4=(x+3)2﹣13,∵(x+3)2≥0∴(x+3)2﹣13≥﹣13∴当x=﹣3时,原式取得最小值是﹣13.(2)∵a2﹣6a+b2﹣8b+25+|c﹣5|=0,∴(a﹣3)2+(b﹣4)2+|c﹣5|=0,∴a﹣3=0,b﹣4=0,c﹣5=0,∴a=3,b=4.c=5,∴△ABC的周长=3+4+5=12.(3)△ABC为等边三角形.理由如下:∵a2+b2+c2=ab+bc+ac,∴a2+b2+c2﹣ac﹣ab﹣bc=0,∴2a2+2b2+2c2﹣2ac﹣2ab﹣2bc=0,即a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,∴(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,∴△ABC为等边三角形.26解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP;②假设△BPD≌△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=6cm,BD=CQ=9cm,∴点P,点Q运动的时间t==2秒,∴v Q===4.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得1.5x=x+2×6,解得x=24,∴点P共运动了24s×1cm/s=24cm.∵24=2×12,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.故答案为:24,AC.。

最新-江苏省金坛市2018学年八年级数学下学期3月教学情

最新-江苏省金坛市2018学年八年级数学下学期3月教学情

江苏省金坛市建昌中学2018-2018学年八年级下学期3月教学情况调查数学试题 新人教版一、填空题(每题2分,第10题4分,共22分)1. 用不等式表示: a 与b 的差是负数2. 不等式组230320x x -<⎧⎨+>⎩ 的整数解是3. 当x = 时,分式12x -无意义;当x =4时,62962-+-x x x 的值为 . 4. xyzx y xy 61,4,13-的最简公分母是 5. 在平面直角坐标系中,若点P (m-3,m+1)在第二象限,则m 的取值范围是 . 6.不改变分式23.015.0+-x x 的值,把它的分式和分母中的各项的系数都化为整数,则所得结果为 . 7.关于x 的方程3513+=++x x k 有无解,那k 的值是 . 8.某试卷共有20道题,每道题选对了得10分,选错了或不选的扣5分,至少要选对 道题,其得分才能不少于80分.9. 如图,已知函数y x b =+和3y ax =+的图象交点为P ,则不等式3x b ax +>+的解集为 .10.家庭的n 值如下所示:如用含n 的不等式表示,则贫困家庭为 ;小康家庭为 ;最富裕国家为 ; 当某一家庭n = 0.6时,表明该家庭的实际生活水平是 .二、选择题(每题3分,共18分)11. 若b a <,则下列各式中一定成立....的是( ) A .11-<-b a B .33b a >C . b a -<-D . bc ac < 12. 设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从小到大....的顺序排列为( ) A.□○△ D.△□○13.下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。

A.1 B.2 C.3 D.414.根据分式的基本性质,分式b a a --可变形为:( ) A.b a a -- B.ba a + C.b a a -- D.ba a +- 15. 若分式242x x -+的值为0,则x 的值为( ) A .±2 B .2 C .-2 D .016. 若(m+1)>m+1的解集为x<1,则m 的取值范围是( ) A.m<0 B.m>-1 C.m<-1 D.m 是任意实数三、解答题(每题5分,共30分)四、解答题23. 某电影院暑假向学生优惠开放,每张门票2元。

常州市18-19第二学期八年级期中数学试卷及答案

常州市18-19第二学期八年级期中数学试卷及答案

常州市18-19第二学期八年级期中数学试卷及答案2018~2019学年度第二学期期中质量调研八年级数学试题一、选择题(每小题2分,共20分)1.下列图案中,不是中心对称图形的是----------------------------- 【】A B D2.“学习强国”的英语“Learning power”中,字母“n”出现的频率是【】A.213B.121C.2 D.13.下列调查中不适合普查而适合抽样调查的是---------------------- 【】①了解市面上一次性筷子的卫生情况②了解我校九年级学生身高情况③了解一批导弹的杀伤范围④了解全世界网迷少年的性格情况A.①②③ B.①②④C.②③④ D.①③④4.一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有【】A.40人B.30人C.20人D.10人5.下列事件是必然事件的是--------------------------------------- 【】A.乘坐公共汽车恰好有空座B.同位角相等C.打开手机就有未接电话D.三角形内角和等于180°6.下列说法中,不正确的是-------------------------------------- 【】A.两组对边分别平行的四边形是平行四边形B.对角线互相平分且垂直的四边形是菱形C.一组对边平行,另外一组对边相等的四边形是平行四边形D.有一组邻边相等的矩形是正方形7.如图,在□ABCD中,90BDA∠=︒,10AC=cm,6BD=cm,则AD的长为【】A.4 cm B.5 cm C.6 cm D.8 cm(第7题) (第8题)(第9题)(第10题)8.如图,矩形纸片ABCD中,AB=6 cm,BC=8 cm,现将其沿AE对折,使得点B落在边AD上的点1B 处,折痕与边BC交于点E,则CE的长为------------------------- 【】A.1 cm B.2 cm C.4 cm D.6 cmAB CDabcA D BFECAB CDE1BA BCD2019.49.如图,在△ABC 中,D 是AB 上一点,AD =AC ,AE ⊥CD ,垂足为点E ,F 是BC 的中点,若BD =16,则EF 的长为 ------------------------------------------------------ 【 】 A .32 B .16 C .8 D .410.如图,四边形ABCD 是正方形,直线a 、b 、c 分别通过A 、D 、C 三点,且a ∥b ∥c ,若a 与b 的距离为5,b 与c 的距离为7,则正方形ABCD 的面积等于 -------------- 【 】 A .70 B .74 C .144 D .148 二、填空题(每小题2分,共20分)11.“抛掷一枚质地均匀的硬币,正面向上"是________事件(填“必然"或“随机"或“不可能"). 12.把64个数据分成8组,从第1组到第4组的频数分别是6,9,12,14,第5组到第7组的频率和是0。

2018-2019学年新人教版八年级9月月考数学试卷及答案

2018-2019学年新人教版八年级9月月考数学试卷及答案

2018--2019年度第一学期第一次月考测试题八年级数学(时间:90分钟 满分:100分)一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个选项是符合题目要求的,将此选项的答案填入相应的答题区域。

.1.已知三角形的两边长分别为2 cm 和7 cm ,周长是偶数,则这个三角形是( )A. 不等边三角形.B.等腰三角形.C.等边三角形.D.直角三角形.2.如图,王师傅用4根木条钉成一个四边形木架,要使这个木架不变形,他至少要再订上木条的根数是( )A.0.B.1.C.2. D3.3.将一副常规的三角尺如图放置,则图中∠AOB 的度数是( )A.75°.B. 95°.C. 105°.D.120°4.ABC ∆的三边为,,a b c 且2()()a b a b c+-=,则( )A .边a 的对角是直角B .b 边的对角是直角C .c 边的对角是直角D .是斜三角形5.直角三角形的周长为24,斜边长为10,则其面积为( )A .96B .49C . 24D .486.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为( )A.①②③④B. ①②③C. ②③④D. ①②④7.在ΔABC 和ΔDEF 中,已知∠C =∠D, ∠B=∠E,要判断这两个三角形全等,还需添加条件( )A. AB=ED.B.AB=FD.C.AC=FD. D. ∠A =∠F.8.如图,点P是AB上任一点,∠ABC=∠ABD,从下列各条件中补充一个条件,不一定能推出ΔAPC≌ΔAPD.的是( )A.BC=BD.B. ∠ACB=∠ADB.C.AC=AD. D. ∠CAB=∠DAB9.已知ΔABC是等边三角形,点D、E分别在AC、BC边上,且AD=CE,AE与BD交于点F,则∠AFD的度数为( )A.60°B.45°C.75°D. 70°10.如图ΔABC中,∠B =∠C,BD=CF,BE=CD, ∠EDF=α,则下列结论正确的是()A.2α+∠A=90° B. .2α+∠A=180° C.α+∠A=90° D.α+∠A=180二、填空题:(本大题共10小题,每小题3分,共30分).11.三角形的两边长分别是10和8,则第三边的取值范围是.12.正多边形的一个内角等于144°,则该多边形是正______边形.13.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为cm.14、已知如图所示、分别是的中线、高,且,,则与的周长之差为 ,与的面积关系为 .15.已知△ABC≌△DEF,∠A=52°,∠B=57°,则∠F=.16.如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE=cm.17.已知△ABC≌△DEF,且∠A=90°,AB=6,AC=8,BC=10,△DEF中最大边长是,最大角是度.18、如图,在四边形中,,的平分线与的平分线交于点,则()19、如图,小明从点出发,前进后向右转,再前进后又向右转,…这样一直下去,直到他第一次回到出发点为止,他所走的路径构成了一个多边形.小明一共走了_______米?这个多边形的内角和是_______度?20、等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为________三、解答题(一)本题共4小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.21、(8分)一个多边形的内角和与外角和的和是,通过计算说明它是几边形.22(8分)、如图所示,在中,是边上一点,,求的度数.23、(12分)如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)(3分)AD的长;(2)(4分)△ABE的面积;(3)(5分)△ACE和△ABE的周长的差.24(12分)如图,已知点B、D、E、C四点在一条直线上,且△ABE≌△ACD.求证(1)(5分)BD=CE;(2)(7分)△ABD≌△ACE.第一次月考数学答案一,1.B 2. B 3.C 4 .A 5. C 6 .D 7 C 8 .C 9. A 10 B二,11.2<c<18,12.十,13.9,14.2cm 相等,15.71,16.5,17.10 90,18.α/2,19.120 3960,20.50º或80º三,21.n=8,22.32º,23.⑴24/5cm(4.8cm)⑵12cm²⑶2cm,24.略。

2018—2019学年度八年级下学期第一次月考数学试卷

2018—2019学年度八年级下学期第一次月考数学试卷

2018—2019学年度八年级下学期第一次月考数学试卷一.选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确答案。

1.在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是()A.75°B.65°C.55°D.45°2.在平面直角坐标系中,若点P(m﹣1,m+2)在第二象限,则m的取值范围是()A.m<﹣2B.m>1C.m>﹣2D.﹣2<m<1 3.已知a>b,则下列不等式变形正确的是()A.ac>bc B.﹣2a>﹣2b C.﹣a>﹣b D.a﹣2>b﹣2 4.下列说法正确的是()A.x=﹣3是不等式x>﹣2的一个解B.x=﹣1是不等式x>﹣2的一个解C.不等式x>﹣2的解是x=﹣3D.不等式x>﹣2的解是x=﹣15.到三角形三边的距离都相等的点是这个三角形的()A.三条高的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条角平分线的交点6.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△P AB,△PBC,△P AC都是等腰三角形,则满足此条件的点P有()A.1个B.2个C.3个D.4个二.填空题(本大题共6小题,每小题3分,共18分)7.满足不等式1﹣x<0的最小整数解是.8.“x的3倍与y的和不小于2”用不等式可表示为.9.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是.10.如图,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于点E,若DE=6cm,AE =5cm,则AC=cm.11.在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对题.12.如果一次函数y=kx+b(k≠0)的图象与x轴交点坐标为(﹣2,0),如图所示.则下列说法:①y随x的增大而减小;②关于x的方程kx+b=0的解为x=﹣2;③kx+b>0的解是x>﹣2;④b<0.其中正确的说法有.(只填你认为正确说法的序号)三.(本大题共5小题,每小题6分,共30分)13.解不等式(组):(1)3﹣2x<6(2)14.若方程组的解满足﹣1<x+y<1,求k的取值范围.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.已知:如图,∠DAC是△ABC的外角,AB=AC,AE∥BC.求证:AE是∠DAC的平分线.17.对于任意实数a,b,定义关于@的一种运算如下:a@b=2a﹣b,例如:5@3=10﹣3=7,(﹣3)@5=﹣6﹣5=﹣11.(1)若x@3<5,求x的取值范围;(2)已知关于x的方程2(2x﹣1)=x+1的解满足x@a<5,求a的取值范围.四.(本大题共3小题,每小题8分,共24分)18.为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?19.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM=2,CN=3,求线段MN的长.20.如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设运动的时间为x秒.(1)当x=时,CP把△ABC的面积分成相等的两部分,并求出此时CP=cm;(2)当x为何值时,△ABP为等腰三角形.五.(本大题共2小题,每小题9分,共18分)21.如图,“中国海监50”于上午11时30分在南海海域A处巡逻,观测到岛礁B在北偏东60°,该船以每小时10海里的速度向正东航行到C处,观测岛礁B在北偏东30°,继续向正东航行到D处时,再观测到岛礁B在北偏西30°,当海监船到达C处时恰与岛礁B相距20海里,请你分别确定“中国海监50”从A处到达C处和D处所用的时间.22.如图,已知一次函数y=kx+k+1的图象与一次函数y=﹣x+4的图象交于点A(1,a).(1)求a、k的值;(2)根据图象,写出不等式﹣﹣x+4>kx+k+1的解;(3)结合图形,当x>2时,求一次函数y=﹣x+4函数值y的取值范围;六.(本大题12分)23.先阅读,再完成练习.一个数在数轴上所对应的点到原点的距离叫做这个数的绝对值.若|x|<3则x表示到原点距离小于3的数,从如图1所示的数轴上看:大于﹣3而小于3的数,它们到原点距离小于3,所以|x|<3的解集是﹣3<x<3;若|x|>3则x表示到原点距离大于3的数,从如图2所示的数轴上看:小于﹣3的数和大于3的数,它们到原点距离大于3,所以|x|>3的解集是x<﹣3或x>3.解答下面的问题:(1)不等式|x|<a(a>0)的解集为.不等式|x|>a(a>0)的解集为.(2)解不等式|x﹣3|>5.(3)求不等式|x﹣1|+|x+2|<5的解集;(4)不论x取所有的数都有|x﹣1|+|x+2|﹣2t>4恒成立,求t的取值范围.2018—2019学年度八年级下学期第一次月考数学参考答案与试题解析一.选择题(共6小题)1.在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是()A.75°B.65°C.55°D.45°【解答】解:∵在一个直角三角形中,有一个锐角等于35°,∴另一个锐角的度数是90°﹣35°=55°.故选:C.2.在平面直角坐标系中,若点P(m﹣1,m+2)在第二象限,则m的取值范围是()A.m<﹣2B.m>1C.m>﹣2D.﹣2<m<1【解答】解:根据题意,得:,解得﹣2<m<1,故选:D.3.已知a>b,则下列不等式变形正确的是()A.ac>bc B.﹣2a>﹣2b C.﹣a>﹣b D.a﹣2>b﹣2【解答】解:A、不等式的两边都乘以不为0的数,不等号的方向不变,故A错误;B、不等式的两边都乘以﹣2,不等号的方向改变,故B错误;C、不等式的两边都乘以﹣1,不等号的方向改变,故C错误;D、不等式的两边都减去2,不等号的方向不改变,故D正确;故选:D.4.下列说法正确的是()A.x=﹣3是不等式x>﹣2的一个解B.x=﹣1是不等式x>﹣2的一个解C.不等式x>﹣2的解是x=﹣3D.不等式x>﹣2的解是x=﹣1【解答】解:A.x=﹣3不是不等式x>﹣2的一个解,此选项错误;B.x=﹣1是不等式x>﹣2的一个解,此选项正确;C.不等式x>﹣2的解有无数个,此选项错误;D.不等式x>﹣2的解有无数个,此选项错误;故选:B.5.到三角形三边的距离都相等的点是这个三角形的()A.三条高的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条角平分线的交点【解答】解:到三角形三边的距离都相等的点是这个三角形的内心,即三个内角平分线的交点.故选:D.6.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△P AB,△PBC,△P AC都是等腰三角形,则满足此条件的点P有()A.1个B.2个C.3个D.4个【解答】解:如图,满足条件的所有点P的个数为2,故选:B.二.填空题(共6小题)7.满足不等式1﹣x<0的最小整数解是2.【解答】解:∵1﹣x<0,∴x>1,则不等式的最小整数解为2.故答案为:2.8.“x的3倍与y的和不小于2”用不等式可表示为3x+y≥2.【解答】解:“x的3倍与y的和不小于2”用不等式可表示为3x+y≥2,故答案为:3x+y≥2.9.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是30°.【解答】解:设较小的锐角为x,则较大的锐角为2x,则x+2x=90°,解得,x=30°,故答案为:30°.10.如图,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于点E,若DE=6cm,AE =5cm,则AC=11cm.【解答】解:∵CD平分∠ACB交AB于D,∴∠ACD=∠DCB,∵DE∥BC,∴∠EDC=∠DCB,∴∠EDC=∠ECD,∴DE=EC=4cm,∵AE=5cm,∴AC=AE+EC=5+6=11(cm).故答案为:11.11.在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对19题.【解答】解:设他至少应选对x道题,则不选或错选为25﹣x道题.依题意得4x﹣2(25﹣x)≥60得x≥又∵x应为正整数且不能超过25所以:他至少要答对19道题.12.如果一次函数y=kx+b(k≠0)的图象与x轴交点坐标为(﹣2,0),如图所示.则下列说法:①y随x的增大而减小;②关于x的方程kx+b=0的解为x=﹣2;③kx+b>0的解是x>﹣2;④b<0.其中正确的说法有①②④.(只填你认为正确说法的序号)【解答】解:由图可知k<0,①y随x的增大而减小,故本小题正确;②图象与x轴交于点(﹣2,0),故关于x的方程kx+b=0的解为x=﹣2,故本小题正确;③不等式kx+b>0的解集是x<﹣2,故本小题错误;④直线与y轴负半轴相交,b<0,故本小题正确;综上所述,说法正确的是①②④.故答案为:①②④.三.解答题(共11小题)13.解不等式(组):(1)3﹣2x<6(2)【解答】解:(1)3﹣2x<6,﹣2x<6﹣3,﹣2x<3,x>﹣;(2)解不等式2x﹣1>x+1,得:x>2,解不等式x+8>4x﹣1,得:x<3,则不等式组的解集为2<x<3.14.若方程组的解满足﹣1<x+y<1,求k的取值范围.【解答】解:①+②得:4x+4y=k+4∴x+y=,而﹣1<x+y<1∴﹣1<<1,∴﹣8<k<0.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.16.已知:如图,∠DAC是△ABC的外角,AB=AC,AE∥BC.求证:AE是∠DAC的平分线.【解答】解:∵AB=AC,∴∠B=∠C,∵AE∥BC,∴∠B=∠EAD,∠C=∠EAC,∴∠DAE=∠EAC,∴AE是∠DAC的平分线.17.对于任意实数a,b,定义关于@的一种运算如下:a@b=2a﹣b,例如:5@3=10﹣3=7,(﹣3)@5=﹣6﹣5=﹣11.(1)若x@3<5,求x的取值范围;(2)已知关于x的方程2(2x﹣1)=x+1的解满足x@a<5,求a的取值范围.【解答】解:(1)∵x@3<5,∴2x﹣3<5,解得:x<4;(2)解方程2(2x﹣1)=x+1,得:x=1,∴x@a=1@a=2﹣a<5,解得:a>﹣3.18.为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?【解答】解:(1)设购买甲种树苗x棵,乙种树苗y棵,,解得,,即购买甲种树苗300棵,乙种树苗100棵;(2)设购买甲种树苗a棵,200a≥300(400﹣a)解得,a≥240,即至少应购买甲种树苗240棵.19.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM=2,CN=3,求线段MN的长.【解答】解:∵MN∥BC,∴∠MEB=∠CBE,∠NEC=∠BCE,∵在△ABC中,∠ABC和∠ACB的平分线交于点E,∴∠MBE=∠EBC,∠NCE=∠BCE,∴∠MEB=∠MBE,∠NEC=∠NCE,∴ME=MB,NE=NC,∴MN=ME+NE=BM+CN=5,故线段MN的长为5.20.如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设运动的时间为x秒.(1)当x=时,CP把△ABC的面积分成相等的两部分,并求出此时CP=cm;(2)当x为何值时,△ABP为等腰三角形.【解答】解:(1)∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,当CP把△ABC的面积分成相等的两部分时,点P为AB的中点,∴点P运动的路程为6.5cm,∴x=6.5÷1=,此时CP=AB=cm;故答案为:,;(2)△ABP为等腰三角形,点P只能在AC上且P A=PB.设CP=x,则AP=BP=4﹣x,在Rt△BCP中,BC2+CP2=BP2,即32+x2=(4﹣x)2,解之得:x=,∴当x为时,△ABP为等腰三角形.21.如图,“中国海监50”于上午11时30分在南海海域A处巡逻,观测到岛礁B在北偏东60°,该船以每小时10海里的速度向正东航行到C处,观测岛礁B在北偏东30°,继续向正东航行到D处时,再观测到岛礁B在北偏西30°,当海监船到达C处时恰与岛礁B相距20海里,请你分别确定“中国海监50”从A处到达C处和D处所用的时间.【解答】解:∵在A处观测海岛B在北偏东60°方向,∴∠BAC=30°,∵C点观测海岛B在北偏东30°方向,∴∠BCD=60°,∴∠BAC=∠CBA=30°,∴AC=BC∵D点观测海岛B在北偏西30°方向,∴∠BDC=60°,∴∠BCD=60°,∴∠CBD=60°,∴△BCD为等边三角形,∴BC=BD,∵BC=20海里,∴BC=AC=CD=20(海里),∵船以每小时10海里的速度从A点航行到C处,又以同样的速度继续航行到D处,∴船从A点到达C点所用的时间为:20÷10=2(小时),船从C点到达D点所用的时间为:20÷10=2(小时),船从A点到达D点所用的时间为:4(小时).22.如图,已知一次函数y=kx+k+1的图象与一次函数y=﹣x+4的图象交于点A(1,a).(1)求a、k的值;(2)根据图象,写出不等式﹣﹣x+4>kx+k+1的解;(3)结合图形,当x>2时,求一次函数y=﹣x+4函数值y的取值范围;【解答】解:(1)把A(1,a)代入y=﹣x+4得a=﹣1+4=3,将A(1,3)代入y=kx+k+1得k+k+1=3,解得k=1;(2)不等式﹣x+4>kx+k+1的解集为x<1;(3)当x=2时,y=﹣x+4=﹣2+4=2,所以当x>2时,y<2.23.先阅读,再完成练习.一个数在数轴上所对应的点到原点的距离叫做这个数的绝对值.若|x|<3则x表示到原点距离小于3的数,从如图1所示的数轴上看:大于﹣3而小于3的数,它们到原点距离小于3,所以|x|<3的解集是﹣3<x<3;若|x|>3则x表示到原点距离大于3的数,从如图2所示的数轴上看:小于﹣3的数和大于3的数,它们到原点距离大于3,所以|x|>3的解集是x<﹣3或x>3.解答下面的问题:(1)不等式|x|<a(a>0)的解集为﹣a<x<a.不等式|x|>a(a>0)的解集为x >a或x<﹣a.(2)解不等式|x﹣3|>5.(3)求不等式|x﹣1|+|x+2|<5的解集;(4)不论x取所有的数都有|x﹣1|+|x+2|﹣2t>4恒成立,求t的取值范围.【解答】解:(1)不等式|x|<a(a>0)的解集为﹣a<x<a;不等式|x|>a(a>0)的解集为x>a或x<﹣a.故答案为:﹣a<x<a,x>a或x<﹣a.(2)|x﹣3|>5,∴x﹣3>5或x﹣3<﹣5,∴x>8或x<﹣2;(3)在数轴上找出|x﹣1|+|x+2|=5的解.由绝对值的几何意义知,该方程就是求在数轴上到1和﹣2对应的点的距离之和等于5的点对应的x的值.∵在数轴上1和﹣2对应的点的距离为3,∴满足方程的x对应的点在1的右边或﹣2的左边.若x对应的点在1的右边,可得x=2;若x对应的点在﹣2的左边,可得x=﹣3,∴方程|x﹣1|+|x+2|=5的解是x=2或x=﹣3,∴不等式|x﹣1|+|x+2|<5的解集为﹣3<x<2,故答案为﹣3<x<2;(4)∵|x﹣1|+|x+2|≥|﹣1﹣2|=3,根据题意则有4﹣2t>3,解得t<,∴t的取值范围是:t<.。

2018-2019学年八年级下第一次月考数学试卷含解析

2018-2019学年八年级下第一次月考数学试卷含解析

2018-2019学年八年级(下)第一次月考数学试卷一、单项选择题(36分.每题3分)1.(3分)如果有意义,那么x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<12.(3分)如图,如果平行四边形ABCD的对角线AC和BD相交于点O,那么图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对3.(3分)当x取什么值时, +1取值最小,这个最小值是多少?()A.当x=0时,最小值是2 B..当x=﹣时,最小值是1C..当x=时,最小值是1 D..当x=﹣时,最小值是24.(3分)适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4.A.2个 B.3个 C.4个 D.5个5.(3分)下列根式中,与是同类二次根式的是()A. B. C.D.6.(3分)在Rt△ABC中,∠C=90°,AC=3,BC=4,则点C到AB的距离是()A.B.C.D.7.(3分)下列根式中属最简二次根式的是()A.B.C.D.8.(3分)下列等式不成立的是()A.()2=a B.=|a|C.=﹣D.a=9.(3分)如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是()A.A B=CD B.AD∥BC C.OA=OC D.AD=BC10.(3分)如图所示,要在离地面5米处引拉线固定电线杆,使拉线和地面成45°角.若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.2米,L4=10米四种备用拉线材料中,拉线AC最好选用()A.L1B.L2C.L3D.L411.(3分)当a≥0时,,,﹣中,比较它们的结果,下面四个选项中正确的是()A.=≥﹣B.>>﹣C.<<﹣D.=<﹣12.(3分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2二、填空题(18分,每题3分.)13.(3分)已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为.14.(3分)已知m是的整数部分,n是的小数部分,则(m﹣n)=.15.(3分)已知平行四边形ABCD的对角线AC,BD相交于点O,AB=5,AO=4,BO=3,则平行四边形的周长是,面积是.16.(3分)若x,y是实数,且,则5x+6y=.17.(3分)A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有种.18.(3分)观察分析下列数据,寻找规律:0,,,3,2,,3,…那么第10个数据应是.第n个数是(n为正整数).三、解答题(共46分)19.(12分)计算或化简(1)+﹣(﹣1)0(2)÷﹣×﹣.(3)+x﹣y﹣(其中x>0,y>0)20.(6分)先化简,再求值:(a﹣1+)÷(a2+1),其中a=﹣1.21.(6分)求+的值.解:设x=+,两边平方得:x2=()2+()2+2,即x2=3++3﹣+4,x2=10∴x=±∵+>0,∴+=.请利用上述方法,求﹣的值.22.(6分)已知:实数a,b在数轴上的位置如图所示,化简:﹣|a﹣b|.23.(7分)如图所示的一块土地,已知AD=米,CD=米,AD⊥DC,AB=13米,BC=12米,求这块土地的面积.24.(9分)如图,已知在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P开始从点A开始沿△ABC的边做逆时针运动,且速度为每秒1cm,点Q从点B开始沿△ABC的边做逆时针运动,且速度为每秒2cm,他们同时出发,设运动时间我t 秒.(1)出发2秒后,求PQ的长;(2)在运动过程中,△PQB能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ第一次把直角三角形周长分成相等的两部分?2018-2019学年八年级(下)第一次月考数学试卷参考答案与试题解析一、单项选择题(36分.每题3分)1.(3分)如果有意义,那么x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<1【解答】解:由题意得:x﹣1≥0,解得:x≥1.故选:B.2.(3分)如图,如果平行四边形ABCD的对角线AC和BD相交于点O,那么图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对【解答】解:∵ABCD是平行四边形∴AD=BC,AB=CD,AO=CO,BO=DO∵∠AOB=∠COD,∠AOD=∠COB∴△ABO≌△CDO,△ADO≌△CBO(ASA)∵BD=BD,AC=AC∴△ABD≌△CDB,△ACD≌△CAB(SAS)∴共有四对.故选:D.3.(3分)当x取什么值时, +1取值最小,这个最小值是多少?()A.当x=0时,最小值是2 B..当x=﹣时,最小值是1C ..当x=时,最小值是1D ..当x=﹣时,最小值是2【解答】解:由题意得,9x +1=0,即x=﹣时,最小值是1. 故选:B .4.(3分)适合下列条件的△ABC 中,直角三角形的个数为( )①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4.A .2个B .3个C .4个D .5个【解答】解:①,根据勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是; ③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,根据勾股定理的逆定理是直角三角形,故是; ⑤22+22≠42,根据勾股定理的逆定理不是直角三角形,故不是. 故选:A .5.(3分)下列根式中,与是同类二次根式的是( )A .B .C .D .【解答】解:A 、=2,故A 选项不是;B 、=2,故B 选项是;C 、=,故C 选项不是;D 、=3,故D 选项不是.故选:B .6.(3分)在Rt △ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( )A .B .C .D .【解答】解:在Rt △ABC 中,∠C=90°,则有AC 2+BC 2=AB 2,∵BC=4,AC=3,∴AB=5,设AB边上的高为h,=AC•BC=AB•h,则S△ABC∴h=,故选:C.7.(3分)下列根式中属最简二次根式的是()A.B.C.D.【解答】解:A、无法化简,故本选项正确;B、=,故本选项错误;C、=2故本选项错误;D、=,故本选项错误.故选:A.8.(3分)下列等式不成立的是()A.()2=a B.=|a|C.=﹣D.a=【解答】解:A、()2=a,故A正确;B、算术平方根是非负数,故B正确;C、负数的立方根是负数,故C正确;D、开平方的被开方数都是非负数故D错误;故选:D.9.(3分)如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD∥BC C.OA=OC D.AD=BC【解答】解:A、∵AB∥CD、AB=CD,∴四边形ABCD是平行四边形;B、∵AB∥CD、AD∥BC,∴四边形ABCD是平行四边形;C、∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO.在△ABO和△CDO中,,∴△ABO≌△CDO(AAS),∴AB=CD,∴四边形ABCD是平行四边形;D、由AB∥CD、AD=BC无法证出四边形ABCD是平行四边形.故选:D.10.(3分)如图所示,要在离地面5米处引拉线固定电线杆,使拉线和地面成45°角.若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.2米,L4=10米四种备用拉线材料中,拉线AC最好选用()A.L1B.L2C.L3D.L4【解答】解:在Rt△ACD中,∵AD=5,CD=5,∴AC==5≈7.07,∴拉线AC最好选用L3.故选:C.11.(3分)当a≥0时,,,﹣中,比较它们的结果,下面四个选项中正确的是()A.=≥﹣B.>>﹣C.<<﹣D.=<﹣【解答】解:由分析可知当a≥0时,=≥﹣.故选:A.12.(3分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.二、填空题(18分,每题3分.)13.(3分)已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为等腰直角三角形.【解答】解:∵+|a﹣b|=0,∴c2﹣a2﹣b2=0,且a﹣b=0,∴c2=a2+b2,且a=b,则△ABC为等腰直角三角形.故答案为:等腰直角三角形14.(3分)已知m是的整数部分,n是的小数部分,则(m﹣n)=6﹣.【解答】解:∵3<<4,∴m=3,n=﹣3,∴m﹣n=3﹣(﹣3)=6﹣,故答案为:6﹣.15.(3分)已知平行四边形ABCD的对角线AC,BD相交于点O,AB=5,AO=4,BO=3,则平行四边形的周长是20,面积是24.【解答】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴AB=CD=5,AD=BC,AC=2AO=8,BD=2BO=6,∵AB=5,AO=4,BO=3,∴AB2=AO2+BO2,∴∠AOB=90°,即AC⊥BD,∴平行四边形ABCD是菱形,∴平行四边形的周长是:4×5=20,面积是:AC•BD=×8×6=24.故答案为:20,24.16.(3分)若x,y是实数,且,则5x+6y=13.【解答】解:∵与有意义,∴,解得x2=9,所以x=±3,又∵分母x+3≠0,∴x≠﹣3,∴x=3,∴y=﹣,∴5x+6y=13.17.(3分)A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有4种.【解答】解:因为平行四边形的判定方法有:两组对边分别平行的四边形是平行四边形,可选①③;两组对边分别相等的四边形是平行四边形,可选②④;一组对边平行且相等的四边形是平行四边形,可选①②或③④;故选法有四种.故答案为:4.18.(3分)观察分析下列数据,寻找规律:0,,,3,2,,3,…那么第10个数据应是3.第n个数是(n为正整数).【解答】解:寻找规律:0,,,3,2,,3,…那么第10个数据应是3,第n个数是,故答案为:3;三、解答题(共46分)19.(12分)计算或化简(1)+﹣(﹣1)0(2)÷﹣×﹣.(3)+x﹣y﹣(其中x>0,y>0)【解答】解:(1)原式=+1+3﹣1=4;(2)原式=﹣﹣2=4﹣﹣2=4﹣3;(3)原式=x+﹣﹣y=x﹣y.20.(6分)先化简,再求值:(a﹣1+)÷(a2+1),其中a=﹣1.【解答】解:原式=()•,=•,=,当a=﹣1时,原式==.21.(6分)求+的值.解:设x=+,两边平方得:x2=()2+()2+2,即x2=3++3﹣+4,x2=10∴x=±∵+>0,∴+=.请利用上述方法,求﹣的值.【解答】解:设,两边平方得:,即,x2=2,∴,∵>0,∴.22.(6分)已知:实数a,b在数轴上的位置如图所示,化简:﹣|a﹣b|.【解答】解:从数轴上a、b的位置关系可知:﹣2<a<﹣1,1<b<2,且b>a,故a+1<0,b﹣1>0,a﹣b<0,原式=|a+1|+2|b﹣1|﹣|a﹣b|=﹣(a+1)+2(b﹣1)+(a﹣b)=b﹣3.23.(7分)如图所示的一块土地,已知AD=米,CD=米,AD⊥DC,AB=13米,BC=12米,求这块土地的面积.【解答】解:连接AC,∵AD⊥DC∴∠ADC=90°在Rt△ACD中,AC==5米,∵(5)2+(12)2=(13)2,即AC2+BC2=AB2∴△ABC 为直角三角形,∴这块地的面积=S △ABC ﹣S △ADC =72平方米.24.(9分)如图,已知在△ABC 中,∠B=90°,AB=8cm ,BC=6cm ,点P 开始从点A 开始沿△ABC 的边做逆时针运动,且速度为每秒1cm ,点Q 从点B 开始沿△ABC 的边做逆时针运动,且速度为每秒2cm ,他们同时出发,设运动时间我t 秒.(1)出发2秒后,求PQ 的长;(2)在运动过程中,△PQB 能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ 第一次把直角三角形周长分成相等的两部分?【解答】解:(1)∵出发2秒后AP=2cm ,∴BP=8﹣2=6(cm ),BQ=2×2=4(cm ),在RT △PQB 中,由勾股定理得:PQ=(cm )即出发2秒后,求PQ 的长为2cm .(2)在运动过程中,△PQB 能形成等腰三角形,AP=t ,BP=AB ﹣AP=8﹣t ;BQ=2t由PB=BQ 得:8﹣t=2t解得t=(秒),即出发秒后第一次形成等腰三角形.(3)Rt △ABC 中由勾股定理得:AC==10(cm );∵AP=t,BP=AB﹣AP=8﹣t,BQ=2t,QC=6﹣2t,又∵线段PQ第一次把直角三角形周长分成相等的两部分,∴由周长相等得:AC+AP+QC=PB+BQ10+t+(6﹣2t)=8﹣t+2t解得t=4(s)即从出发4秒后,线段PQ第一次把直角三角形周长分成相等的两部分.。

人教版2018-2019学年八年级数学第二学期第一次月考试卷含答案

人教版2018-2019学年八年级数学第二学期第一次月考试卷含答案

2018-2019学年八年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.使式子+成立的x的取值范围是()A.x≥﹣2B.x>﹣2C.x>﹣2,且x≠2D.x≥﹣2,且x≠22.下列各式中①;②;③;④;⑤一定是二次根式的有()A.1个B.2个C.3个D.4个3.下列根式中属最简二次根式的是()A.B.C.D.4.下列各式中,一定能成立的是()A.=B.=()2C.=x﹣1D.=•5.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(0,4)C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数值随自变量的增大而减小6.如图,以直角三角形三边为边长作正方形,其中两个以直角边为边长的正方形面积分别为225和400,则正方形A的面积是()A.175B.575C.625D.7007.有下列四个命题:其中正确的个数为()(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线相等的四边形是菱形;(3)两条对角线互相垂直的四边形是正方形;(4)两条对角线相等且互相垂直的四边形是正方形.A.4B.3C.2D.18.小明在学习了正方形之后,给同桌小文出了题目,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是()A.①②B.①③C.②③D.②④9.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,记与点A重合的点为A′,则△A′BG的面积与该矩形面积的比为()A.B.C.D.10.如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A⇒B⇒C⇒M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.把中根号外的(a﹣1)移入根号内得.12.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.13.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,…,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依此为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=.14.在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高米.15.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.三、解答题(共75分)16.(8分)计算:(1)4+﹣+4(2)•(﹣)÷317.(10分)当a=时,求﹣的值.18.(10分)一块试验田的形状如图所示,∠A=90°,AC=3m,AB=4m,BD=12m,CD=13m,求这块试验田的面积.19.(10分)如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.20.如图所示,在△ABC中,AD⊥BC于D,DE∥AC于E,DF∥AB交AC于F,连接EF.(1)当△ABC满足时,四边形AEDF是矩形;(2)当△ABC满足时,四边形AEDF是正方形,并说明理由.21.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.22.(13分)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:在AB上截取BM=BE,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE =EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.2018-2019学年八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.使式子+成立的x的取值范围是()A.x≥﹣2B.x>﹣2C.x>﹣2,且x≠2D.x≥﹣2,且x≠2【分析】先由分式有意义的性质得到:x2﹣4≠0,x≠±2,根据二次根式有意义的条件,得x+2≥0,解答即可求解.【解答】解:由题意得:x2﹣4≠0,∴x≠±2又∵x+2≥0,∴x≥﹣2∴x的取值范围是:x>﹣2且x≠2.故选:C.【点评】本题考查了二次根式的性质与分式有意义的性质,解不等式,是基础题.2.下列各式中①;②;③;④;⑤一定是二次根式的有()A.1个B.2个C.3个D.4个【分析】二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,据此逐一判断即可得.【解答】解:在①;②;③;④;⑤一定是二次根式的是③④⑤,故选:C.【点评】本题考查了二次根式的定义.理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.3.下列根式中属最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足的就是最简二次根式,否则不是.【解答】解:A、是最简二次根式;B、=,可化简;C、==2,可化简;D、==3,可化简;故选:A.【点评】最简二次根式是本节的一个重要概念,也是中考的常考点.最简二次根式应该是:根式里没分母(或小数),分母里没根式.被开方数中不含开得尽方的因数或因式.被开方数是多项式时,还需将被开方数进行因式分解,然后再观察判断.4.下列各式中,一定能成立的是()A.=B.=()2C.=x﹣1D.=•【分析】利用二次根式的性质来判定即可.【解答】解:A、=,所以A选项正确;B、=()2当a为负数是不成立,所以B选项错误;C、=x﹣1当x<1时不成立,所以C选项错误;D、=•当x<3时不成立,所以D选项错误.故选:A.【点评】本题主要考查了二次根式的性质与化简,解题的关键是熟记二次根式的性质.5.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(0,4)C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数值随自变量的增大而减小【分析】根据一次函数的性质对A、D进行判断;根据一次函数图象上点的坐标特征对B进行判断;根据一次函数的几何变换对C进行判断.【解答】解:A、k=﹣2,b=4,函数的图象经过第一、二、四象限,不经过第三象限,不符合题意;B、函数的图象与y轴的交点坐标是(0,4),符合题意;C、函数的图象向下平移4个单位长度得y=﹣2x的图象,不符合题意;D、k=﹣2,函数值随自变量的增大而减小,不符合题意;故选:B.【点评】本题考查了一次函数的性质:当k>0,y随x的增大而增大,函数从左到右上升;当k<0,y随x的增大而减小,函数从左到右下降.也考查了一次函数图象的几何变换.6.如图,以直角三角形三边为边长作正方形,其中两个以直角边为边长的正方形面积分别为225和400,则正方形A的面积是()A.175B.575C.625D.700【分析】根据正方形的面积公式以及勾股定理求解.【解答】解:根据勾股定理,正方形A的面积是225+400=625;故选:C.【点评】此题的简便方法是能够发现并证明:以直角三角形的斜边为边长的正方形的面积等于以直角三角形的直角边为边长的两个正方形的面积的和.即勾股定理的验证.7.有下列四个命题:其中正确的个数为()(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线相等的四边形是菱形;(3)两条对角线互相垂直的四边形是正方形;(4)两条对角线相等且互相垂直的四边形是正方形.A.4B.3C.2D.1【分析】利用平行四边形的判定、菱形的判定及正方形的判定逐一判断后即可确定正确的选项.【解答】解:(1)两条对角线互相平分的四边形是平行四边形,正确;(2)两条对角线相等的四边形是菱形,错误;(3)两条对角线互相垂直的四边形是正方形,错误;(4)两条对角线相等且互相垂直的四边形是正方形,错误.故选:D.【点评】本题考查了命题与定理的知识,了解平行四边形的判定、菱形的判定及正方形的判定是解答本题的关键,难度较小.8.小明在学习了正方形之后,给同桌小文出了题目,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是()A.①②B.①③C.②③D.②④【分析】利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.【解答】解:A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故此选项正确,不合题意. 故选:C .【点评】此题主要考查了正方形的判定以及矩形、菱形的判定方法,正确掌握正方形的判定方法是解题关键.9.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,记与点A 重合的点为A ′,则△A ′BG 的面积与该矩形面积的比为( )A .B .C .D .【分析】根据已知条件,易求BD =5.根据折叠的性质DA ′=AD =3,得A ′B =2.根据△ABD ∽△A ′BG 可得面积之间的比值,再进一步求与矩形面积的比. 【解答】解:∵矩形纸片ABCD 中,AB =4,AD =3, ∴BD =5, ∵DA ′=AD , ∴A ′B =2.∵∠BA ′G =∠A =90°,∠A ′BG =∠ABD , ∴△A ′BG ∽△ABD ,∴S △A ′BG :S △ABD ==,∵S △ABD :S 矩形ABCD =1:2, ∴S △A ′BG :S 矩形ABCD =1:8. 故选:C .【点评】此题考查了图形的折叠变换,同时考查了相似三角形的判定和性质,综合性较强. 10.如图,矩形ABCD 中,AB =1,AD =2,M 是CD 的中点,点P 在矩形的边上沿A ⇒B ⇒C ⇒M 运动,则△APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )A.B.C.D.【分析】根据每一段函数的性质,确定其解析式,特别注意根据函数的增减性,以及几个最值点,确定选项比较简单.【解答】解:点P由A到B这一段中,三角形的AP边上的高不变,因而面积是路程x的正比例函数,当P到达B点时,面积达到最大,值是1.在P由B到C这一段,面积随着路程的增大而减小;到达C点,即路程是3时,最小是;由C到M这一段,面积越来越小;当P到达M时,面积最小变成0.因而应选第一个图象.故选:A.【点评】本题考查了分段函数的画法,是难点,要细心认真.二、填空题(本大题共5小题,每小题3分,共15分)11.把中根号外的(a﹣1)移入根号内得.【分析】首先确定a的取值范围,从而确定a﹣1的符号,然后根据二次根式的乘法法则即可计算.【解答】解:∵﹣>0,∴a<1,∴a﹣1<0,∴=﹣(1﹣a)=﹣•=﹣=﹣.故答案是:﹣【点评】本题考查了二次根式的性质与化简:=|a|=.12.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为120cm2.【分析】根据已知可求得三边的长,再根据三角形的面积公式即可求解.【解答】解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.【点评】此题主要考查学生对直角三角形的判定及勾股定理的逆定理的理解及运用.13.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,…,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依此为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=128.【分析】根据下一个正方形的边长等于前一个正方形的对角线,再利用正方形的对角线等于边长的倍,然后根据正方形的面积公式依次进行求解,从而得到面积的变化规律,即可得解.【解答】解:∵正方形ABCD的面积S1为1,∴S1=AB2=1,∵正方形ACEF的边长是AC是正方形ABCD的对角线,∴AC=AB,∴正方形ACEF的面积S2=AC2=(AB)2=2AB2=2,∵正方形ACEF的对角线AE是正方形AEGH的边长,∴AC=AC,∴正方形AEGH的面积S3=AE2=(AC)2=2AC2=22,∵正方形AEGH的对角线HE是正方形HEIJ的边长,∴HE=AE,∴正方形AEGH的面积S4=HE2=(AE)2=2AE2=23,…,依此类推,S n=2n﹣1,∴第8个正方形的面积S8=27=128.故答案为:128.【点评】本题考查了正方形的对角线等于边长的倍的性质,正方形的面积公式,依次求解得到面积的变化规律,从而得到第n个正方形的面积的表达式是解题的关键.14.在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高15米.【分析】根据两只猴子所经过的距离相等,将两只猴子所走的路程表示出来,根据勾股定理列出方程求解.【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m.【点评】把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.15.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=4.【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.【点评】运用了全等三角形的判定以及性质、勾股定理.注意发现两个小正方形的面积和正好是之间的正方形的面积.三、解答题(共75分)16.(8分)计算:(1)4+﹣+4(2)•(﹣)÷3【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=•(﹣)••=﹣a 2b .【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(10分)当a =时,求﹣的值.【分析】先将a 的值分母有理化,将原式化简后代入计算即可.【解答】解:a ===2﹣<1,∴﹣,=﹣,=a ﹣1﹣,=a ﹣1﹣;当a =2﹣时,原式=2﹣﹣1﹣(2+)=1﹣﹣2﹣=﹣1.【点评】本题考查了分式的化简求值和分母有理化,将原分式化简成a ﹣1﹣是解题的关键.18.(10分)一块试验田的形状如图所示,∠A=90°,AC=3m,AB=4m,BD=12m,CD=13m,求这块试验田的面积.【分析】根据题中的已知条件,运用勾股定理的逆定理可证△BCD为直角三角形,代入三角形的面积公式可将两个直角三角形的面积求解出来,两个直角三角形的面积和即为此块试验田的面积.【解答】解:∵∠CAB=90°,AC=3m,AB=4m,∴BC==5m,又∵52+122=132,即BC2+CD2=BD2,∴△BCD为直角三角形,S△ABC=×AB×AC=×4×3=6,S△BCD=×BC×CD=×5×12=30,故这块试验田的面积=S△ABC +S△BCD=36m2.【点评】本题考查了勾股定理的应用,解题的关键主要是运用勾股定理的逆定理证明△BCD为直角三角形.19.(10分)如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.【分析】根据平行四边形的性质得出AB=CD,AB∥CD,∠ABC=∠ADC,根据平行线的性质得出∠BAC=∠DCF,根据角平分线定义得出∠ABE=∠CDF,那么利用AAS证明△ABE≌△CDF,推出AE=CF.【解答】证明:因为四边形ABCD是平行四边形,所以AB=CD,AB∥CD,∠ABC=∠ADC,所以∠BAC=∠DCF,又因为BE、DF分别是∠ABC、∠ADC的平分线,所以∠ABE=∠ABC,∠CDF=∠ADC,所以∠ABE=∠CDF,所以△ABE≌△CDF(ASA),所以AE=CF.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两条线段所在的三角形,然后证明两三角形全等.20.如图所示,在△ABC中,AD⊥BC于D,DE∥AC于E,DF∥AB交AC于F,连接EF.(1)当△ABC满足∠BAC=90°时,四边形AEDF是矩形;(2)当△ABC满足∠BAC=90°,且AB=AC时,四边形AEDF是正方形,并说明理由.【分析】(1)先由已知条件证出四边形AEDF是平行四边形,再由∠BAC=90°,即可得出四边形AEDF是矩形;(2)由(1)得:当∠BAC=90°时,四边形AEDF是矩形,再证出DE=DF,即可得出四边形AEDF 是正方形.【解答】解:(1)当△ABC满足∠BAC=90°时,四边形AEDF是矩形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又∵∠BAC=90°,∴四边形AEDF是矩形;故答案为:∠BAC=90°;(2)当△ABC满足∠BAC=90°,且AB=AC时,四边形AEDF是正方形;理由如下:由(1)得:当∠BAC=90°时,四边形AEDF是矩形,又∵AB=AC,∴∠B=∠C=45°,∵AD⊥BC,∴△ABD和△ACD是等腰直角三角形,∵DE∥AC,∴DE⊥AB,∴AE=BE,∴DE=AB,同理:DF=AC,∴DE=DF,∴四边形AEDF是正方形;故答案为:∠BAC=90°,且AB=AC.【点评】本题考查了平行四边形的判定、矩形的判定、正方形的判定、等腰直角三角形的判定与性质;熟练掌握矩形和正方形的判定方法,并能进行推理论证是解决问题的关键.21.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.【分析】(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;;(3)联立方程组,求出交点C的坐标,继而可求出S△ADC(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到AD的距离.【解答】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,,代入表达式y=kx+b,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,=×3×|﹣3|=;∴S△ADC(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到直线AD的距离,即C纵坐标的绝对值=|﹣3|=3,则P到AD距离=3,∴P纵坐标的绝对值=3,点P不是点C,∴点P纵坐标是3,∵y=1.5x﹣6,y=3,∴1.5x﹣6=3x=6,所以P(6,3).【点评】本题考查的是一次函数的性质,三角形面积的计算等有关知识,难度中等.22.(13分)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:在AB上截取BM=BE,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE =EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.【分析】(1)在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;(2)在BA的延长线上取一点N,使AN=CE,连接NE,然后证明△ANE≌△ECF,从而可得到AE =EF.【解答】(1)正确.证明:在AB上取一点M,使AM=EC,连接ME.∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF(ASA),∴AE=EF.(2)正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE,∴∠N=∠NEC=45°,∵CF平分∠DCG,∴∠FCE=45°,∴∠N=∠ECF,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,即∠DAE+90°=∠BEA+90°,∴∠NAE=∠CEF,∴△ANE≌△ECF(ASA),∴AE=EF.【点评】本题主要考查的是全等三角形的性质和判定、正方形的性质的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。

常州市金坛区2018-2019学年八年级3月月考数学试题(含答案)

常州市金坛区2018-2019学年八年级3月月考数学试题(含答案)

2019年春学期八年级数学质量调研试卷2019.3(时间:90分钟,总分:100分)一、选择题(共8题,每题3分,共24分)1.下面4个图案中,是中心对称图形的是()A B C D2、下列说法正确的是( )A.全等的两个图形成中心对称B.成中心对称的两个图形全等C.旋转后能重合的两个图形成中心对称D.等边三角形是中心对称图形3.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有( ) A.1组B.2组C.3组D.4组4、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1= ( )A.40°B.50°C.60°D.80第4题图5、下列命题中正确的是()A. 一组对边相等,另一组对边平行的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 对角线互相垂直平分且相等的四边形是正方形6.已知平行四边形ABCD的周长为32,AB=4,则BC的长为( ) A.4 B.12 C.24 D.287.如图,正方形ABCD的边长为2 . ABE∆是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD PE+的和最小,则这个最小值为( ).A. 2B. 22C. 2D. 68.如图,将三角形纸片ABC沿DE折叠,使点A落在边BC上的点F处,且//DE BC,下列结论中,一定正确的个数是( ).①BDF∆是等腰三角形; ②12DE BC=;E D A B C③四边形ADFE 是菱形; ④2BDF FEC A ∠+∠=∠.A. 1B. 2C. 3D. 4二、填空题(共8题,每题2分,共16分)9.在等边三角形、正方形、直角三角形、等腰梯形中,既是轴对称图形,又是中心对称图形的是_ __.10、顺次连接矩形四边中点得到的四边形一定是 ,11、如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,若DE=5,则BC 的长是 .第11题图 第 15题图12、平行四边形的两条对角线长分别为8 cm 和10 cm ,则其边长的范围是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年春学期八年级数学质量调研试卷2019.3
(时间:90分钟,总分:100分)
一、选择题(共8题,每题3分,共24分)
1.下面4个图案中,是中心对称图形的是()
A B C D
2、下列说法正确的是( )
A.全等的两个图形成中心对称
B.成中心对称的两个图形全等
C.旋转后能重合的两个图形成中心对称
D.等边三角形是中心对称图形3.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:
①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;
④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有( ) A.1组B.2组C.3组D.4组
4、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1= ( )
A.40°B.50°C.60°D.80
第4题图
5、下列命题中正确的是()
A. 一组对边相等,另一组对边平行的四边形是平行四边形
B. 对角线互相垂直的四边形是菱形
C. 对角线相等的四边形是矩形
D. 对角线互相垂直平分且相等的四边形是正方形
6.已知平行四边形ABCD的周长为32,AB=4,则BC的长为( ) A.4 B.12 C.24 D.28
7.如图,正方形ABCD的边长为2 . ABE
∆是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD PE
+的和最小,则这个最小值为( ).
A. 2
B. 22
C. 2
D. 6
8.如图,将三角形纸片ABC沿DE折叠,使点A落在边BC上的点F处,且
//
DE BC,下列结论中,一定正确的个数是( ).
①BDF
∆是等腰三角形; ②
1
2
DE BC
=;
E D A B C
③四边形ADFE 是菱形; ④2BDF FEC A ∠+∠=∠.
A. 1
B. 2
C. 3
D. 4
二、填空题(共8题,每题2分,共16分)
9.在等边三角形、正方形、直角三角形、等腰梯形中,既是轴对称图形,又是中
心对称图形的是
_ __.
10、顺次连接矩形四边中点得到的四边形一定是 ,
11、如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,若DE=5,则BC 的长
是 .
第11题图 第 15题图
12、平行四边形的两条对角线长分别为8 cm 和10 cm ,则其边长的范围
是 。

13、已知菱形的两条对角线长为6cm 和8cm ,面积是 cm 2.
14、在矩形ABCD 中,对角线AC ,BD 相交于点O ,若对角线AC=10cm ,•边BC=•8cm ,
•则△ABO 的周长为________.
15、如图,等边三角形EBC 在正方形ABCD 内,连接D E ,则∠CDE =
°。

16、若平行四边形一内角的平分线把一边分成2 cm 和3 cm 两部分,则该四边
形周长是_____ __cm 。

三、解答题(共60分)
17、(6分)按下列要求在方格纸中画图.
△ABC 向右平移11格后,得到△A 1B 1C 1;△A 1B 1C 1绕点O 按逆时针方向旋转90°,
得到△A 2B 2C 2.
18、(6分)在平行四边形ABCD 中,点E 、F 、分别中AB 、CD 上,且AE =CF 。

则四边形DEBF 是平行四边形吗? 为什么?
O B C
A
19、(6分)如图,在菱形ABCD 中,E 、F 分别是BC 、CD 的中点,连接AE 、AF .AE 与AF 有什么关系?为什么?
20、(6分)如图,在□ABCD 中,BE ,CE 分别平分∠ABC ,∠BCD ,E 在AD 上,BE =
12,CE =5.求□ABCD 的面积.
21、(6分)如图,ABC ∆中,,AB AC AD =是ABC ∆的角平分线,点O 为AB 的
中点,连接DO 并延长到点E ,使OE OD =,连接AE BE 、.
求证:四边形AEBD 是矩形;
22、(6分)如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD .
求证:四边形OCED 是菱形.
23.(本题12分)如图,在口ABCD中,AB⊥AC,AB=1,BC=5,对角线BD、AC交于点O.将直线AC绕点O顺时针旋转分别交BC、AD于点E、F.
(1)试说明在旋转过程中,AF与CE总保持相等;
(2)证明:当旋转角为90⁰时,四边形ABEF是平行四边形;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,求
出此时AC绕点O顺时针旋转的角度.
24、(本题12分)
(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,AE=8,DE=10,求直角梯形ABCD的面积.。

相关文档
最新文档