2010-2019高考数学(理)真题分类汇编(十一:概率与统计~4.离散型随机变量的分布列、期望与方差)

合集下载

十年高考真题分类汇编(2010-2019) 数学 专题14 概率与统计

十年高考真题分类汇编(2010-2019)  数学 专题14 概率与统计

十年高考真题分类汇编(2010—2019)数学专题14概率与统计1.(2019·全国1·理T6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻 “”和阴爻“”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116【答案】A【解析】由题可知,每一爻有2种情况,故一重卦的6个爻有26种情况.其中6个爻中恰有3个阳爻有C 63种情况,所以该重卦恰有3个阳爻的概率为C 6326=516,故选A .2.(2019·全国2·文T4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23B.35C.25D.15【答案】B【解析】设测量过该指标的3只兔子为a,b,c,剩余2只为A,B,则从这5只兔子中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{c,A,B},{b,A,B}共10种,其中恰有2只测量过该指标的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}共6种,所以恰有2 只测量过该指标的概率为610=35,故选B .3.(2019·全国3·文T3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) 【答案】D【解析】两位男同学和两位女同学排成一列,共有24种排法.两位女同学相邻的排法有12种,故两位女同学相邻的概率是12.故选D.4.(2019·全国1·文T6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A.8号学生B.200号学生C.616号学生D.815号学生 【答案】C【解析】由已知得将1 000名新生分为100个组,每组10名学生,用系统抽样46号学生被抽到,则第一组应为6号学生,所以每组抽取的学生号构成等差数列{an},所以an=10n-4,n ∈N*, 若10n-4=8,则n=1.2,不合题意; 若10n-4=200,则n=20.4,不合题意; 若10n-4=616,则n=62,符合题意; 若10n-4=815,则n=81.9,不合题意. 故选C.5.(2019·全国2·理T5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A.中位数 B.平均数 C.方差 D.极差【答案】A【解析】设9位评委的评分按从小到大排列为x1<x2<x3<x4<…<x8<x9.对于A,原始评分的中位数为x5,去掉最低分x1,最高分x9后,剩余评分的大小顺序为x2<x3<…<x8,中位数仍为x5,故A 正确;对于B,原 始评分的平均数x =19(x 1+x 2+…+x 9),有效评分的平均数x '=17(x 2+x 3+…+x 8),因为平均数受极端值影响较大,所以x 与x '不一定相同,故B 不正确;对于C,原始评分的方差s 2=19[(x 1-x )2+(x 2-x )2+…+(x 9-x )2],有效评分的方差s'2=17[(x 2-x ')2+(x 3-x ')2+…+(x 8-x ')2],由B 易知,C 不正确;对于D,原始评分的极差为x9-x1,有效评分的极差为x8-x2,显然极差变小,故D 不正确. 6.(2018·全国2·理T8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112 B.114C.115D.118【答案】C【解析】不超过30的素数有“2,3,5,7,11,13,17,19,23,29”共10个.其中和为30的有7+23,11+19,13+17共3种情况,故P=3C 102=115.7.(2018·全国2·文T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6B.0.5C.0.4D.0.3 【答案】D【解析】设2名男同学为男1,男2,3名女同学为女1,女2,女3,则任选两人共有(男1,女1),(男1,女2),(男1,女3),(男1,男2),(男2,女1),(男2,女2)(男2,女3)(女1,女2),(女1,女3),(女2,女3)共10种,其中选中两人都为女同学共(女1,女2),(女1,女3)、(女2,女3)3种,故P=310=0.3.8.(2018·全国1·理T10)下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( ) A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 【答案】A【解析】∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=12AB ·AC,S Ⅲ=π8BC 2-12AB ·AC,S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=12AB ·AC ,S Ⅲ=π8BC 2-12AB ·AC , S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.9.(2018·江苏·T3)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .【答案】90【解析】由题中茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为89+89+90+91+915=90.10.(2018·全国1·理T3文T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设建设前经济收入为1,则建设后经济收入为2,建设前种植收入为0.6,建设后种植收入为2×0.37=0.74,故A 不正确;建设前的其他收入为0.04,养殖收入为0.3,建设后其他收入为0.1,养殖收入为0.6,故B,C 正确;建设后养殖收入与第三产业收入的总和所占比例为58%,故D 正确,故选A. 11.(2018·浙江·T7)设0<p<1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( )A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小 【答案】D【解析】由题意可知,E(ξ)=0×(1-p 2)+1×12+2×p 2=12+p,D(ξ)=(0-12-p)2×1-p 2+(1-12-p)2×12+(2-12-p)2×p2=12(-2p 2+2p +12)=-(p 2-p +14-12) =-(p -12)2+12,p ∈(0,1).故当p 在(0,1)内增大时,D(ξ)先增大后减小.12.(2018·全国3·理T8)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 【答案】B【解析】由题意,得DX=np(1-p)=10p(1-p)=2.4,∴p(1-p)=0.24,由p(X=4)<p(X=6)知C 104p 4·(1-p)6<C 106p 6(1-p)4,即p2>(1-p)2,∴p>0.5,∴p=0.6(其中p=0.4舍去).13.(2018·全国3·文T5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 【答案】B【解析】设不用现金支付的概率为P,则P=1-0.45-0.15=0.4.14.(2017·全国3·理T3文T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由题图可知2014年8月到9月的月接待游客量在减少,故A错误.15.(2017·山东·文T8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )A.3,5B.5,5C.3,7D.5,7【答案】A【解析】甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.若两组数据的中位数相等,则65=60+y,所以y=5.又两组数据的平均值相等,所以56+62+65+70+x+74=59+61+67+65+78,解得x=3.16.(2017·全国1·理T2文T4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4【答案】B【解析】不妨设正方形边长为2,则圆半径为1,正方形的面积为2×2=4,圆的面积为π×12=π.由图形的对称性,可知图中黑色部分的面积为圆面积的一半,即12πr 2=12π,所以此点取自黑色部分的概率为π24=π8.17.(2017·全国2·文T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110 B .15C .310D .25【答案】D【解析】从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图所示.总共有25种情况,其中第一张卡片上的数大于第二张卡片上的数的情况有10种,故所求的概率为1025=25. 18.(2017·天津·文T3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45 B.35C.25D.15【答案】C【解析】从5支彩笔中任取2支不同颜色的彩笔,共有(红黄),(红蓝),(红绿),(红紫),(黄蓝),(黄绿),(黄紫),(蓝绿),(蓝紫),(绿紫)10种不同情况,记“取出的2支彩笔中含有红色彩笔”为事件A,则事件A 包含(红黄),(红蓝),(红绿),(红紫)4个基本事件,则P(A)=410=25.故选C.19.(2017·山东·理T5)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归 直线方程为y ^=b ^x+a ^.已知∑i=110x i =225,∑i=110y i =1 600,b ^=4,该班某学生的脚长为24,据此估计其身高为( ) A.160B.163C.166D.170【答案】C【解析】由已知得x =110∑i=110x i =22.5,y =110·∑i=110y i =160,又b ^=4,所以a ^=y −b ^x =160-4×22.5=70,故当x=24时,y ^=4×24+70=166.故选C .20.(2016·全国1·文T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56【答案】C【解析】总的基本事件是红黄,白紫;红白,黄紫;红紫,黄白,共3种.满足条件的基本事件是红黄,白紫;红白,黄紫,共2种.故所求事件的概率为P=23.21.(2016·全国3·文T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130【答案】C【解析】密码的前两位共有15种可能,其中只有1种是正确的密码,因此所求概率为115.故选C.22.(2016·北京·文T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A.15B.25C.825D.925【答案】B【解析】从甲、乙等5名学生中选2人有10种方法,其中2人中包含甲的有4种方法,故所求的概率为410=25.23.(2016·全国1·理T4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34【答案】B【解析】这是几何概型问题,总的基本事件空间如图所示,共40分钟,等车时间不超过10分钟的时间段为7:50至8:00和8:20至8:30,共20分钟,故他等车时间不超过10分钟的概率为P=2040=12,故选B.24.(2016·全国2·理T10)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nm B.2nmC.4mnD.2mn【答案】C【解析】利用几何概型求解,由题意可知,14S圆S正方形=14π×1212=mn,所以π=4mn.25.(2016·山东·理T3文T3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56B.60C.120D.140【答案】D【解析】自习时间不少于22.5小时为后三组,其频率和为(0.16+0.08+0.04)×2.5=0.7,故人数为200×0.7=140,选D.26.(2016·全国2·文T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.310【答案】B【解析】因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.27.(2016·全国3·理T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个【答案】D【解析】由题图可知,0 ℃在虚线圈内,所以各月的平均最低气温都在0 ℃以上,A正确;易知B,C正确;平均最高气温高于20 ℃的月份有3个,分别为六月、七月、八月,D错误.故选D.28.(2015·全国2·理T3文T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【答案】D【解析】由柱形图知,2006年以来我国二氧化硫年排放量呈减少趋势,故其排放量与年份负相关,故D错误.29.(2015·陕西·理T2文T2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167【答案】C【解析】由题图知,初中部女教师有110×70%=77人;高中部女教师有150×(1-60%)=60人.故该校女教师共有77+60=137(人).故选C.30.(2015·北京·理T8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】对于选项A,从图中可以看出乙车的最高燃油效率大于5,故A项错误;对于选项B,同样速度甲车消耗1升汽油行驶的路程比乙车、丙车的多,所以行驶相同路程,甲车油耗最少,故B项错误;对于选项C,甲车以80千米/小时的速度行驶,1升汽油行驶10千米,所以行驶1小时,即行驶80千米,消耗8升汽油,故C项错误;对于选项D,速度在80千米/小时以下时,相同条件下每消耗1升汽油,丙车行驶路程比乙车多,所以该市用丙车比用乙车更省油,故D 项正确.31.(2015·湖北·理T2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A.134石 B.169石 C.338石 D.1 365石【答案】B【解析】由条件知254粒内夹谷28粒,可估计米内夹谷的概率为28254=14127,所以1 534石米中夹谷约为14127×1 534≈169(石).32.(2015·陕西·理T11)设复数z=(x-1)+yi(x,y ∈R),若|z|≤1,则y ≥x 的概率为( ) A.34+12π B.12+1πC.12−1π D.14−12π【答案】D【解析】由|z|≤1,得(x-1)2+y2≤1.不等式表示以C(1,0)为圆心,半径r=1的圆及其内部,y ≥x 表示直线y=x 左上方部分(如图所示). 则阴影部分面积S=14π×12-S △OAC=14π-12×1×1=π4−12.故所求事件的概率P=S 阴S圆=π4-12π×12=14−12π. 33.(2015·山东·文T7)在区间[0,2]上随机地取一个数x,则事件“-1≤lo g 12(x +12)≤1”发生的概率为( ) A.34 B.23C.13D.14【答案】A【解析】由-1≤lo g 12(x +12)≤1,得lo g 122≤lo g 12(x +12)≤lo g 1212,所以12≤x+12≤2,所以0≤x ≤32.由几何概型可知,事件发生的概率为32-02-0=34.34.(2015·福建·文T8)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f(x)={x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16 B.14C.38D.12【答案】B【解析】如图,设f(x)与y 轴的交点为E,则E(0,1). ∵B(1,0),∴yC=1+1=2.∴C(1,2). 又四边形ABCD 是矩形, ∴D(-2,2).∴S △DCE =12×[1-(-2)]×1=32.又S 矩形=3×2=6,∴由几何概型概率计算公式可得所求概率P=326=14.故选B .35.(2015·湖北·文T4)已知变量x 和y 满足关系y=-0.1x+1,变量y 与z 正相关.下列结论中正确的是( ) A.x 与y 负相关,x 与z 负相关 B.x 与y 正相关,x 与z 正相关 C.x 与y 正相关,x 与z 负相关 D.x 与y 负相关,x 与z 正相关 【答案】A【解析】由y=-0.1x+1知y 与x 负相关,又因为y 与z 正相关,故z 与x 负相关.36.(2015·湖北·文T8)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12B.p 1<12<p 2 C.p 2<12<p 1 D.12<p 2<p 1【答案】B【解析】设点P 的坐标为(x,y),由题意x,y ∈[0,1], 所以点P 在正方形OABC 内,S 正方形OABC=1×1=1. 画出直线x+y=12与正方形交于D ,E 两点,画出曲线xy=12与正方形交于M,N两点.而Rt△OAC的面积S=12.由图可知:S△OED<S△OAC<S曲边形OCMNA,所以p1<12<p2.故选B.37.(2015·全国1·文T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120【答案】C【解析】从1,2,3,4,5中任取3个数共有10种不同的取法,其中的勾股数只有3,4,5,因此3个数构成一组勾股数的取法只有一种,故所求概率为110.38.(2015·广东·文T7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4B.0.6C.0.8D.1【答案】B【解析】设正品分别为A1,A2,A3,次品分别为B1,B2,从中任取2件产品,基本事件共有10种,分别为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P=610=0.6.39.(2015·湖南·文T2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A.3B.4C.5D.6【答案】B【解析】依题意,应将35名运动员的成绩由好到差排序后分为7组,每组5人.然后从每组中抽取1人,其中成绩在区间[139,151]上的运动员恰好是第3,4,5,6组,因此,成绩在该区间上的运动员人数是4.40.(2015·北京·文T4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90B.100C.180D.300【答案】C【解析】由已知分层抽样中青年教师的抽样比为3201600=15, 由分层抽样的性质可得老年教师的抽样比也等于15, 所以样本中老年教师的人数为900×15=180.故选C.41.(2015·安徽·理T6)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( ) A.8 B.15C.16D.32【答案】C【解析】设数据x 1,x 2,…,x 10的平均数为x ,标准差为s,则2x 1-1,2x 2-1,…,2x 10-1的平均数为2x -1,方差为[(2x 1-1)-(2x -1)]2+[(2x 2-1)-(2x -1)]2+…+[(2x 10-1)-(2x -1)]210=4(x 1-x )2+4(x 2-x )2+…+4(x 10-x )210=4s 2,因此标准差为2s=2×8=16.故选C.42.(2015·全国1·理T4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648 B.0.432 C.0.36 D.0.312 【答案】A【解析】由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C 320.62(1-0.6)+C 330.63=0.648.43.(2015·湖北·理T4)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)【答案】C【解析】由曲线X的对称轴为x=μ1,曲线Y的对称轴为x=μ2,可知μ2>μ1.∴P(Y≥μ2)<P(Y≥μ1),故A错;由图象知σ1<σ2且均为正数,∴P(X≤σ2)>P(X≤σ1),故B错;对任意正数t,由题中图象知,P(X≤t)≥P(Y≤t),故C正确,D错.44.(2015·山东·理T8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%【答案】B【解析】由正态分布N(0,32)可知,ξ落在(3,6)内的概率为P(μ-2σ<ξ<μ+2σ)-P(μ-σ<ξ<μ+σ)2=13.59%.=95.44%-68.26%245.(2014·陕西·文T9)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x,s2+1002B.x+100,s2+1002C.x,s2D.x+100,s2【答案】D【解析】由题意,得x=x1+x2+…+x1010,y i=x i+100,所以y1,y2,…,y10的均值为x+100,方差不变.故选D.46.(2014·重庆·文T3)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100B.150C.200D.250【答案】A【解析】由题意知,抽样比为703500=150,所以n3500+1500=150,即n=100.故选A.47.(2014·湖南·文T3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3【答案】D【解析】由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3.48.(2014·广东·文T6)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.20【答案】C【解析】由题意知分段间隔为100040=25,故选C.49.(2014·全国1·理T5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78【答案】D【解析】4名同学各自在周六、周日两天中任选一天参加活动的情况有24=16(种),其中4名同学都在周六或周日参加活动各有1种情况.所以所求概率为P=16-216=78.50.(2014·陕西·文T6)从正方形4个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.45【答案】B【解析】设正方形的四个顶点为A,B,C,D,中心为O,从这5个点中任取2个点,一共有10种不同的取法:AB,AC,AD,AO,BC,BD,BO,CD,CO,DO,其中这2个点的距离小于该正方形边长的取法共有4种:AO,BO,CO,DO.因此由古典概型概率计算公式,可得所求概率P=410=25,故选B.51.(2014·湖南·文T5)在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.15【答案】B【解析】由几何概型的概率公式可得P(X≤1)=35,故选B.52.(2014·辽宁·文T6)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8【答案】B【解析】所求概率为S半圆S长方形=12π×122×1=π4,故选B.53.(2014·全国2·理T5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.45【答案】A【解析】设某天空气质量为优良为事件A,随后一天空气质量为优良为事件B,由已知得P(A)=0.75,P(AB)=0.6,所求事件的概率为P(B|A)=P(AB)P(A)=0.60.75=0.8,故选A.54.(2013·陕西·理T5)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是()A .1-π4B .π2-1C .2-π2D .π4【答案】A【解析】S 矩形ABCD =1×2=2,S 扇形ADE =S 扇形CBF =π4.由几何概型可知该地点无信号的概率为P=S矩形ABCD-S扇形ADE-S扇形CBFS矩形ABCD=2-π22=1-π4.55.(2013·四川·理T9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A.14 B.12C.34D.78【答案】C【解析】设两串彩灯第一次闪亮的时刻分别为x,y,则由题意可得,0≤x ≤4,0≤y ≤4;而所求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”={(x,y)||x-y|≤2},由图示得,该事件概率P=S阴影S正方形=16-416=34.56.(2013·湖南·文T9)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB =( ) A.12B.14C.√32D.√74【答案】D【解析】如图,设AB=2x,AD=2y. 由于AB 为最大边的概率是12,则P 在EF 上运动满足条件,且DE=CF=12x ,即AB=EB 或AB=FA.∴2x=√(2y )2+(32x)2,即4x 2=4y 2+94x 2,即74x 2=4y 2,∴y 2x 2=716.∴y x =√74.又AD AB =2y 2x =y x =√74,故选D .57.(2013·全国1·文T3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A .12B .13C .14D .16【答案】B【解析】由题意知总事件数为6,分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为1358.(2013·全国1·理T3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样【答案】C【解析】因为学段层次差异较大,所以宜采用按学段分层抽样.59.(2013·江西·理T4文T5)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08B.07C.02D.01【答案】D【解析】选出的5个个体的编号依次是08,02,14,07,01,故选D.60.(2013·陕西·理T4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A.11B.12C.13D.14【答案】B【解析】840÷42=20,把1,2,…,840分成42段,不妨设第1段抽取的号码为l,则第k 段抽取的号码为l+(k-1)·20,1≤l ≤20,1≤k ≤42.令481≤l+(k -1)·20≤720,得25+1-l20≤k≤37-l20.由1≤l≤20,则25≤k≤36.满足条件的k 共有12个.61.(2012·山东·理T4)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B 的人数为 ( ) A.7 B.9 C.10 D.15【答案】C【解析】由题意可得,抽样间隔为30,区间[451,750]恰好为10个完整的组,所以做问卷B 的有10人,故选C.62.(2012·北京·理T2)设不等式组{0≤x ≤2,0≤y ≤2表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B.π-22C.π6D.4-π4【答案】D【解析】由题意知此概型为几何概型,设所求事件为A,如图所示,边长为2的正方形区域为总度量μΩ,满足事件A 的是阴影部分区域μA,故由几何概型的概率公式得P (A )=22-14×π×2222=4-π4.63.(2012·辽宁·文T11)在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20 cm2的概率为( ) A.16 B.13C.23D.45【答案】C【解析】此概型为几何概型,由于在长为12 cm 的线段AB 上任取一点C,因此总的几何度量为12,满足矩形面积大于20 cm2的点在C1与C2之间的部分,如图所示. 因此所求概率为812,即23,故选C .64.(2012·安徽·文T10)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于 ( )。

文科数学2010-2019高考真题分类训练专题十 概率与统计

文科数学2010-2019高考真题分类训练专题十  概率与统计

目录专题十概率与统计 (2)第二十八讲统计初步 (2)第二十九讲回归分析与独立性检验 (21)第三十讲概率 (28)专题十概率与统计答案 (36)第二十八讲统计初步答案 (36)第二十九讲回归分析与独立性检验答案 (49)第三十讲概率 (54)专题十概率与统计第二十八讲统计初步2019年1.(2019全国1文6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生2.(2019全国II文14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.3.(2019全国II文19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.4.(2019全国III文4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.85.(2019全国III文17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同. 经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70. (1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).6.(2019江苏5)已知一组数据6,7,8,8,9,10,则该组数据的方差是.7.(2019北京文17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:不大于2 000元大于2 000元支付金额支付方式仅使用A 27人3人仅使用B 24人1人(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2 000元的人数有变化?说明理由.8.(2019天津文15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?A B C D E F.(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,享受情况如右表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工A B C D E F项目子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.2010-2018年一、选择题1.(2018全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2017新课标Ⅰ)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为1x ,2x ,…,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .1x ,2x ,…,n x 的平均数B .1x ,2x ,…,n x 的标准差C .1x ,2x ,…,n x 的最大值D .1x ,2x ,…,n x 的中位数3.(2017新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(2017山东)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A .3,5B .5,5C .3,7D .5,75.(2016年全国III卷)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个6.(2016年北京)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛7.(2016年山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56 B.60 C.120 D.1408.(2015新课标2)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关9.(2015湖北)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为A.134石B.169石C.338石D.1365石10.(2015北京)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为A.90 B.100 C.180 D.300类别人数老年教师900中年教师1800青年教师1600合计430011.(2015四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是A.抽签法B.系统抽样法C.分层抽样法D.随机数法12.(2015陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数是A.93 B.123 C.137 D.16713.(2015湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为A.3 B.4 C.5 D.614.(2014广东)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为A.50 B.40 C.25 D.2015.(2014广东)已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A .200,20B .100,20C .200,10D .100,1016.(2014湖南)对一个容器为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )A .123p p p =<B .231p p p =<C .132p p p =<D .123p p p ==17.(2013新课标1)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是A 、简单随机抽样B 、按性别分层抽样C 、按学段分层抽样D 、系统抽样18.(2013福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100]加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为A .588B .480C .450D .12019.(2013山东)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:9 4 0 1 0 x 9 18 7 7则7个剩余分数的方差为A .1169B .367C .36 D.7 20.(2012陕西)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是6 17 85 0 0 1 1 4 7 94 5 5 5 7 7 8 8 93 1 24 4 8 92 0 23 31 2 5A .46,45,56B .46,45,53C .47,45,56D .45,47,53二、填空题21.(2018全国卷Ⅲ)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.22.(2018江苏)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .110999823.(2017江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.24.(2016年北京)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种; ②这三天售出的商品最少有_______种.25.(2015广东)已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x + 的均值为 .26.(2015湖北)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (1)直方图中的a = .(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为 .27.(2014江苏)为了了解一片经济的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm .28.(2014天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.29.(2013辽宁)为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.::,现用分层抽样的方法30.(2012江苏)某学校高一、高二、高三年级的学生人数之比为334从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.31.(2012浙江)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.32.(2012山东)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.三、解答题33.(2018全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)水量频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)水量频数 1 5 13 10 16 5(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 3m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)34.(2018全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++, 2()0.0500.0100.0013.841 6.63510.828P K k k ≥35.(2017新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:新养殖法旧养殖法箱产量/kg箱产量/kg(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较。

2010-2019十年高考数学真题分类汇编专题14 概率与统计 学生版+解析版

2010-2019十年高考数学真题分类汇编专题14 概率与统计  学生版+解析版

十年高考真题分类汇编(2010—2019)数学专题17复数1.(2019·全国1·文T1)设z=3-i1+2i,则|z|= ()A.2B.√3C.√2D.12.(2019·全国3·理T2文T2)若z(1+i)=2i,则z=( )A.-1-iB.-1+iC.1-iD.1+i3.(2019·北京·理T1文T2)已知复数z=2+i,则z·z=()A.√3B.√5C.3D.54.(2019·全国2·文T2)设z=i(2+i),则z=( )A.1+2iB.-1+2iC.1-2iD.-1-2i5.(2019·全国1·理T2)设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则( )A.(x+1)2+y2=1B.(x-1)2+y2=1C.x2+(y-1)2=1D.x2+(y+1)2=16.(2019·全国2·理T2)设z=-3+2i,则在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限7.(2018·全国1·理T1文T2)设z=1-i1+i+2i,则|z|=()A.0B.12C.1D.√28.(2018·全国2·理T1)1+2i1-2i=()A.-45−35i B.-45+35iC.-35−45i D.-35+45i9.(2018·全国2·文T1)i(2+3i)=( )A.3-2iB.3+2i10.(2018·全国3·理T2文T2)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i的共轭复数对应的点位于( ) 11.(2018·北京·理T2文T2)在复平面内,复数11-iA.第一象限B.第二象限C.第三象限D.第四象限12.(2018·浙江·4)复数2(i为虚数单位)的共轭复数是( )1-iA.1+iB.1-iC.-1+iD.-1-i13.(2017·全国1·理T3)设有下面四个命题p1:若复数z满足1∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=z2;p4:若复数z∈R,则z∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4=( )14.(2017·全国2·理T1)3+i1+iA.1+2iB.1-2iC.2+iD.2-i15.(2017·全国2·文T2)(1+i)(2+i)= ( )A.1-iB.1+3iC.3+iD.3+3i16.(2017·山东·文T2)已知i是虚数单位,若复数z满足zi=1+i,则z2=( )A.-2iB.2iC.-2D.217.(2017·全国3·理T2)设复数z满足(1+i)z=2i,则|z|=( )A.1B.√2C.√2D.218.(2017·全国1·文T3)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)19.(2017·山东·理T2)已知a∈R,i是虚数单位.若z=a+√3i,z·z=4,则a=()A.1或-1B.√7或-√7C.-√3D.√320.(2017·全国3·文T2)复平面内表示复数z=i(-2+i)的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限21.(2017·北京·理T2)若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是( )A.(-∞,1)B.(-∞,-1)C.(1,+∞)D.(-1,+∞)22.(2016·全国2·理T1)已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是( )A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)=()23.(2016·全国3·理T2)若z=1+2i,则zz-1A.1B.-1C.iD.-I=()24.(2016·北京·文T2)复数1+2i2-iA.iB.1+iC.-iD.1-I25.(2016·全国1·理T2)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=( )A.1B.√2C.√3D.226.(2016·全国1·文T2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=( )A.-3B.-2C.2D.327.(2016·全国2·文T2)设复数z满足z+i=3-i,则z=( )A.-1+2iB.1-2iC.3+2iD.3-2i28.(2016·全国3·文T2)若z=4+3i,则z|z|= ()A.1B.-1C.45+35i D.45−35i29.(2016·山东·理T1)若复数z满足2z+z=3-2i,其中i为虚数单位,则z=( )A.1+2iB.1-2iC.-1+2iD.-1-2i30.(2015·全国2·理T2)若a为实数,且(2+ai)·(a-2i)=-4i,则a=( )A.-1B.0C.1D.231.(2015·全国·文T3)已知复数z满足(z-1)i=1+i,则z=( )A.-2-iB.-2+iC.2-iD.2+i32.(2015·全国2·文T2)若a为实数,且2+ai1+i=3+i,则a=( )A.-4B.-3C.3D.433.(2015·安徽·文T1)设i是虚数单位,则复数(1-i)(1+2i)=( )A.3+3iB.-1+3iC.3+iD.-1+i34.(2015·湖南·文T1)已知(1-i)2z=1+i(i为虚数单位),则复数z=( ) A.1+i B.1-iC.-1+iD.-1-i35.(2015·全国1·理T1)设复数z满足1+z1-z=i,则|z|=()A.1B.√2C.√3D.236.(2015·湖北·理T1)i为虚数单位,i607的共轭复数....为( )A.iB.-iC.1D.-137.(2015·安徽·理T1)设i是虚数单位,则复数2i1-i在复平面内所对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限38.(2014·全国2·理T2)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=( )A.-5B.5C.-4+iD.-4-i39.(2014·重庆·理T1)复平面内表示复数i(1-2i)的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限40.(2014·全国1·理T2)(1+i)3(1-i)2=()A.1+iB.1-iC.-1+iD.-1-I41.(2014·全国2·文T2)1+3i1-i=()A.1+2iB.-1+2iC.1-2iD.-1-2i42.(2014·全国1·文T3)设z=11+i+i,则|z|=()A.12B.√22C.√32D.243.(2013·全国1·理T2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为( )A.-4B.-45C.4 D.4544.(2013·全国2·文T2)|2|=()A.2√2B.2C.√2D.145.(2013·全国2·理T2)设复数z 满足(1-i)z=2i,则z=( ) A.-1+i B.-1-i C.1+iD.1-i46.(2013·全国1·文T2)1+2i (1-i )2=()A.-1-12i B.-1+12i C.1+12iD.1-12i47.(2012·全国·理T3)下面是关于复数z=2-1+i的四个命题: p1:|z|=2, p2:z2=2i, p3:z 的共轭复数为1+i, p4:z 的虚部为-1, 其中的真命题为( ) A.p2,p3B.p1,p2C.p2,p4D.p3,p448.(2012·全国·文T2)复数z=-3+i2+i 的共轭复数是( ) A.2+i B.2-i C.-1+iD.-1-i49.(2011·全国·文T2)复数5i1-2i =( ) A.2-i B.1-2i C.-2+iD.-1+2i50.(2010·全国·理T2)已知复数z=√3+i(1-√3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C.1D.251.(2010·全国·文T3)已知复数z=√3+i(1-√3i )2,则|z|等于()A.14B.12C.1D.252.(2018·天津·理T9文T9)i 是虚数单位,复数6+7i1+2i =.53.(2019·天津·理T9文T9)i 是虚数单位,则|5-i1+i |的值为___________.54.(2019·江苏·T 2)已知复数(a+2i)(1+i)的实部为0,其中i 为虚数单位,则实数a 的值是____ . 55.(2018·上海·5)已知复数z 满足(1+i)z=1-7i(i 是虚数单位),则|z|= .56.(2017·浙江·12)已知a,b ∈R,(a+bi)2=3+4i(i 是虚数单位),则a2+b2=_____,ab=________.57.(2017·江苏·T 2)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.58.(2017·天津·理T9文T9)已知a∈R,i为虚数单位,若a-i为实数,则a的值为.2+i59.(2016·江苏·T 2)复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是.的值为.60.(2016·天津·理T9)已知a,b∈R,i是虚数单位,若(1+i)(1-bi)=a,则ab61.(2016·北京·理T9)设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a= .62.(2015·天津·理T9)i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为.63.(2015·江苏·T 3)设复数z满足z2=3+4i(i是虚数单位),则z的模为.64.(2015·重庆·理T11)设复数a+bi(a,b∈R)的模为√3 ,则(a+bi)(a-bi)= .十年高考真题分类汇编(2010—2019)数学专题14概率与统计1.(2019·全国1·理T6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻 “”和阴爻“”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116【答案】A【解析】由题可知,每一爻有2种情况,故一重卦的6个爻有26种情况.其中6个爻中恰有3个阳爻有C 63种情况,所以该重卦恰有3个阳爻的概率为C 6326=516,故选A .2.(2019·全国2·文T4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23B.35C.25D.15【答案】B【解析】设测量过该指标的3只兔子为a,b,c,剩余2只为A,B,则从这5只兔子中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{c,A,B},{b,A,B}共10种,其中恰有2只测量过该指标的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}共6种,所以恰有2 只测量过该指标的概率为610=35,故选B .3.(2019·全国3·文T3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) 【答案】D【解析】两位男同学和两位女同学排成一列,共有24种排法.两位女同学相邻的排法有12种,故两位女同学相邻的概率是12.故选D.4.(2019·全国1·文T6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A.8号学生B.200号学生C.616号学生D.815号学生 【答案】C【解析】由已知得将1 000名新生分为100个组,每组10名学生,用系统抽样46号学生被抽到,则第一组应为6号学生,所以每组抽取的学生号构成等差数列{an},所以an=10n-4,n ∈N*, 若10n-4=8,则n=1.2,不合题意; 若10n-4=200,则n=20.4,不合题意; 若10n-4=616,则n=62,符合题意; 若10n-4=815,则n=81.9,不合题意. 故选C.5.(2019·全国2·理T5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A.中位数 B.平均数 C.方差 D.极差【答案】A【解析】设9位评委的评分按从小到大排列为x1<x2<x3<x4<…<x8<x9.对于A,原始评分的中位数为x5,去掉最低分x1,最高分x9后,剩余评分的大小顺序为x2<x3<…<x8,中位数仍为x5,故A 正确;对于B,原 始评分的平均数x =19(x 1+x 2+…+x 9),有效评分的平均数x '=17(x 2+x 3+…+x 8),因为平均数受极端值影响较大,所以x 与x '不一定相同,故B 不正确;对于C,原始评分的方差s 2=19[(x 1-x )2+(x 2-x )2+…+(x 9-x )2],有效评分的方差s'2=17[(x 2-x ')2+(x 3-x ')2+…+(x 8-x ')2],由B 易知,C 不正确;对于D,原始评分的极差为x9-x1,有效评分的极差为x8-x2,显然极差变小,故D 不正确. 6.(2018·全国2·理T8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112 B.114C.115D.118【答案】C【解析】不超过30的素数有“2,3,5,7,11,13,17,19,23,29”共10个.其中和为30的有7+23,11+19,13+17共3种情况,故P=3C 102=115.7.(2018·全国2·文T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6B.0.5C.0.4D.0.3 【答案】D【解析】设2名男同学为男1,男2,3名女同学为女1,女2,女3,则任选两人共有(男1,女1),(男1,女2),(男1,女3),(男1,男2),(男2,女1),(男2,女2)(男2,女3)(女1,女2),(女1,女3),(女2,女3)共10种,其中选中两人都为女同学共(女1,女2),(女1,女3)、(女2,女3)3种,故P=310=0.3.8.(2018·全国1·理T10)下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( ) A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 【答案】A【解析】∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=12AB ·AC,S Ⅲ=π8BC 2-12AB ·AC,S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.∵S △ABC =12AB ·AC,以AB 为直径的半圆的面积为12π·AB 22=π8AB 2,以AC 为直径的半圆的面积为12π·AC 22=π8AC 2, 以BC 为直径的半圆的面积为12π·BC 22=π8BC 2,∴S Ⅰ=1AB ·AC ,S Ⅲ=πBC 2-1AB ·AC , S Ⅱ=π8AB 2+π8AC 2-π8BC 2-12AB ·AC =12AB ·AC.∴S Ⅰ=S Ⅱ.由几何概型概率公式得p 1=SⅠS 总,p 2=SⅡS 总.∴p 1=p 2.9.(2018·江苏·T3)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .【答案】90【解析】由题中茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为89+89+90+91+91=90.10.(2018·全国1·理T3文T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设建设前经济收入为1,则建设后经济收入为2,建设前种植收入为0.6,建设后种植收入为2×0.37=0.74,故A 不正确;建设前的其他收入为0.04,养殖收入为0.3,建设后其他收入为0.1,养殖收入为0.6,故B,C 正确;建设后养殖收入与第三产业收入的总和所占比例为58%,故D 正确,故选A. 11.(2018·浙江·T7)设0<p<1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( )A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小 【答案】D【解析】由题意可知,E(ξ)=0×(1-p 2)+1×12+2×p 2=12+p,D(ξ)=(0-12-p)2×1-p 2+(1-12-p)2×12+(2-12-p)2×p2=12(-2p 2+2p +12)=-(p 2-p +14-12) =-(p -12)2+12,p ∈(0,1).故当p 在(0,1)内增大时,D(ξ)先增大后减小.12.(2018·全国3·理T8)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 【答案】B【解析】由题意,得DX=np(1-p)=10p(1-p)=2.4,∴p(1-p)=0.24,由p(X=4)<p(X=6)知C 104p 4·(1-p)6<C 106p 6(1-p)4,即p2>(1-p)2,∴p>0.5,∴p=0.6(其中p=0.4舍去).13.(2018·全国3·文T5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 【答案】B【解析】设不用现金支付的概率为P,则P=1-0.45-0.15=0.4.14.(2017·全国3·理T3文T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由题图可知2014年8月到9月的月接待游客量在减少,故A错误.15.(2017·山东·文T8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )A.3,5B.5,5C.3,7D.5,7【答案】A【解析】甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.若两组数据的中位数相等,则65=60+y,所以y=5.又两组数据的平均值相等,所以56+62+65+70+x+74=59+61+67+65+78,解得x=3.16.(2017·全国1·理T2文T4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4【答案】B【解析】不妨设正方形边长为2,则圆半径为1,正方形的面积为2×2=4,圆的面积为π×12=π.由图形的对称性,可知图中黑色部分的面积为圆面积的一半,即12πr 2=12π,所以此点取自黑色部分的概率为π24=π8.17.(2017·全国2·文T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110 B .15C .310D .25【答案】D【解析】从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图所示.总共有25种情况,其中第一张卡片上的数大于第二张卡片上的数的情况有10种,故所求的概率为1025=25. 18.(2017·天津·文T3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45 B.35C.25D.15【答案】C【解析】从5支彩笔中任取2支不同颜色的彩笔,共有(红黄),(红蓝),(红绿),(红紫),(黄蓝),(黄绿),(黄紫),(蓝绿),(蓝紫),(绿紫)10种不同情况,记“取出的2支彩笔中含有红色彩笔”为事件A,则事件A 包含(红黄),(红蓝),(红绿),(红紫)4个基本事件,则P(A)=4=2.故选C.19.(2017·山东·理T5)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归 直线方程为y ^=b ^x+a ^.已知∑i=110x i =225,∑i=110y i =1 600,b ^=4,该班某学生的脚长为24,据此估计其身高为( ) A.160B.163C.166D.170【答案】C【解析】由已知得x =110∑i=110x i =22.5,y =110·∑i=110y i =160,又b ^=4,所以a ^=y −b ^x =160-4×22.5=70,故当x=24时,y ^=4×24+70=166.故选C .20.(2016·全国1·文T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56【答案】C【解析】总的基本事件是红黄,白紫;红白,黄紫;红紫,黄白,共3种.满足条件的基本事件是红黄,白紫;红白,黄紫,共2种.故所求事件的概率为P=23.21.(2016·全国3·文T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.130【答案】C【解析】密码的前两位共有15种可能,其中只有1种是正确的密码,因此所求概率为115.故选C.22.(2016·北京·文T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A.15B.25C.825D.925【答案】B【解析】从甲、乙等5名学生中选2人有10种方法,其中2人中包含甲的有4种方法,故所求的概率为410=25.23.(2016·全国1·理T4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34【答案】B【解析】这是几何概型问题,总的基本事件空间如图所示,共40分钟,等车时间不超过10分钟的时间段为7:50至8:00和8:20至8:30,共20分钟,故他等车时间不超过10分钟的概率为P=2040=12,故选B.24.(2016·全国2·理T10)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nm B.2nmC.4mnD.2mn【答案】C【解析】利用几何概型求解,由题意可知,14S圆S正方形=14π×1212=mn,所以π=4mn.25.(2016·山东·理T3文T3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56B.60C.120D.140【答案】D【解析】自习时间不少于22.5小时为后三组,其频率和为(0.16+0.08+0.04)×2.5=0.7,故人数为200×0.7=140,选D.26.(2016·全国2·文T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.7B.5C.38D.310【答案】B【解析】因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.27.(2016·全国3·理T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个【答案】D【解析】由题图可知,0 ℃在虚线圈内,所以各月的平均最低气温都在0 ℃以上,A正确;易知B,C正确;平均最高气温高于20 ℃的月份有3个,分别为六月、七月、八月,D错误.故选D.28.(2015·全国2·理T3文T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【答案】D【解析】由柱形图知,2006年以来我国二氧化硫年排放量呈减少趋势,故其排放量与年份负相关,故D错误.29.(2015·陕西·理T2文T2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167【答案】C【解析】由题图知,初中部女教师有110×70%=77人;高中部女教师有150×(1-60%)=60人.故该校女教师共有77+60=137(人).故选C.30.(2015·北京·理T8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】对于选项A,从图中可以看出乙车的最高燃油效率大于5,故A项错误;对于选项B,同样速度甲车消耗1升汽油行驶的路程比乙车、丙车的多,所以行驶相同路程,甲车油耗最少,故B项错误;对于选项C,甲车以80千米/小时的速度行驶,1升汽油行驶10千米,所以行驶1小时,即行驶80千米,消耗8升汽油,故C项错误;对于选项D,速度在80千米/小时以下时,相同条件下每消耗1升汽油,丙车行驶路程比乙车多,所以该市用丙车比用乙车更省油,故D 项正确.31.(2015·湖北·理T2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A.134石 B.169石 C.338石 D.1 365石【答案】B【解析】由条件知254粒内夹谷28粒,可估计米内夹谷的概率为28254=14127,所以1 534石米中夹谷约为14127×1 534≈169(石).32.(2015·陕西·理T11)设复数z=(x-1)+yi(x,y ∈R),若|z|≤1,则y ≥x 的概率为( ) A.34+12π B.12+1πC.12−1π D.14−12π【答案】D【解析】由|z|≤1,得(x-1)2+y2≤1.不等式表示以C(1,0)为圆心,半径r=1的圆及其内部,y ≥x 表示直线y=x 左上方部分(如图所示). 则阴影部分面积S=14π×12-S △OAC=14π-12×1×1=π4−12.故所求事件的概率P=S 阴S圆=π4-12π×12=14−12π. 33.(2015·山东·文T7)在区间[0,2]上随机地取一个数x,则事件“-1≤lo g 12(x +12)≤1”发生的概率为( ) A.34 B.23C.13D.14【答案】A【解析】由-1≤lo g 12(x +12)≤1,得lo g 122≤lo g 12(x +12)≤lo g 1212,所以12≤x+12≤2,所以0≤x ≤32.由几何概型可知,事件发生的概率为32-02-0=34.34.(2015·福建·文T8)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f(x)={x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16 B.14C.38D.12【答案】B【解析】如图,设f(x)与y 轴的交点为E,则E(0,1). ∵B(1,0),∴yC=1+1=2.∴C(1,2). 又四边形ABCD 是矩形, ∴D(-2,2).∴S △DCE =12×[1-(-2)]×1=32.又S 矩形=3×2=6,∴由几何概型概率计算公式可得所求概率P=326=14.故选B .35.(2015·湖北·文T4)已知变量x 和y 满足关系y=-0.1x+1,变量y 与z 正相关.下列结论中正确的是( ) A.x 与y 负相关,x 与z 负相关 B.x 与y 正相关,x 与z 正相关 C.x 与y 正相关,x 与z 负相关 D.x 与y 负相关,x 与z 正相关 【答案】A【解析】由y=-0.1x+1知y 与x 负相关,又因为y 与z 正相关,故z 与x 负相关.36.(2015·湖北·文T8)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12B.p 1<12<p 2 C.p 2<12<p 1 D.12<p 2<p 1【答案】B【解析】设点P 的坐标为(x,y),由题意x,y ∈[0,1], 所以点P 在正方形OABC 内,S 正方形OABC=1×1=1. 画出直线x+y=12与正方形交于D ,E 两点,画出曲线xy=12与正方形交于M,N两点.而Rt△OAC的面积S=12.由图可知:S△OED<S△OAC<S曲边形OCMNA,所以p1<12<p2.故选B.37.(2015·全国1·文T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120【答案】C【解析】从1,2,3,4,5中任取3个数共有10种不同的取法,其中的勾股数只有3,4,5,因此3个数构成一组勾股数的取法只有一种,故所求概率为110.38.(2015·广东·文T7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4B.0.6C.0.8D.1【答案】B【解析】设正品分别为A1,A2,A3,次品分别为B1,B2,从中任取2件产品,基本事件共有10种,分别为{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},而其中恰有一件次品的基本事件有6种,由古典概型概率公式,得P=610=0.6.39.(2015·湖南·文T2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A.3B.4C.5D.6【答案】B【解析】依题意,应将35名运动员的成绩由好到差排序后分为7组,每组5人.然后从每组中抽取1人,其中成绩在区间[139,151]上的运动员恰好是第3,4,5,6组,因此,成绩在该区间上的运动员人数是4.40.(2015·北京·文T4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90B.100C.180D.300【答案】C【解析】由已知分层抽样中青年教师的抽样比为3201600=15, 由分层抽样的性质可得老年教师的抽样比也等于15, 所以样本中老年教师的人数为900×15=180.故选C.41.(2015·安徽·理T6)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( ) A.8 B.15C.16D.32【答案】C【解析】设数据x 1,x 2,…,x 10的平均数为x ,标准差为s,则2x 1-1,2x 2-1,…,2x 10-1的平均数为2x -1,方差为[(2x 1-1)-(2x -1)]2+[(2x 2-1)-(2x -1)]2+…+[(2x 10-1)-(2x -1)]210=4(x 1-x )2+4(x 2-x )2+…+4(x 10-x )210=4s 2,因此标准差为2s=2×8=16.故选C.42.(2015·全国1·理T4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648 B.0.432 C.0.36 D.0.312 【答案】A【解析】由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C 320.62(1-0.6)+C 330.63=0.648.43.(2015·湖北·理T4)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)【答案】C【解析】由曲线X的对称轴为x=μ1,曲线Y的对称轴为x=μ2,可知μ2>μ1.∴P(Y≥μ2)<P(Y≥μ1),故A错;由图象知σ1<σ2且均为正数,∴P(X≤σ2)>P(X≤σ1),故B错;对任意正数t,由题中图象知,P(X≤t)≥P(Y≤t),故C正确,D错.44.(2015·山东·理T8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%【答案】B【解析】由正态分布N(0,32)可知,ξ落在(3,6)内的概率为P(μ-2σ<ξ<μ+2σ)-P(μ-σ<ξ<μ+σ)2=13.59%.=95.44%-68.26%245.(2014·陕西·文T9)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x,s2+1002B.x+100,s2+1002C.x,s2D.x+100,s2【答案】D【解析】由题意,得x=x1+x2+…+x1010,y i=x i+100,所以y1,y2,…,y10的均值为x+100,方差不变.故选D.46.(2014·重庆·文T3)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100B.150C.200D.250【答案】A【解析】由题意知,抽样比为703500=150,所以n3500+1500=150,即n=100.故选A.47.(2014·湖南·文T3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3【答案】D【解析】由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3.48.(2014·广东·文T6)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.20【答案】C【解析】由题意知分段间隔为100040=25,故选C.49.(2014·全国1·理T5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78【答案】D【解析】4名同学各自在周六、周日两天中任选一天参加活动的情况有24=16(种),其中4名同学都在周六或周日参加活动各有1种情况.所以所求概率为P=16-216=78.50.(2014·陕西·文T6)从正方形4个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.45【答案】B【解析】设正方形的四个顶点为A,B,C,D,中心为O,从这5个点中任取2个点,一共有10种不同的取法:AB,AC,AD,AO,BC,BD,BO,CD,CO,DO,其中这2个点的距离小于该正方形边长的取法共有4种:AO,BO,CO,DO.因此由古典概型概率计算公式,可得所求概率P=410=25,故选B.51.(2014·湖南·文T5)在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.15【答案】B【解析】由几何概型的概率公式可得P(X≤1)=35,故选B.52.(2014·辽宁·文T6)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8【答案】B【解析】所求概率为S半圆S长方形=12π×122×1=π4,故选B.53.(2014·全国2·理T5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.45【答案】A【解析】设某天空气质量为优良为事件A,随后一天空气质量为优良为事件B,由已知得P(A)=0.75,P(AB)=0.6,所求事件的概率为P(B|A)=P(AB)P(A)=0.60.75=0.8,故选A.54.(2013·陕西·理T5)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是()。

2019年高考真题和模拟题分项汇编数学(理):专题10 概率与统计(含解析)

2019年高考真题和模拟题分项汇编数学(理):专题10 概率与统计(含解析)

专题10 概率与统计1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<,中位数仍为5x ,A 正确;②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数23481()7x x x x x '=<<<,平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-,22222381[()()()]7s x x x x x x '=-'+-'++-',由②易知,C不正确;④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值. 6.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算.7.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)a =0.35,b =0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.70=a +0.20+0.15,故a =0.35.b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为 2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.8.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率. 【答案】(1)0.5;(2)0.1.【解析】(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束, 则这2个球均由甲得分,或者均由乙得分. 因此P (X =2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束, 且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1. 9.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【答案】(1)分布列见解析,()2E X =;(2)20243. 【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333k k kP X k k -===.所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====. 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====(3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 10.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD == ()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”. 假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化. 理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化. 答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.11.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)分布列见解析;(2)(i)证明见解析,(ii) 45 127p =,解释见解析. 【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--, (1)(1)P X αβ==-,所以X 的分布列为(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-, 即114()i i i i p p p p +--=-. 又因为1010p p p -=≠, 所以1{}(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-, 所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=. 4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时, 认为甲药更有效的概率为410.0039257p =≈, 此时得出错误结论的概率非常小,说明这种试验方案合理.12.【广西桂林市、崇左市2019届高三下学期二模联考】在某项测试中,测量结果ξ服从正态分布2(1,)(0)N σσ>,若(01)0.4P ξ<<=,则(02)P ξ<<= A .0.4 B .0.8 C .0.6D .0.2【答案】B【解析】由正态分布的图象和性质得(02)2(01)20.40.8P P ξξ<<=<<=⨯=.故选B .【名师点睛】本题主要考查正态分布的图象和性质,考查正态分布指定区间的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A .100,10B .100,20C .200,10D .200,20【答案】D【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=, 抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D .14.【陕西省2019届高三年级第三次联考】同时抛掷2枚质地均匀的硬币4次,设2枚硬币均正面向上的次数为X ,则X 的数学期望是 A .1B .2C .32D .52【答案】A【分析】先计算依次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率,进而利用二项分布求数学期望即可.【解析】∵一次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率为111224⨯=, ∴1~(4,)4X B ,∴1()414E X =⨯=.故选A . 【名师点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布~(,)B n p ,也可以直接利用公式()E np ξ=求数学期望.15.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为 A .35,33,30 B .36,32,30 C .36,33,29D .35,32,31【答案】B【分析】先将各年级人数凑整,从而可确定抽样比;再根据抽样比计算得到各年级抽取人数. 【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为1849,1649,1549, 因此,各年级抽取人数分别为18983649⨯=,16983249⨯=,15983049⨯=,故选B . 16.【浙江省三校2019年5月第二次联考】已知甲口袋中有3个红球和2个白球,乙口袋中有2个红球和3个白球,现从甲、乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为ξ,则()E ξ= A .145B .135C .73D .83【答案】A【分析】先求出ξ的可能取值及取各个可能取值时的概率,再利用1122()i i E p p p ξξξξ=++++可求得数学期望.【解析】ξ的可能取值为2,3,4,2ξ=表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故339(2)5525P ξ==⨯=;3ξ=表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白球,故322312(3)555525P ξ==⨯+⨯=;4ξ=表示从甲口袋中取出一个白球,从乙口袋中取出一个红球,故224(4)5525P ξ==⨯=,所以912414()2342525255E ξ=⨯+⨯+⨯=.故选A . 17.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则 A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s ><【答案】A【分析】分别根据数据的平均数和方差的计算公式,求得2,x s 的值,即可得到答案.【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-22212481[(70)(70)(70)500]50x x x =-+-++-+, 22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+-22212481[(70)(70)(70)100]7550x x x =-+-++-+<, 所以275s <.故选A .【名师点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,是基础题.18.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分【答案】D【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D .19.【天津市南开中学2019届高三模拟试题】《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共同参与诗词知识比拼.“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髫小儿,人数按照年龄分组统计如下表:(1)用分层抽样的方法从“百人团”中抽取6人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数; (2)在(1)中抽出的6人中,任选2人参加一对一的对抗比赛,求这2人来自同一年龄组的概率. 【答案】(1)1,3,2;(2)415. 【分析】(1)先求出样本容量与总体个数的比,由此利用分层抽样的方法能求出从这三个不同年龄组中分别抽取的挑战者的人数;(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数26C 15n ==,这2人来自同一年龄组包含的基本事件个数为2232C C 4m =+=,由此能求出这2人来自同一年龄组的概率.【解析】(1)∵样本容量与总体个数的比是6110818=, ∴样本中包含3个年龄段落的个体数分别是:年龄在[7,20)的人数为6108⨯18=1, 年龄在[20,40)的人数为6108⨯54=3, 年龄在[40,80)的人数为6108⨯36=2, ∴从这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2. (2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数为26C 15n ==, 这2人来自同一年龄组包含的基本事件个数为2232C C 4m =+=,∴这2人来自同一年龄组的概率415m P n ==. 20.【2019北京市通州区三模】为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值. (1)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率;(2)从该公司本月卖出的销售单价为20万元的机器中随机选取2台,求这两台机器的利润率不同的概率; (3)假设每类机器利润率不变,销售一台第一类机器获利1x 万元,销售一台第二类机器获利2x 万元,…,销售一台第五类机器获利5x ,依据上表统计数据,随机销售一台机器获利的期望为()E x ,设123455x x x x x x ++++=,试判断()E x 与x 的大小.(结论不要求证明)【答案】(1)13;(2)1021;(3)()E x x <.【分析】(1)先由题意确定,本月卖出机器的总数,再确定利润率高于0.2的机器总数,即可得出结果;(2)先由题意确定,销售单价为20万元的机器分别:是第一类有5台,第三类有10台,共有15台,记两台机器的利润率不同为事件B ,由11510215C C ()C P B =即可结果;(3)先由题意确定,x 可能取的值,求出对应概率,进而可得出()E x ,再由123455x x x x x x ++++=求出均值,比较大小,即可得出结果.【解析】(1)由题意知,本月共卖出30台机器, 利润率高于0.2的是第一类和第四类,共有10台. 设“这台机器利润率高于0.2”为事件A ,则101()303P A ==. (2)用销售总额除以销售量得到机器的销售单价,可知第一类与第三类的机器销售单价为20万, 第一类有5台,第三类有10台,共有15台,随机选取2台有215C 种不同方法, 两台机器的利润率不同则每类各取一台有11510C C 种不同方法,设两台机器的利润率不同为事件B ,则11510215C C 10()C 21P B ==. (3)由题意可得,x 可能取的值为8,5,3,1051(8)306P x ===,21(5)3015P x ===, 1083(3)305P x +===,51(10)306P x ===,因此113177853*******(55)E x =⨯+⨯+⨯+⨯=;又8531032955x ++++==,所以()E x x <.21.【江西省新八校2019届高三第二次联考】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:(1)若将频率是为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考, 方案1:不分类卖出,单价为20元/kg . 方案2:分类卖出,分类后的水果售价如下:从采购单的角度考虑,应该采用哪种方案?(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X 表示抽取的是精品果的数量,求X 的分布列及数学期望()E X . 【答案】(1)96625;(2)第一种方案;(3)分布列见解析,6()5E X =. 【分析】(1)计算出从100个水果中随机抽取一个,抽到礼品果的概率;则可利用二项分布的概率公式求得所求概率;(2)计算出方案2单价的数学期望,与方案1的单价进行比较,选择单价较低的方案;(3)根据分层抽样原则确定抽取的10个水果中,精品果4个,非精品果6个;则X 服从超几何分布,利用超几何分布的概率计算公式可得到每个X 取值对应的概率,从而可得分布列;再利用数学期望的计算公式求得结果. 【解析】(1)设从100个水果中随机抽取一个,抽到礼品果的事件为A ,则201()1005P A ==, 现有放回地随机抽取4个,设抽到礼品果的个数为X ,则1~(4,)5X B , 所以恰好抽到2个礼品果的概率为22244196(2)C ()()55625P X ===, (2)设方案2的单价为ξ,则单价的期望值为134216548848()1618222420.61010101010E ξ+++=⨯+⨯+⨯+⨯==, 因为()20E ξ>,所以从采购商的角度考虑,应该采用第一种方案.(3)用分层抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个, 现从中抽取3个,则精品果的数量X 服从超几何分布,所有可能的取值为0,1,2,3,则36310C 1(0)C 6P X ===;2164310C C 1(1)C 2P X ===; 1264310C C 3(2)C 10P X ===;34310C 1(3)C 30P X ===,所以X 的分布列如下:所以()01236210305E X =⨯+⨯+⨯+⨯=【名师点睛】本题考查二项分布求解概率、数学期望的实际应用、超几何分布的分布列与数学期望的求解问题,关键是能够根据抽取方式确定随机变量所服从的分布类型,从而可利用对应的概率公式求解出概率.。

理科数学2010-2019高考真题分类训练专题十一 概率与统计第三十四讲 古典概型与几何概型答案

理科数学2010-2019高考真题分类训练专题十一  概率与统计第三十四讲  古典概型与几何概型答案

专题十一 概率与统计 第三十四讲 古典概型与几何概型答案部分1.解析 在所有重卦中随机取一重卦,基本事件总数6264n ==,该重卦恰有3个阳爻包含的基本个数3363C C 20m ==,则该重卦恰有3个阳爻的概率2064m p n ===2. 解析 从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数25C 10n ==,选出的2名同学中至少有1名女同学包含的基本事件个数112322C C C 7m =+=,所以选出的2名同学中至少有1名女同学的概率是710m P n ==.3.解析 由题意可得,一共比赛了5场,且第5场甲获胜,前4场甲队胜3场,输1场,有2种情况:①甲队主场输1场,其概率为:122122C 0.60.4C 0.50.12P =⨯⨯⨯⨯=, ②甲队客场输1场,其概率为:221222C 0.6C 0.50.50.18P =⨯⨯⨯⨯=由于第5场必定是甲队胜,所以()2120.60.18P P P =+⨯=则甲队以4:1获胜的概率为0.18.4.解析(1)X =2就是10:10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分, 或者均由乙得分.因此P (X =2)=0.5×0.4+(1–0.5)×(1–04)=05.(2)X =4且甲获胜,就是10:10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.2010-2018年1.A 【解析】通解 设直角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则区域I 的面积即∆ABC 的面积,为112=S bc ,区域Ⅱ的面积221()22π=⨯+cS22222()111112()[]()2222822πππ⨯⨯--=+-+=ab bc c b a bc bc ,所以12=S S ,由几何概型的知识知12=p p ,故选A .优解 不妨设∆ABC 为等腰直角三角形,2==AB AC ,则=BC 所以区域I 的面积即∆ABC 的面积,为112222=⨯⨯=S ,区域Ⅱ的面积2221[2]22ππ⨯=⨯--=S,区域Ⅲ的面积23222ππ⨯=-=-S .根据几何概型的概率计算公式,得1222p p π==+,322ππ-=+p ,所以13≠p p , 23≠p p ,123≠+p p p ,故选A .2.C 【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有210C 种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率21031C 15==P ,故选C . 3.B 【解析】设正方形的边长为2a ,由题意可知太极图的黑色部分的面积是圆的面积的一半,根据几何概型的概率计算,所求概率为221248a a ππ=.选B . 4.C 【解析】不放回的抽取2次有1198C C 9872=⨯=,如图21,3,4,5,6,7,8,923,4,5,6,7,8,91可知(1,2)与(2,1)是不同,所以抽到的2张卡片上的数奇偶性不同有11542C C =40,所求概率为405728=.5.B 【解析】由题意得图:8:308:208:108:007:50由图得等车时间不超过10分钟的概率为12. 6.C 【解析】由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在如图所示的阴影中由几何概型概率计算公式知π41m n =,∴4πmn=,故选C .7.B 【解析】 基本事件总数为215C ,恰有1个白球与1个红球的基本事件为11105C C,所求概率为111052151021C C C =. 8.D 【解析】4422728P -==. 9.B 【解析】掷两颗均匀的骰子的所有基本事件有6636⨯=种,点数之和为5的有4中,所以所求概率为41369=. 10.B 【解析】区间长度为3(2)5--=,[2,1]-的长度为1(2)3--=,故满足条件的概率为23P =. 11.B 【解析】由几何模型的概率计算公式,所求概率12=24S P S ππ==阴影长方形12.B 【解析】5个点中任取2个点共有10种方法,若2个点之间的距离小于边长,则这2个点中必须有1个为中心点,有4种方法,于是所求概率42105P ==. 13.D 【解析】由题意作图,如图所示,1Ω的面积为12222⨯⨯=,图中阴影部分的面积为1722224-⨯=,则所求的概率 78P =,选D . 14.A 【解析】由题设可知矩形ABCD 面积为2,曲边形DEBF 的面积为22π-故所求概率为22124ππ-=-,选A.15.D 【解析】总的可能性有10种,甲被录用乙没被录用的可能性3种,乙被录用甲没被录用的可能性3种,甲乙都被录用的可能性3种,所以最后的概率333110p ++== 16.B 【解析】任取两个不同的数有()()()()()()1,2,1,3,1,4,2,3,2,4,3,4共6种,2个数之差的绝对值为2的有()()1324,,,,故2163P == 17.D 【解析】由已知,点P 的分界点恰好是边CD 的四等分点,由勾股定理可得2223()4AB AB AD =+,解得27()16AD AB =,即4AD AB =,故选D . 18.C 【解析】如图所示,令=,=AC x CB y ,则()+=12>0,y>0x y x ,矩形面积设为S ,则()==12-32S xy x x ≤, 解得0<48<12x x ≤≤或,该矩形面积小于322cm 的概率为82=123,故选C. 19.D 【解析】不等式组0202xy⎧⎨⎩剟剟表示坐标平面内的一个正方形区域,设区域内的点的坐标为(,)x y ,则随机事件:在区域D 内取点,此点到坐标原点的距离大于2表示的区域就是圆224x y +=的外部,即图中的阴影部分,故所求的概率为44π-. 20.A 【解析】记三个兴趣小组分别为1,2,3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”共3个,因此1()3P A =. 21.310【解析】记2名男生分别为A ,B ,3名女生分别为a ,b ,c ,则从中任选2名学生有AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,ab ,ac ,bc ,共10种情况,其中恰好选中2名女生有ab ,ac ,bc ,共3种情况,故所求概率为310. 22.15【解析】从5个砝码随机取3个共有35C 10=种,总质量为9克共有9=5+3+1,9=5+2+2两种情况,所以三个砝码的总质量为9克的概率是35221C 105==. 23.59【解析】由260x x +-≥,解得23x -≤≤,根据几何概型的计算公式得概率为 3(2)55(4)9--=--.24.43.【解析】圆22(5)9x y -+=的圆心为(5,0)C ,半径3r =r <,3<,整理得2916k <,得3344k -<<. 25.56【解析】从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色不同有5种结果,故所求概率为56. 26.23【解析】设2本数学书分别为A 、B ,语文书为G ,则所有的排放顺序有ABC 、ACB 、BAC 、BCA 、CAB 、CBA ,共6种情况,其中数学书相邻的有ABC 、BAC 、CAB 、CBA ,共4种情况,故2本数学书相邻的概率4263P ==. 27.932【解析】设小张与小王的到校时间分别为7:00后第x 分钟,第y 分钟,根据题意可画出图形,如图所示,则总事件所占的面积为2(5030)400-=.小张比小王至少早5分钟到校表示的事件{}(,)|5,3050,3050A x y y x x y =-≥≤≤≤≤,如图中阴影部分所示,阴影部分所占的面积为1225151522⨯⨯=,所以小张比小王至少早5分钟到校的概率为9()32P A =.28.13【解析】甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为13P =. 29.13【解析】设3张奖券中一等奖、二等奖和无奖分别为,,a b c ,甲、乙两人各抽取一张的所有情况有,,,,,ab ac ba bc ca cb 共六种,其中两人都中奖的情况有,ab ba 共2种,所以概率为1330.13【解析】设()12f x x x =+--,则3,31()1221,123,23x f x x x x x x --≤≤-⎧⎪=+--=--<<⎨⎪≤≤⎩。

理科数学2010-2019高考真题分类训练专题十一概率与统计第三十二讲统计初步(1)

理科数学2010-2019高考真题分类训练专题十一概率与统计第三十二讲统计初步(1)

专题十一概率与统计第三十二讲统计初步2019年1 (2019全国II理5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差2(2019全国II理13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.3(2019全国III理17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).4(2019浙江7)设0<a<1,则随机变量的分布列是则当a在(0,1)内增大时A.D()增大B.D()减小C.D()先增大后减小D.D()先减小后增大5.(2019江苏5)已知一组数据6,7,8,8,9,10,则该组数据的方差是.2010-2018年一、选择题1.(2018全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2017新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳3.(2017江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(2016年山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56 B.60 C.120 D.1405.(2016年全国III)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。

2019年高考数学理试题分类汇编:统计与概率(含答案)

2019年高考数学理试题分类汇编:统计与概率(含答案)

2019 年高考数学理试题分类汇编统计与概率一、选择题1、( 2019 年北京高考)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A. 乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【答案】 C2、( 2019 年山东高考)某高校调查了200 名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30] ,样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200 名学生中每周的自习时间不少于 22.5 小时的人数是( A )56(B)60(C)120(D)140【答案】 D3、( 2019 年全国 I 高考)某公司的班车在7:30, 8:00, 8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是1123(A )3( B)2(C)3(D)4【答案】 B4、( 2019年全国 II 高考)从区间0,1 随机抽取 2n 个数x1,x2,⋯,x n,y1,y2,⋯,y n,构成n 个数对x1, y1, x2 , y2,⋯,x n , y n,其中两数的平方和小于 1 的数对共有m个,则用随机模拟的方法得到的圆周率的近似值为( A)【答案】 C 4n2n4m2m m(B)( C)(D)m n n5、( 2019 年全国 III 高考)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中 A 点表示十月的平均最高气温约为150C, B 点表示四月的平均最低气温约为50C。

十年真题(2010_2019)高考数学真题分类汇编专题14概率统计理(含解析)

十年真题(2010_2019)高考数学真题分类汇编专题14概率统计理(含解析)

专题14概率统计历年考题细目表题型年份考点试题位置单选题2019 概率2019年新课标1理科06单选题2018 统计2018年新课标1理科03单选题2018 概率2018年新课标1理科10单选题2017 概率2017年新课标1理科02单选题2016 概率2016年新课标1理科04单选题2015 概率2015年新课标1理科04单选题2014 概率2014年新课标1理科05单选题2013 统计2013年新课标1理科03单选题2011 概率2011年新课标1理科04单选题2010 概率2010年新课标1理科06填空题2019 概率2019年新课标1理科15填空题2012 概率2012年新课标1理科15解答题2019 概率统计综合题2019年新课标1理科21解答题2018 概率统计综合题2018年新课标1理科20解答题2017 概率统计综合题2017年新课标1理科19解答题2016 概率统计综合题2016年新课标1理科19解答题2015 概率统计综合题2015年新课标1理科19解答题2014 概率统计综合题2014年新课标1理科18解答题2013 概率统计综合题2013年新课标1理科19解答题2012 概率统计综合题2012年新课标1理科18解答题2011 概率统计综合题2011年新课标1理科19解答题2010 概率统计综合题2010年新课标1理科19历年高考真题汇编1.【2019年新课标1理科06】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m20,则该重卦恰有3个阳爻的概率p.故选:A.2.【2018年新课标1理科03】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解答】解:设建设前经济收入为a,建设后经济收入为2a.A项,种植收入37%×2a﹣60%a=14%a>0,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故B项正确.C项,建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故C项正确.D项,建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故D项正确.因为是选择不正确的一项,故选:A.3.【2018年新课标1理科10】如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3【解答】解:如图:设BC=2r1,AB=2r2,AC=2r3,∴r12=r22+r32,∴SⅠ4r2r3=2r2r3,SⅢπr12﹣2r2r3,SⅡπr32πr22﹣SⅢπr32πr22πr12+2r2r3=2r2r3,∴SⅠ=SⅡ,∴P1=P2,故选:A.。

(2010-2019)高考数学真题分类汇编 集合 理(含解析)

(2010-2019)高考数学真题分类汇编  集合 理(含解析)

历年高考真题汇编1.【2019年新课标1理科01】已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3}【解答】解:∵M={x|﹣4<x<2},N={x|x2﹣x﹣6<0}={x|﹣2<x<3},∴M∩N={x|﹣2<x<2}.故选:C.2.【2018年新课标1理科02】已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2} B.{x|﹣1≤x≤2} C.{x|x<﹣1}∪{x|x>2} D.{x|x≤﹣1}∪{x|x≥2} 【解答】解:集合A={x|x2﹣x﹣2>0},可得A={x|x<﹣1或x>2},则:∁R A={x|﹣1≤x≤2}.故选:B.3.【2017年新课标1理科01】已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=R C.A∪B={x|x>1} D.A∩B=∅【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.4.【2016年新课标1理科01】设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,)B.(﹣3,)C.(1,)D.(,3)【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.5.【2014年新课标1理科01】已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1] C.[﹣1,2)D.[﹣2,﹣1]【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.6.【2013年新课标1理科01】已知集合A={x|x2﹣2x>0},B={x|x},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x或x<0},A∪B=R,故选:B.7.【2012年新课标1理科01】已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.8.【2010年新课标1理科01】已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题1.若集合{}5|2A x x =-<<,{}|||3B x x =<,则A B =( )A .{}|32x x -<<B .{}|52x x -<<C .{}|33x x -<<D .{}|53x x -<<【答案】A 【解析】解:{}{}333||B x x x x =<=-<<, 则{}|32A B x x ⋂=-<<, 故选:A .2.已知集合2{|560}A x x x =-+≤,{|15}B x Z x =∈<<,则A B =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}【答案】C 【解析】2560(2)(3)023x x x x x -+≤⇒--≤⇒≤≤,{}23A x x ∴=≤≤, 又{}{|15}2,3,4B x Z x =∈<<=,所以{}2,3A B ⋂=,故本题选C. 3.已知集合{3,2,1,0,1,2,3}A =---,{}2|450B x x x =∈--≤R ,则A B =( )A .{3,2,1,0}---B .{}1,0,1,2,3-C .{}3,2--D .{}3,2,1,0,1,2,3---【答案】B 【解析】因为{}2|450B x x x =∈--≤R {|15}x x =-≤≤,{3,2,1,0,1,2,3}A =---∴{}1,0,1,2,3A B ⋂=-. 故选B .4.已知全集U =R ,集合{}|24,{|(1)(3)0}xA xB x x x =>=--<,则()U A B =( )A .(1,2)B .(]1,2 C .(1,3)D .(,2]-∞【答案】B 【解析】由24x >可得2x >, (1)(3)0x x --<可得13x <<,所以集合(2,),(1,3)A B =+∞=,(,2]UA =-∞,所以()U A B =(]1,2,故选B.5.已知集合{}(,)|1,A x y y x x R ==+∈,集合{}2(,)|,B x y y x x R ==∈,则集合A B ⋂的子集个数为( ) A .1 B .2C .3D .4【答案】D 【解析】由题意得,直线1y x =+与抛物线2yx 有2个交点,故A B ⋂的子集有4个.6.已知集合{}2log (1)2M x x =+<,{1,0,1,2,3}N =-,则()R M N ⋂=( ) A .{-1,0,1,2,3} B .{-1,0,1,2} C .{-1,0,1}D .{-1,3}【答案】D 【解析】由题意,集合{}2log (1)2{|13}M x x x x =+<=-<<,则{|1RM x x =≤-或3}x ≥又由{1,0,1,2,3}N =-,所以(){1,3}R M N ⋂=-,故选D.7.已知集合{}lg(1)A x y x ==-,{}1,0,1,2,3B =-,则()R A B =( )A .{}1,0-B .{}1,0,1-C .{}1,2,3D .{}2,3【答案】B 【解析】因为{}{}lg(1)1A x y x x x ==-=>,所以{}1R C A x x =≤, 又{}1,0,1,2,3B =-,所以{}()1,0,1R C A B =-.故选B8.已知R 是实数集,集合{}1,0,1A =-,{}210B x x =-≥,则()A B =R( ) A .{}1,0- B .{}1C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭【答案】A 【解析】1|2B x x1|2R C Bx x即(){1,0}R A C B故选A 。

2010年高考数学试题分类汇编——概率与统计

2010年高考数学试题分类汇编——概率与统计

2010年高考数学试题分类汇编-—概率与统计(理科)(2010浙江理数)19。

(本题满分l4分)如图,一个小球从M处投入,通过管道自上而下落A或B或C。

已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望ξE;(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求)2(=ηP.(2010全国卷2理数)(20)(本小题满分12分)如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0。

9.电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0。

999.(Ⅰ)求p;(Ⅱ)求电流能在M与N之间通过的概率;(Ⅲ)ξ表示T1,T2,T3,T4中能通过电流的元件个数,求ξ的期望.(2010辽宁理数)(18)(本小题满分12分)为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果。

(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;(ⅱ)完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:(2010江西理数)18。

(本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。

2010-2019年十年高考数学真题分类汇编.docx

2010-2019年十年高考数学真题分类汇编.docx

A.1
B.2
C.3
D.4
31(. 2017Ⅲ理 1)已知集合 A = (x, y) x2 + y2 = 1 ,B = (x, y) y = x ,则 A I B 中元素的个数为( )
A.3
B.2
C.1
D.0
32.(2018Ⅰ文 1)已知集合 A = 0,2 , B = -2,-1,0,1,2 ,则 A I B = ( )
A.(-14,16)
B.(-14,20)
C.(-12,18)
D.(-12,20)
x-3 2.(2010Ⅱ文 2)不等式 0 的解集为( )
x+2
A.{x|-2< x<3} B.{ x|x<-2}
C.{ x|x<-2,或 x>3} D.{ x∣x>3}
x -1
3.(2010Ⅱ文
5

3)若变量
x,y
1.集合
1.(2010Ⅰ文理 1)已知集合 A = x | x 2,x R,B = x | x 4,x Z ,则 A I B =( )
A.(0,2)
B.[0,2]
C.{0,2}
D.{0,1,2}
2.(2010Ⅱ文 1)设全集 U= x N * | x 6 ,集合 A={1,3},B={3,5},则 CU A U B =( )
A.{-1,0}
B.{0,1}
C.{-1,0,1}
D.{0,1,2}
20.(2016Ⅰ文 1)设集合 A={1,3,5,7},B={x| 2 x 5},则 A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
21.(2016Ⅰ理 1)设集合 A={x|x2-4x+3<0},B={x|2x-3>0},则 A I B = ( )

2019年高考真题和模拟题分项汇编数学(理) 专题10 概率与统计 含答案解析

2019年高考真题和模拟题分项汇编数学(理) 专题10 概率与统计 含答案解析

专题10 概率与统计1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<,中位数仍为5x ,A 正确;②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数23481()7x x x x x '=<<<,平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-,22222381[()()()]7s x x x x x x '=-'+-'++-',由②易知,C不正确;④原极差91x x =-,后来极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量X 的分布列是333则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值. 6.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算.7.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)a =0.35,b =0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.70=a +0.20+0.15,故a =0.35. b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为 2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.8.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜”的概率. 【答案】(1)0.5;(2)0.1.【解析】(1)X =2就是10∶10平后,两人又打了2个球该局比赛结束, 则这2个球均由甲得分,或者均由乙得分. 因此P (X =2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X =4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束, 且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1. 9.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【答案】(1)分布列见解析,()2E X =;(2)20243. 【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333kkkP X k k -===.所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====. 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====(3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 10.【2019年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E (X )=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)X 的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”.由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD == ()()()()P C P D P C P D =+ 0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以X 的分布列为X 0 1 2 P0.240.520.24故X 的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”. 假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化. 理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化. 答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.11.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)分布列见解析;(2)(i)证明见解析,(ii) 45 127p =,解释见解析. 【解析】X 的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--, (1)(1)P X αβ==-,所以X 的分布列为(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-, 即114()i i i i p p p p +--=-. 又因为1010p p p -=≠, 所以1{}(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列.(ii )由(i )可得88776100p p p p p p p p =-+-++-+877610()()()p p p p p p =-+-++-81413p -=.由于8=1p ,故18341p =-,所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=. 4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时, 认为甲药更有效的概率为410.0039257p =≈, 此时得出错误结论的概率非常小,说明这种试验方案合理.12.【广西桂林市、崇左市2019届高三下学期二模联考】在某项测试中,测量结果ξ服从正态分布2(1,)(0)N σσ>,若(01)0.4P ξ<<=,则(02)P ξ<<= A .0.4 B .0.8 C .0.6D .0.2【答案】B【解析】由正态分布的图象和性质得(02)2(01)20.40.8P P ξξ<<=<<=⨯=.故选B .【名师点睛】本题主要考查正态分布的图象和性质,考查正态分布指定区间的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A .100,10B .100,20C .200,10D .200,20【答案】D【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=, 抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D .14.【陕西省2019届高三年级第三次联考】同时抛掷2枚质地均匀的硬币4次,设2枚硬币均正面向上的次数为X ,则X 的数学期望是 A .1B .2C .32D .52【答案】A【分析】先计算依次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率,进而利用二项分布求数学期望即可.【解析】∵一次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率为111224⨯=, ∴1~(4,)4X B ,∴1()414E X =⨯=.故选A . 【名师点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布~(,)B n p ,也可以直接利用公式()E np ξ=求数学期望.15.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为 A .35,33,30 B .36,32,30 C .36,33,29D .35,32,31【答案】B【分析】先将各年级人数凑整,从而可确定抽样比;再根据抽样比计算得到各年级抽取人数. 【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为1849,1649,1549, 因此,各年级抽取人数分别为18983649⨯=,16983249⨯=,15983049⨯=,故选B . 16.【浙江省三校2019年5月第二次联考】已知甲口袋中有3个红球和2个白球,乙口袋中有2个红球和3个白球,现从甲、乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为ξ,则()E ξ=A .145 B .135 C .73D .83【答案】A【分析】先求出ξ的可能取值及取各个可能取值时的概率,再利用1122()i i E p p p ξξξξ=++++可求得数学期望.【解析】ξ的可能取值为2,3,4,2ξ=表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故339(2)5525P ξ==⨯=;3ξ=表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白球,故322312(3)555525P ξ==⨯+⨯=;4ξ=表示从甲口袋中取出一个白球,从乙口袋中取出一个红球,故224(4)5525P ξ==⨯=,所以912414()2342525255E ξ=⨯+⨯+⨯=.故选A .17.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则 A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s ><【答案】A【分析】分别根据数据的平均数和方差的计算公式,求得2,x s 的值,即可得到答案.【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-22212481[(70)(70)(70)500]50x x x =-+-++-+, 22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+-22212481[(70)(70)(70)100]7550x x x =-+-++-+<, 所以275s <.故选A .【名师点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,是基础题.18.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分【答案】D【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D .19.【天津市南开中学2019届高三模拟试题】《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共同参与诗词知识比拼.“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髫小儿,人数按照年龄分组统计如下表:(1)用分层抽样的方法从“百人团”中抽取6人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数; (2)在(1)中抽出的6人中,任选2人参加一对一的对抗比赛,求这2人来自同一年龄组的概率. 【答案】(1)1,3,2;(2)415. 【分析】(1)先求出样本容量与总体个数的比,由此利用分层抽样的方法能求出从这三个不同年龄组中分别抽取的挑战者的人数;(2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数26C 15n ==,这2人来自同一年龄组包含的基本事件个数为2232C C 4m =+=,由此能求出这2人来自同一年龄组的概率.【解析】(1)∵样本容量与总体个数的比是6110818=, ∴样本中包含3个年龄段落的个体数分别是:年龄在[7,20)的人数为6108⨯18=1, 年龄在[20,40)的人数为6108⨯54=3, 年龄在[40,80)的人数为6108⨯36=2, ∴从这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2. (2)从分层抽样的方法从“百人团”中抽取6人参加挑战,这三个不同年龄组[7,20),[20,40),[40,80)中分别抽取的挑战者的人数分别为1,3,2.从抽出的6人中,任选2人参加一对一的对抗比赛,基本事件总数为26C 15n ==, 这2人来自同一年龄组包含的基本事件个数为2232C C 4m =+=,∴这2人来自同一年龄组的概率415m P n ==. 20.【2019北京市通州区三模】为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值. (1)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率;(2)从该公司本月卖出的销售单价为20万元的机器中随机选取2台,求这两台机器的利润率不同的概率; (3)假设每类机器利润率不变,销售一台第一类机器获利1x 万元,销售一台第二类机器获利2x 万元,…,销售一台第五类机器获利5x ,依据上表统计数据,随机销售一台机器获利的期望为()E x ,设123455x x x x x x ++++=,试判断()E x 与x 的大小.(结论不要求证明) 【答案】(1)13;(2)1021;(3)()E x x <. 【分析】(1)先由题意确定,本月卖出机器的总数,再确定利润率高于0.2的机器总数,即可得出结果;(2)先由题意确定,销售单价为20万元的机器分别:是第一类有5台,第三类有10台,共有15台,记两台机器的利润率不同为事件B ,由11510215C C ()C P B =即可结果;(3)先由题意确定,x 可能取的值,求出对应概率,进而可得出()E x ,再由123455x x x x x x ++++=求出均值,比较大小,即可得出结果.【解析】(1)由题意知,本月共卖出30台机器, 利润率高于0.2的是第一类和第四类,共有10台. 设“这台机器利润率高于0.2”为事件A ,则101()303P A ==. (2)用销售总额除以销售量得到机器的销售单价,可知第一类与第三类的机器销售单价为20万,第一类有5台,第三类有10台,共有15台,随机选取2台有215C 种不同方法, 两台机器的利润率不同则每类各取一台有11510C C 种不同方法,设两台机器的利润率不同为事件B ,则11510215C C 10()C 21P B ==. (3)由题意可得,x 可能取的值为8,5,3,1051(8)306P x ===,21(5)3015P x ===, 1083(3)305P x +===,51(10)306P x ===,因此113177853*******(55)E x =⨯+⨯+⨯+⨯=;又8531032955x ++++==,所以()E x x <.21.【江西省新八校2019届高三第二次联考】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:(1)若将频率是为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用样本估计总体,果园老板提出两种购销方案给采购商参考, 方案1:不分类卖出,单价为20元/kg . 方案2:分类卖出,分类后的水果售价如下:从采购单的角度考虑,应该采用哪种方案?(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X 表示抽取的是精品果的数量,求X 的分布列及数学期望()E X . 【答案】(1)96625;(2)第一种方案;(3)分布列见解析,6()5E X =. 【分析】(1)计算出从100个水果中随机抽取一个,抽到礼品果的概率;则可利用二项分布的概率公式求得所求概率;(2)计算出方案2单价的数学期望,与方案1的单价进行比较,选择单价较低的方案;(3)根据分层抽样原则确定抽取的10个水果中,精品果4个,非精品果6个;则X 服从超几何分布,利用超几何分布的概率计算公式可得到每个X 取值对应的概率,从而可得分布列;再利用数学期望的计算公式求得结果. 【解析】(1)设从100个水果中随机抽取一个,抽到礼品果的事件为A ,则201()1005P A ==, 现有放回地随机抽取4个,设抽到礼品果的个数为X ,则1~(4,)5X B , 所以恰好抽到2个礼品果的概率为22244196(2)C ()()55625P X ===, (2)设方案2的单价为ξ,则单价的期望值为134216548848()1618222420.61010101010E ξ+++=⨯+⨯+⨯+⨯==, 因为()20E ξ>,所以从采购商的角度考虑,应该采用第一种方案. (3)用分层抽样的方法从100个水果中抽取10个,则其中精品果4个,非精品果6个, 现从中抽取3个,则精品果的数量X 服从超几何分布,所有可能的取值为0,1,2,3,则36310C 1(0)C 6P X ===;2164310C C 1(1)C 2P X ===; 1264310C C 3(2)C 10P X ===;34310C 1(3)C 30P X ===,所以X 的分布列如下:所以()01236210305E X =⨯+⨯+⨯+⨯= 【名师点睛】本题考查二项分布求解概率、数学期望的实际应用、超几何分布的分布列与数学期望的求解问题,关键是能够根据抽取方式确定随机变量所服从的分布类型,从而可利用对应的概率公式求解出概率.。

十年高考真题分类汇编(2010-2019) 数学 专题14 概率与统计(含答案)

十年高考真题分类汇编(2010-2019)  数学 专题14 概率与统计(含答案)

十年高考真题分类汇编(2010—2019)数学专题14概率与统计1.(2019·全国1·理T6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.11162.(2019·全国2·文T4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23B.35C.25D.153.(2019·全国3·文T3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )4.(2019·全国1·文T6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A.8号学生B.200号学生C.616号学生D.815号学生5.(2019·全国2·理T5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A.中位数B.平均数C.方差D.极差6.(2018·全国2·理T8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112B.114C.115D.1187.(2018·全国2·文T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A.0.6B.0.5C.0.4D.0.38.(2018·全国1·理T10)下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( )A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p39.(2018·江苏·T3)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.10.(2018·全国1·理T3文T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半11.(2018·浙江·T7)设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,( )A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小12.(2018·全国3·理T8)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( )A.0.7B.0.6C.0.4D.0.313.(2018·全国3·文T5)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3B.0.4C.0.6D.0.714.(2017·全国3·理T3文T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳15.(2017·山东·文T8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为( )A.3,5B.5,5C.3,7D.5,716.(2017·全国1·理T2文T4)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ) A .14 B .π8C .12D .π417.(2017·全国2·文T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .15C .310D .2518.(2017·天津·文T3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45B.35C.25D.1519.(2017·山东·理T5)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归 直线方程为y ^=b ^x+a ^.已知∑i=110x i =225,∑i=110y i =1 600,b ^=4,该班某学生的脚长为24,据此估计其身高为( ) A.160B.163C.166D.17020.(2016·全国1·文T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13B.12C.23D.5621.(2016·全国3·文T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A.815B.18C.115D.13022.(2016·北京·文T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A.15B.25C.825D.92523.(2016·全国1·理T4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.3424.(2016·全国2·理T10)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nm B.2nmC.4mn D.2mn25.(2016·山东·理T3文T3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56B.60C.120D.14026.(2016·全国2·文T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.31027.(2016·全国3·理T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个28.(2015·全国2·理T3文T3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关29.(2015·陕西·理T2文T2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.16730.(2015·北京·理T8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油31.(2015·湖北·理T2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A.134石 B.169石C.338石D.1 365石32.(2015·陕西·理T11)设复数z=(x-1)+yi(x,y ∈R),若|z|≤1,则y ≥x 的概率为( ) A.34+12π B.12+1πC.12−1πD.14−12π33.(2015·山东·文T7)在区间[0,2]上随机地取一个数x,则事件“-1≤lo g 12(x +12)≤1”发生的概率为( ) A.34B.23C.13D.1434.(2015·福建·文T8)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f(x)={x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16B.14C.38D.1235.(2015·湖北·文T4)已知变量x 和y 满足关系y=-0.1x+1,变量y 与z 正相关.下列结论中正确的是( ) A.x 与y 负相关,x 与z 负相关 B.x 与y 正相关,x 与z 正相关 C.x 与y 正相关,x 与z 负相关 D.x 与y 负相关,x 与z 正相关36.(2015·湖北·文T8)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12 B.p 1<12<p 2 C.p 2<12<p 1D.12<p 2<p 137.(2015·全国1·文T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A .310B .15C .110D .12038.(2015·广东·文T7)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( )A.0.4B.0.6C.0.8D.139.(2015·湖南·文T2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( ) A.3 B.4 C.5 D.640.(2015·北京·文T4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类 别 人 数 老年教师900A.90B.100C.180D.30041.(2015·安徽·理T6)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( )A.8B.15C.16D.3242.(2015·全国1·理T4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648B.0.432C.0.36D.0.31243.(2015·湖北·理T4)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)44.(2015·山东·理T8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%45.(2014·陕西·文T9)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x,s2+1002B.x+100,s2+1002C.x,s2D.x+100,s246.(2014·重庆·文T3)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100B.150C.200D.25047.(2014·湖南·文T3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p348.(2014·广东·文T6)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.2049.(2014·全国1·理T5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.7850.(2014·陕西·文T6)从正方形4个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.4551.(2014·湖南·文T5)在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A.45B.35C.25D.1552.(2014·辽宁·文T6)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π853.(2014·全国2·理T5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8B.0.75C.0.6D.0.4554.(2013·陕西·理T5)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是( )A .1-π4B .π2-1C .2-π2D .π455.(2013·四川·理T9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A.14B.12C.34D.7856.(2013·湖南·文T9)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB =( ) A.12B.14C.√32D.√7457.(2013·全国1·文T3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A .12B .13C .14D .1658.(2013·全国1·理T3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样D.系统抽样59.(2013·江西·理T4文T5)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08B.07C.02D.0160.(2013·陕西·理T4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A.11B.12C.13D.1461.(2012·山东·理T4)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B 的人数为 ( ) A.7 B.9 C.10D.1562.(2012·北京·理T2)设不等式组{0≤x ≤2,0≤y ≤2表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4B.π-22C.π6D.4-π463.(2012·辽宁·文T11)在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20 cm2的概率为( ) A.16B.13C.23D.4564.(2012·安徽·文T10)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于 ( ) A.15B.25C.35D.4565.(2011·全国·理T4文T6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A.13B.12C.23D.3466.(2011·浙江·文T8)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ) A.110B.310C.35D.91067.(2010·全国·理T6)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X 的数学期望为( ) A.100 B.200 C.300 D.40068.(2019·全国1·理T15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________69.(2019·全国2·理T13文T14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为_____________.70.(2018·上海·T9)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是___________(结果用最简分数表示).71.(2018·江苏·T6)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为___________.72.(2018·全国3·文T14)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是.分层抽样73.(2017·江苏·T3)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.74.(2017·江苏,7)记函数f(x)=2的定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是____________.75.(2017·全国2·理T13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX=___________.76.(2016·山东·理T14)在[-1,1]上随机地取一个数k,则事件“直线y=kx与圆(x-5)2+y2=9相交”发生的概率为_______.77.(2015·福建·文T13)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.78.(2015·湖北·文T14)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a= ;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.79.(2015·广东·理T13)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p= .80.(2014·江苏·文T6)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100 cm.81.(2014·天津·理T9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取名学生.82.(2014·全国1·文T13)将2本不同的数学书和1本语文T书在书架上随机排成一行,则2本数学书相邻的概率为____________.83.(2014·全国2·文T13)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为__________.84.(2014·江苏·T4)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是___.85.(2014·浙江·文T14)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是_______.86.(2014·福建·文T13)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为____________.87.(2014·重庆·文T15)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)88.(2013·全国2·文T13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是.89.(2012·天津·理T9)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取所学校,中学中抽取所学校.90.(2012·福建·文T14)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是.91.(2012·全国·理T15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为.92.(2010·全国·理T13)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分10f(x)dx.先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…,xN和y1,y2,…,yN,由此得到N个点(xi,yi)(i=1,2,…,N).再数出其中满足yi≤f(xi)(i=1,2,…,N)的点数N1,那么由随机模拟方法可得积分∫1f(x)d x的近似值为___________.93.(2010·全国·文T14)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…,xn和y1,y2,…,yn,由此得到N个点(xi,yi)(i=1,2,…,N),再数出其中满足yi≤f(xi)(i=1,2,…,N)的点数N1,那么由随机模拟方法可得S的近似值为____________.94.(2019·天津·文T15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.95.(2019·全国3·理T17文T17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).96.(2019·全国2·文T19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:√74≈8.602.97.(2019·天津·理T16)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为2.假定甲、乙两位同3学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.98.(2019·全国1·理T21)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,pi=api-1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{pi+1-pi}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.99.(2018·全国1·理T20)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?100.(2018·北京·理T17)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.。

理科数学2010-2019高考真题分类训练离散型随机变量的分布列、期望与方差

理科数学2010-2019高考真题分类训练离散型随机变量的分布列、期望与方差

专题十一 概率与统计第三十六讲二项分布及其应用、正态分布一、选择题1.(2015湖北)设211(,)X N μσ:,222(,)Y N μσ:,这两个正态分布密度曲线如图所示.下列结论中正确的是A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥2.(2015山东)已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=)A .4.56%B .13.59%C .27.18%D .31.74%3.(2014新课标2)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是A .0.8B .0.75C .0.6D .0.45 4.(2011湖北)已知随机变量ξ服从正态分布()2,2σN ,且()8.04=<ξP ,则()=<<20ξPA .6.0B .4.0C .3.0D .2.0二、填空题5.(2017新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,错误!未找到引用源。

表示抽到的二等品件数,则DX = . 6.(2016四川)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 .7.(2015广东)已知随机变量X 服从二项分布(),n p B ,若()30E X =,()20D X =,则p = .8.(2012新课标)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作。

理科数学2010-2019高考真题分类训练离散型随机变量的分布列、期望与方差答案

理科数学2010-2019高考真题分类训练离散型随机变量的分布列、期望与方差答案

所以从全校学生中随机抽取 1 人,
该学生上个月 A,B 两种支付方式都使用的概率估计值为 40 = 0.4 100
(II)X 的所有可能值为 0,1,2.
记事件 C 为“从样本仅使用 A 的学生中随机抽取 1 人,该学生上个月的支付金额大于 1000
元”,事件 D 为“从样本仅使用 B 的学生中随机抽取 1 人,该学生上个月的支付金额大于 1000
C2n C2
m+n
=
P(2
= 1) , P(
= 1) =
C1nC1m C2
m+n
=
P(2
= 2) ,
P(
=
2)
=
C2m C2
m+n
=
P(2
= 3)

E(2 )
= 1
P(2 =1)
+
2
P(2 =2)
+
3
P(2 =3)
=
2m m+n
+1,

p2
=
E(2 ) 3
=
3m 3(m
+ +
n n)
,所以
p1
p2

90
90
P ( X = 500) = 25 + 7 + 4 = 0.4 .
90
因此 X 的分布列为
X
200
300
500
P
0.2
0.4
0.4
(2)由题意知,这种酸奶一天的需求量至多为500,至少为200, 因此只需考虑 200 ≤ n ≤ 500 当 300 ≤ n ≤ 500 时,
若最高气温不低于25,则Y = 6n − 4n = 2n ;

理科数学2010-2019高考真题分类训练专题十一概率与统计第三十四讲古典概型与几何概型

理科数学2010-2019高考真题分类训练专题十一概率与统计第三十四讲古典概型与几何概型

专题十一概率与统计第三十四讲古典概型与几何概型2019年1.(2019全国I理6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.11162.(2019江苏6)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.3.(2019全国I理15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.4.(2019全国II理18)11分制乒乓球比赛,每赢一球得1分,当某局打成1010平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方1010平后,甲先发球,两人又打了个球该局比赛结束.(1)求P(=2);(2)求事件“=4且甲获胜”的概率.2010-2018年一、选择题1.(2018全国卷Ⅰ)如图自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC. ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12=p pB .13=p pC .23=p pD .123=+p p p2.(2018全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114C .115D .1183.(2017新课标Ⅰ)如图,正方形ABCD 内的图形自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8πC .12D .4π 4.(2017山东)从分别标有1,2,,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是A .518B .49C .59D .79 5.(2016年全国I)某公司的班车在730,800,830发车,小明在750至830之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A .13B .12C .23D .346.(2016年全国II)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为A .4n mB .2n mC .4m nD .2m n7.(2015广东)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为A .521B .1021C .1121D .1 8.(2014新课标1)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A .18B .38C .58D .789.(2014江西)掷两颗均匀的骰子,则点数之和为5的概率等于( )A .118B .19C .16D .11210.(2014湖南)在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( )A .45B .35C .25D .15 11.(2014辽宁)若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )A .2πB .4πC .6πD .8π 12.(2014陕西)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A .15B .25C .35D .4513.(2014湖北)由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )A .81B .41C . 43D .87 14.(2013陕西)如图,在矩形区域ABCD 的A , C 两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是A .14π- B .12π- C .22π- D .4π 15.(2013安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为A .23B .25C .35D .91016.(2013新课标1)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A .12B .13C .14D .16 17.(2013湖南)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则AD AB = A .12 B .14C.2 D.4 18.(2012辽宁)在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于322cm 的概率为AB C BA .16B .13C .23D .4519.(2012北京)设不等式组0202x y⎧⎨⎩剟剟表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .4πB .22π-C .6πD .44π- 20.(2011新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A .13B .12C .23D .34二、填空题21.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .22.(2018上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)23.(2017江苏)记函数()f x =的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈ 的概率是 .24.(2016年山东)在[1,1]-上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为 .25.(2015江苏)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.26.(2014新课标)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.27.(2014重庆)某校早上8:00上课,假设该校学生小张与小王在早上730—750之间到校,且每人在该时间段的任何时间到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)28.(2014新课标2)甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.29.(2014浙江)在3张奖券中有一、二等奖各1张,另1张无奖,甲、乙两人各抽取1张,两人都中奖的概率是__________;30.(2013山东)在区间[-3,3]上随机取一个数x ,使得121x x +--≥成立的概率为____.31.(2013福建)利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为 .32.(2013新课标)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______.33.(2013湖北)在区间[2,4]-上随机地取一个数,若满足||x m ≤的概率为56,则m = . 34.(2012江苏)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .35.(2012浙江)从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则的概率是___________。

理科数学2010-2019高考真题分类训练专题十一概率与统计第三十二讲统计初步答案

理科数学2010-2019高考真题分类训练专题十一概率与统计第三十二讲统计初步答案

专题十一 概率与统计第三十二讲 统计初步答案部分2019年1.A 解析:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变.故选A .2.0.98 解析 经停该站高铁列车所有车次的平均正点率的估计值为:100.97200.98100.990.98102010x ⨯+⨯+⨯==++. 3.解析(1)由已知得0.700.200.15a =++,故0.35a =.b =1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.4. 解析 1111()03333a E X a +=⨯++=, 222111111()1333333a a a D X a +++⎛⎫⎛⎫⎛⎫=⨯+-⨯+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()()()22222122111232(1)279926a a a a a a ⎛⎫⎡⎤=++-+-=-+=-+ ⎪⎣⎦⎝⎭ 因为01a <<,所以()D X 先减小后增大.故选D .5. 解析 一组数据6,7,8,8,9,10的平均数为1(6788910)86x =+++++=, 所以该组数据的方差为 222222215[(68)(78)(88)(88)(98)(108)]63s =-+-+-+-+-+-=.2010-2018年1.A 【解析】通解 设建设前经济收入为a ,则建设后经济收入为2a ,则由饼图可得建设前种植收入为0.6a ,其他收入为0.04a ,养殖收入为0.3a .建设后种植收入为0.74a ,其他收入为0.1a ,养殖收入为0.6a ,养殖收入与第三产业收入的总和为1.16a ,所以新农村建设后,种植收入减少是错误的.故选A .优解 因为0.60.372<⨯,所以新农村建设后,种植收入增加,而不是减少,所以A 是错误的.故选A .2.A 【解析】由折线图,7月份后月接待游客量减少,A 错误;选A .3.18【解析】应从丙种型号的产品中抽取30060181000⨯=件. 4.D 【解析】由频率分布直方图可知,这200名学生每周的自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.故选D .5.D 【解析】由图可知0℃在虚线框内,所以各月的平均最低气温都在0℃以上,A 正确;由图可知七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都约为10℃,基本相同,C 正确;由图可知平均最高气温高于20℃的月份不是5个,D 不正确,故选D .6.C 【解析】由扇形统计图可得,该校女教师人数为11070150(160%)137⨯+⨯-=.7.D 【解析】根据柱形图易得选项A ,B ,C 正确,2006年以我国二氧化碳年排放量与年份负相关,选项D 错误.8.C 【解析】设样本数据1x ,2x ,,10x 8=,即方差64DX =,而数据121x -,221x -,,1021x -的方差22(21)2264D X DX -==⨯,16=.故选C .9.C 【解析】由10002540=,可得分段的间隔为25.故选C . 10.A 【解析】所抽人数为(350020004500)2%200++⨯=,近视人数分别为小学生350010%350⨯=,初中生450030%1350⨯=,高中生200050%1000⨯=,∴抽取的高中生近视人数为10002%20⨯=.选A .11.D 【解析】根据抽样方法的概念可知,简单随机抽样、系统抽样和分层抽样三种抽样方法,每个个体被抽到的概率都是n N,故123p p p ==,故选D . 12.C 【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C .13.B 【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++=,故分数在60以上的人数为600×0.8=480人.14.B 【解析】由图可知去掉的两个数是87,99,所以8790291294+⨯+⨯+90917x ++=⨯,4x =.22222136[(8791)(9091)2(9191)2(9491)2]77s =-+-⨯+-⨯+-⨯=. 15.A 【解析】由概念知中位数是中间两数的平均数,即45+47=462,众数是45,极差为68-12=56.所以选A.16.90【解析】由茎叶图可得分数的平均数为8989909191905++++=. 17.4【解析】由茎叶图可知,在区间]151,139[的人数为20,再由系统抽样的性质可知人数为435720=⨯人. 18.24【解析】由频率分布直方图可得树木底部周长小于100cm 的频率是(0.025+0.015)×10=0.4,又样本容量是60,所以频数是0.4×60=24.19.1800【解析】分层抽样中各层的抽样比相同,样本中甲设备生产的有50件,则乙设备生产的有30件,在4800件产品中,甲、乙设备生产的产品总数比为53,所以乙设备生产的产品总数为1800件.20.60【解析】应从一年级抽取4604556300?+++名.21.10【解析】设五个班级的数据分别为a b c d e <<<<。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题十一 概率与统计第一讲离散型随机变量的分布列、期望与方差2019年1.(2019天津理16)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.2.(2019全国I 理21)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.3.(2019北京理17)改革开放以来,人们的支付方式发生了巨大转变。

近年来,移动支付已成为主要支付方式之一。

为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本仅使用A 和仅使用B 的学生的支付金额分布情况如下:(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两个支付方式都使用的概率; (Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化,现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额大于2000元。

根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.2010-2018年一、选择题1.(2018全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)(6)P X P X =<=,则p = A .0.7 B .0.6 C .0.4 D .0.32.(2018浙江)设01p <<,随机变量ξ的分布列是则当p 在(0,1)内增大时,A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小 3.(2017浙江)已知随机变量i ξ满足(1)i i P p ξ==,(0)1i i P p ξ==-,i =1,2.若12102p p <<<,则 A .1()E ξ<2()E ξ,1()D ξ<2()D ξB .1()E ξ<2()E ξ,1()D ξ>2()D ξC .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ>2()E ξ,1()D ξ>2()D ξ 4.(2014浙江)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2i i ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =.则A .()()1212,p p E E ξξ><B .()()1212,p p E E ξξ<>C .()()1212,p p E E ξξ>>D .()()1212,p pE E ξξ<<二、填空题5.(2017新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,表示抽到的二等品件数,则DX = .6.(2016年四川)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 .7.(2014浙江)随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=__. 三、解答题8.(2018北京)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.9.(2018全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p .(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?10.(2018天津)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.11.(2017新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6 元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?12.(2017江苏)已知一个口袋有m 个白球,n 个黑球(m ,n ∈*N ,2n ≥),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m n +的抽屉内,其中第k 次取球放入编号为k 的抽屉(k =1,2,3,…,m n +).(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明()()(1)n E X m n n <+-. 13.(2017天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (Ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.14.(2017山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者1A ,2A ,3A ,4A ,5A ,6A 和4名女志愿者1B ,2B ,3B ,4B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含1A 但不包含1B 的频率。

(Ⅱ)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX . 15.(2017北京)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(Ⅱ)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大Eξ;于1.7的人数,求ξ的分布列和数学期望()(Ⅲ)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)16.(2016年全国I)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?17.(2015福建)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(Ⅰ)求当天小王的该银行卡被锁定的概率;(Ⅱ)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.18.(2015山东)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1-分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .19.(2015四川)某市,A B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.20.(2014新课标1)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .12.2.若Z ~2(,)N μσ,则()P Z μσμσ-<<+=0.6826,(22)P Z μσμσ-<<+=0.9544.21.(2014山东)乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.22.(2014辽宁)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(Ⅱ)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .23.(2014广东)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36,根据上述数据得到样本的频率分布表如下:分组 频数 频率[25,30 ] 3 0.12(30,35 ] 5 0.20(35,40 ] 8 0.32(40,45 ] 1n 1f(45,50 ] 2n 2f(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.24.(2014安徽)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;(Ⅱ)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).25.(2013新课标1)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.26.(2013北京)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气重度污染的概率(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望.(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)27.(2012新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,Nn )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.28.(2012山东)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为43,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率是32,每命中一次得2分,没命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次的概率;(Ⅱ)求该射手的总得分X 的分布列及数学期望EX .29.(2012福建)受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:将频率视为概率,解答下列问题:(I )从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(II )若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为1X ,生产一辆乙品牌轿车的利润为2X ,分别求1X ,2X 的分布列;(III )该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车,若从经济效益的角度考虑,你认为应该生产哪种品牌的轿车?说明理由.30.(2011北京)以下茎叶图记录了甲、乙两组个四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.1 1 1 09 9 0 X 8 9乙组甲组(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望.(注:方差()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦,其中x 为1x ,2x ,…… n x 的平均数)31.(2011江西)某饮料公司招聘了一名员工,现对其进行一项测试,以使确定工资级别,公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料,若4杯都选对,则月工资定为3500元,若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,令X 表示此人选对A 饮料的杯数,假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列; (2)求此员工月工资的期望.。

相关文档
最新文档