高一理科期末试题
2020-2021学年四川省成都市龙泉驿区高一(下)期末数学试卷(理科)

2020-2021学年四川省成都市龙泉驿区高一(下)期末数学试卷(理科)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
1.(5分)若a>b>0,c<0,则下列结论正确的是()A.a+c<b+c B.C.a2<ab D.2.(5分)cos37°cos23°﹣sin37°sin23°=()A.B.C.﹣D.﹣3.(5分)已知向量=(2,4),=(﹣1,m),若+与共线,则m=()A.2B.﹣1C.﹣2D.﹣44.(5分)一个几何体的三视图如图,则这个几何体的体积是()A.B.4C.2D.5.(5分)记S n为等差数列{a n}的前n项和,若S3=9,a1=2,则a5=()A.3B.4C.5D.66.(5分)设不同的直线a,b和不同的平面α,β,γ,那么()A.a∥α,b⊂α,则a∥b B.a⊂α,b⊂β,a∥b,则α∥βC.a⊂α,b⊂β,α∥β,则a∥b D.α∥β,β∥γ,则α∥γ7.(5分)△ABC的三内角ABC的对边分别为a,b,c,且满足a cos B+b cos A=2c cos C,且sin A=sin B,则△ABC的形状是()A.等腰三角形B.等边三角形C.等腰直角三角形D.等腰三角形或直角三角形8.(5分)若,则sin2θ=()A.B.C.D.9.(5分)记S n为等差数列{a n}的前n项和,且a1=22,S7=S16,则S n的最大值为()A.132.25B.132C.132.5D.13110.(5分)平面内有三个向量,,,其中与为单位向量且夹角为60°,⊥,||=,若=λ+μ(λ,μ∈R),则λ+μ=()A.﹣1B.﹣2C.1或﹣2D.1或﹣111.(5分)区间(a,b)是关于x的一元二次不等式mx2﹣x+1<0的解集,则2a+b的最小值为()A.3+2B.2+2C.6D.3﹣212.(5分)疫情期间,为保障市民安全,要对所有街道进行消毒处理.某消毒装备的设计如图所示,PQ为街道路面,AB为消毒设备的高,BC为喷杆,AB⊥PQ,∠ABC=,C处是喷洒消毒水的喷头,其喷洒范围为路面AQ,喷射角∠DCE=.若AB=3,BC=6,则消毒水喷洒在路面上的宽度DE的最小值为()A.B.2C.4D.5二、填空题:本大题共4小题,每小题5分,共20分13.(5分)等比数列{a n}中,a1=1,q=﹣2,则s5=.14.(5分)设△ABC的内角A,B,C所对的边分别为a,b,c,若A=,a=,则b2+c2﹣bc=.15.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与﹣3的夹角的余弦值为.16.(5分)《九章算术》中记载:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱剖开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体)在如图所示的堑堵ABC﹣A1B1C1中,BB1=BC=AB=2且有鳖臑C1﹣ABB1和鳖臑C1﹣ABC,现将鳖臑C1﹣ABC沿BC1翻折,使点C与点B1重合,则鳖臑C1﹣ABC经翻折后与鳖臑C1﹣ABB1拼接成的几何体的外接球的表面积是.三、解答题:共70分。
四川省内江市2021-2022学年高一下学期期末检测生物(理)试题及答案

内江市2021-2022学年高一下学期期末检测生物(理科)本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。
全卷满分90分,考试时间90分钟。
注意事项:1.答第Ⅰ卷时,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号;答第Ⅱ卷时,用0.5毫米的黑色签字笔在答题卡规定的区域内作答,字体工整,笔迹清楚;不能答在试题卷上。
2.考试结束后,监考员将答题卡收回。
第Ⅰ卷(选择题共45分)一、选择题(本大题共35小题。
第1~25题,每小题1分;第26~35题,每小题2分,共45分。
在每小题列出的四个选项中,只有一项符合题目要求。
)1.细胞凋亡是由基因所决定的细胞自动结束生命的过程。
下列有关细胞凋亡的叙述错误的是()A.人的胚胎经历有尾到无尾的过程存在细胞凋亡B.人口腔上皮细胞凋亡过程中有新蛋白质的合成C.被病原体感染的细胞的清除过程存在细胞凋亡D.受机械压迫导致局部组织细胞的死亡属于细胞凋亡2.衰老是生物界的普遍现象。
下列有关人体细胞衰老的叙述错误的是()A.衰老细胞的细胞核体积增大,染色质收缩、染色加深B.个体衰老的过程也是组成个体的细胞普遍衰老的过程C.衰老细胞内色素逐渐积累会妨碍其物质的交流和传递D.黑色素细胞因衰老而不能合成酪氨酸酶导致人头发会变白3.动物和人体内保留着少数具有增殖和分化能力的细胞称为干细胞。
下列有关叙述错误的是()A.骨髓造血干细胞可通过有丝分裂进行增殖B.干细胞增殖需要消耗细胞代谢产生的能量C.干细胞的分化只发生在幼体的发育过程中D.干细胞分化过程中遗传物质通常不会改变4.细胞增殖是生物体生长、发育、繁殖和遗传的基础。
下列有关细胞增殖的叙述错误的是()A.细胞增殖包括物质准备和细胞分裂两个过程B.有丝分裂是真核生物进行细胞分裂的主要方式C.无丝分裂过程中也会出现纺锤丝和染色体的变化D.减数分裂过程中染色体复制一次而细胞分裂两次5.下列关于受精卵细胞内基因、DNA和染色体的叙述,正确的是()A.基因、DNA和染色体都是成对存在的B.基因、DNA和染色体数目加倍是同步发生的C.基因、DNA和染色体均有一半来自父方D.基因的碱基总数小于DNA分子中的碱基总数6.DNA复制和转录是遗传信息传递的两个重要生理过程。
江西省上饶市广丰一中2021—2022学年高一上学期期末试题 数学(理) Word版含答案

广丰一中2021—2022学年度第一学期期末教学质量测试高一数学(理B )试卷留意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1. 已知集合A={x|x >1},B={x|x 2﹣2x <0},则A∪B=( )A .{x|x >0}B .{x|x >1}C .{x|1<x <2}D .{x|0<x <2}2.假如指数函数y=(a ﹣2)x 在x ∈R 上是减函数,则a 的取值范围是( )A .a >2B .0<a <1C .2<a <3D .a >3 3.若函数f (x )=x 2+bx+c 的对称轴方程为x=2,则( ) A .f (2)<f (1)<f (4)B .f (1)<f (2)<f (4)C .f (2)<f (4)<f (1)D .f (4)<f (2)<f (1)4. 函数f (x )在(﹣4,7)上是增函数,则使y=f (x ﹣3)+2为增函数的区间为( ) A .(﹣2,3) B .(﹣1,7)C .(﹣1,10)D .(﹣10,﹣4)5.设m ,n 为两条不同的直线,α,β为两个不同的平面,下列命题中为真命题的是( ) A .若m∥α,n∥α,则m∥nB .若m⊥α,α⊥β,则m∥βC .若m⊥α,α⊥β,则m⊥βD .若m⊥α,m∥β,则α⊥β 6.过点(3,1)A 且倾斜角为60的直线方程为( )A .32y x =-B .32y x =+C . 323y x =-D .323y x =+7.点(2,5)A 到直线:230l x y -+=的距离为( )A. 25B. 5C. 55D. 2558. 设函数f (x )=,则f (﹣2)+f (log 212)=( )A .3B .6C .9D .129.函数的零点所在的大致区间是( )A .(3,4)B .(2,e )C .(1,2)D .(0,1)10. 已知某几何体的三视图如图所示,依据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A .32 B .34C .1D .2 11.如图,ABCD ﹣A 1B 1C 1D 1为正方体,下面结论错误的是( ) A .BD∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60°12.若直角坐标平面内的两个不同的点M 、N 满足条件①M、N 都在函数y=f (x )的图象上; ②M、N 关于原点对称. 则称点对[M ,N]为函数y=f (x )的一对“友好点对”(注:点对[M ,N]与[N ,M]为同一“友好点对”).已知函数f (x )=,此函数的“友好点对”有( )A .0对B .1对C .2对D .3对第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.若函数f (2x+1)=x 2﹣2x ,则f (3)=14.已知两条直线1:3420l x y ++=,2:340l x y m ++=之间的距离为2,则m =15.长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=3,AA 1=5,则一只小虫从A 点沿长方体的表面爬 到C 1点的最短距离是 .16.已知函数 是(﹣∞,+∞)上的减函数,那么a 的取值范围为 .三、解答题(本题共6道小题,第17题10分,第18题12分,第19题12分,第20题12分,第21题12分,第22题12分)17.集合A={x|a ﹣1<x <2a+1},B={x|0<x <1},若A ∩B=∅,求实数a 的取值范围.18.已知函数f(x)=﹣x2+2x+2(1)求f(x)在区间[0,3]上的最大值和最小值;(2)若g(x)=f(x)﹣mx在[2,4]上是单调函数,求m的取值范围.19.已知平面内两点(8,6)(22) A B-,,.(Ⅰ)求过(2,3)P-点且与直线AB平行的直线l的方程;(Ⅱ)求AB的中垂线方程;20.若函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.(1)写出函数f(x)(x∈R)的解析式.(2)若函数g(x)=f(x)﹣4x+2(x∈[1,2]),求函数g(x)的最小值21.如图,在正方体ABCD﹣A1B1C1D1的棱长为a,若E为棱AB的中点,①求四棱锥B1﹣BCDE的体积②求证:面B1DC⊥面B1DE21.已知:定义在R上的函数f(x),对于任意实数a,b都满足f(a+b)=f(a)f(b),且f(1)≠0,当x >0时,f(x)>1.(Ⅰ)求f(0)的值;(Ⅱ)证明f(x)在(﹣∞,+∞)上是增函数;(Ⅲ)求不等式f(x2+x )<的解集.广丰一中2021--2022学年第一学期高一数学(理)期末考试高一数学答案(理科B)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A C A C D A B C C B D C 第II 卷(用黑色墨水签字笔书写)二、填空题(每小题5分,共20分)13、 -1 14、 12或-815、25 16、(0,2]三、解答题(解答应写出必要计算过程,推理步骤和文字说明,共70分)17.解:∵集合A={x|a﹣1<x<2a+1},B={x|0<x<1},A∩B=∅,①当A=∅时,a﹣1≥2a+1,解得a≤﹣2.……………………………. 2(分)②当A ≠∅时,有 或 …………………………6(分) 解得﹣2<a ≤﹣,或 a ≥2.……………………………………………. 8(分)综上可得a ≤﹣,或 a ≥2,即实数a 的取值范围为(﹣∞,﹣]∪[2,+∞).…. 10(分)18.解(1)∵f (x )=﹣x 2+2x+2=﹣(x ﹣1)2+3,x ∈[0,3],对称轴x=1,开口向下, ∴f (x )的最大值是f (1)=3,又f (0)=2,f (3)=﹣1,所以f (x )在区间[0,3]上的最大值是3,最小值是﹣1................6(分) (2)∵g (x )=f (x )﹣mx=﹣x 2+(2﹣m )x+2,函数的对称轴是 ,开口向下,又g (x )=f (x )﹣mx 在[2,4]上是单调函数∴≤2或≥4,即m ≥﹣2或m ≤﹣6............11(分)故m 的取值范围是m ≥﹣2或m ≤﹣6......................12(分)19.Ⅰ)由点斜式43(2)3y x +=-- ---------------------------------3分∴直线l 的方程4310x y ++= ---------------------------------5分(Ⅱ) 8252+=,6222-+=-,∴AB 的中点坐标为(5,2)-----------6分 624823AB k --==--,∴AB 的中垂线斜率为34 ----------------------------8分∴由点斜式可得32(5)4y x +=- ------------------------------10分∴AB 的中垂线方程为34230x y --= ------------------------------12分 20.解:(1)x≤0时,f (x )=x 2+2x , 若x >0,则﹣x <0,∵函数f (x )是定义在R 上的偶函数,∴f (x )=f (﹣x )=(﹣x )2+2(﹣x )=x 2﹣2x ,------------------------------4分则------------------------------6分(2)g (x )=f (x )﹣4x+2=x 2﹣2x ﹣4x+2=x 2﹣6x+2,x ∈[1,2], ∵y=x 2﹣6x+2的图象是开口朝上,且以x=3为对称轴的抛物线, 故g (x )=x 2﹣6x+2,x ∈[1,2]为减函数,当x=2时,函数g (x )取最小值﹣6------------------------------12分21.证明:(1)①∵正方体ABCD ﹣A 1B 1C 1D 1∴B 1B 平面BEDC , ∴V=•S 梯形BCDE •B 1B=•(a+)•a •a=.--------------------5分②取B 1D 的中点O ,设BC 1∩B 1C=F ,连接OF ,∵O ,F 分别是B 1D 与B 1C 的中点,∴OF ∥DC ,且OF=DC ,又∵E 为AB 中点,∴EB ∥DC ,且EB=DC ,∴OF ∥EB ,OF=EB ,即四边形OEBF 是平行四边形,∴OE ∥BF ,∵DC ⊥平面BCC 1B 1,BC 1⊂平面BCC 1B 1,∴BC 1⊥DC ,∴OE ⊥DC .------------------8分 又BC 1⊥B 1C ,∴OE ⊥B 1C ,又∵DC ⊂平面B 1DC ,B 1C ⊂平面B 1DC ,DC ∩B 1C=C ,∴OE ⊥平面B 1DC ,又∵OE ⊂平面B 1DE ,∴平面B 1DC ⊥面B 1DE .-------------------12分22.解:(Ⅰ)令a=1,b=0则f (1)=f (1+0)=f (1)f (0), ∵f (1)≠0,∴f (0)=1,-------------------3分 (Ⅱ)证明:当x <0时﹣x >0由f (x )f (﹣x )=f (x ﹣x )=f (0)=1,f (﹣x )>0得f (x )>0,---------5分 ∴对于任意实数x ,f (x )>0, 设x 1<x 2则x 2﹣x 1>0,f (x 2﹣x 1)>1,∵f (x 2)=f (x 1+(x 2﹣x 1))=f (x 1)f (x 2﹣x 1)>f (x 1),∴函数y=f (x )在(﹣∞,+∞)上是增函数.-------------------7分 (Ⅲ)∵∴,-------------------9分由(Ⅱ)可得:x 2+x <﹣2x+4解得﹣4<x <1,-------------------10分所以原不等式的解集是(﹣4,1)-------------------12分。
2021-2022学年黑龙江省佳木斯市第一中学高一下学期期末物理试题(解析版)

【答案】C
【解析】
【分析】
【详解】A.随着下落的速度逐渐增加,空气阻力逐渐增大,合外力逐渐减小,根据动能定理,下落相同的高度,动能的增量逐渐减小,因此 斜率逐渐减小,最后趋近于水平,A错误;
B.由于空气阻力做负功,机械能逐渐减小,最终匀速下降,只有势能减小,动能不再增加,因此 图像不是直线,B错误;
D.整个过程中电动机多消耗的电能为
【答案】AC
【解析】
【详解】A.设物块经过t与传送带共速,小物块位移为 ,传送带位移为 ,因为小物块相对传送带速度较小,小物块受到摩擦力向右,根据牛顿第二定律有
代入数值得
根据匀变速直线运动
,
代入数值有
解得
,
所以小物块运动位移小于A、B之间距离,则小物块与传送带共速后一起匀速运动,设匀速运动时间为 ,有
9.2020年11月28日,嫦娥五号探测器经过112小时奔月飞行,成功实施第一次近月制动,嫦娥五号探测器顺利进入环月椭圆轨道;一天后,嫦娥五号探测器又成功实施第二次近月制动,如图所示,嫦娥五号在P点处第二次制动由椭圆轨道II变轨到圆形轨道I,以便着陆月球。已知嫦娥五号在圆形轨道I的运行周期为T1,轨道半径为R;椭圆轨道II的半长轴为a,经过P点的速率为v,运行周期为T2,已知月球的质量为M,密度为ρ,引力常量为G,则( )
由图可知
又
解得
故D正确。
故选D。
5.如图所示,水平放置的平行板电容器上极板带正电,所带电荷量为Q,板间距离为d,上极板与静电计相连,静电计金属外壳和电容器下极板都接地,在两极板正中间P点有一个静止的带电油滴,现将电容器的上极板竖直向下移动一小段距离,下列说法正确的是( )
A.油滴带正电B.P点的电势不变
2013-2014年度高一下学期期末考试数学试题(理科)

2013-2014年度高一下学期期末考试数学试题(理科) 一、选择题:(每小题4分 满分48分)1.若()1,1=→a ,()()x c b ,3,5,2==→→,满足308=⋅⎪⎭⎫ ⎝⎛-→→→c b a ,则=x ( )A .3B .4C .5D .62.一个几何体的三视图如图所示,则该几何体的体积为( )A .3B .23C .33D .433.在ABC ∆中,内角C B A ,,的对边分别 为c b a ,,,若3,6==b a ,且角 45=A ,则角=C ( )A .75B .75或15C . 60D . 60或1204.在坐标平面内不等式组⎩⎨⎧+≤-≥112x y x y 所表示的平面区域的面积为( )A .2B .38C .322 D .15.→→b a ,是非零向量且满足,2→→→⊥⎪⎭⎫ ⎝⎛-a b a ,2→→→⊥⎪⎭⎫ ⎝⎛-b a b 则→a 与→b 的夹角是( )A .6πB .3πC .32πD .65π6.设函数()x x x f 22+=,则数列()()*∈⎪⎪⎭⎫ ⎝⎛N n n f ,1的前10项的和为( )A .2411B .2217C .264175D .2651777.已知向量()()3,1,cos ,sin -==→→b a θθ,则→→-ba 2的最大、最小值分别为 ( ) A .0,24B .2,4C .0,16D .0,48.已知O 为坐标原点,B A ,两点的坐标均满足不等式组⎪⎩⎪⎨⎧≥-≤-+≤+-0103013x y x y x ,则A OB ∠t a n 的最大值为 ( )A .21B .43C .74D .499.圆0204222=-+-+y x y x 截直线0125=+-C y x 所得弦长为8,则C 的值为( )A .10B .10或68-C .5或34-D .68-10.设O 是ABC ∆的内切圆的圆心,5=AB ,4=BC ,3=CA ,则下列结论正确的是( )A . <⋅→→OB OA <⋅→→OC OB →→⋅OC OA B . >⋅→→OB OA >⋅→→OC OB →→⋅OC OAC . =⋅→→OB OA =⋅→→OC OB →→⋅OC OAD . <⋅→→OB OA =⋅→→OC OB →→⋅OC OA11.如图,四边形ABCD 是边长为1的正方形,平面ABCD ,⊥NB 平面ABCD ,==BN MD G 为MC 的中点,则下列结论中不正确的是 ( A .AN MC ⊥ B .GB ∥平面AMNC .面⊥CMN 面AMND .面DCM ∥面ABN12.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,23=OK ,且圆O与圆K 所在的平面所成的一个二面角为60,则球O 的表面积等于( )A .π12B .π16C .π9D .π24二、填空题:(每小题4分 满分16分)13.已知直线07125=-+y x 和01210=++my x 互相平行,则它们之间的距离等于 .14.在ABC ∆中,14,10,6===c b a ,则ABC ∆的面积为 .15.已知→a,3=5=→b ,且向量→a 在向量→b 方向上的投影是512,则→→⋅b a = .16.已知数列{}n a 中,,3619,6521==a a 且数列{}nb 是公差为1-的等差数列,其中.3log 12⎪⎭⎫ ⎝⎛-=+n n n a a b 数列{}n c 是公比为31的等比数列,其中21nn n a a c -=+,则数列{}n a 的通项公式为=n a三、解答题:(本题满分66分,解答题写出必要的解题步骤和文字说明.) 17.已知等差数列{}n a 中,.3,131-==a a 数列{}n a 的前n 项和n S .(1)求数列{}n a 的通项公式(4分)(2)若35-=k S ,求k 的值.(4分)18.在直四棱柱1111D C B A ABCD -中31=AA ,2==DC AD ,1=AB ,DC AD ⊥,AB ∥CD .(1)设E 为DC 的中点,求证:E D 1∥平面BD A 1;(5分) (2)求二面角11C BD A --的余弦值.(5分)19.已知圆C :1622=+y x ,点P ()7,3. (1)求以点P ()7,3为切点的圆C 的切线所在的直线方程;(6分)(2)求经过点P ()7,3且被圆C :1622=+y x 截得的弦长为72的直线方程(6分) 20.在ABC ∆中,角C B A ,,的对边分别为c b a ,,.(1)若,cos 26sin A A =⎪⎭⎫ ⎝⎛+π求A 的值;(6分)(2)若,3,31cos c b A ==求C sin 的值.(6分)21.等比数列{}n a 中,321,,a a a 分别是下表第一、二、三行中的某个数,且321,,a a a 中的求数列{}n a 的通项公式;(6分) 若数列{}n b 满足:,23log 9n n n a a b +=求{}n b 的前n 项的和.(6分)22.已知过点)0,1(-A 的动直线l 与圆C:4)3(22=-+y x 相交于P 、Q 两点,M 是PQ 中点,l 与直线m :063=++y x相交于N .(1)当l 与m 垂直时,求直线l 的方程;(3分) (2)当22=PQ 时,求直线l 的方程;(4分) (3)探索AN AM ⋅是否与直线l 的倾斜角有关,若无关,请求出其值;若有关,请说明是什么关系?.(5分)第22题。
河北省衡水市高一数学下学期期末试卷 理(含解析)-人教版高一全册数学试题

2016-2017学年某某省某某市高一(下)期末数学试卷(理科)一、选择题:(每题只有一个正确选项.共12个小题,每题5分,共60分.)1.下列数列中不是等差数列的为()A.6,6,6,6,6 B.﹣2,﹣1,0,1,2 C.5,8,11,14 D.0,1,3,6,10.2.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2 B.3 C.6 D.93.在△A BC中内角A,B,C所对各边分别为a,b,c,且a2=b2+c2﹣bc,则角A=()A.60° B.120°C.30° D.150°4.已知等差数列{a n}中,a2=2,d=2,则S10=()A.200 B.100 C.90 D.805.已知{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,则S3=()A.12 B.16 C.18 D.246.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为()A.180 B.200 C.128 D.1627.定义为n个正数p1,p2,…,p n的“均倒数”.若已知正数数列{a n}的前n项的“均倒数”为,又b n=,则+++…+=()A.B.C.D.8.在△ABC中,b2=ac,且a+c=3,cosB=,则•=()A.B.﹣ C.3 D.﹣39.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()海里.A.10B.20C.10D.2010.数列{a n}满足,则a n=()A.B.C.D.11.在△ABC中,若sin(A+B﹣C)=sin(A﹣B+C),则△ABC必是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形12.△ABC外接圆半径为R,且2R(sin2A﹣sin2C)=(a﹣b)sinB,则角C=()A.30° B.45° C.60° D.90°二、填空题(共4个小题,每题5分,共20分.)13.边长为5、7、8的三角形的最大角与最小角之和为.14.若数列{a n}满足,则a2017=.15.已知正项等比数列{a n}中,a1=1,其前n项和为S n(n∈N*),且,则S4=.16.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.三、解答题:(解答题应写出必要的文字说明和演算步骤)17.在△ABC中,a,b,c分别为A、B、C的对边,且满足2(a2﹣b2)=2accosB+bc(1)求A(2)D为边BC上一点,CD=3BD,∠DAC=90°,求tanB.18.已知数列{a n}的前n项和为S n,且S n=2a n﹣3n(n∈N+).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得{a n+λ}为等比数列?若存在,求出λ的值和通项公式a n,若不存在,请说明理由.19.已知数列{a n}的前n项和为S n,且n+1=1+S n对一切正整数n恒成立.(1)试求当a1为何值时,数列{a n}是等比数列,并求出它的通项公式;(2)在(1)的条件下,当n为何值时,数列的前n项和T n取得最大值.20.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设=a n+b n,求数列{}的前n项和.22.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若b+c=2,求a的取值X围.2016-2017学年某某省某某市安平中学高一(下)期末数学试卷(理科)参考答案与试题解析一、选择题:(每题只有一个正确选项.共12个小题,每题5分,共60分.)1.下列数列中不是等差数列的为()A.6,6,6,6,6 B.﹣2,﹣1,0,1,2 C.5,8,11,14 D.0,1,3,6,10.【考点】83:等差数列.【分析】根据等差数列的定义,对所给的各个数列进行判断,从而得出结论.【解答】解:A,6,6,6,6,6常数列,公差为0;B,﹣2,﹣1,0,1,2公差为1;C,5,8,11,14公差为3;D,数列0,1,3,6,10的第二项减去第一项等于1,第三项减去第二项等于2,故此数列不是等差数列.故选:D.2.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2 B.3 C.6 D.9【考点】8F:等差数列的性质.【分析】由等差中项的性质,利用已知条件,能求出m,n,由此能求出m和n的等差中项.【解答】解:∵m和2n的等差中项是4,2m和n的等差中项是5,∴,解得m=4,n=2,∴m和n的等差中项===3.故选:B.3.在△A BC中内角A,B,C所对各边分别为a,b,c,且a2=b2+c2﹣bc,则角A=()A.60° B.120°C.30° D.150°【考点】HR:余弦定理.【分析】由已知及余弦定理可求cosA的值,结合X围A∈(0°,180°),利用特殊角的三角函数值即可得解A的值.【解答】解:在△A BC中,∵a2=b2+c2﹣bc,∴可得:b2+c2﹣a2=bc,∴cosA===,∵A∈(0°,180°),故选:A.4.已知等差数列{a n}中,a2=2,d=2,则S10=()A.200 B.100 C.90 D.80【考点】85:等差数列的前n项和.【分析】由等差数列的通项公式,可得首项,再由等差数列的求和公式,计算即可得到所求和.【解答】解:等差数列{a n}中,a2=2,d=2,a1+d=2,解得a1=0,则S10=10a1+×10×9d=0+45×2=90.故选:C.5.已知{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,则S3=()A.12 B.16 C.18 D.24【考点】88:等比数列的通项公式.【分析】推导出a3,a4是方程x2﹣2x﹣8=0的两个根,|a3|>|a4|,解方程,得a3=4,a4=﹣2,由等比数列通项公式列出方程组,求出,由此能求出S3.【解答】解:∵{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,∴a3a4=a2a5=﹣8,∴a3,a4是方程x2﹣2x﹣8=0的两个根,|a3|>|a4|,解方程,得a3=4,a4=﹣2,∴,解得,∴S3===12.6.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为()A.180 B.200 C.128 D.162【考点】81:数列的概念及简单表示法.【分析】0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:a2n=2n2.即可得出.【解答】解:由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:a2n=2n2.则此数列第20项=2×102=200.故选:B.7.定义为n个正数p1,p2,…,p n的“均倒数”.若已知正数数列{a n}的前n项的“均倒数”为,又b n=,则+++…+=()A.B.C.D.【考点】8E:数列的求和.【分析】直接利用给出的定义得到=,整理得到S n=2n2+n.分n=1和n ≥2求出数列{a n}的通项,验证n=1时满足,所以数列{a n}的通项公式可求;再利用裂项求和方法即可得出.【解答】解:由已知定义,得到=,∴a1+a2+…+a n=n(2n+1)=S n,即S n=2n2+n.当n=1时,a1=S1=3.当n≥2时,a n=S n﹣S n﹣1=(2n2+n)﹣[2(n﹣1)2+(n﹣1)]=4n﹣1.当n=1时也成立,∴a n=4n﹣1;∵b n==n,∴==﹣,∴+++…+=1﹣+﹣+…+﹣=1﹣=,∴+++…+=,故选:C8.在△ABC中,b2=ac,且a+c=3,cosB=,则•=()A.B.﹣ C.3 D.﹣3【考点】HR:余弦定理;9R:平面向量数量积的运算.【分析】利用余弦定理列出关系式,再利用完全平方公式变形,把已知等式及cosB的值代入求出ac的值,原式利用平面向量的数量积运算法则变形,将各自的值代入计算即可求出值.【解答】解:∵在△ABC中,b2=ac,且a+c=3,cosB=,∴由余弦定理得:cosB=====,即ac=2,则•=﹣cacosB=﹣.故选:B.9.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()海里.A.10B.20C.10D.20【考点】HU:解三角形的实际应用.【分析】根据题意画出图象确定∠BAC、∠ABC的值,进而可得到∠ACB的值,根据正弦定理可得到BC的值.【解答】解:如图,由已知可得,∠BAC=30°,∠ABC=105°,AB=20,从而∠ACB=45°.在△ABC中,由正弦定理可得BC=×sin30°=10.故选:A.10.数列{a n}满足,则a n=()A.B.C.D.【考点】8H:数列递推式.【分析】利用数列递推关系即可得出.【解答】解:∵,∴n≥2时,a1+3a2+…+3n﹣2a n﹣1=,∴3n﹣1a n=,可得a n=.n=1时,a1=,上式也成立.则a n=.故选:B.11.在△ABC中,若sin(A+B﹣C)=sin(A﹣B+C),则△ABC必是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形【考点】HX:解三角形.【分析】结合三角形的内角和公式可得A+B=π﹣C,A+C=π﹣B,代入已知sin(A+B﹣C)=sin (A﹣B+C)化简可得,sin2C=sin2B,由于0<2B<π,0<2C<π从而可得2B=2C或2B+2C=π,从而可求【解答】解:∵A+B=π﹣C,A+C=π﹣B,∴sin(A+B﹣C)=sin(π﹣2C)=sin2Csin(A﹣B+C)=sin(π﹣2B)=sin2B,则sin2B=sin2C,B=C或2B=π﹣2C,即.所以△ABC为等腰或直角三角形.故选C12.△ABC外接圆半径为R,且2R(sin2A﹣sin2C)=(a﹣b)sinB,则角C=()A.30° B.45° C.60° D.90°【考点】HR:余弦定理.【分析】先根据正弦定理把2R(sin2A﹣sin2C)=(a﹣b)sinB中的角转换成边可得a,b和c的关系式,再代入余弦定理求得cosC的值,进而可得C的值.【解答】解:△ABC中,由2R(sin2A﹣sin2C)=(a﹣b)sinB,根据正弦定理得a2﹣c2=(a﹣b)b=ab﹣b2,∴cosC==,∴角C的大小为30°,故选A.二、填空题(共4个小题,每题5分,共20分.)13.边长为5、7、8的三角形的最大角与最小角之和为120°.【考点】HR:余弦定理.【分析】直接利用余弦定理求出7所对的角的余弦值,求出角的大小,利用三角形的内角和,求解最大角与最小角之和.【解答】解:根据三角形中大角对大边,小角对小边的原则,所以由余弦定理可知cosθ==,所以7所对的角为60°.所以三角形的最大角与最小角之和为:120°.故答案为:120°.14.若数列{a n}满足,则a2017= 2 .【考点】8H:数列递推式.【分析】数列{a n}满足a1=2,a n=1﹣,可得a n+3=a n,利用周期性即可得出.【解答】解:数列{a n}满足a1=2,a n=1﹣,可得a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2a5=1﹣=,…,∴a n+3=a n,数列的周期为3.∴a2017=a672×3+1=a1=2.故答案为:215.已知正项等比数列{a n}中,a1=1,其前n项和为S n(n∈N*),且,则S4= 15 .【考点】89:等比数列的前n项和.【分析】由题意先求出公比,再根据前n项和公式计算即可.【解答】解:正项等比数列{a n}中,a1=1,且,∴1﹣=,即q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),∴S4==15,故答案为:15.16.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.【考点】HX:解三角形.【分析】运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.【解答】解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.三、解答题:(解答题应写出必要的文字说明和演算步骤)17.在△ABC中,a,b,c分别为A、B、C的对边,且满足2(a2﹣b2)=2accosB+bc (1)求A(2)D为边BC上一点,CD=3BD,∠DAC=90°,求tanB.【考点】HT:三角形中的几何计算.【分析】(1)将2(a2﹣b2)=2accosB+bc化解结合余弦定理可得答案.(2)因为∠DAC=,所以AD=CD•sinC,∠DAB=.利用正弦定理即可求解.【解答】解:(1)由题意2accosB=a2+c2﹣b2,∴2(a2﹣b2)=a2+c2﹣b2+bc.整理得a2=b2+c2+bc,由余弦定理:a2=b2+c2﹣2bccosA可得:bc=﹣2bccosA∴cosA=﹣,∵0<A<π∴A=.(Ⅱ)∵∠DAC=,∴AD=CD•sinC,∠DAB=.在△ABD中,有,又∵CD=3BD,∴3sinC=2sinB,由C=﹣B,得cosB﹣sinB=2sinB,整理得:tanB=.18.已知数列{a n}的前n项和为S n,且S n=2a n﹣3n(n∈N+).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得{a n+λ}为等比数列?若存在,求出λ的值和通项公式a n,若不存在,请说明理由.【考点】8D:等比关系的确定;81:数列的概念及简单表示法.【分析】(1)分别令n=1,2,3,依次计算a1,a2,a3的值;(2)假设存在常数λ,使得{a n+λ}为等比数列,则(a2+λ)2=(a1+λ)(a3+λ),从而可求得λ,根据等比数列的通项公式得出a n+λ,从而得出a n.【解答】解:(1)当n=1时,S1=a1=2a1﹣3,解得a1=3,当n=2时,S2=a1+a2=2a2﹣6,解得a2=9,当n=3时,S3=a1+a2+a3=2a3﹣9,解得a3=21.(2)假设{a n+λ}是等比数列,则(a2+λ)2=(a1+λ)(a3+λ),即(9+λ)2=(3+λ)(21+λ),解得λ=3.∴{a n+3}的首项为a1+3=6,公比为=2.∴a n+3=6×2n﹣1,∴a n=6×2n﹣1﹣3.19.已知数列{a n}的前n项和为S n,且n+1=1+S n对一切正整数n恒成立.(1)试求当a1为何值时,数列{a n}是等比数列,并求出它的通项公式;(2)在(1)的条件下,当n为何值时,数列的前n项和T n取得最大值.【考点】8E:数列的求和.【分析】(1)由已知数列递推式可得a n+1=2a n,再由数列{a n}是等比数列求得首项,并求出数列通项公式;(2)把数列{a n}的通项公式代入数列,可得数列是递减数列,可知当n=9时,数列的项为正数,n=10时,数列的项为负数,则答案可求.【解答】解:(1)由a n+1=1+S n得:当n≥2时,a n=1+S n﹣1,两式相减得:a n+1=2a n,∵数列{a n}是等比数列,∴a2=2a1,又∵a2=1+S1=1+a1,解得:a1=1.得:;(2),可知数列是一个递减数列,∴,由此可知当n=9时,数列的前项和T n取最大值.20.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【考点】HX:解三角形;HP:正弦定理;HR:余弦定理.【分析】(1)利用正弦定理,即可求AB的长;(2)求出cosA、sinA,利用两角差的余弦公式求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,∴sinB=,∵,∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.21.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设=a n+b n,求数列{}的前n项和.【考点】8M:等差数列与等比数列的综合.【分析】(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,运用通项公式可得q=3,d=2,进而得到所求通项公式;(2)求得=a n+b n=2n﹣1+3n﹣1,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.【解答】解:(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,由b2=3,b3=9,可得q==3,b n=b2q n﹣2=3•3n﹣2=3n﹣1;即有a1=b1=1,a14=b4=27,则d==2,则a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)=a n+b n=2n﹣1+3n﹣1,则数列{}的前n项和为(1+3+…+(2n﹣1))+(1+3+9+…+3n﹣1)=n•2n+=n2+.22.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若b+c=2,求a的取值X围.【考点】HR:余弦定理;HP:正弦定理.【分析】(Ⅰ)由已知利用三角函数恒等变换的应用化简可得,由0<B+C<π,可求,进而可求A的值.(Ⅱ)根据余弦定理,得a2=(b﹣1)2+3,又b+c=2,可求X围0<b<2,进而可求a的取值X围.【解答】(本小题满分12分)解:(Ⅰ)由已知得,化简得,整理得,即,由于0<B+C<π,则,所以.(Ⅱ)根据余弦定理,得=b2+c2+bc=b2+(2﹣b)2+b(2﹣b)=b2﹣2b+4=(b﹣1)2+3.又由b+c=2,知0<b<2,可得3≤a2<4,所以a的取值X围是.。
四川省巴中市平昌中学2014-2021学年高一(下)期末数学试卷(理科) Word版含解析

四川省巴中市平昌中学2022-2021学年高一(下)期末数学试卷(理科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题的四个选项中只有一个是正确的.)1.设b<a,d<c,则下列不等式中肯定成立的是()A.a﹣c>b﹣d B.ac>bd C.a+c>b+d D.a+d>b+c2.已知等差数列{a n}满足a2+a8=12,则a5=()A.4 B.5 C.6 D.73.下列各组向量中,可以作为基底的是()A.=(﹣1,2),=(5,7)B.=(0,0),=(1,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(,﹣)4.在△ABC,三个内角A、B、C所对的边分别为a、b、c,若内角A、B、C依次成等差数列,且不等式﹣x2+6x ﹣8>0的解集为{x|a<x<c},则b等于()A.B.2C.3D.45.已知数列{a n},满足a n+1=,若a1=,则a2022=()A.B.2 C.﹣1 D.16.过点P(2,3),并且在两轴上的截距相等的直线方程是()A.x+y﹣5=0 B.3x﹣2y=0C.x+y﹣5=0或3x﹣2y=0 D.x﹣y+1=0或3x﹣2y=07.已知△ABC中,a、b分别是角A、B所对的边,且a=x(x>0),b=2,A=60°,若三角形有两解,则x的取值范围是()A.x >B.0<x<2 C.<x<2 D.<x≤28.数列{a n}的前n项和S n=2n(n∈N*),则a12+a22+…+a n2等于()A.4n B.C.D.9.若直线l沿x轴向左平移3各单位,再沿y轴向上平移1个单位后,回到原来的位置,则该直线l的斜率为()A.B.﹣C.3 D.﹣3 10.已知平面对量,,满足||=,||=1,•=﹣1,且﹣与﹣的夹角为45°,则||的最大值等于()A.B.2 C.D.111.△ABC 满足•=2,∠BAC=30°,设M是△ABC内的一点(不含边界),定义f(M)=(x,y,z),其中x,y,z分别表示△MBC,△MCA,△MAB的面积,若f(M)=(x,y ,),则+的最小值为()A.4 B.6 C.9 D.12.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.则△ABC是()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形二.填空题(本大题4个小题,每题4分,共16分,请把答案填在答题卷中相应横线上)13.在等比数列{a n}中,若a1,a10是方程3x2﹣2x﹣6=0的两根,则a4a7=.14.已知||=6,||=3,=﹣12,则向量在向量上的投影是.15.若直线l1:(2a﹣1)x﹣y+3=0与直线l2:y=4x﹣3相互垂直,则a=.16.下列命题:①常数列既是等差数列又是等比数列;②若直线l:y=kx﹣与直线2x+3y﹣6=0的交点位于第一象限,则直线l的倾斜角的取值范围是(,);③若α,β都是锐角,sinα=,cos(α+β)=,则cosβ=④假如(a﹣2)x2+(a﹣2)x﹣1≤0对任意实数x总成立,则a的取值范围是[﹣2,2].其中全部正确命题的序号是.三.解答题:(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.)17.若=(0,3),=(,1),=3+5,=m﹣5,(1)试问m为何值时,与相互平行;(2)试问m为何值时,与相互垂直.18.在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足=,•=3.(Ⅰ)求△ABC的面积;(Ⅱ)若b+c=6,求a的值.19.已知{a n}是首项为19,公差为﹣2的等差数列,S n为{a n}的前n项和.(1)求通项a n及S n;(2)设{b n﹣a n}是首项为1,公比为3的等比数列,求数列{b n}的通项公式及其前n项和T n.20.已知函数,(1)求f(x)的最小正周期和单调减区间;(2)若f(x)<m+2在上恒成立,求实数m的取值范围.21.四边形OABC的四个顶点坐标分别为O(0,0),A(6,2),B(4,6),C(2,6),直线y=kx(<k<3)把四边形OABC分成两部分,S表示靠近x轴一侧那部分的面积.(1)求S=f(k)的函数表达式;(2)当k为何值时,直线y=kx将四边形OABC分为面积相等的两部分.22.设数列{a n}的通项公式为a n=pn+q(n∈N*,P>0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m 成立的全部n中的最小值.(Ⅰ)若,求b3;(Ⅱ)若p=2,q=﹣1,求数列{b m}的前2m项和公式;(Ⅲ)是否存在p和q,使得b m=3m+2(m∈N*)?假如存在,求p和q的取值范围;假如不存在,请说明理由.四川省巴中市平昌中学2022-2021学年高一(下)期末数学试卷(理科)参考答案与试题解析一.选择题:(本大题共12小题,每小题5分,共60分.在每小题的四个选项中只有一个是正确的.)1.设b<a,d<c,则下列不等式中肯定成立的是()A.a﹣c>b﹣d B.ac>bd C.a+c>b+d D.a+d>b+c考点:基本不等式.专题:阅读型.分析:本题是选择题,可接受逐一检验,利用特殊值法进行检验,很快问题得以解决.解答:解:∵b<a,d<c∴设b=﹣1,a=﹣2,d=2,c=3选项A,﹣2﹣3>﹣1﹣2,不成立选项B,(﹣2)×3>(﹣1)×2,不成立选项D,﹣2+2>﹣1+3,不成立故选C点评:本题主要考查了基本不等式,基本不等式在考纲中是C级要求,本题属于基础题.2.已知等差数列{a n}满足a2+a8=12,则a5=()A.4 B.5 C.6 D.7考点:等差数列的性质.专题:计算题.分析:由等差中项可得a2+a8=2a5,由a2+a8的值可求得a5.解答:解:∵a2+a8=2a5=12,∴a5=6.故选C.点评:本题通过等差中项来求最简洁,可以不用通过通项公式来求.属基础题.3.下列各组向量中,可以作为基底的是()A.=(﹣1,2),=(5,7)B.=(0,0),=(1,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(,﹣)考点:平面对量的基本定理及其意义.专题:平面对量及应用.分析:可作为基底的两向量不共线,而依据共线向量的坐标关系即可推断出A中的两向量不共线,B,C,D中的两向量都共线,从而便可得出正确选项.解答:解:不共线的向量可以作为基底;设,若共线,则:x1y2﹣x2y1=0;依据共线向量的坐标关系即可推断出A中的两个向量不共线,而B,C,D中的两向量都共线;∴可以作为基底的应是A中的两向量.故选A.点评:考查基底的概念,共线向量基本定理,以及共线向量的坐标关系.4.在△ABC,三个内角A、B、C所对的边分别为a、b、c,若内角A、B、C依次成等差数列,且不等式﹣x2+6x ﹣8>0的解集为{x|a<x<c},则b等于()A.B.2C.3D.4考点:等差数列的性质.专题:综合题;等差数列与等比数列;不等式的解法及应用.分析:利用等差数列的性质,可得B,由不等式﹣x2+6x﹣8>0的解集为{x|a<x<c},求出a,c,再利用余弦定理,可得结论.解答:解:∵内角A、B、C依次成等差数列,∴B=60°,∵不等式﹣x2+6x﹣8>0的解集为{x|a<x<c},∴a=2,c=4,∴b2=a2+c2﹣2accos60°=4+16﹣2•2•4•=12,∴b=2.故选:B.点评:本题考查等差数列的性质,考查解不等式、余弦定理,考查同学的计算力量,比较综合.5.已知数列{a n},满足a n+1=,若a1=,则a2022=()A.B.2 C.﹣1 D.1考点:数列递推式.专题:等差数列与等比数列.分析:由已知条件,分别令n=1,2,3,4,利用递推思想依次求出数列的前5项,由此得到数列{a n}是周期为3的周期数列,由此能求出a2022.解答:解:∵数列{a n},满足a n+1=,a1=,∴a2==2,a3==﹣1,a4==,,∴数列{a n}是周期为3的周期数列,∵2022÷3=671…1,∴a2022=a1=.故选:A.点评:本题考查数列的第2022项的求法,是中档题,解题时要认真审题,留意递推思想的合理运用.6.过点P(2,3),并且在两轴上的截距相等的直线方程是()A.x+y﹣5=0 B.3x﹣2y=0C.x+y﹣5=0或3x﹣2y=0 D.x﹣y+1=0或3x﹣2y=0考点:直线的截距式方程.专题:直线与圆.分析:当直线经过原点时,易得直线的方程;当直线不过原点时,设直线的方程为+=1,待定系数法可得.解答:解:当直线经过原点时,直线的斜率为k==,直线的方程为y=x,即3x﹣2y=0;当直线不过原点时,设直线的方程为+=1,代入点P(2,3)可得a=5,∴所求直线方程为x+y﹣5=0综合可得所求直线方程为:x+y﹣5=0或3x﹣2y=0故选:C点评:本题考查直线的截距式方程,涉及分类争辩的思想,属基础题.7.已知△ABC中,a、b分别是角A、B所对的边,且a=x(x>0),b=2,A=60°,若三角形有两解,则x的取值范围是()A.x >B.0<x<2 C.<x<2 D.<x≤2考点:解三角形.专题:综合题;解三角形.分析:利用正弦定理列出关系式,将a,b,sinA的值代入表示出sinB,依据B的度数确定出B的范围,要使三角形有两解确定出B的具体范围,利用正弦函数的值域求出x的范围即可.解答:解:∵在△ABC中,a=x(x>0),b=2,A=60°,∴由正弦定理得:sinB==∵A=60°,∴0<B<120°,要使三角形有两解,得到60°<B<120°,且B≠90°,即<sinB<1,∴<<1,解得:<x<2,故选:C.点评:此题考查了正弦定理,以及正弦函数的性质,娴熟把握正弦定理是解本题的关键.8.数列{a n}的前n项和S n=2n(n∈N*),则a12+a22+…+a n2等于()A.4n B.C.D.考点:数列的求和.专题:等差数列与等比数列.分析:利用S n﹣S n﹣1可知a n=2n﹣1(n≥2),通过n=1可知a1=S1=2,进而可知=,计算即得结论.解答:解:∵S n=2n(n∈N*),∴a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1(n≥2),又∵a1=S1=2不满足上式,∴a n =,∴=,∴a12+a22+…+a n2=4+(42+43+…+4n)=4+•=4+•(4n﹣4)=•(4n+8),故选:D.点评:本题考查数列的通项及前n项和,考查运算求解力量,留意解题方法的积累,属于中档题.9.若直线l沿x轴向左平移3各单位,再沿y轴向上平移1个单位后,回到原来的位置,则该直线l的斜率为()A.B.﹣C.3 D.﹣3考点:直线的斜率.专题:直线与圆.分析:设直线l的方程为:y=kx+b,利用平移变换的规章:“左加右减,上加下减”,求出变换后直线方程,再由条件求出直线的斜率.解答:解:设直线l的方程为:y=kx+b,∵直线l沿x轴向左平移3各单位,再沿y轴向上平移1个单位后,∴变换后的直线方程是:y=kx+3k+b+1.∵经过两次平移变换后回到原来的位置,∴必有3k+b+1=b,解得k=,故选:B.点评:本题考查图象的变换,娴熟把握平移变换的规律是解题关键,属于基础题.10.已知平面对量,,满足||=,||=1,•=﹣1,且﹣与﹣的夹角为45°,则||的最大值等于()A.B.2 C.D.1考点:正弦定理;平面对量数量积的运算.专题:解三角形;平面对量及应用.分析:由于平面对量,,满足||=,||=1,•=﹣1,利用向量的夹角公式可得.由于﹣与﹣的夹角为45°,可得点C在△OAB的外接圆的弦AB所对的优弧上,因此可得||的最大值为△OAB的外接圆的直径.解答:解:设,,.∵平面对量,,满足||=,||=1,•=﹣1,∴=,∴.∵﹣与﹣的夹角为45°,∴点C在△OAB的外接圆的弦AB所对的优弧上,如图所示.因此||的最大值为△OAB的外接圆的直径.∵==.由正弦定理可得:△OAB的外接圆的直径2R===.故选:A.点评:本题考查了向量的夹角公式、三角形法则、数形结合的思想方法、正弦定理等基础学问与基本技能方法,考查了推理力量,属于难题.11.△ABC 满足•=2,∠BAC=30°,设M是△ABC内的一点(不含边界),定义f(M)=(x,y,z),其中x,y,z分别表示△MBC,△MCA,△MAB的面积,若f(M)=(x,y ,),则+的最小值为()A.4 B.6 C.9 D.考点:基本不等式;平面对量数量积的运算.专题:不等式.分析:先求出||•||的值,再求出x+y 是定值,将+变形为(+)(x+y),开放不等式再利用基本不等式的性质从而求出最小值.解答:解:∵•=2,∠BAC=30°,所以由向量的数量积公式得||•||•cos∠BAC=2,∴||||=4,∵S△ABC=||•||•sin∠BAC=1,由题意得:x+y=1﹣=,+=(+)(x+y)=(5++)≥(5+2)=,等号在x=,y=取到,所以最小值为,.故选:D.点评:本题考查基本不等式的应用和余弦定理,解题时要认真审题,留意公式的机敏运用.12.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.则△ABC是()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形考点:三角形的外形推断.专题:计算题;解三角形.分析:依题意,可知B=60°,利用余弦定理b2=a2+c2﹣2accosB结合边a、b、c依次成等比数列即可推断△ABC 的外形.解答:解:∵△ABC中,三内角A、B、C的度数成等差数列,∴A+C=2B,又A+B+C=180°,∴B=60°.又边a、b、c依次成等比数列,∴b2=ac,在△ABC中,由余弦定理得:b2=a2+c2﹣2accosB=a2+c2﹣2accos60°,∴a2+c2﹣2accos60°=ac,∴(a﹣c)2=0,∴a=c,∴A=C,又B=60°,∴△ABC为等边三角形.故选B.点评:本题考查三角形的外形推断,着重考查余弦定理与等差数列与等比数列的概念及其应用,属于中档题.二.填空题(本大题4个小题,每题4分,共16分,请把答案填在答题卷中相应横线上)13.在等比数列{a n}中,若a1,a10是方程3x2﹣2x﹣6=0的两根,则a4a 7=﹣2.考点:等比数列的性质.专题:计算题.分析:依据韦达定理可求得a1a10的值,进而依据等比中项的性质可知a4a7=a1a10求得答案.解答:解:∵a1,a10是方程3x2﹣2x﹣6=0的两根,∴a1a10=﹣2∵数列{a n}为等比数列∴a4a7=a1a10=﹣2故答案为:﹣2点评:本题主要考查了等比数列的性质.考查了同学对等比中项性质的机敏运用.14.已知||=6,||=3,=﹣12,则向量在向量上的投影是﹣2.考点:平面对量数量积的运算.专题:平面对量及应用.分析:由向量的数量积运算表示出,再由条件和向量投影的概念求出向量在向量上的投影.解答:解:设与的夹角是θ,由于||=6,=﹣12,所以=||||cosθ=﹣12,则||cosθ=﹣2,所以向量在向量上的投影是﹣2,故答案为:﹣2.点评:本题重点考查了向量数量积的运算,以及向量投影的概念,属于中档题.15.若直线l1:(2a﹣1)x﹣y+3=0与直线l2:y=4x﹣3相互垂直,则a=.考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:依据直线垂直与直线斜率之间的关系进行求解即可.解答:解:直线l1:(2a﹣1)x﹣y+3=0的斜截式方程为y=(2a﹣1)x+3,斜率为2a﹣1,直线l2:y=4x﹣3的斜率为4,若两直线垂直,则4(2a﹣1)=﹣1,解得a=,故答案为:点评:本题主要考查直线垂直的应用,依据斜率之积为﹣1是解决本题的关键.16.下列命题:①常数列既是等差数列又是等比数列;②若直线l:y=kx﹣与直线2x+3y﹣6=0的交点位于第一象限,则直线l的倾斜角的取值范围是(,);③若α,β都是锐角,sinα=,cos(α+β)=,则cosβ=④假如(a﹣2)x2+(a﹣2)x﹣1≤0对任意实数x总成立,则a的取值范围是[﹣2,2].其中全部正确命题的序号是②③④.考点:命题的真假推断与应用.专题:简易规律.分析:依据等比数列的定义,可以推断①,联立两直线方程到底一个二元一次方程组,求出方程组的解集即可得到交点的坐标,依据交点在第一象限得到横纵坐标都大于0,联立得到关于k的不等式组,求出不等式组的解集即可得到k的范围,然后依据直线的倾斜角的正切值等于斜率k,依据正切函数图象得到倾斜角的范围可推断②,依据两角差的余弦公式,可得cosβ=cos(α+β﹣α)=,故可推断③,依据不等式恒成立的问题,分类争辩,即可推断④.解答:解:对于①,例如,0,0,0,…,0是等差数列,不是等比数列,故①不正确,对于②解:联立两直线方程得:,解得由于两直线的交点在第一象限,所以得到,解得:k >,设直线l的倾斜角为θ,则tanθ>,所以θ∈(,).故②正确;对于③∵α,β都是锐角,sinα=,cos(α+β)=,∴cosα=,sin(α+β)=,∴cosβ=cos(α+β﹣α)=cos(α+β)cosα+sin(α+β)sinα=+=,故③正确;对于④,当a=2时,﹣1≤0成立,当a≠2时,由题意得,解得,解得﹣2≤a<2,所以a的取值范围为[﹣2,2],故④正确,故答案为:②③④.点评:本题考查的学问点是命题的真假推断与应用,其中娴熟把握上述基本学问点,并应用这些基本学问点推断题目命题的真假是解答本题的关键.三.解答题:(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.)17.若=(0,3),=(,1),=3+5,=m﹣5,(1)试问m 为何值时,与相互平行;(2)试问m 为何值时,与相互垂直.考点:平面对量共线(平行)的坐标表示;数量积的坐标表达式.专题:平面对量及应用.分析:先依据向量的坐标的加减运算求出与,再分别依据平行和垂直的条件的计算即可.解答:解:∵=(0,3),=(,1),∴=3+5=3(0,3)+5(,1)=(5,14),=m﹣5=m(0,3)﹣5(,1)=(﹣5,3m﹣5),(1)∵与相互平行,∴5(3m﹣5)=﹣5×14,解得m=﹣3,(2)∵与相互垂直,∴5×(﹣5)+14(3m﹣5)=0,解得m=.点评:本题考查了向量垂直与数量积的关系、向量共线定理和平面对量基本定理,属于基础题.18.在△ABC中,角A、B、C所对应的边分别为a、b、c ,且满足=,•=3.(Ⅰ)求△ABC的面积;(Ⅱ)若b+c=6,求a的值.考点:二倍角的余弦;平面对量数量积的运算;余弦定理.专题:解三角形.分析:(Ⅰ)利用二倍角公式利用=求得cosA,进而求得sinA ,进而依据求得bc的值,进而依据三角形面积公式求得答案.(Ⅱ)依据bc和b+c的值求得b和c,进而依据余弦定理求得a的值.解答:解:(Ⅰ)由于,∴,又由,得bccosA=3,∴bc=5,∴(Ⅱ)对于bc=5,又b+c=6,∴b=5,c=1或b=1,c=5,由余弦定理得a2=b2+c2﹣2bccosA=20,∴点评:本题主要考查了解三角形的问题.涉及了三角函数中的倍角公式、余弦定理和三角形面积公式等,综合性很强.19.已知{a n}是首项为19,公差为﹣2的等差数列,S n为{a n}的前n项和.(1)求通项a n及S n;(2)设{b n﹣a n}是首项为1,公比为3的等比数列,求数列{b n}的通项公式及其前n项和T n.考点:等差数列的前n项和;数列的求和.专题:计算题.分析:(1)直接代入等差数列的通项公式及前n项和公式可求a n及S n(2))利用等比数列的通项公式可求b n﹣a n,结合(1)中的a n代入可求b n,利用分组求和及等比数列的前n 项和公式可求解答:解:(1)由于a n是首项为a1=19,公差d=﹣2的等差数列,所以a n=19﹣2(n﹣1)=﹣2n+21,.(2)由题意b n﹣a n=3n﹣1,所以b n=a n+3n﹣1,T n=S n+(1+3+32+…+3n﹣1)=.点评:本题主要考查了等差数列的通项公式及前n项和公式,等比数列的通项公式,分组求和及等比数列的求和公式等学问的简洁运用.20.已知函数,(1)求f(x)的最小正周期和单调减区间;(2)若f(x)<m+2在上恒成立,求实数m的取值范围.考点:函数恒成立问题;二倍角的余弦;三角函数的周期性及其求法.专题:函数的性质及应用.分析:(1)对函数f(x)进行变形,使f(x)=Asin(ωx+φ)+B(ω>0)的形式,可求其最小正周期,再依据复合函数单调性的推断方法可求其减区间;(2)要使f(x)<m+2在上恒成立,只要x∈[0,]时f(x)max<m+2即可.解答:解:(1)=1﹣cos (﹣2x )﹣cos2x=1﹣sin2x ﹣cos2x=1﹣2sin(2x+),故最小正周期T==π,由﹣+2kπ≤2x++2kπ,得﹣+kπ≤x ≤+kπ(k∈Z),所以函数f(x)的最小正周期为π,单调减区间为[+kπ,+kπ](k∈Z).(2)x∈[0,],则2x+∈[,],则sin(2x+)∈[,1],则f(x)∈[﹣1,1﹣],即f(x )在上的值域为[﹣1,1﹣].由于f(x)<m+2在上恒成立,所以m+2>1﹣,解得m>﹣1﹣.所以实数m的取值范围为(﹣1﹣,+∞).点评:本题考查函数恒成立问题及三角函数的周期性、单调性,函数恒成立问题往往需要转化为函数最值问题进行处理.21.四边形OABC的四个顶点坐标分别为O(0,0),A(6,2),B(4,6),C(2,6),直线y=kx (<k<3)把四边形OABC分成两部分,S表示靠近x轴一侧那部分的面积.(1)求S=f(k)的函数表达式;(2)当k为何值时,直线y=kx将四边形OABC分为面积相等的两部分.考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:(1)由题意画出图象,求出|OA|、|BC|、直线OA的方程,由点到直线的距离求出点B到直线OA的距离,求出四边形OABC的面积S,依据图象分类争辩,分别由图象求出靠近x轴一侧那部分的面积表达式,再用分段函数的形式表示出来;(2)由(1)和条件列出方程求出k的值.解答:解:(1)由题意画出图象:|OA|==2,|BC|=2,直线OA的方程是y=x,则x﹣3y=0,∴点B到直线OA的距离d==,则四边形OABC的面积S=S△AOB+S△BOC ==20,①当直线y=kx与AB 相交时,此时,由A(6,2),B(4,6),得直线AB的方程是y﹣2=(x﹣6),即y=﹣2x+14,由得,x=,y=,∴直线AB与直线y=kx的交点坐标是P (,),则点P到直线OA的距离d′==,∴△POA的面积S===;②当直线y=kx与BC 相交时,此时,则交点坐标是(,6),∴靠近x轴一侧那部分的面积S=20﹣=,∴S=f(k)=;(2)由(1)可知,当直线y=kx与AB 相交时,此时,直线y=kx可将四边形OABC分为面积相等的两部分,∴=,解得k=或,又,则k 的值是.点评:本题考查分段函数在实际生活中的应用,两点之间、点到直线的距离公式,直线方程的求法等等,以及分割法求图形的面积,考查分类争辩思想,数形结合思想,化简、计算力量,属于中档题.22.设数列{a n}的通项公式为a n=pn+q(n∈N*,P>0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m 成立的全部n中的最小值.(Ⅰ)若,求b3;(Ⅱ)若p=2,q=﹣1,求数列{b m}的前2m项和公式;(Ⅲ)是否存在p和q,使得b m=3m+2(m∈N*)?假如存在,求p和q的取值范围;假如不存在,请说明理由.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)先得出a n,再解关于n的不等式,利用正整数的条件得出具体结果;(Ⅱ)先得出a n,再解关于n的不等式,依据{b n}的定义求得b n再求得S2m;(Ⅲ)依据b m的定义转化关于m的不等式恒成立问题.解答:解:(Ⅰ)由题意,得,解,得.∴成立的全部n中的最小正整数为7,即b3=7.(Ⅱ)由题意,得a n=2n﹣1,对于正整数m,由a n≥m ,得.依据b m的定义可知当m=2k﹣1时,b m=k(k∈N*);当m=2k时,b m=k+1(k∈N*).∴b1+b2+…+b2m=(b1+b3+…+b2m﹣1)+(b2+b4+…+b2m)=(1+2+3+…+m)+[2+3+4+…+(m+1)]=.(Ⅲ)假设存在p和q满足条件,由不等式pn+q≥m及p>0得.∵b m=3m+2(m∈N*),依据b m的定义可知,对于任意的正整数m 都有,即﹣2p﹣q≤(3p﹣1)m<﹣p﹣q对任意的正整数m都成立.当3p﹣1>0(或3p﹣1<0)时,得(或),这与上述结论冲突!当3p﹣1=0,即时,得,解得.(经检验符合题意)∴存在p和q,使得b m=3m+2(m∈N*);p和q 的取值范围分别是,.点评:本题主要考查数列的概念、数列的基本性质,考查运算力量、推理论证力量、分类争辩等数学思想方法.本题是数列与不等式综合的较难层次题.。
2022-2023学年甘肃省定西市第一中学高一上学期期末考试理科数学试题(解析版)

A. B.
C. D.
【答案】A
【解析】
【分析】直接利用二次函数的单调性列不等式组即可求得.
【详解】函数 的对称轴为 .
要使函数在区间 上是单调函数,只需 或 ,
解得: 或 .
故选:A
5.已知某几何体的三视图如图所示,则该几何体的体积为()
故选:B.
【点睛】本题考查了并集和补集运算,属于简单题.
2.过点 和点 的直线的斜率为()
A. -2B. C. D. 2
【答案】A
【解析】
【分析】
根据两点确定的直线的斜率公式即可求解.
【详解】根据斜率公式可得:
过点 和点 的直线的斜率 .
故选:A
【点睛】此题考查根据两点求直线的斜率,根据公式准确求解即可.
3.设m、n是两条不同的直线, 、 、 是三个不同的平面,给出下列四个命题:
①若 , ,则 ;②若 , ,则 ;
③若 , ,则 ;④若 , ,则 .
其中正确命题的序号是()
A. ①③B. ①④C. ②③D. ②④
【答案】A
【解析】
【分析】利用面面平行、面面垂直以及线面关系定理分别对四个命题分析解答.
6.设a=log32,b=log23, ,则( )
A.c<b<aB.a<c<b
C.c<a<bD.b<c<a
【答案】C
【解析】
【分析】根据给定条件,利用对数函数的单调性,结合“媒介数”比较作答.
【详解】依题意, , ,则 ,而 ,
因此 ,即选项C正确.
故选:C
7.已知函 则 的值为( )
2013-2014学年第二学期期末考试高一物理(理科)试题(含答案)

第3题2013-2014学年第二学期期末考试 高一物理(理科)试题(含答案)一、单项选择题(每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项符合要求,选对的得3分,选错或不选的得0分。
)1.关于曲线运动,下列说法中正确的是( ) A .曲线运动是变速运动,加速度一定变化B .作曲线运动的物体,速度与加速度的方向可以始终在一条直线上C .作曲线运动的物体,速度与加速度可以垂直D .作曲线运动的物体,速度的大小与方向都时刻发生改变2.以速度v o 水平抛出一小球,不计空气阻力。
如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( )A .此时小球的竖直分速度大小等于水平分速度大小B .此时小球的速度大小为0v 5C.此时小球速度的方向与位移的方向相同 D .小球运动的时间为v o /g3.如图所示,质量为m 的小球,从桌面边缘A 处以初速度V 离开高为H 的桌面,经B 点到达地面C 处。
B 点距地面高为h ,不计空气阻力,下列判断正确的是( )A.若取A 处为参考面,小球在B 点具有的机械能是 mV 2/2 +mgHB.若取B 处为参考面,小球在A 点具有的机械能是 mV 2/2 + mghC.若取地面为参考面,小球在C 点具有的的机械能mV 2/2 + mgHD.无论取何处为参考面,小球具有的机械能都是mV 2/2 + mgH4. 如图所示,两个用相同材料制成的靠摩擦传动的轮A 和B 水平放置,两轮半径R A =2R B 。
当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A 轮边缘上。
若将小木块放在B 轮上,欲使木块相对B 轮也静止,则木块距B 轮转轴的最大距离为( )A .RB /2 B .R B /4C .R B /3D . R B5.半径为R 的圆桶固定在小车上,有一光滑小球静止在圆桶的最低点,如图所示.小车以速度v 向右匀速运动,当小车遇到障碍物突然停止时,小球在圆桶中上升的高度不可能的是( )A .等于v 22gB .大于v 22gC .小于v 22gD .等于2R6.半径为R 的四分之一竖直圆弧轨道,与粗糙的水平面相连,如图所示.有一个质量为m 的均匀细直杆搭放在圆弧两端,若释放细杆,它将开始下滑,并且最后停在水平面上.在上述过程中( )A.杆克服摩擦力所做的功为mgRB.杆克服摩擦力所做的功为12mgR C.重力所做的功为mgRD.外力做的总功为12mgR 7.如图所示的四个电场线图,一正电荷在电场中由P 到Q 做加速运动且加速度越来越大,那么它是在哪个图示的电场中运动. ( )8.物体在一个方向竖直向上的拉力作用下参与了下列三种运动:匀速上升、加速上升和减速上升.关于这个物体在这三种运动中机械能的变化情况,下列说法正确的是( )A .匀速上升过程中机械能不变,加速上升过程中机械能增加,减速上升过程中机械能减少B .匀速上升和加速上升过程中机械能增加,减速上升过程中机械能减少C .三种运动过程中,机械能均增加D .由于这个拉力和重力大小关系不明确,不能确定物体的机械能的增减情况9. 如图所示,在真空中的A 、B 两点分别放置等量异种点电荷,在A 、B 两点间取一正五角星形路径abcdefghija ,五角星的中心与A 、B 的中点重合,其中af 连线与AB 连线垂直.现将一电子沿该路径逆时针移动一周,下列判断正确的是 ( )A .e 点和g 点的电场强度相同B .a 点和f 点的电势相等C .电子从g 点到f 点再到e 点过程中,电势能先减小再增大D .电子从f 点到e 点再到d 点过程中,电场力先做正功后做负功 10.下表列出了某种型号轿车的部分数据,试根据表中数据回答问题。
2021-2022年高一下学期期末考试生物(理)试题 含答案

2021年高一下学期期末考试生物(理)试题含答案李蓉王彦仓一、单项选择题(1-25每空1分,26-38每空2分,共51分)1. 下列各组中不属于相对性状的是()A.水稻早熟和晚熟 B.豌豆的紫花和红花C.小麦的抗病和易感染疾病 D.绵羊的长毛和细毛2. 豌豆黄粒对绿粒为显性,现有一株黄粒豌豆,欲知其是纯合体还是杂合体,最简单的方法是()A.杂交B.测交C.自交D.杂交3.对遗传因子组合形式为Dd的高等植物体产生的雌雄配子的数量和种类数描述正确的是A雌雄配子数量相等,种类数相同B 雌雄配子数量不相等,种类数不相同C雌雄配子数量相等,种类数不相同D 雌雄配子数量不相等,种类数相同4.基因工程的操作步骤包括以下几步,正确的操作顺序是()①目的基因与运载体结合;②将目的基因导入受体细胞;③目的基因的检测与鉴定;④提取目的基因。
A.④①②③B.②④①③C.③②④①D.③④①②5. 一对夫妇都正常,他们的父母也正常,妻子的弟弟是色盲,则他们生的男孩是色盲的概率()A 1/2B 1/3C 1/4D 1/86.与“阿波罗登月计划”相提并论的“人类基因组计划”的主要任务是测定人体基因组整体序列。
决定基因遗传特异性的是()A.基因的碱基对排列顺序 B.嘌呤总数与嘧啶总数的比值C.碱基互补配对的原则 D.脱氧核苷酸链上磷酸和脱氧核糖的排列特点7.如图是某种生物体细胞内染色体情况示意图,则该种生物的基因型以及染色体组数可表示为()A.ABCd,1B.Aaaa,8C.AaBbCcDd,8D.BBBbDDdd,48.艾弗里和同事用R型和S型肺炎双球菌进行实验,结果如下表。
从表可知实验组号接种菌型加入S型菌物质培养皿长菌情况①R蛋白质R型②R荚膜多糖R型③R DNA R型、S型④R DNA(经DNA酶处理)R型A.①不能证明S型菌的蛋白质不是转化因子B.②说明S型菌的荚膜多糖有酶活性C.③和④说明S型菌的DNA是转化因子D.①~④说明DNA是主要的遗传物质9.秃顶是常染色体显性基因B控制,但只在男性身上表现,一个非秃顶男人与一个其父为非秃顶的女人结婚,生下的男孩长大以后表现为秃顶。
【数学】甘肃省张掖市2022-2023学年高一下学期期末考试试卷(理科) (解析版)

甘肃省张掖市2020-2021学年高一下学期期末考试数学试题(理科)一,单选题(共12小题,每小题5分,共60分).1.已知α是锐角,=(﹣1,1),=(cos α,sin α),且⊥,则α为( )A .30°B .45°C .60°D .30°或60°2.现要完成下面3项抽样调查:①从20罐奶粉中抽取4罐进行食品安全卫生检查。
②从2000名学生中抽取100名进行课后阅读情况调查。
③从某社区100户高收入家庭,270户中等收入家庭,80户低收入家庭中选出45户进行消费水平调查.较为正确地抽样方式是( )A .①系统抽样,②简单随机抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①分层抽样,②系统抽样,③简单随机抽样D .①简单随机抽样,②系统抽样,③分层抽样3.如图记录了某校高一年级6月第一周星期一至星期五参加乒乓球训练地学生人数.通过图中地数据计算这五天参加乒乓球训练地学生地平均数和中位数后,教练发现图中星期五地数据有误,实际有21人参加训练.则实际地平均数和中位数与由图中数据星期得到地平均数和中位数相比,下面描述正确地是( )A .平均数增加1,中位数没有变化B .平均数增加1,中位数有变化C .平均数增加5,中位数没有变化D .平均数增加5,中位数有变化4.已知,且,那么sinα=( )A.B.C.D.5.将标有数字3,4,5地三张扑克牌随机分给甲,乙,丙三人,每人一张,事件A:“甲得到地扑克牌数字小于乙得到地扑克牌数字”与事件B:“乙得到地扑克牌数字为3”是( )A.互斥但不对立事件B.对立事件C.既不互斥又不对立事件D.以上都不对6.已知向量=(2,3),=(4,2),那么向量﹣与地位置关系是( )A.平行B.垂直C.夹角是锐角D.夹角是钝角7.如图,在平面直角坐标系xOy中,角α与角β均以Ox为始边,终边分别是射线OA和射线OB,且射线OA和射线OB有关x轴对称,射线OA与单位圆地交点为A(﹣,),则cos(β﹣α)地值是( )A.﹣B.C.D.﹣8.如图是函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内地图象,则其思路式是( )A.f(x)=3sin(x+)B.f(x)=3sin(2x+)C.f(x)=3sin(2x﹣)D.f(x)=3sin(2x+)9.函数f(x)=A sin(ωx+φ)(A>0,ω>0,0<φ<)地部分图象如图所示,则下面叙述正确地是( )A.函数f(x)地图象可由y=A sinωx地图象向左平移个单位得到B.函数f(x)地图象有关直线x=对称C.函数f(x)图象地对称中心为(﹣,0)(k∈Z)D.函数f(x)在区间[﹣,]上单调递增10.如图是用模拟方式估计圆周率π地程序框图,P表示估计结果,则图中空白框内应填入( )A.B.C.D.11.有下面命题:①若向量与同向,且,则。
2021-2022学年河南省许昌市高一下学期期末考试数学试题(理科)(解析版)

河南省许昌市2021-2022学年高一下学期期末考试数学试题(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项是符合题目要求的.1.若(1)1i z -=,则(z z += ) A .2-B .1-C .1D .2〖解 析〗由(1)1i z -=,得211iz i i i--===--,1z i ∴=+,则1z i =-,∴112z z i i +=++-=.〖答 案〗D2.已知平面向量(3,1)a =,(,2)b x =-,且a b ⊥,则(x = ) A .1B .1-C .23D .23-〖解 析〗(3,1)a =,(,2)b x =-,a b ⊥,∴320a b x ⋅=-=,∴23x =. 〖答 案〗C3.某学校计划从3名男生和4名女生中任选4名参加七一征文比赛,记事件M 为“至少3名女生参加”,则下列事件与事件M 对立的是( ) A .恰有1名女生参加 B .至多有2名男生参加C .至少有2名男生参加D .恰有2名女生参加〖解 析〗至少3名女生的对立面是至多两名女生,总共选4名,也即为至少2名男生. 〖答 案〗C .4.已知向量a ,b ,且||9a =,||12b =,a 与b 的夹角为4π,则(a b ⋅= )A .36B .C .54D .〖解 析〗因为||9a =,||12b =,a 与b 的夹角为4π,所以||||cos ,912cos 4a b a b a b π⋅=<>=⨯⨯=〖答 案〗D5.已知P 在ABC ∆所在平面内,满足||||||PA PB PC ==,则P 是ABC ∆的( )A.外心B.内心C.垂心D.重心〖解析〗||||||==表示P到A,B,C三点距离相等,P为外心.PA PB PC〖答案〗A6.下列四个命题中不正确的是()A.平行线段在直观图中仍然平行B.相等的角在直观图中仍然相等C.直线与平面相交有且只有一个公共点D.垂直于同一个平面的两条直线平行〖解析〗逐一考查所给的选项:A.平行线段在直观图中仍然平行,A说法正确;B.相等的角在直观图中不一定相等,B说法错误;C.直线与平面相交有且只有一个公共点,C说法正确;D.由面面垂直的性质可知垂直于同一个平面的两条直线平行,D说法正确.〖答案〗B7.对于任意两个向量a和b,下列命题中正确的是()A.若a,b满足||||>a b>,且a与b同向,则a bB.||||||++a b a bC.||||||⋅⋅a b a bD.||||||--a b a b〖解析〗A中,向量既有方向,又有大小,所以向量不能比较大小,所以A不正确;B中,因为22222+=+=++<>++=+,a b a b a b a b a b a b a b a b||()2||||cos,2||||||||当且仅当//a b且同方向时,取等号,所以B正确;C中,|||||||cosa b时取等号,所以C不正确;>⋅,当且仅当//b a b⋅=⋅⋅<,|||||a b a b aD中,22222||()2||||cos,2|||||||| -=-=+-⋅<>+-=-,当a b a b a b a b a b a b a b a b且仅当a,b同方向时确定等号,所以D不正确.〖答案〗B8.某校开展“正心立德,劳动树人”主题教育活动,对参赛的100名学生的劳动作品的得分情况进行统计,并绘制了如图所示的频率分布直方图,图中信息,下列结论错误的 是( )A .图中的x 值为0.020B .得分在80分及以上的人数为40C .这组数据平均数的估计值为77D .这组数据第80百分位数的估计值为85〖解 析〗由频率之和为1得:10(0.0050.0350.0300.010)1x ++++=, 解得:0.020x =,A 说法正确;得分在80分及以上的人数为(0.0300.010)1010040+⨯⨯=,B 说法正确;因为10(550.005650.020750.035850.030950.010)77⨯⨯+⨯+⨯+⨯+⨯=,C 说法正确;0.005100.020100.035100.60.8⨯+⨯+⨯=<,0.005100.020100.035100.030100.90.8⨯+⨯+⨯+⨯=>,所以这组数据第80百分位数的估计值落在区间[80,90)内,0.80.626080100.90.63-+⨯=-,故这组数据第80百分位数的估计值不为85,D 说法错误. 〖答 案〗D9.已知a ,b 是两个不共线向量,向量b ta -,1322a b -共线,则实数(t = )A .13-B .13C .34-D .34〖解 析〗由向量b ta -与1322a b -共线,得11322t -=-,解得:13t =.〖答 案〗B10.已知a ,b 是两条不同的直线,α,β,γ是三个不同的平面.给出下列命题: ①若αβ⊥,a αβ=,a b ⊥,则b α⊥或b β⊥;②若//αβ,a αγ=,b βγ=,则//a b ;③若a αβ=,b αγ=,//a b ,则//βγ;④“若αγ⊥,βγ⊥,则αβ⊥”是随机事件;⑤若a ,b 是异面直线,则存在平面α过直线a 且垂直于直线b . 其中正确的命题是( ) A .①③B .②⑤C .③④D .②④〖解 析〗若αβ⊥,a αβ=,a b ⊥,b 与α,β可能垂直也可能不垂直,①错;由面面平行的性质定理知②正确;三棱柱的两个侧面与第三个侧面的交线相互平行,但这两个侧面相交,③错;若αγ⊥,βγ⊥,则α与β可能垂直也可能不垂直,“若αγ⊥,βγ⊥,则αβ⊥”是随机事件,④正确;若存在平面α过直线a 且垂直于直线b ,则a b ⊥,但已知中a ,b 不一定垂直,⑤错误. 〖答 案〗D11.已知对任意平面向量(,)AB x y =,把AB 绕其起点沿逆时针方向旋转θ角得到向量(cos sin ,sin cos )AP x y x y θθθθ=-+,叫做把点B 绕点A 沿逆时针方向旋转θ角得到点P .已知平面内点(1,2)A ,点(2,3)B ,把点B 绕点A 沿顺时针方向旋转116π得到点P ,则点P 的坐标为( )A .33(22--+B .11(22-C .15(22--+D .15(22+〖解 析〗平面内点(1,2)A ,点(2,3)B ,所以(1,1)AB =, 把点B 绕点A 顺时针旋转116π后得到点P , 即把点B 绕点A 沿逆时针方向旋转6π得到点P ,则(cos sin AP x y θθ=-,sin cos )(cos sin66x y ππθθ+=-,1sincos )662ππ+=-,12,设(,)P a b ,则(1AP a =-,2)(b -=12-,12+,解得12a =+,52b =+.所以点P 的坐标为12+,52+. 〖答 案〗D12.在三棱锥A BCD -中,所有的棱长都相等,E 为AB 中点,F 对AC 上一动点,若DF FE +的最小值为( )A .B .C .D .〖解 析〗如图,三棱锥A BCD -各棱相等,H 是底面BCD ∆中心,则AH ⊥平面ABC ,显然有AH 与底面上的直线BH 垂直,O 是其外接球球心,设三棱锥棱长为a ,外接球半径为R ,则BH =,AH =,由222BO BH OH =+得222))R R =+-,R , 把ABC ∆和ACD ∆沿AC 摊平,如图,则DE ==,因为DF FE +的最小值为=,4a =,所以4R ==334433V R ππ==⨯=. 〖答 案〗A二、填空题:本大题共4小题,每小题5分,共20分. 13.在ABC ∆中,已知6b =,45A =︒,75C =︒,则c = . 〖解 析〗由180A B C ++=︒,45A =︒,75C =︒,60B ∴=︒,sin sin b c B C =即6sin 60sin 75c=︒︒,∴=,c ∴=.〖答案〗14.某学校共有学生2000名,各年级的男生、女生人数如表:已知从全校学生中随机抽取1名,抽到二年级女生的可能性是0.19.现用分层随机抽样的方法,从全校学生中抽取64名,则应在三年级抽取的学生人数为 名. 〖解 析〗由已知抽取的64名学生中一、二年级的学生数为377373370(0.19)64482000+++⨯=,所以三年级的学生数为644816-=. 〖答 案〗1615.在2022年新冠肺炎疫情期间,长葛市组织市民进行核酸检测,某个检测点派出了3名医生,6名护士.把这9名医护人员分成三组,每组1名医生2名护士,则医生甲与护士乙分在一组的概率为 .〖解 析〗某个检测点派出了3名医生,6名护士, 把这9名医护人员分成三组,每组1名医生2名护士,基本事件总数111222321642540n C C C C C C ==, 医生甲与护士乙分在一组包含的基本事件个数12112223252242180m C C C C C C C ==, ∴医生甲与护士乙分在一组的概率为18015403m P n ===. 〖答 案〗1316.19世纪,美国天文学家西蒙⋅纽康在翻阅对数表时,偶然发现表中以1开头的数出现的频率更高.约半个世纪后,物理学家本福特又重新发现这个现象,从实际生活得出的大量数据中,以1开头的数出现的频率约为总数的三成,接近期望值19的3倍,并提出本福特定律,即在大量b 进制随机数据中,以n 开头的数出现的概率为1()log ()b b n P n n+=,如斐波那契数、阶乘数、素数等都比较符合该定律.后来常有数学爱好者用此定律来检验某些经济数据、选举数据等大数据的真实性.根据本福特定律,若1012()3ni P i =∑,则n 的最大值为 . 〖解 析〗由1()log ()b b n P n n +=可得,10101()log ()(1)i P i lg i lgi i+==+-, 所以101()(1)ni P i lg n ==+∑,又1012()3ni P i =∑,所以,2(1)3lg n +,即3(1)100n +, 所以,1n =,2,3,则n 的最大值为3. 〖答 案〗3三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
2021-2022学年四川省成都外国语学校高一(下)期末数学试卷(理科)含答案

2021-2022学年四川省成都外国语学校高一(下)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知a,b,c∈R且a>b,则下列不等式中一定成立的是()A.B.ac>bc C.a2>b2D.(a﹣b)c2≥02.(5分)已知向量=(﹣1,2),=(λ,6),若,则实数λ=()A.﹣3B.3C.﹣12D.123.(5分)已知等差数列{a n}中,若a1+a2+a6=63,则a3=()A.7B.9C.21D.634.(5分)已知实数x,y满足,则z=x﹣2y的最大值为()A.2B.3C.4D.55.(5分)已知一个圆锥的母线长为2,其侧面积为2π,则该圆锥的体积为()A.B.C.D.π6.(5分)如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,若AA1=AC=BC=1,则异面直线A1C,AB所成角的大小是()A.B.C.D.7.(5分)已知,且,则cosα﹣sinα=()A.B.C.D.8.(5分)若x>0,y>0,且=1,则3x+y的最小值为()A.6B.12C.14D.169.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.10.(5分)如图,在△ABC中,=,P是BN上的一点,若,则实数m的值为()A.B.C.D.11.(5分)已知△ABC的三边a,b,c满足:a3+b3=c3,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰直角三角形12.(5分)若实数y满足x2+y2=1+xy,则下列结论中,正确的是()A.x+y≤1B.x+y≥2C.x2+y2≥1D.x2+y2≤2二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)4与9的等比中项是.14.(5分)如图所示,VA'B'C'是水平放置的△ABC的斜二测直观图,其中O'C'=O'A'=2O'B'=2,则△ABC 的周长是.15.(5分)已知等比数列{a n}的前n项和S n=2n+1+2m(m∈R),则=.16.(5分)△ABC的内角A,B,C的对边a,b,c为三个连续自然数,且C=2A,则a=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知,且.(1)求sin2α的值;(2)若,求tanβ的值.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PD⊥平面ABCD,AD=PD=4,点Q是PC的中点.(1)求证:P A∥平面BDQ;(2)在线段AB上是否存在点F,使直线PF与平面P AD所成的角为30°?若存在,求出AF的长,若不存在,请说明理由?19.(12分)△ABC的内角A,B,C的对边分别为a,b,c.已知cos(A+C)=2cos2.(Ⅰ)求角B的大小;(Ⅱ)若a+c=8,△ABC的面积为,求b.20.(12分)若数列{a n}满足a n a n+2=a2n+1,a1=3,a2a3=243.(1)求{a n}的通项公式;(2)若b n=log3a n,求数列{a n b n}的前n项和S n.21.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠APB=90°,∠ABC=60°,P A=PB,AB=PC=4,点M是AB的中点.点N在线段BC上.(1)求证:平面P AB⊥平面ABCD;(2)若CN=3BN,求N到平面PCD的距离.22.(12分)数列{a n}满足a1=1,a n+1=2a n+3n.(1)令b n=,求证:{b n+1﹣b n}是等比数列;(2)令c n=,{c n}的前n项和为T n,求证:1≤T n<.参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D;2.A;3.C;4.A;5.A;6.C;7.C;8.B;9.D;10.D;11.B;12.D;二、填空题(本大题共4小题,每小题5分,共20分.)13.±6;14.4+4;15.;16.4;三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知,且.(1)求sin2α的值;(2)若,求tanβ的值.【解答】解:(1)已知,且,所以:,故sin2.(2)由(1)得:tan,故tanβ=tan[(α+β)﹣α]==.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PD⊥平面ABCD,AD=PD=4,点Q是PC的中点.(1)求证:P A∥平面BDQ;(2)在线段AB上是否存在点F,使直线PF与平面P AD所成的角为30°?若存在,求出AF的长,若不存在,请说明理由?【解答】(1)证明:连接AC,交BD于O,连接OQ,因为底面ABCD是矩形,所以AO=OC,又因为点Q是PC的中点,所以OQ∥P A,因为OQ⊂平面BDQ,P A⊄平面BDQ,所以P A∥平面BDQ;(2)解:在线段AB上取点F,连接PF,因为PD⊥平面ABCD,又因为AB⊂平面ABCD,所以PD⊥AB,因为底面ABCD是矩形,所以AB⊥AD,又因为AD∩PD=D,所以AB⊥平面P AD,于是P A为PF在平面P AD内投影,所以直线PF与平面P AD所成的角为∠APB,要使∠APB=30°,只要AF=P A•tan30°=4•=,于是①当AB<时,点F不存在,②当AB≥时,存在点F满足要求,此时AF=.19.(12分)△ABC的内角A,B,C的对边分别为a,b,c.已知cos(A+C)=2cos2.(Ⅰ)求角B的大小;(Ⅱ)若a+c=8,△ABC的面积为,求b.【解答】解:(Ⅰ)在△ABC中,∵cos(A+C)=2cos2,∴﹣cos B=1+cos B,即cos B=,∵0°<B<180°,∴B=120°;(Ⅱ)由(Ⅰ)知,B=120°,∵△ABC的面积为,∴,∴ac=15.∵a+c=8,由余弦定理得b2=a2+c2﹣2ac cos B=a2+c2+ac=(a+c)2﹣ac=82﹣15=49,∴b=7.20.(12分)若数列{a n}满足a n a n+2=a2n+1,a1=3,a2a3=243.(1)求{a n}的通项公式;(2)若b n=log3a n,求数列{a n b n}的前n项和S n.【解答】解:由于数列{a n}满足a n a n+2=a2n+1,故数列{a n}为等比数列;由于a1=3,设公比为q,则a2a3=243,整理得,解得q=3,故;(2)由(1)得:b n=log3a n=n,所以;故,①;3,②;①﹣②得:=,整理得.21.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠APB=90°,∠ABC=60°,P A=PB,AB=PC=4,点M是AB的中点.点N在线段BC上.(1)求证:平面P AB⊥平面ABCD;(2)若CN=3BN,求N到平面PCD的距离.【解答】解:(1)证明:在△P AB中,因为,∠APB=90°,P A=PB,AB=4,点M是AB的中点,所以MB=MP=MA=2,PM⊥AB,因为底面ABCD是菱形,∠ABC=60°,AB=4,所以CM=2,所以CM2+PM2=PC2,∴PM⊥MC,而AB∩CM=M,AB、CM⊂平面ABCD,所以PM⊥平面ABCD,因为PM⊂平面P AB,所以平面ABCD⊥平面P AB;(2)由(1)可得PM⊥面ABCD,连结MN,由(1)知PM⊥CD,CD⊥CM,CM∩PM=M,∴CD⊥平面PMC,PC⊂平面PMC,∴CD⊥PC,设N到平面PCD的距离为d,又V P﹣NCD=V N﹣PCD,即S△NCD•PM=S△PCD•d,•×3×4sin120°×2=××4×4×d,解得d=,所以N到平面PCD的距离为.22.(12分)数列{a n}满足a1=1,a n+1=2a n+3n.(1)令b n=,求证:{b n+1﹣b n}是等比数列;(2)令c n=,{c n}的前n项和为T n,求证:1≤T n<.【解答】证明:(1)∵,故,且,故,∴,则,故{b n+1﹣b n}是公比为的等比数列;(2)由(1)可知,∴b n=(b n﹣b n﹣1)+(b n﹣1﹣b n﹣2)+⋯+(b3﹣b2)+(b2﹣b1)+b1=,∴,∴,∵,故T n⩾T1=1;当n⩾3时,,故3n﹣1>2n,∴,故当n⩾3时,,故=,故;综上,1≤T n<.。
2019-2020学年河南省洛阳市高一下学期期末(理科)数学试卷 (解析版)

2019-2020学年河南省洛阳市高一第二学期期末数学试卷(理科)一、选择题(共12小题).1.直线3x﹣y+1=0的倾斜角是()A.30°B.60°C.120°D.135°2.某中学举行校园歌手大赛,经预赛后共10名同学进人决赛,现采用抽签方式确定出场顺序,若甲同学先抽,则他抽到的出场序号小于4的概率为()A.B.C.D.3.已知函数f(x)=lnx+,则f(x)的定义域为()A.(0,1)B.(1,2]C.(0,4]D.(0,2]4.已知直线a、b与平面α、β、γ,下列条件中能推出α∥β的是()A.a⊥α且a⊥βB.α⊥γ且β⊥γC.a⊂α,b⊂β,a∥b D.a⊂α,b⊂α,a∥β,b∥β5.在区间[﹣1,1]上随机取一个数x,的值介于0到之间的概率为()A.B.C.D.6.某高中一年级两个数学兴趣小组平行对抗赛,满分100分,每组20人参加,成绩统计如图,根据统计结果,比较甲、乙两小组的平均成绩及方差大小()A.甲<乙,S甲2>S乙2B.甲>乙,S甲2<S乙2C.甲<乙,S甲2<S乙2D.甲>乙,S甲2>S乙27.设a=sin33°,b=cos55°,c=tan35°,则()A.a<b<c B.a<c<b C.b<c<a D.b<a<c8.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12B.24C.36D.489.已知的△OMN三个顶点为O(0,0),M(6,0),N(8,4),过点(3,5)作其外接圆的弦,若最长弦与最短弦分别为AC,BD,则四边形ABCD的面积为()A.10B.20C.30D.4010.已知体积为4的三棱锥O﹣ABC的顶点A,B,C都在球O的表面上,且AB=6,BC=2,AC=4,则球O的表面积是()A.16πB.32πC.64πD.72π11.若向量的模均为1,且=0,则|3|的最大值为()A.5+2B.3C.5D.712.已知函数,当时,时,则ω的值最多有()A.4个B.3个C.2个D.1个二、填空题:本大题共4小题,每小题5分,共20分.13.已知,且,则tanα=.14.若直线x﹣3y+9=0被圆(x﹣2)2+(y﹣3)2=r2截得的弦长为r,则r=.15.已知||=1,||=,=0,点C在∠AOB内,且∠AOC=30°,设=m+n(m、n∈R),则等于.16.已知f(x)=e x﹣1﹣e1﹣x+x,则不等式f(x)+f(6﹣3x)≤2的解集是.三、解答题:本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(1)已知2lg(x﹣2y)=lgx+lgy,求的值.(2)设x1满足2x+lnx=3,x2满足ln(1﹣x)﹣2x=1,求x1+x2的值.18.半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.(1)根据频率分布直方图,估计这50名同学的数学平均成绩;(2)用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在[105,115)中的概率.19.已知△P1P2P3三个顶点的坐标分别为P1(cosα,sinα),P2(cosβ,sinβ),P3(cosγ,sinγ),且++=(O为坐标原点).(1)求∠P1OP2的大小;(2)试判断△P1P2P3的形状.20.已知矩形ABCD中,AD=2AB=2,E,F分別为AD,BC的中点,现将矩形ABCD 沿EF折起,使二面角D'﹣EF﹣B为60°.(1)求证:EF⊥AD';(2)求AC'与平面EFC'D'所成角的正弦值.21.已知函数f(x)=A sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示.(1)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的,再将所得函数图象向左平移个单位长度.得到函数y=g(x)的图象,求g(x)的单调递增区间;(2)当x∈[﹣,]时,求函数的值域.22.已知动点M到两定点A(1,1),B(2,2)的距离之比为.(1)求动点M的轨迹C的方程;(2)过曲线C上任意一点P作与直线l:2x+y﹣6=0夹角为30°的直线,交l于点Q,求|PQ|的最大值和最小值.参考答案一、选择题(共12小题).1.直线3x﹣y+1=0的倾斜角是()A.30°B.60°C.120°D.135°解:直线3x﹣y+1=0的斜率为k==,∴tanα=,∴倾斜角是60°.故选:B.2.某中学举行校园歌手大赛,经预赛后共10名同学进人决赛,现采用抽签方式确定出场顺序,若甲同学先抽,则他抽到的出场序号小于4的概率为()A.B.C.D.解:某中学举行校园歌手大赛,经预赛后共10名同学进人决赛,现采用抽签方式确定出场顺序,甲同学先抽,基本事件总数n=10,他抽到的出场序号小于4包含的基本事件个数m=3,则他抽到的出场序号小于4的概率为p=.故选:D.3.已知函数f(x)=lnx+,则f(x)的定义域为()A.(0,1)B.(1,2]C.(0,4]D.(0,2]解:由,得0<x≤4.∴函数f(x)的定义域为(0,4].故选:C.4.已知直线a、b与平面α、β、γ,下列条件中能推出α∥β的是()A.a⊥α且a⊥βB.α⊥γ且β⊥γC.a⊂α,b⊂β,a∥b D.a⊂α,b⊂α,a∥β,b∥β解:选项A,根据垂直于同一直线的两个平面平行,可知正确;选项B,α⊥γ,β⊥γ可能推出α、β相交,所以B不正确;选项C,a⊂α,b⊂β,a∥b,α与β可能相交,故不正确;选项D,a⊂α,b⊂α,a∥β,b∥β,如果a∥b推出α、β相交,所以D不正确;故选:A.5.在区间[﹣1,1]上随机取一个数x,的值介于0到之间的概率为()A.B.C.D.解:在区间[﹣1,1]上随机取一个数x,即x∈[﹣1,1]时,要使的值介于0到之间,需使或∴或,区间长度为,由几何概型知的值介于0到之间的概率为.故选:A.6.某高中一年级两个数学兴趣小组平行对抗赛,满分100分,每组20人参加,成绩统计如图,根据统计结果,比较甲、乙两小组的平均成绩及方差大小()A.甲<乙,S甲2>S乙2B.甲>乙,S甲2<S乙2C.甲<乙,S甲2<S乙2D.甲>乙,S甲2>S乙2解:由茎叶图可得甲小组中的20个数据分别为:45,49,51,58,61,63,71,73,76,76,77,77,77,80,82,83,86,86,90,93.=(45+49+51+58+61+63+71+73+76+76+77+77+77+80+82+83+86+86+90+93)=72.7.由茎叶图可得乙小组中的20个数据分别为:53,63,66,71,72,74,75,75,75,77,78,78,78,79,81,84,85,86,93,94.(53+63+66+71+72+74+75+75+75+77+78+78+78+79+81+84+85+86+93+94)=76.85.则甲<乙,再由茎叶图可知,甲小组的数据比较分散,乙小组的数据集中在茎7上,相对集中,故>.故选:A.7.设a=sin33°,b=cos55°,c=tan35°,则()A.a<b<c B.a<c<b C.b<c<a D.b<a<c解:因为正弦在(0°,90°)上单调递增;且sinα<tanα;又a=sin33°,b=cos55°=sin(90°﹣35°)=sin35°,c=tan35°,∴sin33°<sin35°<tan35°;即a<b<c;故选:A.8.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12B.24C.36D.48解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.9.已知的△OMN三个顶点为O(0,0),M(6,0),N(8,4),过点(3,5)作其外接圆的弦,若最长弦与最短弦分别为AC,BD,则四边形ABCD的面积为()A.10B.20C.30D.40解:设△OMN的外接圆的方程为(x﹣a)2+(y﹣b)2=r2,由O(0,0),M(6,0),N(8,4),得,解得.∴圆的标准方程为(x﹣3)2+(y﹣4)2=52,点(3,5)在圆内部,由题意得最长的弦|AC|=2×5=10,点(3,5)到圆心(3,4)的距离为1.根据勾股定理得最短的弦|BD|=2=4,且AC⊥BD,四边形ABCD的面积S=|AC|•|BD|=×10×4=20.故选:B.10.已知体积为4的三棱锥O﹣ABC的顶点A,B,C都在球O的表面上,且AB=6,BC=2,AC=4,则球O的表面积是()A.16πB.32πC.64πD.72π解:∵AB=6,BC=2,AC=4,∴AB2+BC2=AC2,∴AB⊥BC.过O作OD⊥平面ABC,则D为AC的中点.∴V O﹣ABC=S△ABC•OD=××6×2×OD=4.∴OD=2,∵OD===2,解得OA=4,即球O的半径为4,∴O的表面积是4π×42=64π.故选:C.11.若向量的模均为1,且=0,则|3|的最大值为()A.5+2B.3C.5D.7解:∵,∴,且的模均为1,∴设,∴,∴==,其中,∴sin(θ+φ)=﹣1时,取得最大值7.故选:D.12.已知函数,当时,时,则ω的值最多有()A.4个B.3个C.2个D.1个解:因为x∈[0,],f(x)=sin(ωx﹣)最大值为,又因为f(x)=sin(ωx﹣)的最大值小于等于1,所以≤1,即0<ω≤3,题中已知ω>0且为正实数,所以ω的可能值为1,2,3,当x∈[0,]时,ωx﹣∈[﹣,﹣],若﹣≥,即ω≥时,函数f(x)=sin(ωx﹣)最大值为1,则=1,即ω=3,满足题意,若﹣<,即0<ω<时,函数f(x)=sin(ωx﹣)在[0,]上单调递增,当x=时,函数f(x)有最大值,此时有=sin(﹣),满足此方程的正实数ω最多有一个.故ω的值有两个.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.已知,且,则tanα=﹣.解:∵,∴sinα=﹣,∵,∴cosα==,∴tanα==﹣.故答案为:﹣.14.若直线x﹣3y+9=0被圆(x﹣2)2+(y﹣3)2=r2截得的弦长为r,则r=2.解:因为直线被圆(x﹣2)2+(y﹣3)2=r2截得的弦长为,因为圆心(2,3)到直线的距离d==1,所以r2=()2+1,所以r=2.故答案为:2.15.已知||=1,||=,=0,点C在∠AOB内,且∠AOC=30°,设=m+n(m、n∈R),则等于3.解:∵||=1,||=,=0,⊥===|OC|×1×cos30°==1×∴在x轴方向上的分量为在y轴方向上的分量为∵=m+n=n+m∴,两式相比可得:=3.故答案为:316.已知f(x)=e x﹣1﹣e1﹣x+x,则不等式f(x)+f(6﹣3x)≤2的解集是[2,+∞).解:构造函数,那么g(x)是单调递增函数,且向左移动一个单位得到,h(x)的定义域为R,且,所以h(x)为奇函数,图象关于原点对称,所以g(x)图象关于(1,0)对称.不等式f(x)+f(6﹣3x)≤2 等价于f(x)﹣1+f(6﹣3x)﹣1≤0,等价于g(x)+g(6﹣3x)≤0⇒g(x)≤g[2﹣(6﹣3x)]=g(3x﹣4)结合g(x)单调递增可知,x≤3x﹣4⇒x≥2,所以不等式f(x)+f(6﹣3x)≤2 的解集是[2,+∞).故答案为[2,+∞).三、解答题:本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(1)已知2lg(x﹣2y)=lgx+lgy,求的值.(2)设x1满足2x+lnx=3,x2满足ln(1﹣x)﹣2x=1,求x1+x2的值.解:(1)由2lg(x﹣2y)=lgx+lgy得,lg(x﹣2y)2=lg(xy),∴(x﹣2y)2=xy,∴x2﹣5xy+4y2=0,∴(x﹣y)(x﹣4y)=0,∴或4;(2)根据题意,2x1+lnx1=3,ln(1﹣x2)﹣2x2=1,令1﹣x2=t,则2t+lnt=3,∵f(x)=2x+lnx在(0,+∞)上单调递增,∴t=x1,∴x1+x2=1.18.半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.(1)根据频率分布直方图,估计这50名同学的数学平均成绩;(2)用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在[105,115)中的概率.【解答】(本大题12分)解:(1)由频率分布表,估计这50名同学的数学平均成绩为:=123.6……………………………………………………………………(2)由频率分布直方图得分数低于115分的同学有(10×0.004+10×0.02)×50=12人,则用分层抽样抽取6人中,分数在[95,105)有1人,用a表示,分数在[105,115)中的有5人,用b1,b2,b3,b4,b5表示,则基本事件有(a,b1),(a,b2),(a,b3),(a,b4),(a,b5),(b1,b2),(b1,b3),(b1,b4),(b1,b5),(b2,b3),(b2,b4),(b2,b5),(b3,b4),(b3,b5),(b4,b5),共15个,满足条件的基本事件为(b1,b2),(b1,b3),(b1,b4),(b1,b5),(b2,b3),(b2,b4),(b2,b5),(b3,b4),(b3,b5),(b4,b5),共10个,所以这两名同学分数均在[105,115)中的概率为:.………………………………………………………………19.已知△P1P2P3三个顶点的坐标分别为P1(cosα,sinα),P2(cosβ,sinβ),P3(cosγ,sinγ),且++=(O为坐标原点).(1)求∠P1OP2的大小;(2)试判断△P1P2P3的形状.解:(1)由题意可得||=||=||=1,∵+=﹣,∴(+)2=2,∴2+2•+2=2,∴2•=﹣1,即•=﹣,∴cos∠P1OP2==﹣,∵∠P1OP2∈(0,π),∴∠P1OP2=.(2)∵=﹣,∴||===,同理可得,||=||=,∴△P1P2P3的形状为等边三角形.20.已知矩形ABCD中,AD=2AB=2,E,F分別为AD,BC的中点,现将矩形ABCD 沿EF折起,使二面角D'﹣EF﹣B为60°.(1)求证:EF⊥AD';(2)求AC'与平面EFC'D'所成角的正弦值.解:(1)证明:∵ABCD是矩形,且E,F分别是AD,BC的中点,∴EF⊥AE,EF⊥D′E,又∵AE∩D′E=E,∴EF⊥平面AD′E,∵AD′⊂平面AD′E,∴EF⊥AD'.(2)解:取D′E的中点H,连结AH,HC′,由EF⊥平面AD′E可知:AE⊥EF,D′E⊥EF,∴∠D′EA是二面角D′﹣EF﹣B的平面角,∴∠D′EA=60°,∵AE=D′E=1,∴△AD′E是等边三角形,∴AH⊥D’E,由(1)知平面EFC′D⊥平面AD′E,且平面EFC′D′∩平面AD′E=ED′,∴AH⊥平面EFC′D′,∴∠AC′H为AC′与平面EFC′D′所成角,在Rt△AC′H中,AH=,AC′=,∴sin∠AC′H===,∴AC'与平面EFC'D'所成角的正弦值为.21.已知函数f(x)=A sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示.(1)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的,再将所得函数图象向左平移个单位长度.得到函数y=g(x)的图象,求g(x)的单调递增区间;(2)当x∈[﹣,]时,求函数的值域.解:(1)由图象知T=﹣=,得周期T=2π,即=2π,得ω=1,∵0<φ<,∴由五点对应法得×1+φ=,得φ=,即f(x)=A sin(x+),∵f(0)=A sin=A=2,得A=4,则f(x)=4sin(x+),将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的,得到y=4sin (2x+),再将所得函数图象向左平移个单位长度.得到函数y=g(x)的图象,即g(x)=4sin[2(x+)+]=4sin(2x+),由2kπ﹣≤2x+≤2kπ+,k∈Z,得kπ﹣≤x≤kπ﹣,k∈Z,即g(x)的单调递增区间是[kπ﹣,kπ﹣],k∈Z.(2)=4sin(2x+)﹣4sin(2x+)=4(sin2x cos+cos2x sin)﹣4cos2x=2sin2x﹣2cos2x=4sin(2x﹣),∵x∈[﹣,]时,∴2x﹣∈[﹣,﹣],∴sin(2x﹣)∈[﹣1,],4sin(2x﹣)∈[﹣4,2],∴y∈[﹣4,2],即函数的值域为[﹣4,2].22.已知动点M到两定点A(1,1),B(2,2)的距离之比为.(1)求动点M的轨迹C的方程;(2)过曲线C上任意一点P作与直线l:2x+y﹣6=0夹角为30°的直线,交l于点Q,求|PQ|的最大值和最小值.解:(1)设M(x,y),由题意知,化简得2(x﹣1)2+2(y﹣1)2=(x﹣2)2+(y﹣2)2,∴x2+y2=4,即动点M的轨迹C的方程为x2+y2=4.(2)记圆C上任意一点P到直线l的距离为d,因为直线PQ与直线l夹角为30°,所以|PQ|=2d,因为圆心C(0,0)到直线l的距离为,且圆C的半径为2,,即直线l与圆相离,∴,∴.。
高一考试理科试卷及答案

高一考试理科试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是化学元素的符号?A. HB. OC. AuD. Xy2. 根据牛顿第二定律,一个物体受到的力越大,其加速度:A. 越小B. 越不变C. 越大D. 无法确定3. 在生物分类中,最基本的单位是:A. 界B. 门C. 纲D. 种4. 根据欧姆定律,电阻R与电流I和电压U的关系是:A. R = I/UB. R = U/IC. R = I + UD. R = I - U5. 光的三原色是:A. 红、黄、蓝B. 红、绿、蓝C. 红、橙、黄D. 绿、蓝、紫6. 根据相对论,当物体的速度接近光速时,其质量将:A. 不变B. 减小C. 增大D. 无法确定7. 物质的三种状态是:A. 固态、液态、气态B. 固态、液态、等离子态C. 固态、液态、超临界态D. 固态、液态、超流态8. 根据能量守恒定律,能量:A. 可以创造B. 可以消失C. 既不能创造也不能消失D. 可以创造也可以消失9. 原子核由以下哪些粒子组成?A. 质子和中子B. 质子和电子C. 中子和电子D. 质子、中子和电子10. 根据热力学第一定律,能量的总量在封闭系统中:A. 增加B. 减少C. 保持不变D. 无法确定二、填空题(每空2分,共20分)11. 化学方程式中,反应物和生成物之间的符号是“______”。
12. 根据牛顿第三定律,力的作用是______的。
13. 细胞的基本结构包括细胞膜、细胞质和______。
14. 电流的单位是______。
15. 光的传播不需要______。
16. 物质的比热容是指单位质量的物质温度升高1摄氏度所吸收的热量,单位是______。
17. 根据量子力学,原子中的电子存在于特定的______中。
18. 根据热力学第二定律,自然界中的能量转化具有______性。
19. 原子核的放射性衰变过程包括α衰变、β衰变和______。
20. 根据电磁学,电流通过导线时会产生______。
衡水中学2021-2022学年高一下学期期末考试理数试题(考试版)

第1页 共4页 ◎ 第2页 共4页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2021-2022学年度河北省衡水中学高一下学期期末理科试题考试范围:必修2、必修5;考试时间:120分钟;【名师解读】本卷难度中等,梯度设置合理.试题常规,无偏难、怪题目出现,符合高考大纲命题要求,充分体现通性通法在试卷中的运用,其中直线与圆的考查有第1,2,3,6,13,15,17,18,立体几何注重考查基础,如第5,8,12等,同时解答题为常规证明题,突出考查基础证明能力及计算能力,数列考查题目难度中等,本卷适合高一必修2,必修5复习使用. 一、选择题1.若过不重合的()222,3A m m +-, ()23,2B m m m --两点的直线l 的倾斜角为45︒,则m 的取值为( )A . 1-B . 2-C . 1-或2-D . 1或2-2.在空间直角坐标系中,点()1,2,3A -与点()1,2,3B ---关于( )对称 A . 原点 B . x 轴 C . y 轴 D . z 轴 3.方程()2240x x y +-=与()222240x x y ++-=表示的曲线是( )A . 都表示一条直线和一个圆B . 都表示两个点C . 前者是两个点,后者是一直线和一个圆D .前者是一条直线和一个圆,后者是两个点4.在公差大于0的等差数列{}n a 中, 71321a a -=,且1a , 31a -, 65a +成等比数列,则数列(){}11n n a --的前21项和为( )A . 21B . 21-C . 441D . 441-5.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体毛坯的三视图,第一次切削,将该毛坯得到一个表面积最大的长方体;第二次切削沿长方体的对角面刨开,得到两个三棱柱;第三次切削将两个三棱柱分别沿棱和表面的对角线刨开得到两个鳖臑和两个阳马,则阳马与鳖臑的体积之比为( )A . 1:2B . 1:1C . 2:1D . 3:1 6.过直线1y x =+上的点P 作圆C : ()()22162x y -+-=的两条切线1l , 2l ,若直线1l ,2l 关于直线1y x =+对称,则PC =( )A . 1B . 22C . 12+D . 27.已知函数()f x x α=的图象过点()4,2,令()()11n a f n f n =++(*n N ∈),记数列{}n a 的前n 项和为n S ,则2017S =( )A .20181-B . 20181+C . 20171+D . 20171-8.如图,直角梯形ABCD 中, AD DC ⊥, //AD BC ,222BC CD AD ===,若将直角梯形绕BC 边旋转一周,则所得几何体的表面积为( ) A . 32ππ+ B . 322ππ+ C . 622ππ+ D . 62ππ+ 9.若曲线1C : 2220x y x +-=与曲线2C : 20mx xy mx -+=有三个不同的公共点,则实数m 的取值范围是( )A . 33,33⎛⎫- ⎪ ⎪⎝⎭B .33,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ C . ()(),00,-∞⋃+∞ D . 33,00,33⎛⎫⎛⎫-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭10.三棱锥P ABC -的三条侧棱互相垂直,且1PA PB PC ===,则其外接球上的点到平面ABC 的距离的最大值为( )A . 33B . 233C . 36D . 3211.已知正项数列{}n a 的前n 项和为n S ,且1161n n n n a S nS S +++=-+, 1a m =,现有如下说法:①25a =;②当n 为奇数时, 33n a n m =+-;③224232n a a a n n ++⋯+=+.则上述说法正确的个数为( )A . 0个B . 1个C . 2个D . 3个12.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥底面ABC ,12AA =, 1AB BC ==, 90ABC ∠=︒,外接球的球心为O ,点E 是侧棱1BB 上的一个动点.有下列判断:①直线AC 与直线1C E 是异面直线;②1A E 一定不垂直于1AC ;③三棱锥1E AAO -的体积为定值;④1AE EC +的最小值为22. 其中正确的个数是( )A . 1B . 2C . 3D . 4第3页 共4页 ◎ 第4页 共4页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………二、填空题 13.已知直线2x +y −2=0与直线4x +my +6=0平行,则它们之间的距离为______. 14.如图所示,在正方体1AC 中, 2AB =, 1111AC B D E ⋂=,直线AC 与直线DE 所成的角为α,直线DE 与平面11BCC B 所成的角为β,则()cos αβ-=__________.15.已知直线l : 330mx y m ++-=与圆2212x y +=交于A , B 两点,过A ,B 分别作l 的垂线与y 轴交于C ,D 两点,若23AB =,则CD =__________. 16.已知数列{}n a 满足11a =, 12nn n a a a +=+(*n N ∈),若()1121n n b n a λ+⎛⎫=-⋅+⎪⎝⎭(*n N ∈),132b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围是____. 三、解答题17.如图,矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方程为360x y --=,点()1,1T -在AD 边所在的直线上.(Ⅰ)求AD 边所在直线的方程; (Ⅰ)求矩形ABCD 外接圆的方程.18.若圆1C :22x y m +=与圆2C : 2268160x y x y +--+=外切. (Ⅰ)求实数m 的值;(Ⅰ)若圆1C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B , P 为第三象限内一点,且点P 在圆1C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. 19.如图,在四棱锥P ABCD -中, //BA 平面PCD ,平面PAD ⊥平面ABCDCD AD ⊥, APD ∆为等腰直角三角形, 222PA PD CD ===. (Ⅰ)证明:平面PAB ⊥平面PCD ; (Ⅰ)若三棱锥B PAD -的体积为13,求平面PAD 与平面PBC 所成的锐二面角的余弦值.20.已知数列{}n a 的前n 项和n S ,且2n n S na +=(*n N ∈).(Ⅰ)若数列{}n a t +是等比数列,求t 的值; (Ⅰ)求数列{}n a 的通项公式; (Ⅰ)记1111n n n n b a a a ++=+,求数列{}n b 的前n 项和n T . 21.如图,由三棱柱111ABC A B C -和四棱锥11D BB C C -构成的几何体中, 1CC ⊥平面ABC , 90BAC ∠=︒,112AB BC BB ===, 15C D CD ==,平面1CC D ⊥平面11ACC A .(Ⅰ)求证: 1AC DC ⊥;(Ⅰ)若M 为棱1DC 的中点,求证://AM 平面1DBB ;(Ⅰ)在线段BC 上是否存在点P ,使直线DP 与平面1BB D 所成的角为3π?若存在,求BPBC的值,若不存在,说明理由. 22.已知等比数列{}n a 的公比1q >,且1320a a +=, 28a =.(Ⅰ)求数列{}n a 的通项公式; (Ⅰ)设n nnb a =, n S 是数列{}n b 的前n 项和,对任意正整数n ,不等式()112nn n n S a ++>-⋅恒成立,求实数a 的取值范围.。
黑龙江省哈尔滨师大附中2020-2021学年高一下学期期末考试 化学(理) 试题(含答案)

哈师大附中2020级高一下学期期末考试化学试卷(理科)可能用到的相对原子质量:H 1 O 16 Na 23 Si 28 S 32 Cu 64一、单选题(共25小题,每小题2分,共50分)1.化学与科技、社会、环境密切相关。
下列有关说法不正确的是A.以高纯硅制成的光导纤维内窥镜可直接窥视有关器官部位的变化B.汽车排气管上装有“催化转化器”,使有毒的CO和NO反应生成N2和CO2C.向煤中加入适量石灰石,使煤燃烧产生的SO2最终转化为CaSO4,可减少对大气的污染D.在食品袋中放入盛硅胶的透气小袋,可防止食物受潮变质2.下列反应为吸热反应的是A.反应物总能量高于生成物总能量的反应B.需要加热的反应C.八水合氢氧化钡与氯化铵晶体的反应D.铝热反应3.下列化合物中能由单质直接化合制得的是A.FeCl2B.Cu2S C.SO3D.NO24.下列事实中,不能用勒夏特列原理解释的是A.高压有利于氨的合成B.实验室中常用排饱和食盐水的方法收集氯气C.充入NO2气体的烧瓶置于热水中颜色加深D.向双氧水中加入二氧化锰有利于氧气的生成5.下列叙述不正确的是A.反应CaSO4(g) = CaO (g)+ SO3(g) △H>0 在高温下能自发进行B.平衡正向移动,反应物的转化率一定增大C.升高温度,活化分子百分数增大,单位时间内有效碰撞次数增多,化学反应速率加快D.当碰撞的分子具有足够的能量和适当的取向时,才能发生化学反应6.下列有关电化学的说法正确的是A. 原电池的金属负极质量一定减小B. 待充电电池的负极应与电源正极相连C. 电解池的电解质溶液质量一定减小D. 原电池工作时在溶液中电流由负极到正极7.下列有关热化学方程式的叙述正确的是A.已知CH4(g)+2O2(g) = CO2(g)+2H2O(g) △H,则△H代表甲烷的燃烧热B.已知4P(红磷,s)= P4(白磷,s) △H>0,则白磷比红磷稳定C.含20.0g NaOH的稀溶液与稀硫酸完全中和,放出28.7kJ的热量,则表示该反应中和热的热化学方程式为:2NaOH(aq) + H2SO4(aq)= Na2SO4(aq) + 2H2O(l) △H = -57.4kJ/molD.S(s)+O2(g)=SO2(g) △H1S(g)+O2(g)=SO2(g) △H2 则△H1>△H28.下列装置用于实验室制氨气或验证氨气的化学性质,其中能达到实验目的的是A.用装置甲制取氨气B.用装置乙除去氨气中的水蒸气C.用装置丙验证氨气具有还原性D.用装置丁吸收尾气9.检验某溶液试样中是否含有下列离子,能达到目的的是A.SO42- :依次加入BaCl2溶液和稀盐酸B.Cl-:加入硝酸酸化的硝酸银C.Fe2+:依次加入氯水和KSCN溶液D.NH4+:加入NaOH溶液后在试管口用湿润的蓝色石蕊试纸检验10.一定温度下,在容积可变的密闭容器中进行反应:N2(g)+3H2(g)2NH3(g)。
2021-2022学年四川省广安市高一下学期期末考试数学试题(理科)(解析版)

四川省广安市2021-2022学年高一下学期期末考试数学试题(理科)一、选择题:本大题共12小题,每题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的。
1.已知0b a <<,则下列不等式正确的是( ) A .22b a <B .11b a< C .b a -<- D .a b a b -<+〖解 析〗当2a =,3b =-时,满足0b a <<,但22b a >,b a ->-,a b a b ->+,A ∴,C ,D 错误,0b a <<,∴10b<,10a >,∴11b a <,B ∴正确.〖答 案〗B2.cos40sin70sin 40sin160(︒︒-︒︒= )A .12-B .12C .D 〖解 析〗cos40sin70sin40sin160cos40sin70sin40cos70︒︒-︒︒=︒︒-︒︒ 1sin(4070)sin(30)2=-︒-︒=--︒=. 〖答 案〗B3.设m ,n 是不同的直线,α是平面,则下列说法正确的是( ) A .若//m α,//m n ,则//n α B .若//m α,//n α,则//m n C .若m α⊥,n m ⊥,则//n αD .若m α⊥,n α⊥,则//m n〖解 析〗如图所示,在正方体1111ABCD A B C D -中:对于A 选项,取m 为直线11A D ,α为平面ABCD ,n 为直线AD , 满足//m α,//m n ,但是不满足//n α,选项A 错误;对于B 选项,取m 为直线11A D ,α为平面ABCD ,n 为直线11A B , 满足//m α,//n α,但是不满足//m n ,选项B 错误;对于C 选项,取m 为直线1AA ,α为平面ABCD ,n 为直线AD , 满足m α⊥,n m ⊥,但是不满足//n α,选项C 错误;对于D 选项,由面面垂直性质定理的推论可知选项D 的结论成立. 〖答 案〗D4.2022北京冬奥会开幕式将我国二十四节气融入倒计时,尽显中国人之浪漫,倒计时依次为:大寒、小寒、冬至、大雪、小雪、立冬、霜降、寒露、秋分、白露、处暑、立秋、大暑、小暑、夏至、芒种、小满、立夏、谷雨、清明、春分、惊蛰、雨水、立春,已知从冬至到夏至的日影长等量减少,若冬至、小雪、霜降三个节气的日影长之和为34.5寸,冬至到秋分等七个节气的日影长之和为73.5寸,问立秋的日影长为( ) A .1.5寸B .2.5寸C .3.5寸D .4.5寸〖解 析〗因为从冬至到夏至的日影长等量减少,所以日影长可构成等差数列{}n a , 由题意可知13534.5a a a ++=,则3334.5a =,故311.5a =, 又71747()773.52S a a a =+==,解得410.5a =,所以数列的公差为431d a a =-=-,14310.5313.5a a d =-=+=, 所以立秋的日影长为101913.59 4.5a a d =+=-=. 〖答 案〗D5.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为( )A .相交B .平行C .异面并且垂直D .异面但不垂直〖解 析〗将展开图还原成正方体,由下图可知,直线AB 与CD 的位置关系是:异面.连接BE ,则//BE DC ,EBA ∠或其补角即为直线AB 与CD 的夹角,60EBA ∠=︒,所以直线AB 与CD 不垂直. 〖答 案〗D6.若(4πα∈,)π,cos2sin()04παα--=,则sin 2α的值为( )A .12B C .D .12-〖解 析〗(4πα∈,)π,cos2sin()04παα--=,即22cos sin sin()4πααααα-=-=,又(4πα∈,)π,则cos sin 0αα-≠,即cos sin αα+=故112sin cos 2αα+=;即1sin 22α=-.〖答 案〗D7.如图,在正方体1111ABCD A B C D -中,E ,F 分别为BC ,1CC 的中点,过点A ,E ,F 作一截面,该截面将正方体分成上下两部分,则下部分几何体的正视图为( )A .B .C .D .〖解 析〗由题意可知,几何体的图形如图,几何体的正视图为平面1DCFD .〖答 案〗A8.已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,且cos cos a C b A b +=,则ABC ∆是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形〖解 析〗由cos cos a C b A b +=及正弦定理得,sin cos sin cos sin sin()sin cos sin cos A C B A B A C A C C A +==+=+,所以sin cos sin cos B A C A =,所以sin sin B C =或cos 0A =, 所以B C =或90A =︒,故ABC ∆是等腰三角形或直角三角形. 〖答 案〗D9.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67︒,30︒,此时气球的高是92m ,则河流的宽度BC 约等于( )m .(用四舍五入法将结果精确到个位.参考数据:sin670.92︒≈,cos670.39︒≈,sin370.60︒≈,cos370.80︒≈ 1.73)A .120mB .10mC .60mD .50m〖解 析〗如图所示,AD CB ⊥,垂足为D ,在Rt ABD ∆中,67ABD ∠=︒,92AD =,所以92sin sin67AD AB ABD ==∠︒, 在ABC ∆中,673037BAC ∠=︒-︒=︒,30ACB ∠=︒, 根据正弦定理sin sin BC ABBAC ACB=∠∠,得9292sin 370.60sin sin 670.92120()1sin sin 302AB BAC BC m ACB ⨯︒⨯⋅∠︒====∠︒,所以河流的宽度BC 约等于120m . 〖答 案〗A10.设等差数列{}n a 的前n 项和为n S ,10a <,公差为d ,9100a a +<,100a >.则下列结论不正确的是( ) A .0d >B .当9n =时,n S 取得最小值C .45180a a a ++<D .使得0n S <成立的最大自然是n 是17〖解 析〗对于A ,因为等差数列{}n a 中,9100a a +<,100a >, 所以90a <,100a >,所以公差1090d a a =->,所以A 正确;对于B ,由于90a <,100a >,0d >,10a <,所以前9项均为负数,所以当9n =时,n S 取得最小值,所以B 正确;对于C ,45181111934173(8)30a a a a d a d a d a d a ++=+++++=+=<,所以C 正确; 对于D ,因为90a <,100a >, 所以1171189101791817()18()18()170,0222a a a a a a S a S +++==<==<,11910191019()192190,022a a a S a d +⨯===>>,所以使得0n S <成立的最大自然是n 是18,所以D 错误. 〖答 案〗D11.若正三棱柱111ABC A B C -既有外接球,又有内切球,记该三棱柱的内切球和外接球的半径分别为1R 、2R ,则12(R R = ) AB .5CD〖解 析〗由于三棱柱的外接球和内切球的球心相同,所以设内切球的半径为r ,如图所示:设内切球的半径为r ,即BD r =,故12AD R =,所以外接球的半径21R =,所以12R R . 〖答 案〗A12.设n S 为等差数列{}n a 的前n 项和,且23a =,525S =,若2cos 3n n n b a π=,则数列{}n b 的前30项和30(T = ) A .60B .30C .60-D .30-〖解 析〗设数列{}n a 的公差为d ,因为23a =,525S =,所以113545252a d a d +=⎧⎪⎨⨯+=⎪⎩,解得11a =,2d =, 所以1(1)221n a n n =+-⨯=-,所以22cos (21)cos33n n n n b a n ππ==-, 对于2cos 3n π,它是这样的一些数:2cos 3π,4cos 3π,6cos 3π,8cos 3π,10cos 3π,12cos 3π,⋯⋯,即12-,12-,1,12-,12-,1,⋯⋯,以3为周期循环,所以3011111()3()5155()57()5912222T =⨯-+⨯-+⨯+⋯+⨯-+⨯-+⨯1()(13795557)511592=-⨯++++⋯+++++⋯+1()(41628112)(51159)2=-⨯+++⋯++++⋯+1(4112)10(559)10()222+⨯+⨯=-⨯+29032030=-+=.〖答 案〗B二、填空题:本大题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件2402030x y x y -+⎧⎪-⎨⎪+⎩,则z x y =+的最大值为 .〖解 析〗由约束条件作出可行域如图,联立2240x x y =⎧⎨-+=⎩,解得(2,8)A ,由z x y =+,得y x z =-+,由图可知,当直线y x z =-+过A 时, 直线在y 轴上的截距最大,z 有最大值为10. 〖答 案〗1014.在等比数列{}n a 中,34564a a a =,58a =,则2a = . 〖解 析〗设等比数列{}n a 的公比为q ,由3345464a a a a ==,得44a =, 又58a =,得54824a q a ===,所以422414a a q ===. 〖答 案〗115.已知正实数m ,n 满足21m n +=,则42n m n++的最小值为 . 〖解 析〗正实数m ,n 满足21m n +=, 则4242428281()(2)199217n n m n m n m n m n m n m n m ++=++=+++=+++, 当且仅当122m n ==时,取等号. 则42n m n++的最小值为 17. 〖答 案〗1716.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若8ac =,sin sin20a B c A +=,则ABC ∆面积的最大值为 .〖解 析〗由正弦定理及sin sin20a B c A +=,知sin sin sin sin20A B C A +=,又sin22sin cos A A A =,且sin 0A >,所以sin 2sin cos 0B C A +=,即sin()2sin cos 0A C C A ++=,所以sin cos cos sin 2sin cos 0A C A C C A ++=,即sin cos 3sin cos 0A C C A +=, 由正弦定理,可得cos 3cos 0a C c A +=,再由余弦定理,可得2222223022a b c b c a a c ab bc+-+-⋅+⋅=,化简得,2222b a c =-,由余弦定理知,2222222221()3232cos 2244a c a c a c b a c ac B ac ac acac +--+-+==== 当且仅当a =时,等号成立,此时3cos 2B , 所以1sin 2B B, 所以ABC ∆面积111sin 82222S ac B =⨯⨯=,即ABC ∆面积的最大值为2. 〖答 案〗2三、解答题:本大题共6小题,共70分,解答应写出文字说明或演算过程. 17.(10分)已知不等式2(1)460a x x +--<的解集是{|13}x x -<<. (1)求常数a 的值;(2)若关于x 的不等式240ax mx ++的解集为R ,求m 的取值范围. 解:(1)不等式2(1)460a x x +--<的解集是{|13}x x -<<,1∴-和3是方程2(1)460a x x +--=的解,∴421631a a ⎧=⎪⎪+⎨⎪-=-⎪+⎩,解得,1a =; (2)由1a =不等式240ax mx ++化为240x mx ++,∴不等式240x mx ++的解集为R , 则△2160m =-,44m ∴-, m ∴的取值范围是[4-,4].18.(12分)已知α,(0,)2πβ∈,3sin()45πα-=,1tan 2β=.(1)求sin α的值;(2)求tan()αβ+的值. 解:(1)(0,)2πα∈,∴(,)444πππα-∈-,∴4cos()45πα-==,∴34sin sin[()]sin()cos cos()sin 44444455ππππππαααα=-+=-+-=+=. (2)由(1)知,sin α=(0,)2πα∈,∴cos 10α,tan 7α∴=,1tan 2β=,∴17tan tan 2tan()311tan tan 172αβαβαβ+++===---⨯. 19.(12分)已知数列{}n a 满足13a =,184(2)n n a a n n --=-. (1)求数列{}n a 的通项公式; (2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n T .解:(1)当2n 时,112211()()()n n n n n a a a a a a a a ---=-+-+⋅⋅⋅+-+ 2[(84)12](1)(84)(812)1233412n n n n n -+-=-+-+⋯++=+=-,当1n =时,13a =,符合241n a n =-,所以2*41()n a n n N =-∈. (2)211111()4122121n a n n n ==---+, 所以111111111()(1)21335212122121n nT n n n n =-+-+⋅⋅⋅+-=-=-+++. 20.(12分)如图,四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,1PA AB ==,AD =,点F 是PB 的中点,点E 在边BC 上移动.(1)当点E 为BC 的中点时,求异面直线PD 和EF 所成的角的正切值; (2)求证:无论点E 在BC 边的何处,都有PE AF ⊥.(1)解:因为E 为BC 的中点,F 是PB 的中点,所以//EF PC ,DPC ∴∠为异面直线PD 和EF 所成的角或其补角由题意可知2,1,PD DC PC ===,故222cos2PD PC DC DPC PD PC +-∠===⨯∴sin DPC ∠=,∴1tan 2DPC ∠= 所以异面直线PD 和EF 所成的角的正切值为12; (2)证明:因为PA ⊥底面ABCD ,所以PA DA ⊥, 又DA AB ⊥,PAAB A =,所以DA ⊥平面PAB ,又//DA BC ,所以BC ⊥平面PAB , 而AF ⊂平面PAB ,所以FA BC ⊥, 又在等腰三角形PAB 中,中线FA PB ⊥,PB BC B =,所以AF ⊥平面PBC ,而PE ⊂平面PBC , 所以无论点E 在BC 边的何处,都有PE AF ⊥21.(12分)ABC ∆内角A ,B ,C 所对的边分别为a ,b ,c ,已知(cos cos )b c a B C +=+. (1)求A ∠;(2)若a ,b ,c 成等差数列,求sin sin B C +.解:(1)由正弦定理及(cos cos )b c a B C +=+,得sin sin sin (cos cos )B C A B C +=+, 所以sin()sin()sin cos sin cos A C A B A B A C +++=+,即sin cos cos sin sin cos cos sin sin cos sin cos A C A C A B A B A B A C +++=+, 所以cos sin cos sin 0A C A B +=,即cos (sin sin )0A C B +=, 因为sin 0B >,sin 0C >,所以cos 0A =,即2A π=.(2)因为2A π=,所以sin b B a =,sin cC a=,因为a ,b ,c 成等差数列,所以2a c b +=,即21c b a a +=①, 在Rt ABC ∆中,有222b c a +=,即22()()1b c a a+=②, 联立①②得,45b a =,35c a =,所以7sin sin 5B C +=. 22.(12分)已知数列{}n a 中,11a =,1(1)(3)4n n a a +-⋅+=-.(1)证明数列1{}1n a +为等差数列,并求数列{}n a 的通项公式; (2)若212(1)n n n b n a -=⋅⋅+,求数列{}n b 的前n 项和n T ;(3)若存在*n N ∈,使得2123(3)(3)(3)(3)n a a a a kn +⋅+⋅+⋯⋯+成立,求实数k 的取值范围.(1)证明:由1(1)(3)4n n a a +-⋅+=-.得11(1)(1)2(1)(1)0n n n n a a a a +++⋅+-+++=. 1221011n n a a +∴-+=++,∴1111112n n a a +-=++, ∴数列1{}1n a +是以11112=+为首项,12为公差的等差数列,∴111(1)1222n n n a =+-⋅=+, 21n a n∴=-; (2)解:2112(1)2n n n n b n a n --=⋅⋅+=⋅,01211222322n n T n -∴=⋅+⋅+⋅++⋅, 12321222322n n T n ∴=⋅+⋅+⋅++⋅,01211(12)121212122221212n n nn n n n T n n n --∴-=⋅+⋅+⋅++⋅-⋅=-⋅=--⋅-, (1)21n n T n ∴=-⋅+; (3)解:21322n n a n n++=+=⋅, 1232341(3)(3)(3)(3)22222(1)123n n n a a a a n n+∴+⋅+⋅+⋯⋯+=⋅⨯⋅⨯⋅⨯⋯⋯⨯⋅=+, 存在*n N ∈,使得2123(3)(3)(3)(3)n a a a a kn +⋅+⋅+⋯⋯+成立,∴存在*n N ∈,使得22(1)n n kn +成立,212n n k n +∴⨯, 又当4n 时,22n n 恒成立,当2n =时,2123n n n +⨯=,当1n =时,2124n n n +⨯=,当3n =时,213229n n n +⨯=,当4n =时,2125n n n +⨯=, 当3k 时,存在*n N ∈,使得2123(3)(3)(3)(3)n a a a a kn +⋅+⋅+⋯⋯+成立, ∴实数k 的取值范围为[3,)+∞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碱金属钫(Fr)具有放射性,它是碱金属元素中最重的元素,下列预言错误的是A.在碱金属中它具有最大的原子半径
B.它的氢氧化物化学式为FrOH,是一种极强的碱
C.钫在空气中燃烧时,只生成化学式为Fr2O的氧化物
D.它能跟水反应生成相应的碱和氢气,由于反应剧烈而发生爆炸
2012·大纲全国卷]若函数f(x)=sin(φ∈[0,2π]) 是偶函数,则φ=( ) A.B.C .D.
函数f ( x ) =" 8sin(2x" + )cos(2x + )的最小正周期是( )
已知函数y=1-x+sin x ,则
A.函数为R上增函数
B.函数为R上减函数
C.在(0,π]上单调递增,在[π,2π) 上单调递减
D.在(0,π]上单调递减,在[π,2π) 上单调递增
函数y=sin2xcos2x是( )
A.周期为的奇函数B.周期为的偶函数
C.周期为的奇函数D.周期为的偶函数。