(word完整版)高中数学解三角形练习题.doc

合集下载

(word完整版)高中数学必修5解三角形测试题及,文档

(word完整版)高中数学必修5解三角形测试题及,文档

高中数学必修 5 解三角形测试题及答案一、选择题:〔每题 5 分,共 60 分〕1.在 VABC 中, AB 3, A 45 , C 75 ,那么 BC=A .33B .2 C .2D .332.以下关于正弦定理的表达或变形中错误 的是..A .在 VABC 中 ,a:b:c=sinA:sinB:sinCB . VABC 中 ,a=bsin2A=sin2B a =b+cC . VABC 中,sinAsinB+sinCD . VABC 中 , 正弦值较大的角所对的边也较大sin Acos B B 的值为 3. VABC 中 , 假设 a,那么bA .30B . 45C . 60D . 90ab c,那么 VABC 是4. 在VABC 中,假设 =cosCcosA cosBA .直角三角形B .等边三角形C .钝角三角形5.以下命题正确的选项是A .当 a=4,b=5,A= 30 时,三角形有一解。

B .当 a=5,b=4,A= 60 时,三角形有两解。

( A 〕( B 〕( B 〕〔 B 〕D .等腰直角三角形( D 〕C .当 a= 3 ,b= 2 ,B= 120 时,三角形有一解。

D .当 a=3 6 ,A= 60 时,三角形有一解。

2 ,b=26. ABC 中 ,a=1,b=3 , ∠A=30 °,那么∠ B 等于〔 B 〕A . 60°B . 60°或 120°C . 30°或 150°D . 120°7 . 符 合 下 列 条 件 的 三 角 形 有 且 只 有 一 个 的 是〔D〕A . a=1,b=2 ,c=3B . a=1,b= 2 ,∠ A=30 °C . a=1,b=2, ∠ A=100 °D . b=c=1, ∠ B=45 °8 . 假设 (a+b+c)(b+c-a)=3abc, 且sinA=2sinBcosC, 那 么 ABC是 〔B〕A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形9.在ABC 中,角 A 、 B 、C 的对边分别为 a 、b 、c , A=,a= 3 ,b=1,3c=那么(B)(A)1(B)2(C)3 -1(D)3uur10 . 〔 2021 重庆理〕设ABC 的 三 个 内 角 A, B, C , 向 量 m( 3 sin A,sin B) ,ruur r1 cos( AB) ,那么 C =〔n (cos B,3 cos A) ,假设 m gn C 〕A .B .2 5C .D .66 3 311.等腰 △ ABC 的腰为底的 2 倍,那么顶角 A 的正切值是〔 D 〕A. 3B. 3C. 15D.1528712.如图: D,C,B 三点在地面同素来线上 ,DC=a, 从 C,D 两点测得A 点仰角分别是β ,α (α <β ),那么 A 点离地面的高度 AB 等于〔 A 〕Aa sin sina sin sin A .) B .)sin(cos(a sin cosacos sin C .)D .)sin(cos(αβBDC题号 123 4567891011 12答案二、填空题:〔每题 5 分,共 20 分〕13.a2 ,那么a b c _______2_______sin Asin Bsin A sin C14.在ABC 1 (a 2+b 2- c 2),那么角∠ C=______.中,假设 S ABC =4415.〔广东 2021 理〕点 A, B, C 是圆 O 上的点, 且AB 4, ACB450 ,那么圆 O 的面积等于8.rrr rr r 16. a2, b4, a 与b 的夹角为3,以 a,b 为邻边作平行四边形,那么此平行四边形的两条对角线中较短的一条的长度为____ 2 3 ________三、解答题:〔 17 题 10 分,其余小题均为 12 分〕17. 在ABC 中 , c 2 ,b2 3 , B 450 ,解三角形 ABC 。

2020届高考数学(理)二轮复习专题强化训练:(十六)解三角形理+Word版含答案

2020届高考数学(理)二轮复习专题强化训练:(十六)解三角形理+Word版含答案

专题强化训练(十六) 解三角形1.[2019·天津卷]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值;(2)求sin ⎝⎛⎭⎪⎫2B +π6的值. 解:(1)在△ABC 中,由正弦定理bsin B =csin C ,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sin C ,即3b =4a .又因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a =-14. (2)由(1)可得sin B =1-cos 2B =154, 从而sin2B =2sin B cos B =-158, cos2B =cos 2B -sin 2B =-78, 故sin ⎝⎛⎭⎪⎫2B +π6=sin2B cos π6+cos2B sin π6=-158×32-78×12=-35+716. 2.[2019·石家庄一模]已知△ABC 的面积为33,且内角A ,B ,C 依次成等差数列.(1)若sin C =3sin A ,求边AC 的长;(2)设D 为AC 边的中点,求线段BD 长的最小值.解:(1)∵△ABC 三个内角A 、B 、C 依次成等差数列,∴B =60°.设A 、B 、C 所对的边分别为a 、b 、c ,由△ABC 的面积S =33=12ac sin B 可得ac =12. ∵sin C =3sin A ,由正弦定理知c =3a ,∴a =2,c =6.在△ABC 中,由余弦定理可得b 2=a 2+c 2-2ac cos B =28,∴b =27,即AC 的长为27.(2)∵BD 是AC 边上的中线,∴BD →=12(BC →+BA →), ∴BD →2=14(BC →2+BA →2+2BC →·BA →)=14(a 2+c 2+2ac cos B )=14(a 2+c 2+ac )≥14(2ac +ac )=9,当且仅当a =c 时取“=”,∴|BD →|≥3,即BD 长的最小值为3.3.[2019·合肥质检二]在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,sin 2A +sin 2B +sin A sin B =2c sinC ,△ABC 的面积S =abc .(1)求角C ;(2)求△ABC 周长的取值范围.解:(1)由S =abc =12ab sin C 可得2c =sin C , ∴sin 2A +sin 2B +sin A sin B =sin 2C ,由正弦定理得a 2+b 2+ab =c 2,由余弦定理得cos C =-12,∴C =2π3. (2)由(1)知2c =sin C ,同理可知2a =sin A ,2b =sin B .△ABC 的周长为 a +b +c =12(sin A +sin B +sin C )=12[sin A +sin ⎝ ⎛⎭⎪⎫π3-A ]+34 =12⎝ ⎛⎭⎪⎫sin A +32cos A -12sin A +34=12⎝ ⎛⎭⎪⎫12sin A +32cos A +34=12sin ⎝⎛⎭⎪⎫A +π3+34. ∵A ∈⎝ ⎛⎭⎪⎫0,π3,∴A +π3∈⎝ ⎛⎭⎪⎫π3,2π3, ∴sin ⎝ ⎛⎭⎪⎫A +π3∈⎝ ⎛⎦⎥⎤32,1, ∴△ABC 周长的取值范围为⎝ ⎛⎦⎥⎤32,2+34.4.[2019·武汉4月调研]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos A =104,B =2A ,b =15. (1)求a ;(2)已知M 在边BC 上,且CM MB =12,求△CMA 的面积. 解:(1)由0<A <π,cos A =104,知sin A =64, ∴sin B =sin2A =2sin A cos A =2×64×104=154, 由正弦定理a sin A =b sin B =csin C 可知, a =b sin A sin B= 6. (2)cos B =cos2A =2cos 2A -1=2×⎝ ⎛⎭⎪⎫1042-1=14, sin C =sin(A +B )=sin A cos B +cos A sin B =64×14+104×154=368, △ABC 的面积S △ABC =12ab ·sin C =12×6×15×368=9158, 又CM MB =12,∴S △CMA =13S △ABC =13×9158=3158. 5.[2019·济南模拟]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b sin C =a cos C +c cos A ,B =2π3,c = 3. (1)求角C ; (2)若点E 满足AE →=2EC →,求BE 的长.解:(1)解法一:由题设及正弦定理得2sin B sin C =sin A cos C +sin C cos A ,又sin A cos C +sin C cos A =sin(A +C )=sin(π-B )=sin B ,所以2sin B sin C =sin B .由于sin B =32≠0,所以sin C =12. 又0<C <π3,所以C =π6. 解法二:由题设及余弦定理可得2b sin C =a ×a 2+b 2-c 22ab +c ×b 2+c 2-a 22bc, 化简得2b sin C =b .因为b >0,所以sin C =12. 又0<C <π3,所以C =π6. 解法三:由2b sin C =a cos C +c cos A ,结合b =a cos C +c cos A ,可得2b sin C =b .因为b >0,所以sin C =12. 又0<C <π3,所以C =π6. (2)解法一:由正弦定理易知b sin B =csin C =23,解得b =3. 又AE →=2EC →,所以AE =23AC =23b ,即AE =2. 在△ABC 中,因为∠ABC =23π,C =π6, 所以A =π6, 所以在△ABE 中,A =π6,AB =3,AE =2, 由余弦定理得BE =AB 2+AE 2-2AB ·AE cos π6= 3+4-2×3×2×32=1, 所以BE =1.解法二:在△ABC 中,因为∠ABC =23π,C =π6,所以A =π6,a =c = 3. 由余弦定理得b =(3)2+(3)2-2×3×3×co s 23π=3. 因为AE →=2EC →,所以EC =13AC =1. 在△BCE 中,C =π6,BC =3,CE =1,由余弦定理得BE =BC 2+EC 2-2BC ·EC cos π6=3+1-2×3×1×32=1, 所以BE =1. 解法三:在△ABC 中,因为∠ABC =23π,C =π6, 所以A =π6,a =c = 3. 因为AE →=2EC →,所以BE →=13BA →+23BC →. 则|BE →|2=19(BA →+2BC →)2=19(|BA →|2+4BA →·BC →+4|BC →|2)=19(3-4×3×3×12+4×3)=1,所以BE =1.6.[2019·太原一模]如图,已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且a sin A +(c -a )sin C =b sin B ,点D 是AC 的中点,DE ⊥AC ,交AB 于点E ,且BC =2,DE =62.(1)求B ;(2)求△ABC 的面积.解:(1)∵a sin A +(c -a )sin C =b sin B ,∴由a sin A =b sin B =c sin C 得a 2+c 2-ac =b 2, 由余弦定理得cos B =a 2+c 2-b 22ac =12, ∵0°<B <180°,∴B =60°.(2)如图,连接CE ,∵D 是AC 的中点,DE ⊥AC ,∴AE =CE ,∴CE =AE =DEsin A =62sin A . 在△BCE 中,由正弦定理得CEsin B=BC sin ∠BEC =BC sin2A , ∴62sin A sin60°=22sin A cos A ,∴cos A =22, ∵0°<A <180°,∴A =45°,∴∠ACB =75°,∴∠BCE =∠ACB -∠ACE =30°,∠BEC =90°,∴CE =AE =3,AB =AE +BE =3+1,∴S △ABC =12AB ·CE =3+32. 7.[2019·长沙一模]已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .且a sin(A +B )=c sin B +C2.(1)求A ;(2)若△ABC 的面积为3,周长为8,求a .解:(1)由题设得a sin C =c cos A 2, 由正弦定理得sin A sin C =sin C cos A 2,∵sin C ≠0, 所以sin A =cos A 2, 所以2sin A 2cos A 2=cos A 2,又cos A 2≠0, 所以sin A 2=12, 故A =60°.(2)由题设得12bc sin A =3,从而bc =4. 由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12.又a +b +c =8,所以a 2=(8-a )2-12,解得a =134. 8.[2019·福州质检]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32.(1)求△ABC 的外接圆直径;(2)求a +c 的取值范围.解:(1)因为角A ,B ,C 成等差数列,所以2B =A +C ,又因为A +B +C =π,所以B =π3. 根据正弦定理得,△ABC 的外接圆直径2R =b sin B =32sin π3=1. (2)解法一:由B =π3,知A +C =2π3, 可得0<A <2π3. 由(1)知△ABC 的外接圆直径为1,根据正弦定理得, a sin A =b sin B =c sin C =1, 所以a +c =sin A +sin C=sin A +sin ⎝⎛⎭⎪⎫2π3-A =3⎝ ⎛⎭⎪⎫32sin A +12cos A =3sin ⎝⎛⎭⎪⎫A +π6. 因为0<A <2π3,所以π6<A +π6<5π6. 所以12<sin ⎝⎛⎭⎪⎫A +π6≤1, 从而32<3sin ⎝⎛⎭⎪⎫A +π6≤3, 所以a +c 的取值范围是⎝ ⎛⎦⎥⎤32,3. 解法二:由(1)知,B =π3, b 2=a 2+c 2-2ac cos B=(a +c )2-3ac≥(a +c )2-3⎝⎛⎭⎪⎫a +c 22=14(a +c )2(当且仅当a =c 时,取等号), 因为b =32,所以(a +c )2≤3,即0<a +c ≤3, 又三角形两边之和大于第三边, 所以32<a +c ≤3, 所以a +c 的取值范围是⎝⎛⎦⎥⎤32,3.。

高中数学解三角形(有答案)

高中数学解三角形(有答案)

高中数学解三角形(有答案) Solving Triangles1.(2015 Henan Second Model Test) In triangle ABC。

the sides opposite to angles A。

B。

and C are a。

b。

and c。

respectively。

and a=3.c=8.and B=60°。

What is the perimeter of triangle ABC?A。

18 B。

19 C。

16 D。

172.(2015 Henan Second Model Test) In triangle ABC。

the sides opposite to angles A。

B。

and C are a。

b。

and c。

respectively。

and a=3.c=8.and B=60°。

What is the perimeter of triangle ABC?A。

17 B。

19 C。

16 D。

183.(2014 Yunnan Mock Exam) In triangle ABC。

if b^2-a^2-c^2=ac。

what is the measure of angle B?A。

30° B。

60° C。

120° D。

150°4.(2013 Shaanxi) In triangle ABC。

the sides opposite to angles A。

B。

and C are a。

b。

and c。

respectively。

and bc cos C + c cos B = a sin A。

What is the shape of triangle ABC?A。

XXX5.(2013 Hunan) In acute triangle ABC。

the XXX angles A and B are a and b。

respectively。

《南方新课堂》2022年高考数学(理)总复习练习:第三章三角函数与解三角形 Word版含答案

《南方新课堂》2022年高考数学(理)总复习练习:第三章三角函数与解三角形 Word版含答案

第三章 三角函数与解三角形第1讲 弧度制与任意角的三角函数1.tan 25π6的值为( )A .-33 B.33C. 3 D .-32.已知cos θ·tan θ<0,那么角θ是( ) A .第一或其次象限角 B .其次或第三象限角 C .第三或第四象限角 D .第一或第四象限角3.已知角α终边上一点P (-4a,3a )(a <0),则sin α的值为( ) A.35 B .-35 C.45 D .-454.若角α的终边经过点P (1,m ),且tan α=-2,则sin α=( )A.55 B .-55 C.2 55 D .-2 555.已知点P ⎝⎛⎭⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4 B.3π4 C.5π4 D.7π46.(2022年新课标Ⅰ)若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin2α>0 D .cos2α>07.已知两角α,β之差为1°,其和为1弧度,则α,β的大小分别为( ) A.π90和π180B .28°和27°C .0.505和0.495 D.180+π360和180-π3608.(2021年广东肇庆二模)若角α的终边上有一点P (-4,a ),且sin α·cos α=1225,则a =( )A .3B .±3 C.163或3 D .-163或-39.(2021年广东惠州二模)集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )A B C D10.推断下列各式的符号:(1)tan125°·sin278°; (2)cos 7π12tan 23π12sin 11π12.11.(1)已知扇形的周长为10,面积为4,求扇形圆心角的弧度数;(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才能使扇形的面积最大?最大面积是多少?第2讲 同角三角函数的基本关系式与诱导公式1.(2021年河北石家庄二模)tan(-1410°)的值为( )A.33 B .-33 C. 3 D .-32.(2021年湖北黄冈一模)sin2021°的值属于区间( )A.⎝⎛⎭⎫-12,0B.⎝⎛⎭⎫-1,-12C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫0,12 3.下列关系式中,正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11°4.已知sin α-cos α=2,α∈(0,π),则sin2α=( )A .-1B .-22C.22D .1 5.若tan α=2,则2sin α-cos αsin α+2cos α的值为( )A .0 B.34C .1 D.546.(2021年四川资阳一模)下列不等式成立的是( )A .tan ⎝⎛⎭⎫9π8>tan ⎝⎛⎭⎫π6B .sin ⎝⎛⎭⎫-3π10>sin ⎝⎛⎭⎫-π5C .sin π18>sin π10D .cos ⎝⎛⎭⎫-7π4>cos ⎝⎛⎭⎫-23π5 7.已知α是第三象限角,sin α=-13,则tan α=________.8.(2021年四川)设sin2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan2α的值是________.9.已知tan α=2,求: (1)2sin α-3cos α4sin α-9cos α; (2)4sin 2α-3sin αcos α-5cos 2α.10.(2021年广东揭阳一模)已知函数f (x )=1-2sin ⎝⎛⎭⎫2x -π4cos x.(1)求函数f (x )的定义域;(2)设α是第四象限角,且tan α=-43,求f (α)的值.第3讲 三角函数的图象与性质1.(2022年陕西)函数f (x )=cos ⎝⎛⎭⎫2x -π6的最小正周期是( ) A.π2B .πC .2πD .4π 2.(2021年北京丰台二模)下列四个函数中,最小正周期为π,且图象关于直线x =π12对称的是( )A .y =sin ⎝⎛⎭⎫x 2+π3B .y =sin ⎝⎛⎭⎫x 2-π3C .y =sin ⎝⎛⎭⎫2x +π3D .y =sin ⎝⎛⎭⎫2x -π3 3.已知函数f (x )=sin ⎝⎛⎭⎫x -π2(x ∈R ),下列结论错误的是( ) A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数4.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=( )A.π4B.π3C.π2D.3π45.函数y =|tan x |cos x ⎝⎛⎭⎫0≤x <3π2,且x ≠π2的图象是( )A BC D6.(2021年广东肇庆二模)已知函数f (x )=A sin ⎝⎛⎭⎫ωx +π6 [A >0,ω>0,x ∈(-∞,+∞)]的最小正周期为2,且f (0)=3,则函数f (3)=( )A .- 3 B. 3 C .-2 D .27.(2022年江苏)已知函数y =cos x 与函数y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ=________.8.(2022年大纲)函数y =cos2x +2sin x 的最大值为________.9.在下列函数中:①y =4sin ⎝⎛⎭⎫x -π3;②y =2sin ⎝⎛⎭⎫x -5π6;③y =2sin ⎝⎛⎭⎫x +π6;④y =4sin ⎝⎛⎭⎫x +π3;⑤y =sin ⎝⎛⎭⎫x -73π. 关于直线x =5π6对称的函数是________(填序号).10.(2022年北京)函数f (x )=3sin ⎝⎛⎭⎫2x +π6的部分图象如图X3­3­1. (1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值.图X3­3­111.是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎣⎡⎦⎤0,π2上的最大值是1?若存在,求出对应的a 值;若不存在,试说明理由.第4讲 函数y =A sin(ωx +φ)的图象1.(2022年四川)为了得到函数y =sin(x +1)的图象,只需把函数y =sin x 的图象上的全部点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度2.(2021年广东珠海一模)函数y =sin ⎝⎛⎭⎫2x +π4的图象可由函数y =sin2x 的图象( ) A .向左平移π8个单位长度而得到B .向右平移π8个单位长度而得到C .向左平移π4个单位长度而得到D .向右平移π4个单位长度而得到3.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图象如图X3­4­1,则( )图X3­4­1A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π4,φ=5π44.(2021年广东东莞一模)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0)的图象的两相邻对称轴之间的距离为π2,要得到y =f (x )的图象,只须把函数y =sin ωx 的图象( )A .向右平移π3个单位B .向右平移π6个单位C .向左平移π3个单位D .向左平移π6个单位5.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位后,得到函数y =sin ⎝⎛⎭⎫x -π6的图象,则φ=( ) A.π6 B.5π6 C.7π6 D.11π66.(2021年广东肇庆一模)已知函数f (x )=A sin ⎝⎛⎭⎫ωx +π6[A >0,ω>0,x ∈(-∞,+∞)]的最小正周期为π,且f (0)=3,则函数y =f (x )在⎣⎡⎦⎤-π4,π4上的最小值是( ) A .- 6 B .-2 3 C .-3 D .2 37.(2021年江西)设f (x )=3sin3x +cos3x ,若对任意实数x 都有|f (x )|≤a ,则实数a 的取值范围是________.8.(2021年北京西城一模)已知函数f (x )=sin ⎝⎛⎭⎫2x +π6,其中x ∈⎣⎡⎦⎤-π6,a .当a =π3时,f (x )的值域是__________;若f (x )的值域是⎣⎡⎦⎤-12,1,则a 的取值范围是__________.9.(2021年广东广州一模)已知函数f (x )=A sin ⎝⎛⎭⎫ωx +π6 (A >0,ω>0)的图象在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x 0,2)和⎝⎛⎭⎫x 0+π2,-2. (1)求函数f (x )的解析式;(2)求sin ⎝⎛⎭⎫x 0+π4的值.10.(2021年安徽)设函数f (x )=sin x +sin ⎝⎛⎭⎫x +π3. (1)求f (x )的最小值,并求使f (x )取得最小值的x 的集合;(2)不画图,说明函数y =f (x )的图象可由y =sin x 的图象经过怎样的变化得到.第5讲 两角和与差及二倍角的三角函数公式1.(河南豫南九校2021届质检)已知sin ⎝⎛⎭⎫π4-x =35,则sin2x =( ) A.325 B.725C.925D.18252.(2021年新课标Ⅱ)已知sin2α=23,则cos 2⎝⎛⎭⎫α+π4=( ) A.16 B.13 C.12 D.233.设tan α,tan β是方程x 2-3x +2=0的两个根,则tan(α+β)的值为( ) A .-3 B .-1 C .1 D .34.若3sin α+cos α=0,则1cos 2α+sin2α的值为( )A.103B.53C.23D .-2 5.(2021年广东广州一模)已知函数f (x )=2sin2x ,为了得到函数g (x )=sin2x +cos2x 的图象,只要将函数f (x )=2sin2x 的图象( )A .向右平移π4个单位长度B .向左平移π4个单位长度C .向右平移π8个单位长度D .向左平移π8个单位长度6.若cos x cos y +sin x sin y =13,则cos(2x -2y )=________.7.(2022年新课标Ⅱ)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.8.(2022年山东)函数y =32sin2x +cos 2x 的最小正周期为________.9.(2022年江苏)已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值;(2)求cos ⎝⎛⎭⎫5π6-2α的值.10.(2022年福建)已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.第6讲 简洁的三角恒等变换1.(2021年江西)若sin α2=33,则cos α=( )A .-23B .-13C.13D.232.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α=( ) A.22 B.33 C. 2 D.33.(2022年浙江)为了得到函数y =sin3x +cos3x 的图象,可以将函数y =2cos3x 的图象( )A .向右平移π12个单位长度B .向右平移π4个单位长度C .向左平移π12个单位长度D .向左平移π4个单位长度4.已知sin α-cos α=2,α∈(0,π),则tan α=( )A .-1B .-22C.22D .1 5.sin47°-sin17°cos30°cos17°=( )A .-32B .-12C.12D.326.(2021年湖北)将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π67.函数y =2sin x -cos x 的最大值为________.8.(2021年江西)函数y =sin2x +2 3sin 2x 的最小正周期T 为________.9.已知sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α=16,α∈⎝⎛⎭⎫π2,π,求sin4α的值.第7讲 正弦定理和余弦定理1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的外形是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不能确定2.已知△ABC 的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,a =2,b =3,则sin Asin (A +C )=( )A.23B.32C .-23D .-323.(2021年广东深圳一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =60°,a =3,b +c =3,则△ABC 的面积为( )A.34B.32 C.3 D .24.(广西百所示范性中学2021届高三第一次大联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )cos B =b cos C ,则B =( )A.π4B.π3C.π6D.π25.(2021年湖南)在锐角三角形ABC 中,角A ,B 所对边的长分别为a ,b .若2a sin B =3b ,则A =( ) A.π3 B.π4 C.π6 D.π126.(2021年新课标Ⅰ)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos2A +cos2A =0,a =7,c =6,则b =( )A .10B .9C .8D .57.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a =2,B =π6,c =2 3,则b =________.8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B =________.9.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若cos B cos C -sin B sin C =12.(1)求角A ;(2)若a =2 3,b +c =4,求△ABC 的面积.10.(2022年安徽)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为2,求cos A 与a 的值.第8讲 解三角形应用举例1.某人向正东方向走x km 后,顺时针转150°,然后朝新方向走3 km ,结果他离动身点恰好 3 km ,那么x =( )A. 3 B .2 3 C .2 3或 3 D .32.两座灯塔A 和B 与海洋观看站C 的距离都等于a km ,灯塔A 在观看站C 的北偏东20°的方向,灯塔B 在观看站C 的南偏东40°的方向,则灯塔A 与灯塔B 的距离为( )A .a km B.2a km C .2a km D.3a km3.如图X3­8­1,一艘海轮从A 处动身,以40海里/时的速度沿东偏南50°方向直线航行,30分钟后到达B 处.在C 处有一座灯塔,海轮在A 处观看灯塔,其方向是东偏南20°,在B 处观看灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .10 2海里B .10 3海里C .20 2海里D .20 3海里图X3­8­1 图X3­8­24.有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则此时的斜坡长为( ) A .1 B .2sin10°C .2cos10°D .cos20°5.(2021年广东茂名二模)如图X3­8­2,设A ,B 两点在河的两岸,一测量者在A 的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( )A .50 3 mB .50 2 mC .25 2 m D.25 22m6.(2022年广东)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.(2021年广东肇庆二模)某日,某渔政船在东海某海疆巡航护渔,已知该船正以30(3-1)海里/时的速度向正北方向航行,该船在点A 处发觉北偏东30°方向的海面上有一个小岛,连续航行20分钟到达点B ,此时发觉该小岛在北偏东45°方向上.若该船向北连续航行,船与小岛的最短距离是( )A .6海里B .8海里C .10海里D .12海里8.如图X3­8­3,一缉私艇发觉在方位角(从正北方向顺时针转到目标方向线的水平角)45°方向、距离15海里的海面上有一走私船正以25海里/时的速度沿方位角为105°的方向逃跑.若缉私艇的速度为35海里/时,缉私艇沿方位角为45°+α的方向追去,若要在最短时间内追上该走私船.(1)求α的正弦值;(2)求缉私艇追上走私船所需的时间.图X3­8­39.(2022年北京)如图X3­8­4,在△ABC 中,B =π3,AB =8,点D 在边BC 上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.图X3­8­4第三章 三角函数与解三角形第1讲 弧度制与任意角的三角函数1.B 2.C3.B 解析:∵a <0,∴r =(-4a )2+(3a )2=-5a ,∴sin α=3a r =-35.故选B.4.D 解析:由三角函数的定义,得tan α=m =-2,∴r =5,sin α=-25=-2 55.故选D.5.D 解析:由sin 3π4>0,cos 3π4<0知,角θ是第四象限的角.∵tan θ=cos3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4.6.C 解析:tan α=sin αcos α>0,而sin2α=2sin αcos α>0.故选C.7.D 解析:由已知,得⎩⎪⎨⎪⎧α+β=1,α-β=π180,解得⎩⎨⎧α=180+π360,β=180-π360.8.D 解析:由于角α的终边上有一点P (-4,a ),依据三角函数的定义知,sin α=a16+a 2,cos α=-416+a 2,所以sin α·cos α=-4a 16+a 2=1225,即3a 2+25a +48=0.解得a =-3或a =-163.故选D. 9.C 解析:分k =2m ,k =2m +1(m ∈Z )两种状况争辩可得结果. 10.解:(1)∵125°,278°角分别为其次、四象限角, ∴tan125°<0,sin278°<0. 因此tan125°·sin278°>0.(2)∵π2<7π12<π,3π2<23π12<2π,π2<11π12<π,∴cos 7π12<0,tan 23π12<0,sin 11π12>0.因此cos 7π12tan 23π12sin 11π12>0.11.解:设扇形半径为R ,圆心角为θ,所对的弧长为l .(1)依题意,得⎩⎪⎨⎪⎧12θR 2=4,θR +2R =10,∴2θ2-17θ+8=0,解得θ=8或12.∵8>2π,舍去,∴θ=12rad.(2)扇形的周长为40,即θR +2R =40, S =12lR =12θR 2=14θR ·2R ≤14⎝⎛⎭⎫θR +2R 22=100. 当且仅当θR =2R ,即R =10,θ=2时,扇形面积取得最大值,最大值为100.第2讲 同角三角函数的基本关系式与诱导公式1.A 解析:tan(-1410°)=tan(-180°×8+30°)=tan30°=33. 2.B 解析:sin2021°=sin(5×360°+213°)=sin213°=sin(180°+33°)=-sin33°<-12.故选B.3.C 解析:∵sin168°=sin(180°-12°)=sin12°,cos10°=cos(90°-80°)=sin80°.由于正弦函数y =sin x 在区间[0°,90°]上为递增函数,因此sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.4.A 解析:∵sin α-cos α=2,∴(sin α-cos α)2=2.∴sin2α=-1.故选A.5.B 解析:分子、分母同时除以cos α,得2tan α-1tan α+2=4-12+2=34.6.D 解析:cos ⎝⎛⎭⎫-7π4=cos π4>0,cos ⎝⎛⎭⎫-23π5=cos 3π5<0.故选D. 7.24 解析:sin α=-13,cos α=-2 23,tan α=12 2=24. 8.3 解析:sin2α=2sin αcos α=-sin α,cos α=-12,α∈⎝⎛⎭⎫π2,π,则α=2π3,tan2α=tan 4π3=tan π3= 3. 9.解:(1)2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1.(2)4sin 2α-3sin αcos α-5cos 2α=4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α=4tan 2α-3tan α-5tan 2α+1=4×4-3×2-54+1=1.10.解:(1)函数f (x )要有意义,需满足cos x ≠0,解得x ≠π2+k π,k ∈Z ,即函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π2+k π,k ∈Z .(2)∵f (x )=1-2sin ⎝⎛⎭⎫2x -π4cos x =1-2⎝⎛⎭⎫22sin2x -22cos2x cos x =1+cos2x -sin2xcos x=2cos 2x -2sin x cos x cos x=2(cos x -sin x ),由tan α=-43,得sin α=-43cos α.又sin 2α+cos 2α=1,∴cos 2α=925.∵α是第四象限的角,∴cos α=35,sin α=-45.∴f (α)=2(cos α-sin α)=145.第3讲 三角函数的图象与性质1.B 解析:由周期公式T =2πω,又ω=2,所以函数f (x )=cos ⎝⎛⎭⎫2x -π6的周期T =2π2=π.故选B. 2.C 解析:将x =π12代入选项A ,B ,C ,D 中,只有选项C 取得最大值y =sin ⎝⎛⎭⎫2×π12+π3=sin π2=1,所以关于直线x =π12对称,且T =2π2=π.3.D 解析:由函数的f (x )=sin ⎝⎛⎭⎫x -π2=-cos x (x ∈R ),可得函数f (x )是偶函数.故选D. 4.A 解析:由题设知,T =2×⎝⎛⎭⎫5π4-π4=2π,∴ω=2πT =1.∴π4+φ=k π+π2(k ∈Z ).∴φ=k π+π4(k ∈Z ).∵0<φ<π,∴φ=π4.故选A.5.C 解析:方法一:y =|sin x |·cos x|cos x |,分类争辩.方法二:y =|tan x |cos x 的符号与cos x 相同.故选C.6.A 解析:由f (0)=A 2=3,得A =2 3,ω=2π2=π⇒f (x )=2 3sin ⎝⎛⎭⎫πx +π6⇒f (3)=2 3sin ⎝⎛⎭⎫3π+π6=- 3.7.π6 解析:依题意,得cos π3=sin ⎝⎛⎭⎫2×π3+φ=12,又φ∈[0,π),则2π3+φ∈⎣⎡⎦⎤2π3,5π3.∴2π3+φ=5π6,φ=π6. 8.32 解析:y =cos2x +2sin x =-2sin 2x +2sin x +1=-2⎝⎛⎭⎫sin x -122+32,所以当sin x =12时,原函数取得最大值为32.9.①⑤ 解析:∵y =4sin ⎝⎛⎭⎫5π6-π3=4sin π2=4,y 取最大值,∴x =5π6为它的一个对称轴.又∵y =sin ⎝⎛⎭⎫5π6-7π3=-sin 3π2=1,∴x =5π6是对称轴.10.解:(1)f (x )的最小正周期为T =2π2=π.由图象知,y 0=f (x )max =3,2x 0+π6=π2+2k π,解得x 0=π6+k π,k ∈Z ,取k =1,x 0=76π.(2)由于x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0, 于是当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.11.解:y =-⎝⎛⎭⎫cos x -12a 2+a 24+58a -12,当0≤x ≤π2时,0≤cos x ≤1.令t =cos x ,则0≤t ≤1.∴y =-⎝⎛⎭⎫t -12a 2+a 24+58a -12,0≤t ≤1.若0≤a 2≤1,即0≤a ≤2,则当t =a 2,即cos x =a2时,y max =a 24+58a -12=1,解得a =32或a =-4(舍去).若a2<0,即a <0,则当t =0,即cos x =0时, y max =58a -12=1,解得a =125(舍去).若a2>1,即a >2,则当t =1,即cos x =1时, y max =a +58a -32=1,解得a =2013(舍去).综上所述,存在a =32符合题意.第4讲 函数y =A sin(ωx +φ)的图象1.A 2.A3.C 解析:∵T 4=3-1=2,∴T =8,∴ω=2πT =π4.令π4×1+φ=π2,得φ=π4,∴故选C.4.D 解析:两相邻对称轴之间的距离为T 2=π2,T =π,ω=2,要得到f (x )=sin ⎝⎛⎭⎫2x +π3的图象,只需把f (x )=sin2x 的图象向左平移π6个单位.5.D 解析:由函数y =sin x 向左平移φ个单位得到y =sin(x +φ)的图象.由条件知,函数y =sin(x +φ)可化为函数y =sin ⎝⎛⎭⎫x -π6,比较个各选项,只有y =sin ⎝⎛⎭⎫x +11π6=sin ⎝⎛⎭⎫x -π6. 6.C 解析:A =2 3,ω=2⇒f (x )=2 3sin ⎝⎛⎭⎫2x +π6,由-π4≤x ≤π4⇒-π3≤2x +π6≤2π3,得[f (x )]min =2 3sin ⎝⎛⎭⎫-π3=-3. 7.[2,+∞) 解析:f (x )=3sin3x +cos3x =2sin ⎝⎛⎭⎫3x +π6,|f (x )|max =2,∴a ≥2. 8.⎣⎡⎦⎤-12,1 ⎣⎡⎦⎤π6,π2 解析:当a =π3时,x ∈⎣⎡⎦⎤-π6,π3,2x +π6∈⎣⎡⎦⎤-π6,5π6,f (x )的值域是⎣⎡⎦⎤-12,1;若f (x )的值域是⎣⎡⎦⎤-12,1,π2≤2a +π6≤7π6,π6≤a ≤π2. 9.解:(1)由题意,可得A =2,T 2=⎝⎛⎭⎫x 0+π2-x 0=π2.∴T =π. 由2πω=π,得ω=2. ∴f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)∵ 点(x 0,2)是函数f (x )=2sin ⎝⎛⎭⎫2x +π6在y 轴右侧的第一个最高点, ∴ 2x 0+π6=π2.∴ x 0=π6.∴sin ⎝⎛⎭⎫x 0+π4=sin ⎝⎛⎭⎫π6+π4 =sin π6cos π4+cos π6sin π4=12×22+32×22 =2+64.10.解:(1)f (x )=sin x +sin x cos π3+cos x sin π3=sin x +12sin x +32cos x=32sin x +32cos x =⎝⎛⎭⎫322+⎝⎛⎭⎫322sin ⎝⎛⎭⎫x +π6 =3sin ⎝⎛⎭⎫x +π6. 当sin ⎝⎛⎭⎫x +π6=-1时,f (x )min =-3,此时x +π6=3π2+2k π,∴x =4π3+2k π(k ∈Z ).∴f (x )的最小值为-3,此时x 的集合为 ⎩⎨⎧⎭⎬⎫x ⎪⎪x =4π3+2k π,k ∈Z .(2)将函数y =sin x 的图象向左平移π6个单位,得y =sin ⎝⎛⎭⎫x +π6,然后将函数y =sin ⎝⎛⎭⎫x +π6的图象上的点的纵坐标变为原来的3倍,得f (x )=3sin ⎝⎛⎭⎫x +π6.第5讲 两角和与差及二倍角的三角函数公式1.B 解析:由sin ⎝⎛⎭⎫π4-x =sin π4cos x -cos π4sin x =22×(cos x -sin x )=35,两边平方,得12(1-2cos x ·sin x )=925,1-sin2x =1825,sin2x =725.2.A 解析:∵sin2α=23,∴cos 2⎝⎛⎭⎫α+π4=12×⎣⎡⎦⎤1+cos ⎝⎛⎭⎫2α+π2=12(1-sin2α)=12×⎝⎛⎭⎫1-23=16. 3.A 解析:∵tan α,tan β是方程x 2-3x +2=0的两个根,∴tan α+tan β=3,tan αtan β=2,∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.故选A. 4.A5.D 解析:g (x )=sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π4,将函数f (x )=2sin2x 的图象向左平移π8个单位长度即可.6.-79 解析:∵cos(x -y )=cos x cos y +sin x sin y =13,∴cos(2x -2y )=2cos 2(x -y )-1=29-1=-79.7.1 解析:f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2cos x sin φ=sin x cos φ-cos x sin φ=sin(x -φ),最大值为1.8.π 解析:y =32sin2x +cos 2x =32sin2x +1+cos2x 2=sin ⎝⎛⎭⎫2x +π6+12,其最小正周期为T =2π2=π. 9.解:(1)由于α∈⎝⎛⎭⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-2 55.故sin ⎝⎛⎭⎫π4+α=sin π4cos α+cos π4sin α =22×⎝⎛⎭⎫-2 55+22×55=-1010. (2)由(1),得sin2α=2sin αcos α=-45,cos2α=2cos 2α-1=35.所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos2α+sin 5π6sin2α =-32×35+12×⎝⎛⎭⎫-45=-3 3+410.10.解:f (x )=2cos x (sin x +cos x )=2cos x sin x +2cos 2x=sin2x +cos2x +1=2sin ⎝⎛⎭⎫2x +π4+1. (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4 =2×⎝⎛⎭⎫-22⎝⎛⎭⎫-22-22=2.(2)函数f (x )的最小正周期T =2π2=π.若f (x )单调递增,则2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z . 第6讲 简洁的三角恒等变换1.C2.D 解析:sin 2α+cos2α=sin 2α+cos 2α-sin 2α=cos 2α=14.∵α∈⎝⎛⎭⎫0,π2,∴cos α=12,sin α=32.∴tan α= 3. 3.A 解析:由于y =sin3x +cos3x =2cos ⎝⎛⎭⎫3x -π4,所以将函数y =2cos3x 的图象向右平移π12个单位长度,得函数y =2cos3⎝⎛⎭⎫x -π12=2cos ⎝⎛⎭⎫3x -π4.故选A. 4.A 解析:方法一:∵sin α-cos α=2,∴2sin ⎝⎛⎭⎫α-π4= 2.∴sin ⎝⎛⎭⎫α-π4=1.∵α∈(0,π),∴α=3π4.∴tan α=-1.方法二:∵sin α-cos α=2,∴(sin α-cos α)2=2.∴sin2α=-1.∵α∈(0,π),∴2α∈(0,2π),∴2α=3π2.∴α=3π4.∴tan α=-1.故选A.5.C 解析:sin47°-sin17°cos30°cos17°=sin (30°+17°)-sin17°cos30°cos17°=sin30°cos17°+cos30°sin17°-sin17°cos30°cos17°=sin30°cos17°cos17°=12.6.B 解析:y =3cos x +sin x =2cos ⎝⎛⎭⎫x -π6,向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,m 的最小值是π6.7.5 解析:y =2sin x -cos x =5sin(x +φ),其中tan φ=-12,∴最大值为 5.8.π 解析:y =sin2x +2 3sin 2x =sin2x +2 3×1-cos2x 2=sin2x -3cos2x +3=2⎝⎛⎭⎫12sin2x -32cos2x +3=2sin ⎝⎛⎭⎫2x -π3+3,∴T =2π2=π. 9.解:∵sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α=16, ∴2sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α=13. ∴sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4+α=13.∴cos2α=13. 又∵α∈⎝⎛⎭⎫π2,π,∴2α∈(π,2π).∴sin2α=-1-cos 22α=-1-⎝⎛⎭⎫132=-2 23.∴sin4α=2sin2αcos2α=2×⎝⎛⎭⎫-2 23×13=-4 29.第7讲 正弦定理和余弦定理1.A 解析:由正弦定理,得a 2+b 2<c 2.由余弦定理,得cos C =a 2+b 2-c 22ab<0,所以C 是钝角,故选A.2.B 解析:sin A sin (A +C )=sin A sin B =a b =23.故选A.3.B 4.B5.A 解析:由2a sin B =3b ,得2sin A sin B =3sin B ,sin A =32,A =π3或2π3(舍去). 6.D 解析:23cos 2A +cos2A =25cos 2A -1=0,cos A =15或cos A =-15(舍去),a 2=b 2+c 2-2bc cos A,49=b 2+36-12b ×15,5b 2-12b -65=0,解得b =5或b =-135(舍去).7.2 解析:由余弦定理,得b 2=a 2+c 2-2ac cos B =4,∴b =2. 8.154 解析:由余弦定理,得c 2=a 2+b 2-2ab cos C =1+4-2×1×2×14=4,则c =2,即B =C ,故sin B =1-⎝⎛⎭⎫142=154. 9.解:(1)∵cos B cos C -sin B sin C =12,即cos(B +C )=12,∴B +C =60°.从而A =120°.(2)由余弦定理,得b 2+c 2+bc =a 2=12,① 又b +c =4,∴b 2+c 2+2bc =16.② 由①②,得bc =4,∴S △ABC =12bc sin A =12×4×32= 3.10.解:由三角形的面积公式,得 12bc sin A =12×3×1×sin A = 2.∴sin A =2 23. ∵sin 2A +cos 2A =1,∴cos A =±1-sin 2A =±13.当cos A =13时,a 2=b 2+c 2-2bc cos A =9+1-2×3×1×13=8,∴a =2 2;当cos A =-13时,a 2=b 2+c 2-2bc cos A =9+1+2×3×1×13=12,∴a =2 3.第8讲 解三角形应用举例1.C 解析:如图D63,在△ABC 中,AC =3,BC =3,∠ABC =30°. 由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC , ∴3=x 2+9-6x ·cos30°,解得x =3或2 3.图D63 图D642.D 解析:如图D64,依题意,得∠ACB =120°.由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos120°=a 2+a 2-2a 2·⎝⎛⎭⎫-12=3a 2,∴AB =3a .故选D. 3.A 解析:在△ABC 中,∠BAC =50°-20°=30°,∠ABC =40°+65°=105°,AB =40×0.5=20(海里),则∠ACB =45°.由正弦定理,得BC sin30°=20sin45°,解得BC =10 2.故选A.4.C 解析:如图D65,BD =1,∠DBC =20°,∠DAC =10°.在△ABD 中,由正弦定理,得1sin10°=ADsin160°.解得AD =2cos10°.图D65 图D665.B 解析:由于∠ACB =45°,∠CAB =105°,所以∠ABC =30°.所以依据正弦定理可知,ACsin ∠ABC=AB sin ∠ACB,即50sin30°=ABsin45°,解得AB =50 2 m .故选B.6.A 解析:由正弦定理,得a sin A =bsin B=2R (其中R 为△ABC 外接圆的半径),则a =2R sin A ,b =2R sin B ,a ≤b ⇔2R sin A ≤2R sin B ⇔sin A ≤sin B ,因此“a ≤b ”是“sin A ≤sin B ”的充要条件.故选A.7.C 解析:如图D66,∠DAC =30°,∠DBC =45°,AB =30(3-1)×13=10×(3-1),设CD =h ,则DA =3h ,DB =h .由AB =DA -DB =(3-1)h =10(3-1),得h =10. 8.解:(1)设缉私艇追上走私船所需的时间为t 小时,则有|BC |=25t ,|AB |=35t ,且∠CAB =α,∠ACB =45°+(180°-105°)=120°,依据正弦定理,得|BC |sin α=|AB |sin120°,即25t sin α=35t 32.∴sin α=5 314.(2)在△ABC 中,由余弦定理,得|AB |2=|AC |2+|BC |2-2|AC ||BC |cos ∠ACB , 即(35t )2=152+(25t )2-2×15×25t ×cos120°,即8t 2-5t -3=0.解得t =1或t =-38(舍去).答:缉私艇追上走私船需要1小时.9.解:(1)在△ADC 中,∵cos ∠ADC =17,∴sin ∠ADC =4 37.∴sin ∠BAD =sin(∠ADC -∠ABD ) =sin ∠ADC cos B -cos ∠ADC sin B =4 37×12-17×32=3 314.(2)在△ABD 中,由正弦定理,得BD =AB ×sin ∠BAD sin ∠ADB =8×3 3144 37=3. 在△ABC 中,由余弦定理,得 AC 2=AB 2+BC 2-2AB ×BC ×cos B =82+52-2×8×5×12=49, ∴AC =7.。

2022届高三数学(理)一轮总复习练习-第三章 三角函数、解三角形 3-6 Word版含答案

2022届高三数学(理)一轮总复习练习-第三章 三角函数、解三角形 3-6 Word版含答案

课时规范训练[A级基础演练]1.在锐角△ABC中,角A,B所对的边长分别为a,b,若2a sin B=3b,则角A等于()A.π12 B.π6C.π4D.π3解析:选D.在△ABC中,利用正弦定理得2sin A sin B =3sin B,∴sin A=3 2.又A为锐角,∴A=π3.2.(2022·高考天津卷)在△ABC中,若AB=13,BC=3,∠C=120°,则AC=() A.1 B.2C.3 D.4解析:选A.在△ABC中,角A,B,C的对边分别为a,b,c,则a=3,c=13,∠C=120°,由余弦定理得13=9+b2+3b,解得b=1,即AC=1.3.在△ABC,已知∠A=45°,AB=2,BC=2,则∠C等于()A.30°B.60°C.120°D.30°或150°解析:选A.在△ABC中,ABsin C=BCsin A,∴2sin C=2sin 45°,∴sin C=12,又AB<BC,∴∠C<∠A,故∠C=30°.4.一艘海轮从A处动身,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观看灯塔,其方向是南偏东70°,在B处观看灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.102海里B.103海里C.203海里D.202海里解析:选A.如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,依据正弦定理得BCsin 30°=ABsin 45°,解得BC=102(海里).5.(2022·高考山东卷)△ABC中,角A,B,C的对边分别是a,b,c.已知b=c,a2=2b2(1-sin A),则A=()A.3π4B.π3C.π4D.π6解析:选C.由余弦定理得a2=b2+c2-2bc cos A=2b2-2b2cos A,所以2b2(1-sin A)=2b2(1-cos A),所以sin A=cos A,即tan A=1,又0<A<π,所以A=π4.6.(2022·高考北京卷)在△ABC中,∠A=2π3,a=3c,则bc=.解析:∵a=3c,∴sin A=3sin C,∵∠A=2π3,∴sin A=32,∴sin C=12,又∠C必为锐角,∴∠C=π6,∵∠A+∠B+∠C=π,∴∠B=π6,∴∠B=∠C,∴b=c,∴bc=1.答案:17.在△ABC中,已知AB=3,A=120°,且△ABC的面积为1534,则BC边的长为.解析:由S△ABC=1534得12×3×AC sin 120°=1534,所以AC=5,因此BC2=AB2+AC2-2AB·AC·cos 120°=9+25+2×3×5×12=49,解得BC=7.答案:78.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B=() A.π6B.π4C.π3 D .3π4解析:选C.依据正弦定理:a sin A =b sin B =csin C =2R ,得c -b c -a=sin Asin C +sin B =a c +b,即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.9.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,且c =2a ,求cos B 的值. 解:(1)证明:∵三角形的三边a ,b ,c 成等差数列, ∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin [π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).(2)由题设有b 2=ac ,c =2a ,∴b =2a ,由余弦定理得cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B2+4sin A sin B =22.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值.解:(1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2,化简得-2cos A cos B +2sin A sin B 2,故cos(A +B )=-22,所以A +B =3π4,从而C =π4. (2)由于S △ABC =12ab sin C ,由S △ABC =6,b =4,C =π4,得a =3 2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10. [B 级 力量突破]1.(2021·辽宁五校联考)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a ,3sin A =5sin B ,则角C =( )A.2π3 B .π3 C.3π4D .5π6解析:选A.由3sin A =5sin B ,得3a =5b . 又由于b +c =2a , 所以a =53b ,c =73b ,所以cos C =a 2+b 2-c 22ab =⎝ ⎛⎭⎪⎫53b 2+b 2-⎝ ⎛⎭⎪⎫73b 22×53b ×b=-12.由于C ∈(0,π),所以C =2π3.2.(2021·北京东城一模)在锐角△ABC 中,AB =3,AC =4,S △ABC =33,则BC =( ) A .5 B .13或37 C.37D .13解析:选D.由S △ABC =12AB ·AC ·sin ∠BAC =12×3×4×sin ∠BAC =33,得sin ∠BAC =32,由于△ABC 为锐角三角形,所以∠BAC ∈⎝ ⎛⎭⎪⎫0,π2,故∠BAC =π3,在△ABC 中,由余弦定理得,BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC =42+32-2×4×3×cos π3=13.所以BC =13,故选D.3.(2021·厦门模拟)在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,假如sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,π2 B .⎝ ⎛⎭⎪⎫π4,π2C.⎝ ⎛⎭⎪⎫π6,π3 D .⎝ ⎛⎭⎪⎫π3,π2解析:选D.由题意得sin 2A <sin 2B +sin 2C , 再由正弦定理得a 2<b 2+c 2, 即b 2+c 2-a 2>0. 则cos A =b 2+c 2-a 22bc >0, ∵0<A <π,∴0<A <π2.又a 为最大边,∴A =A ,A >B ,A >C , 即3A >A +B +C =π,∴A >π3. 因此得角A 的取值范围是⎝ ⎛⎭⎪⎫π3,π2.4.(2021·云南第一次检测)已知a 、b 、c 分别为△ABC 三个内角A ,B ,C 的对边,若cos B =45,a =10,△ABC 的面积为42,则b +asin A的值等于 . 解析:依题意可得sin B =35,又S △ABC =12ac sin B =42,则c =14.故b =a 2+c 2-2ac cos B =62,所以b +a sin A =b +bsin B =16 2.答案:16 25.海上一观测站测得方位角240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90海里.此时海盗船距观测站107海里,20分钟后测得海盗船距观测站20海里,再过 分钟,海盗船即可到达商船.解析:如图,设开头时观测站、商船、海盗船分别位于A 、B 、C 处,20分钟后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD=400+900-7002×20×30=12.∴∠ADC =60°,在△ABD 中由已知得∠ABD =30°. ∠BAD =60°-30°=30°,∴BD =AD =20,2090×60=403(分钟). 答案:4036.(2021·成都外国语学校模拟)已知函数f (x )=23sin 2⎝ ⎛⎭⎪⎫π4+x +2sin ⎝ ⎛⎭⎪⎫π4+x ·cos ⎝ ⎛⎭⎪⎫π4+x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c 且角A 满足f (A )=3+1.若a =3,BC 边上的中线长为3,求△ABC 的面积S .解:(1)由题意知,f (x )=3⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+2x +sin ⎝ ⎛⎭⎪⎫π2+2x=3()1+sin 2x +cos 2x =3+3sin 2x +cos 2x =3+2sin ⎝ ⎛⎭⎪⎫2x +π6,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,解得 k π-π3≤x ≤k π+π6,k ∈Z ,∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z .(2)由f (A )=3+1,得sin ⎝ ⎛⎭⎪⎫2A +π6=12,∴2A +π6=π6或5π6,即A =0或π3. 又A 为△ABC 的内角,∴A =π3. 由A =π3,a =3.得|BC→|=|AC →-AB →|=a =3,① 又BC 边上的中线长为3,知|AB →+AC →|=6.②联立①②,解得AB →·AC→=274,即|AB →|·|AC →|·cos π3=274, ∴|AB →|·|AC →|=272. ∴△ABC 的面积为S =12|AB →|·|AC →|·sin π3=2738.。

(完整版)高中数学解三角形(有答案)

(完整版)高中数学解三角形(有答案)

解三角形一.选择题(共20小题)1.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.18 B.19 C.16 D.172.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17 B.19 C.16 D.183.(2014•云南模拟)在△ABC中,b2﹣a2﹣c2=ac,则∠B的大小()A.30°B.60°C.120°D.150°4.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定5.(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.6.(2013•温州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=30°,B=105°,a=1.则c=()A.﹣1 B..C..D..27.(2013•天津模拟)在钝角△ABC中,已知AB=,AC=1,∠B=30°,则△ABC的面积是()A.B.C.D.8.(2013•泰安一模)在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为()A.B.3C.D.79.(2013•浦东新区三模)已知△ABC中,AC=2,BC=2,则角A的取值范围是()A.B.C.D.10.(2012•广东)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.11.(2012•天河区三模)在△ABC中,若A=60°,BC=4,AC=4,则角B的大小为()A.30°B.45°C.135°D.45°或135°12.(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.13.△ABC的内角A、B、C对边的长a、b、c成等比数列,则的取值范围是()A.(0,+∞)B.(0,2+)C.(1,+∞)D.(1,2+)14.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1D.15.(2014•重庆三模)在△ABC中,若,则∠B等于()A.30°B.45°C.60°D.90°16.(2014•萧山区模拟)在锐角△ABC中,若C=2B,则的范围()A.B.C.(0,2)D.17.(2014•南平模拟)在△ABC中,如果,B=30°,那么角A等于()A.30°B.45°C.60°D.120°18.(2014•广西模拟)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠A:∠B=1:2,且a:b=1:,则cos2B的值是()A.﹣B.C.﹣D.19.(2014•鄂尔多斯模拟)在△ABC中,∠A=60°,b=1,△ABC的面积为,则边a的值为()A.B.C.D.320.(2014•文登市二模)△ABC的内角A,B,C的对边分别为a,b,c,且asinA+csinC+asinC=bsinB,则∠B ()A.B.C.D.二.解答题(共10小题)21.(2014•山东)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.22.(2014•东城区一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.23.(2014•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA ﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.24.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.25.(2014•兴安盟一模)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c﹣a)cosB﹣bcosA=0.(Ⅰ)若b=7,a+c=13求此三角形的面积;(Ⅱ)求sinA+sin(C﹣)的取值范围.26.(2014•福建模拟)设△ABC中的内角A,B,C所对的边长分别为a,b,c,且,b=2.(Ⅰ)当时,求角A的度数;(Ⅱ)求△ABC面积的最大值.27.(2014•江西模拟)三角形ABC中,内角A,B,C所对边a,b,c成公比小于1的等比数列,且sinB+sin(A ﹣C)=2sin2C.(1)求内角B的余弦值;(2)若b=,求△ABC的面积.28.(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.29.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.30.(2014•启东市模拟)在△ABC中,A,B,C为三个内角a,b,c为三条边,,且.(Ⅰ)判断△ABC的形状;(Ⅱ)若,求的取值范围.参考答案与试题解析一.选择题(共20小题)1.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.18 B.19 C.16 D.17考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,把a,c,cosB的值代入求出b的值,即可确定出三角形ABC周长.解答:解:∵△ABC中,a=3,c=8,B=60°,∴b2=a2+c2﹣2accosB=9+64﹣24=49,即b=7,则△ABC周长为3+8+7=18,故选:A.点评:此题考查了余弦定理,熟练掌握余弦定理是解本题的关键.2.(2015•河南二模)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17 B.19 C.16 D.18考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,将a,b及cosB的值代入,得到关于c的方程,求出方程的解即可得到c的值.解答:解:∵a=3,c=9,B=60°,∴由余弦定理b2=a2+c2﹣2accosB,即:b2=9+64﹣24,即b=7,则a+b+c=18故选:D.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.3.(2014•云南模拟)在△ABC中,b2﹣a2﹣c2=ac,则∠B的大小()A.30°B.60°C.120°D.150°考点:余弦定理.专题:解三角形.分析:利用余弦定理表示出cosB,把已知等式变形后代入计算求出cosB的值,即可确定出B的度数.解答:解:∵在△ABC中,b2﹣a2﹣c2=ac,即a2+c2﹣b2=﹣ac,∴cosB==﹣,则∠B=150°,故选:D.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.4.(2013•陕西)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得sinBcosC+sinCcosB=sinAsinA,再由两角和的正弦公式、诱导公式求得sinA=1,可得A=,由此可得△ABC的形状.解答:解:△ABC的内角A,B,C所对的边分别为a,b,c,∵bcosC+ccosB=asinA,则由正弦定理可得sinBcosC+sinCcosB=sinAsinA,即sin(B+C)=sinAsinA,可得sinA=1,故A=,故三角形为直角三角形,故选B.点评:本题主要考查正弦定理以及两角和的正弦公式、诱导公式的应用,根据三角函数的值求角,属于中档题.5.(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.考点:正弦定理.专题:计算题;解三角形.分析:利用正弦定理可求得sinA,结合题意可求得角A.解答:解:∵在△ABC中,2asinB=b,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选D.点评:本题考查正弦定理,将“边”化所对“角”的正弦是关键,属于基础题.6.(2013•温州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=30°,B=105°,a=1.则c=()A.﹣1 B..C..D..2考点:正弦定理.专题:解三角形.分析:由已知可先求C,然后结合正弦定理可求解答:解:∵A=30°,B=105°,∴C=45°∵a=1.由正弦定理可得,则c===故选B点评:本题主要考查了正弦定理在求解三角形中的简单应用,属于基础试题7.(2013•天津模拟)在钝角△ABC中,已知AB=,AC=1,∠B=30°,则△ABC的面积是()A.B.C.D.考点:正弦定理.专题:解三角形.分析:利用余弦定理列出关系式,把c,b,以及cosB的值代入求出a的值,利用三角形面积公式即可求出三角形ABC面积.解答:解:∵在钝角△ABC中,已知AB=c=,AC=b=1,∠B=30°,∴由余弦定理得:b2=a2+c2﹣2accosB,即1=a2+3﹣3a,解得:a=1或a=2,当a=1时,a=b,即∠A=∠B=30°,此时∠C=120°,满足题意,△ABC的面积S=acsinB=;当a=2时,满足a2=c2+b2,即△ABC为直角三角形,不合题意,舍去,则△ABC面积是.故选:B.点评:此题考查了正弦定理,余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.8.(2013•泰安一模)在△ABC中,∠A=60°,AB=2,且△ABC的面积为,则BC的长为()A.B.3C.D.7考点:余弦定理.专题:解三角形.分析:由△ABC的面积S△ABC=,求出AC=1,由余弦定理可得BC,计算可得答案.解答:解:∵S△ABC==×AB×ACsin60°=×2×AC×,∴AC=1,△ABC中,由余弦定理可得BC==,故选A.点评:本题考查三角形的面积公式,余弦定理的应用,求出AC,是解题的关键.9.(2013•浦东新区三模)已知△ABC中,AC=2,BC=2,则角A的取值范围是()A.B.C.D.考点:余弦定理.专题:解三角形.分析:知道两边求角的范围,余弦定理得到角和第三边的关系,而第三边根据三角形的构成条件是有范围的,这样转化到角的范围.解答:解:利用余弦定理得:4=c2+8﹣4ccosA,即c2﹣4cosAc+4=0,∴△=32cos2A﹣16≥0,∵A为锐角∴A∈(0,],故选:C.点评:此题属于解三角形题型,解题思路为:利用余弦定理解答三角形有解问题,知道两边求角的范围,余弦定理得到角和第三边的关系,而第三边根据三角形的构成条件是有范围的,这样转化到角的范围,有一定难度.10.(2012•广东)在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.考点:正弦定理.专题:计算题.分析:结合已知,根据正弦定理,可求AC解答:解:根据正弦定理,,则故选B点评:本题主要考查了正弦定理在解三角形中的应用,属于基础试题11.(2012•天河区三模)在△ABC中,若A=60°,BC=4,AC=4,则角B的大小为()A.30°B.45°C.135°D.45°或135°考点:正弦定理的应用.专题:计算题.分析:先根据正弦定理将题中所给数值代入求出sinB的值,进而求出B,再由角B的范围确定最终答案.解答:解:由正弦定理得,∴B=45°或135°∵AC<BC,∴B=45°,故选B.点评:本题主要考查了正弦定理的应用.属基础题.正弦定理在解三角形中有着广泛的应用,要熟练掌握.12.(2010•湖北)在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.考点:正弦定理.分析:根据正弦定理先求出sinB的值,再由三角形的边角关系确定∠B的范围,进而利用sin2B+cos2B=1求解.解答:解:根据正弦定理可得,,解得,又∵b<a,∴B<A,故B为锐角,∴,故选D.点评:正弦定理可把边的关系转化为角的关系,进一步可以利用三角函数的变换,注意利用三角形的边角关系确定所求角的范围.13.△ABC的内角A、B、C对边的长a、b、c成等比数列,则的取值范围是()A.(0,+∞)B.(0,2+)C.(1,+∞)D.(1,2+)考点:正弦定理;等比数列的通项公式.专题:解三角形.分析:设==q,则由任意两边之和大于第三边求得q的范围,可得的取值范围解答:解:设==q,则==q+q2,则由,求得<q<,∴<q2<,∴1<q+q2<2+,故选:D.点评:本题考查数列与三角函数的综合应用,是基础题.解题时要认真审题,仔细解答,注意三角形三边关系的灵活运用14.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()B.C.1D.A.﹣考点:余弦定理;正弦定理.专题:解三角形.分析:根据正弦定理,将条件进行化简即可得到结论.解答:解:∵3a=2b,∴b=,根据正弦定理可得===,故选:D.点评:本题主要考查正弦定理的应用,比较基础.15.(2014•重庆三模)在△ABC中,若,则∠B等于()A.30°B.45°C.60°D.90°考点:正弦定理.专题:计算题.分析:根据所给的等式和正弦定理,得到要求角的正弦和余弦相等,由根据这是一个三角形的内角得到角的度数只能是45°.解答:解:∵,又由正弦定理知,∴sinB=cosB,∵B是三角形的一个内角,∴B=45°,故选B.点评:本题考查正弦定理,是一个基础题,解题时注意当两个角的正弦值和余弦值相等时,一定要说清楚这个角的范围,这样好确定角度.16.(2014•萧山区模拟)在锐角△ABC中,若C=2B,则的范围()A.B.C.(0,2)D.考点:正弦定理;函数的值域.专题:计算题.分析:由正弦定理得,再根据△ABC是锐角三角形,求出B,cosB的取值范围即可.解答:解:由正弦定理得,∵△ABC是锐角三角形,∴三个内角均为锐角,即有,0<π﹣C﹣B=π﹣3B<解得,又余弦函数在此范围内是减函数.故<cosB<.∴<<故选A点评:本题考查了二倍角公式、正弦定理的应用、三角函数的性质.易错点是B角的范围确定不准确.17.(2014•南平模拟)在△ABC中,如果,B=30°,那么角A等于()A.30°B.45°C.60°D.120°考点:正弦定理;余弦定理.分析:本题考查的知识点是正弦定理和余弦定理,由在△ABC中,如果,我们根据正弦定理边角互化可以得到a=c,又由B=30°,结合余弦定理,我们易求出b与c的关系,进而得到B与C的关系,然后根据三角形内角和为180°,即可求出A角的大小.解答:解:∵在△ABC中,如果∴a= c又∵B=30°由余弦定理,可得:cosB=cos30°===解得:b=c则B=C=30°A=120°.故选D.点评:余弦定理:a2=b2+c2﹣2bccosA,b2=a2+c2﹣2accosB,c2=a2+b2﹣2abcosC.余弦定理可以变形为:cosA=(b2+c2﹣a2)÷2bc,cosB=(a2+c2﹣b2)÷2ac,cosC=(a2+b2﹣c2)÷2ab18.(2014•广西模拟)在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠A:∠B=1:2,且a:b=1:,则cos2B的值是()A.﹣B.C.﹣D.考点:正弦定理;二倍角的余弦.分析:根据正弦定理得到sinA:sinB,因为∠A:∠B=1:2,利用二倍角的三角函数公式得到A和B的角度,代入求出cos2B即可.解答:解:依题意,因为a:b=1:,所以sinA:sinB=1:,又∠A:∠B=1:2,则cosA=,所以A=30°,B=60°,cos2B=﹣故选A点评:考查学生灵活运用正弦定理解决数学问题的能力,以及灵活运用二倍角的三角函数公式化简求值的能力.19.(2014•鄂尔多斯模拟)在△ABC中,∠A=60°,b=1,△ABC的面积为,则边a的值为()A.B.C.D.3考点:正弦定理.专题:解三角形.分析:根据正弦定理的面积公式,结合题中数据算出边c=4,再由余弦定理a2=b2+c2﹣2bccosA的式子算出a2=13,即可算出边a的长度.解答:解:∵△ABC中,∠A=60°,b=1,∴可得△ABC的面积为S=bcsinA=×1×c×sin60°=解之得c=4根据余弦定理,得a2=b2+c2﹣2bccosA=1+16﹣2×1×4×cos60°=13,所以a=(舍负)故选C点评:本题给出三角形一边、一角和面积,求边a的长度.着重考查了正弦定理的面积公式和利用余弦定理解三角形等知识,属于基础题.20.(2014•文登市二模)△ABC的内角A,B,C的对边分别为a,b,c,且asinA+csinC+asinC=bsinB,则∠B ()A.B.C.D.考点:正弦定理.专题:计算题;解三角形.分析:由已知结合正弦定理可得,,然后利用余弦定理可得,cosB==﹣,可求B解答:解:∵asinA+csinC+asinC=bsinB,∴由正弦定理可得,由余弦定理可得,cosB==﹣∵0<B<π∴B=.故选:D.点评:本题主要考查了正弦定理、余弦定理在求解三角形中的应用,属于基础题.二.解答题(共10小题)21.(2014•山东)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.考点:正弦定理.专题:解三角形.分析:(Ⅰ)利用cosA求得sinA,进而利用A和B的关系求得sinB,最后利用正弦定理求得b的值.(Ⅱ)利用sinB,求得cosB的值,进而根两角和公式求得sinC的值,最后利用三角形面积公式求得答案.解答:解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.点评:本题主要考查了正弦定理的应用.解题过程中结合了同角三角函数关系,三角函数恒等变换的应用,注重了基础知识的综合运用.22.(2014•东城区一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.考点:正弦定理;两角和与差的正切函数.分析:本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.解答:解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.点评:在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.23.(2014•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA ﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.考点:正弦定理;二倍角的正弦;二倍角的余弦.专题:解三角形.分析:(Ⅰ)△ABC中,由条件利用二倍角公式化简可得﹣2sin(A+B)sin(A﹣B)=2•cos(A+B)sin(A﹣B).求得tan(A+B)的值,可得A+B的值,从而求得C的值.(Ⅱ)由sinA=求得cosA的值.再由正弦定理求得a,再求得sinB=sin[(A+B)﹣A]的值,从而求得△ABC的面积为的值.解答:解:(Ⅰ)∵△ABC中,a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB,∴﹣=sin2A﹣sin2B,即cos2A﹣cos2B=sin2A﹣sin2B,即﹣2sin(A+B)sin(A﹣B)=2•cos(A+B)sin(A﹣B).∵a≠b,∴A≠B,sin(A﹣B)≠0,∴tan(A+B)=﹣,∴A+B=,∴C=.(Ⅱ)∵sinA=<,C=,∴A<,或A>(舍去),∴cosA==.由正弦定理可得,=,即=,∴a=.∴sinB=sin[(A+B)﹣A]=sin(A+B)cosA﹣cos(A+B)sinA=﹣(﹣)×=,∴△ABC的面积为=×=.点评:本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题.24.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.考点:正弦定理;两角和与差的余弦函数.专题:三角函数的求值.分析:(Ⅰ)已知第二个等式利用正弦定理化简,代入第一个等式表示出a,利用余弦定理表示出cosA,将表示出的a,b代入计算,即可求出cosA的值;(Ⅱ)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,进而利用二倍角的正弦、余弦函数公式求出sin2A与cos2A的值,原式利用两角和与差的余弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.解答:解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.25.(2014•兴安盟一模)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c﹣a)cosB﹣bcosA=0.(Ⅰ)若b=7,a+c=13求此三角形的面积;(Ⅱ)求sinA+sin(C﹣)的取值范围.考点:正弦定理;同角三角函数基本关系的运用.专题:计算题.分析:利用正弦定理化简已知条件,根据三角形的内角和定理及诱导公式化简,由sinC不为0,得到cosB的值,由B的范围,利用特殊角的三角函数值即可得到B的度数,(Ⅰ)根据余弦定理,由b,cosB和a+c的值,求出ac的值,然后利用三角形的面积公式,由ac的值和sinB的值即可求出三角形ABC的面积;(Ⅱ)由求出的B的度数,根据三角形的内角和定理得到A+C的度数,用A表示出C,代入已知的等式,利用诱导公式及两角和的正弦函数公式化为一个角的正弦函数,根据A的范围求出这个角的范围,由正弦函数的值域即可得到所求式子的取值范围.解答:解:由已知及正弦定理得:(2sinC﹣sinA)cosB﹣sinBcosA=0,即2sinCcosB﹣sin(A+B)=0,在△ABC中,由sin(A+B)=sinC故sinC(2cosB﹣1)=0,∵C∈(0,π),∴sinC≠0,∴2cosB﹣1=0,所以B=60°(3分)(Ⅰ)由b2=a2+c2﹣2accos60°=(a+c)2﹣3ac,即72=132﹣3ac,得ac=40(5分)所以△ABC的面积;(6分)(Ⅱ)因为==,(10分)又A∈(0,),∴,则sinA+sin(C﹣)=2sin(A+)∈(1,2].点评:此题考查学生灵活运用正弦定理及诱导公式化简求值,灵活运用三角形的面积公式及两角和的正弦函数公式化简求值,掌握正弦函数的值域,是一道中档题.26.(2014•福建模拟)设△ABC中的内角A,B,C所对的边长分别为a,b,c,且,b=2.(Ⅰ)当时,求角A的度数;(Ⅱ)求△ABC面积的最大值.考点:正弦定理.专题:计算题.分析:(I)由可求sinB=且B为锐角,由b=2,a=考虑利用正弦定理可求sinA,结合三角形的大边对大角且a<b可知A<B,从而可求A,(II)由,b=2利用余弦定理可得,b2=a2+c2﹣2accosB,把已知代入,结合a2+c2≥2ac可求ac的范围,在代入三角形的面积公式可求△ABC面积的最大值.解答:解:∵∴sinB=且B为锐角(I)∵b=2,a=由正弦定理可得,∴∵a<b∴A<B∴A=30°(II)由,b=2利用余弦定理可得,b2=a2+c2﹣2accosB∴从而有ac≤10∴∴△ABC面积的最大值为3点评:本题(I)主要考查了利用正弦定理及三角形的大边对大角解三角形(II)利用余弦定理及基本不等式、三角形的面积公式综合求解三角形的面积.考查的是对知识综合运用.27.(2014•江西模拟)三角形ABC中,内角A,B,C所对边a,b,c成公比小于1的等比数列,且sinB+sin(A ﹣C)=2sin2C.(1)求内角B的余弦值;(2)若b=,求△ABC的面积.考点:正弦定理;余弦定理.专题:解三角形.分析:(Ⅰ)三角形ABC中,由条件化简可得sinA=2sinC,故有a=2c.再由b2=ac=2c2,求得cosB=的值.(Ⅱ)根据b=,b2=ac=2c2,求得c和a的值,求得sinB=的值,再根据△ABC的面积S=ac•sinB,计算求得结果.解答:解:(Ⅰ)三角形ABC中,∵sinB+sin(A﹣C)=2sin2C,∴sin(A+C)+sin(A﹣C)=4sinCcosC,sinA=2sinC,∴a=2c.又因为b2=ac=2c2,∴cosB==.(Ⅱ)∵b=,b2=ac=2c2,∴c=,∴a=.又∵sinB==∴△ABC的面积S=ac•sinB=.点评:本题主要考查两角和差的三角公式、正弦定理、余弦定理的应用,属于中档题.28.(2014•陕西)△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a,b,c成等差数列,利用等差数列的性质列出关系式,利用正弦定理化简,再利用诱导公式变形即可得证;(Ⅱ)由a,bc成等比数列,利用等比数列的性质列出关系式,再利用余弦定理表示出cosB,将得出的关系式代入,并利用基本不等式变形即可确定出cosB的最小值.解答:解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.点评:此题考查了正弦、余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理是解本题的关键.29.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.考点:余弦定理;正弦定理.专题:三角函数的求值.分析:(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab的值,联立即可求出a与b的值.解答:解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.30.(2014•启东市模拟)在△ABC中,A,B,C为三个内角a,b,c为三条边,,且.(Ⅰ)判断△ABC的形状;(Ⅱ)若,求的取值范围.考点:正弦定理;余弦定理.专题:计算题;解三角形.分析:(1)先利用正弦定理把题设等式中的边转化成角的正弦,利用二倍角公式和两角和公式整理求得sinB=sin2C,进而根据B,C的范围,求得B+2C=π,判断出A=C,即三角形为等腰三角形.(2)利用平面向量的性质,依据已知条件求得a2+c2+2ac•cosB=4,根据a的值求得cosB的值.解答:解:(1)由及正弦定理,得,即sinBsinA﹣sinBsin2C=sinAsin2C﹣sinBsin2C,即sinBsinA=sinAsin2C,因为A是三角形内角,所以sinA≠0,可得sinB=sin2C,∵,∴,∴B+2C=π,∵A+B+C=π,∴A=C,△ABC为等腰三角形.(2)∵∴B∈(0,),∴cosB∈(,1)由(1)可知a=c,由,得a2+c2+2ac•cosB=4,∴a2=,∴=cosB=a2•cosB==2﹣∈(,1)(12分).点评:本题主要考查了正弦定理的应用.解题的关键是利用正弦定理进行了边角问题的转化.。

解三角形(提升)练习题(含答案)

解三角形(提升)练习题(含答案)

解三角形练习(提升)(含答案)一、选择题1、在△ABC 中,a, b, c 分别是内角 A , B , C 所对的边,若 c cos A b ,则△ABC 形状为 CA.一定是锐角三角形 B . 一定是钝角三角形C . 一定是直角三角形D . 可能是锐角三角形, 也可能是钝角三角形2、在△ABC 中,角A、B、C 的对边分别为a、b、c,若(a2+c2-b2)tanB= 3ac , 则角 B 的值为(D )A. B. C.或6 3 6 56D.3或233、在△ABC中,AB 3 ,A 45 ,C 75 ,则BC (A)A.3 3 B. 2 C.2D.3 34、在ABC 中,02 xA 60 ,且最大边长和最小边长是方程x 7 11 0的两个根,则第三边的长为( C )A.2 B.3 C.4 D.55、在△ABC中,根据下列条件解三角形,则其中有二个解的是 DA、b 10, A 45 ,C70B、a 60, c 48, B 60C、a 7,b 5,A 80D、a 14, b 16, A 456、长为5、7、8 的三角形的最大角与最小角之和为( B )A 90°B 120°C 135°D 150°二、填空题:7、如图,在△ABC 中,D 是边AC 上的点,且AB AD ,2 A B 3BD ,BC 2BD ,则s in C 的值为___________。

6 68、如图,△ABC 中,AB=AC=2 ,BC= 2 3 ,点D 在BC 边上,∠ADC=4°5,则AD 的长度等于______。

解析:在△ABC 中,AB=AC=2 ,BC= 2 3 中,ACB ABC 30 ,而∠ADC=4°5,AC ADsin 45 sin 30, AD 2 ,答案应填 2 。

9、在△ABC中,若tan1A ,C 150 ,BC 1,则AB .3110答案210、在锐角△ABC 中,BC=1,B=2A,则AC的值等于________,AC 的取值范围为________.cos A解析:由正弦定理BC=sin AAC,则sin BAC=cos ABC s in B=sin Acos A2BCsin Bsin 2A=2.由A+B+C=π得3A+C=π,即C=π-3A.π0< A<2由已知条件:π0<2 A<2,解得ππ<A< .由AC=2cos A 知2<AC< 3.6 4π 0<π-3A<2答案:2 ( 2,3)三、解答题:11、在△ABC 中,内角A,B,C 对边的边长分别是a,b,c ,已知c 2,C .3 (Ⅰ)若△ABC的面积等于 3 ,求a,b ;(Ⅱ)若sin B 2sin A,求△ABC的面积.解:(Ⅰ)由余弦定理得, 2 2 4a b ab ,又因为△ABC的面积等于 3 ,所以12ab sin C 3 ,得ab 4.联立方程组2 2 4a b ab,解得a 2,b 2.ab 4,(Ⅱ)由正弦定理,已知条件化为 b 2a,联立方程组2 2 4a b ab,解得b 2a,2 3a ,34 3b .3所以△ABC的面积 1 sin 2 3S ab C .2 312、在ABC中,若c osB b cosC 2a c(1)求角B的大小(2)若b 13 ,a c 4,求ABC的面积2 a2c2b解:(1)由余弦定理得2a 2ac2b2cb2a c2 2 2化简得: a c b ac2ab2∴2 2 2a cb ac 1cos B∴B=120°2ac 2ac 22 2 2(2)b a c 2ac cos B 2 ac ac1∴13 (a c) 2 2 ( )2∴ac=3 ∴S ABC 12ac sin B3 3413、某市电力部门某项重建工程中,需要在A、B 两地之间架设高压电线,因地理条件限制,不能直接测量A、B两地距离. 现测量人员在相距 3 km的C 、D 两地(假设A、B 、C 、D 在同一平面上),测得∠A CB 75 ,BCD 45 ,ADC 30 ,ADB 45 (如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度大约应该是A、B 距离的43倍,问施工单位至少应该准备多长的电线?A解:在ACD 中,由已知可得,CAD 30B 所以,AC 3km⋯⋯⋯754545在BCD 中,由已知可得,CBD 6030CDsin 75 sin(45 30 ) 6 2 4由正弦定理,BC 3 sin 75 6 2 sin 60 2cos 75 cos(45 30 ) 6 2 4在ABC中,由余弦定理 2 2 2 cosAB AC BC AC BC BCA2 6 2 2 6 23 ( ) 2 3 cos75 52 2所以,AB 5 施工单位应该准备电线长4 53.答:施工单位应该准备电线长435 km.3。

解直角三角形练习试题1(含答案解析)

解直角三角形练习试题1(含答案解析)

解直角三角形练习题1一. 选择题:(每小题2分,共20分)1. 在△EFG 中,∠G=90°,EG=6,EF=10,则cotE=( ) A.43 B. 34 C. 53 D. 35 2. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( ) A.21B. 33C. 1D. 33. 在△ABC 中,若22cos =A ,3tan =B,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形4. 如图18,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式中,错误的是( )A.EGEF G =sin B. EFEH G =sinC. FGGH G =sin D. FGFH G =sin 5. sin65°与cos26°之间的关系为( )A. sin65°<cos26°B. sin65°>cos26°C. sin65°=cos26°D. sin65°+cos26°=1 6. 已知30°<α<60°,下列各式正确的是( ) A.B.C.D.7. 在△ABC 中,∠C=90°,52sin =A ,则sinB 的值是( ) A.32 B.52 C.54D.521 8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是( )米2A. 150B.375C. 9D. 79. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i= 2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( )A. 7米B. 9米C. 12米D. 15米 10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( ) A.αsin 1 B. αcos 1C. αsinD. 1二. 填空题:(每小题2分,共10分)11. 已知0°<α<90°,当α=__________时,21sin =α,当α=__________时,Cota=3. 12. 若,则锐角α=__________。

2022届高三数学(理)一轮总复习练习-第三章 三角函数、解三角形 3-4 Word版含答案

2022届高三数学(理)一轮总复习练习-第三章 三角函数、解三角形 3-4 Word版含答案

课时规范训练[A 级 基础演练]1.设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >aD .c >a >b解析:选C.∵a =sin 33°,b =cos 55°=sin 35°,c =tan 35°=sin 35°cos 35°,又0<cos 35°<1,∴c >b >a .2.函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) 解析:选B.由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ). 3.(2022·高考山东卷)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( ) A.π2 B .π C.32πD .2π解析:选B.法一:由题意得f (x )=3sin x cos x -3sin 2x +3cos 2x -sin x cos x =sin 2x +3cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π3 .故该函数的最小正周期T =2π2=π.故选B.法二:由题意得f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6×2cos ⎝ ⎛⎭⎪⎫x +π6=2sin ⎝ ⎛⎭⎪⎫2x +π3.故该函数的最小正周期T =2π2=π.故选B.4.(2022·高考全国甲卷)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z ) B .x =k π2+π6(k ∈Z ) C .x =k π2-π12(k ∈Z )D .x =k π2+π12(k ∈Z )解析:选B.法一:将函数y =2sin 2x 的图象向左平移π12个单位长度,得到y =2sin 2⎝ ⎛⎭⎪⎫x +π12=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象.由2x +π6=π2+k π(k ∈Z )得,∴x =π6+k 2π.(k ∈Z ),即平移后图象的对称轴为x =k π2+π6(k ∈Z ). 法二:∵y =2sin 2x 的对称轴为x =π4+k 2π,向左平移π12个单位后为x =π4-π12+k 2π=π6+k2π,故选B.5.(2021·长春模拟)函数f (x )=sin(2x +ф)⎝ ⎛⎭⎪⎫|φ|<π2向左平移π6个单位后是奇函数,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为 . 解析:函数f (x )=sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2向左平移π6个单位后得到函数为f ⎝ ⎛⎭⎪⎫x +π6=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于此时函数为奇函数,所以π3+φ=k π(k ∈Z ),所以φ=-π3+k π(k ∈Z ).由于|φ|<π2,所以当k =0时,φ=-π3,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.当0≤x ≤π2时,-π3≤2x -π3≤2π3,即当2x -π3=-π3时,函数f (x )=sin ⎝⎛⎭⎪⎫2x -π3有最小值为sin ⎝ ⎛⎭⎪⎫-π3=-32. 答案:-326.当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x = .解析:由已知条件可得y =2sin ⎝ ⎛⎭⎪⎫x -π3,又由0≤x <2π得-π3≤x -π3<5π3,当x -π3=π2时y 取得最大值,此时x =5π6.答案:5π67.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为 .解析:分析三角函数图象,依据最小值求k ,再求最大值.依据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.答案:88.设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为 .解析:利用正弦函数的对称性求周期. ∵f (x )在⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,∴T 2≥π2-π6,∴T ≥2π3.∵f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,∴f (x )的一条对称轴为x =π2+2π32=7π12.又∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,∴f (x )的一个对称中心的横坐标为π2+π62=π3. ∴14T =7π12-π3=π4,∴T =π.答案:π9.(2022·高考北京卷)已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π. (1)求ω的值;(2)求f (x )的单调递增区间.解:(1)由于f (x )=2sin ωx cos ωx +cos 2ωx=sin 2ωx +cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx +π4, 所以f (x )的最小正周期T =2π2ω=πω.依题意,πω=π,解得ω=1.(2)由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x +π4≤2k π+π2(k ∈Z ), 得k π-3π8≤x ≤k π+π8(k ∈Z ).∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-38π,k π+π8k ∈Z .10.已知函数y =f (x )=23sin x cos x +2cos 2x +a (x ∈R ),其中a 为常数. (1)求函数y =f (x )的最小正周期;(2)假如y =f (x )的最小值为0,求a 的值,并求此时f (x )的最大值及图象的对称轴方程. 解:(1)y =f (x )=3sin 2x +cos 2x +1+a =2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1,所以函数的最小正周期T =π.(2)f (x )的最小值为0,所以-2+a +1=0,故a =1,所以函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6+2的最大值等于4.当2x +π6=k π+π2(k ∈Z ),即x =k π2+π6(k ∈Z )时函数有最大值或最小值, 故函数f (x )的图象的对称轴方程为x =k π2+π6(k ∈Z ). [B 级 力量突破]1.同时具有性质:“①最小正周期为π;②图象关于直线x =π3对称;③在⎝ ⎛⎭⎪⎫-π6,π3上是增函数”的一个函数是( )A .y =sin ⎝ ⎛⎭⎪⎫x 2+π6B .y =cos ⎝ ⎛⎭⎪⎫x 2-π6C .y =sin ⎝ ⎛⎭⎪⎫2x -π6D .y =cos ⎝ ⎛⎭⎪⎫2x +π3解析:选C.对于A ,y =sin ⎝ ⎛⎭⎪⎫x 2+π6的最小正周期为4π,故排解A ;对于B ,y =cos ⎝ ⎛⎭⎪⎫x 2-π6的最小正周期为4π,故排解B ;对于D ,当x ∈⎝ ⎛⎭⎪⎫-π6,π3时,2x +π3∈(0,π),此时y =cos ⎝ ⎛⎭⎪⎫2x +π3单调递减,故排解D.选C.2.函数f (x )=|sin x |+2|cos x |的值域为( ) A .[1, 5 ] B .[1,2] C .[2, 5 ]D .[5,3]解析:选A.∵f (x +π)=|sin(x +π)|+2|cos(x +π)|=|-sin x |+2|-cos x |=|sin x |+2|cos x |, ∴f (x )为偶函数,f (x )为周期函数,其中的一个周期为π,故只需考虑f (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域即可.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x +2cos x =5sin(x +α),其中cos α=15,sin α=25,∴f (x )max=f ⎝ ⎛⎭⎪⎫π2-α=5,f (x )≥f ⎝ ⎛⎭⎪⎫π2=1.当x ∈⎣⎢⎡⎦⎥⎤π2,π时, f (x )=sin x -2cos x =5sin(x +β),其中cos β=15, sin β=-25,∴f (x )max =f ⎝ ⎛⎭⎪⎫π2-β=5,f (x )min =f ⎝ ⎛⎭⎪⎫π2=1,∴f (x )的值域为[1, 5 ].3.(2021·江西南昌一模)如图,M (x M ,y M ),N (x N ,y N )分别是函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象与两条直线l 1:y =m (A ≥m ≥0),l 2:y =-m 的两个交点,记S (m )=|x N -x M |,则S (m )的图象大致是( )解析:选C.如图所示,作曲线y =f (x )的对称轴x =x 1,x =x 2,点M 与点D 关于直线x =x 1对称,点N 与点C 关于直线x =x 2对称,所以x M +x D =2x 1,x C +x N =2x 2,所以x D =2x 1-x M ,x C =2x 2-x N ,又点M 与点C 、点D 与点N 都关于点B 对称,所以x M +x C =2x B ,x D +x N =2x B ,所以x M +2x 2-x N =2x B ,2x 1-x M +x N =2x B , 得x M -x N =2(x B -x 2)=-T2, x N -x M =2(x B -x 1)=T2,所以|x M -x N |=T2(常数),其中,T 为f (x )的周期,选C.4.设函数f (x )=|cos x |+|sin x |,下列四个结论正确的是 .①f (x )是奇函数;②f (x )的图象关于直线x =3π4对称;③当x ∈[0,2π]时,f (x )∈[1,2];④当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )单调递增.解析:对于①,f (-x )=|cos(-x )|+|sin(-x )|=|cos x |+|sin x |,∴f (-x )=f (x )是偶函数,①不正确;对于②,留意到f ⎝ ⎛⎭⎪⎫3π2-x =⎪⎪⎪⎪⎪⎪cos ⎝ ⎛⎭⎪⎫3π2-x +⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫3π2-x =|sin x |+|cos x |=f (x ),因此函数f (x )的图象关于直线x =3π4对称,②正确;对于③④,留意到f ⎝ ⎛⎭⎪⎫x +π2=⎪⎪⎪⎪⎪⎪cos ⎝ ⎛⎭⎪⎫x +π2+⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π2=|sin x |+|cos x |=f (x ),因此函数f (x )是以π2为周期的函数,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=|sin x |+|cos x |=sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4的值域是[1,2],故当x ∈[0,2π]时,f (x )∈[1,2],又f ⎝ ⎛⎭⎪⎫π4=2>1=f ⎝ ⎛⎭⎪⎫π2,因此f (x )在⎣⎢⎡⎦⎥⎤0,π2上不是增函数,故③正确,④不正确.综上所述,其中正确的结论是②③.答案:②③5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2ωx -π6-4sin 2ωx +2(ω>0),其图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个长度单位得到函数g (x )的图象恰好经过点⎝ ⎛⎭⎪⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎢⎡⎦⎥⎤-π6,7π12上的单调递增区间.解:(1)函数f (x )=sin ⎝ ⎛⎭⎪⎫2ωx -π6-4sin 2ωx +2=32sin 2ωx -12cos 2ωx -4×1-cos 2ωx 2+2=32sin 2ωx +32cos 2ωx =3sin ⎝ ⎛⎭⎪⎫2ωx +π3(ω>0),依据函数f (x )的图象与x 轴相邻两个交点的距离为π2,可得函数f (x )的最小正周期为2×π2=2π2ω,得ω=1,故函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π3.(2)将f (x )的图象向左平移m (m >0)个长度单位得到函数g (x )=3sin ⎣⎢⎡⎦⎥⎤2(x +m )+π3=3sin ⎝ ⎛⎭⎪⎫2x +2m +π3的图象, 依据g (x )的图象恰好经过点⎝ ⎛⎭⎪⎫-π3,0,可得3sin ⎝ ⎛⎭⎪⎫-2π3+2m +π3=0,即sin ⎝ ⎛⎭⎪⎫2m -π3=0,所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ),由于m >0,所以当k =0时,m 取得最小值,且最小值为π6. 此时,g (x )=3sin ⎝ ⎛⎭⎪⎫2x +2π3.令2k π-π2≤2x +2π3≤2k π+π2,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z ,故函数g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-7π12,k π-π12,k ∈Z .结合x ∈⎣⎢⎡⎦⎥⎤-π6,7π12,可得g (x )在⎣⎢⎡⎦⎥⎤-π6,7π12上的单调递增区间为⎣⎢⎡⎦⎥⎤-π6,-π12和⎣⎢⎡⎦⎥⎤5π12,7π12.。

(完整版)解三角形大题及答案

(完整版)解三角形大题及答案

1.(2013大纲)设的内角的对边分别为,.(I)求(II)若,求. 2.(2013四川)在中,角的对边分别为,且. (Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山东)设△的内角所对的边分别为,且,,. (Ⅰ)求的值; (Ⅱ)求的值.4.(2013湖北)在中,角,,对应的边分别是,,.已知.(I)求角的大小;(II)若的面积,,求的值.5.(2013新课标)△在内角的对边分别为,已知.(Ⅰ)求;(Ⅱ)若,求△面积的最大值.6.(2013新课标1)如图,在△ABC 中,∠ABC=90°,AB=3,BC=1,P 为△ABC 内一点,∠BPC=90°(1)若PB=12,求PA;(2)若∠APB=150°,求tan ∠PBA[7.(2013江西)在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA-√3sinA)cosB=0.ABC ∆,,A B C ,,a b c ()()a b c a b c ac ++-+=B sin sin AC =C ABC ∆,,A B C ,,a b c 232cos cos sin()sin cos()25A B B A B B A C ---++=-cosA a =5b =BA BC ABC ,,ABC ,,a b c 6a c +=2b =7cos 9B =,a c sin()A B -ABC ∆A B C a b c ()cos23cos 1A B C -+=A ABC∆S =5b =sin sin B C(1) 求角B 的大小;(2)若a+c=1,求b 的取值范围33.(2013大纲)设的内角的对边分别为,.(I)求(II)若,求. 【答案】4.(2013年高考四川卷(理))在中,角的对边分别为,且. (Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.【答案】解:由,得 , 即, 则,即 ABC ∆,,A B C ,,a b c ()()a b c a b c ac ++-+=B sin sin AC =C ABC ∆,,A B C ,,a b c 232cos cos sin()sin cos()25A B B A B B A C ---++=-cosA a =5b =BA BC ()I ()()232cos cos sin sin cos 25A B B A B B A C ---++=-()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦()()3cos cos sin sin 5A B B A B B ---=-()3cos 5A B B -+=-3cos 5A =-由,得, 由正弦定理,有,所以,. 由题知,则,故.根据余弦定理,有,解得或(舍去).故向量在方向上的投影为 35.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设△的内角所对的边分别为,且,,. (Ⅰ)求的值; (Ⅱ)求的值.【答案】解:(Ⅰ)由余弦定理,得,又,,,所以,解得,.(Ⅱ)在△中,,由正弦定理得,因为,所以为锐角,所以因此.36.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知函数的最小正周期为.()II 3cos ,05A A π=-<<4sin 5A =sin sin a bA B=sin sin 2b A B a ==a b >A B >4B π=(22235255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭1c =7c =-BABC cos BA B =ABC ,,A B C ,,a b c 6a c +=2b =7cos 9B =,a c sin()A B -2222cos b a c ac B =+-()222(1cos )b ac ac B =+-+6a c +=2b =7cos 9B =9ac =3a =3c =ABC sin 9B ==sin sin 3a B A b ==a c=A 1cos 3A ==sin()sin cos cos sin A B A B A B -=-=()4cos sin (0)4f x x x πϖϖϖ⎛⎫=⋅+> ⎪⎝⎭π(Ⅰ)求的值; (Ⅱ)讨论在区间上的单调性.【答案】解:(Ⅰ).所以 (Ⅱ)所以37.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知函数的周期为,图像的一个对称中心为,将函数图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移个单位长度后得到函数的图像. (1)求函数与的解析式;(2)是否存在,使得按照某种顺序成等差数列?若存在,请确定的个数;若不存在,说明理由(3)求实数与正整数,使得在内恰有2013个零点. 【答案】解:(Ⅰ)由函数的周期为,,得又曲线的一个对称中心为,故,得,所以将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变)后可得的图象,再将的图象向右平移个单位长度后得到函数ϖ()f x []0,22)42sin(2)12cos 2(sin 2)cos (sin cos 22++=++=+⇒πωωωωωωx x x x x x 122=⇒=⇒ωπωπ1,2)42sin(2)(=++=ωπx x f ;解得,令时,当8242]4,4[)42(]2,0[ππππππππ==++∈+∈x x x x .]28[]8,0[)(上单调递减,上单调递增;在在πππx f y =(Ⅱ)当时,,所以问题转化为方程在内是否有解设,则因为,所以,在内单调递增又,且函数的图象连续不断,故可知函数在内存在唯一零点,即存在唯一的满足题意(Ⅲ)依题意,,令当,即时,,从而不是方程的解,所以方程等价于关于的方程,现研究时方程解的情况令,则问题转化为研究直线与曲线在的交点情况,令,得或当变化时,和变化情况如下表当且趋近于时,趋向于 当且趋近于时,趋向于 当且趋近于时,趋向于 当且趋近于时,趋向于故当时,直线与曲线在内有无交点,在内有个交点; 当时,直线与曲线在内有个交点,在内无交点;当时,直线与曲线在内有个交点,在内有个交点 由函数的周期性,可知当时,直线与曲线在内总有偶数个交点,从而不存在正整数,使得直线与曲线在内恰有个交点;当时,直线与曲线在内有个交点,由周期性,,所以综上,当,时,函数在内恰有个零点38.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.已知,. (1)若,求证:;(2)设,若,求的值.【答案】解:(1)∵ ∴ 即,又∵,∴∴∴(cos ,sin )(cos ,sin )a b ααββ==,παβ<<<0||2a b -=a b ⊥(0,1)c =a b c +=βα,2||=-b a 2||2=-b a ()22222=+-=-b b a a b a 1sin cos ||2222=+==ααa a 1sin cos ||2222=+==ββb b 222=-b a 0=b a b ⊥a(2)∵∴即两边分别平方再相加得: ∴ ∴ ∵ ∴ 39.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知函数,.(Ⅰ) 求的值; (Ⅱ) 若,,求.【答案】(Ⅰ); (Ⅱ) 因为,,所以, 所以, 所以. 40.(2013年高考湖南卷(理))已知函数.(I)若是第一象限角,且.求的值; (II)求使成立的x 的取值集合.【答案】解: (I))1,0()sin sin ,cos (cos b a =++=+βαβα⎩⎨⎧=+=+1sin sin 0cos cos βαβα⎩⎨⎧-=-=βαβαsin 1sin cos cos βsin 221-=21sin =β21sin =απαβ<<<0πβπα61,65==()12f x x π⎛⎫=- ⎪⎝⎭x ∈R 6f π⎛⎫- ⎪⎝⎭3cos 5θ=3,22πθπ⎛⎫∈ ⎪⎝⎭23f πθ⎛⎫+ ⎪⎝⎭1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭222cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3cos 5θ=3,22πθπ⎛⎫∈⎪⎝⎭4sin 5θ=-24sin 22sin cos 25θθθ==-227cos 2cos sin 25θθθ=-=-23f πθ⎛⎫+⎪⎝⎭cos2sin 2θθ=-72417252525⎛⎫=---= ⎪⎝⎭2()sin()cos().()2sin 632x f x x x g x ππ=-+-=α()f α=()g α()()f x g x ≥.(II) 41.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.如图,游客从某旅游景区的景点处下山至处有两种路径.一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现有甲.乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,山路长为,经测量,,. (1)求索道的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在什么范围内?【答案】解:(1)∵, ∴∴,∴ 根据得 533sin 3)(sin 3sin 23cos 21cos 21sin 23)(==⇒=++-=ααf x x x x x x f 51cos 12sin 2)(,54cos )2,0(,53sin 2=-===⇒∈=⇒ααααπααg 且21)6sin(cos 21sin 23cos 1sin 3)()(≥+=+⇒-≥⇒≥πx x x x x x g x f Z k k k x k k x ∈+∈⇒++∈+⇒],322,2[]652,62[6ππππππππA C A C AB BC A AC min /50m min 2A B B min 1C min /130m AC m 12601312cos =A 53cos =C AB C 31312cos =A 53cos =C ),(、20π∈C A 135sin =A 54sin =C []6563sin cos cos sin sin sin sin =+=+=+-=C A C A C A C A B )()(πsinB sinC AC AB =m C AC AB 1040sin sinB==CBA(2)设乙出发t 分钟后,甲.乙距离为d,则∴ ∵即 ∴时,即乙出发分钟后,乙在缆车上与甲的距离最短. (3)由正弦定理得(m) 乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C 设乙的步行速度为V ,则∴∴ ∴为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在范围内法二:解:(1)如图作BD ⊥CA 于点D , 设BD =20k ,则DC =25k ,AD =48k , AB =52k ,由AC =63k =1260m, 知:AB =52k =1040m.(2)设乙出发x 分钟后到达点M , 此时甲到达N 点,如图所示. 则:AM =130x ,AN =50(x +2),由余弦定理得:MN 2=AM 2+AN 2-2 AM ·AN cos A =7400 x 2-14000 x +10000,其中0≤x ≤8,当x =3537(min)时,MN 最小,此时乙在缆车上与甲的距离最短.(3)由(1)知:BC =500m,甲到C 用时:126050=1265(min).若甲等乙3分钟,则乙到C 用时:1265+3=1415 (min),在BC 上用时:865 (min) .此时乙的速度最小,且为:500÷865=125043m/min. 1312)50100(1302)50100()130(222⨯+⨯⨯-++=t t t t d )507037(20022+-=t t d 13010400≤≤t 80≤≤t 3735=t 3735sinBsinA ACBC =50013565631260sin sinB ===A AC BC min /m 350710500≤-v 3507105003≤-≤-v 14625431250≤≤v C 3⎥⎦⎤⎢⎣⎡14625,431250若乙等甲3分钟,则乙到C 用时:1265-3=1115 (min),在BC 上用时:565 (min) .此时乙的速度最大,且为:500÷565=62514m/min. 故乙步行的速度应控制在[125043,62514]范围内.42.(2013年高考湖北卷(理))在中,角,,对应的边分别是,,.已知.(I)求角的大小;(II)若的面积,,求的值.【答案】解:(I)由已知条件得:,解得,角 (II),由余弦定理得:, 43.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))△在内角的对边分别为,已知.(Ⅰ)求;(Ⅱ)若,求△面积的最大值.【答案】ABC ∆A B C a b c ()cos23cos 1A B C -+=A ABC∆S =5b =sin sin B C cos23cos 1A A +=22cos 3cos 20A A ∴+-=1cos 2A =60A =︒1sin 2S bc A ==4c ⇒=221a =()222228sin a R A ==25sin sin 47bc B C R ∴==CBADMN44.(2013年高考新课标1(理))如图,在△ABC 中,∠ABC=90°,AB=3,BC=1,P 为△ABC 内一点,∠BPC=90°(1)若PB=12,求PA;(2)若∠APB=150°,求tan ∠PBA [【答案】(Ⅰ)由已知得,∠PBC=,∴∠PBA=30o ,在△PBA 中,由余弦定理得==,∴PA=;(Ⅱ)设∠PBA=,由已知得,PB=,在△PBA 中,由正弦定理得,,化简得,,∴=,∴=.45.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第一小题满分4分,第二小题满分9分.在平面直角坐标系中,点在轴正半轴上,点在轴上,其横坐标为,且 是首项为1、公比为2的等比数列,记,.(1)若,求点的坐标; (2)若点的坐标为,求的最大值及相应的值.[解](1)(2) 【答案】[解](1)设,根据题意,.由,知, 而, 所以,解得或. 故点的坐标为或. (2)由题意,点的坐标为,. 因为所以, xOy A y n P x n x {}n x 1nn n P AP θ+∠=n N *∈31arctan 3θ=A A (0n θn (0 )A t ,12n n x -=31arctan 3θ=31tan 3θ=3443343223443()4tan tan()321x x t x x t t t OAP OAP x x t x x t t tθ--=∠-∠===+⋅++⋅241323t t =+4t =8t =A (0 4),(0 8),n P 1(2 0)n -,1tan n n OAP -∠=111212tan tan()12n n n n n n n n OAP OAP θ--+-=∠-∠===2n n ≥tan 4n θ≤=当且仅当,即时等号成立. 易知在上为增函数, 因此,当时,最大,其最大值为. 46.(2013年高考江西卷(理))在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA-√3sinA)cosB=0.(1) 求角B 的大小;若a+c=1,求b 的取值范围【答案】解:(1)由已知得 即有因为,所以,又,所以, 又,所以. (2)由余弦定理,有.因为,有. 又,于是有,即有.2nn =4n =0 tan 2n y x πθ<<=,(0 )2π,4n =nθarctan4cos()cos cos cos 0A B A B A B -++=sin sin cos 0A B A B =sin 0A≠sin 0B B =cos 0B≠tan B =0B π<<3B π=2222cos b a c ac B =+-11,cos 2a c B +==22113()24b a =-+01a <<2114b ≤<112b ≤<。

(完整word)高一必修五解三角形复习题及答案

(完整word)高一必修五解三角形复习题及答案

解三角形广州市第四中学 文U 运科、选择题•本大题共10小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.△ ABC 的内角 A B, C 的对边分别为a,b, c ,若c 、、2, b ..6,B 120o ,则a等于【】C .3C . .3 1A . 135oB . 90oC . 45°D . 30°4. 在三角形ABC 中,AB 5, AC 3, BC 7,贝U BAC 的大小为【 】253A .B .C .D .—3 64 3 5. △ ABC 的内角A 、B 、C 的对边分别为a 、b c ,若a b c 成等比数列,且c 2a ,则 cosB【】132A.4B .4C .4D . 36. △ ABC 中, 已知 tan A 1,tan B 1 则角C 等于【】32 'A.135oB . 120oC . 45oD . 30(一 uuu umr7.在 ABC 中,AB=3, AC=2 , BC= . 10,则 AB AC 【】3 2 2 3A . -B . —C .D .-2 3 3 28.若厶ABC 的内角 A 、B 、C 的对边分别为 a 、b 、c ,且 a cosA bcosB ,则【A.疋疋锐角—角形B.可能是钝角三角形C.D.可能是直角三角形疋是寺腰三角形10.△ ABC 的面积为 S2a2A(b c),则tan =【】1111 A .— B .—C .—D .-23 46A . △ ABC 为等腰三角形C . △ABC 为等腰直角三角形9.若 tanAtanB> 1,则△ ABC 【】2.在△ ABC 中,角 A 、B 、 C的对边分别为a 、b 、c ,已知A —, a 3b 1,则 c3. 已知△ ABC 中,a 2 , b 3 , B 60o ,那么角A 等于【B . △ ABC 为直角三角形D . △ABC 为等腰三角形或直角三角形 】二、填空题:本大题共4小题.11.在厶ABC中,三个角A,B,C的对边边长分别为a 3,b 4,c 6,则bccosA cacosB abcosC 的值为 ________________ .112•在△ ABC 中,若tan A - , C 150o, BC 1,则AB .313. 在厶ABC中,角A、B、C所对的边分别为a、b、c ,若,3b c cos A acosC ,贝H cosA _____________ 。

(完整word)高中数学解三角形知识点汇总及典型例题,推荐文档

(完整word)高中数学解三角形知识点汇总及典型例题,推荐文档

三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

(1 )角的变换;cos(A+B)= —cosC;tan(A+B)= —tanC 因为在△ ABC 中,A+B+C=n,所以sin(A+B)=sinC.A B C AB . Csin ------- cos 一, cos--------- sin 一;2 2 2 2(2)判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式•6 •求解三角形应用题的一般步骤:(1)分析:分析题意,弄清已知和所求;(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图;(3)求解:正确运用正、余弦定理求解;(4)检验:检验上述所求是否符合实际意义。

二、典例解析题型1 :正、余弦定理例1.( 1)在ABC 中,已知A 32.0°,B 81.8°,a 42.9cm,解三角形;(2)在ABC中,已知a 20cm, b 28 cm, A 40°,解三角形(角度精确到1°,边长精确到1cm)。

解:(1)根据三角形内角和定理,C 180°(A B) 180°(32.0°81.8°) 66.2°;asi nB 42.9si n81.8°根据正弦定理,b °8°.1(cm);si nA si n32.°asi nC 42.9si n66.2°根据正弦疋理, c ---------- ------------- °74.1(cm).si nA si n32.0bsinA 28sin40°(2)根据正弦疋理,sinB 0.8999.a 2°因为0°v B v 180°,所以B 64°,或B 116°①当B 64°时,C 180°(A B) 180°(40°64°) 76°,②当B 116°时,C 180°(A B) 180°(40°116°) 24°c 型咤 13(cm).,si nA si n4°点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;( 2)对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积例 2•在 ABC 中, sin A cosA ——2,AC 2,AB 3,求tan A 的值和 ABC 的面积。

(必修5)解三角形 综合提高训练题(含详细答案)Microsoft Word 文档 (3)

(必修5)解三角形 综合提高训练题(含详细答案)Microsoft Word 文档 (3)

(数学5必修)第一章:解三角形综合提高训练题一、选择题1.A 为△ABC 的内角,则A A cos sin +的取值范围是( )A .)2,2(B .)2,2(-C .]2,1(-D .]2,2[-2.在△ABC 中,若,900=C 则三边的比c b a +等于( ) A .2cos 2B A + B .2cos 2B A - C .2sin 2B A + D .2sin 2B A - 3.在△ABC 中,若8,3,7===c b a ,则其面积等于( )A .12B .221 C .28 D .364.在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( ) A .sin cos A A > B .sin cos B A >C .sin cos A B >D .sin cos B B >5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( )A .090B .060C .0120D .0150 6.在△ABC 中,若22tan tan ba B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形C .不能确定D .等腰三角形二、填空题1.在△ABC 中,若,sin sin B A >则A 一定大于B ,对吗?填_________(对或错)2.在△ABC 中,若,1cos cos cos 222=++C B A 则△ABC 的形状是______________。

3.在△ABC 中,∠C 是钝角,设,cos cos ,sin sin ,sin B A z B A y C x +=+== 则z y x ,,的大小关系是___________________________。

4.在△ABC 中,若b c a 2=+,则=+-+C A C A C A sin sin 31cos cos cos cos ______。

2022版高考一轮总复习数学(理)习题 第3章 三角函数、解三角形 3-6 Word版含答案

2022版高考一轮总复习数学(理)习题 第3章 三角函数、解三角形 3-6 Word版含答案

(时间:40分钟)1.△ABC 中,AB =2,AC =3,B =60°,则cos C =( ) A.33 B .±63 C .-63 D.63答案 D解析 由正弦定理得AC sin B =ABsin C ,∴sin C =AB ·sin B AC =2×sin60°3=33,又AB <AC ,∴0<C <B =60°,∴cos C =1-sin 2C =63.2.已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sinC ,且a >c ,cos B =14,则a c =( )A .2 B.12 C .3 D.13答案 A解析 由正弦定理可得b 2=2ac ,故cos B =a 2+c 2-b 22ac =a 2+c 2-2ac 2ac =14,化简得(2a -c )(a -2c )=0,又a >c ,故a =2c ,ac=2,故选A.3.在△ABC 中,若sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π6B.⎣⎢⎡⎭⎪⎫π6,πC.⎝⎛⎦⎥⎤0,π3 D.⎣⎢⎡⎭⎪⎫π3,π 答案 C解析 由正弦定理角化边,得a 2≤b 2+c 2-bc .∴b 2+c 2-a 2≥bc ,∴cos A =b 2+c 2-a 22bc ≥12,∴0<A ≤π3.4.在△ABC 中,cos A2=1+cos B2,则△ABC 肯定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .无法确定答案 A 解析 由cos A2=1+cos B 2得2cos 2A 2-1=cos A =cos B ,∴A =B ,故选A. 5.在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC =( )A.1010 B.105 C.31010 D.55答案 C解析 由于∠ABC =π4,AB =2,BC =3,依据余弦定理AC 2=AB 2+BC 2-2AB ·BC ·cos∠ABC ,得AC 2=(2)2+32-2×2×3×22=5,解得AC = 5.结合BC =3,sin ∠ABC =22,依据正弦定理AC sin ∠ABC =BC sin ∠BAC,得522=3sin ∠BAC,解得sin ∠BAC =31010.6.△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 答案1534解析 由于AC =7,AB =5,B =120°, 由余弦定理得AC 2=BC 2+AB 2-2BC ·AB cos B , 即49=BC 2+25-2×5×BC ·cos120°. 整理得BC 2+5BC -24=0,解得BC =3或BC =-8(舍去).∴S △ABC =12BC ·AB ·sin120°=12×3×5×sin120°=1534.7.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =________. 答案 23π解析 由于3sin A =5sin B ,结合正弦定理的变形a ∶b ∶c =sin A ∶sin B ∶sin C ,得3a =5b ,所以a =53b .又b +c =2a ,所以c =73b .依据余弦定理的推论cos C =a 2+b 2-c 22ab,把a =53b ,c =73b 代入,化简得cos C =-12,所以C =23π.8.在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________. 答案6解析 如图所示,在△ABD 中,由正弦定理得AD sin B =ABsin ∠ADB,即3sin120°=2sin ∠ADB, 所以sin ∠ADB =22,从而∠ADB =45°,则∠BAD =∠DAC =15°,所以∠ACB =30°,∠BAC =30°,所以△BAC 是等腰三角形,BC =AB = 2. 由余弦定理得AC =AB 2+BC 2-2·AB ·BC ·cos120°=22+22-2×2×2×⎝ ⎛⎭⎪⎫-12= 6. 9.已知在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,其中c 为最长边. (1)若sin 2A + sin 2B =1,试推断△ABC 的外形; (2)若a 2-c 2=2b ,且sin B =4cos A sin C ,求b 的值.解 (1)由已知,sin 2A +sin 2B =1,∴sin 2A =1-sin 2B =cos 2B . 由于c 为最长边,∴A ,B 均为锐角,则sin A =cos B , ∴sin A =sin ⎝ ⎛⎭⎪⎫π2-B ,∴A =π2-B ,即A +B =π2. 故△ABC 为直角三角形.(2)由已知sin B =4cos A sin C ,结合正弦定理和余弦定理得b =4b 2+c 2-a 22bc×c ,即b 2=2(a 2-c 2),又a 2-c 2=2b ,∴b 2=4b ,又b ≠0,∴b =4.10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积.解 (1)由于0<A <π,cos A =23,得sin A =1-cos 2A =53,又5cos C =sinB =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C ,所以tan C = 5.(2)由tan C =5,得sin C =56,cos C =16.于是sin B =5cos C =56,由a =2及正弦定理a sin A =c sin C ,得c = 3.设△ABC 的面积为S ,则S =12ac sin B =52.(时间:20分钟)11.在△ABC 中,三边之比a ∶b ∶c =2∶3∶4,则sin A -2sin Bsin2C =( )A .1B .2C .-2 D.12答案 B解析 不妨设a =2,b =3,c =4,故cos C =4+9-162×2×3=-14,故sin A -2sin B sin2C =a -2b 2c cos C =2-68×⎝ ⎛⎭⎪⎫-14=2,故选B.12.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 所对的边,且cos2B +3cos(A +C )+2=0,b =3,则c ∶sin C 等于( )A .3∶1 B.3∶1 C.2∶1 D .2∶1 答案 D解析 由cos2B +3cos(A +C )+2=0,得2cos 2B -3cos B +1=0,解得cos B =1(舍去)或cos B =12,所以sin B =32,所以c ∶sin C =b ∶sin B =2∶1. 13.在△ABC 中,∠A =2π3,a =3c ,则bc =________.答案 1解析 在△ABC 中,a 2=b 2+c 2-2bc ·cos A , 将∠A =2π3,a =3c 代入,可得(3c )2=b 2+c 2-2bc ·⎝ ⎛⎭⎪⎫-12,整理得2c 2=b 2+bc .∵c ≠0,∴等式两边同时除以c 2,得2=b 2c 2+bc c 2,即2=⎝ ⎛⎭⎪⎫b c 2+b c.令t =b c (t >0),有2=t 2+t ,即t 2+t -2=0,解得t =1或t =-2(舍去),故bc=1.14.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc.(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .解 (1)证明:依据正弦定理, 可设a sin A =b sin B =csin C =k (k >0).则a =k sin A ,b =k sin B ,c =k sin C .代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C ,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ). 在△ABC 中,由A +B +C =π,得sin(A +B )=sin(π-C )=sin C ,所以sin A sin B =sin C . (2)由已知,b 2+c 2-a 2=65bc ,依据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45.由(1),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故tan B =sin Bcos B =4.。

(完整版)解三角形高考大题-带答案

(完整版)解三角形高考大题-带答案

解二角形咼考大题,带答案1.(宁夏17)(本小题满分12分)如图,△ ACD 是等边三角形,△ ABC 是等腰直角三角形,AB 2.(I)求 cos Z CAE 的值; (n)求 AE .解:(I )因为 Z BCD 90° 60° 150° ,CB AC CD ,所以 Z CBE 15° .所以 c°s Z CBE cos(45° 30°)(n)在△ ABE 中,AB 2 ,故AE 细30°c°s152 -6 226 2.12分42.(江苏 17) (14 分)某地有三家工分别位于矩形 ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20 km , BC=10km ,为了处理三家工厂的污水,现要在矩形 ABCD 的区域上(含边界),且A 、B 与 等距离的一点O 处建造一个污水处理厂,并铺设排污管道 AO 、BO 、OP ,设排污管道的总 长为ykm 。

(1 )按下列要求写出函数关系式:① 设Z BAO= 0 (rad),将y 表示成B 的函数关系式; ② 设OP=x(km),将y 表示成x 的函数关系式;(2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度 最短。

【解析】:本小题考查函数的概念、解三角形、导数等基本知识,考查数学建模能力、 抽象概括能力和解决实际问题的能力。

由正弦定理AE sin( 45° 15°)2 sin( 90° 15°)Z ACB 90°,BD 交 AC 于 E ,故OB10 c°s又 OP 10 10tan ,所以 y OA OB OP10 10 10 10tanc°sc°sA ---------------- BCB(1)①由条件知PQ垂直平分AB,若Z BAO=~2~3.(辽宁17)(本小题满分12分)4.(全国I 17)(本小题满分12分) 设厶ABC 的内角A , B , C 所对的边长分别为 a, b, c ,且acosB 3, bsi nA 4. (I )求边长a ;(n )若 △ ABC 的面积S 10,求△ ABC 的周长I .解:(1 )由acosB 3与bsi nA 4两式相除,有:3 a cos B a cos B b cos B , cotB20 10sin 10 (0②若 OP=x(km),贝U OQ=10-x ,所以 OA OB所求函数关系式为yx 2 . x 220x 200(2)选择函数模型①, y'10cos cos (20 2cos令y' 0得sin1 Q0_246当(0,—)时 y'0, y 是B 的减函数;当62010 -7) ,(10 x)2 102 x 2 20x 20010(2si n 1)2cos0 , y 是B 的增函数;此时点O 位于线段 AB 的中垂线上,且距离AB 边邛km 处。

高中数学 解三角形练习题及答案

高中数学 解三角形练习题及答案

高中数学解三角形练习题及答案解三角形1.最大角与最小角的和为180°,因此答案为D.150°。

2.根据正弦定理,a/XXX,因此a∶b=sinA∶sinB,答案为B.3.根据正弦定理,a/XXX,因此边长之比为sin1∶sin2∶sin3,答案为B.4.根据余弦定理,c²=a²+b²-2abcosC,代入已知数值,可得cosC=1/2,因此∠C=60°,c=√(a²+b²-2abcosC)=5.5.根据正弦定理,a/sinA=2R,代入已知数值可得R=3,因此△ABC的形状大小是唯一的。

6.根据余弦定理,若a²+b²-c²<0,则△ABC是锐角三角形。

7.根据正弦定理,a/sinA=2R,代入已知数值可得R=3/√3,因此a=3√3.8.根据余弦定理,a²=b²+c²-2bccosA,代入已知数值可得cosA=1/4,因此A=75°,B=45°,C=60°,b=2a/√3=2√3.9.由题意可列方程x+3cos150°=3,解得x=3.10.由题意可列方程AB/AC=tan45°=1,XXX√3,解得AB=60米,BC=60√3米,因此电视塔的高度为AB/tan45°=60米。

11.根据正弦定理,b=10sin60°/sin45°=10√3.12.根据余弦定理,b²=a²+c²-2accosB,代入已知数值可得cosB=1/2,因此B=60°,b=2sinB=2√3-2.13.根据正弦定理,sinC=3sin60°/10=√3/5,代入反正弦函数可得∠C=60°。

14.根据正弦定理,sinC=c/2R,代入已知数值可得R=√(a²+b²-c²)/2sinC=√(20)/√3,因此△ABC的形状大小是唯一的。

2020高二数学人教A必修5练习:1.2.1 解三角形的实际应用举例 Word版含解析

2020高二数学人教A必修5练习:1.2.1 解三角形的实际应用举例 Word版含解析

课时训练3解三角形的实际应用举例一、测量中的距离问题1.有一长为10 m的斜坡,倾斜角为60°,在不改变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延长的长度(单位:m)是()A.5B.5√3C.10√3D.10答案:D解析:如图,在Rt△ABC中,AC=10,∠ACB=60°.∴AB=5√3,BC=5,在Rt△ABD中,∠ADB=30°,∴BD=15.∴CD=BD-BC=10.2.(2015福建宁德五校联考,14)一艘船以15 km/h的速度向东航行,船在A处看到灯塔B在北偏东60°处;行驶4 h后,船到达C处,看到灯塔B在北偏东15°处,这时船与灯塔的距离为km.答案:30√2解析:根据题意画出图形,如图所示,可得B=75°-30°=45°,在△ABC中,根据正弦定理得,ACsinB =BCsin∠BAC,即22=BC12,∴BC=30√2 km,即此时船与灯塔的距离为30√2 km.3.(2015福建厦门高二期末,15)如图,某观测站C在A城的南偏西20°,一条笔直公路AB,其中B在A 城南偏东40°,B与C相距31千米.有一人从B出发沿公路向A城走去,走了20千米后到达D处,此时C,D之间的距离为21千米,则A,C之间的距离是千米.答案:24解析:由已知得CD=21,BC=31,BD=20,在△BCD 中,由余弦定理得cos ∠BDC=212+202-3122×21×20=-17. 设∠ADC=α,则cos α=17,sin α=4√37. 在△ACD 中,由正弦定理,得AC=21sinαsin60°=24.二、测量中的高度与角度问题4.如图,D ,C ,B 三点在地面同一直线上,DC=a ,从C ,D 两点测得A 点的仰角分别是β,α(α<β),则A 点距离地面的高度AB 等于( )A.asinαsinβsin(β-α) B.asinαsinβcos(α-β) C.asinαcosβsin(β-α) D.acosαsinβcos(α-β)答案:A解析:在△ACD 中,∠DAC=β-α,DC=a ,∠ADC=α,由正弦定理得AC=asinαsin(β-α), ∴在Rt △ACB 中,AB=AC sin β=asinαsinβsin(β-α).5.运动会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10√6 m(如图所示),则旗杆的高度为( ) A.10 m B.30 mC.10√3 mD.10√6 m答案:B解析:如图所示,由题意知∠AEC=45°,∠ACE=180°-60°-15°=105°,∴∠EAC=180°-45°-105°=30°,由正弦定理知CE sin ∠EAC=AC sin ∠CEA,∴AC=CE·sin∠CEAsin∠EAC=20√3(m),∴在Rt△ABC中,AB=AC·sin∠ACB=30(m).∴旗杆的高度为30 m.6.当甲船位于A处时获悉,在其正东方向相距20 n mile的B处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°,相距10 n mile C处的乙船,乙船立即朝北偏东θ角的方向沿直线前往B处救援,则sin θ的值等于()A.√217B.√22C.√32D.5√714答案:D解析:根据题目条件可作图如图:在△ABC中,AB=20,AC=10,∠CAB=120°,由余弦定理有BC2=AB2+AC2-2AB·AC cos∠CAB=202+102-2×20×10cos 120°=700,∴BC=10√7.再由正弦定理得ABsin∠ACB =BCsin∠CAB,∴sin∠ACB=AB·sin∠CAB=20×sin120°10√7=√217.又0°<∠ACB<90°,∴cos∠ACB=2√7,∴sin θ=sin(30°+∠ACB)=sin 30°cos∠ACB+cos 30°sin∠ACB=1×2√7+√3×√21=5√7.7.某海岛周围38 n mile有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30 n mile后测得此岛在东北方向,若不改变航向,则此船触礁的危险(填“有”或“无”).答案:无解析:由题意在△ABC中,AB=30 n mile,∠BAC=30°,∠ABC=135°,∴∠ACB=15°. 由正弦定理,得BC=AB sin ∠ACB·sin ∠BAC=30sin15°·sin 30°=6-24=15(√6+√2).在Rt △BDC 中,CD=√22BC=15(√3+1)>38.∴无触礁的危险.8.如图,在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A 相距40√2海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45°+θ(其中sinθ=√2626,0°<θ<90°)且与点A 相距10√13海里的位置C. (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由. 解:(1)因为AB=40√2,AC=10√13,∠BAC=θ,sin θ=√26,0°<θ<90°,所以cos θ=√1-(√2626)2=5√2626.由余弦定理得BC=√AB 2+AC 2-2AB ·AC ·cosθ=10√5,所以该船的行驶速度为v=10√523=15√5(海里/小时).(2)设直线AE 与BC 的延长线相交于点Q. 在△ABC 中,由余弦定理得 cos ∠ABC=AB 2+BC 2-AC 22AB ·BC=√2)2√5)2√13)22×402×105=3√1010,所以sin ∠ABC=√1-cos 2∠ABC =√1-910=√1010. 在△ABQ 中,由正弦定理得AQ=ABsin∠ABCsin(45°-∠ABC)=40√2×√101022×21010=40.因为AE=55>40=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15.过点E作EP⊥BC于点P,则EP为点E到直线BC的距离.在Rt△QPE中,PE=QE·sin∠PQE=QE·sin∠AQC=QE·sin(45°-∠ABC)=15×√55=3√5<7.故该船会进入警戒水域.(建议用时:30分钟)1.如图,已知两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B 在观察站C的南偏东60°,则灯塔A在灯塔B的()的位置.A.北偏东10°B.北偏西10°C.南偏东10°D.南偏西10°答案:B解析:由图可知,∠ACB=180°-(40°+60°)=80°.又∵AC=BC,∴∠A=∠CBA=12(180°-80°)=50°.∵CE∥BD,∴∠CBD=∠BCE=60°,∴∠ABD=60°-50°=10°.∴灯塔A在灯塔B的北偏西10°的位置.2.如图所示,为测一树的高度,在地面上选取A,B两点(点A,B与树根部在同一直线上),从A,B两点分别测得树尖的仰角为30°,45°,且A,B两点之间的距离为60 m,则树的高度为()A.(30+30√3) mB.(30+15√3) mC.(15+30√3) mD.(15+3√3) m答案:A解析:设树高为h,则由题意得√3h-h=60,∴h=√3-1=30(√3+1)=(30√3+30)(m).3.一艘客船上午9:30在A处,测得灯塔S在它的北偏东30°,之后它以32 n mile/h的速度继续沿正北方向匀速航行,上午10:00到达B处,此时测得船与灯塔S相距8√2 n mile,则灯塔S在B处的()A.北偏东75°B.东偏南75°C.北偏东75°或东偏南75°D.以上方位都不对答案:C解析:根据题意画出示意图,如图,由题意可知AB=32×12=16,BS=8√2,∠A=30°.在△ABS中,由正弦定理得ABsinS =BSsinA,sin S=ABsinABS=16sin30°8√2=√22,∴S=45°或135°,∴B=105°或15°,即灯塔S在B处的北偏东75°或东偏南75°.4.一货轮航行到M处,测得灯塔S在货轮的北偏东15°方向,与灯塔S相距20 n mile,随后货轮按北偏西30°的方向航行3 h后,又测得灯塔在货轮的东北方向,则货轮的速度为()A.103(√6+√2) n mile/hB.103(√6−√2) n mile/hC.103(√6+√3) n mile/hD.103(√6−√3) n mile/h答案:B解析:如图,设货轮的时速为v,则在△AMS中,∠AMS=45°,∠SAM=105°,∠ASM=30°,SM=20,AM=3v.由正弦定理得3vsin30°=20sin105°,即v=206sin105°=103(√6−√2)(n mile/h).5.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离d1与第二辆车与第三辆车的距离d2之间的关系为()A.d1>d2B.d1=d2C.d1<d2D.不能确定大小答案:C解析:如图,B,C,D分别是第一、二、三辆车所在的位置,由题意可知α=β.在△PBC中,d1sinα=PBsin∠PCB,在△PCD中,d2sinβ=PDsin∠PCD,∵sin α=sin β,sin∠PCB=sin∠PCD,∴d1d2=PBPD.∵PB<PD,∴d1<d2.6.如图,某人于地面上C处观察一架迎面飞来的飞机在A处的仰角为30°,过1 min后到B再测得仰角为45°,如果该飞机以450 km/h的速度沿水平方向飞行,则飞机的高度为 km.答案:15(√3+1)4解析:如图,∠DCA=60°,∠DCB=45°,设飞机高为h,则BD=h,AD=√3h.又AB=450×160=7.5,由AD-BD=AB得√3h-h=7.5.∴h=√3-1=15(√3+1)4.7.一船以24 km/h的速度向正北方向航行,在点A处望见灯塔S在船的北偏东30°方向上,15 min后到点B处望见灯塔在船的北偏东75°方向上,则船在点B时与灯塔S的距离是 km.答案:3√2解析:如图,由条件知,AB=24×1560=6(km).在△ABS中,∠BAS=30°,AB=6,∠ABS=180°-75°=105°,∴∠ASB=45°.由正弦定理,得BSsin30°=ABsin45°,∴BS=6sin30°sin45°=3√2.8.海上一观测站测得方位角为240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为90 n mile/h.此时海盗船距观测站10√7 n mile,20 min后测得海盗船距观测站20 n mile,再过min,海盗船到达商船.答案:403解析:如图,设开始时观测站、商船、海盗船分别位于A,B,C处,20 min后,海盗船到达D处,在△ADC 中,AC=10√7,AD=20,CD=30,由余弦定理,得cos∠ADC=AD2+CD2-AC22AD·CD =400+900-7002×20×30=12.∴∠ADC=60°,在△ABD中,由已知,得∠ABD=30°,∠BAD=60°-30°=30°,∴BD=AD=20,2090×60=403(min).9.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°方向,距离为12√6 km,在A 处看灯塔C 在货轮的北偏西30°方向,距离为8√3 km,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解:(1)在△ABD 中,∠ADB=60°,∠B=45°,由正弦定理得AD=AB ·sinB sin ∠ADB=12√6×√2232=24(km).∴A 处与D 处的距离为24 km .(2)在△ACD 中,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC cos 30°,解得CD=8√3(km).∴灯塔C 与D 处的距离为8√3 km .。

2020年高二数学人教A必修5练习:1.1.2 余弦定理 Word版含解析

2020年高二数学人教A必修5练习:1.1.2 余弦定理 Word版含解析

文库 精品课时训练2 余弦定理一、利用余弦定理解三角形1.在△ABC 中,a=1,B=60°,c=2,则b 等于( )A.1B.√2C.√3D.3答案:C解析:b 2=a 2+c 2-2ac cos B=1+4-2×1×2×12=3,故b=√3. 2.在△ABC 中,c 2-a 2-b 2=√3ab ,则角C 为( ) A.60° B.45°或135° C.150° D.30°答案:C解析:∵cos C=a 2+b 2-c 2=-√3ab =-√3,∴C=150°.3.在△ABC 中,已知sin A ∶sin B ∶sin C=3∶5∶7,则此三角形的最大内角的度数等于 . 答案:120°解析:由正弦定理可得a ∶b ∶c=3∶5∶7,不妨设a=3,b=5,c=7,则c 边最大,∴角C 最大.∴cos C=a 2+b 2-c 2=32+52-72=-1. ∵0°<C<180°,∴C=120°.4.(2015河南郑州高二期末,15)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A=√3sin C ,B=30°,b=2,则边c= . 答案:2解析:∵在△ABC 中,sin A=√3sin C ,∴a=√3c.又B=30°,由余弦定理,得cos B=cos 30°=√32=a 2+c 2-b22ac=22√3c 2,解得c=2.二、判断三角形形状5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b+c=2c cos 2A2,则△ABC 是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形答案:A解析:∵b+c=2c cos 2A2,且2cos 2A2=1+cos A ,∴b+c=c (1+cos A ),即b=c cos A.由余弦定理得b=c ·b 2+c 2-a 22bc ,文库 精品化简得a 2+b 2=c 2,∴△ABC 是直角三角形.6.在△ABC 中,若sin 2A+sin 2B<sin 2C ,则△ABC 的形状是( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.不能确定答案:A解析:由sin 2A+sin 2B<sin 2C ,得a 2+b 2<c 2,所以cos C=a 2+b 2-c 2<0,所以∠C 为钝角, 即△ABC 为钝角三角形.7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若a=2b cos C ,试判断△ABC 的形状.解法一:∵cos C=a 2+b 2-c 2,代入a=2b cos C ,得a=2b ·a 2+b 2-c 2,∴a 2=a 2+b 2-c 2,即b 2-c 2=0. ∴b=c.∴△ABC 为等腰三角形.解法二:根据正弦定理asinA =bsinB =csinC =2R ,得a=2R sin A ,b=2R sin B ,代入已知条件得2R sin A=4R sin B cos C , 即sin A=2sin B cos C ,∵A=π-(B+C ),∴sin A=sin(B+C ). ∴sin B cos C+cos B sin C=2sin B cos C. ∴sin B cos C-cos B sin C=0.∴sin(B-C )=0.又-π<B-C<π,∴B-C=0,即B=C.∴△ABC 是等腰三角形.三、正弦定理、余弦定理的综合应用8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知b-c=14a ,2sin B=3sin C ,则cos A 的值为( ) A.-14 B.14C.12D.-13答案:A解析:∵2sin B=3sin C ,∴2b=3c.又b-c=a4,∴a=2c ,b=32c.∴cos A=b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c×c=-14. 9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=√3bc ,sin C=2√3sin B ,则A= . 答案:π6解析:∵sin C=2√3sin B ,∴由正弦定理得c=2√3b. ∵a 2-b 2=√3bc ,∴cos A=b 2+c 2-a 2=c 2-√3bc=2√3bc -√3bc2bc=√32,∴A=π6.10.(2015山东威海高二期中,17)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c 且满足4a cos B-b cos C=c cos B.(1)求cos B 的值;(2)若ac=12,b=3√2,求a ,c.解:(1)已知等式4a cos B-b cos C=c cos B ,利用正弦定理,得4sin A cos B-sin B cos C=sin C cos B ,整理,得4sin A cos B=sin(B+C ), 即4sin A cos B=sin A ,∵sin A ≠0,∴cos B=14.(2)∵ac=12,b=3√2,cos B=14,∴由b 2=a 2+c 2-2ac cos B ,得a 2+c 2=24,联立a 2+c 2=24与ac=12,解得a=c=2√3.(建议用时:30分钟)1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a=1,b=2,cos C=14 ,则sin B=( )A.15B.√15C.√15D.7答案:B解析:由已知根据余弦定理得c 2=a 2+b 2-2ab cos C=4,∴c=2,即B=C , ∴sin B=√1-116=√154.2.(2015河北邯郸三校联考,3)在△ABC 中,如果sin A ∶sin B ∶sin C=2∶3∶4,那么cos C 等于( ) A.23B.-23C.-13D.-14答案:D解析:由正弦定理可得sin A ∶sin B ∶sin C=a ∶b ∶c=2∶3∶4,可设a=2k ,b=3k ,c=4k (k>0), 由余弦定理可得cos C=a 2+b 2-c 2=4k 2+9k 2-16k 2=-1,故选D .3.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c.若C=120°,c=√2a ,则( ) A.a>b B.a<b C.a=bD.a 与b 的大小关系不能确定 答案:A解析:由余弦定理c 2=a 2+b 2-2ab cos C 得2a 2=a 2+b 2+ab ,∴a 2-b 2=ab>0,∴a 2>b 2,∴a>b. 4.△ABC 的三边长分别为AB=7,BC=5,AC=6,则BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为( ) A.19 B.14 C.-18 D.-19答案:A解析:cos B=72+52-62=19,∴BA⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =|BA ⃗⃗⃗⃗⃗ ||BC ⃗⃗⃗⃗⃗ |cos B=7×5×1935=19. 5.在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,如果sin 2(B+C )<sin 2B+sin 2C ,则角A 的取值范围为( ) A.(0,π2)B.(π4,π2) C.(π6,π3) D.(π3,π2) 答案:D解析:由题意得sin 2A<sin 2B+sin 2C ,再由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0, 则cos A=b 2+c 2-a 22bc >0,∵0<A<π,∴0<A<π.又a 为最大边,∴A>π3.因此得角A 的取值范围是(π3,π2).6.已知在△ABC 中,2B=A+C ,b 2=ac ,则△ABC 的形状为 .答案:等边三角形解析:∵2B=A+C ,又A+B+C=180°,∴B=60°.又b 2=ac ,由余弦定理可得b 2=a 2+c 2-2ac cos B=a 2+c 2-2ac cos 60°=a 2+c 2-ac ,∴有a 2+c 2-ac=ac ,从而(a-c )2=0, ∴a=c ,故△ABC 为等边三角形.7.(2015北京高考,12)在△ABC 中,a=4,b=5,c=6,则sin2AsinC = . 答案:1解析:在△ABC 中,由正弦定理知,sin2AsinC =2sinAcosA sinC =2cos A ·a c =2cos A×46=43cos A ,再根据余弦定理,得cos A=36+25-162×6×5=34,所以sin2A sinC=43×34=1.8.在△ABC 中,角A ,B ,C 的对边边长分别为a=3,b=4,c=6,则bc cos A+ac cos B+ab cos C 的值为 . 答案:612解析:由余弦定理得bc cos A+ac cos B+ab cos C=b 2+c 2-a 22+a 2+c 2-b 22+a 2+b 2-c 22=a 2+b 2+c 22=32+42+622=612.9.在△ABC 中,已知(a+b+c )(a+b-c )=3ab ,且2cos A sin B=sin C ,试判定△ABC 的形状. 解:由(a+b+c )(a+b-c )=3ab ,得(a+b )2-c 2=3ab , 即a 2+b 2-c 2=ab.∴cos C=a 2+b 2-c 22ab=ab 2ab =12.∵0°<C<180°,∴C=60°. ∵A+B+C=180°, ∴sin C=sin(A+B ).又∵2cos A sin B=sin C ,∴2cos A sin B=sin A cos B+cos A sin B , ∴sin(A-B )=0.∵A ,B 均为△ABC 的内角,∴A=B.因此△ABC 为等边三角形.10.在△ABC 中,C=2A ,a+c=10,cos A=34,求b.解:由正弦定理得c a =sinC sinA=sin2AsinA=2cos A , ∴c a =32.又a+c=10,∴a=4,c=6. 由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+20=3,∴b=4或b=5.当b=4时,∵a=4,∴A=B. 又C=2A ,且A+B+C=π,∴A=π4,与已知cos A=34矛盾,不合题意,舍去.当b=5时,满足题意,∴b=5......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。

(通用版)高考数学复习 专题三 三角函数 3.2 解三角形基础题练习 理-人教版高三全册数学试题

(通用版)高考数学复习 专题三 三角函数 3.2 解三角形基础题练习 理-人教版高三全册数学试题

3.2 解三角形基础题命题角度1利用正弦、余弦定理解三角形高考真题体验·对方向1.(2019全国Ⅰ·11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知a sin A-b sin B=4c sin C ,cosA=-14,则bb =()A.6B.5C.4D.3,得a 2-b 2=4c 2,由余弦定理的推论,得-14=cos A=b 2+b 2-b 22bb, ∴b 2-4b 22bb =-14,∴-3b 2b =-14,∴b b =32×4=6,故选A .2.(2018全国Ⅱ·6)在△ABC 中,cos b2=√55,BC=1,AC=5,则AB=()A.4√2B.√30C.√29D.2√5cos C=2cos 2b 2-1=-35,∴AB 2=BC 2+AC 2-2BC ·AC cos C=1+25+2×1×5×35=32.∴AB=4√2.3.(2018全国Ⅲ·9)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为b 2+b 2-b 24,则C=()A.π2B.π3C.π4D.π6S=b2+b2-b24=12ab sin C,得c2=a2+b2-2ab sin C.又由余弦定理c2=a2+b2-2ab cos C,∴sin C=cos C,即C=π4.4.(2017某某·9)在△ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin A cos C+cos A sin C,则下列等式成立的是()A.a=2bB.b=2aC.A=2BD.B=2Asin B(1+2cos C)=2sin A cos C+cos A sin C,∴sin B+2sin B cos C=(sin A cos C+cos A sin C)+sin A cos C,∴sin B+2sin B cos C=sin B+sin A cos C, ∴2sin B cos C=sin A cos C,又△ABC为锐角三角形,∴2sin B=sin A,由正弦定理,得a=2b.故选A.5.(2019全国Ⅱ·15)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的面积为.√3b2=a2+c2-2ac cos B,∴(2c)2+c2-2×2c×c×12=62,即3c 2=36,解得c=2√3或c=-2√3(舍去).∴a=2c=4√3.∴S △ABC =12ac sin B=12×4√3×2√3×√32=6√3.典题演练提能·刷高分1.在△ABC 中,若原点到直线x sin A+y sin B+sin C=0的距离为1,则此三角形为()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定解析由已知可得√22=1,∴sin 2C=sin 2A+sin 2B ,∴c 2=a 2+b 2,故三角形为直角三角形.选A .2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos C+c=2a ,且b=√13,c=3,则a=() A.1 B.√6C.2√2D.42b cos C+c=2a ,由正弦定理可得2sin B cos C+sin C=2sin A=2sin(B+C )=2sin B cos C+2cos B sin C ,∴sin C=2cos B sin C ,∵sin C ≠0,∴cos B=12.由余弦定理可得b 2=a 2+c 2-2ac cos B ,又知b=√13,c=3,解得a=4.故选D .3.(2019某某某某高三质检)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,若a sin B=2b sinC ,b=3,cos B=14,则△ABC 的面积为()A.9√15B.9√1516C.3√1516D.916a sin B=2b sin C ,结合正弦定理可得ab=2bc ,则a=2c.由余弦定理b 2=a 2+c 2-2ac cos B ,可得9=(2c )2+c 2-2×2c ×c ×14,解得c=32,则a=3.又sin B=√1-cos 2b =√154,所以S △ABC =12ac sin B=12×3×32×√154=9√1516.故选B .4.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若2cos 2b +b2-cos 2C=1,4sin B=3sin A ,a-b=1,则c 的值为()A.√13B.√7C.√37D.6解析∵2cos2b +b2=2cos 2π-b 2=2cos 2π2−b 2=2sin 2b2=1-cos C ,∴1-cos C-cos2C=1.∴cos2C=-cos C.∴2cos 2C+cos C-1=0,解得cos C=12.因为{b -b =1,4b =3b ,故得到{b =3,b =4.根据余弦定理得到12=b 2+b 2-b 22bb,解得c 的值为√13.5.△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若a=5,B=π3,cos A=1114,则△ABC 的面积S=()A.10√33B.10C.10√3D.20√3cos A=1114,所以sin A=5√314,由正弦定理得到bsin b=bsin b,解得b=7,由正弦定理得到sin C=sin(A+B )=4√37,△ABC 的面积S=12×5×7×4√37=10√3.6.(2019某某某某高三二调)在△ABC 中,角A ,B ,C 成等差数列,且对边分别为a ,b ,c ,若bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =20,b=7,则△ABC 的内切圆的半径为()A.√3B.7√33C.2D.3角A ,B ,C 成等差数列,∴2B=A+C=π-B ,即B=π3,∴bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =ca cos π3=20,即ca=40,由余弦定理b 2=c 2+a 2-2ca cos B ,可得49=a 2+c 2-ac=(a+c )2-3ac=(a+c )2-120,解得a+c=13.故a=5,c=8.设△ABC 的内切圆的半径为r ,则12(a+b+c )r=12ac sin B ,可得12(5+8+7)r=12×5×8×√32,可得△ABC 的内切圆的半径r=√3.故选A .7.如图,平面四边形ABCD 中,AC 与BD 交于点P ,若3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AB=AD=√3BC ,∠CAD+∠ACB=56π,则bbbb=() A.√213B.√214C.2√63D.√62BC=1,则AB=AD=√3,延长BC 到E ,使BE=3BC ,所以CE=2,依题意3bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +(bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=2bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以AC ∥DE ,所以bb bb=bb bb=12,由正弦定理得{bb sin b =bbsin b ,bb sin b=bb sin b,两式相除得2sin b=√3sin b, 所以2sin5π6-α=√3sin α,所以α=π2,β=π3.在△ABC 中,由余弦定理得3=1+AC 2-2AC cos π3,AC=2,在Rt △ACD 中CD=√3+4=√7,故bbbb =√7√3=√213,选A .8.在△ABC 中,AB=2,AC=√7,∠ABC=2π3,则BC=.,根据余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B ,即BC 2+2BC-3=0,解得BC=1,或BC=-3(舍去负值).9.在△ABC 中,a=1,b=√7,且△ABC 的面积为√32,则c=.或2√3△ABC =12ab sin C=12×1×√7×sin C=√32,则sin C=√217,cos C=±2√77, 当cos C=2√77时,c 2=1+7-2×1×√7×2√77=4,c=2;当cos C=-2√77时,c 2=1+7+2×1×√7×2√77=12,c=2√3.10.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边长分别为13里,14里,15里,假设1里按500米计算,则该三角形沙田外接圆的半径为米..5由题意画出图象,如图所示,且AB=13里=6500米,BC=14里=7000米,AC=15里=7500米.在△ABC 中,由余弦定理有cos B=bb 2+bb 2-bb 22bb ·bb=132+142-1522×13×14=513,B 为锐角,sin B=√1-cos 2b =1213.设△ABC 外接圆半径为R ,则由正弦定理有bsin b =2R ,R=b2sin b =75002×1213=4062.5(米).命题角度2与三角形有关的最值和X 围问题高考真题体验·对方向1.(2015全国Ⅰ·16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值X 围是.√6−√2,√6+√2).作CE ∥AD 交AB 于E ,则∠CEB=75°,∠ECB=30°.在△CBE中,由正弦定理得,EB=√6−√2.延长CD交BA的延长线于F,则∠F=30°.在△BCF中,由正弦定理得,BF=√6+√2,所以AB的取值X围为(√6−√2,√6+√2).2.(2014全国Ⅰ·16)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sinB)=(c-b)sin C,则△ABC面积的最大值为.√3,可得(2+b)(a-b)=(c-b)·c.∵a=2,∴a2-b2=c2-bc,即b2+c2-a2=bc.由余弦定理,得cos A=b2+b2-b22bb =12.∴sin A=√32.由b2+c2-bc=4,得b2+c2=4+bc.∵b2+c2≥2bc,即4+bc≥2bc,∴bc≤4.∴S△ABC=12bc·sin A≤√3,即(S△ABC)max=√3.典题演练提能·刷高分1.(2019某某某某高三一模)在△ABC中,AB=2,C=π6,则AC+√3BC的最大值为() A.4√7 B.3√7C.2√7D.√7ABC 中,AB=2,C=π6,则2R=bbsin b =4,则AC+√3BC=4sin B+4√3sin A=4sin 5π6-A +4√3sin A=2cos A+6√3sin A=4√7sin(A+θ),其中sin θ=√714,cos θ=3√2114,由于0<A<5π6,0<θ<π2,所以0<A+θ<4π3,所以最大值为4√7.故选A .2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A=π3,a=2√2,则△ABC 面积的最大值为()A.√2B.2√3C.√6D.√3ABC 中,由余弦定理知a 2=b 2+c 2-2bc cos A ,即8=b 2+c 2-2bc cos π3=b 2+c 2-bc ≥2bc-bc=bc ,即bc ≤8,当且仅当b=c 时,等号成立,所以△ABC 面积的最大值为S=12bc sin A=12×8sin π3=2√3,故选B .3.已知锐角△ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=a (a+c ),则sin 2bsin(b -b )的取值X 围是()A.(0,√22)B.(12,√32) C.(12,√22) D.(0,√32)b 2=a (a+c ),由余弦定理,得a 2+c 2-2ac cos B=a (a+c ), 化简得c-a=2a cos B.由正弦定理,得sin C-sin A=2sin A cos B ,∵C=π-(A+B ),∴sin(A+B )-sin A=2sin A cos B ,化简得sin(B-A )=sin A.∵△ABC 是锐角三角形,∴B-A=A ,即B=2A ,∵{0<b <π2,π2<b +b <π,即{0<2b <π2,π2<3b <π,∴π6<A<π4,∴sin 2bsin(b -b )=sin A ∈(12,√22).4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为√3,且cos(b +b )cos b=b2b +b ,则c 的最小值是()A.2B.2√2C.2√3D.4∵cos(b +b )cos b=b 2b +b ,∴-cos b cos b =b2b +b ,∴根据正弦定理可得-cos bcos b =sin b2sin b +sin b ,即-2sin A cos C=sin A.∵sin A ≠0,∴cos C=-12.∵C ∈(0,π),∴C=2π3.∵△ABC 的面积为√3,∴S △ABC =12ab sin C=√3,即ab=4.∵cos C=b 2+b 2-b 22bb=-12, ∴c 2=a 2+b 2+ab ≥2ab+ab=3ab=12,当且仅当a=b 时取等号. ∴c min =2√3,故选C .5.在△ABC 中,已知a 2+b 2-c 2=4S (S 为△ABC 的面积),若c=√2,则a-√22b 的取值X 围是()A.0,√2B.-1,0C.-1,√2D.-√2,√2a 2+b 2-c 2=4S ,∴a 2+b 2-c 2=4×12ab sin C=2ab sin C.∴b 2+b 2-b 22bb =sin C ,∴cos C=sin C.∴C=π4. ∵bsin b =bsin b =bsin b =√2√22=2,∴a=2sin A ,b=2sin B ,又a-√22b=2sin A-√22×2sin B=2sin A-√2sin B=2sin A-√2sin3π4-A=sin A-cos A=√2sin A-π4,∵0<A<3π4,∴-π4<A-π4<π2, ∴-1<√2sin A-π4<√2,∴-1<a-√22b<√2,故选C .6.已知平面四边形ABCD 中,AB=AD=2,BC=CD ,∠BCD=90°,则四边形ABCD 面积的最大值为()A.6B.2+2√3C.2+2√2D.4,设∠DAB=θ,BC=CD=x ,则BD=√2x.在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos θ,即(√2x )2=4+4-8cos θ=8-8cos θ,∴x 2=4-4cos θ.∴四边形ABCD 的面积为S=12×22×sin θ+12x 2=2sin θ+(2-2cos θ)=2√2sin θ-π4+2.∵0<θ<π,∴-π4<θ-π4<3π4,∴当θ-π4=π2,即θ=3π4时,S 有最大值,且S max =2√2+2.选C .7.已知点O 是△ABC 的内心,∠BAC=60°,BC=1,则△BOC 面积的最大值为.BOC=180°-180°-60°2=120°,在△OBC 中,BC 2=OB 2+OC 2-2OB ·OC ·cos120°,即1=OB 2+OC 2+OB ·OC ≥3OB ·OC ,即OB ·OC ≤13,所以S △OBC =12OB ·OC sin120°≤√312,当OB=OC 时取得最大值.8.在△ABC 中,AB=AC ,D 为AC 的中点,BD=1,则△ABC 面积的最大值为.ABD 中,设AB=AC=b ,由余弦定理得cos A=b 2+b 24-12b ·b 2=54−1b 2,则sin A=√1-(54-1b 2) 2,所以△ABC 的面积为S=12b 2sin A=12b 2·√1-(54-1b2)2=18√-9(b 2-209)2+2569≤23,所以△ABC 的面积的最大值为23.9.在△ABC 中,角A ,B ,C 所对边的边长分别为a ,b ,c ,若|bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=3,bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6,则△ABC 面积的最大值为.|bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ −bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=3,∴|AB|=3.∵bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·bb ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6,∴ab cos C=6.∴cos C=6bb .由余弦定理得9=a 2+b 2-2ab cos C=a 2+b 2-12≥2ab-12,∴ab ≤212.∴S=12ab sin C=12ab √1-cos 2b=12ab √1-36b 2b 2=12√b 2b 2(1-36b 2b 2 =12√b 2b 2-36≤12√(212) 2-36=3√334.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形卷一
一.选择题
1. 在△ ABC 中, sinA:sinB:sinC=3:2:4 ,则 cosC 的值为
A .
2
B .-
2
C .
1
D .-
1
3
3
4
4
、在 △ ABC 中,已知 a 4, b 6 , B
60 o
,则
sin A
的值为
2
A 、
3
B 、
3
C 、
6
6
3
D 、
3
2
2
3、在 △ ABC 中, A : B : C 1: 2:3 ,则 sin A :sin B :sin C
A 、 1: 2:3
B 、 1: 2 :3
C 、 1: 2 : 3
D 、 1: 3 : 2
4、在 △ ABC 中, sin A :sin B :sin C
4:3: 2 ,那么 cosC 的值为
1
B 、
1
7 11 A 、
4
C 、
D 、
4
8
16
5、在 △ ABC 中, a
7,b
4 3, c
13 ,则最小角为
A 、
B 、
6
C 、
D 、
3
4
12
6
△ ABC
中, A 60 o ,b 16,
面积 S 220 3
,则 c 、在
A 、 10 6
B 、 75
C 、 55
D 、49
7、在 △ ABC 中, (a c)( a c) b(b c) ,则 A
A 、 30o
B 、 60o
C 、 120o
D 、 150o
8、在 △ ABC 中,根据下列条件解三角形,则其中有二个解的是 A 、 b 10, A 45o ,C 70o
B 、 a 60,c
48, B 60o
C 、 a
7, b 5, A 80o
D 、 a 14, b 16, A 45o
二、填空题。

9.在△ ABC 中, a , b 分别是∠ A 和∠ B 所对的边,若 a = 3 ,b = 1,∠ B = 30°,则∠ A 的 值是

10.在△ ABC 中,已知 sin Bsin C = cos
2
A
,则此三角形是 __________ 三角形.
2
11. 在△ ABC 中,∠ A 最大,∠ C 最小,且∠ A = 2∠ C ,a + c = 2b ,求此三角形三边之比
为.
三、解答题。

12.在△ ABC 中,已知∠ A= 30°, a,b 分别为∠ A,∠ B 的对边,且 a= 4=3
b,解此三3
角形.
13.如图所示,在斜度一定的山坡上的一点 A 测得山顶上一建筑物顶端 C 对于山坡的斜度为 15°,向山顶前进100 米后到达点B,又从点 B 测得斜度为45°,建筑物的高CD 为50 米.求此山对于地平面的倾斜角.
( 第 13 题)
14.在△ ABC 中,∠ A,∠ B,∠ C 的对边分别为a,b, c,若 bcos C= ( 2a- c) cos B,( Ⅰ ) 求∠ B 的大小;
( Ⅱ ) 若 b=7 ,a+c=4,求△ABC的面积.
11.解析:本例主要考查正、余弦定理的综合应用. 由正弦定理得
a

sin A

sin 2C
= 2cos C ,即 cos C = a

c
sin C
sin C
2c
由余弦定理 cos C =
a 2+ 2-
2
= ( a + )(
- )+ b 2
b c
c a c
.∵ a + c =2b ,
2ab
2ab
2 ( - )+

2(

2(
- )+
a +
c
b a
c - )+ a c
a
∴ cos C = b a c 2 = a c
2
,∴
a =
c 2

2ab 2a
2c
2a
整理得 2a 2
- 5ac + 3c 2
=0.解得 a = c 或 a =
3
c .
2
∵∠ A = 2∠ C ,∴ a = c 不成立, a =
3
c ∴ b = a
3
c c
c
= 2
= 5
c ,
2
2 2
4
∴ a ∶b ∶ c = 3
c ∶ 5
c ∶ c = 6∶ 5∶ 4.故此三角形三边之比为 6∶ 5∶ 4.
2 4
12. b = 4 3 ,c = 8,∠ C = 90°,∠ B = 60°或 b = 4 3 ,c = 4,∠ C = 30°,∠ B = 120 °. 解:由正弦定理知
a = b
4
= 4 3
sin B = 3 , b =4 3 .
sin A
sin 30 sin B
2
sin B
∠ B = 60°或∠ B = 120° ∠ C = 90°或∠ C = 30° c =8 或 c = 4.
13 解:在△ ABC 中,∠ BAC = 15°, AB = 100 米,∠ ACB =45°- 15°= 30°. 根据正弦定理有
100 = BC ,∴ BC = 100 sin 15

sin 30
sin15 sin 30
又在△ BCD 中,∵ CD = 50, BC =
100sin 15
,∠ CBD =45°,∠ CDB = 90°+ ,
sin 30
50
100 sin15
根据正弦定理有
= sin 30
.解得 cos = 3 - 1,∴ ≈ 42.94 °. sin 45
sin( 90 + )
∴ 山对于地平面的倾斜角约为 42.94 °.
14.解: ( Ⅰ ) 由已知及正弦定理可得
sin Bcos C =2sin Acos B -cos Bsin C ,
∴ 2sin Acos B = sin Bcos C + cos Bsin C = sin( B +
C) .又在三角形 ABC 中, sin( B + C) = sin A ≠ 0,
∴ 2sin Acos B = sin A ,即 cos B = 1 , B =
π

2 3
( Ⅱ ) ∵ b 2= 7= a 2+ c 2- 2accos B ,∴ 7= a 2+ c 2- ac ,
又 ( a + c)
2
22
+ 2ac ,∴ ac =3,∴ S ABC = 1
( 第 13 题)
= 16= a + c
acsin B ,

2
即 S △ABC = 1
· 3·
3 = 3 3 .
2
2
4。

相关文档
最新文档