高一数学解三角形(含答案)
2021年高考数学解答题专项练习《解三角形》(含答案)
2021年高考数学解答题专项练习《解三角形》1.设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=4,C=2B.(1)求cosB的值;(2)求的值.2.设△ABC的内角A,B,C所对边的长分别是a,b,c,.(1)求角B的值;(2)若b=2,△ABC的面积为,求a,c.3.已知a,b,c分别是△ABC三个内角A,B,C的对边,acosC+csinA=b+c.(1)求A;(2)若a=,b+c=3,求b,c。
4.设△ABC的内角A,B,C所对边的长分别是a,b,c.已知B=150°.(1)若a=c,b=2,求△ABC的面积;(2)若sinA+sinC=,求C.5.设△ABC的内角A,B,C所对边的长分别是a,b,c,已知.(1)求A;(2)若,证明:△ABC是直角三角形.6.在△ABC中,内角A,B,C所对的边分别为a,b,c,满足ab+a2=c2.(1)求证:C=2A;(2)若△ABC的面积为a2sin2B,求角C的大小.(1)求角C的大小;(2)若,且△ABC的面积为,求a+b的值.8.设△ABC的内角A,B,C所对边的长分别是a,b,c,且.(1)求角A的大小;(2)若b+c=5,且ΔABC的面积为,求a的值;(3)若,求b+c的范围.9.在△ABC中,.(1)求∠B的大小;(2)求的最大值.(1)求角B(2)求cosA+cosB+cosC的取值范围.11.在△ABC中,sin2A-sin2B-sin2C=sinBsinC.(1)求A;(2)若BC=3,求△ABC周长的最大值.12.在设△ABC的内角A,B,C所对边的长分别是a,b,c,已知.(1)求角B的大小;(2)若,求△ABC的周长的取值范围.13.设△ABC的内角A,B,C所对边的长分别是a,b,c,且满足:.(1)求角A的值;(2)若且b≥a,求的取值范围.14.设△ABC的内角A,B,C所对边的长分别是a,b,c,且a=8,ccosAcosB=2asinCcosB-ccosC。
版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx
跟踪训练1 如图,锐角△ABC的外接圆O半径为R,角A,B,C所对的 边分别为a,b,c.求证:sina A =2R. 证明
13
类型二 用正弦定理解三角形
例2 已知△ABC,根据下列条件,解三角形:a=20,A=30°,C= 45°. 解答 ∵A=30°,C=45°,∴B=180°-(A+C)=105°, 由正弦定理得 b=assiinnAB=20ssiinn3100°5°=40sin(45°+60°)=10( 6+ 2), c=assiinnAC=20sisnin3405°°=20 2, ∴B=105°,b=10( 6+ 2),c=20 2.
A.直角三角形 C.锐角三角形
√B.等腰三角形
D.钝角三角形
由sin A=sin C,知a=c,∴△ABC为等腰三角形.
1 2 3 247
3.在△ABC中,已知BC= 5 ,sin C=2sin A,则AB=_2__5___.
答案 解析
由正弦定理,得 AB=ssiinn CABC=2BC=2 5.
18
命题角度2 运算求解问题
例4
在△ABC中,A=
π 3
,BC=3,求△ABC的周长的最大值.
解答
19
反思与感悟
利用sina A=sinb B=sinc C=2R 或正弦定理的变形公式 a=ksin A,b= ksin B,c=ksin C(k>0)能够使三角形边与角的关系相互转化.
22
跟 踪 训 练 3 在 △ABC 中 , 角 A 、 B 、 C 的 对 边 分 别 是 a 、 b 、 c , 若 A∶B∶C=1∶2∶3,求a∶b∶c的值. 解答
23
当堂训练
25
1. 在△ABC中,一定成立的等式是 答案 解析
专题解三角形大题(含答案)
解三角形专题1.在△ABC中,角A,B,C的对边分别为a,b,c,且b cos A+a=c.(1)求B的大小;(2)若c=,a+b=2,求△ABC的面积.2.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-a)sin B+a sin A=c sin C,且c=2.(Ⅰ)求角C的度数;(Ⅱ)求△ABC面积的最大值.靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需3.已知在△ABC中,,a=13,c=15.(Ⅰ)求sin C;(Ⅱ)若△ABC是钝角三角形,求△ABC的面积.4.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求角C;(2)若c=2,求△ABC面积的最大值.靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需5.如图,在四边形ABCD中,∠D=2∠B,且AD=2,CD=6,cos B=.(1)求△ACD的面积;(2)若BC=6,求AB的长.6.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b sin(A+C)=a sin C,且a=2c.(1)求sin B;(2)若△ABC的面积为4,求△ABC的周长.高三几何每日一题(5 )答案靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
余生,无需1.【答案】解:(1)∵b cos A+a=c,∴由正弦定理可得sin B cos A+sin A=sin C,又sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin A=sin A cos B,∵sin A ≠0,∴cos B=,∵B∈(0,π),∴B=.(2)∵B=,c=,∴由余弦定理可得cos B==,整理可得a2-b2+3=3a ,又a+b=2,解得a=b=1,∴S△ABC=ac sin B==.2.【答案】解:(Ⅰ)由正弦定理得(b-a)b+a2=c2,即a2+b2-c2=ab由余弦定理得,∵C∈(0,π),∴.(Ⅱ)由面积公式,由a2+b2-c2=ab,得到ab+4=a2+b2,由不等式a2+b2≥2ab,得到ab +4≥2ab,∴ab≤4,从而,当且仅当a =b=2时取等号.所以△ABC面积的最大值为,3.【答案】解:(Ⅰ)在△ABC中根据正弦定理得,即,∴,(Ⅱ)因为a2=b2+c2-2bc cos A,所以.解得b=8或b=7.当b=7时,所以C为钝角,所以△ABC的面积,当b=8时,.此时C为锐角,不满足题意,所以△ABC的面积.4.【答案】解:(1)△ABC中,2cos C(a cos B+b cos A)=c,由正弦定理可得:2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sinC=sin C,又0<C<π,sin C≠0,∴cos C=,求得C=;(2)由c=2,C=,利用余弦定理可得:4=c2=a2+b2-2ab cos C≥2ab-ab=ab,靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
高一数学解斜三角形试题答案及解析
高一数学解斜三角形试题答案及解析1.在△ABC中,若==,则△ABC是( ).A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形【答案】B【解析】由正弦定理得,由得,即,由于为三角形的内角,故,即,因此三角形为等边三角形.【考点】判定三角形的形状.2.在中,若,则△ABC的面积是= ( ).A.9B.9C.18D.18【答案】A【解析】在中,,是等腰三角形,,由三角形的面积公式得.考点:解三角形.3.已知中,的对边分别为且.(1)判断△的形状,并求的取值范围;(2)如图,三角形的顶点分别在上运动,,若直线直线,且相交于点,求间距离的取值范围.【答案】(1)为直角三角形,;(2).【解析】(1)法一,根据数量积的运算法则及平面向量的线性运算化简得到,从而可确定,为直角三角形;法二:用数量积的定义,将数量积的问题转化为三角形的边角关系,进而由余弦定理化简得到,从而可确定为直角,为直角三角形;(2)先引入,并设,根据三角函数的定义得到,进而得到,利用三角函数的图像与性质即可得到的取值范围,从而可确定两点间的距离的取值范围.试题解析:(1)法一:因为所以即所以,所以所以是以为直角的直角三角形法二:因为所以是以为直角的直角三角形即(2)不仿设,所以所以.【考点】1.平面向量的数量积;2.余弦定理;3.三角函数的应用.4.边长为2的等边三角形,求它水平放置时的直观图的面积 .【答案】【解析】等边三角形ABC的边长为2,故面积为,而原图和直观图面积之间的关系故直观图△A/B/C/的面积为.【考点】斜二测画法,直观图5.已知为的内角,且,则 .【答案】或【解析】依题意可知,且在单调递增,所以当时,,当时,,所以,即,综上可知或.【考点】1.三角形内角的取值范围;2.正弦函数的单调性.6.在△ABC中,∠A、∠B、∠C的对应边分别为a、b、c.若a、b、c成等差数列,则∠B的范围是()A.(0,] B.(0,]C.[,π) D.[,π)【答案】B【解析】根据题意,由于a、b、c成等差数列,则可知2b=a+c,结合余弦定理可知得到cosB ,故可知得到∠B的范围是(0,],故选B.【考点】等差数列点评:主要是考查了等差数列的运用,以及解三角形的综合运用,属于基础题。
余弦定理与正弦定理-用余弦定理、正弦定理解三角形(第三课时)高一数学(北师大版2019必修第二册)
变式 1.(2011 年上海)在相距 2 千米的 A,B 两点处测量目标 C,
若∠CAB=75°,∠CBA=60°,求 A,C 两点之间的距离.
解:由条件知:C=180°-75°-60°=45°, 由正弦定理得sAinCB=sAinBC, 即siAn6C0°=sin245°. 解得 AC= 6.
例2:在△ABC 中,若 2cosBsinA=sin ,试判断CABC 的形 状.
2.余弦定理
a2= b2+c2-2bccos A ,b2= a2+c2-2accos B ,c2
= a2+b2-2abcos C .余弦定理可以变形:cos A
b2+c2-a2
a2+c2-b2
a2+b2-c2
= 2bc ,cos B= 2ac ,cos C= 2ab .
3.三角形中常用的面积公式
(1)S=12ah(h 表示边 a 上的高);
2
2
整理,得4cos2 C 4cos C 1 0,解得cos C 1 , 2
0 C 180,C 60.
(2)由余弦定理得c2 a2 b2 2abcos C,
即7=a2+b2-ab,∴7=(a+b)2-3ab, 由条件a+b=5,得7=25-3ab,ab=6,
SABC
1 2
absin
b=2,a=x,如 c 有两组解,则 x 的取值范围是
.
解 : 当 asinB< b< a 时 , 三 角 形 ABC 有 两 组 解 . 又 b=2, B=60°, a=x, 如 果 三 角 形 ABC 有 两 组 解 ,
那 么 x 应 满 足 xsin60°< 2< x, 即 2< x< 4
3
,
10
高一数学解三角形试题
高一数学解三角形试题1.如图,两座建筑物AB,CD的高度分别是9m和15m,从建筑物AB的顶部看建筑物CD的张角,求建筑物AB和CD底部之间的距离BD。
【答案】【解析】过作于,设,显然此时,记;将放入中.利用建立关于的关系;将放入中,利用建立关于的关系.最后根据的关系,解出其中的.如图,过作于,设∵,记,则,在中,, ∴,在中,, ∴,∴,解得:或(舍去).所以建筑物和底部之间的距离为.【考点】直角三角形中,正切表示边;正切和角公式.2.如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.(1).设AD=x(x≥0),DE=y,求用x表示y的函数关系式,并求函数的定义域;(2).如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.【答案】(1);(2)如果DE是水管,DE的位置在AD=AE=处,如果DE是参观路线,则DE为AB中线或AC中线时,DE最长,证明过程详见解析.【解析】(1)在△ADE中,利用余弦定理可得,又根据面积公式可得,消去AE后即可得到y与x的函数关系式,又根据可以得到x的取值范围;(2)如果DE是水管,则问题等价于当时,求的最小值,利用基本不等式即可求得当时,y有最小值为,如果DE是参观路线,则问题等价于问题等价于当时,求的最小值,根据函数在[1,2]上的单调性,可得当x=1或2时,y有最小值.(1)在△ADE中,由余弦定理:①又∵②②代入①得(y>0), ∴,由题意可知,所以函数的定义域是,;(2)如果DE是水管,当且仅当,即x=时“=”成立,故DE∥BC,且DE=.如果DE是参观线路,记,可知函数在[1,]上递减,在[,2]上递增,=.即DE为AB中线或AC中线时,DE最长.故∴ymax【考点】1、平面向量的数量积;2、三角形面积计算.3.在中三个内角 A、B、C所对的边分别为则下列判断错误的是()A.若则为钝角三角形B.若则为钝角三角形C.若则为钝角三角形D.若A、B为锐角且则为钝角三角形【答案】C【解析】,可得.A正确;由余弦定理可知,为钝角,正确;,的夹角为钝角,但是夹角并不是三角形内角而是三角形外角,故错;由同一坐标系下的三角函数图象可知A、B为锐角且,可得.【考点】三角函数相关性质,余弦定理,向量的数量积.4.①设a,b是两个非零向量,若|a+b|=|a-b|,则a·b=0②若③在△ABC中,若,则△ABC 是等腰三角形④在中,,边长a,c分别为a=4,c=,则只有一解。
高中数学经典题型--解三角形(含详细答案)
高中数学经典题型解三角形【编著】黄勇权【第1题】在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c , 且sinC bsinBasinA = 3a32 sinB + c求:角C 的大小【第1题】答案:已知:sinCbsinB asinA += 3a 32 sinB + c等号左边:因为分子、分母每一项含有sin ,故用正弦定理,将sin 替换成边即:cb *b a *a += 3a 32 sinB +c 特别提示: 等号右边的sinB 不能换成边b , 这是因为sinB=R 2b ,这样就会多出R 21,等号两边同时乘以ca 2+b 2 = 3ac 32 sinB +c 2将c 2移到等号左边,a 2+b 2- c 2 = 3ac 32 sinB由于等号左边是a 2+b 2-c 2,只能构建cosC ,故等号两边同时除以2ab ,这一步非常重要。
2a b c b a 222-+ = b 3c 3 sinBc osC = b 3c 3 sinB等号右边,左边分子含c ,分母含b ,故用正弦定理把c 、b 换成sinC ,sinB 这一步非常重要,很多同学想不到,因此就解不出来。
c osC = B sin 3sinC 3 sinBc osC =33 sinCtanC= 3 即C=60°经典技巧:对于正弦定理,很多同学都不知道什么时候能用,什么时候不能用,其实,在运用正弦定理将sin与对应边换时,一定要遵循能够消除2R为原则。
例如1:acosB+bcosA=2c 【能用】由正弦定理:a=2RsinA,b=2RsinB,c=2RsinC代入上式,2RsinA*cosB+2RsinB*cosA=2*2RsinC因为每一项都有2R,故能消除2R,化简:sinA*cosB+sinB*cosA=2sinC所以能用正弦定理。
例如2:bcosA+sinB=3c 【不能用】由正弦定理:b=2RsinB,c=2RsinC代入上式,得:2RsinB*cosA+sinB=2RsinC*3因为第二项不含2R,无法消除2R, 所以不能用正弦定理例如3:sin2A+sin2B=2sinBsinC 【能用】a b c(R 2a )2 + (R 2b )2 = 2 *R 2b *R 2c因为每一项都有(R 21)2,故能消除2R ,化简得:a 2 +b 2=2bc 所以能用正弦定理 例如4:acosB+bcosA=4bc 【能用】由正弦定理:a=2RsinA ,b=2RsinB ,c=2RsinC 代入上式,2RsinA*cosB+2RsinB*cosA=4b*2RsinC因为要消除2R ,所以只能代入一项,要么是b 或c 而等号右边化简后sinA*cosB+sinB*cosA=sin (A+B )=sinC所以我们只把c 换为sinC ,而b 不动。
专题解三角形大题(含答案)
专题解三角形大题(含答案)靠自己打拼出来的天下,才是最美的;靠自己获得的一切,才是最珍贵的。
今天,你,做数学题了吗?1.在△ABC中,已知bcosA+a=c,求B的大小和△ABC的面积。
根据正弦定理和余弦定理,可以得到sinBcosA+sinA=sinC和cosB=(c-a2-b2)/2ab。
代入已知条件,解得B=π/3,S△ABC=absinB=√3/4.2.在△ABC中,已知(b-a)sinB+asinA=csinC,且c=2,求角C的度数和△ABC面积的最大值。
同样利用正弦定理和余弦定理,可以得到a2+b2-c2=ab和cosB=(c-a2-b2)/2ab。
解得C=π/3,S△ABC=absinC=√3.3.在△ABC中,已知a+b+c=2,求sinC和如果△ABC是钝角三角形,求其面积。
根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。
代入已知条件,解得sinC=√3/2,若△ABC是钝角三角形,面积为0.4.在△ABC中,已知2cosC(acosB+bcosA)=c,求角C和如果c=2,求△ABC面积的最大值。
根据余弦定理,可以得到cosC=(a2+b2-c2)/2ab。
代入已知条件,解得C=π/3,S△ABC=absinC=√3.当c=2时,代入面积公式,解得S△ABC=√3.5.在四边形ABCD中,已知∠D=2∠B,且AD=2,CD=6,cosB=1/3,求△ACD的面积和AB的长。
根据余弦定理,可以得到AC2=40-24cosB=32,再根据海龙公式和正弦定理,可以解得S△ACD=8√3和AB=2√7.6.在△ABC中,已知bsin(A+C)=asinC,且a=2c,求sinB和△ABC的周长。
代入正弦定理和已知条件,解得sinB=1/2,周长为3c。
1.由$a^2+b^2-c^2=ab$,得到$ab+4=a^2+b^2$。
由不等式$a^2+b^2\geq 2ab$,得到$ab+4\geq 2ab$,因此$ab\leq 4$。
2020年高考理科数学 《解三角形》题型归纳与训练及答案解析
2020年高考理科数学 《解三角形》题型归纳与训练【题型归纳】题型一 正弦定理、余弦定理的直接应用例1ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin2BA C +=. (1)求cos B(2)若6a c +=,ABC ∆面积为2,求b . 【答案】(1)15cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin2BB =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABC S ∆=,则172ac =. 由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出例2 ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = . 【答案】π3【解析】1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=.【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。
【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。
例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.【答案】34【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B=π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34. 【易错点】大边对大角,应注意角的取值范围【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。
高中数学解三角形解答题专题训练含答案
解三角形解答题专题训练 2017.121.在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,已知(Ⅰ)求C ;,且sin sin()3sin 2C B A A +-=,求ABC ∆的面积.因为sin 0A ≠,解得(Ⅱ)由sin sin()3sin 2C B A A +-=,得sin()sin()3sin 2B A B A A ++-=, 整理,得sin cos 3sin cos B A A A =. 若cos 0A =,则ABC ∆的面积若cos 0A ≠,则sin 3sin B A =,3b a =.由余弦定理,得2222cos c a b ab C =+-,解得1,3a b ==.ABC ∆的面积 综上,ABC ∆的面积为2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c. 已知a+b=5,(Ⅰ) 求角C 的大小; (Ⅱ)求△ABC 的面积. 解: (Ⅰ)∵A+B+C=180整理,得01cos 4cos 42=+-C C∵ ∴C=60°(Ⅱ)由余弦定理得:c 2=a 2+b 2-2abcosC ,即7=a 2+b 2-ab ∴ 由条件a+b=5得 7=25-3ab , 故所以的面积 3.已知,,a b c 分别为ABC ∆三个内角,,A B C 所对的边长,且cos cos 2cos a B b A c C +=. (1)求角C 的值;(2)若4,7c a b =+=,求ABC S ∆的值. 解:(1得:sin cos sin cos 2sin cos A B B A C C +=, 又sin sin()2sin cos C A B C C =+=, (2)由余弦定理:2222cos c a b ab C =+-,∴11ab =,∴4.在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知(1)求角C 的值;(2)若2=c ,且ABC ∆的面积为,求b a ,. 解:(1︒<<︒1800C ab b a 3)(72-+=ab=6ABC △又∵是三角形的内角,∴又∵C 是三角形的内角,∴(2,∴4=ab ,又∵C ab b a c cos 2222-+=,∴ab ab b a --+=2)(42,∴4=+b a ,或0=-b a , ∴2==b a .5.锐角ABC ∆中,角C B A 、、的对边分别是c b a 、、,已知(Ⅰ)求C sin 的值;(Ⅱ)当2=a ,C A sin sin 2=时,求b 的长及ABC ∆的面积. (Ⅱ)当a 2,2sinA sinC ==时,由正弦定理,解得c 4=. 由余弦定理222c a b 2abcosC =+-,得 6.已知向量(sin m x =,(cos ,n x =-,且()f x m n =⋅.(1)求()f x 的单调递增区间;(2上有零点,求m 的取值范围.解:(1sin m n x =⋅=B则()f x 的递增区间为(2()g x 有零点,即函数与y m =图像有交点,由图象可得,m 的取值范围为7.如图,D 是直角三角形ABC ∆斜边BC 上一点,(Ⅰ)若 30=∠DAC ,求B ∠;(Ⅱ)若DC BD 2=,且,求DC . 解:(Ⅰ)在ABC ∆中,根据正弦定理,有又 6060>+∠=∠+∠=∠B BAD B ADC ,∴ 120=∠ADC , ∴ 3030120180=--=∠C ,∴ 60=∠B . (Ⅱ)设x DC =,则在ABD ∆中,B BD AB BD AB AD cos 2222⋅⋅-+=,,得2=x .故2=DC . 8.在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知(1)求角B 的大小;(2)若a+c=1,求b 的取值范围.又cos 0B ≠,又0B π<<,(2)由余弦定理,有2222cos ba c ac B =+-. 又01a <<,9.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c 且cos2B+3cosB ﹣1=0. (1)求角B 的大小;(2)若a+c=1,求b 的最小值.解:(1)在△ABC 中,∵cos2B+3cosB ﹣1=0, ∴2cos 2B+3cosB ﹣2=0,∴或cosB=﹣2(舍去),∴.(2)∵a+c=1,由余弦定理,得b 2=a 2+c 2﹣2accosB=(a+c )2﹣3ac=1﹣3a (1﹣a )=3a 2﹣3a+1,其中0<a <1, ∵f (a )=3a 2﹣3a+1在上递减,在上递增,∴,又0<b <1,∴.10.已知ABC ∆中,a ,b,c 分别是角A ,B ,C 的对边,且2b ,2c 是关于x 的一元二次方程22()0x a bc x m -++=的两根. (1)求角A 的大小;(2,设=B θ,ABC ∆的周长为y ,求()y f θ=的最大值.解:(1)在中,依题意有:,∴2ABC ∆222b c a bc +=+(0)A π∈,∴2sin 2sin b B θ==,11.已知在△ABC 中,(1)若三边长a ,b ,c 依次成等差数列,sinA :sinB=3:5, 求三个内角中最大角的度数; (2)若()22BA BC b a c ⋅=--,求cosB . 解:(1)在△ABC 中有sinA :sinB=3:5, ∴a :b=3:5,设a=3k ,(k >0)则b=5k , ∵a ,b ,c 成等差数列,∴c=7k ,∴最大角为C ,有cosC=()()()()()2223k 5k 7k 23k 5k +-⋅⋅=﹣,∴C=120° (2)由BA BC ⋅=b 2﹣(a ﹣c )2 得:accosB=b 2﹣(a ﹣c )2,即accosB=a 2+c 2﹣2accosB ﹣(a 2+c 2﹣2ac ),∴3cosB=2,∴cosB=. 12.在ABC ∆中,,,a b c 分别为角,,A B C 所对的三边,22()a b c bc --=, (Ⅰ)求角A ;(Ⅱ),角B 等于x ,周长为y ,求函数)(x f y =的取值范围. 解:(Ⅰ)由22()a b c bc --=,得222a b c bc --=-,又0A π<< ,(Ⅱ13.在ABC ∆中,(2)cos cos a c B b C -= (1)求角B 的大小;(2)求22cos cos()A A C +-的取值范围. 解:(1)由已知得:(2sin sin )sin cos A C B C -=,即2sin cos sin()A B B C =+∴(2)由(1所以()22cos cos A A C +-的取值范围是(0,2]. 14.在△中,内角C B A 、、的对边分别为c b a 、、,已知.(Ⅰ)求;(Ⅱ)若2=b ,求△面积的最大值.解:(Ⅰ)由已知及正弦定理得B C C B A sin sin cos sin sin += 又)(C B A +-=π,故C B C B C B A sin cos cos sin )sin(sin +=+= 得B B cos sin =,又()π,0∈B ,所以(Ⅱ) ⊿ABC 的面积又ac c a 222≥+.,当且仅当c a =时,等号成立.因此⊿ABC 的面积的最大值为15.如图,在△ABC 中,已知45B ∠=,D 是BC 边上一点,AD=10,AC=14,DC=6,求AB 的长.解:在△ABC 中,∵AD=10,AC=14,DC=6∴120ADC ∠=, ∴60ADB ∠= ∴在△ABD 中,∵45B ∠=, 60sin 45AD=, 16.在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c 于任意,()()x f x f A ∈R ≤恒成立. (1)求角A 的大小;(2BC 边上的中线AM 长的取值范围.解:(1)由题意,∵对于任意,()()x f x f A ∈R ≤恒成立, ()f A ,当()f x 取得最大值时,A 是三角形的内角,即0A π<<,∴(2)∵AM 是BC 边上的中线, ∴在△ABM ① 在△ACM ② 又∵AMB AMC π∠=-∠,∴cos cos AMB AMC ∠=-∠,①+②得,∴2236b c <+≤,17.设ABC ∆的内角A ,B ,C ,所对的边长分别为a ,b ,c ,()cos ,cos m A C =,(3n c =-,且m n ⊥.(1)求角A 的大小;(2)若a b =,且BC 边上的中线AM 的长为求边a 的值. 解:(1)∵0m n ⋅=,∴4分6 (2)由(1,又∵b a =,∴ ,在AMC ∆中,由余弦定理得:解得2x =,即2a =.18.在ABC ∆中, )cos ,(),cos ,2(B b n C c a m =-= 且m ∥n (1)求角B 的大小;(2)若1=b ,当ABC ∆面积取最大时,求ABC ∆内切圆的半径.解:(1)因为m ∥n ,所以02=--C b B c a cos cos )(,∴(2sin sin )cos sin cos A C B B C -=, 即2sin cos sin()A B B C =+,(2)由(1)得,又1=b ,ABC ∆中B ac c a b cos 2222-+=得ac c a b -+=222即()2a 31c ac +=+,又因为()ac 4a 2≥+c .得ac ac 431≥+即1≤ac .所以当且仅当1==c a 时ABC S ∆最大值为19.设ABC ∆的内角C B A ,,所对的边分别为,,,a b c 且(Ⅰ)求角B 的大小;(Ⅱ)若1=b ,求ABC ∆的周长l 的取值范围.∴ac a c b a -=-+22222, ∴ac b c a =-+222,∴ac B ac =cos 2,则 ∵),0(π∈B ,∴(Ⅱ)ac c a c a c b a l =-+++=++=1)1(,122知由,∴ac c a 31)(2=-+ ∴4)(2≤+c a .∴2≤+c a .又∵1=>+b c a ,∴△ABC 的周长]3,2(∈++=c b a l . 20.如图,在ABC ∆中,点D 在BC 边上,(1)求sin C ∠的值;(2)若5BD =,求ABD ∆的面积.解:(1(2)在ACD ∆中,由21.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =1,b =2.(1)求∠C 和边c ;(2)若BC BM 4=,且点P 为△BMN值.解:(1所以01cos cos 22=-+C C ,所以1cos -=C 或又因为),0(π∈C ,所以建立坐标系,由(1),由BC BM 4=, ()0,3),4,0(N M ,△BMN 的内切圆方程为:()()11122=-+-y x ,设),(y x P ,则令[)πθθθ2,0,sin 1cos 1∈⎩⎨⎧+=+=y x。
高中数学解三角形精选题目(附答案)
高中数学解三角形精选题目(附答案)一、解三角解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.1.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2b sin A.(1)求B的大小;(2)若a=33,c=5,求b.1.解:(1)由a=2b sin A,根据正弦定理得sin A=2sin B sin A,所以sin B=1 2,由于△ABC是锐角三角形,所以B=π6.(2)根据余弦定理,得b2=a2+c2-2ac cos B=27+25-45=7,所以b=7.注:利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.2.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°解析:选A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,所以A =30°,故选A.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B.932C.332 D .33解析:选C ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.解析:依题意得,由正弦定理知:1sin π6=3sin B ,sin B =32,又0<B <π,b >a ,可得B =π3或2π3.答案:π3或2π35.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac≥2ac -ac 2ac =12, 当且仅当a =c 时等号成立.∴cos B 的最小值为12.二、三角形的形状判定三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C 2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.6.在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sin A cos B .法一:(化边为角)由正弦定理得2sin 2A cos A sin B =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.法二:(化角为边)2a 2cos A sin B =2b 2cos B sin A ,由正弦、余弦定理得a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0.∴a =b 或c 2=a 2+b 2,∴△ABC 为等腰三角形或直角三角形.注:根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有:①通过正弦定理实现边角转化;②通过余弦定理实现边角转化;③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.7.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.8.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sin B ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC 的形状为等边三角形.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,a 2=b 2+c 2-2bc cos A ,∴bc =-2bc cos A ,cos A =-12. 又0<A <π,∴A =2π3.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C ,∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32,∴sin B sin C =14,因此sin B =sin C =12.又B ,C ∈⎝ ⎛⎭⎪⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.三、实际应用(1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.10.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC 2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC=12×3228=3314.故sin α的值为33 14.注:应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.11.要测量底部不能到达的电视塔AB的高度,如图,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:选D设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x =40或x=-20(舍去).故电视塔的高度为40 m.12.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m,则旗杆的高度为________m.解析:设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=hsin 60°=233h.在△ABC中,AB=106,∠CAB=45°,∠ABC=105°,所以∠ACB=30°,由正弦定理,得106sin 30°=233hsin 45°,故h=30(m).答案:3013.某高速公路旁边B处有一栋楼房,某人在距地面100米的32楼阳台A处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E处,问此时客车距离楼房多远?解:(1)在Rt△ABC中,∠BAC=60°,AB=100米,则BC=1003米.在Rt△ABD中,∠BAD=45°,AB=100米,则BD=100米.在△BCD中,∠DBC=75°+15°=90°,则DC=BD2+BC2=200米,所以客车的速度v=CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt△BCD中,∠BCD=30°,又因为∠DBE=15°,所以∠CBE=105°,所以∠CEB=45°.在△BCE中,由正弦定理可知EBsin 30°=BCsin 45°,所以EB=BC sin 30°sin 45°=506米,即此时客车距楼房506米.巩固练习:1.在△ABC中,若a=7,b=3,c=8,则其面积等于()A.12 B.21 2C.28D.63解析:选D由余弦定理得cos A=b2+c2-a22bc=32+82-722×3×8=12,所以sin A=32,则S△ABC=12bc sin A=12×3×8×32=6 3.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.若3a=2b,则2sin2B-sin2Asin2A的值为()A.19 B.13C.1 D.7 2解析:选D由正弦定理可得2sin2B-sin2Asin2A=2b2-a2a2=2·⎝ ⎛⎭⎪⎫32a2-a2a2=72.3.在△ABC中,已知AB=2,BC=5,△ABC的面积为4,若∠ABC=θ,则cos θ等于()A.35B.-35C.±35D.±45解析:选C∵S△ABC =12AB·BC sin∠ABC=12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin2θ=±3 5.4.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为334m2,则此人这时离开出发点的距离为()A.3 m B. 2 mC.2 3 m D. 3 m解析:选D在△ABC中,S=12AB×BC sin B,∴334=12×x×3×sin 30°,∴x= 3.由余弦定理,得AC=AB2+BC2-2AB×BC×cos B=3+9-9=3(m).5.在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=32,则边BC的边长为()A.3B.3C.7D.7解析:选A∵S△ABC =12AB·AC sin A=32,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3,即BC= 3.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B∵b cos C+c cos B=b·b2+a2-c22ab+c·c2+a2-b22ac=b2+a2-c2+c2+a2-b22a=2a22a=a=a sin A,∴sin A=1.∵A∈(0,π),∴A=π2,即△ABC是直角三角形.7.在△ABC中,B=60°,b2=ac,则△ABC的形状为____________.解析:由余弦定理得b2=a2+c2-2ac cos B,即ac=a2+c2-ac,∴(a-c)2=0,∴a=c.又∵B=60°,∴△ABC为等边三角形.答案:等边三角形8.在△ABC中,a=b+2,b=c+2,又知最大角的正弦等于32,则三边长为________.解析:由题意知a边最大,sin A=32,∴A=120°,∴a2=b2+c2-2bc cos A.∴a2=(a-2)2+(a-4)2+(a-2)(a-4).∴a2-9a+14=0,解得a=2(舍去)或a=7.∴b=a-2=5,c=b-2=3.答案:a=7,b=5,c=39.已知三角形ABC的三边为a,b,c和面积S=a2-(b-c)2,则cos A=________.解析:由已知得S=a2-(b-c)2=a2-b2-c2+2bc=-2bc cos A+2bc.又S=12bc sin A,∴12bc sin A=2bc-2bc cos A.∴4-4cos A=sin A,平方得17cos2A-32cos A+15=0.∴(17cos A-15)(cos A-1)=0.∴cos A=1(舍去)或cos A=15 17.答案:15 1710.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=23,sin B=5cos C.(1)求tan C的值;(2)若a=2,求△ABC的面积.解:(1)因为0<A<π,cos A=2 3,所以sin A=1-cos2A=5 3,又5cos C=sin B=sin(A+C)=sin A cos C+cos A sin C=53cos C+23sin C,所以253cos C=23sin C,tan C= 5.(2)由tan C=5得sin C=56,cos C=16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sinB =12×2×3×56=52. 11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B=437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49. 所以AC =7.12.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,c =2,C =π3,求△ABC 的面积.解:(1)证明:∵m∥n,∴a sin A=b sin B,∴a·a=b·b,即a2=b2,a=b,∴△ABC为等腰三角形.(2)由m⊥p,得m·p=0,∴a(b-2)+b(a-2)=0,∴a+b=ab.由余弦定理c2=a2+b2-2ab cos C,得4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,解得ab=4(ab=-1舍去),∴S△ABC =12ab sin C=12×4×sinπ3= 3.。
高一数学必修五第一章试题——解三角形(带答案)
高一数学必修五第一章试题——解三角形一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ,c 分别是△ABC 中∠A ,∠B ,∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直2.在△ABC 中,已知a -2b +c =0,3a +b -2c =0,则sin A ∶sin B ∶sin C 等于( )A .2∶3∶4B .3∶4∶5C .4∶5∶8D .3∶5∶73.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( )A .4 3B .5C .5 2D .624.已知关于x 的方程x 2-x cos A ·cos B +2sin 2C2=0的两根之和等于两根之积的一半,则△ABC 一定是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形5.△ABC 中,已知下列条件:①b =3,c =4,B =30°;②a =5,b =8,A =30°;③c =6,b =33,B =60°;④c =9,b =12,C =60°.其中满足上述条件的三角形有两解的是( )A .①②B .①④C .①②③D .③④6.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若a =1,sin B =32,C =π6,则b 的值为( )A .1B .32C .3或32 D .±17.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75°C .30°D .15°8.若G 是△ABC 的重心,a ,b ,c 分别是角A ,B ,C 的对边,且aGA →+bGB →+33cGC →=0,则角A =( )A .90°B .60°C .45°D .30°9.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC→,则AD 的长为( ) A .4(3-1) B .4(3+1) C .4(3-3)D .4(3+3)10.在△ABC 中,B A →·B C →=3,S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,则B 的取值范围是( ) A .⎣⎢⎡⎦⎥⎤π4,π3 B .⎣⎢⎡⎦⎥⎤π6,π4 C .⎣⎢⎡⎦⎥⎤π6,π3 D .⎣⎢⎡⎦⎥⎤π3,π211.在△ABC 中,三内角A ,B ,C 所对边分别为a ,b ,c ,若(b -c )sin B =2c sin C 且a =10,cos A =58,则△ABC 面积等于( )A .392 B .39 C .313 D .312.锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A (a cos C +c cos A )=3b ,则cb 的取值范围是( )A .⎝ ⎛⎭⎪⎫12,2 B .⎝ ⎛⎭⎪⎫32,233 C .(1,2) D .⎝ ⎛⎭⎪⎫32,1二、填空题(本大题共4小题,每小题5分,共20分)13.已知在△ABC 中,a +b =3,A =π3,B =π4,则a 的值为________.14.在△ABC 中,AB =2,点D 在边BC 上,BD =2DC ,cos ∠DAC =31010,cos C =255,则AC +BC =________.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =23,C =45°,1+tan A tan B =2cb ,则边c 的值为________.16.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且a ,b ,c 满足2b =a +c ,B =π4,则cos A -cos C =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .18.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .19.(本小题满分12分)为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1 km内不能收到手机信号.检查员抽查青岛市一考点,在考点正西约 3 km有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以12 km/h的速度沿公路行驶,最长需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?20.(本小题满分12分)已知△ABC的内角A,B,C的对边分别为a,b,c,a2+b2=λab.(1)若λ=6,B=5π6,求sin A;(2)若λ=4,AB边上的高为3c6,求C.21.(本小题满分12分)已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且tan A=3cbc2+b2-a2.(1)求角A的大小;(2)当a=3时,求c2+b2的最大值,并判断此时△ABC的形状.22.(本小题满分12分)在海岸A处,发现北偏东45°方向,距A处(3-1) n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A处2 n mile的C处的缉私船奉命以10 3 n mile/h的速度追截走私船.此时,走私船正以10 n mile/h 的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?一、选择题1. 答案 C解析 ∵k 1=-sin A a ,k 2=bsin B ,∴k 1k 2=-1,∴两直线垂直.故选C . 2. 答案 D解析 因为a -2b +c =0,3a +b -2c =0, 所以c =73a ,b =53a .a ∶b ∶c =3∶5∶7. 所以sin A ∶sin B ∶sin C =3∶5∶7.故选D . 3. 答案 C解析 ∵S △ABC =12ac sin B =2,∴c =42. 由余弦定理b 2=a 2+c 2-2ac cos B =25, ∴b =5.由正弦定理2R =bsin B =52(R 为△ABC 外接圆的半径).故选C . 4. 答案 C解析 由题意知:cos A ·cos B =sin 2C2,∴cos A ·cos B =1-cos C 2=12-12cos [180°-(A +B )]=12+12cos(A +B ), ∴12(cos A ·cos B +sin A ·sin B )=12, ∴cos(A -B )=1.∴A -B =0,∴A =B ,∴△ABC 为等腰三角形.故选C . 5. 答案 A解析 ①c sin B <b <c ,故有两解; ②b sin A <a <b ,故有两解; ③b =c sin B ,有一解; ④c <b sin C ,无解.所以有两解的是①②.故选A . 6. 答案 C解析 在△ABC 中,sin B =32,0<B <π, ∴B =π3或2π3,当B =π3时,△ABC 为直角三角形, ∴b =a ·sin B =32; 当B =2π3时,A =C =π6,a =c =1.由余弦定理得b 2=a 2+c 2-2ac cos 2π3=3, ∴b =3.故选C . 7. 答案 A解析 由题意:sin B +cos B =62.两边平方得sin2B =12,设顶角为A ,则A =180°-2B .∴sin A =sin(180°-2B )=sin2B =12,∴A =30°或150°. 故选A . 8. 答案 D解析 由重心性质可知GA →+GB →+GC →=0,故GA →=-GB →-GC →,代入aGA →+bGB→+33cGC →=0中,即 (b -a )GB →+33c -aGC →=0,因为GB →,GC →不共线,则⎩⎨⎧b -a =0,33c -a =0,即⎩⎨⎧b =a ,c =3a ,故由余弦定理得cos A =b 2+c 2-a 22bc =32.因为0<A <180°,所以A =30°.故选D .9. 答案 C解析 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin45°sin75°=8(3-1), 因为BD →=3-12BC →,所以BD =3-12BC . 又BC =8,所以BD =4(3-1).在△ABD 中,AD =AB 2+BD 2-2AB ·BD ·cos60°=4(3-3).故选C . 10. 答案 C解析 由题意知ac ·cos B =3,所以ac =3cos B , S △ABC =12ac ·sin B =12×3cos B ×sin B =32tan B . 因为S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,所以tan B ∈⎣⎢⎡⎦⎥⎤33,3, 所以B ∈⎣⎢⎡⎦⎥⎤π6,π3.故选C .11. 答案 A解析 由正弦定理,得(b -c )·b =2c 2,得b 2-bc -2c 2=0,得b =2c 或b =-c (舍).由a 2=b 2+c 2-2bc cos A ,得c =2,则b =4. 由cos A =58知,sin A =398.S △ABC =12bc sin A =12×4×2×398=392.故选A . 12. 答案 A解析 2sin A (a cos C +c cos A )=3b ⇔2sin A ·(sin A cos C +sin C cos A )=3sin B ⇔2sin A sin(A +C )=3sin B ⇔2sin A sin B =3sin B ⇔sin A =32, 因为△ABC 为锐角三角形, 所以A =π3,a 2=b 2+c 2-bc , ① a 2+c 2>b 2, ② a 2+b 2>c 2, ③由①②③可得2b 2>bc ,2c 2>bc ,所以12<cb <2.故选A . 二、填空题(本大题共4小题,每小题5分,共20分) 13.答案 33-32解析 由正弦定理,得b =a sin B sin A =63a .由a +b =a +63a =3,解得a =33-32.14. 答案 3+5解析 ∵cos ∠DAC =31010,cos C =255, ∴sin ∠DAC =1010,sin C =55, ∴sin ∠ADC =sin(∠DAC +∠C ) =1010×255+31010×55=22. 由正弦定理,得AC sin ∠ADC =DCsin ∠DAC,得AC =5DC .又∵BD =2DC ,∴BC =3DC . 在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos C=5DC 2+9DC 2-25DC ·3DC ·255=2DC 2. 由AB =2,得DC =1,从而BC =3,AC =5.即AC +BC =3+5. 15. 答案 22解析 在△ABC 中,∵1+tan A tan B =1+sin A cos Bcos A sin B = cos A sin B +sin A cos B cos A sin B =sin (A +B )cos A sin B =sin C cos A sin B =2cb . 由正弦定理得c b cos A =2c b ,∴cos A =12,∴A =60°. 又∵a =23,C =45°.由a sin A =c sin C 得2332=c 22,∴c =22.16. 答案 ±42 解析 ∵2b =a +c ,由正弦定理得2sin B =sin A +sin C ,又∵B =π4,∴sin A +sin C =2,A +C =3π4. 设cos A -cos C =x ,可得(sin A +sin C )2+(cos A -cos C )2=2+x 2,即sin 2A +2sin A sin C +sin 2C +cos 2A -2cos A cos C +cos 2C =2-2cos(A +C )=2-2cos 3π4=2+x 2.则(cos A -cos C )2=x 2=-2cos 3π4=2, ∴cos A -cos C =±42. 三、解答题 17.解 (1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴cos ∠CBE =cos15°=cos(45°-30°)=6+24. (2)在△ABE 中,AB =2, 由正弦定理,得AE sin (45°-15°)=2sin (90°+15°),故AE =2sin30°sin75°=2×126+24=6-2.18.解 (1)证明:由正弦定理a sin A =b sin B =c sin C ,可知原式可以化为cos A sin A +cos Bsin B =sin Csin C =1,因为A 和B 为三角形内角,所以sin A sin B ≠0,则两边同时乘以sin A sin B ,可得sin B cos A +sin A cos B =sin A sin B ,由和角公式可知,sin B cos A +sin A cos B =sin(A +B )=sin(π-C )=sin C ,原式得证.(2)因为b 2+c 2-a 2=65bc ,根据余弦定理可知,cos A =b 2+c 2-a 22bc =35.因为A 为三角形内角,A ∈(0,π),sin A >0,则sin A =1-⎝ ⎛⎭⎪⎫352=45,即cos A sin A =34,由(1)可知cos A sin A +cos B sin B =sin C sin C =1,所以cos B sin B =1tan B =14,所以tan B =4.19.解 如右图所示,考点为A ,检查开始处为B ,设公路上C ,D 两点到考点的距离为1 km .在△ABC 中,AB =3≈1.732,AC =1,∠ABC =30°, 由正弦定理,得sin ∠ACB =AB sin30°AC =32,∴∠ACB =120°(∠ACB =60°不符合题意), ∴∠BAC =30°,∴BC =AC =1. 在△ACD 中,AC =AD ,∠ACD =60°, ∴△ACD 为等边三角形,∴CD =1.∵BC 12×60=5,∴在BC 上需要5 min ,CD 上需要5 min .∴最长需要5 min 检查员开始收不到信号,并至少持续5 min 该考点才算合格.20.解 (1)由已知B =5π6,a 2+b 2=6ab ,综合正弦定理得4sin 2A -26sin A +1=0.于是sin A =6±24,∵0<A <π6,∴sin A <12,∴sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ),从而有3sin C +cos C =2即sin ⎝ ⎛⎭⎪⎫C +π6=1. 又π6<C +π6<7π6,∴C =π3.21.解 (1)由已知及余弦定理,得sin A cos A =3cb 2cb cos A ,sin A =32,因为A 为锐角,所以A =60°. (2)解法一:由正弦定理,得a sin A =b sin B =c sin C =332=2, 所以b =2sin B ,c =2sin C =2sin(120°-B ).c 2+b 2=4[sin 2B +sin 2(120°-B )] =41-cos2B 2+1-cos (240°-2B )2=4-cos2B +3sin2B=4+2sin(2B -30°).由⎩⎨⎧0°<B <90°,0°<120°-B <90°,得30°<B <90°,所以30°<2B -30°<150°. 当sin(2B -30°)=1,即B =60°时,(c 2+b 2)max =6,此时C =60°,△ABC 为等边三角形.解法二:由余弦定理得(3)2=b 2+c 2-2bc cos60°=b 2+c 2-bc =3.∵bc ≤b 2+c 22(当且仅当b =c 时取等号),∴b 2+c 2-b 2+c 22≤3,即b 2+c 2≤6(当且仅当b =c 时等号). 故c 2+b 2的最大值为6,此时△ABC 为等边三角形.22.解 设缉私船用t 小时在D 处追上走私船.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠CAB =(3-1)2+22-2×(3-1)×2×cos120°=6,∴BC =6.在△BCD 中,由正弦定理,得sin ∠ABC =AC BC sin ∠BAC =22,∴∠ABC =45°,∴BC 与正北方向垂直.∴∠CBD =120°.在△BCD 中,由正弦定理,得CD sin ∠CBD =BD sin ∠BCD, ∴103t sin120°=10t sin ∠BCD , ∴sin ∠BCD =12,∴∠BCD =30°.故缉私船沿北偏东60°的方向能最快追上走私船.。
2020年高考数学(理)大题分解专题01 三角函数与解三角形(含答案)
已知向量(sin cos ,2cos )x x x =+m ,sin co,s )s in (x x x =-n ,()1f x =⋅+m n . (1)求()f x 的解析式,并求函数()f x 的单调增区间; (2)求()f x 在[0,]2π上的值域.【肢解1】在已知条件下求出,函数()f x 的解析式.【肢解2】在“肢解1”的基础上,完成问题:函数()f x 的单调增区间. 【肢解3】在已知条件下,求()f x 在[0,]2π上的值域.【解析】(1)22()sin cos 2sin cos 1sin 2cos21)14f x x x x x x x x π=-++=-+=-+.(3分)令222242k x k ππππ-≤-≤π+,k ∈Z ,得88k x k π3ππ-≤≤π+,k ∈Z . 故函数()f x 的单调增区间为[,]88k k π3ππ-π+,k ∈Z .(6分)(2)因为02x π≤≤,所以2444x ππ3π-≤-≤,从而sin(2)14x π≤-≤,(8分)大题肢解一三角函数的图象及其性质所以0)114x π-+≤,所以()f x 在[0,]2π上的值域为1].(12分)此类问题通常先通过三角恒等变换化简函数解析式为si (n )y A x B ωϕ++=的形式,再结合正弦函数sin y x =的性质研究其相关性质.(1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”; ②求形如sin()y A x ωϕ=+或cos()y A x ωϕ=+(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. (2)函数图象的平移变换解题策略:①对函数sin y x =,sin()y A x ωϕ=+或cos()y A x ωϕ=+的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为x ωϕ±.②注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.【拓展1】已知向量()sin ,cos x x =a ,()cos ,cos x x =b ,x ∈R ,已知函数()()f x =⋅+a a b . 求()f x 的最值与最小正周期;【解析】由向量()sin ,cos x x =a ,()cos ,cos x x =b ,所以()sin cos ,2cos x x x +=+a b , 所以()()()2sin sin cos 2cos f x x x x x =⋅+=++a a b ()111sin 2cos 2122x x =+++32224x π⎛⎫=++ ⎪⎝⎭,又[]sin 2-1,14x π⎛⎫+∈ ⎪⎝⎭,即()f x的最大值是322+,最小值是322-,()f x 的最小正周期是22T π==π. 【拓展2】已知函数23()cos cos 2f x x x x =++,当[,]63x ππ∈-时,求函数()y f x =的值域.【解析】由题得1cos 23()2sin(2)22226x f x x x +π=++=++, ∵[,]63x ππ∈-, ∴2[,]666x ππ5π+∈-, ∴1sin(2)126x π-≤+≤, ∴函数()y f x =的值域为3[,3]2.(2019年河北省存瑞中学高三上一质检)已知向量)1cos ,,,cos2,2x x x x ⎛⎫=-=∈ ⎪⎝⎭R a b ,设函数()f x =⋅a b .(1)求()f x 的最小正周期; (2)求函数()f x 的单调递减区间;(3)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【解析】由已知可得:变式训练一()11·cos cos2cos2sin 22226f x x x x x x x π⎛⎫==-=-=- ⎪⎝⎭a b ,(3分)(1)()f x 的最小正周期2π2T π==;(5分) (2)由3222,262k x k k ππππ+≤-≤π+∈Z ,可得5,36k x k k πππ+≤≤π+∈Z , ()f x ∴的单调递减区间为()5,36k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z .(7分)(3)0,2x π⎡⎤∈=⎢⎥⎣⎦,52,666x πππ⎡⎤∴-∈-⎢⎥⎣⎦,1sin 2,162x π⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,(10分)()f x ∴的最大值为1,最小值为12-.(12分)在锐角ABC △中,角,,AB C 的对边分别为,,a b c ,已知ππsin 2)cos()44B B B =+-. (1)求角B 的大小;(2)若1b =,ABC △的面积为2,求ABC △的周长.【肢解1】在已知条件下化解二倍角公式和余弦和差公式. 【肢解2】根据正、余弦定理求解即可.大题肢解二解三角形【解析】(1)因为在锐角ABC △中,ππsin 2)cos()44B B B =+-,所以ππsin 2cos()sin()44B B B =++,所以sin 22B B =,(3分) 因为cos20B ≠,所以tan 2B =因为π02B <<, 所以π6B =.(6分) (2)由余弦定理2222cos b a c ac B =+-,得2212cos a c ac B =+-,所以221a c =+,(8分)因为ABC △的面积为2,所以1πsin 26ac =,即ac = 所以227a c +=,(10分)所以22()7(2a c +=+=+,所以2a c +=+所以3a b c ++=+ABC △的周长为3(12分)(1)利用正、余弦定理求边和角的方法:①根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.②选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.③在运算求解过程中注意三角恒等变换与三角形内角和定理的应用. (2)求三角形面积的方法:①若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.②若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.【拓展1】已知在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且ca bA B A C +=--sin sin sin sin , (1)求角C 的大小; (2)若3=c ,求b a +的取值范围. 【答案】(1)由c a b A B A C +=--sin sin sin sin ,则ca ba b a c +=--.⇒ab c b a =-+222,所以2122cos 222==-+=ab ab ab c b a C 而),0(π∈C 故3π=C , (2)由ab c b a =-+222 且3=c ,⇒ab ab b a =--+92)(2, ⇒22)2(339)(b a ab b a +≤=-+, ⇒36)(2≤+b a 所以6≤+b a ,又3=>+c b a ,所以b a +的取值范围是]6,3(.【拓展2】在ABC ∆中,设边,,a b c 所对的角分别为,,A B C ,cos cos 2A aC b c=-+. (1)求角A 的大小;(2)若2,bc =ABC ∆的周长为3,求a 的值.【答案】(1)23A π=(2)a =【解析】(1)因为cos cos 2A aC b c=-+ 由正弦定理得cos sin cos 2sin sin A A C B C=-+ sin cos cos sin 2cos sin 0A C A C A B ++=sin()2cos sin 0A C A B ++=sin 2cos sin 0B A B +=,(0,)B π∈, 1cos 2A =-,(0,)A π∈,23A π=(2)由余弦定理得2222222cos 2a b c bc Aa b c =+-⇒=++因为周长3a b c ++=,又222a b c =+-(),所以2232a a =+-(),所以a =【点睛】本题考查正、余弦定理的综合运用,考查了逻辑推理能力,考查了方程思想,属于中档题.(百校联盟2019-2020学年高三上学期10月尖子生联考数学理科试题)已知ABC △的内角A 、B 、C 所对的边分别为a 、b 、c .且cos 2sin cos 6B C A π⎛⎫=-⋅ ⎪⎝⎭. (1)求角A ;(2)若ABC △的面积为ABC ∆周长的最小值.【解析】(1)cos 2sin cos 6B C A π⎛⎫=-⋅ ⎪⎝⎭,且A B C ++=π,()1cos 2cos cos 2A C C C A ⎫∴-+=-⋅⎪⎪⎝⎭,(2分)sin sin cos A C C A ∴⋅=,0C <<π,且0A <<π,sin 0,sin C A A ∴>∴=,3A π∴=.(6分) 变式训练二(2)由1sin 2S bc A ==,得8bc =.(8分) 又222a b c bc =+-,28a bc ∴≥=,(当且仅当b c =时取等号),(10分) ()2224b c a ∴+=+,l a b c a a ∴=++=+≥,l ∴≥=ABC∴△周长的最小值为.(12分)已知函数πππ()cos(2)2sin()cos()()344f x x x x x =-+--∈R .(1)求函数的最小正周期及在区间π2π[,]123上的值域;(2)在ABC△中,ABC △的面积.【肢解1】在已知条件下化解二倍角公式和余弦和差公式. 【肢解2】根据正、余弦定理及三角形的面积公式求解即可.()f x ()f x 5AB =大题肢解三三角函数与解三角形的综合问题【解析】(1)∵πππ()cos(2)2sin()cos()344f x x x x =-+--1πcos 22sin(2)222x x x =++-12cos 2cos 2x x x =+-12cos 22x x =- πsin(2)6x =-.(3分)的最小正周期为2ππ2T ==;∵π2π[,]123x ∈, ∴π7π2[0,]66x -∈,(4分) ∴max ππππ()()sin(2)sin 13362f x f ==⨯-==,min 2π2ππ7π1()()sin(2)sin 33662f x f ==⨯-==-, ∴在区间π2π[,]123(6分)(2π1sin(2)62A -=,即π6A =,(7分) 由余弦定理得2725(0b b b =+-⇒--=,∴b =b =(10分))(x f ∴()f x∴ABC △(12分)此类问题是将三角函数的图象与性质、解三角形综合命题进行考查,解题时,只需从条件出发,其间只需熟练掌握三角函数的图象与性质的求解方法以及解三角形的相关知识即可顺利解决.【拓展1】已知函数()22sin 24f x x x π⎛⎫=+⎪⎝⎭. (1)求()f x 的最小正周期;(2)设ABC △的内角,,A B C 的对边分别为,,a b c ,且12C c f ⎛⎫== ⎪⎝⎭,若sin 2sin B A =,求,a b 的值.【解析】(1)1cos 22()221sin 2212sin 223x f x x x x x π⎛⎫-+ ⎪π⎛⎫⎝⎭=-=+=+- ⎪⎝⎭,所以22T π==π.(4分) (2)因为12sin 1sin 0233C f C C ππ⎛⎫⎛⎫⎛⎫=+-=⇒-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为0C <<π,所以3C π=.(5分) 因为222222cos 3c a b ab C a b ab =+-⇒=+-①,因为sin sin a b A B=,sin 2sin B A =,所以2b a =②,联立方程①②得:1,2a b ==.(12分)[广东省珠海市2019-2020学年高三上学期期末数学(理)]已知A 、B 、C 是ABC ∆的内角,a 、b 、c 分别是其对边长,向量(),m a b c =+,()sin sin ,sin sin n B A C B =--,且m n ⊥. (1)求角A 的大小;(2)若2a =,求ABC ∆面积的最大值. 【答案】(1)3A π=;(2【解析】(1)(),m a b c =+,()sin sin ,sin sin n B A C B =--,m n ⊥,()()()sin sin sin sin 0a b B A c C B ∴+-+-=,由正弦定理得()()()0b a b a c c b +-+-=,整理得222b c a bc +-=,2221cos 22b c a A bc +-∴==,0A π<<,3A π∴=;(2)在ABC ∆中,3A π=,2a =,由余弦定理知2222242cos a b c bc A b c bc ==+-=+-,由基本不等式得2242bc b c bc +=+≥,当且仅当b c =时等号成立,4bc ∴≤,11sin 422ABC S bc A ∆∴=≤⨯=ABC ∆.【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积最值的计算,涉及基本不等式以及正变式训练三弦定理边角互化思想的应用,考查计算能力,属于中等题.1.(2019年10月广东省广州市天河区高考数学一模试题)在ABC △中,角A 、B 、C 所对的边分别为a 、b、c ,且22sin 30C C -++=.(1)求角C 的大小;(2)若b =,ABC △sin A B ,求sin A 及c 的值.【解析】(1)22sin 30C C -++=,可得:22(1cos )30C C --++=,22cos 10C C ∴++=, cos C ∴=0C π<<,34C π∴=. (2)2222222cos 325c a b ab C a a a =+-=+=,c ∴,sin C A ∴=,sinA C ∴=,1sin sin 2ABC S ab C A B ∆=,∴1sin sin 2ab C A B =,∴2sin ()sin sin sin sin a b c C C A B C=1c ∴=.2.(2019·沙雅县第二中学押题卷)已知点)P,(cos ,sin )Q x x ,O 为坐标原点,函数()f x OP QP =⋅.(1)求函数()f x 的解析式及最小正周期;(2)若A 为ABC △的内角,()4f A =,3BC =,ABC ∆ABC △的周长. 【解析】(1).()3,1OP =,()3cos ,1sin QP x x =-.∴()f x OP QP =⋅)3cos 1sin x x =-+-42sin 3x π⎛⎫=-+ ⎪⎝⎭,()f x 的最小正周期为2π.(2).因为()4f A =,所以sin 03A π⎛⎫+= ⎪⎝⎭,因为0A <<π,所以23A π=,因为1sin 2ABC S bc A ∆=12sin 234bc π==,所以3bc =,根据余弦定理22222cos3a b c b π=+-2()29b c bc bc =+-+=,所以b c +=即三角形的周长为3+3.(四川省遂宁市射洪县射洪中学2020届高三上学期10月月考数学试题)锐角ABC △的内角,,A B C 的对边分别为,,a b c cos sin C c B +=. (1)求角B 的大小;(2)若b =ABC △的周长的取值范围.【解析】(1cos sin C c B +=,cos sin sin B C C B A +=, 又由sin sin()sin cos cos sin A B C B C B C =+=+,代入整理得sin sin sin C B B C =,又由(0,)C ∈π,则sin 0C >,所以sin B B =,即tan B =又因为(0,)B ∈π,所以3B π=. (2)因为3b B π==,且由正弦定理,可得2sin sin sin a b cA B C====, 即2sin ,2sin a A c C ==,所以周长22(sin sin )2(sin sin())3L a b c a c A C A A π=++=+=+=+-32(sin ))26A A A π=+=+,即)6L A π=+又因ABC △为锐角三角形,且23A C π+=, 所以203202A A ππ⎧<-<⎪⎪⎨π⎪<<⎪⎩,解得62A ππ<<,所以2(,)633A πππ+∈,则有sin()6A π+∈ 即(3L ∈, 即ABC △的周长取值范围为(3+.4.(2019年河北省唐山市高三上学期摸底考试数学试题)ABC △的内角A B C ,,的对边分别为a b c ,,,已知ABC △的面积21tan 6S b A =. (1)证明:3cos b c A =;(2)若a c ==,求tanA .【解析】(1)由211sin tan 26S bc A b A ==得3sin tan c A b A = . 因为sin tan cos A A A =,所以sin 3sin cos b A c A A=, 又因为0A π<<,所以0sinA ≠ , 因此3b ccosA =.(2)由(1)得3cos b c A A ==,所以2230bccosA cos A =由余弦定理得2222a b c bccosA =+-,所以22845530cos A cos A -=+,解得21cos 5A =因此24sin 5A =,即2tan 4A = 由(1)得cos 0A >,所以tan 0A > , 故tan 2A =.5.(黑龙江省大庆市2019-2020学年高三上学期第一次教学质量检测数学试题)在ABC △中,角A 、B 、C 所对的边分别为a ,b ,c ,已知sin sin sin sin b B c C a A c B +=+.(1)求角A 的大小;(2)若cos 7B =,a =ABC △的面积S 的值. 【解析】(1)∵由正弦定理2sin sin sin a b cR A B C===, ∴有sin 2a A R =,sin 2b B R =,sin 2c C R=, 则sin sin sin sin b B c C a A c B +=+可化为2222b c a bb c a c R R R R⋅+⋅=⋅+⋅, 即222b c a bc +=+,即222a b c bc =+-, 又∵余弦定理2222cos a b c bc A =+-,∴1cos 2A =, 由()0,A ∈π,得3A π=; (2)由(1)知,3A π=,则sin 2A =,1cos 2A =,∵cos B =,()0,B ∈π,∴1sin 7B ==, ∴()1113sin sin 272714C A B =+=+⨯=,由正弦定理得,13sin 13sin a C c A===,∴111sin 132272S ac B ==⨯⨯=. 6.(河南省郑州市第一中学2019届高三高考适应性考试数学试题)在ABC △中,三边a ,b ,c 的对角分别为A ,B ,C ,已知3a =,cos cos cos sin cos B A C B C b+=.(1)若c =,求sin A ;(2)若AB 边上的中线长为2,求ABC △的面积.【解析】(1)因为cos cos cos sin cos B A C B C b+=,由正弦定理,得cos cos cos sin cos B A C B C +=,所以cos()cos cos sin cos A C A C B C -++=.所以sin sin cos A C A C =.又因为sin 0A ≠,所以tan C =因为(0,)C ∈π,所以3C π=.又因为sin sin a c A C =,所以3sin A =,所以3sin 4A =. (2)设AB 边上的中线为CD ,则2CD CA CB =+,所以22224()2cos CD CA CB b a ab C =+=++,即23793b b =++,23280b b +-=. 解得4b =或7b =-(舍去).所以11sin 4322ABC S ab C ∆==⨯⨯=.7.(河南、河北两省重点高中2019届高三考前预测试卷数学试题)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,30B =︒,且()()2sin 2sin 2sin a A b c B c b C -+=+.(1)求()sin A C -的大小;(2)若ABC △的面积为ABC ∆的周长.【解析】(1)因为()()2sin 2sin 2sin a A b c B c b C -+=+,由正弦定理可得:()()2222a b b c c c b -+=+,整理得222b c a bc +-=-,∴2221cos 22b c a A bc +-==-,解得120A =︒.又30B =︒,所以1801203030C =︒-︒-︒=︒,即30C B ==︒, ∴()()sin sin 120301A C -=︒-︒=. (2)由(1)知b c =,120A =︒,∴21sin1202b ︒=bc ==. 由余弦定理,得22212cos 1212212362a b c bc A ⎛⎫=+-=+-⨯⨯-= ⎪⎝⎭,即6a =.∴ABC 的周长为6.8.(重庆市2019届高三高考全真模拟考试数学试题)已知锐角ABC △中,角A ,B ,C 所对的边分别为a,b ,c ,sin cos (sin )0A C B B -+=.(1)求角C ;(2)若b =c =AB 边上的高长.【解析】(1)()sin cos sin 0A C B B -=,()()sin cos sin 0B C C B B ∴+-=, ()cos sin 0B C C ∴=,tan C ∴=3C π∴=.(2)由余弦定理可得:2222cos c a b ab C =+-,可得:210a -=,可得:a =,由等面积可得:11sin 22S ab C ch ==,可得:h =. 9.[惠州市2020届高三第三次调研考试数学(理)]【答案】(1)在ABC ∆中,因为2BC =,π3ABC ∠=,1sin 22ABC S AB BC ABC ∆=⋅∠=,所以22AB =,解得3AB =. 在ABC ∆中,由余弦定理得2222cos 7AC AB BC AB BC ABC =+-⋅∠=,因为0AC >,所以AC =(2)设ACD α∠=,则ππ33ACB ACD α∠=∠+=+. 在Rt ACD ∆中,因为AD =sin AD AC α==. 在ABC ∆中,ππ3BAC ACB ABC α∠=-∠-∠=-, 由正弦定理得sin sin BC AC BAC ABC =∠∠,即2πsin()3α=-, 所以2sin()sin 3παα-=,所以12(cos sin )sin 22ααα-=,2sin αα=,所以tan α=,即tan ACD ∠=。
高一数学知识点三角函数及恒等公式经典题常考题50道含答案及解析
高一数学三角函数及恒等公式经典题常考题 50道一、单选题1.函数y=cosx|tanx|(0≤x<且x≠ )的图象是下图中的()A.B.C.D.【答案】C【考点】同角三角函数基本关系的运用,正弦函数的图象【解析】【解答】解:当0 时,y=cosxtanx≥0,排除B,D.当时,y=﹣cosxtanx<0,排除A.故选:C.【分析】根据x的范围判断函数的值域,使用排除法得出答案.==========================================================================2.若α,β都是锐角,且,则cosβ=()C. 或D. 或【答案】A【考点】两角和与差的余弦函数【解析】【解答】解:∵α,β都是锐角,且,∴cosα= = ,cos(α﹣β)= = ,则cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)= += ,故选:A.【分析】由条件利用同角三角函数的基本关系,两角差的三角公式,求得cosβ=cos[α﹣(α﹣β)]的值.==========================================================================3.设为锐角,若cos = ,则sin 的值为()A. B.C.D.【答案】B【考点】二倍角的正弦【解析】【解答】∵ 为锐角,cos = ,∴ ∈ ,∴ = = .则sin =2 . 故答案为:B【分析】根据题意利用同角三角函数的关系式求出正弦的值,再由二倍角的正弦公式代入数值求出结果即可。
==========================================================================°sin105°的值是()C.D.【答案】A【考点】运用诱导公式化简求值【解析】【解答】sin15°sin105°=sin15°cos15°= sin30°= ,故答案为:A.【分析】利用诱导公式转化已知的三角函数关系式求出结果即可。
高一数学三角函数三角恒等变换解三角形试题答案及解析
高一数学三角函数三角恒等变换解三角形试题答案及解析1.(本小题满分12分)已知函数.(1)化简;(2)已知常数,若函数在区间上是增函数,求的取值范围;(3)若方程有解,求实数a的取值范围.【答案】(1)f(x)(2)(3)【解析】(1)························· 4分(2) ∵由∴的递增区间为∵在上是增函数∴当k = 0时,有∴解得∴的取值范围是····················· 8分(3) 解一:方程即为从而问题转化为方程有解,只需a在函数的值域范围内∵当;当∴实数a的取值范围为················ 12分解二:原方程可化为令,则问题转化为方程在[– 1,1]内有一解或两解,设,若方程在[– 1,1]内有一个解,则解得若方程在[– 1,1]内有两个解,则解得∴实数a的取值范围是[– 2,]2.已知函数(1)求函数f(x)的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若a=f(A)=1,求的最大值.【答案】(1),单调增区间;(2)【解析】(1)首先借助于基本三角函数公式将函数式化简为的最简形式,周期由的系数求解,求增区间需令,解得的范围得到单调区间;(2)中由的值求得角,借助于三角形余弦定理可得到关于两边的关系式,进而结合不等式性质得到关于的不等式,求得范围试题解析:(1),所以函数的最小正周期为.由得所以函数的单调递增区间为.(2)由可得,又,所以。
高一数学解三角形试题答案及解析
高一数学解三角形试题答案及解析1.地面上有两座塔AB、CD,相距120米,一人分别在两塔底部测得一塔顶仰角为另一塔顶仰角的2倍,在两塔底连线的中点O测得两塔顶的仰角互为余角,求两座塔的高度。
【答案】40米,90米.【解析】绘出几何示意图,寻找角关系,并建关系式.其中,且,建立方程(1);又因为,且由题可知,建立方程(2)试题解析:连结BO、OD、 AD、 BC,设两塔AB、CD的高分别为x,y米,则在中,则在中,由得, ( 1 ) 5分又在中,在中,.而,所以,即(2) 10分由(1)(2)式解得: x = 40(米), y = 90(米)答:两座塔的高分别为40米、90米. 14分【考点】正切函数应用.2.设甲、乙两楼相距20m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是()A.B.C.D.【答案】A【解析】试题分析:由图可知,在中,,则;在中,,则,;即甲、乙两楼的高分别是.【考点】解直角三角形.3.△ABC的内角、、的所对的边、、成等比数列,且公比为,则的取值范围为()A.B.C.D.【答案】B.【解析】∵,,成等比数列,∴,,再由正弦定理可得,又∵,根据二次函数的相关知识,可知的取值范围是.【考点】三角形与二次函数一元二次不等式综合.4.已知的三个内角满足:,则的形状为A.正三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】B【解析】由,,从而有:,再注意到,又,故知是以角C为直角的直角三角形,所以选B.【考点】三角公式.5.在中,内角、、所对的边分别为、、,给出下列命题:①若,则;②若,则;③若,则有两解;④必存在、、,使成立.其中,正确命题的编号为.(写出所有正确命题的编号)【答案】②③【解析】①根据大边对大角可知,如果是钝角,则此时,显然错误.②当三角形是锐角三角形时,根据正弦函数性质可知;当三角形是钝角三角形时,有,则,因为,所以,此时有,正弦函数性质可知,即.正确.③因为,即,所以必有两解.正确.④根据正切和角公式,可得.则有根据诱导公式有代入上式,则上式若是锐角,则;此时.若是钝角,则;此时.错误.【考点】三角形中边角关系;三角函数性质;三角函数和角,诱导公式的使用.6.△ABC中,a、b、c分别为∠A、∠B、∠C的对边,如果a、b、c成等差数列,∠B=30°,△ABC的面积为,那么b=A. B. C. D.【答案】B【解析】由题意知,,,解得.【考点】解三角形.7.在中,内角所对的边分别为,给出下列结论:①若,则;②若,则为等边三角形;③必存在,使成立;④若,则必有两解.其中,结论正确的编号为(写出所有正确结论的编号).【答案】①④【解析】对于①,在中,当时,有,又由正弦定理,则,,,由有>>,所以有成立,故①正确;对于②,由正弦定理,且因为,所以且,则,且角B,C为锐角,所以,故②不正确;对于③,=,故③不正确;对于④,如图:因为,且,所以必有两解,故④正确.【考点】正弦定理,三角形边角关系,化归与转化的数学思想.8.中,若,则的面积为().A.B.C.1D.【答案】A【解析】根据三角形面积公式可得面积为.【考点】三角形面积公式的选择和计算.9.如图,从高为的气球上测量铁桥的长,如果测得桥头的俯角是,桥头的俯角是,则该桥的长可表示为A.B.C.D.【答案】A【解析】过A作垂线AD交CB于D,则在Rt△ADB中,∠ABD=α,AB=.又在中,∠C=β,∠BAC=α-β,由正弦定理,得∴BC=即桥梁BC的长度为,故选A.【考点】解三角形的实际应用.10.两地相距,且地在地的正东方。
一题打天下之解三角形(原创45问含答案)
= 3a,求
sin A sin C
的值;
(26)若
a
+
√ 2b
=
2c,求
sin C
的值;
(27)若 b 是 a 与 c 的等比中项,求证:△ABC 为正三角形;
(28)若 a,b,c 成等差数列,求证:△ABC 为正三角形;
(29)若 sin A sin C = cos2 B ,求证:△ABC 为正三角形; 2 √
(12)7;
(13)直角三角形;
(14)直角三角形;
(15)等边三角形;
(16)等边三角形;
(17)等边三角形;
(18) 1 ; 2
( (19)
√ 3
,
]
√ 3
;
2
(]
(20)
13 ,
;
24
(21)(√3, 2√3];
[)
(22)
1 ,1
;
2
(23)[2, +∞);
第 3 页(共 4 页)
√ (24) 3 ;
(09)若 b2 = (a − c)2 + 6,求 △ABC 的面积;
√ (10)若 △ABC 的面积 S = 5 3,且 a = 5,求 sin A • sin C 的值;
√
(11)若
b
=
4,且
△ABC
的面积
S△ABC
=
3 3 ,求 4
−−→ −−→ AB • BC
及
a+c
的值;
(12)若
a
−
b
=
(22)若 a + c = 1,求 b 的取值范围; (23)若 △ABC 的面积 S = √3,求 b 的取值范围;
2023学年人教版高一数学下学期期中期末必考题精准练04 解三角形(解析版)
必考点04 解三角形题型一 利用正余弦定理解三角形例题1[在△ABC 中,内角A ,B ,C 的对边a ,b ,c 成公差为2的等差数列,C =120°. (1)求边长a ;(2)求AB 边上的高CD 的长.【解析】(1)由题意得,b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos 120°=a 2+(a +2)2-(a +4)22a (a +2),即a 2-a -6=0,所以a=3或a =-2(舍去).所以a =3. (2)法一:由(1)知a =3,b =5,c =7, 由三角形的面积公式得 12ab sin ∠ACB =12c ×CD , 所以CD =ab sin ∠ACBc =3×5×327=15314,即AB 边上的高CD =15314.法二:由(1)知a =3,b =5,c =7, 由正弦定理得3sin A =7sin ∠ACB =7sin 120°.即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314.即AB 边上的高CD =15314.例题1(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2a +b =2c ,求sin C .[【解析】(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22.由于0°<C <120°,所以sin(C +60°)=22,故 sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60°=6+24. 【解题技巧提炼】1.已知△ABC 中的某些条件(a ,b ,c 和A ,B ,C 中至少含有一条边的三个条件)求边长时可用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin C sin A ,a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .2.已知△ABC 的外接圆半径R 及角,可用公式a =2R sin A ,b =2R sin B ,c =2R sin C . [提醒] 已知△ABC 的两边及其一边的对角求边时可用正弦定理,但要对解的个数作出判断,也可用余弦定理解一元二次方程求得.涉及解三角形中的最值(范围)问题时若转化为边求解可利用基本不等式或二次函数;若转化为角求解可利用三角函数的有界性、单调性.1.已知△ABC 中某些条件求角时,可用以下公式sin A =a sin Bb ,sin B =b sin Aa,sin C =c sin Aa ,cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab . 2.已知△ABC 的外接圆半径R 及边,可用公式sin A =a 2R ,sin B =b 2R ,sin C =c2R. [提醒] (1)注意三角形内角和定理(A +B +C =π)的应用. (2)解三角形中经常用到两角和、差的三角函数公式.题型二 判断三角形形状例题1设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定【答案】B 【解析】(1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A=1,故A =π2,因此△ABC 是直角三角形.例题2在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( ) A .直角三角形 B .等腰非等边三角形 C .等边三角形 D .钝角三角形【答案】C【解析】因为sin A sin B =a c ,所以a b =ac ,所以b =c .又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形. 【解题技巧提炼】[解题技法]1.判定三角形形状的2种常用途径2.判定三角形的形状的注意点在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.题型三 三角形面积问题例题1△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【解析】(1)由题设及正弦定理得sin A sin A +C 2=sin B sin A .因为sin A ≠0,所以sin A +C2=sinB由A +B +C =180°,可得sin A +C 2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,所以sin B 2=12,所以B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a . 由(1)知A +C =120°,由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知,A +C =120°,所以30°<C <90°, 故12<a <2,从而38<S △ABC <32. 因此,△ABC 面积的取值范围是⎝⎛⎭⎫38,32. 【解题技巧提炼】 1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键. 2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.题型四 解三角形的实际应用例题1如图,为了测量两座山峰上P ,Q 两点之间的距离,选择山坡上一段长度为300 3 m 且和P ,Q 两点在同一平面内的路段AB 的两个端点作为观测点,现测得∠P AB =90°,∠P AQ =∠PBA =∠PBQ =60°,则P ,Q 两点间的距离为________ m. 【答案】900【解析】由已知,得∠QAB =∠P AB -∠P AQ =30°. 又∠PBA =∠PBQ =60°,所以∠AQB =30°,所以AB =BQ . 又PB 为公共边,所以△P AB ≌△PQB ,所以PQ =P A . 在Rt △P AB 中,AP =AB ·tan 60°=900,故PQ =900, 所以P ,Q 两点间的距离为900 m.例题2如图,为了测量河对岸电视塔CD 的高度,小王在点A 处测得塔顶D 的仰角为30°,塔底C 与A 的连线同河岸成15°角,小王向前走了1 200 m 到达M 处,测得塔底C 与M 的连线同河岸成60°角,则电视塔CD 的高度为________m. [【答案】6002[【解析】在△ACM 中,∠MCA =60°-15°=45°,∠AMC =180°-60°=120°,由正弦定理得AM sin ∠MCA =AC sin ∠AMC ,即1 20022=AC32,解得AC =6006(m).在△ACD 中,因为tan ∠DAC =DC AC =33,所以DC =6006×33=6002(m). 例题3游客从某旅游景区的景点A 处至景点C 处有两条线路.线路1是从A 沿直线步行到C ,线路2是先从A 沿直线步行到景点B 处,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处同时出发匀速步行,甲的速度是乙的速度的119倍,甲走线路2,乙走线路1,最后他们同时到达C 处.经测量,AB =1 040 m ,BC =500 m ,则sin ∠BAC 等于________. [【答案】513[【解析】依题意,设乙的速度为x m/s , 则甲的速度为119x m/s ,因为AB =1 040 m ,BC =500 m , 所以AC x =1 040+500119x ,解得AC =1 260 m.在△ABC 中,由余弦定理得,cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =1 0402+1 2602-50022×1 040×1 260=1213,所以sin ∠BAC =1-cos 2∠BAC=1-⎝⎛⎭⎫12132=513.【解题技巧提炼】测量距离问题的2个策略(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.测量高度问题的基本思路高度也是两点之间的距离,其解法同测量水平面上两点间距离的方法是类似的,基本思想是把要求解的高度(某线段的长度)纳入到一个可解的三角形中,使用正、余弦定理或其他相关知识求出该高度.测量角度问题的基本思路测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.[提醒] 方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.题型五 正余弦定理在平面几何中的应用例题1如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列. (1)求sin ∠CED ; (2)求BE 的长. 【解析】设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理得EC sin ∠EDC =CD sin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin∠CED =217. (2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,cos ∠AEB =EA BE =2BE =714,所以BE =47. 【解题技巧提炼】与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.题型六 解三角形与三角函数的综合问题例题1已知函数f (x )=cos 2x +3sin(π-x )cos(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.【解析】(1)f (x )=cos 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.【解题技巧提炼】解三角形与三角函数综合问题的一般步骤题型一 利用正余弦定理解三角形1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( ) A.π6 B.π3 C.2π3 D.5π6【答案】A【解析】∵a sin B cos C +c sin B cos A =12b ,∴由正弦定理得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sinB .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6,故选A.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.【解析】(1)由正弦定理可得b 2+c 2=a 2+bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A =3×(3+22)32×6=1+263.题型二 判断三角形形状1.在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形【答案】A【解析】已知等式变形得cos B +1=a c +1,即cos B =ac ①.由余弦定理得cos B =a 2+c 2-b 22ac ,代入①得a 2+c 2-b 22ac =ac ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.2.[在△ABC 中,已知sin A +sin C sin B =b +c a 且还满足①a (sin A -sin B )=(c -b )(sin C +sin B );②b cos A +a cos B =c sin C 中的一个条件,试判断△ABC 的形状,并写出推理过程. 【解析】由sin A +sin C sin B =b +c a 及正弦定理得a +c b =b +ca ,即ac +a 2=b 2+bc ,∴a 2-b 2+ac -bc =0, ∴(a -b )(a +b +c )=0,∴a =b . 若选①△ABC 为等边三角形.由a (sin A -sin B )=(c -b )(sin C +sin B )及正弦定理,得a (a -b )=(c -b )(c +b ),即a 2+b 2-c 2=ab .所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π),所以C =π3.∴△ABC 为等边三角形. 若选②△ABC 为等腰直角三角形,因b cos A +a cos B =b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =2c 22c =c =c sin C ,∴sin C =1,∴C =90°,∴△ABC 为等腰直角三角形.题型三 三角形面积问题1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 【答案】63【解析】由余弦定理得b 2=a 2+c 2-2ac cos B . 又∵ b =6,a =2c ,B =π3,∴ 36=4c 2+c 2-2×2c 2×12,∴ c =23,a =43,∴ S △ABC =12ac sin B =12×43×23×32=6 3.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.【解析】(1)由已知及正弦定理得(2sin B -sin A )·cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.题型四 解三角形的实际应用1.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,相距a 海里的B 处,乙船正向北行驶,若甲船是乙船速度的 3 倍,甲船为了尽快追上乙船,朝北偏东θ方向前进,则θ=( )A .15°B .30°C .45°D .60°【答案】B【解析】设两船在C 处相遇,则由题意得∠ABC =180°-60°=120°,且AC BC=3,由正弦定理得AC BC =sin 120°sin ∠BAC =3,所以sin ∠BAC =12.又因为0°<∠BAC <60°,所以∠BAC =30°. 所以甲船应沿北偏东30°方向前进.2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 【答案】103【解析】如图,OM =AO tan 45°=30(m), ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得,MN =900+300-2×30×103×32=300=103(m). 3.为了测量某新建的信号发射塔AB 的高度,先取与发射塔底部B 的同一水平面内的两个观测点C ,D ,测得∠BDC =60°,∠BCD =75°,CD =40 m ,并在点C 的正上方E 处观测发射塔顶部A 的仰角为30°,且CE =1 m ,则发射塔高AB =________ m. 【答案】202+1【解析】如图,过点E 作EF ⊥AB ,垂足为F ,则EF =BC ,BF =CE =1,∠AEF =30°.在△BCD 中,由正弦定理得, BC =CD ·sin ∠BDC sin ∠CBD=40·sin 60°sin 45°=20 6.所以EF =206,在Rt △AFE 中,AF =EF ·tan ∠AEF =206×33=20 2. 所以AB =AF +BF =202+1(m).题型五 正余弦定理在平面几何中的应用1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________. 【答案】66【解析】设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3.在△ABD 中,cos ∠ADB =a 2+4a 23-a 22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63.在△BDC中,BD sin C =BC sin ∠BDC ,sin C =BD ·sin ∠BDC BC =66.2.如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2. (1)求AD 的长; (2)求△CBD 的面积.【解析】(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD=255,又∠BCD =2∠ABD ,在平面四边形ABCD 中,∠BCD ∈(0,π),所以∠ABD ∈⎝⎛⎭⎫0,π2,所以cos ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·cos ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =cos ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·cos ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54,所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58. 题型六 解三角形与三角函数的综合问题1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.【解析】(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z ),得x =k π+5π12(k ∈Z ),即当x =k π+5π12(k ∈Z )时,f (x )取得最大值1.一、单选题1.如图,某城市有一条公路从正西方MO 通过市中心O 后转向东北方ON ,为了缓解城市交通压力,现准备修建一条绕城高速公路L ,并在,MO ON 上分别设置两个出口,A B ,若AB 部分为直线段,且要求市中心O 与AB 的距离为20千米,则AB 的最短距离为( )A .()2021-千米 B .()4021-千米C .)201D .)401【答案】D【解析】在ABC 中,135AOB ∠=︒, 设,AO a BO b ==,则(222222cos1352AB a b ab a b ab =+-︒=+≥,当且仅当a b =时取等号,设BAO α∠=,则45ABO α∠=︒-,又O 到AB 的距离为20千米,所以20sin a α=,()20sin 45b α=︒-,故()400sin sin 45ab αα==︒-(22.5α=︒时取等号),所以)221600216001AB ≥=,得)401AB ≥,故选:D2.某生态公园有一块圆心角为π3的扇形土地,打算种植花草供游人欣赏,如图所示,其半径100OA =米.若要在弧AB 上找一点C ,沿线段AC 和BC 铺设一条观光道路,则四边形OACB 面积的最大值为( )A .2500平方米B .25003平方米C .5000平方米D .50003平方米【答案】C【解析】连接OC ,2211sin sin 22OAC OCB OACB OA S S AOC OA CS BO =⋅∠+∠+⋅=四边形△△2π1sin sin 23OA AOC AOC ⎡⎤⎛⎫=∠+-∠ ⎪⎢⎝⎭⎣⋅⎥⎦15000(sin )322cos AOC AOC +=∠∠π5000sin 50003AOC ⎛⎫=∠+≤ ⎪⎝⎭,当π6AOC ∠=时,等号成立. 所以四边形OACB 面积的最大值为5000.故选:C3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2b =,1c =,则B C +=( )A .90°B .120°C .60°D .150°【答案】C【解析】因为a =2b =,1c =, 所以2221471cos 22122c b a A bc +-+-===-⨯⨯,由0180A <<︒︒,则120A =︒,18060B C A ∴+=︒-=︒故选:C4.已知某圆锥的轴截面是腰长为3的等腰三角形,且该三角形顶角的余弦值等于19,则该圆锥的表面积等于( ) A .4π B .6π C .10π D .203π【答案】C【解析】设圆锥的底面半径为r ,则()2221233162339r -⨯=+⨯⨯=,解得2r =,故该圆锥的表面积等于12234102πππ⨯⨯⨯+=.故选:C.5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cA b<,则ABC 必为( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等腰三角形【答案】A【解析】因为cos cA b <,由正弦定理可得sin cos sin C A B<,即sin cos sin C A B <, 又因为sin sin()sin cos cos sin C A B A B A B =+=+,所以sin cos cos s co si in s n A B A B A B +<,即sin cos 0A B <,因为,(0,)A B π∈,所以sin 0,0cos A B ><,所以(,)2B ππ∈,所以ABC 为钝角三角形.故选:A. 二、多选题6.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且2a =、3b =、4c =,下面说法错误的是( ) A .sin sin sin 234A B C =:::: B .ABC 是锐角三角形C .ABC 的最大内角是最小内角的2倍D .ABC 内切圆半径为12 【答案】BCD 【解析】A 选项,∵sin sin sin a b cA B C==,2a =、3b =、4c =,∵sin sin sin 234A B C =::::,对,B 选项,由于a b c <<,则ABC 中最大角为角C ,∵222222234cos 02223a b c C ab +-+-==<⨯⨯,∵2C π>,∵ABC 是钝角三角形,错,C 选项,假设ABC 的最大内角是最小内角的2倍,则2C A =, 即sin sin22sin cos C A A A ==⋅,又sin sin 12A C =::,即sin 2sin cos 12A A A ⋅=::,cos 1A =,不符合题意,错,D 选项,∵22222224311cos 222416a c b B ac +-+-===⨯⨯,∵sin B ==,∵11sin 2422ABCSac B =⋅=⨯⨯设ABC 的内切圆半径为r ,则()()1123422ABCS a b c r r =++⋅=⨯++⨯=∵r =故选:BCD.7.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 2sin B C A +=( ) A .若π3A =,1c =,则1a =B .若π3A =,1c =,则ABC 的面积为πC .若2b =,则A 的最大值为π3D .若2b =,则ABC 周长的取值范围为()4,12【答案】ACD【解析】因为sin sin 2sin B C A +=,所以2b c a +=. 对于A ,B ,若1c =,则21b a =-,22223421cos 2422b c a a a A bc a +--+===-,解得1a =,ABC 的面积1sin 2S bc A ==,A 正确,B 错误. 对于C ,若2b =,则22c a =-,222238831cos 12128881b c a a a A a bc a a +--+⎛⎫===-++- ⎪--⎝⎭312182⎡⎤≥-=⎢⎥⎣⎦,当且仅当2a =时,等号成立,所以A 的最大值为π3,C 正确.对于D ,若2b =,则根据三边关系可得,,a c b a b c +>⎧⎨+>⎩即222,222,a a a a +->⎧⎨+>-⎩解得443a <<,则4312a <<,ABC 的周长为3a b c a ++=,故ABC 周长的取值范围为()4,12,D 正确.故选:ACD 三、填空题8.在ABC 中,D 为BC 的中点,若4AB =,2AC =,AD =BC =______.【答案】【解析】法一:设BD x =,因为180ADB ADC ∠+∠=︒,所以cos cos 0ADB ADC ∠+∠=,由余弦定理,得22222222BD AD AB DC AD AC BD AD DC AD+-+-+=⋅⋅220=,所以x BC =法二:由D 为BC 的中点,得()12AD AB AC =+,所以()222124AD AB AB AC AC =+⋅+,即()1816242cos 44BAC =+⨯⨯∠+,所以3cos 4BAC ∠=,所以22232cos 16424284BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯=,所以BC =故答案为:9.如图所示,OA 是一座垂直与地面的信号塔,O 点在地面上,某人(身高不计)在地面的C 处测得信号塔顶A 在南偏西70°方向,仰角为45°,他沿南偏东50°方向前进20m 到点D 处,测得塔顶A 的仰角为30°,则塔高OA 为______m .【答案】20【解析】设塔高m OA x =,由题意得在直角AOC △中,45ACO ∠=︒,所以m OA OC x ==,由题意得在直角AOD △中,30ADO ∠=︒,所以m OD =, 由题意得在OCD 中,120,20m OCD CD ∠=︒=, 所以由余弦定理得2222cos OD OC CD OC CD OCD =+-⋅∠,所以22134002202x x x ⎛⎫=+-⋅⋅- ⎪⎝⎭,化简得2102000--=x x ,解得20x 或10x =-(舍去),所以塔高OA 为20m ,故答案为:20 四、解答题10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知1a b c ===. (1)求sin ,sin ,sin A B C 中的最大值; (2)求AC 边上的中线长. 【解析】(1)521>,故有sin sin sin b a c B A C >>⇒>>,由余弦定理可得cos B =又(0,)B π∈,34B π∴=,故sin B(2)AC 边上的中线为BD ,则1()2BD BA BC =+,2222223(2)()2cos 121cos 14BD BA BC c a ca B π∴=+=++=++⨯=, 1||2BD ∴=,即AC 边上的中线长为12.11.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c sin cos A a B a =+.(1)求角B 的值;(2)若8c =,ABC 的面积为BC 边上中线AD 的长.【解析】(1)sin sin cos sin B A A B A =+,()0,πA ∈,sin 0A ≠cos 1B B =+,则π1sin 62B ⎛⎫-= ⎪⎝⎭,()0,πB ∈,π3B ∴=;(2)1sin 2S ac B ==8c =,10a ∴=,由余弦定理22212cos 6425404922a AD c ac B ⎛⎫=+-⨯=+-= ⎪⎝⎭,得249AD =,7AD ∴=,12.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )()sin a b B A b c C +-=-.(1)求A ;(2)若2a =,求ABC 面积的最大值.【解析】(1)由正弦定理及()(sin sin )()sin a b B A b c C +-=-, 得()()()b a b a b c c -+=-,即222b c a bc +-=, 由余弦定理,得2221cos 22b c a A bc +-==, ∵0A π<<,可得3A π=.(2)由余弦定理得222222cos a b c bc A b c bc =+-=+-, 因为222b c bc +≥, 所以22a bc bc ≥-,即24bc a ≤=,当且仅当2b c ==时取等号,∵11sin 422ABC S bc A =≤⨯=△ABC13.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,向量()7,1m =,()cos ,1n C =,(),2cos p b B =,且0m n ⋅=.(1)求sin C 的值;(2)若8c =,//m p ,求B 的大小.【解析】(1)因为()7,1m =,()cos ,1n C =,且0m n ⋅=,所以7cos 10C +=,即1cos 7C =-,因为0C π<<,所以sin C ==. (2)因为()7,1m =,(),2cos p b B =,//m p ,所以14cos b B =, 在ABC 中,由正弦定理得sin sin c Bb C=,又8c =,sin C =b B ,14cos B B =,即tan B =0B π<<,所以3B π=.14.已知向量()2sin ,2cos 1m x x =-,()2cos ,1n x =,()f x m n =⋅.(1)求函数()y f x =的最小正周期;(2)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()1f A =,a =ABC 的面积的最大值.【解析】(1)()22sin cos 2cos 1f x m n x x x =⋅=+-,sin 2cos 224x x x π⎛⎫=+=+ ⎪⎝⎭,则其最小正周期22T ππ==; (2)由()214f A A π⎛⎫=+= ⎪⎝⎭,且()0,A π∈,所以4A π=,由余弦定理得2222cos a b c bc A =+-,即(2222b c bc =+≥,所以2bc ≤=b c =时取等号,所以ABC 的面积21sin 244S bc π==≤,15.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A C B A C +=+. (1)求B ;(2)若点M 在AC 上,且满足BM 为ABC ∠的平分线,2,cos BM C ==BC 的长. 【解析】(1)在ABC 中,222sin sin sin sin sin A C B A C +=+,由正弦定理得:222a c b ac +=+.由余弦定理得:2221cos 22a cb B ac +-==. 因为()0,B π∈,所以3B π=.(2)因为()cos 0,C C π=∈,所以sin C = 因为3B π=,BM 为ABC ∠的平分线,所以6MBC π∠=.所以[]sin sin BMC MBC C π∠=-∠-∠()sin MBC C =∠+∠sin cos cos sin MBC C MBC C =∠∠+∠∠12==.在MBC △中,由正弦定理得:sin sin MB BC C BMC =∠=BC = 16.在ABC 中,角A 、B 、C 的对边分别是a 、b 、c,且)cos b c aC C +=+. (1)求角A ;(2)若2a =,ABCb c +的值.【解析】(1)由)cos b c a C C +=+及正弦定理得sin sin sin cos sin B C A C A C +=,又()sin sin sin cos cos sin B A C A C A C =+=+,所以cos sin sin sin A C C A C +=,又sin 0C ≠cos 1A A -=,即2sin 16A π⎛⎫-= ⎪⎝⎭,可得1sin 62A π⎛⎫-= ⎪⎝⎭, 因为0A π<<,则5666A πππ-<-<,所以,66A ππ-=,因此,3A π=. (2) 解:由余弦定理,得2222cos 3a b c bc π=+-,即()234b c bc +-=,又1sin 2ABC bc S A ==4bc =,所以4b c +=.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin 2sin 2cos 02A A A ++=.(1)求A ;(2)若cos cos 2b C c B +=,求ABC 面积的最大值. 【解析】(1)ABC 中,角A ,B ,C 所对的边分别为a ,b ,c , 且2sin 2sin 2cos 2sin cos sin cos 102AA A A A A A ++=+++=,2(sin cos )(sin cos )0A A A A ∴+++=, 即(sin cos )(sin cos 1)0A A A A +++=, sin cos 1A A +>-,sin cos 0A A ∴+=,所以tan 1A =-, 又()0,A π∈,34A π∴=; (2)ABC 中,由正弦定理可得sin sin a b A B =,sin b B ∴==⋅,同理可得,sin c C =⋅,cos cos 2b C c B +=,∴sin cos sin cos 2B C C B ⋅⋅+⋅⋅=,∴sin()2B C ⋅+=sin 24π⋅=,2a ∴=,由余弦定理可得22424cos 22b c bc A bc bc+--=-=, 当且仅当b c =时,取等号,422bc ∴+,即bcABC ∴面积⋅⋅=≤1sin 2bc A 1=-,所以ABC 1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形 1.正弦定理:
2sin sin sin a b c
R A B C
===或变形:::sin :sin :sin a b c A B C =.
2.余弦定理: 222222
2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C
⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222
cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪
+-⎪=
⎨⎪⎪+-=
⎪⎩
.
3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.
2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 5.解题中利用
ABC ∆中A B C π
++=,以及由此推得的一些基本关系式进行三角变换的运算,如:
sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-
sin cos ,cos sin ,tan cot 222222
A B C A B C A B C
+++===.
高一数学测试题———正弦、余弦定理与解三角形
一、选择题: 1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于
( )
A .60°
B .60°或120°
C .30°或150°
D .120°
2、符合下列条件的三角形有且只有一个的是 ( )
A .a=1,b=2 ,c=3
B .a=1,b=
2 ,∠A=30°
C .a=1,b=2,∠A=100°
C .b=c=1, ∠B=45°
3、在锐角三角形ABC 中,有 ( )
A .cosA>sin
B 且cosB>sinA B .cosA<sinB 且cosB<sinA
C .cosA>sinB 且cosB<sinA
D .cosA<sinB 且cosB>sinA
4、若(a+b+c)(b+c-a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( )
A .直角三角形
B .等边三角形
C .等腰三角形
D .等腰直角三角形
5、设A 、B 、C 为三角形的三内角,且方程(sinB -sinA)x 2+(sinA -sinC)x +(sinC -sinB)=0有等根,那么角B ( )
A .B>60°
B .B ≥60°
C .B<60°
D .B ≤60°
6、满足A=45°,c=6 ,a=2的△ABC 的个数记为m,则a m 的值为
( )
A .4
B .2
C .1
D .不定
7、如图:D,C,B 三点在地面同一直线上,DC=a,从C,D 两点测得A 点仰角分别是β, α(α<β),则A 点离地面的高度
AB 等于
( )
A .
)sin(sin sin αββα-a
B .
)
cos(sin sin βαβα-⋅a
C .
)
sin(cos sin αββα-a D .
)
cos(sin cos βαβα-a
8、两灯塔A,B 与海洋观察站C 的距离都等于a(km), 灯塔A 在C 北偏东30°,B 在C 南偏东60°,则A,B 之间的相距 ( )
A .a (km)
B .
3a(km) C .2a(km)
D .2a (km)
二、填空题:
9、A 为ΔABC 的一个内角,且sinA+cosA=
12
7
, 则ΔABC 是______三角形. 10、在ΔABC 中,A=60°, c:b=8:5,内切圆的面积为12π,则外接圆的半径为_____.
11、在ΔABC 中,若S ΔABC =4
1 (a 2+b 2-c 2
),那么角∠C=______. 12、在ΔABC 中,a =5,b = 4,cos(A -B)=32
31
,则cosC=_______.
三、解答题:
13、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC=B
A B
A cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).
A B
α
β
1、在ABC △中,已知内角
A π
=
3
,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.
2、在ABC △中,角
,,A B C 对应的边分别是,,a b c ,若1
sin ,2
A
=sin B =
,求::a b c
3、在
ABC
△中
,,a b c
分别为
,,A B C
∠∠∠的对边,若
2sin (cos cos )3(sin sin )A B C B C +=+,
(1)求A 的大小;(2
)若9a b c =+=,求b 和c 的值。
4、如图
2AO =,B 是半个单位圆上的动点,ABC △是等边三
角形,求当AOB ∠等于多少时,四边形OACB 的面积最大,并
求四边形面积的最大值.
5、在△OAB 中,O 为坐标原点,
]2
,0(),1,(sin ),cos ,1(π
θθθ∈B A ,则当△OAB 的面积达最大值时,=θ( )
A .6π
B .4π
C .3π
D .2
π
6. 在ABC ∆中,已知C B
A sin 2
tan =+,给出以下四个论断,其中正确的是 ①2tan cot 1X A B σ⋅=
②2sin sin
0≤+<B A
③1cos sin 22
=+B A
④C B A 222
sin cos cos
=+
F
E
O
C
B
A
一、BDBBD AAC 二、(9)钝角 (10)
3314 (11)4
π
(12)
8
1
三、(13)分析:化简已知条件,找到边角之间的关系,就可判断三角形的形状. ①由余弦定理
ac ac c a ac b c a ac b c a =-+⇒=-+⇒-+=︒222222222
1
2260cos 0)(2=-∴c a ,
c a =∴. 由a=c 及B=60°可知△ABC 为等边三角形. ②由A
A
b B a A b cos sin tan tan 22
2
⇒=
,2sin 2sin ,cos sin cos sin sin sin cos sin cos sin cos sin 22222B A B B A A A
B a b B A A B B B a =∴=∴==⇒=∴A=B
或A+B=90°,∴
△ABC 为等腰△或Rt △. ③B
A B A C cos cos sin sin sin ++=
,由正弦定理:,)cos (cos b a B A c +=+再由余弦定理:
b a ac
b c a c bc c b a c +=-+⨯+-+⨯22222222
∆∆∴+=∴=--+∴Rt ABC b a c b a c b a 为,,0))((2
2
2
2
2
2
. ④由条件变形为222
2
)sin()sin(b
a b a B A B A +-=+-
︒=+=∴=∴=⇒=--+-++∴90,2sin 2sin sin sin sin cos cos sin ,)sin()sin()sin()sin(2
222B A B A B A B
A
B A B A b a B A B A B A B A 或. ∴△AB
C 是等腰△或Rt △.。