高一数学解三角形练习题

合集下载

三角函数与解三角形-新高考数学新情景、新文化问题(新高考地区专用)(解析版)

三角函数与解三角形-新高考数学新情景、新文化问题(新高考地区专用)(解析版)

三角函数与解三角形一、单选题1.(2021·云南昆明市·高三(文))东寺塔与西寺塔为“昆明八景”之一,两塔一西一东,遥遥相对,已有1100多年历史.东寺塔基座为正方形,塔身有13级,塔顶四角立有四只铜皮做成的鸟,俗称金鸡,所以也有“金鸡塔”之称.如图,在A 点测得:塔在北偏东30°的点D 处,塔顶C 的仰角为30°,且B 点在北偏东60°.AB 相距80(单位:m ),在B 点测得塔在北偏西60°,则塔的高度CD 约为( )mA .69B .40C .35D .23【答案】B 【分析】根据题意构造四面体C -ABD ,再运用线面位置关系及三角形相关知识求解出相应的线段长即可. 【详解】如图,根据题意,图中CD ⊥平面ABD ,30CAD ∠=︒,30,60,80BAD ABD AB ∠=︒∠=︒=ABD 中,30,60BAD ABD ∠=︒∠=︒, 90ADB ∴∠=︒cos 80?cos30AD AB BAD ∴=∠=︒=又CD ⊥平面ABD ,ACD ∴是直角三角形Rt ACD中,30,90,CAD ADC AD ∠=︒∠=︒=·tan 3040CD AD ∴=︒==,选项B 正确,选项ACD 错误 故选:B.2.(2021·山东枣庄八中高一期中)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九昭的许多创造性成就,其中在卷五“三斜求积"中提出了已知三角形三边a ,b ,c 求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S =现在有周长为10+ABC满足sin :sin :sin 2:A B C =,则用以上给出的公式求得ABC 的面积为( ) A.B.C.D .12【答案】A 【分析】利用正弦定理结合三角形的周长可求得ABC 的三边边长,利用题中公式可求得ABC 的面积. 【详解】由题意结合正弦定理可得:::sin :sin :sin 2:a b c A B C ==ABC周长为10+10a b c ++=+4a ∴=,6b =,c =所以S == 故选:A.3.(2021·安徽淮北一中高一月考)“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图),若大、小正方形的面积分别为25和1,直角三角形中较大的锐角为θ,则cos2θ等于( )A .725B .725-C .925D .925-【答案】B 【分析】根据题意可得出1sin cos 5θθ-=,平方可得24sin 225θ=,即可求出.【详解】因为大正方形的面积为25,小正方形的面积为1,所以大正方形的边长为5,小正方形的边长为1, 所以5sin 5cos 1θθ-=,即1sin cos 5θθ-=,两边平方得11sin 225θ-=,即24sin 225θ=. 因为θ是直角三角形中较大的锐角,所以42ππθ<<,所以22πθπ<<,所以7cos 225θ==-. 故选:B.4.(2021·蚌埠铁路中学高三开学考试(文))勒洛三角形是一种特殊三角形,指分别以正三角形的三个顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形.勒洛三角形的特点是:在任何方向上都有相同的宽度,即能在距离等于其圆弧半径(等于正三角形的边长)的两条平行线间自由转动,并且始终保持与两直线都接触.机械加工业上利用这个性质,把钻头的横截面做成勒洛三角形的形状,就能在零件上钻出正方形的孔来.如在勒洛三角形ABC 内随机选取一点,则该点位于正三角形ABC 内的概率为( )AB C D 【答案】A 【分析】由题意可得曲边三角形的面积为一个扇形加两个拱形的面积,或者3个扇形面积减去2个三角形的面积,然后由几何概型的概率公式求出概率. 【详解】解:由题意可得正三角形的边长为半径的三段圆弧组成的曲边三角形的面积S 曲=S 扇形CAB +2S 拱=123π⋅⋅22+2(S 扇形﹣S △ABC )=23π⋅3﹣2⋅22=2π﹣三角形ABC 的面积S △ABC 22所以由几何概型的概率公式可得:所求概率=ABCS S ∆曲 故选:A .5.(2021·江苏高一期中)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了“黄金分割”.“黄金分割”是工艺美术、建筑、摄影等许多艺术门类中审美的要素之一,它表现了恰到好处的和谐,0.618≈,这一比值也可以表示为2sin18m =︒,若228m n +=,=( ) A.2 B .4 C .D .【答案】C 【分析】由题知28cos 18n =,再根据二倍角公式化简整理即可得答案. 【详解】解:因为2sin18m =︒,228m n +=, 所以2228288sin 188cos 18n m =-=-=,2sin1822cos1822sin 3622cos54cos54⨯===故选:C6.(2021·贵州贵阳·高三开学考试(文))水车(如图1),又称孔明车,是我国最古老的农业灌溉工具,主要利用水流的动力灌溉农作物,是先人们在征服世界的过程中创造出来的高超劳动技艺,是珍贵的历史文化遗产,相传为汉灵帝时毕岚造出雏形,经三国时孔明改造完善后在蜀国推广使用,隋唐时广泛用于农业灌溉,有1700余年历史.下图2是一个水车的示意图,它的直径为3m ,其中心(即圆心)O 距水面0.75m .如果水车每4min 逆时针转3圈,在水车轮边缘上取一点P ,我们知道在水车匀速转动时,P 点距水面的高度h(单位:m )是一个变量,它是时间t (单位:s )的函数.为了方便,不妨从P 点位于水车与水面交点Q 时开始记时()0t =,则我们可以建立函数关系式()()sin h t A t k ωϕ=++(其中0A >,0>ω,2πϕ<)来反映h 随t 变化的周期规律.下面关于函数()h t 的描述,正确的是( )A .最小正周期为80πB .一个单调递减区间为[]30,70C .()y h t =的最小正周期为40D .图像的一条对称轴方程为403t =- 【答案】D 【分析】首先求得()33sin 24064h t t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞,然后结合选项由三角函数的图象和性质判断即可.【详解】依题意可知,水车转动的角速度32(rad /s)46040ππω⨯==⨯, 3324A k +=+,3324A k -+=-+,解得32A =,34k =,由()330sin sin 024h A k ϕϕ=+=+=得1sin 2ϕ=-,又2πϕ<,则6πϕ=-,所以()33sin 24064h t t ππ⎛⎫=-+ ⎪⎝⎭,[)0,t ∈+∞.对于选项A :函数()h t 的最小正周期为2=8040ππ,故A 错误;对于选项B :当[]30,70t ∈时,719,4061212t ππππ⎡⎤-∈⎢⎥⎣⎦,因为3719,21212πππ⎡⎤∈⎢⎥⎣⎦, 所以函数()h t 在[]30,70上不具有单调性,故B 错误; 对于选项C :()()353340sin 02642h h π=+=≠,所以C 错误;对于选项D :40333sin 32244h π⎛⎫⎛⎫-=-+=- ⎪ ⎪⎝⎭⎝⎭(最小值),所以D 正确.故选:D.7.(2021·江苏南京市·高一期中)托勒密(C .Ptolemy ,约90-168),古希腊人,是天文学家、地理学家、地图学家、数学家,所著《天文集》第一卷中载有弦表.在弦表基础上,后人制作了正弦和余弦表(部分如下图所示),该表便于查出0°~90°间许多角的正弦值和余弦值,避免了冗长的计算.例如,依据该表,角2°12′的正弦值为0.0384,角30°0′的正弦值为0.5000,则角34°36′的正弦值为( )A .0.0017B .0.0454C .0.5678D .0.5736【答案】C 【分析】先看左边列找34︒,再往右找对第一行的36'即可. 【详解】由题意查表可得3436︒'的正弦值为0.5678. 故选:C .8.(2021·江苏镇江·高一期中)今年是伟大、光荣、正确的中国共产党成立100周年.“红星闪闪放光彩”,正五角星是一个非常优美的几何图形,庄严美丽的国旗和国徽上的大五角星是中国共产党的象征,如图为一个正五角星图形,由一个正五边形的五条对角线连结而成,已知C ,D 为AB 的两个黄金分割点,即AC BD AB AB =.则cos DEC ∠=( )ABCD【答案】A 【分析】根据图形和已知条件表示出,,CE DE CD ,然后用余弦定理求解即可 【详解】由正五角星的对称性知:BC CE DE AD ===, 不妨设BC CE DE AD x ====,则CD AC AD =-, 又AC BC AC AD AB +=+=,AB AC ==则AC AD AC +=,所以AD =,AC AD AD ==,CD AC AD x x =-=-=22222224cos 122x DE CE CDDEC DE CEx +-∠===⨯ 故选:A二、多选题9.(2021·河北唐山·高三开学考试)声音是由物体振动产生的波,每一个音都是由纯音合成的.已知纯音的数学模型是函数sin y A t ω=.我们平常听到的乐音是许多音的结合,称为复合音.若一个复合音的数学模型是函数()1sin sin 22f x x x =+,则( )A .()f x 的最大值为32B .2π为()f x 的最小正周期C .π2x =为()y f x =曲线的对称轴 D .()π,0为曲线()y f x =的对称中心【答案】BD 【分析】分析函数sin y x =与1sin 22y x =不能同时取得最大值可判断A ;由sin y x =的最小正周期是2π,1sin 22y x=的最小正周期是2ππ2=可判断B ;计算ππ22f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭是否成立可判断C ;计算()()2π0f x f x +-=是否成立可判断D ;进而可得正确选项. 【详解】对于A :若()f x 的最大值为32,则sin y x =与1sin 22y x =同时取得最大值,当sin y x =取得最大值1时,cos 0x =,可得1sin 2sin cos 02y x x x ===取不到12,若1sin 22y x =取得最大值12时,sin 21x =,此时()ππZ 4x k k =+∈,而πsin sin π4y x k ⎛⎫==+= ⎪⎝⎭1,所以sin y x =与1sin 22y x =不可能同时取得最大值,故选项A 不正确;对于B :因为sin y x =的最小正周期是2π,1sin 22y x =的最小正周期是2ππ2=, 且()()()()112πsin 2πsin 22πsin sin 222f x x x x x f x +=+++=+=,()()()()11πsin πsin 2πsin sin 222f x x x x x f x +=+++=-+≠所以2π为()f x 的最小正周期,故选项B 正确;对于C :ππ1π1sin sin 2cos sin 222222f x x x x x ⎛⎫⎛⎫⎛⎫+=+++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,ππ1π1sin sin 2cos sin 222222f x x x x x ⎛⎫⎛⎫⎛⎫-=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以ππ22f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭不恒成立,即ππ22f x f x ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭,所以π2x =不是曲线()y f x =的对称轴,故选项C 不正确;对于D :()()()112πsin 2πsin 22πsin sin 222f x x x x x -=-+-=--,所以()()2π0f x f x +-=对于任意的x 恒成立,所以()π,0为曲线()y f x =的对称中心,故选项D 正确; 故选:BD.10.(2021·江苏)由倍角公式2cos 22cos 1x x =-,可知cos2x 可以表示为cos x 的二次多项式.一般地,存在一个n (n *∈N )次多项式()12012n n n n n P t a t a ta t a --=+++⋅⋅⋅+(012,,,n a a a a ⋅⋅⋅∈R ),使得()cos cos n nx P x =,这些多项式()n P t 称为切比雪夫(P .L .Tschebyscheff )多项式.运用探究切比雪夫多项式的方法可得( )A .()3343P t t t =-+ B .()424881P t t t =-+C .sin18︒=D .cos18︒=【答案】BC 【分析】通过求cos3,cos 4,cos5x x x ,来判断出正确选项. 【详解】()cos3cos 2cos2cos sin 2sin =+=-x x x x x x x()222cos 1cos 2sin cos x x x x =-- ()()222cos 1cos 21cos cos x x x x =--- 34cos 3cos x x =-,所以()3343P t t t =-,A 错误.()()222222cos 4cos 22cos 2sin 22cos 14sin cos x x x x x x x =⋅=-=--()42224cos 4cos 141cos cos x x x x =-+--428cos 8cos 1x x =-+,所以()424881P t t t =-+,B 正确.()cos5cos 4cos4cos sin 4sin x x x x x x x =+=- ()428cos 8cos 1cos 2sin 2cos2sin x x x x x x =-+- ()53228cos 8cos cos 4sin 2cos 1cos x x x x x x =-+--()()53228cos 8cos cos 41cos 2cos 1cos x x x x x x =-+--- 5316cos 20cos 5cos x x x =-+.所以()53cos90cos 51816cos 1820cos 185cos180︒=⨯︒=︒-︒+︒=,由于cos180︒≠,所以4216cos 1820cos 1850︒-︒+=,由于cos18cos30︒>︒,所以223cos 18cos 304︒>︒=,所以由4216cos 1820cos 1850︒-︒+=解得2cos 18︒=,所以sin18︒=,C正确. 2=≠⎝⎭,所以D 错误. 故选:BC 【点睛】三角函数化简求值问题,关键是根据题意,利用三角恒等变换的公式进行化简.11.(2021·全国)海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后,在落潮时返回海洋.一艘货船的吃水深度(船底到水面的距离)为4m.安全条例规定至少要有2.25m 的安全间隙(船底到海底的距离),下表给出了某港口在某季节每天几个时刻的水深.若选用一个三角函数()f x 来近似描述这个港口的水深与时间的函数关系,则下列说法中正确的有( ) A .() 2.5cos 56x x f π⎛⎫=+⎪⎝⎭B .() 2.5sin 56f x x π⎛⎫=+⎪⎝⎭C .该货船在2:00至4:00期间可以进港D .该货船在13:00至17:00期间可以进港 【答案】BCD 【分析】依据题中所给表格,写出()f x 的表达式而判断选项A ,B ;再根据船进港的条件列出不等式,求解即可判断选项C ,D. 【详解】依据表格中数据知,可设函数为()sin f x A x k ω=+,由已知数据求得 2.5A =,5k =,周期12T =,所以26T ππω==﹐ 所以有() 2.5sin 56f x x π⎛⎫=+⎪⎝⎭,选项A 错误;选项B 正确; 由于船进港水深至少要6.25,所以 2. 5sin 5 6.256x π⎛⎫+ ⎪⎝⎭≥,得1sin 62x π⎛⎫⎪⎝⎭≥, 又024046x x ππ≤≤⇒≤≤,则有5666x πππ≤≤或1317666x πππ≤≤,从而有1 5 x ≤≤或1317x ≤≤,选项C ,D 都正确. 故选:BCD 【点睛】解三角不等式sin()(||1)x m m ωϕ+≥<关键在于:找准不等式中的函数值m 所对角; 长为一个周期的区间内相位x ωϕ+所在范围.12.(2020·全国高三月考)斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD AB BC ⎛= ⎝⎭中作正方形ABFE ,以F 为圆心,AB 长为半径作弧BE ;然后在黄金矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作弧EG ;;如此继续下去,这些弧就连接成了斐波那契螺线.记弧BE ,EG ,GI 的长度分别为l ,m ,n ,则下列结论正确的是( )A .l m n =+B .2m l n =⋅C .2m l n =+D .111m l n=+ 【答案】AB 【分析】设1AB =,则2BC =,再由14圆弧分别求得l ,m ,n ,然后再逐项判断.【详解】不妨设1AB =,则2BC =,所以121)4l π=⨯⨯=.因为3ED =所以12(34m π=⨯⨯=.同理可得124)4n π=⨯⨯=所以l m n =+,2m l n =⋅,2m l n ≠+,111m l n≠+,所以A ,B 正确,C ,D 错误. 故选:AB三、填空题13.(2021·安徽高三开学考试(理))正割(secant )及余割(cosecant )这两个符号是荷兰数学家基拉德在《三角学》中首先使用,后经欧拉采用得以通行.在三角中,定义正割1sec cos αα=,余割1csc sin αα=.已知0t >,且22sec csc 16x t x +≥对任意的实数,2k x x k Z π⎛⎫≠∈ ⎪⎝⎭均成立,则t 的最小值为__________. 【答案】9 【分析】根据正余割的定义,得到和为1,结合基本不等式1的代入即可求解 【详解】 由题得:22111sec csc x x+=, 所以()22222211sec csc sec csc 16sec csc x t x x t x x x ⎛⎫+=++≥ ⎪⎝⎭即:2222csc sec 11sec csc t x xt x x t ≥+++++116t ++5-3,所以9t ≥故答案为:914.(2021·江苏仪征中学高一月考)赵爽是我国古代数学家,大约在公元222年,赵爽在为《周髀算经》,作序时,介绍了“勾股圆方图”,亦称为“赵爽弦图”.可类似地构造如图所示的图形,由三个全等的三角形与中间的一个小等边三角形拼成一个大的等边三角形,设2DF FA =,若AB =ABD △的面积为____________.【答案】【分析】设BD x =,可得出3AD x =,23ADB π∠=,利用余弦定理求出x 的值,再利用三角形的面积公式可求得ABD △的面积. 【详解】设BD x =,则3AD x =,因为DEF 为等边三角形,则3ADE π∠=,故23ADB π∠=, 在ABD △中,由余弦定理得()222252323cos3AB x x x x π==+-⨯⨯⨯,解得2x =,故6AD =,2BD =,因此,ABD △的面积为1226sin23ABD S π=⨯⨯⨯=△故答案为:15.(2021·安徽阜阳·高一期末)筒车是一种水利灌溉工具(如图1所示),筒车上的每一个盛水筒都做逆时针匀速圆周运动,筒车转轮的中心为O ,筒车的半径为r ,筒车转动的周期为24s ,如图2所示,盛水桶M在0P 处距水面的距离为0h .4s 后盛水桶M 在1P 处距水面的距离为1h ,若10h h -=,则直线0OP 与水面的夹角为______.【答案】π12【分析】根据题意构建平面几何模型,在借助三角函数求解答案. 【详解】如图,过O 作直线l 与水面平行,过0P 作0P A l ⊥于A ,过1P 作1PB l ⊥于B . 设0AOP α∠=,1BOP β∠=,则,4π2π243βα-=⨯=,π3βα∴=+由图知,0sin P A r α=,1sin PB r β=,0101sin sin P A h h PB r r r βα--=-==,所以πsin sin 3αα⎛⎫+-= ⎪⎝⎭πsin 3α⎛⎫-= ⎪⎝⎭,则ππ34α-=-,即π12α=.故答案为:π12. 16.(2021·广东深圳·高三)著名的费马问题是法国数学家皮埃尔德费马(1601-1665)于1643年提出的平面几何极值问题:“已知一个三角形,求作一点,使其与此三角形的三个顶点的距离之和最小.”费马问题中的所求点称为费马点,已知对于每个给定的三角形,都存在唯一的费马点,当ABC 的三个内角均小于120︒时,则使得120APB BPC CPA ∠=∠=∠=︒的点P 即为费马点.已知点P 为ABC 的费马点,且AC BC ⊥,若||||||PA PB PC λ+=,则实数λ的最小值为_________.【答案】2 【分析】根据题意120APB BPC CPA ∠=∠=∠=︒,不妨设PCB α∠=,故,,326CBP ACP CAP πππααα∠=-∠=-∠=-,进而得,63ππα⎛⎫∈ ⎪⎝⎭,所以在BCP 和ACP △中,由正弦定理得sin sin 3BP PC απα=⎛⎫- ⎪⎝⎭,sin 2sin 6PA PC παπα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭,故sin sin 2sin sin 36πααλππαα⎛⎫- ⎪⎝⎭=+⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,在结合三角恒等变换化简整理求函数最值即可.【详解】根据题意, 点P 为ABC 的费马点,ABC 的三个内角均小于120︒, 所以120APB BPC CPA ∠=∠=∠=︒,设PCB α∠=,所以在BCP 和ACP △中,,,3236CBP ACP CAP ACP ππππααα∠=-∠=-∠=-∠=-,且均为锐角,所以,63ππα⎛⎫∈ ⎪⎝⎭所以由正弦定理得:sin sin 3BPPC παα=⎛⎫- ⎪⎝⎭,sin sin 26PA PCππαα=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,所以sin sin 3BP PC απα=⎛⎫- ⎪⎝⎭,sin 2sin 6PA PC παπα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭, 因为||||||PA PB PC λ+=所以sin cos sin sin cos sin 2sin sin 36πααααααλππαα⎛⎛⎫- - ⎪⎝⎭=+==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭11==,因为,63ππα⎛⎫∈ ⎪⎝⎭,所以22,33ππα⎛⎫∈ ⎪⎝⎭,所以(2sin 20,2α,)12,⎡∈+∞⎣故实数λ的最小值为2.故答案为:2【点睛】本题考查数学文化背景下的解三角形,三角恒等变换解决三角函数取值范围问题,考查运算求解能力,数学建模能力,化归转化思想,是难题.本题解题的关键在于根据题目背景,通过设PCB α∠=,进而建立解三角形的模型,再根据正弦定理及三角恒等变换化简求最值即可.四、解答题17.(2021·海安市南莫中学高一期中)下图所示的毕达格拉斯树画是由图(i )利用几何画板或者动态几何画板Geogebra 做出来的图片,其中四边形ABCD ,AEFG ,PQBE 都是正方形.如果改变图(i )中EAB ∠的大小会得到更多不同的“树形”.(1)在图(i )中,21AB ,AE ==,且AE AB ⊥,求AQ ;(2)在图(ii )中,21AB ,AE ==,设(0)EAB θθπ∠=<<,求AQ 的最大值.【答案】(1(2)9. 【分析】(1)由已知条件结合诱导公式求得cos ABQ ∠,在ABQ △中,利用余弦定理,即可求解;(2)由已知条件结合余弦定理,求得BE ,再利用正弦定理、余弦定理及三角函数的性质,即可求解. 【详解】(1)当AE AB ⊥时,BE BQ ==则()cos cos2ABQ ABE π∠=+∠sin AE ABE BE =-∠=-=在ABQ △中,由余弦定理可得2222cos 45413AQ AB BQ AB BQ ABQ =+-⋅∠=++=,所以AQ =(2)在ABE △中,由余弦定理知,2222cos 54cos BE AB AE AB AE θθ⋅=-⋅=+-,所以BE BQ ==在ABE △中,由正弦定理知sin sin AE BEABE θ=∠,可得sin ABE ∠=在ABQ △中,由余弦定理可得2222cos()2AQ AB BQ AB BQ ABE π=+-⋅⋅+∠454cos 4θ=+-+4(sin cos )994πθθθ⎛⎫=-+=-+ ⎪⎝⎭,所以当3(0,)4πθπ=∈时,AQ 的取最大值9.答:(1)AQ =(2)AQ 的最大值为9.18.(2021·昆明·云南师大附中高一期中)仰望星空,时有流星划过天际,令我们感叹生命的短暂,又深深震撼我们凡俗的心灵.流星是什么?从古至今,人们作过无数种猜测.古希腊亚里士多德说,那是地球上的蒸发物,近代有人进一步认为,那是地球上磷火升空后的燃烧现象.10世纪波斯著名数学家、天文学家阿尔·库希设计出一种方案,通过两个观测者异地同时观察同一颗流星,来测定其发射点的高度.如图,假设地球是一个标准的球体,O 为地球的球心,AB 为地平线,有两个观测者在地球上的A ,B 两地同时观测到一颗流星S ,观测的仰角分别为SAD α∠=,SBD β∠=,其中,90DAO DBO ∠=∠=︒,为了方便计算,我们考虑一种理想状态,假设两个观测者在地球上的A ,B 两点测得30α=︒,15β=︒,地球半径为R 公里,两个观测者的距离3RAB π=. 1.73 1.5≈)(1)求流星S 发射点近似高度ES ;(2)在古希腊,科学不发达,人们看到流星以为这是地球水分蒸发后凝结的固体,已知对流层高度大约在18公里左右,若地球半径6370R ≈公里,请你据此判断该流星S 是地球蒸发物还是“天外来客”?并说明理由.【答案】(1)0.5ES R =公里;(2)该流星不是地球蒸发物,而是“天外来客”,理由见解析. 【分析】(1)由已知条件在ASB △中利用正弦定理求出1)AS R =,在SAC 中再利用余弦定理求出OS ,从而可得ES OS R =-;(2)由(1)求出的值可得流星S 发射点近似高度为3185公里,远远大于对流层最高近似高度18公里,从而可得结论 【详解】 (1)因为3AB R π=,则60AOB ∠=︒,所以AOB 为等边角形,所以AB R =.又因为90DAO DBO ∠=∠=︒,所以30∠=∠=︒DAB DBA ,所以30∠=∠=︒DAB DBA ,所以60SAB ∠=︒,45SBA ∠=︒,75ASB ∠=︒.在ASB △中,由正弦定理:sin 75sin 45AB AS =︒︒,得()sin 4530sin 45R AS ︒=︒+︒, 解得1)AS R =,在SAC 中,由余弦定理:2222222212cos 1)1)(42OS SA OA SA OA SAO R R R R ⎛⎫=+-⋅∠=+-⨯-= ⎪⎝⎭.所以 1.5OS R =≈≈,所以0.5ES OS R R =-=公里.(2)0.53185ES R ≈≈公里,所以流星S 发射点近似高度为3185公里,远远大于对流层最高近似高度18公里,所以该流星不是地球蒸发物,而是“天外来客”.(言之有理即可).19.(2021·奉新县第一中学高一月考)重庆是我国著名的“火炉”城市之一,如图,重庆某避暑山庄O 为吸引游客,准备在门前两条小路OA 和OB 之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知π6AOB ∠=,弓形花园的弦长AB =M ,π6MAB MBA ∠=∠=,设OBA θ∠=.(1)将OA 、OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何设计OA 、OB 的长度,才使得喷泉M 与山庄O 的距离的值最大?【答案】(1)OA θ=,6OB πθ⎛⎫=+ ⎪⎝⎭;(2)当OA OB =OM 取最大值4+ 【分析】(1)本题可通过正弦定理得出OA θ=、6OB πθ⎛⎫=+ ⎪⎝⎭;(2)本题首先可根据题意得出2AM BM ==,然后通过余弦定理得出2222cos 6OM OB BM OB BM πθ⎛⎫=+-⋅⋅⋅+ ⎪⎝⎭,通过转化得出222283OM πθ⎛⎫=-++ ⎪⎝⎭,最后通过50,6πθ⎛⎫∈ ⎪⎝⎭以及正弦函数的性质即可求出最值.【详解】(1)因为sin sin sin OA OB AB OAB AOBθ==∠∠,π6AOB ∠=,AB =所以56OAB πθ∠=-,OA θ=,566OB ππθθ⎛⎫⎛⎫=-=+⎪ ⎪⎝⎭⎝⎭.(2)因为AB =π6MAB MBA ∠=∠=,所以2AM BM ==, 在OMB △中,由余弦定理易知2222cos 6OM OB BM OB BM πθ⎛⎫=+-⋅⋅⋅+ ⎪⎝⎭,即2248sin 4cos 666OM πππθθθ⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭248sin 2428224cos 22286333ππππθθθθ⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+=-+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭122sin 2282283233πππθθθ⎤⎛⎫⎛⎫⎛⎫=-++++=-++⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎦,因为50,6πθ⎛⎫∈ ⎪⎝⎭,所以2272,333πππθ⎛⎫+∈ ⎪⎝⎭,2sin 23πθ⎡⎛⎫+∈-⎢⎪⎝⎭⎣⎭, 当2sin 213πθ⎛⎫+=- ⎪⎝⎭,即512πθ=时, 2OM 取最大值28+OM 取最大值4+此时51264OA πππ⎛⎫==+= ⎪⎝⎭ 512643OB ππππ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭故当OA OB =时,OM 取最大值4+ 【点睛】关键点点睛:本题考查解三角形的实际应用,考查正弦定理与余弦定理的应用,考查三角恒等变换,考查根据正弦函数的性质求最值,考查化归与转化思想,体现了综合性,是难题.20.(2021·江苏省镇江中学)古希腊数学家普洛克拉斯曾说:“哪里有数学,哪里就有美,哪里就有发现……”,对称美是数学美的一个重要组成部分,比如圆,正多边形……,请解决以下问题:(1)魏晋时期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”,割圆术可以视为将一个圆内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,求sin3︒的近似值(结果保留π).(2)正n 边形的边长为a ,内切圆的半径为r ,外接圆的半径为R ,求证:2tan2a R r nπ+=.【答案】(1)60π;(2)详见解析.【分析】(1)将一个单位圆分成120个扇形,每个扇形的圆心角为3︒,再根据120个等腰三角形的面积之和近似等于圆的面积求解;(2)设O 为内切圆的圆心,OA ,OB 分别为外接圆和内切圆的半径R ,r ,易知 1,2AB a nπθ==,然后在Rt OAB 中,利用三角函数的定义求得R ,r ,利用三角恒等变换证明.【详解】(1)将一个单位圆分成120个扇形,每个扇形的圆心角为3︒, 因为这120个等腰三角形的面积之和近似等于圆的面积, 所以11211sin 32π⨯⨯⨯⨯≈ sin 360π≈;(2)设O 为内切圆的圆心,OA ,OB 分别为外接圆和内切圆的半径R ,r ,则,OA R OB r ==, 如图所示:所以1,2AB a nπθ==, 在Rt OAB 中,sin AB OAθ=,即12sin an Rπ=,所以2sin a R n π=, cos OB OA θ=,即cos r n Rπ=,所以coscos 2sin a n r R n nπππ==, 所以1cos cos2sin 2sin 2sina a a n n R r n n nπππππ⎛⎫+ ⎪⎝⎭+=+=, 22cos 24sincos2tan222a a nnnnππππ==.21.(2021·上海徐汇·高一期末)主动降噪耳机工作的原理是:先通过微型麦克风采集周国的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的声波来抵消噪声(如图所示).已知某噪声的声波曲线f(x)=Asin (2π3x +φ)(A >0,0≤φ<π),其中的振幅为2,且经过点(1,-2)(1)求该噪声声波曲线的解析式f(x)以及降噪芯片生成的降噪声波曲线的解析式g(x); (2)证明:g(x)+g(x +1)+g(x +2)为定值. 【答案】(1)f(x)=2sin (2π3x +5π6), g(x)=−2sin (2π3x +5π6);(2)证明见解析.【分析】(1)首先根据振幅为2求出A ,将点(1,-2)代入解析式即可解得; (2)由(1),结合诱导公式和两角和差的余弦公式化简即可证明.【详解】(1)∵振幅为2,A >0,∴A =2,f(x)=2sin (2π3x +φ),将点(1,-2)代入得:−2=2sin (2π3+φ)⇒sin (2π3+φ)=−1,∵0≤φ<π,∴2π3+φ∈[2π3,5π3),∴2π3+φ=3π2⇒φ=5π6,∴f(x)=2sin (2π3x +5π6),易知g(x)与f(x)关于x 轴对称,所以g(x)=−2sin (2π3x +5π6).(2)由(1)g(x)=−2sin (2π3x +5π6)=−2sin (2π3x +π3+π2)=−2cos (2π3x +π3)g(x)+g(x +1)+g(x +2)=−2cos (2π3x +π3)−2cos (2π3x +π)−2cos (2π3x +2π3+π)=−2cos (2π3x +π3)+2cos2π3x +2cos (2π3x +2π3)=−2(cos2π3x ⋅12−sin2π3x ⋅√32)+2cos2π3x +2[cos2π3x ⋅(−12)−sin2π3x ⋅√32]=0.即定值为0.22.(2021·合肥市第六中学高一期末)合肥逍遥津公园是三国古战场,也是合肥最重要的文化和城市地标,是休闲游乐场,更是几代合肥人美好记忆的承载地.2020年8月启动改造升级工作,欲对该公园内一个平面凸四边形ABCD 的区域进行改造,如图所示,其中4DC a =米,2DA a =米,ABC 为正三角形.改造后BCD △将作为人们旅游观光、休闲娱乐的区域,ABD △将作为对三国历史文化的介绍区域.(1)当3ADC π∠=时,求旅游观光、休闲娱乐的区域BCD △的面积;(2)求旅游观光、休闲娱乐的区域BCD △的面积的最大值.【答案】(1)()22m ;(2)(()224m a +.【分析】(1)由余弦定理求得AC ,再由正弦定理求得ACD ∠,求出BC BC ⊥,易得面积;(2)不妨设ADC θ∠=,ACD α∠=,用余弦定理表示出2AC ,用正弦定理表示出sin α,再用余弦定理表示出cos α,然后表示出BCD △的面积,利用两角和的正弦公式展开代入2sin ,cos ,AC αα,再利用两角差的正弦公式化简,然后利用正弦函数性质得最大值. 【详解】解析:(1)2222cos3AC AD DC AD DC π=+-⋅⋅,∴AC =,又sin sin3ACADACD π=∠,∴1sin 2ACD ∠=,易知ACD ∠是锐角,所以6π∠=ACD ,∴2BCD π∠=,()2214m 2BCD S a =⨯⨯=△,(2)不妨设ADC θ∠=,ACD α∠=,于是由余弦定理得()222016cos AC a θ=-①,22sin sin sin sin AC a a ACθαθα=⇒=②, 22222124168cos cos 8AC a a AC a aAC a a aAC+=+-⋅⇒=③, ∴14sin 23BCDS a AC πα⎛⎫=⨯⨯⋅+ ⎪⎝⎭△2(sin cos cos sin )33a AC ππαα=⋅+2222sin 128a AC a AC AC AC θ⎡⎤+=⋅⎢⎥⎣⎦((2222sin 4sin 43a a a πθθθ⎛⎛⎫=-+=-++ ⎪ ⎝⎝≤⎭,当且仅当5 326πππθθ-=⇒=时取等号,∴BCD S △最大值为(()224m a +.【点睛】本题考查解三角形的应用,解题关键是选用一个角为参数,然后把其他量表示为参数的三角函数,这里注意正弦定理和余弦定理的应用,然后利用三角函数恒等变换公式化简变形,最后利用正弦函数性质求得最值.。

高一数学解三角形试题

高一数学解三角形试题

高一数学解三角形试题1.△ABC的内角、、的所对的边、、成等比数列,且公比为,则的取值范围为()A.B.C.D.【答案】B.【解析】∵,,成等比数列,∴,,再由正弦定理可得,又∵,根据二次函数的相关知识,可知的取值范围是.【考点】三角形与二次函数一元二次不等式综合.2.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.【答案】B【解析】将代入可得,所以或,当时有有.【考点】解三角形.3.如图,要测出山上石油钻井的井架的高,从山脚测得m,塔顶的仰角,塔底的仰角,则井架的高为()A.m B.m C.m D.m【答案】B【解析】依题意,在三角形ABC中,,角B=45°,角BAC=45°-15°=30°,所以由正弦定理得,,故选B。

【考点】正弦定理的应用点评:简单题,利用三角形内角关系,确定角创造了应用正弦定理的条件。

4.有一道解三角形的题,因为纸张破损,在划横线地方有一个已知条件看不清.具体如下:在中角所对的边长分别为,已知角,,,求角.若已知正确答案为,且必须使用所有已知条件才能解得,请你选出一个符合要求的已知条件.()A.B.C.D.【答案】D【解析】根据题意,由于在中角所对的边长分别为,已知角,,,那么根据正弦定理可知,,由于b<a,则可知角A有两个解,舍去,对于A中,同理可知不成立,对于C,可知A=B,不成立,故选D.【考点】解三角形点评:主要是考查了正弦定理以及余弦定理的运用,属于基础题5.如图,在中,,,(1)求;(2)记BC的中点为D,求中线AD的长.【答案】(1)(2)AD【解析】解:(1)由,C是三解形内角,得2分4分---5分(2)在中,由正弦定理 -7分,又在中,,由余弦定理得, 910分本题也可利用向量法。

注意。

【考点】解三角形点评:主要是考查了三角函数的恒等变换以及解三角形的运用属于基础题。

6.在中,.(1)求边长的值;(2)求的面积.【答案】(1);(2).【解析】(1)由正弦定理得……5分(2)由余弦定理 7分8分所以 10分【考点】正弦定理、余弦定理的应用,三角形的面积。

解三角形小题综合 原卷版--高一下学期备战期末专题训练

解三角形小题综合 原卷版--高一下学期备战期末专题训练

期末专题04 解三角形小题综合一、单选题1.(2022春·江苏常州·高一校联考期末)在ABC 中,5AB =,6BC =,8AC =,则ABC的形状是( ) A .锐角三角形B .直角三角形C .钝角三角形D .无法判断2.(2022春·江苏连云港·高一统考期末)在锐角三角形ABC 中,2sin a b A =,则B =( )A .6πB .4π C .3πD .712π 3.(2022春·江苏泰州·高一统考期末)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,csin A =,则sin B =( )A B C D .134.(2022春·江苏淮安·高一统考期末)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若cos a c B =,则ABC 的形状( ) A .锐角三角形B .直角三角形C .钝角三角形D .不能确定5.(2022春·江苏淮安·高一统考期末)在ABC 中,45B =°,点D 是边BC 上一点,5AD =,7AC =,3DC =,则边AB 的长是( )A .BCD .6.(2022秋·江苏南京·高一南京市第九中学校考期末)中国早在八千多年前就有了玉器,古人视玉为宝,玉佩不再是简单的装饰,而有着表达身份、感情、风度以及语言交流的作用.不同形状、不同图案的玉佩又代表不同的寓意.如图1所示的扇形玉佩,其形状具体说来应该是扇形的一部分(如图2),经测量知4ABCD ==,3BC =,7AD =,则该玉佩的面积为( )A .496πB .493πC .496πD .493π7.(2022秋·江苏南通·高一统考期末)图1是南北方向、水平放置的圭表(一种度量日影长的天文仪器,由“圭”和“表”两个部件组成)示意图,其中表高为h ,日影长为l .图2是地球轴截面的示意图,虚线表示点A 处的水平面.已知某测绘兴趣小组在冬至日正午时刻(太阳直射点的纬度为南纬2326′°)在某地利用一表高为2dm 的圭表按图1方式放置后,测得日影长为2.98dm ,则该地的纬度约为北纬( )(参考数据:tan 340.67°≈,tan 56 1.49°≈)A .2326′°B .3234′°C .34°D .56°8.(2022春·江苏镇江·高一扬中市第二高级中学校考期末)设()2πsin cos cos 4f x x x x =−+,在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若02A f=,1a =,则ABC 面积的最大值为( )A BC D 9.(2022春·江苏扬州·在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列各组条件中,使得ABC 恰有一个解的是( )A .π2,4,3ab A == B .π4,3a b A=C .2π4,3a b A === D .2π4,3a b A === 10.(2022春·江苏南通·高一统考期末)已知ABC 为锐角三角形,2AC =,π6A =,则BC 的取值范围为( )A .()1,+∞B .()1,2C .D .211.(2022春·江苏镇江·高一统考期末)已知A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,且测得点B 对点A 和点C 的张角为120°,则点B 到AC 的距离为( )km .A B C D 12.(2022春·江苏无锡·高一统考期末)设ABC 内角A ,B ,C 所对的边分别为a ,b ,c .若2b =,2sin 6sin a C A =,则ABC 面积的最大值为( )AB C D .313.(2022春·江苏南通·高一金沙中学校考期末)ABC 中,,,A B C 的对边分别为a b c ,,,则( )A .若a b c <<,则cos sinBC < B .,A B ∃使得sin()sin sin A B A B +=+ C .,B C ∀都有tan tan tan()1tan tan B CB C B C++=−⋅D .若sin cos A A +A 是钝角 14.(2022春·江苏南通·高一统考期末)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若8,sin 2sin cos 0ac B C A =+=,则ABC 面积的最大值为( ) A .1 B .3 C .2 D .415.(2022春·江苏扬州·高一期末)△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量()()p a c b q b a c a =+=−−,,,,若p q ∥,则角C 的大小为( )A .π6B .π3C .π2D .2π316.(2022春·江苏苏州·高一校考期末)如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C 处,观测B 在C A 在C 处的北偏西60°方向,则A ,B 两处岛屿间的距离为 ( )A .B .C .20(1+海里D .40海里17.(2022春·江苏苏州·高一统考期末)已知锐角三角形ABC 中,角,,A B C 所对的边分别为,,,a b c ABC 的面积为S ,且()22sin 2b c B S −⋅=,若a kc =,则k 的取值范围是( ) A .()1,2 B .()0,3 C .()1,3 D .()0,2二、多选题18.(2022春·江苏南京·高一南京市中华中学校考期末)在ABC 中,下列结论中,正确的是( )A .若cos2cos2AB =,则ABC 是等腰三角形B .若sin sin A B >,则A B >C .若222AB AC BC +<,则ABC 为钝角三角形D .若60A = ,4AC =,且结合BC 的长解三角形,有两解,则BC 长的取值范围是)+∞19.(2022春·江苏南京·高一统考期末)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知45,2A c =°=,下列说法正确的是( )A .若a ABC = 有两解B .若3,a ABC = 有两解C .若ABC 为锐角三角形,则b 的取值范围是D .若ABC 为钝角三角形,则b 的取值范围是20.(2022春·江苏宿迁·高一沭阳县修远中学校考期末)在三角形ABC 中,π3A ∠=,若三角形有两解,则ca的可能取值为( )A B .1.1 C D .1.0121.(2022春·江苏南通·高一统考期末)设ABC 的内角A ,B ,C 的对边分别为a ,b ,.c若c =,30B = ,则角A 可能为( )A .135B .105C .45D .1522.(2022春·江苏苏州·高一校联考期末)在ABC 中,角,,A B C 对边分别为,,a b c ,设向量()(),,,m c a b n a c =+= ,且//m n,则下列选项正确的是( ) A .2A B =B .2C A =C .12ca<<D .若ABC 的面积为24c ,则2C π=23.(2022春·江苏泰州·高一统考期末)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若b =2c =cos 2cos 33A AC +=,则下列说法正确的有( )A .3A C π+=B .sinC =C .2a =D .ABC S =24.(2022春·江苏扬州·高一统考期末)如图所示,ABC 中,324AB AC BC ===,,,点M 为线段AB 中点,P 为线段CM 的中点,延长AP 交边BC 于点N ,则下列结论正确的有( ).A .1142AP AB AC =+ B .3BN NC =C .||AN =D .AP 与AC 25.(2022春·江苏徐州·高一统考期末)已知ABC 内角A ,B ,C 所对的边分别为a ,b ,c ,以下结论中正确的是( )A .若AB >,则sin sin A B >B .若2a =,b =3B π=,则该三角形有两解 C .若cos cos a A b B =,则ABC 一定为等腰三角形 D .若222sin sin sin C A B >+,则ABC 一定为钝角三角形26.(2022春·江苏无锡·高一统考期末)ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,下列说法中正确的是( )A .若sin sin AB >,则A B >B .若2220a b c +−>,则ABC 是锐角三角形 C .若cos cos a B b A a +=,则ABC 是等腰三角形D .若sin cos cos a b c A B C==,则ABC 是等边三角形27.(2022春·江苏苏州·高一江苏省昆山中学校考期末)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,则下列说法正确的是( ) A .cos cos ca Bb A +B .若cos cos a A b B =,则ABC 为等腰或直角三角形 C .若22tan tan a B b A =,则a b =D .若333a b c +=,则ABC 为锐角三角形28.(2022春·江苏苏州·高一校考期末)在△ABC 中,角,,A B C 所对的边分别是,,a b c ,下列说法正确的是( )A .若acosA=bcosB ,则ABC 是等腰三角形B .若45,3AB B AC °==,则满足条件的三角形有且只有一个C .若ABC 不是直角三角形,则tan tan tan tan tan tan A B C A B C ++=D .若0BC AB ⋅<,则ABC 为钝角三角形三、填空题29.(2022春·江苏连云港·高一统考期末)曲柄连杆机构的示意图如图所示,当曲柄OA 在水平位置OB 时,连杆端点P 在Q 的位置,当OA 自OB 按顺时针方向旋转角α时,P 和Q 之间的距离是cm x ,若3cm OA =,7cm AP =,120α°=,则x 的值是_________.30.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)已知轮船A 和轮船B 同时离开C 岛,A 船沿北偏东30°的方向航行,B 船沿正北方向航行(如图).若A 船的航行速度为40n mile /h ,1小时后,B 船测得A 船位于B 船的北偏东45°的方向上,则此时A ,B 两船相距_______________n mile .31.(2022春·江苏无锡·高一统考期末)ABC 的内角A ,B ,C 所对边分别为a ,b ,c,已知60C =°,1a =,c =b =___________.32.(2022春·江苏扬州·高一期末)《后汉书·张衡传》:“阳嘉元年,复造候风地动仪.以精铜铸成,员径八尺,合盖隆起,形似酒尊,饰以篆文山龟鸟兽之形.中有都柱,傍行八道,施关发机.外有八龙,首衔铜丸,下有蟾蜍,张口承之.其牙机巧制,皆隐在尊中,覆盖周密无际.如有地动,尊则振龙,机发吐丸,而蟾蜍衔之.振声激扬,伺者因此觉知.虽一龙发机,而七首不动,寻其方面,乃知震之所在.验之以事,合契若神.”如图为张衡地动仪的结构图,现在相距120km 的A ,B 两地各放置一个地动仪,B 在A 的东偏北75°方向,若A 地地动仪正东方向的铜丸落下,B 地地动仪东南方向的铜丸落下,则地震的位置距离B 地______km33.(2022春·江苏泰州·高一统考期末)如图所示,该图由三个全等的BAD 、ACF △、CBE △构成,其中DEF 和ABC 都为等边三角形.若2DF =,12DAB π∠=,则AB =_______.34.(2022春·江苏常州·高一统考期末)在ABC 中,AB =3BC =,45B =°,点D 在边BC 上,且cos ADC ∠tan DAC ∠的值为___________.35.(2022春·江苏南通·高一统考期末)设ABC 的内角A ,B ,C 的对边分别为a ,b ,.c 已知6a =,2b =,要使ABC 则c 的大小可取__________(取整数值,答案不唯一).36.(2022春·江苏南京·高一南京市中华中学校考期末)拿破仑是十九世纪法国伟大的军事家、政治家,对数学也很有兴趣,他发现并证明了著名的拿破仑定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个等边三角形的中心恰为另一个等边三角形的顶点”,在△ABC 中,以AB ,BC ,CA 为边向外构造的三个等边三角形的中心依次为D ,E ,F ,若30,4BACDF ∠== ,利用拿破仑定理可求得AB +AC 的最大值为___.。

高一数学解三角形单元测试及答案

高一数学解三角形单元测试及答案

高一数学解三角形单元测试及答案解三角形本章测试本次测试共有12道选择题,每题5分,总分60分。

在每道题中,只有一个选项是正确的,请将正确选项填涂在答题卡上。

1.在三角形ABC中,已知a=2,b=2,B=π/6,则A=()A。

3π/4 B。

π/3 C。

4π/3 D。

π/42.在三角形ABC中,已知a²=b²+c²+bc,则角A为()A。

30° B。

45° C。

120° D。

150°3.已知三角形ABC中,A:B:C=11:4,则a:b:c的比值为()A。

1:1:3 B。

2:2:3 C。

1:1:2 D。

1:1:44.在三角形ABC中,a、b、c分别为三个内角A、B、C的对边,若a=2,b=1,B=29°,则此三角形的解为()A。

无解 B。

有一解 C。

有两解 D。

有无数解5.在三角形ABC中,∠C=90°,0<A<45°,则下列各式中,正确的是()A。

sinA>XXX>XXX<XXX<sinB6.一艘船自西向东航行,上午10时到达灯塔的南偏西75°、距塔68海里的M处,下午2时到达这座灯塔的东南方向的N 处,则这艘船航行的速度为()A。

176/22海里/时 B。

346海里/时 C。

22海里/时 D。

342/22海里/时7.已知三角形ABC的面积为S,三个内角A、B、C的对边分别为a、b、c,若4S=a²-(b-c)²,bc=4,则S=()A。

2 B。

4 C。

3 D。

15/28.已知三角形ABC的内角A、B、C所对的边分别为a、b、c,若cosC=1/4,4bcosA+acosB=3,则三角形ABC外接圆的半径为()A。

2/3 B。

2√2 C。

4 D。

69.在三角形ABC中,已知asinA/bsinB=(a²+c²-b²)/(b²+c²-a²),则三角形ABC的形状为()A。

人教版数学高三第一章解三角形单元测试精选(含答案)1

人教版数学高三第一章解三角形单元测试精选(含答案)1
5
(1)求 BC 边长; (2)求 AB 边上中线 CD 的长.
【来源】北京 101 中学 2018-2019 学年下学期高一年级期中考试数学试卷
【答案】(1) 3 2 ;(2) 13 .
33.ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a 3, cos A 6 , B A ,
【答案】C
3.在 ABC 中,若 a b cb c a 3bc ,则 A ( )
A. 90
B. 60
C.135
D.150
【来源】2015-2016 学年江西省金溪一中高一下期中数学试卷(带解析)
【答案】B
4.设在 ABC 中,角 A,B,C 所对的边分别为 a,b, c , 若 b cos C c cos B a sin A ,
【答案】C
21.设 ABC 的内角 A, B,C 所对边的长分别为 a, b, c ,若 b c 2a, 3sin A 5sin B ,
则角 C =( )
A.
3 3
C.
4
2
B.
3 5
D.
6
【来源】2013 年全国普通高等学校招生统一考试文科数学(安徽卷带解析)
【答案】B
22.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a2 b2 c2 tanB 3ac ,
A.3 6
B.9 6
C.3
D.6
【来源】福建省晋江市季延中学 2017-2018 学年高一下学期期末考试数学试题
【答案】A
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且cc−−ba=sinCsi+nAsinB,则 B= (
)
A.π
6

数学-2023年解三角形高频题型精选

数学-2023年解三角形高频题型精选

解三角形高频题型精选1.(2023·全国·高一专题练习)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,则下列说法不正确的是( )A .若A >B ,则sin A >sin BB .若A =30∘,b =4,a =3,则△ABC 有两解C .若△ABC 为钝角三角形,则a 2+b 2>c 2D .若三角形ABC 为斜三角形,则tan A +tan B +tan C =tan A tan B tan C2.(2019春·安徽芜湖·高一芜湖一中校考期中)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a =2,b =3,B =π3,那么A =( )A .3π4B .π4C .3π4或π4D .π33.(2020秋·陕西西安·高二西安建筑科技大学附属中学校联考期中)在△ABC 中,若∠A =60°,b =1,S △ABC =3,则a +b +c sin A +sin B +sin C的值为( )A .2633B .2393C .393D .13334.(2021春·河北·高三统考学业考试)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若a =1,c =17,sin A =1717,则cos B =( )A .178B .14C .34D .17175.(2023·江西赣州·统考一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,C =2A +B ,则b a =( )A .75B .32C .53D .746.(2020秋·广东清远·高二校考期中)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 所对的边,若3b cos C =c (1-3cos B ),则sin C ∶sin A =( )A .3∶1B .3∶2C .1∶3D .4∶37.(2023·河南郑州·统考一模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知角C =π4,b sin π4+A -a sin π4+B =c ,则角B =( )A .π8B .π6C .5π8D .π38.(2023·河北·高三学业考试)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于( )A .5π6B .2π3C .π3D .π69.(2023春·江西赣州·高三统考阶段练习)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =1,且b cos A -cos B =1,则3sin B +2sin 2A 的取值范围是( )A .0,3+1B .2,3+1C .1,3D .2,3 10.(2022秋·江西吉安·高二江西省吉水县第二中学校考开学考试)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且c =2a cos B ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形11.(2023秋·浙江宁波·高三期末)在△ABC 中,内角A ,B ,C 的对应边分别为a ,b ,c ,已知b sin (B +C )=a sinA +C 2,且△ABC 的面积为23,则△ABC 周长的最小值为( )A .22B .23C .62D .6+2312.(2023·陕西榆林·统考一模)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a sin A +b +λa sin B =c sin C ,则λ的取值范围为( )A .-2,2B .0,2C .-2,2D .0,213.(2022·北京·统考模拟预测)已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,且3a cos B =b sin A ,则B =( )A .π6B .π4C .π3D .π214.(2023秋·陕西西安·高二统考期末)在△ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,若a =4,b =43,A =30°,则B =( )A .30°B .30°或150°C .60°D .60°或120°15.(2023·全国·高三专题练习)“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedesbenz )的log o 很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O 是△ABC 内的一点,△BOC ,△AOC ,△AOB 的面积分别为S A ,S B ,S C ,则有S A ⋅OA +S B ⋅OB +S C ⋅OC =0 .设O 是锐角△ABC 内的一点,∠BAC ,∠ABC ,∠ACB 分别是△ABC 的三个内角,以下命题不正确的有( )A .若OA +OB +OC =0 ,则O 为△ABC 的重心B .若OA +2OB +3OC =0 ,则S A :S B :S C =1:2:3C .若OA =OB =2,∠AOB =5π6,2OA +3OB +4OC =0 ,则S △ABC =92D .若O 为△ABC 的垂心,则tan ∠BAC ⋅OA +tan ∠ABC ⋅OB +tan ∠ACB ⋅OC =016.(2023·全国·高一专题练习)不解三角形,判断下列三角形解的个数.(1)a =5,b =4,A =120°;(2)a =9,b =10,A =60°;(3)b =72,c =50,C =135°.17.(山西省部分学校2023届高三下学期质量检测试题)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c 1+cos B =3b sin C .(1)求角B 的大小;(2)若b =2,a +c =4,求△ABC 的面积.18.(河北省石家庄市2023届高三质量检测(一)数学试题)△ABC 的内角A ,B ,C 的对边长分别为a ,b ,c ,设a +bc -b =sin C +sin B sin A (1)求C ;(2)若3+1 a +2b =6c ,求sin A .19.(2023·湖南·模拟预测)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若b sin A =a cos B -π6 .(1)求角B 的大小;(2)若b =13.且a +c =5,求△ABC 的面积.20.(2023·福建福州·统考二模)记ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2-a 2=2c 2.(1)求tan B tan A的值:(2)求C 的最大值.21.(2023·云南昆明·高三昆明一中校考阶段练习)已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且sin A =3a 2+c 2-b 2 2bc .(1)求B 的大小;(2)若△ABC 为钝角三角形,且b =3,求△ABC 的周长的取值范围.22.(2023·湖北·统考模拟预测)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b cos C =2a +c .(1)求B ;(2)设b =9,若点M 是边AC 上一点,2AM =MC ,且∠MAB =∠MB A ,求△BMC 的面积.23.(2023春·四川资阳·高三四川省乐至中学校考开学考试)在△ABC 中,内角A 、B 、C 满足sin 2A =sin 2B +sin 2C -2sin B sin C .(1)求A ;(2)若AB 边上的高等于13AB ,求cos C .24.(2023春·浙江温州·高三统考开学考试)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C a +c=1.(1)求B ;(2)若a +c =43,△ABC 内切圆的面积为π,求△ABC 的面积.25.(2023·全国·高三专题练习)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,b =3,a <c ,且sin π3-Acos π6+A =14.(1)求A 的大小;(2)若a sin A +c sin C =43sin B ,求△ABC 的面积.26.(2023·山东临沂·统考一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a cos B +b cos A =2c cos C .(1)求C ;(2)若c =1,求△ABC 面积的取值范围.27.(2023春·湖南长沙·高三雅礼中学校考阶段练习)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2sin C -sin B =tan A cos B .(1)求A ;(2)若a =2,求2c -b 的取值范围.28.(2023·河南·高三信阳高中校联考阶段练习)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2a sin C =ctan A .(1)求角A 的大小;(2)若a =2,D 为BC 的中点,求线段AD 长度的最大值.29.(2023春·湖北武汉·高三华中师大一附中校考阶段练习)在锐角△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,满足c 2=b b +a .(1)求证:C =2B ;(2)求1tan B -1tan C+3sin C 的取值范围.30.(2021春·四川成都·高一四川省成都市盐道街中学校考阶段练习)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,b =2sin B ,tan A +tan C =2sin B cos A.(1)求角C 和边c 的大小.(2)求△ABC 周长的范围.31.(2023秋·浙江绍兴·高三期末)记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 外接圆的半径为R ,已知a cos B -b cos A =R .(1)若B =π4,求A 的值;(2)求R -c b 的取值范围.32.(2023春·湖北·高三统考阶段练习)已知a ,b ,c 分别为锐角△ABC 三个内角A ,B ,C 的对边,且m =a ,2b -c ,n =cos A ,cos C ,且m ⎳n.(1)求角A 的大小;(2)求b c的取值范围.33.(2023春·河北石家庄·高三石家庄二中校考阶段练习)已知△ABC 内角A ,B ,C 所对的边分别为a ,b ,c ,面积为23,且3b 2+c 2-a 2 =2ac sin B ,求:(1)求角A 的大小;(2)求BC 边中线AD 长的最小值.34.(2020春·陕西西安·高二交大附中分校校考阶段练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足ctan C =3a cos B +b cos A .(1)求角C 的大小.(2)若c =43,求△ABC 面积的最大值.35.(2022秋·云南昆明·高二昆明市第三中学校考阶段练习)在△ABC中,角A,B,C 的对边分别为a,b,c,且2c-a=2b cos A.(1)求角B的大小;(2)若b=2,求△ABC周长l的取值范围.36.(2023·全国·校联考一模)在△ABC中,角A,B,C所对的边分别为a,b,c,c2+ ac=b2.(1)证明:B=2C;(2)求a+bc的取值范围.37.(2019春·安徽芜湖·高一芜湖一中校考期中)设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,且B为钝角.(1)证明:B-A=π2;(2)求sin A+sin C的取值范围.38.(2023·全国·高三专题练习)已知函数f(x)=cos2(ωx)+3sin(ωx)cos(ωx)-12,其中ω>0,且函数f(x)的两个相邻零点间的距离为π2,(1)求ω的值及函数f(x)的对称轴方程;(2)在△ABC中,a,b,c分别是角A,B,C的对边,若f(A)=-1,a=3,求△ABC 周长的取值范围.39.(2023秋·陕西汉中·高二统考期末)在①a sin C-sin Asin C+sin B=c-b;②sin2A+sin2C-sin2B=sin A sin C;③2a-cb=cos Ccos B.这三个条件中任选一个,补充在下面的问题中并作答.在△ABC中,内角A,B,C所对的边分别是a,b,c,__________.(1)求B;(2)若b=4,求△ABC的周长的取值范围.40.(2023·辽宁沈阳·统考一模)在△ABC中,角A、B、C的对边分别为a、b、c.已知sin A+3cos A=0.(1)求角A的大小;(2)给出以下三个条件:①a=43,b=4;②b2-a2+c2+10b=0;③S△ABC= 153.若这三个条件中仅有两个正确,请选出正确的条件并回答下面问题:(i)求sin B的值;(ii)∠BAC的角平分线交BC于点D,求AD的长.参考答案:1.C【分析】根据正弦定理、余弦定理、三角恒等变换的知识对选项进行分析,从而确定正确答案.【详解】对于A 选项,若A >B ,则a >b ,由正弦定理可得2R sin A >2R sin B ,所以,sin A >sin B ,故A 选项正确;对于B 选项,b sin A =4sin30∘=2,则b sin A <a <b ,如图:所以△ABC 有两解,B 选项正确;对于C 选项,若△ABC 为钝角三角形且C 为钝角,则cos C =a 2+b 2-c 22ab<0,可得a 2+b 2<c 2,C 选项错误;对于D ,因为tan (B +C )=tan B +tan C 1-tan B tan C,所以tan B +tan C =tan (B +C )(1-tan B tan C )因为tan B +C =tan π-A =-tan A ,所以tan B +tan C =tan (B +C )(1-tan B tan C )=tan A tan B tan C -tan A ,所以tan A +tan B +tan C =tan A tan B tan C ,所以D 正确.故选:C2.B【分析】利用正弦定理可求出sin A ,再结合大边对大角即可得解.【详解】因为a =2,b =3,B =π3,由正弦定理a sin A=b sin B ,可得sin A =a sin B b =2sin π33=22,又因为a <b ,所以A <B ,故0<A <π3,所以A =π4.故选:B .3.B 【分析】根据三角形面积公式可得c =4,再由余弦定理计算可得a =13,根据正弦定理可知a +b +c sin A +sin B +sin C =a sin A,代入计算即可得出结果.【详解】根据三角形面积公式可得S △ABC =12bc sin A =12×32c =3,即c =4;由余弦定理可知a 2=b 2+c 2-2bc cos A =1+16-2×1×4×12=13,可得a =13;由正弦定理可得a +b +c sin A +sin B +sin C =a sin A =1332=2393.答案第1页,共2页4.D【分析】利用正弦定理求得sin C ,再利用诱导公式求解即可.【详解】由正弦定理可得a sin A=csin C ,即11717=17sin C ,解得sin C =1,因为△ABC 中C ∈0,π ,所以C =π2,所以B =π2-A ,cos B =cos π2-A=sin A =1717,故选:D 5.C【分析】根据题意和等差数列等差中项的应用可得C =2π3、2b =a +c ,利用余弦定理化简计算即可求解.【详解】由C =2A +B ,A +B +C =π,得C =2π3,由a ,b ,c 成等差数列,得2b =a +c ,由余弦定理,得cos C =a 2+b 2-c 22ab,即-12=a 2+b 2-(2b -a )22ab ,整理,得5ab -3b 2=0,由b ≠0得5a -3b =0,由a ≠0得ba =53.故选:C .6.A【分析】利用正弦定理及三角恒等变换即可求解.【详解】由正弦定理得3sin B cos C =sin C (1-3cos B ),即3sin B cos C +3sin C cos B =sin C ,3sin B +C =sin C ,∵A +B +C =π,∴3sin π-A =sin C ,即3sin A =sin C ,sin Csin A=3,故选:A .7.C【分析】先由正弦定理把边转化为角,再展开化简求得B 与A 的关系,进一步计算得出结果.【详解】已知角C =π4,b sin π4+A -a sin π4+B =c ,由正弦定理可得sin B sin π4+A -sin A sin π4+B =sin C ,整理得22sin B cos A -sin A cos B =22,即sin B -A =1,因为A ,B ∈0,3π4 ,所以B -A ∈-3π4,3π4 ,所以B -A =π2.又B +A =3π4,所以B =5π8.8.D【分析】根据正弦定理把sin C=23sin B化为c=23b,再结合余弦定理求角即可【详解】∵sin C=23sin B,∴c=23b,结合a2-b2=3bc即可求得a=7b.由余弦定理可得cos A=b2+c2-a22bc=b2+12b2-7b22×b×23b=32.又∵A∈0,π,∴A=π6.故选:D 9.B【分析】由正弦定理边化角可得B=2A,由△ABC为锐角三角形可得π6<A<π4,运用降次公式及辅助角公式将问题转化为求三角函数y=2sin2A-π6+1在π6,π4上的值域.【详解】∵b cos A-cos B=1,即:b cos A=cos B+1,a=1,∴b cos A=(cos B+1)a,∴由正弦定理得:sin B cos A=(cos B+1)sin A,即:sin B cos A=sin A cos B+sin A,∴sin(B-A)=sin A,∴B-A=A或B-A+A=π,解得:B=2A或B=π(舍),又∵△ABC为锐角三角形,则C=π-A-B=π-3A,∴0<A<π20<B<π20<C<π2⇒0<A<π20<2A<π20<π-3A<π2,解得:π6<A<π4,∴3sin B+2sin2A=3sin2A+1-cos2A=2sin2A-π6+1,又∵π6<A<π4,∴π6<2A-π6<π3,∴12<sin2A-π6<32,∴2<2sin2A-π6+1<3+1,即3sin B+2sin2A的取值范围(2,3+1).故选:B.10.A【分析】已知条件用正弦定理边化角,由sin C=sin A+B展开后化简得tan A=tan B,可得出等腰三角形的结论.【详解】c=2a cos B,由正弦定理,得sin C=sin A+B=2sin A cos B,即sin A cos B+cos A sin B=2sin A cos B,∴sin A cos B=cos A sin B,可得tan A=tan B,又0<A<π,0<B<π,∴A=B,则△ABC的形状为等腰三角形.故选:A.11.C【分析】首先利用正弦定理及诱导公式,二倍角公式对原式化简得sin B2=12,即求出B的大小,再利用三角形面积公式得ac=8,从而求出a+c的最小值,最后得到C△ABC=(a+c) +(a+c)2-24,利用函数单调性即可求出其最小值.【详解】因为b sin A=a sin π-B 2,根据正弦定理及诱导公式得sin B⋅sin A=sin A⋅cos B 2,∵A∈0,π,∴sin A≠0,∴sin B=cos B 2,即2sin B2cosB2=cosB2,∵B∈0,π,则B2∈0,π2,则cos B2≠0解得sin B2=12,所以B2=π6⇒B=π3,所以S=12ac sin B=3ac4=23,所以ac=8,a+c≥2ac=42,当且仅当a=c=22时等号成立,根据余弦定理得b=a2+c2-2ac cos B,即b=a2+c2-ac,设△ABC的周长为C,所以C△ABC=a+c+(a+c)2-3ac=(a+c)+(a+c)2-24,设a+c=t,t≥42,则f t =t+t2-24,根据复合函数单调性及增函数加增函数为增函数的结论得:f t 在42,+∞上为单调增函数,故f t min=f42=62,故C△ABCmin=62,当且仅当a=b=c=22时取等.故选:C.12.A【分析】根据正弦、余弦定理可得λ=-2cos C,结合C∈0,π即可求解.【详解】因为a sin A+b+λasin B=c sin C,由正弦定理得c2=a2+b2+λab.又c2= a2+b2-2ab cos C,所以λ=-2cos C.因为C∈0,π,所以cos C∈-1,1,故λ∈-2,2.故选:A.13.C【分析】由正弦定理化简得出tan B的值,结合角B的取值范围可求得角B的值.【详解】因为3a cos B=b sin A,由正弦定理可得3sin A cos B=sin B sin A,∵A、B∈0,π,则sin A>0,所以,3cos B=sin B>0,所以,tan B =3,故B =π3.故选:C .14.D【分析】根据a =4,b =43,A =30°,利用正弦定理求解.【详解】解:在△ABC 中,a =4,b =43,A =30°,由正弦定理得a sin A=bsin B ,所以sin B =b ⋅sin A a =43⋅sin30∘4=32,所以B =60°或120°,故选:D 15.C【分析】对于A ,假设D 为AB 的中点,连接OD ,由已知得O 在中线CD 上,同理可得O 在其它中线上,即可判断;对于选项B ,利用奔驰定理可直接得出B 正确;对于C ,根据奔驰定理可得S A :S B :S C =2:3:4,再利用三角形面积公式可求得S C =1,即可计算出S △ABC =94,可得C 错误;选项D ,由垂心的性质、向量数量积的运算律OB ∙AC =OB ∙OC -OB ∙OA=0,得到OA :OB :OC=cos ∠BAC :cos ∠ABC :cos ∠BCA ,结合三角形面积公式及角的互补关系得结论.【详解】对于A :如下图所示,假设D 为AB 的中点,连接OD ,则OA +OB =2OD =CO,故C ,O ,D 共线,即O 在中线CD 上,同理可得O 在另外两边BC ,AC 的中线上,故O 为△ABC 的重心,即A 正确;对于B :由奔驰定理O 是△ABC 内的一点,△BOC ,△AOC ,△AOB 的面积分别为S A ,S B ,S C ,则有S A ⋅OA +S B ⋅OB +S C ⋅OC=0可知,若OA +2OB +3OC =0,可得S A :S B :S C =1:2:3,即B 正确;对于C :由|OA |=|OB|=2,∠AOB =5π6可知,S C =12×2×2×sin 5π6=1,又2OA +3OB +4OC =0 ,所以S A :S B :S C =2:3:4由S C =1可得,S A =12,S B =34;所以S △ABC =S A +S B +S C =12+34+1=94,即C 错误;对于D :由四边形内角和可知,∠BOC +∠BAC =π,则OB ∙OC=OB OCcos ∠BOC =-OB OC cos ∠BAC ,同理,OB ∙OA =OB OA cos ∠BOA =-OB OAcos ∠BCA ,因为O 为△ABC 的垂心,则OB ∙AC =OB ∙(OC -OA )=OB ∙OC -OB ∙OA=0,所以OC cos ∠BAC =OA cos ∠BCA ,同理得OC cos ∠ABC =OB cos ∠BCA ,OA cos ∠ABC =OB cos ∠BAC ,则OA :OB :OC=cos ∠BAC :cos ∠ABC :cos ∠BCA ,令OA =m cos ∠BAC ,OB =m cos ∠ABC ,OC=m cos ∠BCA ,由S A =12OB OCsin ∠BOC ,则S A =12OB OC sin ∠BAC =m 22cos ∠ABC cos ∠BCA sin ∠BAC ,同理:S B =12OAOC sin ∠ABC =m 22cos ∠BAC cos ∠BCA sin ∠ABC ,S C =12OA OB sin ∠BCA =m 22cos ∠BAC cos ∠ABC sin ∠BCA ,综上,S A :S B :S C =sin ∠BAC cos ∠BAC :sin ∠ABC cos ∠ABC :sin ∠BCAcos ∠BCA=tan ∠BAC :tan ∠ABC :tan ∠BCA ,根据奔驰定理得tan ∠BAC ⋅OA +tan ∠ABC ⋅OB +tan ∠ACB ⋅OC =0,即D 正确.故选:C【点睛】关键点点睛:利用向量数量积定义、运算律和垂心性质得到向量模的比例,结合三角形面积公式和奔驰定理判断结论即可.16.(1)一解(2)两解(3)无解【分析】使用正弦定理、正弦函数的性质及三角形内角和、大边对大角等知识进行判断即可.【详解】(1)由正弦定理a sin A=bsin B ,∴sin B =b a sin A =45×32<32,∵A =120°,∴B =180°-A +C =60°-C <60°,∴B 只有一解,三角形解的个数为一解.(2)由正弦定理a sin A=bsin B ,∴sin B =b a sin A =109×32=539,∴32<sin B <1,∵A =60°,a <b ,∴60°<B <120°,∴B 有两解,三角形解的个数为两解.(3)∵b >c ,∴B >C =135°,∴B +C >270°,∴B 无解,三角形无解.17.(1)B =π3(2)3【分析】(1)利用正弦定理化边为角,再结合辅助角公式即可得解;(2)利用余弦定理求得ac ,再根据三角形的面积公式即可得解.【详解】(1)因为c 1+cos B =3b sin C ,所以sin C 1+cos B =3sin B sin C ,因为C ∈0,π ,所以sin C ≠0,所以1+cos B =3sin B ,得2sin B -π6 =1,即sin B -π6 =12,因为B ∈0,π ,所以B -π6∈-π6,5π6,所以B -π6=π6,所以B =π3;(2)由余弦定理得b 2=a 2+c 2-2ac cos B =a +c 2-3ac =16-3ac ,即22=16-3ac ,解得ac =4,所以S △ABC =12ac sin B =12×4×32=3.18.(1)2π3(2)sin A =6-24【分析】(1)利用正弦定理边角互化结合余弦定理求解即可;(2)利用正弦定理边角互化结合三角恒等变换求解即可.【详解】(1)根据题意,由正弦定理可得a +bc -b=c +b a ,即c 2=a 2+b 2+ab ,所以根据余弦定理cos C =a 2+b 2-c 22ab=-12及△ABC 中C ∈0,π 可得C =2π3.(2)根据题意,由正弦定理可得3+1 sin A +2sin B =6sin C ,所以3+1 sin A +2sin A +2π3 =3+1 sin A +2-12sin A +32cos A =3sin A +cos A =322,解得sin A +cos A =62①,因为sin 2A +cos 2A =1②,①②联立可解得sin A =6+24或6-24,又因为C =2π3,则A <π3,sin 2A <34,6+242=2+34>34(舍去),所以sin A=6-2 4.19.(1)B=π3(2)S△ABC=3【分析】(1)由正弦定理和两角差的余弦公式,化简已知等式,求得tan B,可求角B的大小;(2)由已知条件利用余弦定理求得ac,根据三角形面积公式求△ABC的面积.【详解】(1)在△ABC中,由正弦定理asin A=bsin B,可得b sin A=a sin B,又由b sin A=a cos B-π6,得a sin B=a cos B-π6即sin B=cos B-π6,由sin B=cos B-π6=32cos B+12sin B,有32cos B=12sin B可得tan B=3,又因为B∈(0,π),所以B=π3.(2)b=13.且a+c=5,B=π3,由余弦定理:b2=a2+c2-2ac cos B=a+c2-2ac-2ac cos B,有13=25-2ac-ac,解得ac=4,∴S△ABC=12ac sin B=12×4×32=3.20.(1)tan Btan A=-3(2)π6【分析】(1)通过余弦定理、正弦定理将条件中的边转化为角即可求出结果;(2)由余弦定理表示出cos C,借助条件消去边c,利用基本不等式求出cos C的范围,进而求出C的最大值.【详解】(1)由余弦定理可得b2=c2+a2-2ac cos B,代入b2-a2=2c2,得到c2+a2-2ac cos B-a2=2c2,化简得c2+2ac cos B=0,即c+2a cos B=0.由正弦定理可得sin C+2sin A cos B=0,即sin A+B+2sin A cos B=0,展开得sin A cos B+cos A sin B+2sin A cos B= 0,即3sin A cos B=-cos A sin B,所以tan Btan A=-3.(2)由b2-a2=2c2得c2=b2-a2 2,故cos C=a2+b2-c22ab=a2+b2-b2-a222ab=3a2+b24ab=3a4b+b4a≥2316=32,当且仅当b2=3a2,即b=3a时等号成立.因为C ∈0,π ,所以C ≤π6,所以C 的最大值为π6.21.(1)π3(2)23,3+3【分析】(1)根据正余弦定理,将条件变形,求角B 的大小;(2)根据正弦定理,将周长表示为三角函数,根据函数的定义域,求周长的取值范围.【详解】(1)根据余弦定理可知,a 2+c 2-b 22ac=cos B ,所以sin A =3⋅2ac cos B 2bc ,即sin A =3a cos Bb⇔sin A =3sin A cos Bsin B,则tan B =3,B ∈0,π ,所以B =π3;(2)设∠A ∈π2,2π3,根据正弦定理可知a sin A =c sin C =b sin B =3sinπ3=2,所以a =2sin A ,c =2sin C =2sin 2π3-A ,所以周长a +b +c =2sin A +2sin 2π3-A +3=2sin A +232cos A +12sin A+3=3sin A +3cos A +3=23sin A +π6 +3,因为A ∈π2,2π3 ,A +π6∈2π3,5π6 ,所以sin A +π6 ∈12,32 ,所以23<23sin A +π6 +3<3+3,所以△ABC 的周长为23,3+3 .22.(1)B =2π3(2)932【详解】(1)依题意,由2b cos C =2a +c 及正弦定理得2sin B cos C =2sin A +sin C ,即2sin B cos C =2sin B +C +sin C =2sin B cos C +2cos B sin C +sin C ,所以2cos B sin C =-sin C .因为C ∈0,π ,所以sin C ≠0,所以cos B =-12,又B ∈0,π ,所以B =2π3.(2)如图所示:因为2AM =MC,所以AM =3,MC =6.又∠MAB =∠MB A ,所以BM =AM =3.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即a 2+c 2+ac =81.①又2AM =MC ,所以BM=23BA +13BC,两边平方得BM 2=49BA 2+19BC 2+49BA ⋅BC,即9=49c 2+19a 2+49ac cos B ,所以a 2+4c 2-2ac =81.②②-①得3c 2=3ac ,所以a =c ,代入①得a =c =33,在△BMC 中,BM 2+BC 2=32+33 2=36=MC 2,所以△BMC 是以∠MB C 为直角的三角形,所以△BMC 的面积为12×3×33=932.23.(1)A =π4(2)-1010【分析】(1)利用正弦定理及余弦定理可求得cos A 的值,结合角A 的取值范围可求得角A 的值;(2)由三角形的面积公式可得出c 2=3ab sin C ,利用正弦定理以及两角和的正弦公式可得出sin C =-3cos C ,由同角三角函数的平方关系以及sin C >0可求得cos C 的值.【详解】(1)解:因为sin 2A =sin 2B +sin 2C -2sin B sin C ,令△ABC 的三内角A ,B ,C 所对的边分别为a ,b ,c ,所以由正弦定理可得a 2=b 2+c 2-2bc ,所以由余弦定理可得cos A =b 2+c 2-a 22bc =2bc 2bc=22,因为A ∈0,π ,所以A =π4.(2)由三角形的面积公式可得S △ABC =12ab sin C =12×13c 2,则c 2=3ab sin C ,由正弦定理可得sin 2C =3sin A sin B sin C ,因为C ∈0,π ,则sin C >0,所以,sin C =3sin A sin B ,即sin C =322sin B ,即sin C =322sin C +π4 =32sin C +32cos C ,整理可得sin C =-3cos C ,所以,sin C =-3cos Csin 2C +cos 2C =0sin C >0,解得cos C =-1010.24.(1)π3(2)33【分析】(1)利用正弦定理边化角结合三角恒等变换求解;(2)利用等面积法可得12ac sin B =12(a +b +c )r ,从而得32ac =43+b ,再根据余弦定理,联立方程组求出b =23,从而可求三角形的面积.【详解】(1)因为b cos C +3b sin Ca +c=1,所以b cos C +3b sin C -a -c =0,所以sin B cos C +3sin B sin C -sin A -sin C =0因为A +B +C =π,所以sin B cos C +3sin B sin C -sin (B +C )-sin C =0.所以3sin B sin C -cos B sin C -sin C =0,又因为C ∈0,π ,sin C >0,所以3sin B -cos B =1,所以sin B -π6 =12,因为B ∈0,π ,所以B -π6∈-π6,5π6 ,所以B -π6=π6,所以B =π3.(2)因为△ABC 内切圆的面积为π,所以内切圆半径r =1.由于S △ABC =12ac sin B =12(a +b +c )r ,所以32ac =43+b ,①由余弦定理b 2=a 2+c 2-2ac cos B 得,b 2=a +c 2-3ac ,即b 2=48-3ac ,②联立①②可得b 2=48-38+233b,即b 2+23b -24=0,解得b =23或b =-43(舍去),所以S △ABC =12(a +b +c )×r =33.25.(1)A =π6(2)334【分析】(1)已知等式利用诱导公式和倍角公式化简,可求A 的大小;(2)条件中的等式,利用正弦定理角化边,再用余弦定理求得c 边,用面积公式计算面积.【详解】(1)sin π3-Acos π6+A =cos π2-π3-A cos π6+A =cos 2π6+A =cos π3+2A +12=14,∴cos π3+2A =-12,因为0<A <π,得π3<π3+2A <7π3,所以π3+2A =2π3或π3+2A =4π3,解得A =π6或A =π2,因为a <c ,得A <π2,∴A =π6.(2)由(1)知,A =π6,a sin A +c sin C =43sin B ,由正弦定理,得a 2+c 2=43b =12,由余弦定理,得a 2=b 2+c 2-2bc ⋅cos A ,即12-c 2=3+c 2-23c ⋅32,整理,得2c 2-3c -9=0,由c >0得c =3,所以S △ABC =12bc sin A =12×3×3×12=334.26.(1)C =π3;(2)0,34.【分析】(1)利用正弦定理边化角,再利用和角的正弦化简作答.(2)由(1)的结论,利用余弦定理结合均值不等式求出三角形面积范围作答.【详解】(1)在△ABC 中,由已知及正弦定理得:sin A cos B +sin B cos A =2sin C cos C ,即有sin A +B =2sin C cos C ,即sin C =2sin C cos C ,而0<C <π,sin C >0,则cos C =12,所以C =π3.(2)在△ABC 中,由余弦定理c 2=a 2+b 2-2ab cos C 得:1=a 2+b 2-ab ,因此1≥2ab -ab ,即0<ab ≤1,当且仅当a =b 时取等号,又S △ABC =12ab sin C =12×32ab =34ab ∈0,34 ,所以△ABC 面积的取值范围是0,34.27.(1)A =π3(2)-2,4 【分析】(1)利用同角三角函数的商数关系及两角和的正弦公式的逆用,结合三角形的内角和定理及三角函数的特殊值对应特殊角注意角的范围即可;(2)利用同角三角函数的商数关系及正弦定理的边化角,根据(1)的结论得出角B 的范围及余弦函数的性质即可求解.【详解】(1)由题意知,2sin C -sin B =sin A cos A×cos B ,所以2cos A sin C -cos A sin B =sin A cos B ,则2cos A sin C =sin A cos B +cos A sin B =sin A +B =sin C ,又C ∈0,π ,所以sin C ≠0,所以cos A =12,又A ∈0,π ,所以A =π3.(2)由(1)得2sin C -sin B =sin A cos A ×cos B ,由正弦定理得2c -b =a cos B cos A ,又a =2,A =π3,所以2c -b =4cos B .因为B ∈0,2π3,所以cos B ∈-12,1 ,所以4cos B ∈-2,4 ,故2c -b ∈-2,4 ,即2c -b 的取值范围为-2,4 .28.(1)A =π4(2)2+1【分析】(1)利用正弦定理求得正确答案.(2)利用圆的几何性质求得AD 的最大值.【详解】(1)依题意,2a sin C =ctan A ,由正弦定理得2sin A sin C =sin C ⋅sin A cos A,由于A ,C 是三角形的内角,所以sin A >0,sin C >0,所以cos A =22,则A 为锐角,所以A =π4.(2)设三角形ABC 外接圆的半径为r ,圆心为O ,则2r =2sin π4=22,r =2,由于A =π4,所以A 在三角形ABC 外接圆上运动,且只在优弧BC (不包括端点)上运动,如图所示,则∠BOC =π2,OD =2 2-12=1,当A ,O ,D 三点共线时,AD 最大,所以AD 长度的最大值是2+1.29.(1)证明见解析(2)1336,4【分析】(1)利用正余弦定理化简得sin A =sin B 2cos c +1 ,再利用两角和差的正弦公式及三角形的性质得sin C -B =sin B ,得证;(2)弦切互化转化为正弦复合函数,先求角C 的范围,然后换元,利用函数单调性求范围.【详解】(1)由c 2=b 2+ab 及余弦定理c 2=a 2+b 2-2ab cos C得a =b 2cos C +1 ,由正弦定理得:sin A =sin B 2cos C +1 ,又A +B +C =π,∴sin A =sin B +C =sin B cos C +cos B ⋅sin C =2sin B cos C +sin B ,∴cos B sin C -sin B cos C =sin B ,∴sin C -B =sin B ,∵A ,B ,C 都是锐角,∴C -B =B ,即C =2B .(2)令y =1tan B -1tan C +3sin C =cos B sin B -cos C sin C+3sin C =sin C cos B -cos C ⋅sin B sin B ⋅sin C +3sin C =sin C -B sin B ⋅sin C +3sin C ,由(1)C =2B 得y =1sin C +3sin C ,在锐角三角形ABC 中,0<A <π20<B <π20<C <π2 ,即0<π-B +C <π20<B =C 2<π20<C <π2,解得π3<C <π2,∴sin C ∈32,1,令t =sin C ∈32,1 ,∴y =f t =1t +3t ,t ∈32,1,又函数y =f t =1t +3t 在32,1上单调递增,∴y =f t ∈1336,4 ,故1tan B -1tan C+3sin C 的取值范围是1336,4 .30.(1)c =62,C =π3(2)6,362【分析】(1)由三角恒等变换化简等式tan A +tan C =2sin B cos A ,结合角的范围可得C ,再由正弦定理及b =2sin B 求得c ;(2)结合正弦定理有a +b +c =2sin A +sin B +62,结合角的关系及三角恒等变换化简求范围即可.【详解】(1)2sin B cos A=tan A +tan C =sin A cos A +sin C cos C =sin A cos C +cos A sin C cos A cos C =sin A +C cos A cos C =sin π-B cos A cos C =sin B cos A cos C ,∵A 、B 、C ∈0,π ,sin B cos A≠0,∴cos C =12,∴C =π3.由b =2sin B 及正弦定理得2=b sin B =c sin C ⇒c =2sin C =62;(2)由正弦定理得a sin A =b sin B =2⇒a =2sin A ,∴a +b =2sin A +sin B =2sin 2π3-B +sin B=232cos B +32sin B =612cos B +32sin B =6sin B +π6.∵B ∈0,2π3 ,∴B +π6∈π6,5π6 ,∴a +b =6sin B +π6∈62,6 .∴△ABC 周长a +b +c ∈6,362.31.(1)A =5π12(2)(-1,0)【分析】(1)已知等式由正弦定理边化角解得A -B =π6,又B =π4,可求A 的值;(2)锐角△ABC 且A -B =π6,可求角B 的范围,利用正弦定理边化角得R -c b =2sin B -π3 ,可求取值范围.【详解】(1)根据正弦定理a sin A=b sin B =c sin C =2R ,有a =2R sin A ,b =2R sin B ,c =2R sin C ,由a cos B -b cos A =R ,有2R sin A cos B -2R sin B cos A =R ,得sin (A -B )=12,因为A ,B ∈0,π2 ,所以A -B ∈-π2,π2 ,所以A -B =π6,由B =π4,解得A =5π12.(2)因为A =π6+B ,所以C =π-(A +B )=5π6-2B ,因为0<A <π20<B <π20<C <π2 ,即0<π6+B <π20<B <π20<5π6-2B <π2 ,所以B ∈π6,π3 ,则R -c b=R -2R sin C 2R sin B =1-2sin C 2sin B =1-2sin 5π6-2B 2sin B =1-cos2B -3sin2B 2sin B=2sin 2B -23sin B cos B 2sin B =sin B -3cos B =2sin B -π3 ,B ∈π6,π3 ,有B -π3∈-π6,0 ,所以2sin B -π3 ∈(-1,0),所以R -c b 的取值范围为(-1,0).32.(1)A =π3(2)12,2 【分析】(1)根据向量平行和正弦定理得cos A =12,则得到A 的大小;(2)首先根据锐角三角形求出C 的范围,再利用正弦定理进行边换角得b c =32tan C +12,根据tan C 的范围即可得到答案.【详解】(1)由m ⎳n得a cos C =2b -c cos A ,∴a cos C +c cos A =2b cos A ,根据正弦定理得sin A cos C +sin C cos A =2sin B cos A ,所以sin A +C =2sin B cos A ,又A +C =π-B ,所以sin B =2sin B cos A .又sin B ≠0,∴cos A =12,又A ∈0,π ,∴A =π3;(2)由(1)得A =π3,B +C =2π3,∵B ,C 为锐角,所以0<C <π20<2π3-C <π2,∴C ∈π6,π2 ,根据正弦定理得b c =sin B sin C =sin 2π3-C sin C =32cos C +12sin C sin C =32tan C +12,其中tan C ∈33,+∞ ,∴32tan C ∈0,32 ,即32tan C+12∈12,2 ,综上可知,b c 的取值范围是12,2 .33.(1)π3(2)6【分析】(1)先使用余弦定理,再用正弦定理进行角变边即求得结果;(2)由平面向量可知AD =12AB +AC ,两边平方,用三角形的边及角表示并结合基本不等式得出结果.【详解】(1)∵3b 2+c 2-a 2 =2ac sin B ,由余弦定理可得23bc cos A =2ac sin B ,即3b cos A =a sin B ,由正弦定理可得3sin B cos A =sin A sin B ,∵B ∈0,π ,∴sin B ≠0.∴3cos A =sin A ,即tan A =3,又A ∈0,π ,所以A =π3.(2)由(1)知,A =π3,△ABC 的面积为23,所以12bc sin π3=23,解得bc =8.由平面向量可知AD =12AB +AC ,所以AD 2=14(AB +AC )2=14AB 2+AC 2+2AB ⋅AC=14b 2+c 2+2bc cos π3 =14b 2+c 2+bc ≥142bc +bc =34bc =6,当且仅当b =c =22时取等号,故BC 边中线AD 的最小值为6.34.(1)π3(2)123【分析】(1)根据正弦定理边角互化,结合两角和的正弦的公式求解即可;(2)利用余弦定理和基本不等式得到ab ≤48,再利用三角形的面积公式求解即可.【详解】(1)根据题意,由正弦定理,可得sin C tan C =3sin A cos B +sin B cos A =3sin A +B ,又因为△ABC 中A +B =π-C ,且C ∈0,π ,所以sin C tan C =3sin C ,即tan C =3,所以C =π3.(2)由余弦定理,可得c 2=a 2+b 2-2ab cos C ,即48=a 2+b 2-ab所以48+ab =a 2+b 2≥2ab ,当且仅当a =b 时等号成立,所以ab ≤48,所以S △ABC =12ab sin C ≤12×48×32=123,所以△ABC 面积的最大值为123.35.(1)π3(2)4,6 【分析】(1)根据正弦定理边化角结合三角形内角和与诱导公式得出2sin A cos B =sin A ,根据三角形内角范围可知sin A ≠0,即可得出cos B =12,再根据角围得出答案;(2)根据已知结合余弦定理即可得出a 、c 关系,再根据基本不等式得出a +c 范围,即可得出答案.【详解】(1)由正弦定理,得2sin C -sin A =2sin B cos A ,因为A +B +C =π,所以sin C =sin A +B ,所以2sin (A +B )-sin A =2sin B cos A ,即2sin A cos B +2cos A sin B -sin A =2sin B cos A ,所以2sin A cos B =sin A ,因为0<A <π,所以sin A ≠0,所以cos B =12,又0<B <π,所以B =π3;(2)由(1)可得B =π3,若b =2,则由余弦定理,得4=a 2+c 2-ac =a +c 2-3ac ,所以3ac =a +c 2-4≤3×a +c 2 2,即14a +c 2≤4,所以a +c ≤4,当且仅当a =c 时等号成立,又a +c >b =2,所以2<a +c ≤4,即4<a +b +c ≤6,所以△ABC 周长的取值范围为4,6 .36.(1)证明见解析.(2)(1,5).【分析】(1)运用余弦定理得2c ⋅cos B =a -c ,再运用正弦定理边化角化简计算即可.(2)运用三角形内角范围求得角C 的范围,进而求得cos C 范围,运用边化角将问题转化为求关于cos C 的二次函数在区间上的值域.【详解】(1)∵c 2+ac =b 2,∴c 2-b 2=-ac ,∴由余弦定理得:cos B =a 2+c 2-b 22ac =a 2-ac 2ac =a -c 2c,即:2c ⋅cos B =a -c ,由正弦定理得:2sin C ⋅cos B =sin A -sin C ,∴2sin C ⋅cos B =sin (B +C )-sin C =sin B cos C +sin C cos B -sin C ,整理得:sin B cos C -sin C cos B -sin C =0,即:sin (B -C )=sin C ,又∵B 、C ∈(0,π),∴B -C =C ,即:B =2C .(2)∵B =2C ,∴A =π-3C ,又∵sin2C =2sin C ⋅cos C ,sin3C =sin (C +2C )=sin C ⋅cos2C +cos C ⋅sin2C =sin C ⋅cos2C +2sin C ⋅cos 2C ,sin C ≠0,∴由正弦定理得:a +b c =sin A +sin B sin C =sin (π-3C )+sin2C sin C =sin3C +sin2C sin C=sin C⋅cos2C+2sin C⋅cos2C+2sin C⋅cos Csin C=cos2C+2cos2C+2cos C =2cos2C-1+2cos2C+2cos C=4cos2C+2cos C-1,又∵0<A<π0<B<π0<C<π⇒0<π-3C<π0<2C<π0<C<π⇒0<C<π3,∴12<cos C<1,令t=cos C,则a+bc=4t2+2t-1,12<t<1,∵y=4t2+2t-1对称轴为t=-1 4,∴y=4t2+2t-1在12,1上单调递增,当t=12时,y=4×14+2×12-1=1;当t=1时,y=4+2-1=5,∴1<a+bc<5,即:a+bc的范围为(1,5).37.(1)证明见解析(2)2 2,98【分析】(1)利用同角的商数关系与正弦定理的边角变换化简得到sin B=cos A,再由条件和诱导公式求得B=π2+A,由此得证;(2)先由(1)求出A的范围,再由诱导公式和二倍角的余弦公式变形化简得到sin A+sin C =-2sin2A+sin A+1,从而利用换元法和二次函数的性质即可求出式子的范围.【详解】(1)因为a=b tan A,所以ab=tan A=sin Acos A,由正弦定理可得sin Acos A=ab=sin Asin B,又0<A<π,所以sin A>0,故sin B=cos A,则sin B=sinπ2+A ,又B为钝角,则0<A<π2,因此B∈π2,π,π2+A∈π2,π,所以B=π2+A,即B-A=π2;(2)由(1)知,C=π-(A+B)=π-2A+π2=π2-2A>0,所以A<π4,又0<A<π2,所以0<A<π4,则0<sin A<22,所以sin A+sin C=sin A+sinπ2-2A=sin A+cos2A=-2sin2A+sin A+1=-2sin A-142+98,令t=sin A,则0<t<22,sin A+sin C=-2t-142+98,对于y=-2t-1 42+98=-2t2+t+1,其开口向下,对称轴为t=14,所以y=-2t-1 42+98在0,14上单调递增,在14,22上单调递减,故当t=14时,y=-2t-142+98取得最大值为98,又当t=0时,y=1,当t=22时,y=22,所以y=-2t-1 42+98的值域为22,98,故22<-2sin A-142+98≤98,即22<sin A+sin C≤98,所以sin A+sin C的取值范围是22,98 .38.(1)ω=1,对称轴方程为:x=kπ2+π6k∈Z;(2)(23,2+3].【分析】(1)根据降幂公式、辅助角公式,结合正弦型函数的零点性质、周期公式、对称轴方程进行求解即可;(2)根据正弦定理、辅助角公式、正弦型函数的单调性进行求解即可.【详解】(1)f(x)=cos2(ωx)+3sin(ωx)cos(ωx)-12=1+cos(2ωx)2+3sin(2ωx)2-1 2,f x =sin2ωx+π6,因为函数f(x)的两个相邻零点间的距离为π2,所以函数f(x)的最小正周期为2×π2=π,因为ω>0,所以2π2ω=π⇒ω=1,即f x =sin2x+π6,令2x+π6=kπ+π2k∈Z⇒x=kπ2+π6k∈Z,所以对称轴为x=kπ2+π6k∈Z;(2)由f(A)=-1⇒sin2A+π6=-1,因为A∈(0,π),所以2A+π6∈π6,13π6⇒2A+π6=3π2⇒A=2π3,因为a=3,所以由正弦定理可知:asin A=bsin B=csin C=332=2⇒b=2sin B,c=2sin C,所以三角形的周长为3+2sin B+2sin C=3+2sin B+2sinπ3-B ,=3+2sin B +232cos B -12sin B=3cos B +sin B +3=2sin B +π3 +3,因为B ∈0,π3 ,所以B +π3∈π3,2π3 ,因此sin B +π3∈32,1 ⇒2sin B +π3 +3∈(23,2+3],所以△ABC 周长的取值范围为(23,2+3].39.(1)π3(2)8,12 【分析】(1)选①或②:由正弦定理得到a 2+c 2-b 2=ac ,再由余弦定理得到cos B =12,结合B ∈0,π ,求出B =π3;选③:由正弦定理化简得到2sin A cos B -sin C cos B =sin B cos C ,进而得到2sin A cos B =sin A ,cos B =12,求出B =π3;(2)由余弦定理结合基本不等式可得出a +c ≤8,从而可求得△ABC 的周长的取值范围.【详解】(1)选①,∵a sin C -sin A sin C +sin B=c -b ,∴sin A sin C -sin A sin C +sin B=sin C -sin B ∴sin A sin C -sin 2A =sin 2C -sin 2B∴sin A sin C =sin 2A +sin 2C -sin 2B∴ac =a 2+c 2-b 2,又∵a 2+c 2-b 2=2ac cos B∴cos B =12,又∵0<B <π,∴B =π3.选②,∵sin 2A +sin 2C -sin 2B =sin A sin C ∴a 2+c 2-b 2=ac ,又∵a 2+c 2-b 2=2ac cos B∴cos B =12,又∵0<B <π,∴B =π3.选③,∵2a -c b=cos C cos B ,∴2sin A -sin C sin B =cos C cos B ∴2sin A cos B -sin C cos B =sin B cos C∴2sin A cos B =sin C cos B +sin B cos C =sin (B +C )=sin A∵sin A ≠0,∴cos B =12,又∵0<B <π,∴B =π3.(2)由余弦定理得:b 2=a 2+c 2-2ac cos B ,∴16=a 2+c 2-ac =(a +c )2-3ac ≥a +c 2-3a +c 24=a +c 24,当且仅当a =c =4时,取等号.∴a +c 2≤64,∴a +c ≤8,又∵a +c >4,∴4<a +c ≤8,∴8<a +c +b ≤12。

高一数学解斜三角形试题

高一数学解斜三角形试题

高一数学解斜三角形试题1.△ABC中,若,则△ABC的形状为().A.直角三角形B.等腰三角形C.等边三角形D.锐角三角形【答案】B【解析】由正弦定理及,得;则,即;又因为A,B是三角形的内角,,即三角形为等腰三角形.【考点】正弦定理、三角形形状的判定.2.在△ABC中,a=4,b=4,角A=30°,则角B等于 ().A.30°B.30°或150°C.60°D.60°或120°【解析】D由正弦定理得,由于,,符合大边对大角.【考点】正弦定理的应用.3.在△ABC中,角A,B,C所对的边分别为,设S为△ABC的面积,且。

(Ⅰ)求角A的大小;(Ⅱ)若,求△ABC周长的取值范围.【答案】(1);(2)周长的取值范围是.【解析】(1)在解决三角形的问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来;(2)在三角形中,两边和一角知道,该三角形是确定的,其解是唯一的,利用余弦定理求第三边.(3)若是已知两边和一边的对角,该三角形具有不唯一性,通常根据大边对大角进行判断.(4)在三角形中,注意这个隐含条件的使用,在求范围时,注意根据题中条件限制角的范围.试题解析:解:(Ⅰ)由题意可知,所以 4分(Ⅱ)法一:由已知:,由余弦定理得:(当且仅当时等号成立)∴(,又,∴,从而周长的取值范围是. 12分法二:由正弦定理得:∴,,.∵∴,即(当且仅当时,等号成立)从而周长的取值范围是 12分【考点】(1)与面积有关的问题;(2)求三角形周长的范围.4.在中,已知,,则为()A.等边三角形B.等腰直角三角形C.锐角非等边三角形D.钝角三角形【答案】B【解析】由正弦定理得,在三角形中.,整理的又是等腰直角三角形【考点】判断三角形的形状.5.座落于我市红梅公园边的天宁宝塔堪称中华之最,也堪称佛塔世界之最.如图,已知天宁宝塔AB高度为150米,某大楼CD高度为90米,从大楼CD顶部C看天宁宝塔AB的张角,求天宁宝塔AB与大楼CD底部之间的距离BD.【答案】180米.【解析】本题难点在于选择函数解析式模型,是用余弦定理解三角形,还是取直角三角形表示边.如用余弦定理解三角形,则得,解此方程成为难点;如构造直角三角形就会减少运算量,即作CE AB于E,构造直角三角形CBE和直角三角形CAE,利用两角和的正切公式得到关于BD的方程,解此方程的运算量要少得多.将一个已知角分为两个角的和,这种思维不常见,须多加注意,深刻体会.试题解析:解:如图作CE AB于E.因为AB∥CD,AB=150,CD=90,所以BE=90,AE=60.设CE=,,则. 2分在和中,, 4分因为,所以. 8分化简得,解得或(舍去). 10分答:天宁宝塔AB与大楼CD底部之间的距离为180米. 12分【考点】两角和的正切公式,函数与方程.6.已知的周长为,且,(Ⅰ)求边AB的长;(Ⅱ)若的面积为,求角C的度数。

高一数学必修5《解三角形》测试题(含答案)

高一数学必修5《解三角形》测试题(含答案)

高一数学必修5《解三角形》测试题(含答案)work Information Technology Company.2020YEAR《解三角形》测试题一、选择题(本大题共6小题,每小题6分,共36分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150°C .60°D .60°或120°2.在△ABC 中,若BA sin sin >,则A 与B 的大小关系为( ) A. BA > B.B A < C. A ≥B D. A 、B 的大小关系不能确定 3.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为( ) A .9 B .18C .93D .1834.在△ABC 中,sin A :sin B :sin C =3:2:4,则cos C 的值为( )A .23 B .-23 C .14 D .-145.△ABC 中,1c o s 1c o s A aB b-=-,则△ABC 一定是( )A. 等腰三角形B. 直角三角形C. 锐角三角形D. 钝角三角形6. 已知A 、B 、C 是△ABC 的三个内角,则在下列各结论中,不正确的为( )A .sin 2A =sin 2B +sin 2C +2sin B sin C cos(B +C )B .sin 2B =sin 2A +sin 2C +2sin A sin C cos(A +C )C .sin 2C =sin 2A +sin 2B -2sin A sin B cos CD .sin 2(A +B )=sin 2A +sin 2B -2sin B sinC cos(A +B ) 二、填空题(本大题共4小题,每小题6分,共24分)7.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km .8.在△ABC 中,若AB =5,AC =5,且cos C =109,则BC =________. 9、ABC ∆中,若b=2a , B=A+60°,则A= .10.在△ABC 中,∠C =60°,a 、b 、c 分别为∠A 、∠B 、.C 的对边,则ca bc b a +++=________.三、解答题(本大题共3小题,共40分)11.(本小题共12分)已知a =33,c =2,B =150°,求边b 的长及S △.12. (本小题共14分) 一缉私艇发现在北偏东 45方向,距离12 nmile 的海面上有一走私船正以10 nmile/h 的速度沿东偏南 15方向逃窜.缉私艇的速度为14nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东α+45的方向去追,.求追及所需的时间和α角的正弦值.13. (本小题共14分)在∆ABC 中,设,2tan tan bbc B A -=,求A 的值。

高一数学解斜三角形试题答案及解析

高一数学解斜三角形试题答案及解析

高一数学解斜三角形试题答案及解析1.△ABC中,若,则△ABC的形状为.【答案】等腰三角形【解析】由余弦定理可知,代入中得,因此答案是等腰三角形.【考点】余弦定理及其变形应用2..中,角的对边分别为,且,则的面积为 .【答案】【解析】,.【考点】三角形的面积公式.3.在中,若,则△ABC的面积是= ( ).A.9B.9C.18D.18【答案】A【解析】在中,,是等腰三角形,,由三角形的面积公式得.考点:解三角形.4.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.【答案】B【解析】将代入可得,所以或,当时有有.【考点】解三角形.5.已知为的内角,且,则 .【答案】或【解析】依题意可知,且在单调递增,所以当时,,当时,,所以,即,综上可知或.【考点】1.三角形内角的取值范围;2.正弦函数的单调性.6.在中,若,,则的最大值为__________.【答案】【解析】设,最大值为【考点】解三角形与三角函数化简点评:借助于正弦定理,三角形内角和将边长用一内角表示,转化为三角函数求最值,只需将三角函数化简为的形式7.在△ABC中,已知cos A=.(1)求sin2-cos(B+C)的值;(2)若△ABC的面积为4,AB=2,求BC的长.【答案】(1).(2) BC=.【解析】(1)sin2-cos(B+C)=+cos A=+=. 5分(2)在△ABC中,∵cos A=,∴sin A=.=4,得bcsin A=4,得bc=10.∵c=AB=2,∴b=5.由S△ABC∴BC2=a2=b2+c2-2bccos A=52+22-2×5×2×=17.∴BC=. 10分【考点】本题考查了三角恒等变换及余弦定理的运用点评:已知三角形的三个独立条件(不含已知三个角的情况),应用两定理,可以解三角形8.在中,如果,那么= .【答案】【解析】因为,所以令a=2k,b=3k,c=4k,由余弦定理得,==。

高一数学必修五第一章试题——解三角形(带答案)

高一数学必修五第一章试题——解三角形(带答案)

高一数学必修五第一章试题——解三角形一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ,c 分别是△ABC 中∠A ,∠B ,∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直2.在△ABC 中,已知a -2b +c =0,3a +b -2c =0,则sin A ∶sin B ∶sin C 等于( )A .2∶3∶4B .3∶4∶5C .4∶5∶8D .3∶5∶73.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( )A .4 3B .5C .5 2D .624.已知关于x 的方程x 2-x cos A ·cos B +2sin 2C2=0的两根之和等于两根之积的一半,则△ABC 一定是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形5.△ABC 中,已知下列条件:①b =3,c =4,B =30°;②a =5,b =8,A =30°;③c =6,b =33,B =60°;④c =9,b =12,C =60°.其中满足上述条件的三角形有两解的是( )A .①②B .①④C .①②③D .③④6.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若a =1,sin B =32,C =π6,则b 的值为( )A .1B .32C .3或32 D .±17.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75°C .30°D .15°8.若G 是△ABC 的重心,a ,b ,c 分别是角A ,B ,C 的对边,且aGA →+bGB →+33cGC →=0,则角A =( )A .90°B .60°C .45°D .30°9.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC→,则AD 的长为( ) A .4(3-1) B .4(3+1) C .4(3-3)D .4(3+3)10.在△ABC 中,B A →·B C →=3,S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,则B 的取值范围是( ) A .⎣⎢⎡⎦⎥⎤π4,π3 B .⎣⎢⎡⎦⎥⎤π6,π4 C .⎣⎢⎡⎦⎥⎤π6,π3 D .⎣⎢⎡⎦⎥⎤π3,π211.在△ABC 中,三内角A ,B ,C 所对边分别为a ,b ,c ,若(b -c )sin B =2c sin C 且a =10,cos A =58,则△ABC 面积等于( )A .392 B .39 C .313 D .312.锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A (a cos C +c cos A )=3b ,则cb 的取值范围是( )A .⎝ ⎛⎭⎪⎫12,2 B .⎝ ⎛⎭⎪⎫32,233 C .(1,2) D .⎝ ⎛⎭⎪⎫32,1二、填空题(本大题共4小题,每小题5分,共20分)13.已知在△ABC 中,a +b =3,A =π3,B =π4,则a 的值为________.14.在△ABC 中,AB =2,点D 在边BC 上,BD =2DC ,cos ∠DAC =31010,cos C =255,则AC +BC =________.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =23,C =45°,1+tan A tan B =2cb ,则边c 的值为________.16.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且a ,b ,c 满足2b =a +c ,B =π4,则cos A -cos C =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .18.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .19.(本小题满分12分)为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1 km内不能收到手机信号.检查员抽查青岛市一考点,在考点正西约 3 km有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以12 km/h的速度沿公路行驶,最长需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?20.(本小题满分12分)已知△ABC的内角A,B,C的对边分别为a,b,c,a2+b2=λab.(1)若λ=6,B=5π6,求sin A;(2)若λ=4,AB边上的高为3c6,求C.21.(本小题满分12分)已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且tan A=3cbc2+b2-a2.(1)求角A的大小;(2)当a=3时,求c2+b2的最大值,并判断此时△ABC的形状.22.(本小题满分12分)在海岸A处,发现北偏东45°方向,距A处(3-1) n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A处2 n mile的C处的缉私船奉命以10 3 n mile/h的速度追截走私船.此时,走私船正以10 n mile/h 的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?一、选择题1. 答案 C解析 ∵k 1=-sin A a ,k 2=bsin B ,∴k 1k 2=-1,∴两直线垂直.故选C . 2. 答案 D解析 因为a -2b +c =0,3a +b -2c =0, 所以c =73a ,b =53a .a ∶b ∶c =3∶5∶7. 所以sin A ∶sin B ∶sin C =3∶5∶7.故选D . 3. 答案 C解析 ∵S △ABC =12ac sin B =2,∴c =42. 由余弦定理b 2=a 2+c 2-2ac cos B =25, ∴b =5.由正弦定理2R =bsin B =52(R 为△ABC 外接圆的半径).故选C . 4. 答案 C解析 由题意知:cos A ·cos B =sin 2C2,∴cos A ·cos B =1-cos C 2=12-12cos [180°-(A +B )]=12+12cos(A +B ), ∴12(cos A ·cos B +sin A ·sin B )=12, ∴cos(A -B )=1.∴A -B =0,∴A =B ,∴△ABC 为等腰三角形.故选C . 5. 答案 A解析 ①c sin B <b <c ,故有两解; ②b sin A <a <b ,故有两解; ③b =c sin B ,有一解; ④c <b sin C ,无解.所以有两解的是①②.故选A . 6. 答案 C解析 在△ABC 中,sin B =32,0<B <π, ∴B =π3或2π3,当B =π3时,△ABC 为直角三角形, ∴b =a ·sin B =32; 当B =2π3时,A =C =π6,a =c =1.由余弦定理得b 2=a 2+c 2-2ac cos 2π3=3, ∴b =3.故选C . 7. 答案 A解析 由题意:sin B +cos B =62.两边平方得sin2B =12,设顶角为A ,则A =180°-2B .∴sin A =sin(180°-2B )=sin2B =12,∴A =30°或150°. 故选A . 8. 答案 D解析 由重心性质可知GA →+GB →+GC →=0,故GA →=-GB →-GC →,代入aGA →+bGB→+33cGC →=0中,即 (b -a )GB →+33c -aGC →=0,因为GB →,GC →不共线,则⎩⎨⎧b -a =0,33c -a =0,即⎩⎨⎧b =a ,c =3a ,故由余弦定理得cos A =b 2+c 2-a 22bc =32.因为0<A <180°,所以A =30°.故选D .9. 答案 C解析 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin45°sin75°=8(3-1), 因为BD →=3-12BC →,所以BD =3-12BC . 又BC =8,所以BD =4(3-1).在△ABD 中,AD =AB 2+BD 2-2AB ·BD ·cos60°=4(3-3).故选C . 10. 答案 C解析 由题意知ac ·cos B =3,所以ac =3cos B , S △ABC =12ac ·sin B =12×3cos B ×sin B =32tan B . 因为S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,所以tan B ∈⎣⎢⎡⎦⎥⎤33,3, 所以B ∈⎣⎢⎡⎦⎥⎤π6,π3.故选C .11. 答案 A解析 由正弦定理,得(b -c )·b =2c 2,得b 2-bc -2c 2=0,得b =2c 或b =-c (舍).由a 2=b 2+c 2-2bc cos A ,得c =2,则b =4. 由cos A =58知,sin A =398.S △ABC =12bc sin A =12×4×2×398=392.故选A . 12. 答案 A解析 2sin A (a cos C +c cos A )=3b ⇔2sin A ·(sin A cos C +sin C cos A )=3sin B ⇔2sin A sin(A +C )=3sin B ⇔2sin A sin B =3sin B ⇔sin A =32, 因为△ABC 为锐角三角形, 所以A =π3,a 2=b 2+c 2-bc , ① a 2+c 2>b 2, ② a 2+b 2>c 2, ③由①②③可得2b 2>bc ,2c 2>bc ,所以12<cb <2.故选A . 二、填空题(本大题共4小题,每小题5分,共20分) 13.答案 33-32解析 由正弦定理,得b =a sin B sin A =63a .由a +b =a +63a =3,解得a =33-32.14. 答案 3+5解析 ∵cos ∠DAC =31010,cos C =255, ∴sin ∠DAC =1010,sin C =55, ∴sin ∠ADC =sin(∠DAC +∠C ) =1010×255+31010×55=22. 由正弦定理,得AC sin ∠ADC =DCsin ∠DAC,得AC =5DC .又∵BD =2DC ,∴BC =3DC . 在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos C=5DC 2+9DC 2-25DC ·3DC ·255=2DC 2. 由AB =2,得DC =1,从而BC =3,AC =5.即AC +BC =3+5. 15. 答案 22解析 在△ABC 中,∵1+tan A tan B =1+sin A cos Bcos A sin B = cos A sin B +sin A cos B cos A sin B =sin (A +B )cos A sin B =sin C cos A sin B =2cb . 由正弦定理得c b cos A =2c b ,∴cos A =12,∴A =60°. 又∵a =23,C =45°.由a sin A =c sin C 得2332=c 22,∴c =22.16. 答案 ±42 解析 ∵2b =a +c ,由正弦定理得2sin B =sin A +sin C ,又∵B =π4,∴sin A +sin C =2,A +C =3π4. 设cos A -cos C =x ,可得(sin A +sin C )2+(cos A -cos C )2=2+x 2,即sin 2A +2sin A sin C +sin 2C +cos 2A -2cos A cos C +cos 2C =2-2cos(A +C )=2-2cos 3π4=2+x 2.则(cos A -cos C )2=x 2=-2cos 3π4=2, ∴cos A -cos C =±42. 三、解答题 17.解 (1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴cos ∠CBE =cos15°=cos(45°-30°)=6+24. (2)在△ABE 中,AB =2, 由正弦定理,得AE sin (45°-15°)=2sin (90°+15°),故AE =2sin30°sin75°=2×126+24=6-2.18.解 (1)证明:由正弦定理a sin A =b sin B =c sin C ,可知原式可以化为cos A sin A +cos Bsin B =sin Csin C =1,因为A 和B 为三角形内角,所以sin A sin B ≠0,则两边同时乘以sin A sin B ,可得sin B cos A +sin A cos B =sin A sin B ,由和角公式可知,sin B cos A +sin A cos B =sin(A +B )=sin(π-C )=sin C ,原式得证.(2)因为b 2+c 2-a 2=65bc ,根据余弦定理可知,cos A =b 2+c 2-a 22bc =35.因为A 为三角形内角,A ∈(0,π),sin A >0,则sin A =1-⎝ ⎛⎭⎪⎫352=45,即cos A sin A =34,由(1)可知cos A sin A +cos B sin B =sin C sin C =1,所以cos B sin B =1tan B =14,所以tan B =4.19.解 如右图所示,考点为A ,检查开始处为B ,设公路上C ,D 两点到考点的距离为1 km .在△ABC 中,AB =3≈1.732,AC =1,∠ABC =30°, 由正弦定理,得sin ∠ACB =AB sin30°AC =32,∴∠ACB =120°(∠ACB =60°不符合题意), ∴∠BAC =30°,∴BC =AC =1. 在△ACD 中,AC =AD ,∠ACD =60°, ∴△ACD 为等边三角形,∴CD =1.∵BC 12×60=5,∴在BC 上需要5 min ,CD 上需要5 min .∴最长需要5 min 检查员开始收不到信号,并至少持续5 min 该考点才算合格.20.解 (1)由已知B =5π6,a 2+b 2=6ab ,综合正弦定理得4sin 2A -26sin A +1=0.于是sin A =6±24,∵0<A <π6,∴sin A <12,∴sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ),从而有3sin C +cos C =2即sin ⎝ ⎛⎭⎪⎫C +π6=1. 又π6<C +π6<7π6,∴C =π3.21.解 (1)由已知及余弦定理,得sin A cos A =3cb 2cb cos A ,sin A =32,因为A 为锐角,所以A =60°. (2)解法一:由正弦定理,得a sin A =b sin B =c sin C =332=2, 所以b =2sin B ,c =2sin C =2sin(120°-B ).c 2+b 2=4[sin 2B +sin 2(120°-B )] =41-cos2B 2+1-cos (240°-2B )2=4-cos2B +3sin2B=4+2sin(2B -30°).由⎩⎨⎧0°<B <90°,0°<120°-B <90°,得30°<B <90°,所以30°<2B -30°<150°. 当sin(2B -30°)=1,即B =60°时,(c 2+b 2)max =6,此时C =60°,△ABC 为等边三角形.解法二:由余弦定理得(3)2=b 2+c 2-2bc cos60°=b 2+c 2-bc =3.∵bc ≤b 2+c 22(当且仅当b =c 时取等号),∴b 2+c 2-b 2+c 22≤3,即b 2+c 2≤6(当且仅当b =c 时等号). 故c 2+b 2的最大值为6,此时△ABC 为等边三角形.22.解 设缉私船用t 小时在D 处追上走私船.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠CAB =(3-1)2+22-2×(3-1)×2×cos120°=6,∴BC =6.在△BCD 中,由正弦定理,得sin ∠ABC =AC BC sin ∠BAC =22,∴∠ABC =45°,∴BC 与正北方向垂直.∴∠CBD =120°.在△BCD 中,由正弦定理,得CD sin ∠CBD =BD sin ∠BCD, ∴103t sin120°=10t sin ∠BCD , ∴sin ∠BCD =12,∴∠BCD =30°.故缉私船沿北偏东60°的方向能最快追上走私船.。

高一数学解三角形综合练习题

高一数学解三角形综合练习题

高一数学解三角形综合练习题TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】必修五 解三角形一、选择题 1. 在ABC ∆中,若::1:2:3A B C ∠∠∠=,则::a b c 等于 ( )A.1:2:3B.3:2:1C.2D.2 2.在△ABC 中,222a b c bc =++ ,则A 等于 ()A .60°B .45°C .120°D .30°3.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长A. 1公里B. sin10°公里C. cos10°公里D. cos20°公里4.等腰三角形一腰上的高是3,这条高与底边的夹角为 60,则底边长= ()A .2B .23 C .3 D .32 5.已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是 ()A .135<<xB .13<x <5C .2<x <5D .5<x <56. 在ABC ∆中,60A ∠=,a =3b =,则ABC ∆解的情况 ()A. 无解B. 有一解C. 有两解D. 不能确定7.在△ABC 中,若)())((c b b c a c a +=-+,则∠A= ()A .090B .060C .0120D .01508.在△ABC 中,A 为锐角,lg b +lg(c1)=lgsin A =-lg 2, 则△ABC 为()A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形9.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,测得75BCD ︒∠=,60BDC ︒∠=,60CD =米,并在点C 测得塔顶A 的 仰角为60︒,则塔高AB = ( )A .B .90米C .D . 10.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离1d 与第二辆车与第三辆车的距离2d 之间的关系为 ( )A. 21d d >B. 21d d =C. 21d d <D. 不能确定大小二、填空题(本大题共5个小题,每小题5分,共25分)11.在ABC ∆中,三边a 、b 、c 所对的角分别为A 、B 、C ,已知a =2b =,ABC ∆的面积S=3,则C = ;12.在△ABC 中,已知AB =4,AC =7,BC 边的中线72AD =,那么BC = ;13.在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,则|AB -AC |=____ __;14.三角形的一边长为14,这条边所对的角为60,另两边之比为8:5,则这个三角形的面积为 ;15.下面是一道选择题的两种解法,两种解法看似都对,可结果并不一致,问题出在哪儿?【题】在△ABC 中,a =x ,b =2,B =45,若△ABC 有两解,则x 的取值范围是( )A.()2,+∞B.(0,2)C.()2,22D.()2,2 【解法1】△ABC 有两解,a sin B <b <a ,x sin 45<2<x , 即222,x << 故选C.【解法2】,sin sin abA B = sin sin 452sin .24a Bx x A b===△ABC 有两解,b sin A <a <b , 222,4xx ⨯<< 即0<x <2, 故选B.你认为 是正确的 (填“解法1”或“解法2”)16.在中,若,则的形状是A.正三角形B.等腰三角形C.直角三角形D.等腰直角形三、解答题:(共 6 小题,共75分;解答应写出文字说明、证明过程或演算步骤。

高一数学解三角形试题答案及解析

高一数学解三角形试题答案及解析

高一数学解三角形试题答案及解析1.地面上有两座塔AB、CD,相距120米,一人分别在两塔底部测得一塔顶仰角为另一塔顶仰角的2倍,在两塔底连线的中点O测得两塔顶的仰角互为余角,求两座塔的高度。

【答案】40米,90米.【解析】绘出几何示意图,寻找角关系,并建关系式.其中,且,建立方程(1);又因为,且由题可知,建立方程(2)试题解析:连结BO、OD、 AD、 BC,设两塔AB、CD的高分别为x,y米,则在中,则在中,由得, ( 1 ) 5分又在中,在中,.而,所以,即(2) 10分由(1)(2)式解得: x = 40(米), y = 90(米)答:两座塔的高分别为40米、90米. 14分【考点】正切函数应用.2.已知的三个内角满足:,则的形状为A.正三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】B【解析】由,,从而有:,再注意到,又,故知是以角C为直角的直角三角形,所以选B.【考点】三角公式.3.在中,满足下列条件的三角形有两个的是().A.B.C.D.【解析】选项A:,;又,三角形有一解;同理选项B有一解;选项C:,,所以三角形有一解;选项D:,,所以三角形有两解.【考点】解三角形.4.在中,内角、、所对的边分别为、、,给出下列命题:①若,则;②若,则;③若,则有两解;④必存在、、,使成立.其中,正确命题的编号为.(写出所有正确命题的编号)【答案】②③【解析】①根据大边对大角可知,如果是钝角,则此时,显然错误.②当三角形是锐角三角形时,根据正弦函数性质可知;当三角形是钝角三角形时,有,则,因为,所以,此时有,正弦函数性质可知,即.正确.③因为,即,所以必有两解.正确.④根据正切和角公式,可得.则有根据诱导公式有代入上式,则上式若是锐角,则;此时.若是钝角,则;此时.错误.【考点】三角形中边角关系;三角函数性质;三角函数和角,诱导公式的使用.5.△ABC中,若sinA<cosB,则△ABC为A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】C【解析】,,,是钝角三角形.【考点】三角形的形状判断.6.的三内角成等差数列,且,则= .【解析】因为的三内角成等差数列,所以又,所以=.【考点】三内角成等差数列7.在中三个内角 A、B、C所对的边分别为则下列判断错误的是()A.若则为钝角三角形B.若则为钝角三角形C.若则为钝角三角形D.若A、B为锐角且则为钝角三角形【答案】C【解析】,可得.A正确;由余弦定理可知,为钝角,正确;,的夹角为钝角,但是夹角并不是三角形内角而是三角形外角,故错;由同一坐标系下的三角函数图象可知A、B为锐角且,可得.【考点】三角函数相关性质,余弦定理,向量的数量积.8. ( )A.B.C.D.【答案】B【解析】.【考点】两角和差的公式.9.如图,A,B是海面上位于东西方向相距海里的两个观测点,现位于A点北偏东45°,B 点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距海里的C 点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?【答案】1小时【解析】解实际问题,关键在于正确理解题意.本题关键在于正确理解方位角的概念.解三角形问题,需正确选用正余弦定理,本题三角形ADB中可得两角一边,即,因此可利用正弦定理得,解出=,再在中,由余弦定理得=从而得到需要的时间(小时).试题解析:由题意知海里,3分在中,由正弦定理得 4分=(海里), 6分又海里 7分在中,由余弦定理得=9分30(海里),10分则需要的时间(小时)。

高一数学解斜三角形试题答案及解析

高一数学解斜三角形试题答案及解析

高一数学解斜三角形试题答案及解析1.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.【答案】B【解析】将代入可得,所以或,当时有有.【考点】解三角形.2.已知ABC中,,, 则= .【答案】【解析】根据题意,由于ABC中,,,则有正弦定理可知,由于b<a,则可知B<A,因此可知=,故答案为。

【考点】解三角形点评:主要是考查了解三角形的运用,属于基础题。

3.在△ABC中,BC=a,AC=b,a,b是方程的两个根,且。

求:⑴角C的度数;⑵ AB的长度。

【答案】(1)C=120°;(2)【解析】(1)C=120°(2)由题设:【考点】三角形内角和定理,诱导公式,两角和的三角函数,余弦定理的应用。

点评:中档题,本题综合性较强,三角形问题,一般要注意应用三角形内角和定理,适时的变角。

在确定三角形边长的过程中,有时须正弦定理与余弦定理综合应用。

4.在中,内角的对边分别为.已知.(Ⅰ)求的值;(Ⅱ)若为钝角,,求的取值范围.【答案】(Ⅰ)3(Ⅱ)【解析】(1)由正玄定理,设所以又:A+B+C=因此(2)由,得c=3a由题意【考点】解三角形点评:解三角形时常借助于正弦定理,余弦定理,实现边与角的互相转化5.如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【答案】米【解析】先根据三角形内角和求得∠BAC,进而根据正弦定理求得BC,最后在在Rt△BCD中,根据CD=BC•sin∠CBD求得答案。

解:在△ABC中,∵∠ABC=30°,∠ACB=15°,∴∠BAC=135°.又AB=20,由正弦定理,得BC= +1).∴在Rt△BCD中,CD=BC•sin∠CBD=10(3+).故山高为10(3+)m.【考点】解三角形点评:本题主要考查了解三角形的实际应用.考查了考生综合运用所学知识的能力6.在△ABC中,A、B、C的对边分别为a、b、c, 且( 1 )求;( 2 )若,的面积为,求的值.【答案】(1). ( 2 ) =7。

高中数学 第九章 解三角形测评 新人教B版必修第四册-新人教B版高一第四册数学试题

高中数学 第九章 解三角形测评 新人教B版必修第四册-新人教B版高一第四册数学试题

第九章解三角形测评(时间:120分钟满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在△ABC中,角A,B,C的对边分别是a,b,c,若a∶b∶c=4∶3∶2,则2sin A-sin Asin2A=()A.37B.57C.97D.107解析由题意2sin A-sin Asin2A =2sin A-sin A2sin A cos A=2A-A2A cos A,因为a∶b∶c=4∶3∶2,设a=4k,b=3k,c=2k,由余弦定理可得cos C=(16+9-4)A22×4×3A2=78,则2sin A-sin Asin2A=(8-3)A4×78A=107.故选D.2.如图,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=100米,点C位于BD上,则山高AB等于()A.100米B.50√3米C.50(√3+1)米D.50√2米AB=h,△ABC中,∠ACB=45°,BC=h,在△ADB中,tan∠ADB=AA+100=√33,解得h=50(√3+1)米.故选C.3.若sin AA =cos AA=cos AA,则△ABC是()A.等边三角形B.有一内角是30°的直角三角形C.等腰直角三角形D .有一内角是30°的等腰三角形 解析因为sin AA=cos AA,所以a cos B=b sin A ,所以由正弦定理得2R sin A cos B=2R sin B sin A ,2R sin A ≠0.所以cos B=sin B ,所以B=45°.同理C=45°,故A=90°.4.在直角梯形ABCD 中,AB ∥CD ,∠ABC=90°,AB=2BC=2CD ,则cos ∠DAC=() A.2√55B.√55C.3√1010D.√1010,不妨设BC=CD=1,则AB=2,过点D 作DE ⊥AB ,垂足为点D.易知四边形BCDE 是正方形,则BE=CD=1, 所以AE=AB-BE=1.在Rt △ADE 中,AD=√AA 2+AA 2=√2,同理可得AC=√AA 2+AA 2=√5, 在△ACD 中,由余弦定理得 cos ∠DAC=AC 2+AA 2-AA 22AA ·AA=22×√5×√2=3√1010.故选C .5.如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为()海里/小时. A.2√6B.4√6C.8√6D.16√6PM=64,∠MPN=120°,在△PMN中,由正弦定理得AAsin∠AAA =AAsin∠AAA,即64sin45°=AAsin120°,得MN=32√6,所以船的航行速度为AA14-10=8√6(海里/小时).故选C.6.在△ABC中,角A,B,C的对边分别是a,b,c,若b sin 2A+√2a sin B=0,b=√2c,则AA的值为()A.1B.√33C.√55D.√77b sin2A+√2a sin B=0,所以由正弦定理可得sin B sin2A+√2sin A sin B=0, 即2sin B sin A cos A+√2sin A sin B=0.由于sin B sin A≠0,所以cos A=-√22,因为0<A<π,所以A=3π4,又b=√2c,由余弦定理可得a2=b2+c2-2b cos A=2c2+c2+2c2=5c2,所以AA =√55.故选C.7.一游客在A处望见在正北方向有一塔B,在北偏西45°方向的C处有一寺庙,此游客骑车向西行1 km后到达D处,这时塔和寺庙分别在北偏东30°和北偏西15°,则塔B与寺庙C的距离为()A.2 kmB.√3 kmC.√2 kmD.1 km,先求出AC,AB的长,然后在△ABC中利用余弦定理可求解.在△ABD中,AD=1,可得AB=√3.在△ACD中,AD=1,∠ADC=105°,∠DCA=30°,所以由正弦定理得AA sin∠AAA =AAsin∠AAA , 所以AC=AA ·sin∠AAA sin∠AAA=√6+√22. 在△ABC 中,由余弦定理得BC 2=AC 2+AB 2-2AC ·AB ·cos45°=8+4√34+3-2×√6+√22·√3·√22=2,所以BC=√2.故选C .8.如图,某建筑物的高度BC=300 m,一架无人机Q 上的仪器观测到建筑物顶部C 的仰角为15°,地面某处A 的俯角为45°,且∠BAC=60°,则此无人机距离地面的高度PQ 为()A.100 mB.200 mC.300 mD.100 m,可得Rt △ABC 中,∠BAC=60°,BC=300,所以AC=AAsin60°=√32=200√3;在△ACQ 中,∠AQC=45°+15°=60°,∠QAC=180°-45°-60°=75°,所以∠QCA=180°-∠AQC-∠QAC=45°.由正弦定理,得AAsin45°=AAsin60°,解得AQ=200√3×√22√32=200√2,在Rt △APQ 中,PQ=AQ sin45°=200√2×√22=200m .故选B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.在△ABC 中,a ,b 分别是角A ,B 的对边,a=1,b=√2,A=30°,则角B 为() A .45°B.90°C .135°D .60°或135°,可得sin B=A sin AA =√2sin30°=√22,又由a<b,且B∈(0°,180°),所以B=45°或135°.故选AC.10.在△ABC中,根据下列条件解三角形,其中有两解的是()A.b=10,A=45°,C=70°B.b=45,c=48,B=60°C.a=14,b=16,A=45°D.a=7,b=5,A=80°B满足c sin60°<b<c,选项C满足b sin45°<a<b,所以B,C有两解;对于选项A,可求B=180°-A-C=65°,三角形有一解;对于选项D,由sin B=A·sin AA,且b<a,可得B为锐角,只有一解,所以三角形只有一解.故选BC.11.在△ABC中,角A,B,C所对的边分别为a,b,c,下列结论正确的是()A.a2=b2+c2-2bc cos AB.a sin B=b sin AC.a=b cos C+c cos BD.a cos B+b cos A=sin CABC中,角A,B,C所对的边分别为a,b,c,知:在A中,由余弦定理得:a2=b2+c2-2bc cos A,故A正确;在B中,由正弦定理得:Asin A =Asin A,∴a sin B=b sin A,故B正确;在C中,∵a=b cos C+c cos B,∴由余弦定理得:a=b×A2+A2-A22AA +c×A2+A2-A22AA,整理,得2a2=2a2,故C正确;在D中,由余弦定理得a cos B+b cos A=a×A2+A2-A22AA +b×A2+A2-A22AA=c≠sin C,故D错误.故选ABC.12.在△ABC中,角A,B,C所对的边分别为a,b,c,且(a+b)∶(a+c)∶(b+c)=9∶10∶11,则下列结论正确的是()A.sin A ∶sin B ∶sin C=4∶5∶6 B .△ABC 是钝角三角形C .△ABC 的最大内角是最小内角的2倍D .若c=6,则△ABC 外接圆半径为8√77a+b )∶(a+c )∶(b+c )=9∶10∶11,可设a+b=9t ,a+c=10t ,b+c=11t ,解得a=4t ,b=5t ,c=6t ,t>0,可得sin A ∶sin B ∶sin C=a ∶b ∶c=4∶5∶6,故A 正确;由c 为最大边,可得cos C=A 2+A 2-A 22AA=16A 2+25A 2-36A 22·4A ·5A=18>0,即C 为锐角,故B 错误;由cos A=A 2+A 2-A 22AA=25A 2+36A 2-16A 22·5A ·6A=34,cos2A=2cos 2A-1=2×916-1=18=cos C ,由2A ,C ∈(0,π),可得2A=C ,故C 正确;若c=6,可得2R=Asin A =√1-64=√7,△ABC外接圆半径为8√77,故D 正确.故选ACD.三、填空题:本题共4小题,每小题5分,共20分.13.在△ABC 中,A ,B ,C 的对边的长分别为a ,b ,c ,已知a=1,sin A=√210,sin C=35,则c=.解析由正弦定理Asin A=Asin A ,得c=A sin A sin A=1×35√210=35×√2=3√2.√214.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a=3,b=4,c=6,则bc cos A+ac cos B+ab cos C 的值是.cos A=A 2+A 2-A 22AA,所以bc cos A=12(b 2+c 2-a 2).同理,ac cos B=12(a 2+c 2-b 2),ab cos C=12(a 2+b 2-c 2).所以bc cos A+ac cos B+ab cos C=12(a 2+b 2+c 2)=612.15.为了研究问题方便,有时将余弦定理写成:a 2-2ab cos C+b 2=c 2,利用这个结构解决如下问题:若三个正实数x ,y ,z ,满足x 2+xy+y 2=9,y 2+yz+z 2=16,z 2+zx+x 2=25,则xy+yz+zx=.ABC 的角A ,B ,C 的对边分别为a ,b ,c ,在△ABC 内取点O ,使得∠AOB=∠BOC=∠AOC=2π3,设OA=x ,OB=y ,OC=z ,利用余弦定理得出△ABC 的三边长,由此计算出△ABC 的面积,再利用S △ABC =S △AOB +S △BOC +S △AOC 可得出xy+yz+zx 的值.设△ABC 的角A ,B ,C 的对边分别为a ,b ,c , 在△ABC 内取点O ,使得∠AOB=∠BOC=∠AOC=2π3,设OA=x ,OB=y ,OC=z ,由余弦定理得c 2=x 2-2xy ·cos ∠AOB+y 2=x 2+xy+y 2=9,∴c=3. 同理可得a=4,b=5,∴a 2+c 2=b 2,则∠ABC=90°, △ABC 的面积为S △ABC =12ac=6, 另一方面S △ABC =S △AOB +S △AOC +S △BOC=12xy sin2A 3+12yz sin2A 3+12zx sin2A 3=√34(xy+yz+zx )=6,解得xy+yz+zx=8√3.√316.如图,海岸线上有相距5海里的两座灯塔A ,B ,灯塔B 位于灯塔A 的正南方向.海上停泊着两艘轮船,甲船位于灯塔A 的北偏西75°,与A 相距3√2海里的D 处;乙船位于灯塔B 的北偏西60°方向,与B 相距5海里的C 处,此时乙船与灯塔A 之间的距离为海里,两艘轮船之间的距离为海里.ABC 为等边三角形,所以AC=5.∠DAC=180°-75°-60°=45°,在△ADC 中,根据余弦定理得CD 2=AD 2+AC 2-2AD ·AC cos ∠DAC =18+25-2×3√2×5×(√22)=13,解得CD=√13.√13四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a sin B+1=b sin A+2cos C. (1)求角C 的大小;(2)若a=2,a 2+b 2=2c 2,求△ABC 的面积.因为由正弦定理得Asin A =Asin A ,所以a sin B=b sin A ,∴2cos C=1,cos C=12.又0<C<π,∴C=π3.(2)由余弦定理得c 2=a 2+b 2-ab ,∴4+b 2=2(4+b 2-2b ),解得b=2. ∴S △ABC =12ab sin C=12×2×2×sin π3=√3.18.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B+sin 2C=sin 2A+sin B sin C. (1)求角A 的大小;(2)若cos B=13,a=3,求c 的值.由正弦定理可得b 2+c 2=a 2+bc ,则cos A=A 2+A 2-A 22AA=12,因为A ∈(0,π),所以A=π3.(2)由(1)可知,sin A=√32,因为cos B=13,B为三角形的内角,所以sin B=2√23,故sin C=sin(A+B)=sin A cos B+cos A sin B=√32×13+12×2√23=√3+2√26,由正弦定理Asin A =Asin A,得c=A sin Asin A=√32×√3+2√26=1+2√63.19.(12分)要测量对岸两点A,B之间的距离,选取相距200 m的C,D两点,并测得∠ADC=105°,∠BDC=15°,∠BCD=120°,∠ACD=30°,求A,B两点之间的距离.ACD中,因为∠ACD=30°,∠ADC=105°,所以∠DAC=180°-30°-105°=45°.由正弦定理得AAsin45°=AAsin30°,且CD=200,所以AD=100√2.同理,在△BCD中,可得∠CBD=45°,由正弦定理得AAsin120°=AAsin45°,所以BD=100√6.在△ABD中,∠BDA=105°-15°=90°,由勾股定理得AB=√AA2+AA2=200√2,即A,B两点间的距离为200√2.20.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3c sin B=4a sin C.(1)求cos B的值;(2)求sin (2A +π4)的值.由正弦定理A sin A =Asin A ,则3cb=4ac ,所以b=43a.而b+c=2a ,则c=23a. 故由余弦定理得cos B=A 2+A 2-A 22AA=A 2+49A 2-169A 22A ·23A =-14.(2)因为cos B=-14, 所以sin B=√154. 所以sin2B=2sin B cos B=-√158, cos2B=2cos 2B-1=-78. 所以sin (2A +π4)=√22(sin2B+cos2B ) =√22×(-√158-78)=-7√2+√3016.21.(12分)如图,A ,B 是海面上位于东西方向相距4(3+√3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距16√3海里的C 点的救援船立即前往营救,其航行速度为24海里/小时. (1)求BD 的长;(2)该救援船到达D 点所需的时间.由题意可知:在△ADB 中,∠DAB=45°,∠DBA=30°,则∠ADB=105°.由正弦定理AAsin∠AAA =AA sin∠AAA ,得4(3+√3)sin105°=AA sin45°.由sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=√6+√24,代入上式得DB=8√3.(2)在△BCD 中,BC=16√3,DB=8√3,∠CBD=60°, 由余弦定理得CD 2=BC 2+BD 2-2BC ·BD ·cos60° =(16√3)2+(8√3)2-2×16√3×8√3×12=242,∴CD=24,∴t=A A =2424=1.即该救援船到达D 点所需的时间为1小时.22.(12分)如图,在△ABC 中,C=π4,角B 的平分线BD 交AC 于点D ,设∠CBD=θ,其中tanθ=12.(1)求sin A ;(2)若AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =28,求AB 的长.由∠CBD=θ,且tan θ=12,∵θ∈(0,π2),∴sin θ=12cos θ,sin 2θ+cos 2θ=14cos 2θ+cos 2θ =54cos 2θ=1,∴cos θ=√5,sin θ=√5.则sin ∠ABC=sin2θ=2sin θcos θ=2×√5×√5=45,∴cos ∠ABC=2cos 2θ-1=2×45-1=35, sin A=sin [π-(π4+2A )]=sin (π4+2A ) =√22sin2θ+√22cos2θ=√22×(35+45)=7√210. (2)由正弦定理,得AA sin A =AA sin∠AAA ,即7√210=AA 45, 所以BC=7√28AC.又AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =√22|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=28,所以|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=28√2, 由上两式解得AC=4√2,又由AA sin A =AA sin∠AAA ,得√22=AA 45,解得AB=5.。

高一数学解三角形练习题

高一数学解三角形练习题

解三角形1.在△ABC 中,a=2 3,c=2 2,A=60°,则C=( )A.30°B.45°C.45°或135°D.60°2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c 成等比数列,且c=2a ,则cos B=( )A .1B .3C . 2D . 2 3.(2015广州综合测试)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若C=2B ,则c b 为( )A.2sin CB.2cos BC.2sin BD.2cos C4.(2015合肥模拟)在△ABC 中,A=60°,AB=2,且△ABC 的面积为 3,则BC 的长为( )A . 32B . 3C .2 3D .2 5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a= 3,b+c=4,B=30°,则c=( ) A .13B .12C .3D .13 6.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m,50 m,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD的张角为 ( )A.30°B.45°C.60°D.75°7.已知a ,b ,c 为△ABC 的三边,B=120°,则a 2+c 2+ac-b 2= . 8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若a=4,A=π3,则该三角形面积的最大值是 .9.如图所示,长为3.5 m 的木棒AB 斜靠在石堤旁,木棒的一端A 在离堤足C 处1.4 m 的地面上,另一端B 在离堤足C 处2.8 m 的石堤上,石堤的倾斜角为α,则坡度值tan α= .10.(2015山东,文17)△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知cosB= 3,sin(A+B )= 6,ac=2 求sin A 和c 的值.11.已知岛A 南偏西38°方向,距岛A 3 n mile 的B 处有一艘缉私艇.岛A 处的一艘走私船正以10 n mile/h 的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5 h 能截住该走私船? 参考数据:sin38°=5 3,sin22°=3 312.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A= 3a cos C ,则sin A+sin B 的最大值是( )A .1B .C . 3D .3 13.在△ABC 中,若(a 2+b 2)sin(A-B )=(a 2-b 2)sin C ,则△ABC 的形状是( )A.锐角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形14.在△ABC 中,a=4,b=5,c=6,则sin2A sin C = .15.在△ABC 中,B=120°,AB= 2,A 的角平分线AD= 3,则AC= .16.(2015四川,文19)已知A ,B ,C 为△ABC 的内角,tan A ,tan B 是关于x 的方程x 2+ 3px-p+1=0(p ∈R )的两实根.(1)求C 的大小;(2)若AB=3,AC= 6,求p 的值.。

高一数学专题练习:三角函数与解三角形_测试题(有解析、答案)

高一数学专题练习:三角函数与解三角形_测试题(有解析、答案)

三角函数与解三角形 测试题(时间120分钟,满分150分)第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知α∈(,π),sin α=,则tan(α+)等于( )π235π4A. B .7C .-D .-717172.sin45°·cos15°+cos225°·sin15°的值为( )A .-B .- C.D.321212323.要得到y =sin(2x -)的图像,只要将y =sin2x 的图像( )π3A .向左平移个单位B .向右平移个单位π3π3C .向左平移个单位D .向右平移个单位π6π64.在△ABC 中,若sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2C.D.235.有一种波,其波形为函数y =sin(x )的图像,若在区间[0,t ]上至少有2个波峰(图像的最π2高点),则正整数t 的最小值是 ( )A .3B .4C .5D .66.若函数f (x )=(1+tan x )cos x,0≤x <,则f (x )的最大值为( )3π2A .1B .2C.+1D.+2337.使奇函数f (x )=sin(2x +θ)+cos(2x +θ)在[-,0]上为减函数的θ 值为( )3π4A .-B .- C.D.π3π65π62π38.若向量a =(sin(α+),1),b =(4,4cos α-),若a ⊥b ,则sin(α+)等于( )π634π3A .-B.C .- D.343414149.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图像如图,则( )A .ω=,φ=B .ω=,φ=π2π4π3π6C .ω=,φ= D .ω=,φ=π4π4π25π410.设函数f (x )=A sin(ωx +φ),(A ≠0,ω>0,-<φ<)的图像关于直线x =对称,它π2π22π3的周期是π,则 ( )A .f (x )的图像过点(0,)12B .f (x )的图像在[,]上递减5π122π3C .f (x )的最大值为AD .f (x )的一个对称中心是点(,0)5π12二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知α是第二象限角,sin α=,则sin2a 等于________1212.已知函数f (x )=2sin(ωx +φ)的图像如下图所示,则f ()=________.7π1213.计算:=________.cos10°+3sin10°1-cos80°14.设函数y =2sin(2x +)的图像关于点P (x 0,0)成中心对称,若x 0∈[-,0],则x 0=π3π2________.15.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c 且a cos B -b cos A =c .则的值35tan Atan B为________.答案:4三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知:0<α<<β<π,cos(β-)=,sin(α+β)=.π2π41345(1)求sin2β的值;(2)设函数f (x )=cos x -sin x ,试求f (α)的值.17.(本小题满分12分)如图,点A ,B 是单位圆上的两点,A ,B点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 是正三角形,若点A 的坐标为(,),记∠COA =α.3545(1)求的值;1+sin2α1+cos2α(2)求|BC |2的值.18.(本题满分13分)(2010·黄冈模拟)△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且lg a-lg b =lgcos B -lgcos A ≠0.(1)判断△ABC 的形状;(2)设向量m =(2a ,b ),n =(a ,-3b ),且m ⊥n ,(m +n )·(-m +n )=14,求a ,b ,c .19.(本小题满分12分)已知a =(sin x ,),b =(cos x ,-1).32(1)当a 与b 共线时,求2cos 2x -sin2x 的值;(2)求f (x )=(a +b )·b 在[-,0]上的值域.π220.(本小题满分13分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:x -π6π35π64π311π67π317π6y-1131-113(1)根据表格提供的数据求函数f (x )的一个解析式;(2)根据(1)的结果,若函数y =f (kx )(k >0)周期为,当x ∈[0,]时,方程f (kx )=m 恰2π3π3有两个不同的解,求实数m 的取值范围.21.(本小题满分13分)已知函数y =|cos x +sin x |.(1)画出函数在x ∈[-,]上的简图;π47π4(2)写出函数的最小正周期和在[-,]上的单调递增区间;试问:当x 在R 上取何值π43π4时,函数有最大值?最大值是多少?(3)若x 是△ABC 的一个内角,且y 2=1,试判断△ABC 的形状.。

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析1.(本小题满分12分)已知函数.(1)化简;(2)已知常数,若函数在区间上是增函数,求的取值范围;(3)若方程有解,求实数a的取值范围.【答案】(1)f(x)(2)(3)【解析】(1)························· 4分(2) ∵由∴的递增区间为∵在上是增函数∴当k = 0时,有∴解得∴的取值范围是····················· 8分(3) 解一:方程即为从而问题转化为方程有解,只需a在函数的值域范围内∵当;当∴实数a的取值范围为················ 12分解二:原方程可化为令,则问题转化为方程在[– 1,1]内有一解或两解,设,若方程在[– 1,1]内有一个解,则解得若方程在[– 1,1]内有两个解,则解得∴实数a的取值范围是[– 2,]2.已知函数(1)求函数f(x)的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若a=f(A)=1,求的最大值.【答案】(1),单调增区间;(2)【解析】(1)首先借助于基本三角函数公式将函数式化简为的最简形式,周期由的系数求解,求增区间需令,解得的范围得到单调区间;(2)中由的值求得角,借助于三角形余弦定理可得到关于两边的关系式,进而结合不等式性质得到关于的不等式,求得范围试题解析:(1),所以函数的最小正周期为.由得所以函数的单调递增区间为.(2)由可得,又,所以。

2023学年人教版高一数学下学期期中期末必考题精准练04 解三角形(解析版)

2023学年人教版高一数学下学期期中期末必考题精准练04  解三角形(解析版)

必考点04 解三角形题型一 利用正余弦定理解三角形例题1[在△ABC 中,内角A ,B ,C 的对边a ,b ,c 成公差为2的等差数列,C =120°. (1)求边长a ;(2)求AB 边上的高CD 的长.【解析】(1)由题意得,b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos 120°=a 2+(a +2)2-(a +4)22a (a +2),即a 2-a -6=0,所以a=3或a =-2(舍去).所以a =3. (2)法一:由(1)知a =3,b =5,c =7, 由三角形的面积公式得 12ab sin ∠ACB =12c ×CD , 所以CD =ab sin ∠ACBc =3×5×327=15314,即AB 边上的高CD =15314.法二:由(1)知a =3,b =5,c =7, 由正弦定理得3sin A =7sin ∠ACB =7sin 120°.即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314.即AB 边上的高CD =15314.例题1(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2a +b =2c ,求sin C .[【解析】(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22.由于0°<C <120°,所以sin(C +60°)=22,故 sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60°=6+24. 【解题技巧提炼】1.已知△ABC 中的某些条件(a ,b ,c 和A ,B ,C 中至少含有一条边的三个条件)求边长时可用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin C sin A ,a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .2.已知△ABC 的外接圆半径R 及角,可用公式a =2R sin A ,b =2R sin B ,c =2R sin C . [提醒] 已知△ABC 的两边及其一边的对角求边时可用正弦定理,但要对解的个数作出判断,也可用余弦定理解一元二次方程求得.涉及解三角形中的最值(范围)问题时若转化为边求解可利用基本不等式或二次函数;若转化为角求解可利用三角函数的有界性、单调性.1.已知△ABC 中某些条件求角时,可用以下公式sin A =a sin Bb ,sin B =b sin Aa,sin C =c sin Aa ,cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab . 2.已知△ABC 的外接圆半径R 及边,可用公式sin A =a 2R ,sin B =b 2R ,sin C =c2R. [提醒] (1)注意三角形内角和定理(A +B +C =π)的应用. (2)解三角形中经常用到两角和、差的三角函数公式.题型二 判断三角形形状例题1设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定【答案】B 【解析】(1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A=1,故A =π2,因此△ABC 是直角三角形.例题2在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( ) A .直角三角形 B .等腰非等边三角形 C .等边三角形 D .钝角三角形【答案】C【解析】因为sin A sin B =a c ,所以a b =ac ,所以b =c .又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形. 【解题技巧提炼】[解题技法]1.判定三角形形状的2种常用途径2.判定三角形的形状的注意点在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.题型三 三角形面积问题例题1△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【解析】(1)由题设及正弦定理得sin A sin A +C 2=sin B sin A .因为sin A ≠0,所以sin A +C2=sinB由A +B +C =180°,可得sin A +C 2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,所以sin B 2=12,所以B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a . 由(1)知A +C =120°,由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知,A +C =120°,所以30°<C <90°, 故12<a <2,从而38<S △ABC <32. 因此,△ABC 面积的取值范围是⎝⎛⎭⎫38,32. 【解题技巧提炼】 1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键. 2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.题型四 解三角形的实际应用例题1如图,为了测量两座山峰上P ,Q 两点之间的距离,选择山坡上一段长度为300 3 m 且和P ,Q 两点在同一平面内的路段AB 的两个端点作为观测点,现测得∠P AB =90°,∠P AQ =∠PBA =∠PBQ =60°,则P ,Q 两点间的距离为________ m. 【答案】900【解析】由已知,得∠QAB =∠P AB -∠P AQ =30°. 又∠PBA =∠PBQ =60°,所以∠AQB =30°,所以AB =BQ . 又PB 为公共边,所以△P AB ≌△PQB ,所以PQ =P A . 在Rt △P AB 中,AP =AB ·tan 60°=900,故PQ =900, 所以P ,Q 两点间的距离为900 m.例题2如图,为了测量河对岸电视塔CD 的高度,小王在点A 处测得塔顶D 的仰角为30°,塔底C 与A 的连线同河岸成15°角,小王向前走了1 200 m 到达M 处,测得塔底C 与M 的连线同河岸成60°角,则电视塔CD 的高度为________m. [【答案】6002[【解析】在△ACM 中,∠MCA =60°-15°=45°,∠AMC =180°-60°=120°,由正弦定理得AM sin ∠MCA =AC sin ∠AMC ,即1 20022=AC32,解得AC =6006(m).在△ACD 中,因为tan ∠DAC =DC AC =33,所以DC =6006×33=6002(m). 例题3游客从某旅游景区的景点A 处至景点C 处有两条线路.线路1是从A 沿直线步行到C ,线路2是先从A 沿直线步行到景点B 处,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处同时出发匀速步行,甲的速度是乙的速度的119倍,甲走线路2,乙走线路1,最后他们同时到达C 处.经测量,AB =1 040 m ,BC =500 m ,则sin ∠BAC 等于________. [【答案】513[【解析】依题意,设乙的速度为x m/s , 则甲的速度为119x m/s ,因为AB =1 040 m ,BC =500 m , 所以AC x =1 040+500119x ,解得AC =1 260 m.在△ABC 中,由余弦定理得,cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =1 0402+1 2602-50022×1 040×1 260=1213,所以sin ∠BAC =1-cos 2∠BAC=1-⎝⎛⎭⎫12132=513.【解题技巧提炼】测量距离问题的2个策略(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.测量高度问题的基本思路高度也是两点之间的距离,其解法同测量水平面上两点间距离的方法是类似的,基本思想是把要求解的高度(某线段的长度)纳入到一个可解的三角形中,使用正、余弦定理或其他相关知识求出该高度.测量角度问题的基本思路测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.[提醒] 方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.题型五 正余弦定理在平面几何中的应用例题1如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列. (1)求sin ∠CED ; (2)求BE 的长. 【解析】设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理得EC sin ∠EDC =CD sin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin∠CED =217. (2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,cos ∠AEB =EA BE =2BE =714,所以BE =47. 【解题技巧提炼】与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.题型六 解三角形与三角函数的综合问题例题1已知函数f (x )=cos 2x +3sin(π-x )cos(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.【解析】(1)f (x )=cos 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.【解题技巧提炼】解三角形与三角函数综合问题的一般步骤题型一 利用正余弦定理解三角形1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( ) A.π6 B.π3 C.2π3 D.5π6【答案】A【解析】∵a sin B cos C +c sin B cos A =12b ,∴由正弦定理得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sinB .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6,故选A.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.【解析】(1)由正弦定理可得b 2+c 2=a 2+bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A =3×(3+22)32×6=1+263.题型二 判断三角形形状1.在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形【答案】A【解析】已知等式变形得cos B +1=a c +1,即cos B =ac ①.由余弦定理得cos B =a 2+c 2-b 22ac ,代入①得a 2+c 2-b 22ac =ac ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.2.[在△ABC 中,已知sin A +sin C sin B =b +c a 且还满足①a (sin A -sin B )=(c -b )(sin C +sin B );②b cos A +a cos B =c sin C 中的一个条件,试判断△ABC 的形状,并写出推理过程. 【解析】由sin A +sin C sin B =b +c a 及正弦定理得a +c b =b +ca ,即ac +a 2=b 2+bc ,∴a 2-b 2+ac -bc =0, ∴(a -b )(a +b +c )=0,∴a =b . 若选①△ABC 为等边三角形.由a (sin A -sin B )=(c -b )(sin C +sin B )及正弦定理,得a (a -b )=(c -b )(c +b ),即a 2+b 2-c 2=ab .所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π),所以C =π3.∴△ABC 为等边三角形. 若选②△ABC 为等腰直角三角形,因b cos A +a cos B =b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =2c 22c =c =c sin C ,∴sin C =1,∴C =90°,∴△ABC 为等腰直角三角形.题型三 三角形面积问题1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 【答案】63【解析】由余弦定理得b 2=a 2+c 2-2ac cos B . 又∵ b =6,a =2c ,B =π3,∴ 36=4c 2+c 2-2×2c 2×12,∴ c =23,a =43,∴ S △ABC =12ac sin B =12×43×23×32=6 3.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.【解析】(1)由已知及正弦定理得(2sin B -sin A )·cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.题型四 解三角形的实际应用1.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,相距a 海里的B 处,乙船正向北行驶,若甲船是乙船速度的 3 倍,甲船为了尽快追上乙船,朝北偏东θ方向前进,则θ=( )A .15°B .30°C .45°D .60°【答案】B【解析】设两船在C 处相遇,则由题意得∠ABC =180°-60°=120°,且AC BC=3,由正弦定理得AC BC =sin 120°sin ∠BAC =3,所以sin ∠BAC =12.又因为0°<∠BAC <60°,所以∠BAC =30°. 所以甲船应沿北偏东30°方向前进.2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 【答案】103【解析】如图,OM =AO tan 45°=30(m), ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得,MN =900+300-2×30×103×32=300=103(m). 3.为了测量某新建的信号发射塔AB 的高度,先取与发射塔底部B 的同一水平面内的两个观测点C ,D ,测得∠BDC =60°,∠BCD =75°,CD =40 m ,并在点C 的正上方E 处观测发射塔顶部A 的仰角为30°,且CE =1 m ,则发射塔高AB =________ m. 【答案】202+1【解析】如图,过点E 作EF ⊥AB ,垂足为F ,则EF =BC ,BF =CE =1,∠AEF =30°.在△BCD 中,由正弦定理得, BC =CD ·sin ∠BDC sin ∠CBD=40·sin 60°sin 45°=20 6.所以EF =206,在Rt △AFE 中,AF =EF ·tan ∠AEF =206×33=20 2. 所以AB =AF +BF =202+1(m).题型五 正余弦定理在平面几何中的应用1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________. 【答案】66【解析】设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3.在△ABD 中,cos ∠ADB =a 2+4a 23-a 22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63.在△BDC中,BD sin C =BC sin ∠BDC ,sin C =BD ·sin ∠BDC BC =66.2.如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2. (1)求AD 的长; (2)求△CBD 的面积.【解析】(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD=255,又∠BCD =2∠ABD ,在平面四边形ABCD 中,∠BCD ∈(0,π),所以∠ABD ∈⎝⎛⎭⎫0,π2,所以cos ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·cos ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =cos ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·cos ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54,所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58. 题型六 解三角形与三角函数的综合问题1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.【解析】(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z ),得x =k π+5π12(k ∈Z ),即当x =k π+5π12(k ∈Z )时,f (x )取得最大值1.一、单选题1.如图,某城市有一条公路从正西方MO 通过市中心O 后转向东北方ON ,为了缓解城市交通压力,现准备修建一条绕城高速公路L ,并在,MO ON 上分别设置两个出口,A B ,若AB 部分为直线段,且要求市中心O 与AB 的距离为20千米,则AB 的最短距离为( )A .()2021-千米 B .()4021-千米C .)201D .)401【答案】D【解析】在ABC 中,135AOB ∠=︒, 设,AO a BO b ==,则(222222cos1352AB a b ab a b ab =+-︒=+≥,当且仅当a b =时取等号,设BAO α∠=,则45ABO α∠=︒-,又O 到AB 的距离为20千米,所以20sin a α=,()20sin 45b α=︒-,故()400sin sin 45ab αα==︒-(22.5α=︒时取等号),所以)221600216001AB ≥=,得)401AB ≥,故选:D2.某生态公园有一块圆心角为π3的扇形土地,打算种植花草供游人欣赏,如图所示,其半径100OA =米.若要在弧AB 上找一点C ,沿线段AC 和BC 铺设一条观光道路,则四边形OACB 面积的最大值为( )A .2500平方米B .25003平方米C .5000平方米D .50003平方米【答案】C【解析】连接OC ,2211sin sin 22OAC OCB OACB OA S S AOC OA CS BO =⋅∠+∠+⋅=四边形△△2π1sin sin 23OA AOC AOC ⎡⎤⎛⎫=∠+-∠ ⎪⎢⎝⎭⎣⋅⎥⎦15000(sin )322cos AOC AOC +=∠∠π5000sin 50003AOC ⎛⎫=∠+≤ ⎪⎝⎭,当π6AOC ∠=时,等号成立. 所以四边形OACB 面积的最大值为5000.故选:C3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2b =,1c =,则B C +=( )A .90°B .120°C .60°D .150°【答案】C【解析】因为a =2b =,1c =, 所以2221471cos 22122c b a A bc +-+-===-⨯⨯,由0180A <<︒︒,则120A =︒,18060B C A ∴+=︒-=︒故选:C4.已知某圆锥的轴截面是腰长为3的等腰三角形,且该三角形顶角的余弦值等于19,则该圆锥的表面积等于( ) A .4π B .6π C .10π D .203π【答案】C【解析】设圆锥的底面半径为r ,则()2221233162339r -⨯=+⨯⨯=,解得2r =,故该圆锥的表面积等于12234102πππ⨯⨯⨯+=.故选:C.5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cA b<,则ABC 必为( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等腰三角形【答案】A【解析】因为cos cA b <,由正弦定理可得sin cos sin C A B<,即sin cos sin C A B <, 又因为sin sin()sin cos cos sin C A B A B A B =+=+,所以sin cos cos s co si in s n A B A B A B +<,即sin cos 0A B <,因为,(0,)A B π∈,所以sin 0,0cos A B ><,所以(,)2B ππ∈,所以ABC 为钝角三角形.故选:A. 二、多选题6.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且2a =、3b =、4c =,下面说法错误的是( ) A .sin sin sin 234A B C =:::: B .ABC 是锐角三角形C .ABC 的最大内角是最小内角的2倍D .ABC 内切圆半径为12 【答案】BCD 【解析】A 选项,∵sin sin sin a b cA B C==,2a =、3b =、4c =,∵sin sin sin 234A B C =::::,对,B 选项,由于a b c <<,则ABC 中最大角为角C ,∵222222234cos 02223a b c C ab +-+-==<⨯⨯,∵2C π>,∵ABC 是钝角三角形,错,C 选项,假设ABC 的最大内角是最小内角的2倍,则2C A =, 即sin sin22sin cos C A A A ==⋅,又sin sin 12A C =::,即sin 2sin cos 12A A A ⋅=::,cos 1A =,不符合题意,错,D 选项,∵22222224311cos 222416a c b B ac +-+-===⨯⨯,∵sin B ==,∵11sin 2422ABCSac B =⋅=⨯⨯设ABC 的内切圆半径为r ,则()()1123422ABCS a b c r r =++⋅=⨯++⨯=∵r =故选:BCD.7.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 2sin B C A +=( ) A .若π3A =,1c =,则1a =B .若π3A =,1c =,则ABC 的面积为πC .若2b =,则A 的最大值为π3D .若2b =,则ABC 周长的取值范围为()4,12【答案】ACD【解析】因为sin sin 2sin B C A +=,所以2b c a +=. 对于A ,B ,若1c =,则21b a =-,22223421cos 2422b c a a a A bc a +--+===-,解得1a =,ABC 的面积1sin 2S bc A ==,A 正确,B 错误. 对于C ,若2b =,则22c a =-,222238831cos 12128881b c a a a A a bc a a +--+⎛⎫===-++- ⎪--⎝⎭312182⎡⎤≥-=⎢⎥⎣⎦,当且仅当2a =时,等号成立,所以A 的最大值为π3,C 正确.对于D ,若2b =,则根据三边关系可得,,a c b a b c +>⎧⎨+>⎩即222,222,a a a a +->⎧⎨+>-⎩解得443a <<,则4312a <<,ABC 的周长为3a b c a ++=,故ABC 周长的取值范围为()4,12,D 正确.故选:ACD 三、填空题8.在ABC 中,D 为BC 的中点,若4AB =,2AC =,AD =BC =______.【答案】【解析】法一:设BD x =,因为180ADB ADC ∠+∠=︒,所以cos cos 0ADB ADC ∠+∠=,由余弦定理,得22222222BD AD AB DC AD AC BD AD DC AD+-+-+=⋅⋅220=,所以x BC =法二:由D 为BC 的中点,得()12AD AB AC =+,所以()222124AD AB AB AC AC =+⋅+,即()1816242cos 44BAC =+⨯⨯∠+,所以3cos 4BAC ∠=,所以22232cos 16424284BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯=,所以BC =故答案为:9.如图所示,OA 是一座垂直与地面的信号塔,O 点在地面上,某人(身高不计)在地面的C 处测得信号塔顶A 在南偏西70°方向,仰角为45°,他沿南偏东50°方向前进20m 到点D 处,测得塔顶A 的仰角为30°,则塔高OA 为______m .【答案】20【解析】设塔高m OA x =,由题意得在直角AOC △中,45ACO ∠=︒,所以m OA OC x ==,由题意得在直角AOD △中,30ADO ∠=︒,所以m OD =, 由题意得在OCD 中,120,20m OCD CD ∠=︒=, 所以由余弦定理得2222cos OD OC CD OC CD OCD =+-⋅∠,所以22134002202x x x ⎛⎫=+-⋅⋅- ⎪⎝⎭,化简得2102000--=x x ,解得20x 或10x =-(舍去),所以塔高OA 为20m ,故答案为:20 四、解答题10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知1a b c ===. (1)求sin ,sin ,sin A B C 中的最大值; (2)求AC 边上的中线长. 【解析】(1)521>,故有sin sin sin b a c B A C >>⇒>>,由余弦定理可得cos B =又(0,)B π∈,34B π∴=,故sin B(2)AC 边上的中线为BD ,则1()2BD BA BC =+,2222223(2)()2cos 121cos 14BD BA BC c a ca B π∴=+=++=++⨯=, 1||2BD ∴=,即AC 边上的中线长为12.11.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c sin cos A a B a =+.(1)求角B 的值;(2)若8c =,ABC 的面积为BC 边上中线AD 的长.【解析】(1)sin sin cos sin B A A B A =+,()0,πA ∈,sin 0A ≠cos 1B B =+,则π1sin 62B ⎛⎫-= ⎪⎝⎭,()0,πB ∈,π3B ∴=;(2)1sin 2S ac B ==8c =,10a ∴=,由余弦定理22212cos 6425404922a AD c ac B ⎛⎫=+-⨯=+-= ⎪⎝⎭,得249AD =,7AD ∴=,12.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )()sin a b B A b c C +-=-.(1)求A ;(2)若2a =,求ABC 面积的最大值.【解析】(1)由正弦定理及()(sin sin )()sin a b B A b c C +-=-, 得()()()b a b a b c c -+=-,即222b c a bc +-=, 由余弦定理,得2221cos 22b c a A bc +-==, ∵0A π<<,可得3A π=.(2)由余弦定理得222222cos a b c bc A b c bc =+-=+-, 因为222b c bc +≥, 所以22a bc bc ≥-,即24bc a ≤=,当且仅当2b c ==时取等号,∵11sin 422ABC S bc A =≤⨯=△ABC13.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,向量()7,1m =,()cos ,1n C =,(),2cos p b B =,且0m n ⋅=.(1)求sin C 的值;(2)若8c =,//m p ,求B 的大小.【解析】(1)因为()7,1m =,()cos ,1n C =,且0m n ⋅=,所以7cos 10C +=,即1cos 7C =-,因为0C π<<,所以sin C ==. (2)因为()7,1m =,(),2cos p b B =,//m p ,所以14cos b B =, 在ABC 中,由正弦定理得sin sin c Bb C=,又8c =,sin C =b B ,14cos B B =,即tan B =0B π<<,所以3B π=.14.已知向量()2sin ,2cos 1m x x =-,()2cos ,1n x =,()f x m n =⋅.(1)求函数()y f x =的最小正周期;(2)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()1f A =,a =ABC 的面积的最大值.【解析】(1)()22sin cos 2cos 1f x m n x x x =⋅=+-,sin 2cos 224x x x π⎛⎫=+=+ ⎪⎝⎭,则其最小正周期22T ππ==; (2)由()214f A A π⎛⎫=+= ⎪⎝⎭,且()0,A π∈,所以4A π=,由余弦定理得2222cos a b c bc A =+-,即(2222b c bc =+≥,所以2bc ≤=b c =时取等号,所以ABC 的面积21sin 244S bc π==≤,15.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A C B A C +=+. (1)求B ;(2)若点M 在AC 上,且满足BM 为ABC ∠的平分线,2,cos BM C ==BC 的长. 【解析】(1)在ABC 中,222sin sin sin sin sin A C B A C +=+,由正弦定理得:222a c b ac +=+.由余弦定理得:2221cos 22a cb B ac +-==. 因为()0,B π∈,所以3B π=.(2)因为()cos 0,C C π=∈,所以sin C = 因为3B π=,BM 为ABC ∠的平分线,所以6MBC π∠=.所以[]sin sin BMC MBC C π∠=-∠-∠()sin MBC C =∠+∠sin cos cos sin MBC C MBC C =∠∠+∠∠12==.在MBC △中,由正弦定理得:sin sin MB BC C BMC =∠=BC = 16.在ABC 中,角A 、B 、C 的对边分别是a 、b 、c,且)cos b c aC C +=+. (1)求角A ;(2)若2a =,ABCb c +的值.【解析】(1)由)cos b c a C C +=+及正弦定理得sin sin sin cos sin B C A C A C +=,又()sin sin sin cos cos sin B A C A C A C =+=+,所以cos sin sin sin A C C A C +=,又sin 0C ≠cos 1A A -=,即2sin 16A π⎛⎫-= ⎪⎝⎭,可得1sin 62A π⎛⎫-= ⎪⎝⎭, 因为0A π<<,则5666A πππ-<-<,所以,66A ππ-=,因此,3A π=. (2) 解:由余弦定理,得2222cos 3a b c bc π=+-,即()234b c bc +-=,又1sin 2ABC bc S A ==4bc =,所以4b c +=.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin 2sin 2cos 02A A A ++=.(1)求A ;(2)若cos cos 2b C c B +=,求ABC 面积的最大值. 【解析】(1)ABC 中,角A ,B ,C 所对的边分别为a ,b ,c , 且2sin 2sin 2cos 2sin cos sin cos 102AA A A A A A ++=+++=,2(sin cos )(sin cos )0A A A A ∴+++=, 即(sin cos )(sin cos 1)0A A A A +++=, sin cos 1A A +>-,sin cos 0A A ∴+=,所以tan 1A =-, 又()0,A π∈,34A π∴=; (2)ABC 中,由正弦定理可得sin sin a b A B =,sin b B ∴==⋅,同理可得,sin c C =⋅,cos cos 2b C c B +=,∴sin cos sin cos 2B C C B ⋅⋅+⋅⋅=,∴sin()2B C ⋅+=sin 24π⋅=,2a ∴=,由余弦定理可得22424cos 22b c bc A bc bc+--=-=, 当且仅当b c =时,取等号,422bc ∴+,即bcABC ∴面积⋅⋅=≤1sin 2bc A 1=-,所以ABC 1.。

高一数学解三角形(含答案)

高一数学解三角形(含答案)

解三角形 1.正弦定理:2sin sin sin a b cR A B C===或变形:::sin :sin :sin a b c A B C =.2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 5.解题中利用ABC∆中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sin cos ,cos sin ,tan cot 222222A B C A B C A B C+++===.高一数学测试题———正弦、余弦定理与解三角形一、选择题: 1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于( )A .60°B .60°或120°C .30°或150°D .120°2、符合下列条件的三角形有且只有一个的是 ( )A .a=1,b=2 ,c=3B .a=1,b=2 ,∠A=30°C .a=1,b=2,∠A=100°C .b=c=1, ∠B=45°3、在锐角三角形ABC 中,有 ( )A .cosA>sinB 且cosB>sinA B .cosA<sinB 且cosB<sinAC .cosA>sinB 且cosB<sinAD .cosA<sinB 且cosB>sinA4、若(a+b+c)(b+c-a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形5、设A 、B 、C 为三角形的三内角,且方程(sinB -sinA)x 2+(sinA -sinC)x +(sinC -sinB)=0有等根,那么角B ( )A .B>60°B .B ≥60°C .B<60°D .B ≤60°6、满足A=45°,c=6 ,a=2的△ABC 的个数记为m,则a m 的值为( )A .4B .2C .1D .不定7、如图:D,C,B 三点在地面同一直线上,DC=a,从C,D 两点测得A 点仰角分别是β, α(α<β),则A 点离地面的高度AB 等于( )A .)sin(sin sin αββα-aB .)cos(sin sin βαβα-⋅aC .)sin(cos sin αββα-a D .)cos(sin cos βαβα-a8、两灯塔A,B 与海洋观察站C 的距离都等于a(km), 灯塔A 在C 北偏东30°,B 在C 南偏东60°,则A,B 之间的相距 ( )A .a (km)B .3a(km) C .2a(km)D .2a (km)二、填空题:9、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形. 10、在ΔABC 中,A=60°, c:b=8:5,内切圆的面积为12π,则外接圆的半径为_____. 11、在ΔABC 中,若S ΔABC =41 (a 2+b 2-c 2),那么角∠C=______.12、在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______. 三、解答题:13、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC=BA BA cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).A Bαβ1、在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.2、在ABC △中,角,,A B C 对应的边分别是,,a b c ,若1sin ,2A=sin 2B =,求::a b c3、在ABC△中,,a b c分别为,,A B C∠∠∠的对边,若2sin (cos cos )3(sin sin )A B C B C +=+,(1)求A 的大小;(2)若9a b c +=,求b 和c 的值。

高一数学必修4_解三角形测试卷

高一数学必修4_解三角形测试卷

高一数学必修4_解三角形测试卷一、选择题(12×5=60)1、 在∆ABC 中,根据下列条件解三角形,其中有2个解的是( ) A . b=10,A= 45,C= 70 B .a=60,c=48,B=60 C .a=7,b=5,A=80D .a=14,b=16,A=452、在∆ABC 中,24,34,60===⋅b a A ,则B 等于( ) A.13545或 B.135 C.45 D. 以上答案都不对3、∆ABC 中,)1+3(:6:2=sin :sin :sin C B A ,则三角形的最小内角是( ) A.60 B.45 C.30 D.以上答案都不对 4、 在∆ABC 中,A =60,b=1,面积为3,求CB A cb a sin sin sin ++++的值为( )A.3392 B. 13 C. 213 D.339 5、在△ABC 中,三边长AB=7,BC=5,AC=6,则∙的值为( ) A. 19B. -14C. -18D. -196、 A 、B 是△ABC 的内角,且53cos =A ,135sin =B ,则C sin 的值为( ) A.65156563-或 B.6563C.65636516-或 D.6516 7、∆ABC 中,a=2,A=30,C=45,则∆ABC 的面积为( ) A. 2 B. 22 C. 1+3 D. )1+3(218、在ABC ∆中,2cossin sin 2AC B =⋅,则∆ABC 是( )A. 等边三角形B. 直角三角形C. 等腰三角形D. 等腰直角三角形 9、已知∆ABC 中, AB=1,BC=2,则角 C 的取值范围是( ) A. 60π≤<C B. 20π<<C C.26ππ<<C D.36ππ≤<C10、若以2,3,x 为三边组成一个锐角三角形,则x 的取值范围是( ) A. 1<x<5 B. 5<<5x C. 13<<1x D. 13<<5x11、在ABC ∆中,已知 75,60,8===C B a ,则b = ( ) (A )24 (B )34 (C )64 (D )332 12、在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( )3400米 B.33400米 C. 2003米 D. 200米 二、填空题(每题5分,共20分)13、三角形两条边长分别为3cm ,5cm ,其夹角的余弦是方程06752=--x x 的根,则三角形面积为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修五 第一章 解三角形一、选择题1.已知A ,B 两地的距离为10 km ,B ,C 两地的距离为20 km ,现测得∠ABC =120°,则A ,C 两地的距离为( ).A .10 kmB .103kmC .105kmD .107km2.在△ABC 中,若2cosAa =2cosB b =2cosC c ,则△ABC 是( ).A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形3.三角形三边长为a ,b ,c ,且满足关系式(a +b +c )(a +b -c )=3ab ,则c 边的对角等于( ).A .15°B .45°C .60°D .120°4.在△ABC 中,三个内角∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a ∶b ∶c =1∶3∶2,则sin A ∶sin B ∶sin C =( ).A .3∶2∶1B .2∶3∶1C .1∶2∶3D .1∶3∶25.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ).A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形6.在△ABC 中,a =23,b =22,∠B =45°,则∠A 为( ). A .30°或150°B .60°C .60°或120°D .30°7.在△ABC 中,关于x 的方程(1+x 2)sin A +2x sin B +(1-x 2)sin C =0有两个不等的实根,则A 为( ).A .锐角B .直角C .钝角D .不存在8.在△ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为( ).A .223B .233C .23 D .33 9.在△ABC 中,c b a c b a -+-+333=c 2,sin A ·sin B =43,则△ABC 一定是( ).A .等边三角形B .等腰三角形C .直角三角形D .等腰三角形或直角三角形10.根据下列条件解三角形:①∠B =30°,a =14,b =7;②∠B =60°,a =10,b =9.那么,下面判断正确的是( ).A .①只有一解,②也只有一解.B .①有两解,②也有两解.C .①有两解,②只有一解.D .①只有一解,②有两解.二、填空题11.在△ABC 中,a ,b 分别是∠A 和∠B 所对的边,若a =3,b =1,∠B =30°,则∠A 的值是 .12.在△ABC 中,已知sin B sin C =cos 22A,则此三角形是__________三角形. 13.已知a ,b ,c 是△ABC 中∠A ,∠B ,∠C 的对边,S 是△ABC 的面积.若a =4, b =5,S =53,求c 的长度 .14.△ABC 中,a +b =10,而cos C 是方程2x 2-3x -2=0的一个根,求△ABC 周长的最小值 .15.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且满足sin A ∶sin B ∶sin C =2∶5∶6.若△ABC 的面积为4393,则△ABC 的周长为________________. 16.在△ABC 中,∠A 最大,∠C 最小,且∠A =2∠C ,a +c =2b ,求此三角形三边之比为 .三、解答题17.在△ABC 中,已知∠A =30°,a ,b 分别为∠A ,∠B 的对边,且a =4=33b ,解此三角形.18.如图所示,在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端C 对于山坡的斜度为15°,向山顶前进100米后到达点B ,又从点B 测得斜度为45°,建筑物的高CD 为50米.求此山对于地平面的倾斜角 .19.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若b cos C =(2a -c )cos B , (Ⅰ)求∠B 的大小;(Ⅱ)若b =7,a +c =4,求△ABC 的面积.20.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,求证:222c b a -=C B A sin sin )(-.参考答案一、选择题 1.D解析:AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC=102+202-2×10×20cos 120° =700.AC =107. 2.B解析:由2cos A a=2cos B b=2cos C c及正弦定理,得2cos sin A A =2cos sin B B =2cos sin C C ,由2倍角的正弦公式得2sin A =2sin B =2sin C,∠A =∠B =∠C .3.C解析:由(a +b +c )(a +b -c )=3ab , 得 a 2+b 2-c 2=ab .∴ cos C =ab c b a 2222-+=21.故C =60°. 4.D解析:由正弦定理可得a ∶b ∶c =sin A ∶sin B ∶sin C =1∶3∶2. 5.D解析:△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形. 若△A 2B 2C 2不是钝角三角形,由⎪⎪⎪⎩⎪⎪⎪⎨⎧)-(==)-(==)-(==1121121122πsin cos sin 2πsin cos sin 2πsin cos sin C C C B B B A A A ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧1212122π2π2πC C B B A A -=-=-=,那么,A 2+B 2+C 2=23π-(A 1+B 1+C 1)=2π,与A 2+B 2+C 2=π矛盾. 所以△A 2B 2C 2是钝角三角形. 6.C解析:由A a sin =B b sin ,得sin A =bBa sin =222232⨯=23,而b <a ,∴ 有两解,即∠A =60°或∠A =120°. 7.A解析:由方程可得(sin A -sin C )x 2+2x sin B +sin A +sin C =0. ∵ 方程有两个不等的实根, ∴ 4sin 2 B -4(sin 2 A -sin 2 C )>0. 由正弦定理A a sin =B b sin =Ccsin ,代入不等式中得 b 2-a 2+c 2>0, 再由余弦定理,有2ac cos A =b 2+c 2-a 2>0. ∴ 0<∠A <90°. 8.B解析:由余弦定理得cos A =21,从而sin A =23,则AC 边上的高BD =233.9.A解析:由cb ac b a -+-+333=c 2⇒a 3+b 3-c 3=(a +b -c )c 2⇒a 3+b 3-c 2(a +b )=0⇒(a +b )(a 2+b 2-ab -c 2)=0.∵ a +b >0,∴ a 2+b 2-c 2-ab =0. (1) 由余弦定理(1)式可化为a 2+b 2-(a 2+b 2-2ab cos C )-ab =0,得cos C =21,∠C =60°. 由正弦定理A asin =B b sin =︒60sin c ,得sin A =c a ︒60sin ,sin B =c b ︒60sin ,∴ sin A ·sin B =2260sin cab )(︒=43, ∴ 2cab=1,ab =c 2.将ab =c 2代入(1)式得,a 2+b 2-2ab =0,即(a -b )2=0,a =b .△ABC 是等边三角形.10.D解析:由正弦定理得sin A =bBa sin ,①中sin A =1,②中sin A =935.分析后可知①有一解,∠A =90°;②有两解,∠A 可为锐角或钝角.二、填空题 11.60°或120°. 解析:由正弦定理A a sin =B b sin 计算可得sin A =23,∠A =60°或120°. 12.等腰.解析:由已知得2sin B sin C =1+cos A =1-cos (B +C ), 即2sin B sin C =1-(cos B cos C -sin B sin C ), ∴ cos (B -C )=1,得∠B =∠C , ∴ 此三角形是等腰三角形. 13.21或61. 解:∵ S =21ab sin C ,∴ sin C =23,于是∠C =60°或∠C =120°.又c 2=a 2+b 2-2ab cos C ,当∠C =60°时,c 2=a 2+b 2-ab ,c =21; 当∠C =120°时,c 2=a 2+b 2+ab ,c =61. ∴ c 的长度为21或61. 14.10+53.解析:由余弦定理可得c 2=a 2+b 2-2ab cos C ,然后运用函数思想加以处理. ∵ 2x 2-3x -2=0, ∴x 1=2,x 2=-21. 又cos C 是方程2x 2-3x -2=0的一个根, ∴ cos C =-21. 由余弦定理可得c 2=a 2+b 2-2ab ·(-21)=(a +b )2-ab , 则c 2=100-a (10-a )=(a -5)2+75,当a =5时,c 最小,且c =75=53, 此时a +b +c =5+5+53=10+53, ∴ △ABC 周长的最小值为10+53. 15.13.解析:由正弦定理及sin A ∶sin B ∶sin C =2∶5∶6,可得a ∶b ∶c =2∶5∶6,于是可设a =2k ,b =5k ,c =6k (k >0),由余弦定理可得cos B =ab c b a 2-+222=))((k k k k k 62225-36+4222=85,∴ sin B =B 2cos -1=839. 由面积公式S △ABC =21ac sin B ,得 21·(2k )·(6k )·839=4393,∴ k =1,△ABC 的周长为2k +5k +6k =13k =13. 本题也可由三角形面积(海伦公式)得)6213)(5213)(2213(213k kk k k k k ---=4393, 即4393k 2=4393,∴ k =1. ∴ a +b +c =13k =13. 16.6∶5∶4.解析:本例主要考查正、余弦定理的综合应用. 由正弦定理得c a =C A sin sin =CC sin 2sin =2cos C ,即cos C =c a2, 由余弦定理cos C =ab c b a 2-+222=abb c a c a 2+-+2))((.∵ a +c =2b ,∴ cos C =abc a b c a b 22++-2)(=aca c a 22++-2)(,∴ca 2=aca c a 22++-2)(.整理得2a 2-5ac +3c 2=0.解得a =c 或a =23c . ∵∠A =2∠C ,∴ a =c 不成立,a =23c ∴ b =2c a +=223cc +=c 45,∴ a ∶b ∶c =23c ∶c 45∶c =6∶5∶4. 故此三角形三边之比为6∶5∶4. 三、解答题17.b =43,c =8,∠C =90°,∠B =60°或b =43,c =4,∠C =30°,∠B =120°. 解:由正弦定理知A asin =B b sin ⇒︒30sin 4=B sin 34⇒sin B =23,b =43.∠B =60°或∠B =120°⇒∠C =90°或∠C =30°⇒c =8或c =4. 18.分析:设山对于地平面的倾斜角∠EAD =θ,这样可在△ABC 中利用正弦定理求出BC ;再在△BCD 中,利用正弦定理得到关于θ 的三角函数等式,进而解出θ 角.解:在△ABC 中,∠BAC =15°,AB =100米, ∠ACB =45°-15°=30°. 根据正弦定理有︒30sin 100=︒15sin BC, ∴ BC =︒︒30sin 15sin 100.又在△BCD 中,∵ CD =50,BC =︒︒30sin 15sin 100,∠CBD =45°,∠CDB =90°+θ ,根据正弦定理有︒45sin 50=)(θ+90sin 30sin 15sin 100︒︒︒.解得cos θ =3-1,∴ θ ≈42.94°. ∴ 山对于地平面的倾斜角约为42.94°.19.解:(Ⅰ)由已知及正弦定理可得sin B cos C =2sin A cos B -cos B sin C , ∴ 2sin A cos B =sin B cos C +cos B sin C =sin (B +C ). 又在三角形ABC 中,sin (B +C )=sin A ≠0, ∴ 2sin A cos B =sin A ,即cos B =21,B =3π. (Ⅱ)∵ b 2=7=a 2+c 2-2ac cos B ,∴ 7=a 2+c 2-ac ,(第18题)又 (a +c )2=16=a 2+c 2+2ac ,∴ ac =3,∴ S △ABC =21ac sin B , 即S △ABC =21·3·23=433.20.分析:由于所证明的是三角形的边角关系,很自然联想到应用正余弦定理. 解:由余弦定理a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B 得 a 2-b 2=b 2-a 2-2bc cos A +2ac cos B , ∴ 2(a 2-b 2)=-2bc cos A +2ac cos B , 222-c b a =c Ba Ab cos +cos -.由正弦定理得 a =2R sin A ,b =2R sin B ,c =2R sin C , ∴222-cb a =c Ba Ab cos +cos - =CA B B A sin cos sin -cos sin=CB A sin -sin )(.故命题成立.。

相关文档
最新文档