微积分 习题课(二)
微积分B(2)第二次习题课题目(第六周)

微积分B(2)第二次习题课题目(第六周)一、隐函数求导、方向导数与梯度1.(1)设函数),(y x f z=是由方程2222=+++z y x xyz 确定的,则函数),(y x f z =在点)1,0,1(-的微分dz =(2)设方程⎪⎩⎪⎨⎧==--0),(0),(y z xy G z y x y F 可以确定隐函数)(),(y z z y x x ==,求dy dz dy dx ,.(3).),(y x f z =,xy v x y u ==,2,求vzu z ∂∂∂∂,。
(4)),,(z y x f u =,若)cos ,cos ,(cos γβα=l ,其中1cos cos cos 222=++γβα,求u l22 ∂∂2.设(,,)f x y z 可微,123,,l l l 为3中互相垂直的三个单位向量,求证:222222123(()()(()(f f f f f f x y z∂∂∂∂∂∂++=++∂∂∂∂∂∂l l l .二、微分学的几何应用3.给出zx yz xy e z++=确定的隐函数),(y x f z =存在的一个充分条件是,曲面),(y x f z =在点)0,1,1(处的切平面方程,),(y x f z =在点)1,1(处的梯度。
4.设直线L :⎩⎨⎧=--+=++030z ay x b y x 在平面π上,且平面π又与曲面S:22y x z +=相切于点(1,-2,5)。
求a,b 的值。
5.求过直线:L ⎩⎨⎧=++-=--101523z y x z y x ,且与曲面S :2022222=+-z y x 相切的平面的方程.6.过曲面:S 632),,(222=++=z y x z y x F 上点)1,1,1(P 处指向外侧的法向量为n ,求函数zy x u 2286+=在点P 处沿方向n 的方向导数.7.(1)求螺旋线⎪⎩⎪⎨⎧===θθθk z a y a x sin cos 在2πθ=处的切线方程是( )和法平面方程是()(2)求曲线⎪⎩⎪⎨⎧=+-=++021244222z y x z y x 在)1,1,1(M 处的切线方程和法平面方程。
微积分第三版上册课后练习题含答案

微积分第三版上册课后练习题含答案微积分是数学的一个分支,它主要研究函数、极限、连续、导数、积分等概念和它们之间的关系。
微积分是自然科学、工程技术和经济管理等领域中不可或缺的数学工具。
本文将介绍微积分第三版上册的课后练习题,以及它们的答案和解析。
章节列表微积分第三版上册共分为12章,分别是:1.函数与极限2.导数及其应用3.曲线图形的相关概念4.定积分5.定积分应用6.不定积分7.不定积分的应用8.微分方程初步9.空间解析几何10.空间直线与平面11.空间曲面12.重积分每一章都包含了大量的练习题,这些题目是对每个章节中理论知识点的考察和巩固,同时也能够帮助读者构建更深入的理解。
练习题样例下面是微积分第三版上册第一章的一组练习题样例:1.1节练习1.求函数$f(x)=\\frac{x-1}{x+1}$在点x0=2处的导数。
2.求极限$\\displaystyle\\lim_{x \\to +\\infty}(\\sqrt{x^2+3x}-\\sqrt{x^2-5})$。
3.求函数$f(x)=\\sqrt{1+x}-1$的二阶导数。
1.2节练习1.求$f(x)=\\frac{1}{x}$的导函数和导数。
2.已知函数f(x)=x3+3x2+1,求它的单调区间和极值点。
3.求函数f(x)=x4−8x2的导函数和导数。
课后练习题答案微积分第三版上册的课后练习题答案可以在教材的补充练习答案中找到,答案涵盖了书中各章节的所有练习题。
下面是上述练习题的答案和解析。
1.1节练习答案1.$f'(2)=\\frac{2}{9}$2.$\\displaystyle\\lim_{x \\to +\\infty}(\\sqrt{x^2+3x}-\\sqrt{x^2-5})=+\\infty$3.$f''(x)=\\frac{1}{4(x+1)^{\\frac{3}{2}}}$1.2节练习答案1.$f'(x)=-\\frac{1}{x^2}$,$f''(x)=\\frac{2}{x^3}$2.f(x)在$(-\\infty,-1)$上单调递减,在$(-1,+\\infty)$上单调递增。
微积分课后题答案习题详解

第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立. 证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。
微积分课后题答案第二章习题详解

第二章习题2-11. 试利用本节定义5后面的注3证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时此时1n k N +>有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =-1n ,说明上述结论反之不成立.证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立;3. 利用夹逼定理证明:1 lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; 2 lim n →∞2!n n =0.证:1因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. 2因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. 1 x n =11n e +,n =1,2,…;2 x 1,x n +1n =1,2,…. 证:1略;2因为12x =<,不妨设2k x <,则故有对于任意正整数n ,有2n x <,即数列{}n x 有上界,又 1n n x x +-=,而0n x >,2n x <,所以 10n n x x +-> 即 1n n x x +>, 即数列是单调递增数列;综上所述,数列{}n x 是单调递增有上界的数列,故其极限存在;习题2-21※. 证明:0lim x x →fx =a 的充要条件是fx 在x 0处的左、右极限均存在且都等于a .证:先证充分性:即证若0lim ()lim ()x x x x f x f x a -+→→==,则0lim ()x x f x a →=. 由0lim ()x x f x a -→=及0lim ()x x f x a +→=知: 10,0εδ∀>∃>,当010x x δ<-<时,有()f x a ε-<,20δ∃>当020x x δ<-<时,有()f x a ε-<;取{}12min ,δδδ=,则当00x x δ<-<或00x x δ<-<时,有()f x a ε-<, 而00x x δ<-<或00x x δ<-<就是00x x δ<-<, 于是0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<, 所以 0lim ()x x f x a →=.再证必要性:即若0lim ()x x f x a →=,则0lim ()lim ()x x x x f x f x a -+→→==, 由0lim ()x x f x a →=知,0,0εδ∀>∃>,当00x x δ<-<时,有()f x a ε-<,由00x x δ<-<就是 00x x δ<-<或00x x δ<-<,于是0,0εδ∀>∃>,当00x x δ<-<或00x x δ<-<时,有()f x a ε-<.所以 0lim ()lim ()x x x x f x f x a -+→→== 综上所述,0lim x x →fx =a 的充要条件是fx 在x 0处的左、右极限均存在且都等于a .2. 1 利用极限的几何意义确定0lim x → x 2+a ,和0lim x -→1e x; 2 设fx = 12e ,0,,0,xx x a x ⎧⎪<⎨⎪+≥⎩,问常数a 为何值时,0lim x →fx 存在.解:1因为x 无限接近于0时,2x a +的值无限接近于a ,故2lim()x x a a →+=.当x 从小于0的方向无限接近于0时,1e x 的值无限接近于0,故10lim e 0xx -→=. 2若0lim ()x f x →存在,则00lim ()lim ()x x f x f x +-→→=, 由1知 22lim ()lim()lim()x x x f x x a x a a +--→→→=+=+=, 所以,当0a =时,0lim ()x f x →存在;3. 利用极限的几何意义说明lim x →+∞sin x 不存在.解:因为当x →+∞时,sin x 的值在-1与1之间来回振摆动,即sin x 不无限接近某一定直线y A =,亦即()y f x =不以直线y A =为渐近线,所以lim sin x x →+∞不存在;习题2-31. 举例说明:在某极限过程中,两个无穷小量之商、两个无穷大量之商、无穷小量与无穷大量之积都不一定是无穷小量,也不一定是无穷大量.解:例1:当0x →时,tan ,sin x x 都是无穷小量,但由sin cos tan xx x=当0x →时,cos 1x →不是无穷大量,也不是无穷小量;例2:当x →∞时,2x 与x 都是无穷大量,但22xx=不是无穷大量,也不是无穷小量; 例3:当0x +→时,tan x 是无穷小量,而cot x 是无穷大量,但tan cot 1x x =不是无穷大量,也不是无穷小量;2. 判断下列命题是否正确:1 无穷小量与无穷小量的商一定是无穷小量;2 有界函数与无穷小量之积为无穷小量;3 有界函数与无穷大量之积为无穷大量;4 有限个无穷小量之和为无穷小量;5 有限个无穷大量之和为无穷大量;6 y =x sin x 在-∞,+∞内无界,但lim x →∞x sin x ≠∞;7 无穷大量的倒数都是无穷小量;8 无穷小量的倒数都是无穷大量. 解:1错误,如第1题例1; 2正确,见教材§定理3;3错误,例当0x →时,cot x 为无穷大量,sin x 是有界函数,cot sin cos x x x =不是无穷大量; 4正确,见教材§定理2;5错误,例如当0x →时,1x 与1x -都是无穷大量,但它们之和11()0x x+-=不是无穷大量; 6正确,因为0M ∀>,∃正整数k ,使π2π+2k M >,从而ππππ(2π+)(2π+)sin(2π+)2π+2222f k k k k M ==>,即sin y x x =在(,)-∞+∞内无界,又0M ∀>,无论X 多么大,总存在正整数k ,使π>k X ,使(2π)πsin(π)0f k k k M ==<,即x →+∞时,sin x x 不无限增大,即lim sin x x x →+∞≠∞;7正确,见教材§定理5;8错误,只有非零的无穷小量的倒数才是无穷大量;零是无穷小量,但其倒数无意义; 3. 指出下列函数哪些是该极限过程中的无穷小量,哪些是该极限过程中的无穷大量. 1 fx =234x -,x →2; 2 fx =ln x ,x →0+,x →1,x →+∞; 3 fx = 1e x,x →0+,x →0-; 4 fx =2π-arctan x ,x →+∞;5 fx =1x sin x ,x →∞; 6 fx = 21xx →∞. 解:122lim(4)0x x →-=因为,即2x →时,24x -是无穷小量,所以214x -是无穷小量,因而234x -也是无穷大量;2从()ln f x x =的图像可以看出,1lim ln ,limln 0,lim ln x x x x x x +→→+∞→=-∞==+∞,所以,当0x +→时,x →+∞时,()ln f x x =是无穷大量;当1x →时,()ln f x x =是无穷小量;3从1()e x f x =的图可以看出,110lim e ,lim e 0x xx x +-→→=+∞=, 所以,当0x +→时,1()e xf x =是无穷大量; 当0x -→时,1()e xf x =是无穷小量; 4πlim (arctan )02x x →+∞-=, ∴当x →+∞时,π()arctan 2f x x =-是无穷小量;5当x →∞时,1x是无穷小量,sin x 是有界函数, ∴1sin x x是无穷小量; 6当x →∞时,21x 是无穷小量,∴是无穷小量; 习题2-41.若0lim x x →fx 存在,0lim x x →gx 不存在,问0lim x x →fx ±gx , 0lim x x →fx ·gx 是否存在,为什么解:若0lim x x →fx 存在,0lim x x →gx 不存在,则10lim x x →fx ±gx 不存在;因为若0lim x x →fx ±gx 存在,则由()()[()()]g x f x f x g x =--或()[()()]()g x f x g x f x =+-以及极限的运算法则可得0lim x x →gx ,与题设矛盾;20lim x x →fx ·gx 可能存在,也可能不存在,如:()sin f x x =,1()g x x=,则0limsin 0x x →=,01lim x x →不存在,但0lim x x →fx ·gx =01limsin 0x x x→=存在; 又如:()sin f x x =,1()cos g x x =,则π2limsin 1x x →=,π21limcos x x→不存在,而lim x x →fx ·gx π2lim tan x x →=不存在; 2. 若0lim x x →fx 和0lim x x →gx 均存在,且fx ≥gx ,证明0lim x x →fx ≥0lim x x →gx .证:设0lim x x →fx =A,0lim x x →gx =B ,则0ε∀>,分别存在10δ>,20δ>,使得当010x x δ<-<时,有()A f x ε-<,当020x x δ<-<时,有()g x B ε<+令{}12min ,δδδ=,则当00x x δ<-<时,有 从而2A B ε<+,由ε的任意性推出A B ≤即lim ()lim ()x x x x f x g x →→≤.3. 利用夹逼定理证明:若a 1,a 2,…,a m 为m 个正常数,则limn →∞nm a ++=A ,其中A =max{a 1,a2,…,a m }.n nn m a m A ≤++≤,即而lim n A A →∞=,1lim nn mA A →∞=,由夹逼定理得nm n a A ++=.4※. 利用单调有界数列必存在极限这一收敛准则证明:若x 1=,x 2x n +1=1,2,…,则limn →∞x n 存在,并求该极限.证:因为12x x ==有21x x >今设1k k xx ->,则1k k x x -=>=,由数学归纳法知,对于任意正整数n 有1n n x x +>,即数列{}n x 单调递增;又因为12x =<,今设2k x <,则12k x -=<=,由数学归纳法知,对于任意的正整数 n 有2n x <,即数列{}n x 有上界,由极限收敛准则知lim n n x →∞存在;设limn n x b →∞=,对等式1n x+两边取极限得b =,即22b b =+,解得2b =,1b =-由极限的保号性,舍去,所以lim 2n n x →∞=.5. 求下列极限:1 lim n →∞33232451n n n n n +++-+;2 lim n →∞1cos n ⎡⎤⎛-⎢⎥ ⎝⎣⎦;3 lim n →∞4 limn →∞11(2)3(2)3n nn n ++-+-+; 5 lim n →∞1112211133n n ++++++. 解:1原式=23232433lim 11155n n n nn n→∞++=+-+;2因为lim(10n →∞-=,即当n →∞时,1是无穷小量,而cos n 是有界变量,由无穷小量与有界变量的乘积是无穷小量得:lim (10n n →∞⎡⎤=⎢⎥⎣⎦;322lim(n n n →∞=而0n n→∞→∞==,2n n→∞∴==∞;41111121(1)()(2)31333lim lim2(2)33(1)()13n nn nn nn n n n++→∞→∞++-+-+==-+-+;5111111()21111114[1()]42222lim lim lim11113 11()3[1()]3333113nnnn n nn nn++→∞→∞→∞++-+++--===+++---.6. 求下列极限:13limx→239xx--; 21limx→22354xx x--+;3 limx→∞3426423xx x++;42limxπ→sin coscos2x xx-;5limh→33()x h xh+-; 63limx→;71limx→21nx x x nx+++--; 8limx→∞sinsinx xx x+-;9 limx→+∞101limx→313()11x x---;11limx→21(sin)xx.解:23333311(1)lim lim lim9(3)(3)36x x xx xx x x x→→→--===--++2211lim(54)0,lim(23)1x xx x x→→-+=-=-3344226464lim lim03232x xx x xx xx→∞→∞++==++;4π2ππsincos sin cos 22lim1cos 2cos πx x xx →--==-; 5[]223300()()()()lim limh h x h x x h x h x x x h x h h→→⎡⎤+-+++++-⎣⎦= 222lim ()()3h x h x h x x x →⎡⎤=++++=⎣⎦;633(23)92)x x x →→+-=3343x x →→===;72211(1)(1)(1)limlim 11n n x x x x x n x x x x x →→+++--+-++-=--1123(1)2n n n =++++=+; 8sin lim0x x x →∞=无穷小量1x与有界函数sin x之积为无穷小量sin 1sin lim lim 1sin sin 1xx x x x x xx x x→∞→∞++∴==--; 922limlimx x→+∞=limlim1x x ===;101lim x →313()11x x---231(1)3lim 1x x x x →++-=- 11当0x →时,2x 是无穷小量,1sinx是有界函数, ∴它们之积21sinx x 是无穷小量,即201lim sin 0x x x →⎛⎫= ⎪⎝⎭;习题2-5求下列极限其中a >0,a ≠1为常数: 1. 0limx →sin 53x x; 2. 0lim x →tan 2sin 5xx ; 3. 0lim x →x cot x ;4. 0lim x→; 5. 0lim x →2cos5cos 2x x x -; 6. lim x →∞1xx x ⎛⎫⎪+⎝⎭; 7. 0lim x →()cot 13sin xx +; 8. 0lim x →1x a x-; 9. 0lim x →x x a a x --;10. lim x →+∞ln(1)ln x x x +-; 11. lim x →∞3222xx x -⎛⎫ ⎪-⎝⎭; 12.lim x →∞211xx ⎛⎫+ ⎪⎝⎭; 13. 0limx →arcsin x x ; 14. 0lim x →arctan xx; .解:1. 000sin 55sin 55sin 55lim lim lim 335353x x x x x x x x x →→→===;2. 000tan 2sin 221sin 25lim lim lim sin 5cos 2sin 55cos 22sin 5x x x x x x x x x x x x x→→→== 0205021sin 252lim lim lim 5cos 22sin 55x x x x x x x x →→→==; 3. 0000lim cot limcos lim limcos 1cos01sin sin x x x xx xx x x x x x →→→→=⋅==⨯=;4. 000sin2lim lim 22xx x x x x x →→→→=== 0sin22122x xx →===; 5. 2200073732sin sin sin sin cos5cos 2732222lim lim lim (2)732222x x x x x x x x x x x x x →→→⎡⎤-⎢⎥-==-⋅⋅⋅⋅⎢⎥⎢⎥⎣⎦0073sin sin 212122limlim 732222x x x x x x →→=-⋅=-; 6. 111lim lim lim 111e (1)xxx x x x x x x x x →∞→∞→∞⎛⎫ ⎪⎛⎫=== ⎪ ⎪++⎝⎭ ⎪+⎝⎭; 7. 3cos cos 1cot sin 3sin 0lim(13sin )lim(13sin )lim (13sin )xx xxx x x x x x x →→→⎡⎤+=+=+⎢⎥⎣⎦8.令1xu a =-,则log (1)a x u =+,当0x →时,0u →,1011ln log elimlog (1)a ua u a u →===+. 9. 000(1)(1)11lim lim lim x x x x x x x x x a a a a a a x x xx ---→→→⎛⎫------==+ ⎪-⎝⎭ 利用了第8题结论01limln x x a a x→-=; 10. ln(1)ln 11limlim lnx x x x xx x x→+∞→+∞+-+=⋅ 1111lim ln(1)lim lim ln(1)0x x x x x x x→+∞→+∞→+∞=+=+=; 11. 22223211lim lim 1lim 1222222x xxxxx x x x x x x --→∞→∞→∞⎡⎤-⎛⎫⎛⎫⎛⎫=+=+⎢⎥ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1232lim e 22xx x x -→∞-⎛⎫∴= ⎪-⎝⎭; 12. 1221222111ln (1)lim ln(1)2211lim(1)lim (1)lim ee x x xxx xx x x xx x x x x →∞⎡⎤++⎢⎥⎣⎦→∞→∞→∞⎡⎤+=+==⎢⎥⎣⎦2121lim lim ln(1)0lne 0e e e 1xx x x x→∞→∞+⋅====;13.令arcsin x u =,则sin x u =,当0x →,0u →,000arcsin 1limlim 1sin sin limx u u x u u x u u→→→===;14.令arctan x u =,则tan x u =,当0x →,0u →,00000arctan 1lim lim lim cos lim limcos 1sin tan sin x u u u u x u u u u u x u uu→→→→→====. 习题2-61. 证明: 若当x →x 0时,αx →0,βx →0,且αx ≠0,则当x →x 0时,αx ~βx 的充要条件是limx x →()()()x x x αβα-=0.证:先证充分性. 若0limx x →()()()x x x αβα-=0,则0lim x x →()(1)()x x βα-=0,即0()1lim 0()x x x x βα→-=,即0()lim 1()x x x x βα→=. 也即0()lim 1()x x x x αβ→=,所以当0x x →时,()()x x αβ. 再证必要性:若当0x x →时,()()x x αβ,则0()lim 1()x x x x αβ→=, 所以0lim x x →()()()x x x αβα-=0lim x x →()(1)()x x βα-=0()1lim ()x x x x βα→-=011110()lim ()x x x x αβ→-=-=. 综上所述,当x →x 0时,αx ~βx 的充要条件是0lim x x →()()()x x x αβα-=0. 2. 若βx ≠0,0lim x x →βx =0且0lim x x →()()x x αβ存在,证明0lim x x →αx =0. 证:0000()()lim ()lim ()lim lim ()()()x x x x x x x x x x x x x x x αααββββ→→→→==0()lim 00()x x x x αβ→== 即 0lim ()0x x x α→=. 3. 证明: 若当x →0时,fx =ox a ,gx =ox b ,则fx ·gx =o a b x+,其中a ,b 都大于0,并由此判断当x →0时,tan x-sin x 是x 的几阶无穷小量.证: ∵当x →0时, fx =ox a ,gx =ox b ∴00()()lim(0),lim (0)a bx x f x g x A A B B x x →→=≠=≠ 于是: 0000()()()()()()lim lim lim lim 0a b a b a b x x x x f x g x f x g x f x g x AB x x x x x +→→→→⋅=⋅=⋅=≠ ∴当x →0时, ()()()a b f x g x O x +⋅=,∵tan sin tan (1cos )x x x x -=-而当x →0时, 2tan (),1cos ()x O x x O x =-=,由前面所证的结论知, 3tan (1cos )()x x O x -=,所以,当x →0时,tan sin x x -是x 的3阶无穷小量.4. 利用等价无穷小量求下列极限:1 0lim x →sin tan ax bx b ≠0;2 0lim x →21cos kx x-; 3 0lim x→; 4 0lim x→5 0lim x →arctan arcsin x x ;6 0lim x →sin sin e e ax bx ax bx-- a ≠b ; 7 0lim x →ln cos 2ln cos3x x ; 8 设0lim x →2()3f x x -=100,求0lim x →fx . 解 00sin (1)lim lim .tan x x axaxabx bx b →→==8由20()3lim 100x f x x →-=,及20lim 0x x →=知必有0lim[()3]0x f x →-=,即 00lim[()3]lim ()30x x f x f x →→-=-=,所以 0lim ()3x f x →=.习题2-71.研究下列函数的连续性,并画出函数的图形:1 fx = 31,01,3,12;x x x x ⎧+≤<⎨-≤≤⎩2 fx =,111,1 1.x x x x -≤<⎧⎨<-≥⎩,或解: 1300lim ()lim(1)1(0)x x f x x f ++→→=+==∴ fx 在x =0处右连续,又11lim ()lim(3)2x x f x x ++→→=-=∴ fx 在x =1处连续.又22lim ()lim(3)1(2)x x f x x f --→→=-==∴ fx 在x =2处连续.又fx 在0,1,1,2显然连续,综上所述, fx 在0,2上连续.图形如下:图2-12 11lim ()lim 1x x f x x --→→==∴ fx 在x =1处连续.又11lim ()lim 11x x f x -+→-→-==故11lim ()lim ()x x f x f x -+→-→-≠∴ fx 在x =-1处间断, x =-1是跳跃间断点.又fx 在(,1),(1,1),(1,)-∞--+∞显然连续.综上所述函数fx 在x =-1处间断,在(,1),(1,)-∞--+∞上连续.图形如下:图2-22. 说明函数fx 在点x 0处有定义、有极限、连续这三个概念有什么不同又有什么联系 略.3.函数在其第二类间断点处的左、右极限是否一定均不存在试举例说明.解:函数在其第二类间断点处的左、右极限不一定均不存在. 例如0(),010x x f x x x x ≤⎧⎪==⎨>⎪⎩是其的一个第二类间断点,但00lim()lim 0x x f x x --→→==即在0x =处左极限存在,而001lim ()lim x x f x x ++→→==+∞,即在0x =处右极限不存在.4.求下列函数的间断点,并说明间断点的类型:1 fx = 22132x x x -++;2 fx =sin sin x xx +;3 fx = ()11x x +; 4 fx = 224x x +-;5 fx = 1sin x x .解: 1由2320x x ++=得x =-1, x =-2∴ x =-1是可去间断点,x =-2是无穷间断点.2由sin x =0得πx k =,k 为整数.∴ x =0是跳跃间断点.4由x 2-4=0得x =2,x =-2.∴ x =2是无穷间断点,x =-2是可去间断点. 5 001lim ()lim sin 0,()x x f x x f x x →→==在x =0无定义故x =0是fx 的可去间断点.5.适当选择a 值,使函数fx = ,0,,0x e x a x x ⎧<⎨+≥⎩在点x =0处连续.解: ∵f 0=a ,要fx 在x =0处连续,必须00lim ()lim ()(0)x x f x f x f +-→→==.即a =1.6※.设fx = lim x →+∞x xx x a a a a ---+,讨论fx 的连续性.解: 22101()lim lim sgn()10100x x xx x x a a x a aa f x x x a a a x --→+∞→+∞-<⎧--⎪====>⎨++⎪=⎩ 所以, fx 在(,0)(0,)-∞+∞上连续,x =0为跳跃间断点. 7. 求下列极限:1 2lim x →222x x x +-; 2 0lim x→; 3 2lim x →ln x -1; 4 12lim x →5 lim x e→ln x x . 解: 222222(1)lim 1;2222x x x x →⨯==+-+- 习题2-81. 证明方程x 5-x 4-x 2-3x =1至少有一个介于1和2之间的根.证: 令542()31f x x x x x =----,则()f x 在1,2上连续,且 (1)50f =-<, (2)50f =>由零点存在定理知至少存在一点0(1,2),x ∈使得0()0f x =.即 542000031x x x x ---=, 即方程54231x x x x ---=至少有一个介于1和2之间的根.2. 证明方程ln 1+e x -2x =0至少有一个小于1的正根.证: 令()ln(1)2e x f x x =+-,则()f x 在(,)-∞+∞上连续,因而在0,1上连续,且 0(0)ln(1)20ln 20e f =+-⨯=>由零点存在定理知至少存在一点0(0,1)x ∈使得0()0f x =.即方程ln(1)20e xx +-=至少有一个小于1的正根.3※. 设fx ∈C -∞,+∞,且lim x →-∞fx =A , lim x →+∞fx =B , A ·B <0,试由极限及零点存在定理的几何意义说明至少存在一点x 0∈-∞,+∞,使得fx 0=0.证: 由A ·B <0知A 与B 异号,不防设A >0,B <0由lim ()0,lim ()0x x f x A f x B →-∞→+∞=>=<,及函数极限的保号性知,10X ∃>,使当1x X <-,有()0,f x >20X ∃<,使当2x X >时,有()0f x <.现取1x a X =<-,则()0f a >,2x b X =>,则()0f b <,且a b <,由题设知()f x 在[,]a b 上连续,由零点存在定理,至少存在一点0(,)x a b ∈使0()0f x =, 即至少存在一点0(,)x ∈-∞+∞使0()0f x =.4.设多项式P n x =x n +a 11n x-+…+a n .,利用第3题证明: 当n 为奇数时,方程P n x =0至少有一实根. 证: 122()1n n n n a a a P x x x x x ⎛⎫=++++ ⎪⎝⎭()lim 10n nx P x x →∞∴=>,由极限的保号性知. 0X ∃>,使当X x >时有()0nn P x x>,此时()n P x 与n x 同号,因为n 为奇数,所以2X n 与-2X n 异号,于是(2)n P X -与(2)n P X 异号,以()n P x 在[2,2]X X -上连续,由零点存在定理,至少存在一点0(2,2)X X X ∈-,使0()0n P x =,即()0n P x =至少有一实根.。
大学数学微积分第二版上册课后练习题含答案

大学数学微积分第二版上册课后练习题含答案前言数学是一门抽象的学科,需要大量的练习才能真正理解和掌握。
微积分作为数学中的基础学科,更是如此。
本文将为大家提供大学数学微积分第二版上册的课后习题及其答案,供大家参考和练习。
课后习题及答案第一章函数与极限习题1.11.计算以下极限:1.$\\lim\\limits_{x\\rightarrow 1}\\frac{x-1}{x^2-1}$2.$\\lim\\limits_{x\\rightarrow 0}\\frac{\\sqrt{1+x}-1}{x}$3.$\\lim\\limits_{x\\rightarrow 0}(\\frac{1}{\\sin{x}}-\\frac{1}{x})$答案:1.$\\frac{1}{2}$2.$\\frac{1}{2}$3.02.求曲线$y=\\frac{1}{x}$与直线y=x在第一象限中形成的夹角。
答案:$\\frac{\\pi}{4}$3.证明:$\\lim\\limits_{x\\rightarrow 0}x\\sin\\frac{1}{x}=0$答案:对任意$\\epsilon>0$,取$\\delta=\\epsilon$,则当$0<|x|<\\delta$时,有$|x\\sin\\frac{1}{x}-0|<|x|<\\delta=\\epsilon$ 习题1.21.求下列函数的导数:1.y=2x3+3x2−4x+12.$y=\\frac{1}{2}x^3-x^2+2x-1$3.$y=\\frac{1}{\\sqrt{x}}+x\\ln{x}$答案:1.y′=6x2+6x−42.$y'=\\frac{3}{2}x^2-2x+2$3.$y'=-\\frac{1}{2x^{\\frac{3}{2}}}+\\ln{x}+1$2.求函数y=xe x在x=1处的导数。
答案:y′=e+13.求f(x)=|x−2|的导函数。
微积分经济数学吴传生

设 ~ , ~ 且 lim 存在,则 lim lim .
9. 极限的唯一性
定理 若lim f ( x)存在,则极限唯一.
连续定义
lim y 0
x 0
lim
x x0
f (x)
f (x0 )
左右连续
连续的 充要条件
在区间[a,b] 上连续
连续函数的 运算ቤተ መጻሕፍቲ ባይዱ质
x x0
x
无穷大: 绝对值无限增大的变量称为无穷大.
记作 lim f ( x) (或 lim f ( x) ).
x x0
x
无穷小与无穷大的关系
在同一过程中,无穷大的倒数为无穷小;恒不为 零的无穷小的倒数为无穷大.
无穷小的运算性质
定理1 在同一过程中,有限个无穷小的代数和 仍是无穷小. 定理2 有界函数与无穷小的乘积是无穷小. 推论1 在同一过程中,有极限的变量与无穷小的 乘积是无穷小. 推论2 常数与无穷小的乘积是无穷小. 推论3 有限个无穷小的乘积也是无穷小.
推论2 如果lim f ( x)存在,而n是正整数,则 lim[ f ( x)]n [lim f ( x)]n .
4. 求极限的常用方法
a.多项式与分式函数代入法求极限; b.消去零因子法求极限; c.无穷小因子分出法求极限; d.利用无穷小运算性质求极限; e.利用左右极限求分段函数极限.
5. 判定极限存在的准则
lim
n
xn
a,
或
xn a (n ).
" N"定义
0,N 0,使n N时,恒有 xn a .
定义② 设函数 f ( x) 在点 x0 的某一去心邻域 内有定义,对于任意给定的正数 (不论它多么
微积分A(1)第2次习题课答案

+
n ,显然有 n +n
2
1 n(1 + n) 1 n(1 + n) 1 + n ⋅ < an < 2 ⋅ = 2 2 2n n +n n
两边取极限,由夹逼准则得到
n n
lim ∑
n→∞
1 k = 。 2 k +1 n + k
2
n
1 1 1 ⎛ 1 ⎞ ⎛ n −1⎞ (5) ⎜1 − ⎟ = ⎜ → , n → +∞ = ⎟ = n n −1 e ⎝ n⎠ ⎝ n ⎠ 1 ⎞ 1 ⎞ ⎛ ⎛ ⎛ n ⎞ ⎟ ⎟ ⋅ ⎜1 + ⎜1 + ⎟ ⎜ ⎝ n −1⎠ ⎝ n −1⎠ ⎝ n −1⎠
2 4 n →+∞
(1 + x
2n−1
(1 − x)(1 + x)(1 + x 2 )(1 + x 4 ) ) = lim n →+∞ 1− x (1 − x 2 ) 1 = lim = n →+∞ 1 − x 1− x
n
二、无穷大量 2.(教材 19 页第 6 题) 若 lim an = a ≠ 0 , lim bn = ∞ . 证明: lim an bn = ∞ .
*
,只要 n, m > N ,就有 | an − am |< ε 。
,只要 n, m > N ,就有 | an − am |< ε 。
(1)利用 Cauchy 收敛准则证明单调有界数列收敛; (2)利用区间套定理证明单调有界数列收敛。 证明: (1)假设 {a n } 为单调递增有上界的数列,但发散。 由 Cauchy 收敛准则,∃ε 0 > 0 ,∀N ∈
《微积分》上册部分课后习题答案

微积分上册 一元函数微积分与无穷级数第2章 极限与连续2.1 数列的极限1.对于数列n x ,若a x k →2(∞→k ),a x k →+12(∞→k ),证明:a x n → (∞→n ). 证. 0>∀ε, a x k →2 (∞→k ), Z K ∈∃∴1, 只要122K k >, 就有ε<-a x k 2; 又因a x k →+12(∞→k ), Z K ∈∃∴2, 只要12122+>+K k , 就有ε<-+a x k 12. 取{}12,2m ax 21+=K K N , 只要N n >, 就有ε<-a x n , 因此有a x n → (∞→n ). 2.若a x n n =∞→lim ,证明||||lim a x n n =∞→,并举反例说明反之不一定成立.证明: a x n n =∞→lim ,由定义有:N ∃>∀,0ε,当N n >时恒有ε<-||a x n又 ε<-≤-||||||a x a x n n对上述同样的ε和N ,当N n >时,都有ε<-||||a x n 成立 ∴ ||||lim a x n n =∞→反之,不一定成立.如取 ,2,1,)1(=-=n x nn显然 1||lim =∞→n n x ,但n n x ∞→lim 不存在.2.2 函数的极限1. 用极限定义证明:函数()x f 当0x x →时极限存在的充要条件是左、右极限各自存在且相等.证: 必要性. 若()A x f x x =→0lim , 0>∀ε, 0>∃δ, 当δ<-<00x x 时, 就有()ε<-A x f . 因而, 当δ<-<00x x 时, 有()ε<-A x f , 所以()A x f x x =+→0lim ; 同时当δ<-<x x 00时, 有()ε<-A x f , 所以()A x f x x =-→0lim .充分性. 若()A x f x x =+→0lim ,()A x f x x =-→0lim . 0>∀ε, 01>∃δ, 当100δ<-<x x 时, 就有()ε<-A x f , 也02>∃δ, 当200δ<-<x x 时, 有()ε<-A x f . 取{}21,m in δδδ=,则当δ<-<00x x 时, 就有()ε<-A x f . 所以()A x f x x =→0lim .2.写出下列极限的精确定义:(1)A x f x x =+→)(lim 0,(2)A x f x =-∞→)(lim ,(3)+∞=+→)(lim 0x f x x ,(4)-∞=+∞→)(lim x f x ,(5)A x f x =+∞→)(lim .解:(1)设R x U f →)(:0是一个函数,如果存在一个常数R A ∈,满足关系:0,0>∃>∀δε,使得当δ<-<00x x 时,恒有ε<-|)(|A x f ,则称A 是)(x f 当+→0x x 时的极限,记作A x f x x =+→)(lim 0或 )()(0+→=x x A x f . (2)设R f D f →)(:是一函数,其中0,),,()(>>--∞⊃αααR f D .若存在常数R A ∈,满足关系:0)(,0>∈∃>∀R X ε,使得当X x -<时,恒有ε<-|)(|A x f 成立,则称A 是)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或 A x f =)()(-∞→x .(3)设R x U f →)(:0是任一函数,若0>∀M ,0>∃δ,使得当δ<-<00x x 时,恒有M x f >)(,则称当+→0x x 时)(x f 的极限为正无穷大,记作+∞=+→)(lim 0x f x x 或 +∞=)(x f )(0+→x x . (4)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0>∀M ,0)(>∈∃R X ,使得当X x >时,恒有M x f -<)(则称当+∞→x 时)(x f 的极限为负无穷大,记作:-∞=+∞→)(lim x f x 或 -∞=)(x f )(+∞→x .(5)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0,0>∃>∀X ε,使得当X x >时,恒有ε<-|)(|A x f 成立,则称A是)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或 A x f =)()(+∞→x .2.3 极限的运算法则1.求∑=∞→+⋯++Nn N n 1211lim. 解. ()()⎪⎭⎫ ⎝⎛+-=+=+=+⋯++111212211211n n n n n n n⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋯++∑=1112111312121122111N N N n Nn 21112lim 211lim1=⎪⎭⎫ ⎝⎛+-=+⋯++∴∞→=∞→∑N nN Nn N 2.求xe e xxx 1arctan11lim110-+→. 解. +∞=+→x x e 10lim , 0lim 10=-→xx e,,21arctan lim 11lim 1arctan11lim 0110110π=-+=-++++→--→→x ee x e e x xxx xxx ,21arctan lim 11lim 1arctan11lim 0110110π=-+=-+---→→→x e e x e e x x xx x x x 21arctan 11lim 110π=-+∴→x e e x xx3.设)(lim 1x f x →存在,)(lim 2)(12x f x x x f x →+=,求)(x f . 解:设 )(lim 1x f x →=A ,则A x x x f ⋅+=2)(2再求极限:A A A x x x f x x =+=⋅+=→→21)2(lim )(lim 211⇒ 1-=A∴ x x xA x x f 22)(22-=+=.4.确定a ,b ,c ,使 0)1(3)1()1(lim 2221=-+-+-+-→x x c x b x a x 成立.解:依题意,所给函数极限存在且 0)1(lim 21=-→x x∴ 0]3)1()1([lim 221=+-+-+-→x c x b x a x ⇒ 2=c∴ 上式左边=])32)(1(11[lim ))1(321(lim 21221++-+--+=-+-+-+→→x x x x b a x x x b a x x])32)(1(1)32([lim 221++---+++=→x x x x b a x同理有 0]1)32([lim 21=--++→x x b x ⇒ 21=b ∴ 163)23)(1(8)1(3lim )32)(1(1)32(21lim221221=++---=++---++-=→→x x x x x x xx a x x 故 2,21,163===c b a 为所求.2.4 极限存在准则1. 设1x =10,n n x x +=+61,( ,2,1=n ).试证数列{n x }的极限存在,并求此极限. 证: 由101=x , 4612=+=x x , 知21x x >. 假设1+>k k x x , 则有21166+++=+>+=k k k k x x x x . 由数学归纳法知, 对一切正整数n , 有1+>n n x x ,即数列{n x }单调减少. 又显然, () ,2,10=>n x n , 即{n x }有界. 故n n x ∞→lim 存在.令a x n n =∞→lim , 对n n x x +=+61两边取极限得a a +=6, 从而有062=--a a ,,3=∴a 或2-=a , 但0,0≥∴>a x n , 故3lim =∞→n n x2.证明数列 nn n x x x x ++=<<+3)1(3,3011收敛,并求其极限.证明:利用准则II ,单调有界必有极限来证明.∴301<<x ,由递推公式33312131213213)1(30111112=++<++=++=++=<x x x x x x∴ 302<<x 同理可证:30<<n x 有界又 03)3)(3(333)1(311112111112>++-=+-=-++=-x x x x x x x x x x∴ 12x x > 同理 23x x > ,… ,1->n n x x ∴数列 }{n x 单调递增,由准则II n n x ∞→lim 存在,设为A ,由递推公式有:AA A ++=3)1(3 ⇒ 3±=A (舍去负数)∴ 3lim =∞→n n x .3.设}{n x 为一单调增加的数列,若它有一个子列收敛于a ,证明a x n n =∞→lim .证明:设}{k n x 为}{n x 的一子列,则}{k n x 也为一单调增加的数列,且a x k k n n =∞→lim对于1=ε,N ∃,当N n >时有1||<-a x k n 从而||1||||||||a a a x a a x x k k k n n n +<+-≤+-=取|}|1|,|,|,max {|1a x x M N n n += ,对一切k n 都有 M x k n ≤|| 有界.由子列有界,且原数列}{n x 又为一单调增加的数列,所以,对一切n 有M x n ≤||有界,由准则II ,数列}{n x 极限存在且a x n n =∞→lim .2.5 两个重要极限1. 求]cos 1[cos lim n n n -++∞→.解: 原式 =21sin 21sin2lim nn n n n -+++-+∞→⎪⎪⎭⎫⎝⎛++=-+=-+-+-+++-=+∞→n n n n n n nn nn nn n 1110212121sin21sin2lim 2. 求)1sin(lim 2++∞→n n π.解. 原式=()()n nn n n nn n -+-=-+++∞→+∞→1sin 1lim )1sin(lim 22ππππ()()()()0111sin 1lim 222=-+⋅-+-+-=+∞→n nn n nnnn πππ3. 求x x xx )1cos 1(sinlim +∞→. 解. 原式=()[]()e t t t tttt tt xt =⎥⎦⎤⎢⎣⎡+=+=→→=22sin 2sin 10212012sin 1lim cos sin lim 令4. 设 ⎩⎨⎧+-=32)cos 1(2)(x x x x f 00≥<x x 求 20)(lim x x f x →. 解: 1lim )(lim 232020=+=++→→x x x x x f x x ,1)cos 1(2lim )(lim 2020=-=--→→x x x x f x x ∴ 1)(lim2=→xx f x .2.6 函数的连续性1. 研究函数()[]x x x g -=的连续性,并指出间断点类型. 解. n x =,Z n ∈ (整数集)为第一类 (跳跃) 间断点.2. 证明方程)0(03>=++p q px x 有且只有一个实根.证. 令()()()0,0,3>∞+<∞-++=f f q px x x f , 由零点定理, 至少存在一点ξ使得()0=ξf , 其唯一性, 易由()x f 的严格单调性可得.3.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0 ,)(11x x x e x f x ,求)(x f 的间断点,并说明间断点的所属类型. 解. )(x f 在()()()+∞-,1,1,0,0,1内连续, ∞=-→+111lim x x e,0lim 111=-→-x x e, ()00=f , 因此,1=x 是)(x f 的第二类无穷间断点; (),lim lim 1110--→→==++e ex f x x x()()01ln lim lim 00=+=--→→x x f x x , 因此0=x 是)(x f 的第一类跳跃间断点.4.讨论nx nxn e e x x x f ++=∞→1lim )(2的连续性.解. ⎪⎩⎪⎨⎧<=>=++=∞→0,0,00,1lim)(22x x x x x e e x x x f nxnxn , 因此)(x f 在()()+∞∞-,0,0,内连续, 又()()00lim 0==→f x f x , ()x f ∴在()+∞∞-,上连续.5.设函数),()(+∞-∞在x f 内连续,且0)(lim=∞→xx f x ,证明至少存在一点ξ,使得0)(=+ξξf .证:令x x f x F +=)()(,则01]1)([lim )(lim>=+=∞→∞→x x f x x F x x ,从而0)(>xx F .由极限保号性定理可得,存在01>x 使0)(1>x F ;存在02<x 使0)(2<x F .)(x F 在],[12x x 上满足零点定理的条件,所以至少存在一点ξ使得0)(=ξF ,即0)(=+ξξf .6.讨论函数nnx x x x f 2211lim )(+-=∞→的连续性,若有间断点,判别其类型.解: ⎪⎩⎪⎨⎧-=101)(x f 1||1||1||>=<x x x ,显然 1±=x 是第一类跳跃间断点,除此之外均为连续区间.7.证明:方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +. 证明:设b x a x x f --=sin )(,考虑区间],0[b a +0)0(<-=b f ,0))sin(1()(≥+-=+b a a b a f ,当0))sin(1()(=+-=+b a a b a f 时,b a x +=是方程的根;当0))sin(1()(>+-=+b a a b a f 时,由零点定理,至少),0(b a +∈∃ξ使0)(=ξf ,即 0sin =--b a ξξ成立,故原方程至少有一个正根且不超过b a +.2.7 无穷小与无穷大、无穷小的比较1. 当0→x 时,下面等式成立吗?(1))()(32x o x o x =⋅;(2))()(2x o xx o =;(3) )()(2x o x o =. 解. (1)()()()002232→→=⋅x xx o x x o x , ()()()032→=⋅∴x x o x o x (2) ()()()0)(,00)()(2222→=∴→→=x x o x x o x x x o xxx o(3) ()2xx o不一定趋于零, )()(2x o x o =∴不一定成立(当0→x 时) 2. 当∞→x 时,若)11(12+=++x o c bx ax ,则求常数c b a ,,.解. 因为当∞→x 时,若)11(12+=++x o c bx ax , 所以01lim 111lim 22=+++=++++∞→+∞→c bx ax x x c bx ax x x , 故c b a ,,0≠任意.3.写出0→x 时,无穷小量3x x +的等价无穷小量.解: 11lim 1lim lim303630=+=+=+→→→x xx xxx x x x∴ 当0→x ,3x x +~6x第3章 导数与微分3.1 导数概念1. 设函数)(x f 在0x 处可导,求下列极限值. (1)hh x f h x f h )3()2(lim000--+→;(2)000)()(lim 0x x x xf x f x x x --→.解.(1) 原式()()()000000533)3(22)2(lim x f h x f h x f h x f h x f h '=⎥⎦⎤⎢⎣⎡⋅---+⋅-+=→(2) 原式()[]()()()()00000000)(limx f x f x x x x x x f x f x f x x x -'=----=→2.设函数R f →+∞),0(:在1=x 处可导,且),0(,+∞∈∀y x 有)()()(y xf x yf xy f += 试证:函数f 在),0(+∞内可导,且)1()()(f xx f x f '+='. 解:令1==y x ,由()()()y xf x yf xy f +=有()()121f f =得()01=f .()+∞∈∀,0x ,()()()()()()()()()()xx f f x x f xx f x x f x x f x f x x x x xf x x f x x x f x x f x x f x f x x x x +'=+∆-⎪⎭⎫⎝⎛∆+=∆-⎪⎭⎫ ⎝⎛∆++⎪⎭⎫ ⎝⎛∆+=∆-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+=∆-∆+='→∆→∆→∆→∆111lim 11lim 1lim lim 0000 故()x f 在()+∞,0内处处可导,且()()()xx f f x f +'='1. 3.设()f x 在(,)-∞+∞内有意义,且(0)0f =,(0)1f '=, 又121221()()()()()f x x f x x f x x ϕϕ+=+,其中22()cos xx x x e ϕ-=+, 求()f x '.解: ()()()()()()()()x x f x x f x x f x x f x x f x f x x ∆-∆+∆=∆-∆+='→∆→∆ϕϕ00lim lim()()()()()()()()()001lim 0lim 00ϕϕϕϕ'+'=∆-∆+∆-∆=→∆→∆x f x f xx x f x x f x f x x ()x e x x x 22cos -+==ϕ4.设函数0)(=x x f 在处可导,且21arctan lim )(0=-→x f x e x,求)0(f '.解:由已知,必有0]1[lim )(0=-→x f x e,从而0)(lim 0=→x f x ,而0)(=x x f 在连续,故0)0(=f .于是)0(1)0()(1lim )(lim 1arctan lim200)(0f xf x f x f x e x x x x f x '=-==-=→→→. 故21)0(='f .5.设)(x f 具有二阶导数,)(,sin )()2(lim )(2x dF t xx f t x f t x F t 求⎥⎦⎤⎢⎣⎡-+=∞→.解: 令t h 1=,则)(2 sin )()2(lim)(0x f x hhxh x f h x f x F t '=⋅-+=→.从而)(2)(2)(x f x x f x F ''+'=',dx x f x x f dx x F x dF )]()([2)()(''+'='=.6.设f 是对任意实数y x ,满足方程 22)()()(xy y x y f x f x f +++= 的函数,又假设1)(lim=→xx f x ,求:(1))0(f ;(2))0(f '; (3))(x f '. 解:(1)依题意 R y x ∈∀,,等式 22)()()(xy y x y f x f y x f +++=+ 成立令0==y x 有 )0(2)0(f f = ⇒ 0)0(=f(2)又 1)(lim=→x x f x ,即 )0(10)0()(lim 0f x f x f x '==--→,∴ 1)0(='f(3)xx f x x f x f x ∆-∆+='→∆)()(lim )(0x x f x x x x x f x f x ∆-∆⋅+∆⋅+∆+=→∆)()()()(lim 220 x x x x x x f x ∆∆⋅+∆⋅+∆=→∆220)()(lim ])([lim 20x x x xx f x ∆⋅++∆∆=→∆ ]1)0(22x x f +=+'=∴ 21)(x x f +='.7.设曲线)(x f y =在原点与x y sin =相切,试求极限 )2(lim 21nf nn ∞→. 解:依题意有 1)0()0(='='f y 且0)0(=f∴ 222)0()2(lim )2(lim 2121=⋅-⋅=⋅∞→∞→n nf n f n nf n n n .8.设函数)(x f 在0=x 处可导且0)0(,0)0(='≠f f ,证明1])0()1([lim =∞→nn f n f .证:n n n n f f n f f n f ])0()0()1(1[lim ])0()1([lim -+=∞→∞→.=10)0(11)0()01(lim )0()0()1(lim ===⋅-+-∞→∞→e ee f nf n f f f n f n n n .1.计算函数baxax xb ab y )()()(= (0,0>>b a )的导数.解. a xb bx a b a x xb a b a a x b a x a b x b x b a a x x b a b a b y )(1)()()()(ln )(121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+='-- ⎥⎦⎤⎢⎣⎡+-=x b x a a b a x x b a b b a x ln )()()( 2.引入中间变量,1)(2x x u +=计算1111ln 411arctan 21222-+++++=x x x y 的导数dx dy .解. 引入,1)(2x x u += 得11ln 41arctan 21-++=u u u y ,于是dxdudu dy dx dy ⋅=, 又 ()()4242422111111111141121x x x u u u u du dy +-=+-=-=⎪⎭⎫ ⎝⎛--+++=,21xx dx du +=, 则()22242121121xx x x x x x dx dy ++-=+⋅⎪⎭⎫⎝⎛+-= 3.设y y x +=2,232)(x x u +=,求dudy. 解. dudxdx dy du dy ⋅= , 又()()1223,12212++=+=x x x dx du y dy dx ,得121+=y dx dy , ()x x x du dx ++=21232, 则得()()xx x y du dy +++=2121232 4.已知 2arctan )(),2323(x x f x x f y ='+-=,求=x dx dy .解:22)23(12)2323arctan()2323()2323(+⋅+-='+-⋅+-'='x x x x x x x f y π43)23(12)2323arctan(02200=+⋅+-='=∴===x x x x x x y dxdy .1. 计算下列各函数的n 阶导数. (1) 6512-+=x x y ; (2) x e y xcos =. 解 (1)⎪⎭⎫⎝⎛+--=611171x x y ,()()()()()()⎥⎦⎤⎢⎣⎡+---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛-=∴++1161117!1611171n n nn n n x x n x x y (2) ()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=-='4cos 2sin 21cos 212sin cos πx e x x e x x e y x x x()⎪⎭⎫ ⎝⎛⋅+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=''42cos 24sin 4cos 22πππx ex x e y xx由此推得 ()()⎪⎭⎫ ⎝⎛⋅+=4cos 2πn x eyxnn2. 设x x y 2sin 2=, 求()50y .解 ()()()()()()()()()()"+'+=248250249150250502sin 2sin 2sin x x C x x C x x y⎪⎭⎫ ⎝⎛⋅+⋅⨯+⎪⎭⎫ ⎝⎛⋅+⋅+⎪⎭⎫ ⎝⎛⋅+=2482sin 2249502492sin 2502502sin 24950250πππx x x x xx x x x x 2sin 212252cos 2502sin 24950250⋅+⋅+-= ()[]x x x x 2cos 1002sin 212252249+-=3. 试从y dy dx '=1, 0≠'y , 其中y 三阶可导, 导出()322y y dy x d '''-=, ()()52333y y y y dy x d '''''-''= 解 y dy dx '=1 ,()()322211y y y y y dy dx y dx d dyx d '''-='⋅'-''=⋅⎪⎪⎭⎫ ⎝⎛'=∴ ()()()()()()52623333313y y y y y y y y y y y dy dx y y dx d dy x d '''''-''='⋅'''⋅'⋅''+''''-=⋅⎪⎪⎭⎫ ⎝⎛'''-=∴ 4. 设()x f 满足()()0 312≠=⎪⎭⎫⎝⎛+x xx f x f , 求()()()()x f x f x f n ,,'.解 以x 1代x ,原方程为()x x f x f 321==⎪⎭⎫ ⎝⎛,由()()⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+x x f x f x x f x f 321 312,消去⎪⎭⎫⎝⎛x f 1,求得()x x x f 12-=,且得()212xx f +=',()()()()2!111≥-=++n x n x f n n n . 5.设()arcsin f x x =,试证明()f x 满足 (1)2(1)()()0x f x xf x '''--= (2) ,1,0,0)()()12()()1()(2)1()2(2==-+--++n x f n x xf n x f x n n n(3)求()(0)n f解 (1)()211x x f -=',()()()22221112211xx xx x x x f --=-⋅--='', ()()()012='-''-∴x f x x f x ,(2)上式两边对x 求n 阶导数得()()[]()()[]()()()()()()()()()()()()()()()[]x f n x xf x f n n x f x n x f x x f x x f x n n n n n nn⋅⋅+-⋅-⋅---+-='-''-=+++1221211021222即 ()()()()()()()()01212122=-+--++x f nx xf n x f xn n n 。
微积分课后题答案第二章习题详解

例如是其的一个第二类间断点,但即在处左极限存在,而,即在处右极限不存在.
4.求下列函数的间断点,并说明间断点的类型:
(1) f(x)= ;(2) f(x)=;
(3) f(x)= ;(4) f(x)= ;
(5) f(x)= .
解: (1)由得x=-1, x=-2
证:
,由极限的保号性知.
,使当时有,此时与同号,因为n为奇数,所以(2X)n与(-2X)n异号,于是与异号,以在上连续,由零点存在定理,至少存在一点,使,即至少有一实根.
(7)正确,见教材§2.3定理5;
(8)错误,只有非零的无穷小量的倒数才是无穷大量。零是无穷小量,但其倒数无意义。
3. 指出下列函数哪些是该极限过程中的无穷小量,哪些是该极限过程中的无穷大量.
(1) f(x)= ,x→2;(2) f(x)=lnx,x→0+,x→1,x→+∞;
(3) f(x)= ,x→0+,x→0-;(4) f(x)= -arctanx,x→+∞;
也即,所以当时,.
再证必要性:
若当时,,则,
所以==.
综上所述,当x→x0时,(x)~β(x)的充要条件是
=0.
2. 若β(x)≠0,β(x)=0且存在,证明(x)=0.
证:
即.
3. 证明: 若当x→0时,f(x)=o(xa),g(x)=o(xb),则f(x)·g(x)=o(),其中a,b都大于0,并由此判断当x→0时,tanx-sinx是x的几阶无穷小量.
解: ∵f(0)=a,
要f(x)在x=0处连续,必须.
即a=1.
6※.设f(x)= ,讨论f(x)的连续性.
微积分经济数学吴传生第二章

(2)如l果 im C(C0)就 , 说 与 是同阶;的
特殊如 地果 lim1,则称 与是等价的;无
记作 ~;
(3)如l果 im kC (C0,k0)就 , 是 说 是 k阶的 无穷 . 小
8. 等价无穷小的性质
定理(等价无穷小替换定理)
准则Ⅰ′ 如果当xU0(x0,r)(或x M)时,有 (1) g(x) f (x) h(x),
(2) limg(x) A, limh(x) A,
xx0 ( x)
xx0 ( x)
那末lim f (x)存在,且等于A.(夹逼准则) xx0 ( x)
准 则 Ⅱ 单 调 有 界 数 列 必 有 极 限 .
设 ~ , ~ 且 li m 存 ,则 l在 i m li m .
9. 极限的唯一性
定 理 若 lif( m x ) 存 在 ,则 极 限 唯 一 .
连续定义
limy0
x0
x l ix0m f(x)f(x0)
左右连续
连续的 充要条件
在区间[a,b] 上连续
推论2 如果 lim f(x)存,在 而 n是正,整 则数 limf([x)n ][lim f(x)n ].
4. 求极限的常用方法
a.多项式与分式函数代入法求极限; b.消去零因子法求极限; c.无穷小因子分出法求极限; d.利用无穷小运算性质求极限; e.利用左右极限求分段函数极限.
5. 判定极限存在的准则
连续函数的 运算性质
非初等函数 的连续性
初等函数 的连续性
间断点定义
第一类 可跳 去跃 间间 断断 点点
第二类 无振 穷荡 间间 断断 点点
苏州大学微积分下习题答案

n = PQ × s = (3,15,3) = 3(1,5,1)
方程为 (x − 2) + 5y + (z +1) = 0 ,即 x + 5y + z −1 = 0
六、设直线 L : x = y −1 = z −1与平面π:2x + y − z − 3 = 0 ,(1)求证 L 与π 相交,并求交点坐标; −1 1 2
λa + μb = (2λ − μ, −λ + 2μ,3λ − μ) , 3λ = μ
七、已知 OA = (1, 2,3) , OB = (2, −1,1) ,求△ AOB 的面积.
OA× OB
= (5, 5, −5) , SΔABC
=
1 2
OA× OB
=
53 2
1
微积分(二)同步练习答案
§8.3 曲面及其方程
A = −3B 或 A = B ,故 x + 3y = 0 或 3x − y = 0 3
五、求通过点 P(2, 0, −1) ,且又通过直线 x + 1 = y = z − 2 的平面方程. 2 −1 3
取 Q(−1, 0, 2) , n ⊥ PQ = (−3, 0,3) , n ⊥ s = (2, −1,3)
D1
A
=
−(c
+
1 4
a)
,
D2
A
=
−(c
+
1 2
a)
,
D3
A
=
−(c
+
3 4
a)
四、已知两点 M1 (1, 2, 3) 和 M 2 (1, −2, −1) ,试用坐标表示式表示向量 M1M 2 及 −3M1M 2 .
微积分-四川大学数学学院

习题课教学大纲(微积分II)(征求意见稿)课程名称:大学数学-微积分II英文名称:Calculus课程性质:必修课程代码:20113830(上册)20112530(下册)面向专业:大学数学II各专业习题课指导丛书名称:高等数学(第五版)出版单位:高等教育出版社出版日期:2002年7月主编:同济大学应用数学系习题课讲义名称:大学数学习题课系列教材--微积分编写单位:四川大学数学学院编写日期:2006年8月主编:四川大学数学学院高等数学教研室第一章函数与极限1.函数与极限2学时(1)基本内容函数的概念,函数的表示,函数的几种特性,复合函数,分段函数,极限的概念及性质,极限存在准则,重要极限,无穷小量与无穷大量,极限的计算,函数的连续与间断,闭区间上连续函数的性质。
(2)基本要求处理作业批改中发现的问题。
通过具体例子讲解极限的计算问题,连续性讨论问题,复合函数定义域及分段函数的复合问题。
第二章导数与微分2学时(1)基本内容:导数及高阶导数的定义;复合函数隐函数参数方程决定的函数和分段函数的求导;微分。
(2)基本要求:处理作业批改中发现的问题;举列说明复合函数隐函数参数方程决定的函数和分段函数的一阶二阶求导;会求微分。
第三章微分中值定理与导数的应用2学时1.中值定理及洛必达法则(1) 基本内容:中值定理的应用;洛必达法则求极限.(2)基本要求:处理作业批改中发现的问题;通过具体例子讲解中值定理的题型和解题步骤;求各种不定形的极限并注意化简和变形技巧.2.不等式的证明和函数曲线(1)基本内容:函数单调性凹凸性的判定;函数的最值;泰勒定理.(2)基本要求:处理作业批改中发现的问题;举例说明函数导数二阶导数曲线关系;举例讲解利用曲线特征证明函数不等式;举例说明函数最值的应用;泰勒中值定理的应用方法.第四章不定积分2学时一、基本内容:复习原函数和不定积分的概念,不定积分的基本性质及基本积分公式,总结换元积分法和分部积分法,有理函数、三角函数的有理式和简单无理函数的积分的计算方法。
微积分同步练习

(A)、平行 标面。 (B)、平行 轴
(C)、垂直于 轴 (D)、通过 轴
4.以下平面中通过坐标原点的平面是.
(A)、 (B)、 (C)、 (D)、
三、化曲线 为参数方程.
画出以下曲线在第一卦限内的图形:
1. ;2. .
四、求通过三点 、 和 的平面方程.
§8.5平面及其方程(2)(3)§8.6空间直线及其方程
3.设直线 与 ,那么 与 的夹角为.
(A) /6(B) /4(C) /3(D) /2
4.两平行线 与 之间的距离是.
(A) (B) (C) (D)
三、设直线 通过 ,且与 相交,又与 垂直,求直线 的方程.
四、求通过 轴,且与平面 的夹角为 的平面方程.
三、设 ,求 在 轴上的投影及在 轴上的分向量.
四、已知 为三个模为1的单位向量,且 ,求 之值.
五、已知 ,计算:
; ; .
六、设 ,问 知足何关系时,可使 与 轴垂直?
七、已知 , ,求△ 的面积.
§8.3曲面及其方程
一、一动点与两定点 等距离,求这动点的轨迹方程.
二、方程 表示什么曲面?
三、将 平面上的双曲线 别离绕 轴及 轴旋转一周,求所生成的旋转曲面的方程.
一、填空题:
1.过点 且平行于直线 的直线方程为.
2.过点 且与直线 垂直的平面方程为.
3.过点 且与二平面 和 平行的直线方程是.
4.当 时,直线 与平面 平行.
二、选择题:
1.以下直线中平行与 坐标面的是.
(A) (C) (B) (D)
2.直线 与平面 的关系是.
(A)平行(B)垂直相交(C) 在 上(D)相交但不垂直
微积分第二章习题参考答案

,
y
3 2(1)3 (t 2)4
3 2(1)3 (t 1)4
,
y(n)
n!(1)n (t 2)n1
n!(1)n (t 1)n1
n!(1)n ( (t
1 2)n1
(t
1 1)n1
).
四.求下列函数所指定阶的导娄数.
1. y sh , y(100) . y sh ch , y 2ch sh , y 3sh ch , y(4) 4ch sh,
五.(1)
1 dy dx d arctan y dx 1 y2 dy,
x0
x0
x
x
2时,f ( x)在x 0处连续.
六.
设f
(
x
)存在,
求下列函数y的二阶时数
d2y dx 2
.
(1) y f (e x ).
y e x f (e x ),
y e x f (e x ) e2x f (e x ),
(2) f ( x) 0, y ln f ( x).
y f ( x) . f (x)
2.当 1时,函数在x 0处可导,
当 1时,函数在x 0处不可导.
三.解. f (1) f (1 0) 1, f (1 0) a b,
b 1 a;
又
f(1)
lim
x10
x2 1 x1
2,
f
(1)
lim
x 1 0
(ax b) x1
1
(ax 1 a) 1
lim
a,
2. tan t ;
3. 2 ln(1 x) dx; 1 x
4. 8tan(1 2 x2 )sec2(1 2 x2 ) xdx;
(t )(1 t ) (t )
清华大学微积分习题课参考答案(微分法、方向导数与梯度、泰勒公式)

(x
+
y)
+
f
(x
−
y)
+
∫ x+y x− y
g (t )dt
其中函数
f
具有二阶导数
g
具有一阶导
数,求 , . ∂2u , ∂2u ∂x2 ∂y2
∂2u ∂x∂y
解:因为 , ∂u ∂x
=
f
′(x +
y) +
f
′(x
−
y) +
g(x
+
y) −
g(x −
y)
, ∂u
∂y
=
f ′(x +
y) −
f ′(x −
. x(z
+
y)x
−1
(
∂z ∂y
+ 1)
=
x
所以 . ∂z ∂y
(1,2)
=
0
( )设函数 由方程 确定,求 . 2
z = z(x, y)
x + y − z = ez
∂z
∂x(1,0)
解:将 y 看作常数, z 看作是 x 的函数,在 x + y − z = ez 两端关于 x 求导,得
. 1 −
r2 cos2 θ
−
∂f ∂x
r
cosθ
−
∂f ∂y
r sinθ
, ∂2u = ∂2 f
∂z2 ∂z2
微积分 B(2)
第 2 次习题课(By ) Huzm
6 / 12
所以
∂2u ∂r 2
+
1 r2
∂2u ∂θ 2
+
1 r
《微积分Ⅱ》课程简介

061B0180 微积分Ⅱ 2
Calculs Ⅱ 1.5-1
预修课程:微积分Ⅰ
面向对象:本科一年级,全校除数学专业、文科专业和艺术类专业外的其他专业本科生而开设的数学基础课
内容简介:《微积分》是以函数为研究对象,运用极限手段(如无穷小与无穷逼近等极限过程),分析处理问题的一门数学学科,学时数为40学时。教学内容有:函数展开为傅里叶级数、矢量代数与空间解析几何、多元函数的微分学、多元函数的积分学(二重积分)。
推荐教材或参考书:
《微积分》,苏德矿、吴明华、金蒙伟、杨起帆,高等教育出版社2000年7月;
《微积分》,吴迪光、张彬,浙江大学出版社,1995年7月;
《微积分》,卢兴江、金蒙伟等,浙江大学出版社,2006年7月;
《高等数学》,同济大学数学教研室,高等教育出版社,1999年7月;
《高等数学》,同济大学数学教研室,高等教育出版社,1999年7月;
《高等数学习题课28讲》,苏德矿、吴明华、卢兴江,浙江大学出版社2005年7月。
最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
《高等数学习题课28讲》,苏德矿、吴明华、卢兴江,浙江大学出版社2005年7月。
《微积分Ⅱ》教学大纲
ห้องสมุดไป่ตู้ 061B0180 微积分Ⅱ 2
Calculs Ⅱ 1.5-1
预修课程:微积分Ⅰ
面向对象:本科一年级,全校除数学专业、文科专业和艺术类专业外的其他专业本科生而开设的数学基础课
一、教学目的与基本要求:
通过本课程的教学,使学生掌握微积分学的基本概念、基本理论、基本方法和具有比较熟练的运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础;并使学生受到高等数学的思想方法熏陶和运用它们解决实际问题的基本训练;培养学生具有一定的抽象思维能力、逻辑推理能力、空间想象能力以及综合运用所学知识进行分析、解决实际问题的能力。
清华大学微积分(数列极限的运算、存在性判断、柯西准则)题目

lim
n→∞
an
=
A
lim
n→∞
bn
=
B
lim a1bn + a2bn−1 + ⋯ + anb1 = AB
n→∞
n
.设极限 存在,证明 . 2
lim
n→∞
(a1
+
a2
+⋯
+
an
)
=
a
lim a1 + 2a2 + ⋯ + nan = 0
n→∞
n
3.设θ ≠ kπ ,证明数列{sin nθ}发散.
三、实数理论(柯西收敛准则,Bolzano 定理,区间套,有限覆盖)
Page 1 of 2
2/2
3.下列哪些命题与柯西准则等价,证明你的结论或举出反例.
( )对于任意的 ,均有 . 1
p ∈ ℕ*
lni→m∞(an+ p − an ) = 0
( ) , ,只要 ,就有 . 2 ∀ε > 0 ∃N ∈ℕ*
n>N
| an − aN |< ε
( ) , 以及 ,只要 ,就有 . 3 ∀ε > 0 ∃Nε ∈ℕ*
Aε ∈ ℝ
n > Nε
| an − Aε |< ε
.证明:有界数列 若不收敛,则必存在两个子列 , ,使得 4
{an }
{ank } {amk }
lim
k →∞
ank
= a,
lim
k →∞
amk
=b
且a≠b.
5.(1)利用 Cauchy 收敛准则证明单调有界数列收敛;
(2)利用区间套定理证明单调有界数列收敛.
大一微积分二至四章课后习题答案

第二章习题解答 习 题 2—11. 用定义求函数2y x =在1x =处的导数。
解:(1)22(1)(1)(1)12()y f x f x x x ∆=+∆-=+∆-=∆+∆;(2)22()2y x x x x x∆∆+∆==+∆∆∆; (3)00limlim(2)2x x yx x ∆→∆→∆=+∆=∆.2. 已知一物体的运动方程为38s t =+ ()m ,求该物体在2()t s =时的瞬时速度。
解:(1)323(2)(2)(2)816126()()s s t s t t x t ∆=+∆-=+∆+-=∆+∆+∆;(2)230[126()()](2)lim12t s t x t v t t∆→∆∆+∆+∆===∆∆。
3. 求在抛物线22y x =+上点1x =处的切线方程与法线方程. 解:因为2(2)2y x x ''=+=,12,x y ='= 故所求的切线方程为 32(1)y x -=- 即 210x y -+-=所求的法线方程为 13(1)2y x -=--即 15022x y +-=。
4. 设0()f x '存在,试利用导数的定义求下列极限:(1)000()()limx f x x f x x ∆→-∆-∆; (2)000()()lim h f x h f x h h →+--;(3)000()(2)lim 2x f x x f x x x∆→+∆--∆∆.解:(1) 0000000()()[()]()lim lim ()x x f x x f x f x x f x f x x x∆→∆→-∆-+-∆-'=-=-∆-∆;(2)原式0000000()()()()lim lim 2()h h f x h f x f x h f x f x h h→→+---'=+=-;(3)原式0000000()()(2)()3lim lim ()222x x f x x f x f x x f x f x x x ∆→∆→+∆--∆-'=+=∆-∆。
第二章习题课(2)导数的定义2

课程名称:微积分2 第二章 导数与微分典型例题题型一、导数的定义(2)例7 证明:(1)可导的奇函数的导数是偶函数;(2)可导的偶函数的导数是奇函数;(3)可导的周期函数的导数仍为周期函数.. .)()(x f x f -=-方法1 等式两边对 求导,得 x 证 (1)设为可导的奇函数, )(x f )(f D x ∈则对于任意的 ,有 )()1()(x f x f '-=-⋅-')()(x f x f '=-'即,所以 为偶函数。
)(x f '方法2:由导数定义,得x x f x x f x f x ∆--∆+-=-'→∆)()(lim )(0所以为偶函数。
)(x f 'xx f x x f x ∆--∆-=→∆)()(lim 0xx f x x f x ∆+∆--=→∆)()(lim 0)(x f '=(3)设 为周期为 的可导函数,则)(x f T ,)()(x f T x f =+方法1 等式两边对求导,得 x ,)()(x f T x f '=+'所以 为周期为 的函数。
)(x f 'T )()()(lim )()(lim )(00x f xx f x x f xT x f x T x f T x f x x '=∆-∆+=∆+-∆++=+'→∆→∆方法2例8 若 为偶函数,且存在,证明 。
)0(f ')(x f 0)0(='f 分析:因为没有 可导的条件,不能用例5的方法1。
只能用导数定义.)(x f 证 0)0()(lim )0(0--='→x f x f f x )0(f '-=)1(0)0()(lim 0-⋅----=→x f x f x 所以 ,即。
0)0(2='f 0)0(='f例9 设为可导的偶函数,且 ,求 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 有关中值问题的解题方法
利用逆向思维 , 设辅助函数 . 一般解题方法: (1) 证明含一个中值的等式或根的存在 , 多用罗尔定理, 可用原函数法找辅助函数 . (2) 若结论中涉及到含中值的两个不同函数 , 可考虑用 柯西中值定理 . (3) 若结论中含两个或两个以上的中值 , 必须多次应用 中值定理 . (4) 若已知条件中含高阶导数 , 多考虑用泰勒公式 ,
①
故有 ② 将①代入② , 化简得
例3. 设实数
满足下述等式
证明方程
个实根 . 证: 令 则
在 ( 0 , 1) 内至少有一
且 由罗尔定理知存在一点
即
使
ห้องสมุดไป่ตู้
二、 导数应用
1. 研究函数的性态: 增减 , 极值 , 凹凸 , 拐点 , 渐近线 , 曲率 2. 解决最值问题 • 目标函数的建立与简化
• 最值的判别问题
3. 其他应用 : 相关变化率; 求不定式极限 ; 证明不等式 ; 几何应用 ; 研究方程实根等.
例4. 填空题
(1) 设函数 其导数图形如图所示, 单调减区间为 单调增区间为 极小值点为 极大值点为 提示: ; . 的连续性及导函数 ; ;
的正负作 f (x) 的示意图.
(2) 设函数
的图形如图所示, 则函数 f (x) 的图
时, 如何设辅助
例9. 设
递减 , 证明对一切
且在
有
上
存在 , 且单调
证: 设
则
所以当 令 得
即所证不等式成立 .
例10.
证: 只要证
利用一阶泰勒公式, 得
故原不等式成立.
例11. 证明当 x > 0 时, 证: 令 则
法1 由
在
处的二阶泰勒公式 , 得
与 1 之间) 故所证不等式成立 .
法2 列表判别:
形在区间
在区间 拐点为
上是下凸弧;
上是上凸弧 ; .
提示:
的正负作 f (x) 的示意图.
例5. 证明
证:
在
上单调增加.
令
在 [ x , x +1 ]上利用拉格朗日中值定理, 得
故当 x > 0 时,
从而
在
上单调增.
例6. 设
在
上可导, 且
证明 f ( x ) 至多只有一个零点 .
证: 设
则 故 在 上连续单调递增, 从而至多只有 因此
有时也可考虑对导数用中值定理 .
(5) 若结论为不等式 , 要注意适当放大或缩小的技巧.
例1. 设
在
上连续, 在
内可导, 且 使
证明至少存在一点
证: 问题转化为证
设辅助函数
显然 少存在一点 在 [ 0 , 1 ] 上满足罗尔定理条件, 故至 使
即有
例2. 试证存在 证: 欲证 即要证
且
因 f ( x ) 在 [ a , b ] 上满足拉氏中值定理条件, 故有
一个零点 . 又因
也至多只有一个零点 .
改为
思考: 若题中 其它不变时, 如何设辅助函数?
例7. 求数列 证: 设
的最大项 .
用对数求导法得
极大值
令 列表判别: 因为 处 又因 得
在
只有唯一的极大值点
因此在
也取最大值 .
中的最大项 .
例8. 证明 证: 设 ,则
故 即
时,
单调增加 , 从而
思考: 证明 函数更好 ? 提示:
即
法3 利用极值第二判别法.
故 因此当 时
也是最小值 , 即
例12. 求
解法1 利用中值定理求极限
原式
解法2 利用泰勒公式 令 则
原式
解法3 利用罗必塔法则
原式
第二章 习题课 (二)中值定理及导数的应用
一、 微分中值定理及其应用
二、 导数应用
一、 微分中值定理及其应用
1. 微分中值定理及其相互关系
罗尔定理
拉格朗日中值定理
柯西中值定理
泰勒中值定理
2. 微分中值定理的主要应用 (1) 研究函数或导数的性态 (2) 证明恒等式或不等式
(3) 证明有关中值问题的结论