平面图形与立体图形的认识
《立体图形与平面图形》-完整版课件
提示:可见棱应画为实线形线段;不可见棱应 画为虚线形线段.
从
从
正
左
面
面
看
看
从
面
面
看
看
从 上 面 看
练习:如图,右面三幅图分别是从哪个方向看 这个棱柱得到的?
上面
正面
左面
探究:右图是一个 由 9 个正方体组成的立 体图形,分别从正面、 左面、上面观察这个图 形,各能得到什么平面 图形?
练习:
3.如图,你能看到哪些立体图形?
(第3题)
(第4题)
4.如图,你能看到哪些平面图 形?
小结: 本节课主要学习了立体图形和平面图形的概念, 并初步经历了由具体实物的外形中抽象出几何图形 的过程,体验到了现实生活与数学的密切联系.
作业: 1.结合身边的实际物体,看一看可以得到哪些 几何图形,其中哪些是立体图形?哪些是平面图形? 说出来与同学交流一下. 2.动手画一画你所熟悉的立体图形. 3.选用合适的材料和工具,做一个三棱柱和一 个四棱锥.
学习目标: 1. 能画出简单的几何体的展开图; 2. 能根据展开图判断几何体的形状,并能理解 这样做的现实意义.
学习重点: 通过“展开”和“围成”两种途径认识常见
几何体的展开图.
本课件可与几何画板课件《正方体的11种展 开图》配合使用.
这些精美的包装盒是怎么制成的?
要设计、制作一个包装盒,除了美术设计以外,还要了 解它展开后的形状,好根据它来准备材料,这就是我们今天 学习的立体图形的展开图.
本课学习“立体图形”和“平面图形”两个概 念,是初中学段“图形与几何”领域的第一课.首 先通过前言中的实际问题和大量实物图片,展示现 实生活中多姿多彩的图形世界与几何知识间的密切 联系;接着从观察长方体形纸盒入手,引导我们初 次经历从具体物体的外形中抽象出几何图形,然后 通过观察、对比,归纳出立体图形和平面图形的概 念,并进一步认识常见的棱柱和棱锥等立体图形.
4.1.1立体图形与平面图形(原卷版)
4.1.1 立体图形与平面图形2.了解多面体可由平面图形围成,进一步认识立体图形与平面图形之间的关系3.通过丰富的实例,认识点、线、面、体,初步感受它们之间的关系.逐步由感性认识上升到对抽象的数学图形的认识,从而提高空间想象能力和几何直观能力知识点一立体图形的认识几何图形是从实物中抽象出的各种图形,分为立体图形和平面图形有些几何图形的各部分不都在同一平面内,它们是立体图形合并同类项解方程的方法与步骤几种常见的立体图形如下表:图例即学即练(2022上·广东河源·七年级校考期中)观察下列实物模型,其整体形状给我们以圆柱的形象的是()A.B.C .D.知识点二平面图形有些几何图形的各部分都在同一平面内,它们是平面图形名称图形名称图形直线射线线段三角形长方形正方形梯形平行四边形圆扇形一些简单的平面图形可以组合成许多优美的图案,如某些国家的国旗、各种银行标志、由各种形状的地砖铺成的漂亮的地面等。
即学即练(2023上·山东济南·七年级校考阶段练习)下列平面图形中,是棱柱的展开图的是()A.B.C.D.知识点三从不同方向看物体一般地,从立体图形的正面、左面、上面三个角度观察立体图形,往往会得到不同形状的平面图形看得见的轮廓线画实线,看不见的轮廓线画虚线.从不同方向看同一物体,所看到的平面图形可能不同,也可能相同。
2.分别从正面左面和上面看几种常见几何体得到的平面图形即学即练(2023上·山东青岛·七年级统考期中)如图所示的几何体是由5个大小相同的小正方体搭成的,从上面看到的几何体的形状图是()A.B.C.D.知识点四立体图形的展开图有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形.这样的平面图形称为相应立体图形的展开图。
对于同一个立体图形,展开图不是唯一的,按不同的方式展开,可以得到不同的平面图形,如正方体的展开图就有以下11种情况,可分为四类:(1)“二二二”型(2)“三三”型(3)“一三二”型(4)“一四一”型注意:不能作为正方体展开图的有以下几种常见情况:(1)“五子连”型,四个以上的正方形排成一排,如或等。
认识平面图形与立体图形
当立体图形与投影面成一定角度放置时,其投影为斜投影。斜投影的形状会随 角度变化而变化。
利用平面图形理解立体图形
截面理解
通过切割立体图形得到平面图形(截面),可以帮助我们理解立体图形的内部结 构。
展开图理解
某些立体图形可以展开成平面图形,观察这种展开图有助于我们理解立体图形的 表面积和体积等性质。例如,正方体可以展开成一个由六个正方形组成的平面图 形。
要点二
产品设计
立体图形在产品设计中起到关键作用 。设计师使用立体图形来展示产品的 外观和细节。通过立体图形,设计师 可以更好地表达产品的设计理念和功 能特点,以便制造商和消费者更好地 理解和使用产品。
要点三
3D打印
立体图形在3D打印领域具有重要应用 。3D打印技术可以通过立体图形文件 直接制造出三维物体。设计师可以使 用立体图形软件创建3D模型,并将其 导出为立体图形文件,然后通过3D打 印机将模型打印成实物。这种技术为 制造业、医疗、艺术等领域带来了革 命性的变革。
应用实例
• 建筑设计:建筑师利用立体图形的性质设计出稳定、 美观的建筑结构,如楼房、桥梁等。
• 机械工程:工程师通过立体图形的分析和计算,设计 出各种复杂的机械零件和装置。
• 计算机图形学:立体图形在计算机图形学中作为三维 模型的基础,应用于游戏开发、影视特效等领域。
• 物理模拟:物理学家利用立体图形的几何性质,研究 物体的运动规律、碰撞检测等问题。
06
总结与展望
对平面图形与立体图形的总结
定义与特性
平面图形是在二维空间中定义的图形,其只有长度和宽度,没有深 度。而立体图形是在三维空间中定义的,具有长度、宽度和深度。
分类与例子
常见的平面图形包括圆形、正方形、三角形等。常见的立体图形包 括长方体、正方体、球体、圆锥体等。
4[1]11立体图形与平面图形1
将下面的几何图形分为两组
学.科.网
有些几何图形的各部分不都在同一平面内,它们是立体图形. 如长方体、正方体、圆柱、圆锥、球等. 有些几何图形的各部分都在同一平面内,它们是平面图形. 如线段、角、三角形、长方形、圆等.
(打“√”或“×”) (1)球与圆都是平面图形.( × ) (2)如图所示的图形中有3个立体图形.( √ )
【解析】选B.圆柱从正面和左面看到的均是长方形,从上面看 到的是圆;长方体从三个方向看到的均是长方形;选项C从正 面和左面看到的均是梯形,从上面看到的是圆环;选项D从正 面和左面看到的均是三角形,从上面看到的是“ ”.
4.(2012·玉林中考)下列几何体中,从正面、左面、上面看到 的图形都相同的是( )
【解析】(1)观察可知共有5个正方体. (2)S表=5×6a2-10a2=20a2.
题组二:立体图形的展开图 1.(2012·天门中考)将如图所示表面带有图案的正方体沿某些 棱展开后,得到的图形是( )
【解析】选C.由正方体可知三种图案不能在一行或一列,故排 除A项、B项;若五角星在圆的下面,则正方形在圆的右面, 故D项不正确.
【总结提升】立体图形与展开图 同一个立体图形,按不同方式展开得到的展开图不一定一样,
因此,一个立体图形的展开图并不是唯一确定的.但是无论是哪 种方式的展开图将其围成的立体图形都是同一个.
5.(2012·吉林中考)如图,由5个完全相同的小正方体组合成 一个立体图形,从上面看到的图形是( )
【解析】选A.从上面看到的图形,共分两行两列四个正方形.
解:(1)按柱、锥、球来分:长方 体、正方体、圆柱、棱柱是柱体。圆锥 棱锥是锥体。球是球体。
(2) 按平面和曲面来分:长方体、
正方体、棱柱、棱锥只有平面。圆柱、 圆锥、球至少有一个曲面。
立体图形与平面图形教案
立体图形与平面图形教案第一章:立体图形的概念与特征1.1 立方体定义:立方体是一种六个面都是正方形的立体图形。
特征:立方体有六个面,每个面都是正方形,对面的面积相等,有12条边和8个顶点。
1.2 球体定义:球体是一个所有点到球心的距离都相等的立体图形。
特征:球体只有一个面,即球面,没有边界,所有的点到球心的距离都相等。
第二章:平面图形的概念与特征2.1 矩形定义:矩形是一个有四个角都是直角的四边形。
特征:矩有两对相等的对边,对边平行,四个角都是直角。
2.2 三角形定义:三角形是一个有三个边的多边形。
特征:三角形有三条边和三个角,每个角都小于180度,任意两边之和大于第三边。
第三章:立体图形的认识与绘制3.1 立方体的绘制步骤:先画一个正方形,再在正方形的基础上画出三个相同大小的正方形,连接对面的边,形成立方体。
3.2 球体的绘制步骤:以一个中心点为圆心,画出一个圆,以同样的半径在圆的外面再画一个圆,连接圆上的点,形成球体。
第四章:平面图形的认识与绘制4.1 矩形的绘制步骤:先画一个角,画一条线段,再画一个角,再画一条线段,连接两条线段的末端,形成矩形。
4.2 三角形的绘制步骤:先画一个角,画一条线段,再画一个角,再画一条线段,连接两条线段的末端,形成三角形。
第五章:立体图形与平面图形的应用5.1 立体图形在现实生活中的应用举例:箱子、桌子、椅子等都是立体图形的应用。
5.2 平面图形在现实生活中的应用举例:门、窗户、衣物等都是平面图形的应用。
第六章:立体图形的计算与性质6.1 立方体的体积与表面积体积公式:V = a^3 (a为立方体的边长)表面积公式:S = 6a^2性质:立方体的体积和表面积与其边长的关系。
6.2 球体的体积与表面积体积公式:V = (4/3)πr^3 (r为球体的半径)表面积公式:S = 4πr^2性质:球体的体积和表面积与其半径的关系。
第七章:平面图形的计算与性质7.1 矩形的面积与周长面积公式:A = l w (l为矩形的长,w为矩形的宽)周长公式:P = 2(l + w)性质:矩形的面积和周长与其长和宽的关系。
《立体图形和平面图形》数学教学PPT课件(2篇)
探索提高
5.如图是一个正方体纸盒的展开图,按虚线拆成正方体后,相对面上的两个数互为倒数,
则a+b﹣c( )
A.1
B.− 1
C.5
6
第四章 几何图形初步
4.1.1 立体图形和平面图形
(几何图形的认识)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
课堂测试
2.如图,是一个正方形纸盒的外表面展开图,则这个正方体纸盒是( )
【答案】A 【详解】 解:根据展开图可知:两个a是相对的位置,故B,C错误; 相邻的两个面必定有一个a或b故D错误; 故选:A.
课堂测试
3.(2019·万杰朝阳学校初一期中)如图是每个面上都有一个汉字的正方体的一种展开图,那
课堂测试
4.如图所示的四个几何体中,从正面看能得到四边形的有( )
A.1个 B.2个 C.3个 D.4个
【详解】 圆柱从正面看得到长方形,符合题意;圆锥从正面看得到三角形,不符合题意;球从正面看得 到圆,不符合题意;正方体从正面看得到正方形,故符合题意. 故选B.
课堂测试
5.(2019·河北衡水中学初一期中)下列图形属于柱体的有几个( )
思考
把下列立体图形展开,看它的平面展开图是什么?
思考
把下列立体图形展开,看它的平面展开图是什么?
平面图形与立体图形的认识
【几何图形】从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形分为柱体,锥体,球体多面体:围城棱柱和棱锥的面都是平的面,像这样的立体图形叫做多面体欧拉公式:定点数+面数-棱数=2练习:1.下面几何体中,不是多面体的是()A球体 B 三棱锥 C 三棱柱D四棱柱2.下列判断正确的是A长方形是多面体B柱体是多面体C圆锥是多面体D棱柱、棱锥都是多面体3、将半圆绕它的直径旋转一周形成的几何体是()A、圆柱B、圆锥C、球D、正方体【点、线、面、体】(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
例、右侧这个几何体的名称是_______;它由_______个面组成;它有_______个顶点;经过每个顶点有_______条边。
解答:五棱柱,7,10,3【直线】1、概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
2、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。
它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
3、表示:一条直线可以用一个小写字母表示;或者用两个大写字母表示练习:1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线.2、我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________.【射线】直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
图1 图2一条射线可以用端点和射线上另一点来表示。
【线段】1、直线上两个点和它们之间的部分叫做线段。
这两个点叫做线段的端点。
人教版七年级数学上册教案:认识立体图形与平面图形
4.1.1 立体图形与平面图形
第1课时认识立体图形与平面图形
教学目标:
1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.
2.能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.
教学重点:识别简单几何体.
教学难点:从具体事物中抽象出几何图形.
教学过程:
一、引入新课
(播放北京申奥成功的欢庆之夜)2001年7月13日北京申奥成功,这是每一个中国人终生难忘的日子.让我们一起来看看北京奥运会奥运村模型图.(出示章前图)
你能从中找到一些熟悉的图形吗?
(学生看书)小组讨论交流.
你能再举出一些常见的图形吗?学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流.在这些图片或实物中有我们熟悉的图形吗?
二、找一找,议一议
思考P115图4.1-3,并出示实物(如茶叶盒、地球仪、字典及魔方)及多媒体演示(如谷堆、帐篷、金字塔),它们与我们学过的哪些图形相类似?
出示棱柱、圆柱、棱锥、圆锥模型,看一看,再动手摸一摸,说说它们的异同.(教师巡视指导,提倡学生尽量用自己的语言描述,互相补充.)归纳:平面图形与立体图形的联系和区别.
三、课时小结
请学生谈:我知道了什么?我学会了什么?我发现了什么?
四、课堂作业
1.课本P118练习第1题.
2.课本P121习题4.1第1、2、3题.
3.(1)收集一些常见的几何体的实物;
(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.。
《立体图形和平面图形》(第1课时几何图形的认识)
《立体图形和平面图形》(第1课时几何图形的认识)汇报人:日期:CATALOGUE 目录•立体图形•平面图形•立体图形和平面图形的认识过程•立体图形和平面图形的在生活中的应用•小结与展望立体图形01立体图形是指图形的各个部分不都在同一平面内的图形。
与平面图形的区别立体图形是三维的,而平面图形是二维的。
立体图形的定义立体图形在空间中占据一定的体积,而平面图形只存在于一个平面上。
占据空间方向感立体感立体图形具有方向感,不同方向看到的形状可能不同;而平面图形则不具备方向感。
立体图形能够给人一种立体感,而平面图形则不具备立体感。
03立体图形的特点0201常见的立体图形球体只有一个曲面,并且没有棱的立体图形。
圆锥体具有一个顶点和一个底面,并且侧面展开后为扇形的立体图形。
圆柱体具有上下两个圆面,并且侧面展开后为矩形的立体图形。
正方体具有6个面,12条棱,8个顶点的立体图形。
长方体具有6个面,12条棱,8个顶点的立体图形,与正方体相似但长宽高不同。
平面图形02平面图形是一个二维图形,它描绘的是在一个平面上的点、线、面等元素之间的关系。
定义平面图形是无限延展的,没有边界,可以在平面上自由移动而不改变其形状和大小。
特点圆形、三角形、矩形、正方形、椭圆、扇形等。
常见的平面图形平面图形是由线段、曲线、角等元素组成的,这些元素之间通过点、角、边等关系相互连接。
特点根据构成元素的差异,平面图形可以分为线段图形、多边形图形、圆形图形等。
分类平面图形的性质包括对称性、平行性、垂直性等,这些性质在解决几何问题中具有重要的作用。
性质圆形圆形是一个由曲线包围的平面图形,它具有轴对称性和旋转对称性。
圆形的周长和面积是两个非常重要的几何量。
三角形是一个由三条线段组成的平面图形,它具有稳定性、平衡性和简洁性等特点。
三角形的内角和等于180度,这是三角形的一个重要性质。
矩形是一个由两条平行线和两条垂直线组成的平面图形,它具有平行性和垂直性等特点。
图形的认识
乐杰数理化乐中学,学中杰乐杰数理化教师辅导讲义课题图形的认识基础讲解认识常见的几何图形,角的概念,线的定义教学目标难点:角平分线重点、难点教学内容基础知识回顾:1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。
几何图形分为平面图形和立体图形。
(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
3、常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
4、从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
5、立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
(1)圆柱和圆锥的侧面展开图(2)棱柱和棱锥的展开图(3)根据展开图判断立体图形的规律:A展开图全是长方形或正方形时------正方体或长方体;B展开图中含有三角形时-----棱锥或棱柱;若展开图中含有2个三角形3个长方形-----三棱柱;若展开图中全是三乐杰数理化乐中学,学中杰角形(4个)-----三棱锥。
4.1.1立体图形与平面图形
4.1.1 立体图形与平面图形
栏目索引
例2 如图4-1-1-3所示,下列各标志图形主要由哪些简单的几何图形组 成?
图4-1-1-3
解析 图①由圆组成;图②由长方形和正方形组成;图③由四边形(或菱 形)组成;图④由圆和圆弧组成.
4.1.1 立体图形与平面图形
知识点三 从不同方向看物体
栏目索引
常见立体图形从不同方向看得到的平面图形列表如下:
栏目索引
答案 B A是球,B是圆柱,C是圆锥,D是三棱柱,故选B.
4.1.1 立体图形与平面图形
2.如图是一座房子的平面图,组成这幅图的图形有 ( )
栏目索引
A.三角形、长方形 B.三角形、正方形、长方形 C.三角形、正方形、长方形、梯形 D.正方形、长方形、梯形 答案 C 由题图可以看出,在这个平面图中,房子的屋顶是三角形,其 余的图形分别有长方形、正方形、梯形.这座房子的平面图是由上述四 种图形组成的.
答案 A 点拨 考查从不同角度观察物体的能力,体会立体图形与平面图形相互 转化的过程,培养空间想象能力.
4.1.1 立体图形与平面图形
栏目索引
题型二 正方体的平面展开图 例2 图4-1-1-8是每个面上都有一个汉字的正方体的一种平面展开图, 那么在原正方体中和“国”字所在面相对的面上的汉字是 ( )
4.1.1 立体图形与平面图形
知识点一 认识立体图形 1.下列几何图形中,是棱柱的是 ( )
答案 B A是圆柱;B是棱柱;C是球;D是圆锥.
栏目索引
4.1.1 立体图形与平面图形
栏目索引
2.与图中实物图相类似的立体图形按从左至右的顺序依次是 ( )
A.圆柱、圆锥、正方体、长方体 B.圆柱、球、正方体、长方体 C.棱柱、球、正方体、棱柱 D.棱柱、圆锥、棱柱、长方体
4.1.1 第1课时 认识立体图形与平面图形
导入新课
情境引入
多 姿 多 彩 的 图 形
第四章 几何图形初步
几何——研究图形的形状、大小和位置关系的学科
形状(如方的、圆的等) 大小(如长度、面积、体积等) 位置关系(如相交、垂直、平行等)
讲授新课
一 几何图形
合作探究
观察这个纸盒,从中可以看出哪些你熟悉的图形?
…
三棱柱 四棱柱 五棱柱
…
三棱锥 四棱锥 五棱锥
…
----- 2018.12.21
从实物中抽象出的各种图形统称为几何图形.
4.1.1 《认识立体图形与平面图形》
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1. 能从简单的实物外形中抽象出几何图形.(难点)
2. 会判断一个几何图形是立体图形还是平面图形 能准确识别简单几何体.(重点)
二 立体图形
观察与思考
问题1 说一说下面这些几何图形有什么共同特点?
( 三棱柱 ) ( 四棱柱 ) ( 球 )
( 圆台 )
课堂小结
本节课主要学习了立体图形和 平面图形的概念,并初步经历了由 具体实物的外形中抽象出几何图形 的过程,体验到了现实生活与数学 的密切联系.
课堂小结
简单几何图形的分类:
立体图形 几何图形
平面图形
柱体 球体 锥体
圆柱 棱柱
圆锥 棱锥
多边形 圆 线段 角
这些几何图形的各部分不都在同一平面内, 它们是立体图形.
你还能举出其他立体图形的例子吗?
认识一下棱柱和棱锥:
三棱柱
六棱柱
四棱锥
你能再举出一些棱柱、棱锥的实例吗?
P115 思考
新课标小学图形与几何
新课标小学图形与几何新课标小学图形与几何是小学数学教学中的重要组成部分,它涵盖了平面图形和立体图形的认识、测量以及图形的变换等内容。
通过学习,学生能够培养空间观念,提高观察能力和思维能力。
一、平面图形的认识在小学阶段,学生首先接触的是平面图形,包括基本的几何形状如圆形、正方形、长方形、三角形等。
学生需要了解这些图形的基本特征,比如边的数量、角的类型等。
此外,学生还将学习如何识别和分类这些图形。
二、平面图形的测量平面图形的测量是图形与几何教学中的重要内容。
学生将学习如何测量图形的周长和面积。
例如,正方形的周长是四边之和,面积是边长的平方。
通过实际测量和计算,学生能够加深对图形属性的理解。
三、立体图形的认识立体图形包括球体、立方体、圆柱体等。
学生需要了解这些图形的三维特征,比如面、棱和顶点的数量。
通过对立体图形的观察和操作,学生可以逐步建立空间观念。
四、图形的变换图形的变换包括平移、旋转和对称等。
学生将学习如何通过这些变换来改变图形的位置或形状,这有助于培养学生的空间想象力和创造力。
五、图形与几何的实际应用图形与几何的学习不仅仅局限于理论,它还与实际生活紧密相连。
例如,学生可以通过学习图形的测量来解决实际问题,如计算房间的面积或围栏的长度。
六、结语通过新课标小学图形与几何的学习,学生不仅能够掌握基本的几何知识,还能够培养解决问题的能力。
这为学生未来的学习和生活打下了坚实的基础。
教师在教学过程中应注重引导学生通过观察、操作和思考来深入理解图形与几何的概念,激发学生的学习兴趣和探索精神。
立体图形与平面图形讲解
从正面看
从左面看
从上面看
练一练:分别从正面、左面、上面观察下面的立体图 形,各能得到什么平面图形?
立体图形
正面
左面
上面
分别从正面、左面、上面看一个由若干个正方体组成的立 体图形,得到的平面图形如下图所示,你能判别出来有几个正方 体组成吗?你能搭出这个立体图形吗?动手试试看!
正面
左面
上面
4.1.3 立体图形的展开图
制作立体模型的步骤: 1.画出展开图; 2.裁剪、 折叠、粘贴; 3.修饰、加工.
画出正确的展开图是关键.
怎样画出一个五角 星?怎样设计一个产品 包装盒?怎样绘制一张 校园布局平面图?不同 的图形各有什么特点和 性质?所有这些,都需要 我们知道更多的图形知 识.
从城市建筑到乡村 住宅,从立交桥到交通标 志,从剪纸艺术到城市雕 塑,从申奥标志到动物形 态……图形世界是多姿多 彩的!
物体的形状、大小 和位置关系是几何研究 的内容.
正方体 球
六棱柱
圆锥 长方体
四棱锥
说一说下面这些几何图形又有什么共同特点?
有些几何图形的各部分都在同一平面内, 它们是平面图形.
下面各图中包含哪些简单的平面图形?请再举出一 些平面图形的例子.
练习:
1.如图,说出下图中的 一些物体的形状所对应 的立体图形.
2.图中的各立体图形的表面包含哪些平面图形? 试指出这些平面图形在立体图形中的位置.
从正面看
从左面看
从上面看
例2:分别从正面、左面、上面看圆柱、圆锥、 球,各能得到什么平面图形?
立体图形
从正面看
从左面看
从上面看
.
例3:分别从正面、左面、上面观察三棱柱 和四棱锥,看一看各能得到什么平面图形?
4.1.1(1)认识立体图形与平面图形
它发生在2001年7月13日
它的举办体现了一种精神
它将在2008年举行,地点是北京
2008北京奥运会的奥运村模型图
世贸中心重建方案
大 连 天 伦 商 厦
上 海 东 方 明 珠
北京西站
温 岭 大 厦
温 岭 电 信 大 楼
太平新貌
繁昌小区
乡 村 一 角
城北大石、泽太互通立交
交 通 标 志
箬 横 拼 搏 雕 塑
小 区 东 雕 辉 塑 公 园 海 鸟 雕 塑
北 山 河 绿 地 雕 塑
三 星 转 盘 申 奥 雕 塑
4.1 多姿多彩的图形
3.1.1 立体图形和平面图形(一)
长方体
正方体
球
圆柱
圆锥
长方体、正方体、球、圆柱、圆锥等 几何图形都是立体图形(solid figure)。 你还能再举出生活中类似于这些立体 图形的物体吗?
3.1.1 立体图形和平面图形(一)
帐篷
笔筒
金字塔
棱柱
棱锥
棱柱、棱锥也都是立体图形。
你能举出生活中类似于棱柱、棱锥的物体吗?
3.1.1 立体图形和平面图形(一)
圆
棱锥
以上图形都是立体图形
请你说出图中含有的一些立体图形。
3.1.1 立体图形和平面图形(一)
用橡皮泥做出以下立体图形:
3.1.1 立体图形和平面图形(一)
发 现 了 什 么 ?
学 会 了 什 么 ?
你 知 道 了 什 么 ?
请 你 谈 收 获
3.1.1 立体图形和平面图形(一)
请你用几何图形帮小明设计庭院。
作业:
1、作业本(2) P24
2、教科书 P115~116 习题3.1(1~3)题
小学数学认识平面形与立体形
小学数学认识平面形与立体形在小学数学的学习中,认识平面形与立体形是一个非常基础且重要的内容。
通过学习平面形和立体形,孩子们能够培养对空间的感知能力,提高观察和分析问题的能力。
接下来,我们将以小学数学的视角来探讨平面形与立体形的认识。
一、平面形平面形是指只在平面内存在的图形。
常见的平面形有圆形、三角形、四边形等。
下面我们逐个讲解这些平面形的特点和性质。
1. 圆形圆形是一种很特殊的平面形。
它的特点是:圆形的每一点到圆心的距离相等。
我们用半径来表示一个圆的大小。
圆形的性质包括直径、弧、弦和扇形等。
通过学习圆形,孩子们可以了解到很多有趣的几何现象,如圆的面积和周长的计算等。
2. 三角形三角形是由三个边和三个角组成的平面形。
根据三条边的长短,三角形可以分为等边三角形、等腰三角形和一般三角形。
通过学习三角形,孩子们能够加深对角度和边的概念的理解,并且可以学习到使用勾股定理计算三角形边长的方法。
3. 四边形四边形是由四条边和四个角组成的平面形。
常见的四边形有正方形、长方形、菱形和梯形等。
每种四边形都有自己特定的性质和计算方法。
通过学习四边形,孩子们可以学会测量和计算四边形的周长和面积。
二、立体形立体形是指存在于三维空间中的物体。
与平面形不同,立体形具有长度、宽度和高度三个维度。
下面我们将介绍几种常见的立体形。
1. 立方体立方体是一种六个面都是正方形的立体形。
它有八个顶点和十二条棱。
通过学习立方体,孩子们可以了解到体积和表面积的概念,并且可以学会计算立方体的体积和表面积。
2. 圆柱体圆柱体是一种由两个圆面和一个矩形侧面构成的立体形。
圆柱体的特点是底面积和高度相乘等于它的体积。
通过学习圆柱体,孩子们可以加深对圆的概念的理解,并且可以学会计算圆柱体的体积和侧面积。
3. 锥体锥体是一种由一个圆锥面和一个封口顶点构成的立体形。
锥体的特点是底面积和高度相乘再除以3等于它的体积。
通过学习锥体,孩子们可以学会计算锥体的体积和侧面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【几何图形】从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形分为柱体,锥体,球体多面体:围城棱柱和棱锥的面都是平的面,像这样的立体图形叫做多面体欧拉公式:定点数+面数-棱数=2练习:1.下面几何体中,不是多面体的是()A球体 B 三棱锥 C 三棱柱D四棱柱2.下列判断正确的是A长方形是多面体B柱体是多面体C圆锥是多面体D棱柱、棱锥都是多面体3、将半圆绕它的直径旋转一周形成的几何体是()A、圆柱B、圆锥C、球D、正方体【点、线、面、体】(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
例、右侧这个几何体的名称是_______;它由_______个面组成;它有_______个顶点;经过每个顶点有_______条边。
解答:五棱柱,7,10,3【直线】1、概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
2、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。
它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
3、表示:一条直线可以用一个小写字母表示;或者用两个大写字母表示练习:1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线.2、我们在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为__________________.【射线】直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
图1 图2一条射线可以用端点和射线上另一点来表示。
【线段】1、直线上两个点和它们之间的部分叫做线段。
这两个点叫做线段的端点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、表示:一条线段可用它的端点的两个大写字母来表示。
练习:1.如图1,AC=DB ,写出图中另外两条相等的线段__________.2.如图2所示,线段AB 的长为8cm ,点C 为线段AB 上任意一点,若M 为线段AC 的中点,N 为线段CB 的中点,则线段MN 的长是_______________.3. 三条直线两两相交,则交点有_______________个.4、如图4,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ). A .CD=AC-BD B .CD=21BC C .CD=21AB-BD D .CD=AD-BC 5、如图5,小华的家在A 处,书店在B 处,星期日小明到书店去买书, 他想尽快的赶到书店,请你帮助他选择一条最近的路线( ). A .A →C →D →B B .A →C →F →B C .A →C →E →F →B D .A →C →M →B【角 】1、角的相关概念(1)有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。
(2)一条射线绕着它的 从一个位置旋转到另一个位置所形成的图形叫做角。
2、角的分类(1)锐角:小于 的角叫做锐角。
(2)直角: 的一半叫做直角。
(3)钝角:大于 而小于 的角。
(4)当角的终边和始边在一条直线上时,组成的角叫做平角。
(5)周角:把一条射线绕着它的断点旋转,当终边和始边重合时所成的角叫做周角。
图 4图5如果两个角的和是一个直角,那么这两个角叫做互为余角,其中一个角叫做另一个角的余角。
如果两个角的和是一个平角,那么这两个角叫做互为补角,其中一个角叫做另一个角的补角。
3、角的表示角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有一下四种表示方法:①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
3、角的度量角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’=60”4、角的性质(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较(3)角可以参与运算。
5、角的平分线及其性质一条射线把一个角分成两个的角,这条射线叫做这个角的平分线。
角的平分线有下面的性质定理:(1)角平分线上的点到这个角的两边的距离相等。
(2)到一个角的两边距离相等的点在这个角的平分线上。
练习:1、如下图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=25°,则∠AOB=().OC(1)ABOD C(2)A BA.50°B.75°C.100°D.20°2如图1,∠AOB______∠AOC,∠AOB_______∠BOC(填>,=,<);3.如图2,∠AOC=______+______=______-______;∠BOC=______-______= _____-________.4、.若∠1+∠2=90°,∠3+∠2=90°,∠1=40°,则∠3=______°5、已知∠1=200,∠2=300,∠3=600,∠4=1500,则∠2是____的余角,_____是∠4的补角.【相交线】1、相交线中的角两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。
我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。
临补角互补,对顶角相等。
练习:找出图中的同位角,内错角,同旁内角1.如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.F E OD CBA F EODC BAOF EDCBA12(1) (2)2.如图2,直线AB 、CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________. 3、如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.2、垂线两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB ,CD 互相垂直,记作“AB ⊥CD ”(或“CD ⊥AB ”),读作“AB 垂直于CD ”(或“CD 垂直于AB ”)。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。
简称:垂线段最短。
练习:1.如图1,直线PQ ⊥MN ,垂足为O ,AB 是过点O 的直线,∠1=50°,则∠2•的度数为( )A .50°B .40°C .60°D .70°(1) (2) 2.如图2,当∠1与∠2满足条件________时,OA ⊥OB .3、如图,AC ⊥BC,C 为垂足,CD ⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点的距离是_________.CBA【平行线】1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。
平行用符号“∥”表示,如“AB∥CD”,读作“AB 平行于CD”。
同一平面内,两条直线的位置关系只有两种:相交或平行。
2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简称:同位角相等,两直线平行。
平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:同旁内角互补,两直线平行。
4、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
练习:1.如图1,⑴直线AD与BC被直线AB所截,∠1和∠2是,∠2和∠DAB是,⑵∠5和∠6是直线和直线被直线所截而形成的内错角;2.如图2,⑴∠1和∠2是角,它们是由直线和直线被直线所截而成的,⑵∠EDC和∠DAB是角,它们是由直线和直线被直线所截而成的;如图3,⑴若∠1 = ∠2,则∥,理由是:⑵若∠1 = ∠G,则∥,理由是:⑶若∠1 = ∠C,则∥,理由是:⑷若∠2 +∠3 = 180°,则∥,理由是:。
4.如图4,两条直线AB、CD被第三条直线EF所截,∠1 = 80°,下列结论正确的是()A、若∠2 = 80°,则AB∥CDB、若∠5 = 80°,则AB∥CDC 、若∠3 = 100°,则AB ∥CD D 、若∠4 = 80°,则AB ∥CDA BACC DDE11122233445566F11223345G FF43EE DDCC B A BA。