七年级上册数学 平面图形的认识(一)专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)

1.

(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;

(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;

(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.

【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,

∴∠BDA=∠CEA=90°,

∵∠BAC=90°,

∴∠BAD+∠CAE=90°,

∵∠BAD+∠ABD=90°,

∴∠CAE=∠ABD,

在△ADB和△CEA中,

∴△ADB≌△CEA(AAS),

∴AE=BD,AD=CE,

∴DE=AE+AD=BD+CE;

(2)解:结论DE=BD+CE成立;理由如下:

∵∠BDA=∠BAC=α,

∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,

∴∠CAE=∠ABD,

在△ADB和△CEA中,

∴△ADB≌△CEA(AAS),

∴AE=BD,AD=CE,

∴DE=AE+AD=BD+CE;

(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,

∴∠CAE=∠ABD,

在△ABD和△CEA中,

∴△ABD≌△CEA(AAS),

∴S△ABD=S△CEA,

设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,

∴S△ABC= BC•h=12,S△ACF= CF•h,

∵BC=2CF,

∴S△ACF=6,

∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,

∴△ABD与△CEF的面积之和为6.

【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.

2.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.

(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;

(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.

【答案】(1)25°

(2)解:∠BOC=65°,OC平分∠MOB

∠MOB=2∠BOC=130°

∠BON=∠MOB-∠MON=130°-90°=40°

∠CON=∠COB-∠BON=65°-40°=25°

(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°

∠AOC=∠AOB-∠BOC=180°-65°=115°

∠MON=90°

∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°

4∠NOC+∠NOC=25°

∠NOC=5°

∠NOB=∠NOC+∠BOC=70°

【解析】【解答】解:(1)∠MON=90,∠BOC=65°

∠MOC=∠MON-∠BOC=90°-65°=25°

【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度

数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.

3.已知,如图,在四边形ABCD中,,延长BC至点E,连接AE交CD于点F,使

(1)求证:;

(2)求证:;

(3)若BF平分,请写出与的数量关系________ 不需证明

【答案】(1)证明:∵∠BAC=∠DAE,

∴∠BAC+∠CAF=∠DAE+∠CAF,

∴∠BAF=∠CAD;

(2)证明:∵∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,

∴∠B=∠D,

∵AB∥CD,

∴∠B+∠BCD=180°,

∴∠D+∠BCD=180°,

∴AD∥BE;

(3)2∠AFB+∠CAF=180°

【解析】【解答】解:(3)如图2,∵AD∥BE,

∴∠E=∠1=∠2,

∵BF平分∠ABC,

∴∠3=∠4,

∵∠AFB是△BEF的外角,

∴∠AFB=∠4+∠E=∠4+∠1,

∴∠AFB=3+∠2,

又∵AD∥BC,

∴∠ABC+∠BAD=180°,

∴∠3+∠4+∠1+∠CAF+∠2=180°,

即2∠AFB+∠CAF=180°.

故答案为:2∠AFB+∠CAF=180°.

【分析】(1)根据∠BAC=∠DAE,运用等式性质即可得出∠BAC+∠CAF=∠DAE+∠CAF,进而得到∠BAF=∠CAD;(2)根据∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,可得∠B=∠D,最后根据∠B+∠BCD=180°,可得∠D+∠BCD=180°,进而判定AD∥BE;(3)根据AD∥BE,可得∠E=∠1=∠2,再根据BF平分∠ABC,可得∠3=∠4,根据∠AFB是△BEF的外角,得出∠AFB=∠4+∠E=∠4+∠1,即∠AFB=3+∠2,最后根据AD∥BC,得到∠ABC+∠BAD=180°,进而得到2∠AFB+∠CAF=180°.

相关文档
最新文档