高中物理复习弹力专题之绳子、弹簧和杆.doc
高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析
高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析轻绳特点轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
轻杆特点轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
轻弹簧特点轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k 为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
特别提醒:橡皮筋与轻弹簧极为相似,只是橡皮筋不能被压缩静止或匀速运动例1、如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力为F=mg,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
例2、如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图所示。
则可知杆对小球的弹力为F=mg,方向与重力的方向相反即竖直向上。
注意:在这里杆对小球的作用力方向不是沿着杆的方向。
以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
专题物理L弹簧和细绳连接体问题
• 解析:由于弹簧处于拉伸状态,物体处于静止状态,可见小车对物体提供水平向左 的静摩擦力,大小为5 N,且物体和小车间的最大静摩擦力Ffm≥5 N;若小车以1 m/s2的加速度向右匀加速运动,则弹簧还处于拉伸状态,其弹力不变,仍为5 N, 由牛顿第二定律可知:F+Ff=ma,Ff=5 N≤Ffm,则物体相对小车仍静止,弹力 不变,摩擦力的大小也不变,选项A、C正确。
• 1.一般思路
• 分析物体此时的受力情况
由牛顿第二定律列方程
瞬时加速度
• 2.两种模型
• (2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯 性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的, 即此时弹簧的弹力不突变。
• 在求解瞬时性问题时应注意: • (1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重
正确的是 ( ) A.此时轻弹簧的弹力大小为20 N B.小球的加速度大小为8 m/s2,方向向左 C.若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s2,方向向右 D.若剪断弹簧,则剪断的瞬间小球的加速度为0
• 思路点拔: 剪断轻绳时,弹簧的弹力不能瞬间发生变化。
•
剪断弹簧时,绳上的拉力在瞬间发生变化。
错误、D正确。
• 例题5 细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不 粘连,平衡时细绳与竖直方向的夹角为53°,如图所示,以下说法正确的是( )
• (已知cos 53°=0.6,sin 53°=0.8) • A.小球静止时弹簧的弹力大小为mg • B.小球静止时细绳的拉力大小为 mg • C.细绳烧断瞬间小球的加速度立即变为g • D.细绳烧断瞬间小球的加速度立即变为 g
“绳”与“弹簧”模型对比3页
“绳”与“弹簧”模型对比高中物理教学中经常会遇到细绳(轻杆)、弹簧模型,弄清楚两者的异同点,对于分析物体在某一时刻的瞬时加速度有着关键点作用。
一、两类模型的区别1.刚性绳(或杆)一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复的时间,一般题目中的细绳、轻杆或接触面在不加特殊说明时,均可按此模型处理。
其中杆与绳模型中处理问题也有差别,如杆能承受拉力和压力,而轻绳只能承受拉力(不能起支撑作用)。
绳上的拉力只能沿绳,而杆上的作用力可以沿杆,也可以与杆成任意夹角。
2.弹簧(或橡皮绳)此类模型的特点是形变量大,形变恢复需要较长的时间,在剪断的瞬间可认为弹簧来不及恢复原长,因此弹力大小可近似认为保持不变。
二、两种模型的对比例1. 如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大?解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F2=mg,F1=F2'+mg=2mg。
剪断细线后再分析两个物体的受力示意图,如图3,绳中的弹力F1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图3剪断后m1的加速度大小为2g,方向向下,而m2的加速度为零。
从上述解析过程中,我们不难发现,m1在细线剪断前后受力发生了变化,故其瞬时加速度不同;m2在剪断细线前后,由于弹簧弹力来不及发生变化,所以其瞬时加速度与剪断前相同。
例2如图4所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态。
求解下列问题:⑴现将L2线剪断,求剪断L2瞬间物体的加速度。
⑵若将图4中的细线L1改为长度相同、质量不计的轻弹簧,如图5所示,其他条件不变,求剪断L2瞬间物体的加速度。
8 高中物理复习专题之绳子弹簧和杆产生的弹力特点绳拉物问题牛顿第二定律剖析整体法与隔离法
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
高考二轮物理复习专题.弹簧问题(附答案)附参考答案
1专题 弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来, 因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F =kx ,其中x 是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F =kx 与形变量x 成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g /k 2 -m 2g /k 2=m l g /k 2.参考答案:C此题若求m l 移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
关于高级高中物理弹簧弹力问题归类总结归纳
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度Fa M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于图图 3-7-1图 3-7-3地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0 B.大小为233g ,方向竖直向下C.大小为233g ,方向垂直于木板向下 D. 大小为233g , 方向水平向右 【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ=== 【答案】 C. 四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.图图图【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ== 解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B A F m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d k θ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的图形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大? (2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k=,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得: 022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg kF +=,解得: 032mgF =.]【答案】022gx 32mg 图图 3-7-8说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
(完整版)高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习
高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习 一.轻绳模型1。
轻绳模型的特点:“绳"在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力.它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
2.轻绳模型的规律:①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
3。
绳子的合力一定的情况下,影响绳上拉力大小的因素是绳子的方向而不是绳子的长度。
4.力对绳子做的功,全部转化为绳对物体的做的功。
5.绳连动问题:①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,一般以物体的速度作为实际速度,绳的速度是物体速度的分速度,当绳与物体的速度夹角为θ 时,= cos v v θ绳物例1:如图所示,将一根不能伸长、柔软的轻绳两端分别系于A 、B 两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为1θ,绳子张力为F 1;将绳子B 端移至C 点,待整个系统达到平衡时,两段绳子间的夹角为2θ,绳子张力为F 2;将绳子B 端移至D 点,待整个系统达到平衡时,两段绳子间的夹角为3θ,绳子张力为F 3,不计摩擦,则( )A .1θ=2θ=3θB .1θ=2θ<3θC .F 1 〉F 2 〉F 3D .F 1 =F 2 〈F 31—1.如图所示,轻绳上端固定在天花板上的O 点,下端悬挂一个重为10 N 的物体A ,B 是固定的表面光滑的小圆柱体.当A 静止时,轻绳与天花板的夹角为30°,B 受到绳的压力是 ( )A.5 NB 。
10 NC 。
5错误! ND.10错误! N1—2。
1、轻杆、轻绳、轻弹簧模型
点评: 解答本题的关键是抓住:活结中轻绳上各点的拉力大小相
等,死结中几段绳子的张力不一定相等。固定轻杆(死杆)作
用力的方向不一定沿杆。当轻杆以铰链形式连接时(活杆), 要使轻杆处于平衡状态,则两段轻绳的作用力的合力必须沿轻 杆轴线方向。
四、建模启示
• (1)对于弹力方向的确定,一定要分清情景类型及相关结 论和规律尤其要注意结合物体运动状态分析。 • (2)轻杆对物体的弹力不一定沿杆,其具体方向与物体所
处的状态有关,一般应结合物体平衡或牛顿第三定律分析。
• (3)分析此类问题的关键是区别各模型的特点,分析发生 的物理过程,依据不同的物理场景,把握其运动状态,分 析其临界状态下的条件或突变问题中的“拐点”,弄清变化 和不变的物理量,只有如此才能更好的解决此类问题。
解析:杆与球相连,做非匀速圆周运动,其轨迹为圆的一部分, 只有重力做功,由机械能守恒,选取最低处为零势能面,则:
2 vB T mg m 由牛顿第二定律得 l 解得: T m g(3 2 sin )
1 2 mgl (1 sin ) mv B 2
[典例2]轻杆长为L,一端用光滑轴固定,另一端系一个可视为 质点,质量为的小球,把小球拉至图示的位置,无初速度地自 由释放到最低处的过程中,小球做什么运动?到最低处时速度 多大?弹力多少?若其它条件不变,把轻杆换为细绳,则释放 后小球做什么运动?到最低处时速度多大?弹力为多少?
由速度的分解得 由牛顿第二定律得 v1 v c cos
解得 T / 3.5mg
2 mv B T/ mg l
点评: 轻杆与球相连时,只有重力势能向动 能的转化;无能量损耗。轻绳与球相连时, 在绳突然拉紧的瞬间,沿径向的动能将耗
高中物理中“轻绳”、“轻杆”和“轻弹簧”问题的分析
高中物理中“轻绳”、“轻杆”和“轻弹簧”的问题分析中学阶段常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,这三种模型都是由各种实际情况中的绳、杆和弹簧抽象出来的理想化物理模型。
但它们的成因和特性并不完全相同,由此导致这类模型在实际应用中有很多同学混淆出错,下面对这三种模型的特点及区别应用作一些简单的讨论和分析。
一、三个模型的正确理解1. 轻绳模型轻绳也称细线,它的质量可忽略不计;轻绳是软的;同时它的劲度系数非常大,可认为在受外力作用时它的形变极微小,看作不可伸长;其弹力的主要特征是:①不能承受压力,不能产生侧向力,只能产生沿绳收缩方向的拉力。
②内部张力大小处处相等,且与运动状态无关。
③轻绳的弹力大小可发生突变。
2. 轻杆模型轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数非常大,可认为在受外力作用时形变极微小,看作不可伸长或压缩;其弹力的主要特征是:①轻杆既可产生压力、也可产生拉力,且能产生侧向力〔力的方向不一定沿着杆的方向〕;②轻杆各处受力大小相等,且与运动状态无关;③轻杆的弹力可发生突变。
3. 轻弹簧模型轻弹簧的质量可忽略不计,可以被压缩或拉伸。
其弹力的主要特征是:①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力;②轻弹簧各处受力大小相等,且与弹簧形变的方向相反;③轻弹簧产生的弹力是连续变化的,不能发生突变,只能渐变〔除弹簧被剪断外〕;④在弹性限度内,弹力的大小与弹簧的形变量成正比,即F=kx,其中k 为弹簧的劲度系数,x为弹簧的伸长量或缩短量。
二、三种模型的主要区别及应用下面结合例题分析它们的区别及应用:1. 轻绳对物体只能产生沿绳收缩方向的拉力,而轻杆对物体的弹力不一定沿杆的方向。
【例1】如图1所示,轻绳一端系着质量为m的小球,另一端系在固定于小车上一直杆AB的上端;试求当小车以a的加速度水平向左匀加速度直线运动,轻绳对小球作用力的大小和方向?解析:如图2所示,小球受两个力作用:重力mg和绳对小球弹力T。
最新人教高中物理必修1第三章弹力绳子、弹簧和杆产生的弹力特点案例分析-word文档
人教高中物理必修1第三章弹力绳子、弹簧和杆产生的弹力特点案例分析模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m的物体系于长度分别为L1、L2的两根细绳OA、OB上,0B一端悬挂在天花板上,与竖直方向夹角为θ,OA水平拉直,物体处于平衡状态,现在将OA剪断,求剪断瞬间物体的加速度,若将绳OB换为长度为L2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F的合力与F 大小相等,方向相反,可以解得F(2F 1消失,)所示,F 合=mgsin θ,所以a=gsin θ。
对弹簧来说,其伸长量大,形变恢复需要较长时间,认为弹簧的长度还没有发生变化。
高考物理课件第二章 实 验 二 探究弹力和弹簧伸长的关系
(3)为完成该实验,设计的实验步骤如下: A.以弹簧伸长量为横坐标,以弹力为纵坐标,描出各组(x,F) 对应的点,并用平滑的曲线连接起来; B.记下弹簧不挂钩码时其下端在刻度尺上的刻度l0; C.将铁架台固定于桌子上,并将弹簧的一端系于横梁上,在 弹簧附近竖直固定一把刻度尺; D.在弹簧下端依次挂上1个、2个、3个、4个、……钩码,并 分别记下钩码静止时弹簧下端所对应的刻度,并记录在表格内,然 后取下钩码; E.以弹簧伸长量为自变量,写出弹力与弹簧伸长量的关系 式。首先尝试写成一次函数,如果不行,则考虑二次函数; F.解释函数表达式中常数的物理意义; G.整理仪器。
(3)令单个钩码重力为G,由题图知,当弹力一定(均为4G)
时,A、B、C三根弹簧的劲度系数之比为2∶3∶6,而A、
B、C三根弹簧的原长之比为L0∶
2 3
L0∶
1 3
L0=3∶2∶1,所以
弹簧劲度系数与弹簧原长成反比,图线A的上部发生弯曲的
原因是弹簧弹力超过其弹性限度,胡克定律不再成立。
答案:(1)铁架台 (2)弹簧的长度 (3)劲度系数与弹簧原长 成反比 弹簧弹力超过其弹性限度
(3)根据实验测量的数据,以所挂钩码个数n为横坐标,以弹 簧伸长量x为纵坐标,得到上述A、B、C三个弹簧的x-n图像
如图所示,根据图像可得出的实验结论为____________,图
线A的上部发生弯曲的原因是_____________________。
解析:(1)弹簧和刻度尺都要固定在铁架台上。
(2)实验中一定要待钩码静止时,测出弹簧长度,进而算出其 伸长量。
高考物理 专题2.6 轻绳、轻杆、轻弹簧 “绳上的‘死结’和‘活结’模型” “活动杆”与“固定杆”问题
专题2.6 轻绳、轻杆、轻弹簧“绳上的‘死结’和‘活结’模型”“活动杆”与“固定杆”问题轻杆、轻绳、轻弹簧模型1.三种模型对比型图型特只能发生微小形变张力大小相等方向特点可以是任意方向2.弹簧与橡皮筋的弹力特点(1)弹簧与橡皮筋产生的弹力遵循胡克定律F=kx。
(2)橡皮筋、弹簧的两端及中间各点的弹力大小相等。
(3)弹簧既能受拉力,也能受压力(沿弹簧轴线),而橡皮筋只能受拉力作用。
(4)弹簧和橡皮筋中的弹力均不能突变,但当将弹簧或橡皮筋剪断时,其弹力立即消失。
【典例1】如图所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m 的小球。
下列关于斜杆对小球的作用力F 的判断中,正确的是( )A .小车静止时,F =mg sin θ,方向沿杆向上B .小车静止时,F =mg cos θ,方向垂直于杆向上C .小车向右匀速运动时,一定有F =mg ,方向竖直向上D .小车向右匀加速运动时,一定有F >mg ,方向一定沿杆向上 【思路点拨】解答本题时可按以下思路进行:小球的运动状态―→小球所受的合力―――――――→牛顿第二定律或者平衡条件确定弹力的大小和方向【名师点睛】 轻杆弹力的确定方法杆的弹力与绳的弹力不同,绳的弹力始终沿绳指向绳收缩的方向,但杆的弹力方向不一定沿杆的方向,其大小和方向的判断要根据物体的运动状态来确定,可以理解为“按需提供”,即为了维持物体的状态,由受力平衡或牛顿运动定律求解得到所需弹力的大小和方向,杆就会根据需要提供相应大小和方向的弹力。
一、“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种.“活结”“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.“死结”“死结”可理解为把绳子分成两段,且不可沿绳子移动的结点。
高中物理教学参考:浅谈绳子与细杆和弹簧的区别
浅谈绳子与细杆和弹簧的区别在物理习题中,经常会碰到物体与绳子、细杆和弹簧相连接的问题,在高考中也常出现,而且得分率较低。
本文举例说明以期提高学生对此问题的认识。
现分别谈谈绳子与细杆和弹簧所起的作用的区别。
一、绳子与细杆例1.如图1所示,装有架子的小车,用细线拖着小球在水平地面上向左加速运动,加速度的大小为a,求绳子与竖直方向的夹角θ的正切值。
解析:对小球作受力分析,如图2所示,物体仅受重力mg和绳子拉力T的作用,把T沿竖直方向和水平方向作正交分解,对竖直方向和水平方向分别应用牛顿第二定律,得:即消去T得:例2.个质量为解析:,或1特点,成θ角。
F的方向由其与竖直的方向的夹角的正切表示,即绳子与细杆的另一个区别是:绳子只会给小球拉力,而细杆却还可如:当用长为的绳子系着一个小球,在竖直平面内做圆周运动,小须满足。
但是如果是用一根细杆连接着一个小球,在最高例3.如图5所示,一质量为m的物体系于长度分别为的轻弹簧和细绳上,的一端悬挂在天花板上,与竖直方向的夹角为水平拉直,物体处于平衡状态,现将剪断,求剪断瞬时物体的加速度。
解析:设上拉力为T1,上拉力为T2,重力为mg,物体在三力作用下,保持平衡。
得:剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度,因为,所以加速度,方向为T2反方向。
如果将图5中的轻弹簧改为长度相同的细绳,如图6所示,其它条件不变,求剪断的瞬间物体的加速度。
这一问题看似与上一问题非常相似,有的学生甚至会认为加速度同样是,但分析一下绳子与弹簧的拉力的特点,就会知道上述结果是错误的。
因为在图6中,被剪断的瞬间,细绳上张力的大小发生了突变,此瞬间,即球将沿弧线下摆,而在上题中弹簧的长度不能发生突变,即T1的大小和方向都不变,故两种情况下小球的初始运动状态是不同的。
例4.如图7所示,A、B两球质量相等,A球用不能伸长的轻绳系于O点,B球用轻弹簧系于O”点,O与O”点在同一水平面上分别将A、B球拉到与悬点等高处,使绳和轻弹簧均处于水平,弹簧处于自然状态,将两球分别解析:A动能。
经典高三物理模型绳子、弹簧和杆产生的弹力特点 知识点分析
绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
高中物理复习——弹簧专题
一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-= 1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g . 【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.图3-7-4图3-7-2图 3-7-1 图3-7-3【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0 B.,方向竖直向下C.,方向垂直于木板向下 D., 方向水平向右【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=. 撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为cos N F g a m θ=== 【答案】 C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =. 则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 . 【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k + 故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 【答案】221221()m m m g k + 21121211()()m m m g k k ++五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.图 3-7-5图3-7-6【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ). 【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A受力可知:11sin A F kx m g θ== 解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ= 设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B AF m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化. 结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,往往能达到事半功倍的效果.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k =, 物体B 刚要离开地面时弹簧的伸长量也是0mgx k=.(1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F所做的功等于物体A 增加的动能及重力势能的和. 即:201222F x mg x mv ⋅=⋅+得: v =图 3-7-7图3-7-8(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度. 在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-= 而0kx mg =,简谐运动在上、下振幅处12a a =,解得:也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg k F +=,解得: 032mg F =.【答案】32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关.八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用,我们用公式212P E kx =计算弹簧势能,弹簧在相等形变量时所具有的弹性势能相等一般是考试热点.弹簧弹力做功等于弹性势能的减少量.弹簧的弹力做功是变力做功,一般可以用以下四种方法求解:(1)因该变力为线性变化,可以先求平均力,再用功的定义进行计算; (2)利用F x -图线所包围的面积大小求解;(3)用微元法计算每一小段位移做功,再累加求和; (4)根据动能定理、能量转化和守恒定律求解.由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解.【例10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块A 和B 大小可忽略,它们分别带有A Q +和B Q +的电荷量,质量分别为A m 和B m .两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩.整个装置处于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力, A 、B 所带电荷量保持不变,B 不会碰到滑轮. (1)若在小钩上挂质量为M 的物块C 并由静止释放,可使物块A 对挡板P 的压力恰为零,但不会离开P ,求物块C 下降的最大距离h .(2)若C 的质量为2M ,则当A 刚离开挡板P 时, B 的速度多大?【解析】 通过物理过程的分析可知,当物块A 刚离开挡板P 时,弹力恰好与A 所受电场力平衡,弹簧伸长量一定,前后两次改变物块C 质量,在第(2)问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解.设开始时弹簧压缩量为1x ,由平衡条件1B kx Q E =,可得1B Q Ex k=① 设当A 刚离开挡板时弹簧的伸长量为2x ,由2A kx Q E =,可得: 2A Q Ex k= ②图 3-7-13故C 下降的最大距离为: 12h x x =+ ③ 由①②③三式可得: ()A B E h Q Q k=+ ④(2)由能量守恒定律可知,物块C 下落过程中,C 重力势能的减少量等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和. 当C 的质量为M 时,有:B MgH Q Eh E =+∆弹 ⑤当C 的质量为2M 时,设A 刚离开挡板时B 的速度为v ,则有:212(2)2B B MgH Q Eh E M m v =+∆++弹 ⑥由④⑤⑥三式可得A 刚离开P 时B 的速度为:v =⑦【答案】(1)()A B E h Q Q k=+(2)v =【例11】如图3-7-14所示,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,物体A B 、都处于静止状态.一不可伸长的轻绳一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向.现给挂钩挂一质量为2m 的物体C 并从静止释放,已知它恰好能使物体B 离开地面但不继续上升.若将物体C 换成另一质量为12()m m +的物体D ,仍从上述初始位置由静止释放,则这次物体B 刚离地时物体D 的速度大小是多少?已知重力加速度为g【解析】 开始时物体A B 、静止,设弹簧压缩量为1x ,则有:11kx m g =悬挂物体C 并释放后,物体C 向下、物体A 向上运动,设物体B 刚要离地时弹簧伸长量为2x ,有22kx m g =B 不再上升表明此时物体A 、C 的速度均为零,物体C 己下降到其最低点,与初状态相比,由机械能守恒得弹簧弹性势能的增加量为:物体C 换成物体D 后,物体B 离地时弹簧势能的增量与前一次相同,由能量关系得:22211211211211()()()()22m m v m v m m g x x m g x x E ++=++-+-∆联立上式解得题中所求速度为:v =【答案】v =说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用. 九、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.【例12】如图3-7-15所示,质量为m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b 、对质点的作用力均为F ,则弹簧c 对质点作用力的大小可能为 ( ) A 、0 B 、F mg + C 、F mg - D 、mg F - 图3-7-14 图3-7-15【解析】 由于两弹簧间的夹角均为0120,弹簧a b 、对质点作用力的合力仍为F ,弹簧a b 、对质点有可能是拉力,也有可能是推力,因F 与mg 的大小关系不确定,故上述四个选项均有可能.正确答案:ABCD 【答案】 ABCD 十、弹簧振子弹簧振子的位移、速度、加速度、动能和弹性势能之间存在着特殊关系,弹簧振子类问题通常就是考查这些关系,各物理量的周期性变化也是考查的重点. 十一、弹簧串、并联组合弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例14】 如图3-7-17所示,两个劲度系数分别为12k k 、的轻弹簧竖直悬挂,下端用光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为G 的物体后滑轮下降,求滑轮静止后重物下降的距离. 【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联;两弹簧的弹力均2G ,可得两弹簧的伸长量分别为112G x k =,222G x k =,两弹簧伸长量之和12x x x =+,故重物下降的高度为:1212()24G k k x h k k +== 【答案】1212()4G k k k k + 十三、物体沿弹簧螺旋运动【例16】如图3-7-19所示,长度为L 的光滑钢丝绕成高度为H 的弹簧,将弹簧竖直放置.一中间有孔的小球穿过钢丝并从弹簧的最高点A 由静止释放,求经多长时间小球沿弹簧滑到最低点B . 【解析】 小球沿光滑弹簧下滑时机械能守恒,可以假想在不改变弹簧上各处倾角的条件下将弹簧拉成一条倾斜直线,如图3-7-20所示,小球沿此直线下滑的时间与题中要求的时间相等.小球沿直线下滑的加速度为sin a g θ=由几何知识可得:sin H Lθ=;由位移公式可知:212L at =,联立上式解得:t =【答案】弹簧类模型中的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
经典高中物理模型--绳子、弹簧和杆产生的弹力特点
1.如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
2.如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
3.如图所示,一质量为m的小球用轻绳悬挂在小车顶部,小车向左以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
6.解析:在细线未剪断前,由平衡条件可得
水平细线的拉力
弹簧的拉力
当剪断细线的瞬时,,而弹簧形变不能马上改变,故弹簧弹力F保持原值。在图所示中,。所以在剪断细线的瞬时F和mg的合力仍等于原的大小,方向水平向右。则可知小球的加速度方向沿水平向右,即与竖直成角,其大小为。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg与F2的合力与F1大小相等,方向相反,可以解得F1=mgtgθ。
(2)剪断后瞬间,绳OA产生的拉力F1消失,
对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化, 这时F2将发生瞬时变化,mg与F2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F合=mgsinθ,所以a=gsinθ。
绳子、弹簧和杆产生的弹力特点
模型特点:
1.轻绳
(1)轻绳模型的特点
“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
对弹簧来说,其伸长量大,形变恢复需要较长时间,认为弹簧的长度还没有发生变化。这时F2不发生变化,故mg与F2的合力仍然保持不变,与F1大小相等,方向相反,如图(4)所示,所以F合= F1=mgstgθ,
高中物理 6.轻绳、轻杆、弹性绳和轻弹簧的比较 —人教版高一暑假综合易错点、易混淆点突破专题讲义
六、轻绳、轻杆、弹性绳和轻弹簧的比较--易错点易、混淆点突破轻绳轻杆弹性绳轻弹簧模型图示质量大小0000受外力作用时形变的种类拉伸形变拉伸形变、压缩形变、弯曲形变拉伸形变拉伸形变、压缩形变受外力作用时形变量大小微小,可忽略微小,可忽略较大,不可忽略较大,不可忽略弹力方向沿着绳,指向绳收缩的方向不一定沿杆,固定杆中可以是任意方向沿着绳,指向绳收缩的方向沿着弹簧,指向弹簧恢复原长的方向作用效果特点只能提供拉力可以提供拉力、支持力只能提供拉力只能提供拉力弹力大小突变特点可以突变可以突变不能突变不能突变(1)轻杆、轻绳、轻弹簧都是忽略质量的理想化模型.(2)分析轻杆上的弹力时必须结合物体的运动状态.(3)讨论轻弹簧上的弹力时应明确弹簧处于伸长还是压缩状态.1.如图所示的四个图中,AB、BC均为轻质杆,各图中杆的A、C端都通过铰链与墙连接,两杆都在B处由铰链连接,且系统均处于静止状态.现用等长的轻绳来代替轻杆,能保持平衡的是()A.图中的AB杆可以用轻绳代替的有甲、乙、丙B.图中的AB杆可以用轻绳代替的有甲、丙、丁C.图中的BC杆可以用轻绳代替的有乙、丙、丁D.图中的BC杆可以用轻绳代替的有甲、乙、丁答案:B解析:选B.如果杆受拉力作用,可以用与之等长的轻绳代替,如果杆受压力作用,则不可用等长的轻绳代替,题图甲、丙、丁中的AB杆均受拉力作用,而甲、乙、丁中的BC杆均受沿杆的压力作用,故A、C、D均错误,B正确.2.小车上固定一根弹性直杆A,杆顶固定一个小球B(如图所示),现让小车从光滑斜面上自由下滑,在下列如图所示的情况中杆发生了不同的形变,其中正确的是()答案:C解析:小车在光滑斜面上自由下滑,则加速度a=g sin θ(θ为斜面的倾角),由牛顿第二定律可知小球所受重力和杆的弹力的合力沿斜面向下,且小球的加速度等于g sin θ,则杆的弹力方向垂直于斜面向上,杆不会发生弯曲或倾斜,C正确.3.如图所示,小车上固定着一根弯成θ角的曲杆,杆的另一端固定一个质量为m的小球.重力加速度为g,关于杆对球的作用力F,下列判断正确的是()A .小车静止时,F =mg cos θ,方向沿杆向上B .小车静止时,F =mg cos θ,方向垂直杆向上C .小车静止时,F =mg ,方向竖直向上D .小车向右以加速度a 运动时,F =mg ,方向竖直向上 答案:C解析:小车静止时,由平衡条件知此时杆对球的作用力方向竖直向上,且大小等于球的重力mg ,故A 、B 错误,C 正确.小车向右以加速度a 运动时,此时弹力F 的方向一定指向右上方,只有这样,才能保证小球在竖直方向上受力平衡,水平方向上具有向右的加速度.设小球所受弹力方向与竖直方向的夹角为α,如图所示,据力的平衡条件和牛顿第二定律得F sin α=ma ,F cos α=mg ,解得F =m g 2+a 2,故D 错误.3. 如图所示,与竖直墙壁成53°角的轻杆一端斜插入墙中并固定,另一端固定一个质量为m 的小球,水平轻质弹簧处于压缩状态,弹力大小为34mg (g 表示重力加速度),则轻杆对小球的弹力大小为( )A .53mgB .35mgC .45mgD .54mg答案:D解析:小球处于静止状态,其合力为零,对小球受力分析,如图所示,由图中几何关系可得F =(mg )2+(34mg )2=54mg ,选项D 正确.4.(2020·重庆市部分区县第一次诊断)如图所示,水平直杆OP 右端固定于竖直墙上的O 点,长为L =2 m 的轻绳一端固定于直杆P 点,另一端固定于墙上O 点正下方的Q 点,OP 长为d =1.2 m ,重为8 N 的钩码用质量不计的光滑挂钩挂在轻绳上且处于静止状态,则轻绳的弹力大小为( )A .10 NB .8 NC .6 ND .5 N 答案:D解析:设挂钩所在处为N 点,延长PN 交墙于M 点,如图所示:同一条绳子拉力相等,根据对称性可知两边的绳子与竖直方向的夹角相等,设为α,则根据几何关系可知∠NQM =∠NMQ =α,故NQ =MN ,即PM 等于绳长; 根据几何关系可得:sin α=PO PM =1.22=0.6,则cos α=0.8,根据平衡条件可得:2F T cos α=G ,解得:F T =5 N ,故D 正确.5.(2019·山东潍坊市二模)如图所示,固定光滑直杆倾角为30°,质量为m 的小环穿过直杆,并通过弹簧悬挂在天花板上,小环静止时,弹簧恰好处于竖直位置,现对小环施加沿杆向上的拉力F ,使环缓慢沿杆滑动,直到弹簧与竖直方向的夹角为60°.整个过程中,弹簧始终处于伸长状态,以下判断正确的是( )A.弹簧的弹力逐渐增大B.弹簧的弹力先减小后增大C.杆对环的弹力逐渐增大D.拉力F先增大后减小答案:B解析:由几何关系可知,弹簧的长度先减小后增大,即伸长量先减小后增大,则弹簧的弹力先减小后增大,选项A错误,B正确;开始时弹簧处于拉伸状态,根据平衡条件可知弹簧的弹力的大小等于环的重力,即F弹=mg,此时杆对环的弹力为零,否则弹簧不会竖直;当弹簧与竖直方向的夹角为60°时,由几何关系可知,此时弹簧的长度等于原来竖直位置时的长度,则此时弹簧弹力的大小也为F弹=mg,根据力的合成可知此时弹簧对小环的弹力与环自身重力的合成沿杆向下,所以此时杆对环的弹力仍为零,故杆对环的弹力不是逐渐增大的,选项C错误;设弹簧与杆之间的夹角为θ,则在环从开始滑到弹簧与杆垂直位置的过程中,由平衡知识:F弹cos θ+F=mg sin 30°,随θ角的增加,F弹cos θ减小,则F增大;在环从弹簧与杆垂直位置到弹簧与竖直方向的夹角为60°的过程中,由平衡知识:F=F弹cos θ+mg sin 30°,随θ角的减小,F弹cos θ增大,则F增大,故F一直增大,选项D错误.6.(2019·安徽蚌埠市第三次质量检测)如图所示,一根绳的两端分别固定在两座山的A、B处,A、B 两点水平距离BD=16 m,竖直距离AD=2 m,A、B间绳长为20 m.重力为120 N的猴子抓住套在绳子上的光滑轻质滑环在AB间滑动,某时刻猴子在最低点C处静止,则此时绳的张力大小为(绳处于拉直状态)()A.75 N B.100 N C.150 N D.200 N答案:B解析:对猴子受力分析如图所示设拉力F T 与水平方向的夹角为θ,由几何关系可得:cos θ=1620=45,解得θ=37°,又由平衡条件得:2F T sin θ=mg ,解得:F T =mg 2sin θ=1202×35N =100 N ,故A 、C 、D 错误,B 正确.7.(2018·淄博模拟)A 、B 是天花板上两点,一根长为l 的轻绳穿过带有光滑孔的球,两端分别系在A 、B 点,如图甲所示;现将长度也为l 的均匀铁链悬挂于A 、B 点,如图乙所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绳拉物问题2012/8/1【问题综述】此类问题的关键是:1•准确判断谁是合运动,谁是分运动;实际运动是合运动2•根据运动效果寻找分运动;3•—般情况下,分运动表现在:①沿绳方向的伸长或收缩运动;②垂直于绳方向的旋转运动。
5•对多个用绳连接的物体系统,要牢记在绳的方向上各点的速度大小相等。
1.汽车通过绳了拉小船,则()A、汽车匀速则小船一定匀速B、汽车匀速则小船一定加速C、汽车减速则小船一定匀速D、小船匀速则汽车一定减速2:如图,汽车拉着重物G,贝IJ ()A、汽车向左匀速,重物向上加速B、汽车向左匀速,重物所受:绳拉力小于重物重力C、汽不向左匀速, 重物所受绳拉力大于于重物重力D、汽车向右匀速, 重物向下减速3:如左图,若已知物体A的速度大小为v&求璽物B的速度大小?5如图所示,A、B两物体用细绳相连,在水平而上运动,当a6.质量分別为m和M的两个物体跨过定滑轮如图所示,在M沿光滑水平面运动的过程中,两物体速度的大小关系为()A.V)< V2B.Vi >V2C.V L V2解开绳拉物体问题的“死结”一、有关运动的合成和分解问题①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
【例1】如右图所示,A. B两物体通过一条跨过定滑轮的绳了相连接。
力沿斜面下滑,B沿水平面滑动。
由于/、B的运动方向均沿绳子的方向,所以两物体的速度均和与它们相连接的绳子的速度相同。
因而/、3两物体的速度大小相等。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,此类问题应该用运动的合成和分解的知识解答。
【例2】如右图所示,人用绳了通过定滑伦拉物体昇,当人以速度勺匀速询进吋,求物体/的速度。
【例3】光滑水平面上有力、3两个物体,通过一根跨过定滑轮的轻绳子相连,如右图所示,它们的质量分别为®和m B o当水平力F拉着力fl绳子与水平方向的夹角为乞=45°, e B = 30°时,A. 3两物体的速度Z比是多少?V A:V B=y/3:y/2二、有关物体速度的突变问题对于物体的速度方向与绳子不平行的此类问题,由前面的分析可知,物体的速度可分解为沿绳子方向的分速度和垂直于绳子方向的分速度。
那么当绳子突然停止伸长或缩短时,沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度保持不变。
【例4】如右图所示,有一质量为加的小球P与穿过光滑水平板屮央小孔O的轻绳相连,用力拉着绳了另一端使P在水平板内绕O做半径为角速度为®的匀速圆周运动。
求:(1)此时P的速率多大?(2)若将绳子从这个状态迅速放松后乂拉直,使P绕O做半径为b的匀速圆周运动, 从放松到拉直这段过程经过了多长时间?(3)P做半径为b的圆周运动的角速度马?h :Ls图175. (16分)如图17所示,水平传送带的长度厶=5m,皮带轮的 半径/?=().Im,皮带伦以角速度“顺时针匀速转动。
现有一小物 体(视为质点)以水平速度必从力点滑上传送带,越过B 点后 做平抛运动,其水平位移为S 。
保持物体的初速度心不变,多 次改变皮带轮的角速度⑵,依次测量水平位移S,得到如图18 所示的S —G )图像。
回答下列问题:(1) 当0 V 0 V 10s//s 时,物体在/、B 之间做什么运动?(2) 3端距地面的高度力为多大? (3) 物块的初速度巾多大?nQI动力学中的传送带问题一、 传送带模型中要注意摩擦力的突变①滑动摩擦力消失 ②滑动摩擦力突变为静摩擦力 ③滑动摩擦力改变方向二、 传送带模型的一般解法 ① 确定研究对象;② 分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体 运动的影响;③ 分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
一、水平放置运行的传送带1. 如图所示,物体A 从滑槽某一高度滑下示又滑上粗糙的水平传送带,传送带静止不动时,/滑至传送带最右端的速度为叨,需时间G 若传送带逆时针转动,/滑至传送带最右 端的速度为卩2,需时间4则()A. Vj > v 2^i < h B ・ Vj < v 2^i < h C ・V] >卩2』1 >‘22. 如图7所示,一水平方向足够长的传送带以恒定的速度V.沿顺 时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体 以恒定速度V2沿直线向左滑向传送带后,经过一段时间乂反回光滑水 平而,速率为V2‘,则下列说法正确的是:( )A. 只有V|= V2时才有v 2 = V|B.若V] >v 2时,则V 2 =C.若 V| <V 2 吋,则 V2 = v 2D.不管 V2 多大,V2 =V2. 3. 物块从光滑斜面上的P 点自由滑下通过粗糙的静止水平传送带后落到地面上的Q 点•若传送带的皮带轮沿逆时针方向匀速转动, 使传送带随之运动,如图所示,物块仍从P 点自由滑一卜,则()A. 物块冇可能落不到地面B.物块将仍落在Q 点C.物块将会落在0点的左边D.物块将会落在0点的右边6. (2006年•全国理综I ) 一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带Z 间的动摩擦因数为起始时,传送带与煤块都是静止的.现让传送带以恒定的加速度他开始运动,当其速度达到比后,便以此速度匀速运动.经过一•段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动.求此黑色痕迹的长度.二、倾斜放置运行的传送带1.如图所示,传送带与地而倾角&=37。
,从MB长度为16m,传送带以l()m/s的速率逆时针转动.在传送带上端/无初速度地放一个质量为0.5kg的物体,它与传送带Z间的动摩擦因数为0.5.求物体从/运动到3需时间是多少?(sin37°=0.6, cos37°=0.8)2.如图3-2-24所示,传送带两轮/、B的距离厶=11 m,皮带以恒定速度0=2 m/s运动,现将一质量为m的物块无初速度地放在A 端,若物体与传送带间的动摩擦因数为//=0.8,传送带的倾角为a= 37。
,那么物块m从A端运到B端所需的吋间是多少?(g取10 m/s2, cos37°=0.8)三、组合类的传送带1.如图所示的传送皮带,其水平部分肋长S加=2m, BC与水平面夹角扫37。
,长度55C=4m, 一小物体卩与传送带的动摩擦因数“=0.25,皮带沿力至B方向运行,速率为v=2m/s, 若把物体P 放在/点处,它将被传送带送到C点,且物体P不脱离皮带,求物体从A 点被传送到C点所用的时间.(血37。
=0.6, g=10m/s2)2. 如图所示为一货物传送货物的传送带册c.传送带的亦部分与水平面夹角a=37。
,he 部分与水平面夹角*53。
,血部分长度为4.7m, be 部分长度为3.5m. 一个质量为w=lkg 的小物体力(可视为质点)与传送带的动摩擦因数U 二0.&传送带沿顺时针方向以速率v=lm/s匀速转动.若把物体A 轻放到G 处,它将被传送带送到c 处,此过程中物体A 不会脱离传 送带.(sin37° =0.6, sin53° =0.8, g=l()m/s 2)隔离法和整体法 决定物体在斜面上运动状态的因素概念规律:1. 隔离法和整体法(1) .隔离法将研究系统内某个物体或物体的一部分从系统屮隔离出来进行研究的方法 (2) .整体法将系统内多个物体看做一个对象进行研究的方法 2. 决定物体在斜面上运动状态的因索:若物体以初速Vo 沿倾角为0的斜面向下运动,贝IJ :当U =tan 0吋,匀速;p <tanO 时, 加速;当》> tan B 时,减速。
与m 无关(山重力沿斜面向下的分量mgsin 0跟摩擦力 n mgeos 0大小的关系决定)。
【例1]如图1…39所示,斜面上放一物体A 恰能在斜|衍上保持静止,如果在物体A 的水平表面上再放一重物,下面说法小正确的是()A. 物体A 将开始加速下滑B. 物体A 仍保持静止C. 物体A 所受的摩擦力增大D. 物体A 所受:的合力增大【例3】如图1・-41所示,人重板重G?,各滑伦摩擦、质量不计, 为使系求:物体/从。
处被传送到b 处所用的时间;图1统平衡,人必须用多大的力拉绳?、G「G2±间应满足什么关系?【例4]如图1—42所示,重为G 的均匀链条, 连接挂在等高的地方,绳与水平方向成B 角,试求:(1) .绳子的张力人小。
(2) .链条故低点的张力大小.(2).将链条从故底点隔离开,只研究右半条链条,练习题:1. 如图1-43所示,两只相同的均匀光滑小球,置于半径为R 的圆柱形容器中,且小球的半径「满足2r>R,则以下关于A 、B 、C 、D 四点的弹力大小的说法中正确的是()A. D 点的弹力可以人于、等于或小于小球的重力B. D 点的弹力等于A 点的弹力(大小)C.B 点的弹力恒等于一个小球重力的2倍D ・C 点弹力可以大于、等于或小于小球的重力2. 如图1—44, A 、B 是质量均为M 的两条磁体,C 为木块,图 1—443. 如图1—45,在两块相同的竖直木板之间有质量均为M 的 4块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则2、3两块砖之间的摩擦力大小为 ____________ .如为5块砖 呢?4. 如图1-46所示,放置在水平面上的直角劈M 上有一质量为m 的物体,若m 在其上 匀速F 滑,M 仍保持静止,则正确的是:( ) A. M 对地而的压力等于(m+M ) g B. M 对地面的压力大于(m+M ) g C. 地而对M 没有摩擦力 D. 地血对M 有向左的摩擦力5.如图1-47所示,要使静止在粗糙斜血•上的物体A 下水平放置静止时,B 对A 的弹力为F], C 对B 的弹力为F?则()A. F] =Mg F 2 =2MgB. FQMg F 2=2MgSN S'NC. F,<Mg F 2=MgD. F, >Mg F 2 >2Mg 图 1—45滑,可采用下列哪种办法?()A.对物体加一竖直向下的力B•减少物体的质量 C.增大斜血的倾角D.在物体A的后面放一个与A完全相同的物休6.如图1・48所示,半径为R的光滑球重为G,光滑木块厚为h,重为用至少多大的水平力F推木块才能使球离开地曲?7.(1998年上海)有一个直角支架AOB, A0水平放置,表而粗糙,A0上套有小环P, 0B±套有小环Q且光滑,两环质量均为两环间用质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图1-49, 现将P环向左移动一小段距离,两环再次达到平衡,则移动后的平衡状态和原来的平衡状态比较,A0朴对P环的支持力F”和细绳的拉力F T 的变化情况是()A、心不变,变大B、心不变,咼变小C、&变大,厲•变大D、〃变大,冃变小。