高中物理复习弹力专题之绳子弹簧和杆
高中物理弹簧专题总结
高中物理弹簧专题总结弹簧涉及的力学问题通常是动态的,常与能量、电场、简谐振动相结合,综合性强、能力要求高,且与日常生活联系密切,近几年来成为高考的热点。
下面从几个角度分析弹簧的考查。
一弹簧中牛顿定律的考查与弹簧相连的物体运动时通常会引起弹力及合力发生变化,给物体的受力分析带来一定难度,这类问题关键是挖掘隐含条件,结合牛顿第二定律的瞬时性来分析。
例1 如图1 所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态。
设拔去销钉M 瞬间,小球加速度的大小为12m/s2,若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是(g 取10m/s2)(BC )A、22 m/s2,竖直向上B、22 m/s2,竖直向下C、2 m/s2,竖直向上D、2 m/s2,竖直向下解析:开始小球处于平衡状态所受的合力为零,拔去销钉M 瞬间小球受的合力与上面弹簧弹力大小相等方向相反。
若此时加速度方向向上,则上面弹簧弹力F= m × 12, 方向向下。
若拔去销钉N 瞬间则小球受到本身的重力和F,故加速度a=22m/s2,方向竖直向下; 反之则为C。
图2图1练习1如图 2 所示,质量为m 的物体A,放置在质量为连,它们一起在光滑的水平面上做简谐运动,振动过程中的物体 B 上,B与轻质弹簧相A、B 之间无相对运动,设弹簧的劲度系数为k,当物体离开平衡位置的位移为x时,A、B 间的摩擦力的大小等于(mmkx D 、kxM M mA 、0 B、kx C、D、练习2如图3所示,托盘 A 托着质量为m的重物B,弹簧的上端悬于O 点,开始时弹簧竖直且为原长。
今让托盘速直线运动,其加速度为a(a<g),求(1)经过多长时间,22 m (a g)对 B 做的功W。
(t= 2m(g a)/ka ;W=-)弹簧中能量的考查D)B 挂在劲度系数为k 的弹簧下端,A 竖直向下做初速度为零的匀加A 与B 开始分离;(2)弹簧和托盘通常从两个角度①能的转化和守恒,弹簧的弹性势能大小只与形变量有关,前后两个状态的弹性势能相等;②E k=1kx2,通常是作为一种信息给予,处理这类问题关键是分析透彻整2 个物理过程中有几种形式的能量参与转化,哪些能量在减少,哪些能量在增加。
“绳”与“弹簧”模型对比3页
“绳”与“弹簧”模型对比高中物理教学中经常会遇到细绳(轻杆)、弹簧模型,弄清楚两者的异同点,对于分析物体在某一时刻的瞬时加速度有着关键点作用。
一、两类模型的区别1.刚性绳(或杆)一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复的时间,一般题目中的细绳、轻杆或接触面在不加特殊说明时,均可按此模型处理。
其中杆与绳模型中处理问题也有差别,如杆能承受拉力和压力,而轻绳只能承受拉力(不能起支撑作用)。
绳上的拉力只能沿绳,而杆上的作用力可以沿杆,也可以与杆成任意夹角。
2.弹簧(或橡皮绳)此类模型的特点是形变量大,形变恢复需要较长的时间,在剪断的瞬间可认为弹簧来不及恢复原长,因此弹力大小可近似认为保持不变。
二、两种模型的对比例1. 如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大?解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F2=mg,F1=F2'+mg=2mg。
剪断细线后再分析两个物体的受力示意图,如图3,绳中的弹力F1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图3剪断后m1的加速度大小为2g,方向向下,而m2的加速度为零。
从上述解析过程中,我们不难发现,m1在细线剪断前后受力发生了变化,故其瞬时加速度不同;m2在剪断细线前后,由于弹簧弹力来不及发生变化,所以其瞬时加速度与剪断前相同。
例2如图4所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态。
求解下列问题:⑴现将L2线剪断,求剪断L2瞬间物体的加速度。
⑵若将图4中的细线L1改为长度相同、质量不计的轻弹簧,如图5所示,其他条件不变,求剪断L2瞬间物体的加速度。
弹簧弹力受力分析高中
弹簧弹力受力分析(高中)弹簧与其相连接的物体构成的系统的运动状态具有隐蔽性,弹簧与其相连接的物体相互作用时涉及到的物理概念和物理规律也较多,分析时该如何切入呢?一、从几个长度关系切入弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即或。
在弹簧的长度发生变化的时候,要搞清弹簧的原长、弹簧的长度、弹簧的形变、弹簧的形变变化、物体的位移等几个量的关系。
例1、劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。
解析:物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。
由匀变速直线运动公式及牛顿定律得:①②③解以上三式得:。
显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。
二、从弹簧的伸缩性质切入弹簧能承受拉伸的力,也能承受压缩的力。
在分析有关弹簧问题时,分析弹簧承受的是拉力还是压力成了弹簧问题分析的起点。
例2、如图1所示,小圆环重固定的大环半径为R,轻弹簧原长为L(L<2R),其劲度系数为k,接触光滑,求小环静止时。
弹簧与竖直方向的夹角。
解析:以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。
若弹簧处于压缩状态,小球受到斜向下的弹力,则N的方向无论是指向大环的圆心还是背向大环的圆心,小环都不能平衡。
因此,弹簧对小环的弹力F一定斜向上,大环施加的弹力刀必须背向圆心,受力情况如图2所示。
根据几何知识,“同弧所对的圆心角是圆周角的二倍”,即弹簧拉力N的作用线在重力mg和大环弹力N的角分线上。
所以另外,根据胡可定律:解以上式得:即只有正确分析出弹簧处于伸长状态,因而判断出弹力的方向成了解决问题的起点。
三、从弹簧隐藏的隐含条件切入很多由弹簧设计的物理问题,在其运动的过程中隐含着已知条件,只有充分利用这一隐含的条件才能有效的解决问题。
高三物理轻杆、轻绳、轻弹簧的力学特征
轻杆、轻绳、轻弹簧的力学特征赵斌 (湖南省长沙市第六中学 410000)轻杆、轻绳、轻弹簧都是忽略质量的理想模型,它们的力学特征既有相同又有相异,由不同模型构建的物理情景因而具有不同的性质和规律。
一、力的方向有异1、轻绳提供的作用力只能沿绳并指向绳收缩的方向;2、轻弹簧提供的作用力只能沿弹簧的轴线方向,与弹簧发生形变的方向相反;3、轻杆提供的作用力不一定沿杆的方向,可以是任意方向。
例1、如图1所示,水平轻杆的一端固定在墙上,轻绳与竖直方向的夹角为370,小球的重力为8N ,绳子的拉力为5N ,水平轻弹簧的拉力为6N ,求轻杆对小球的作用力。
解析:小球受四个力作用:重力、绳子的拉力、弹簧的拉力,以及轻杆的作用力,其中只有轻杆的作用力的方向不能确定,如图2所示,重力、弹力、轻绳的拉力三者的合力为:55()F N == 方向与竖直方向成370斜向下,这个力与轻绳的拉力恰好在同直线上。
根据物体平衡的条件,可知轻杆对小球的作用力大小为5N ,方向与竖直方向成370斜向上。
二、力的效果有异1、轻绳只能提供拉力。
2、轻杆、轻弹簧既可以提供拉力,又可以提供推力。
例2、用长为l 的轻绳系一小球在竖直平面内做圆周运动,要使小球能做完整的圆周运动,则小球在最低点的速度v 最小为多少?解析:由轻绳的力学特性可知,要使小球在竖直平面内能做完整的圆周运动,则小球在最高点时有一个临界速度v 0,这个速度对应绳子的张力恰好为零,由重力提供向心力,即有:20mv mg l =,得0v根据机械能守恒定律,易求出小球在最低点时的临界速度为v =即要使小球在竖直平面内能做完整的圆周运动,小球在最低点的速度v 必须大例3、在例2中,把轻绳改为轻杆,要使小球在竖直平面内能做完整的圆周运动,则小球在最低点的速度v 最小为多少?解析:由轻杆的力学特征可知,要使小球在竖直平面内能做完整的圆周运动,则只要小球在最高点时的速度稍微大于零即可,这时杆提供支持力。
(完整版)轻绳、轻杆和轻弹簧模型
浅析轻绳、轻杆和轻弹簧模型的应用山西泽州县第一中学成文荣李智涛 048000轻绳、轻杆和轻弹簧,是力学中三个重要的理想模型,在高中物理解题中有着重要的地位,为了帮助学生正确地分析和解决与轻绳、轻杆和轻弹簧有关的问题,笔者对三个模型的相同点和不同点进行了总结,并想通过一定的实例,对学生学习和应用给与启迪思考。
一、三个模型的相同点1、“轻”- 不计质量,不受重力。
2、在任何情况下,沿绳、杆和弹簧伸缩方向的张力、弹力处处相等.二、三个模型的不同点1、形变特点轻绳—可以任意弯曲,但不能伸长,即伸长形变不计。
轻杆—不能任意弯曲,不能伸长和缩短,即伸缩形变不计。
轻弹簧—可以伸长,也可以缩短,且伸缩形变不能忽略不计。
2、施力和受力特点轻绳 - 只能产生和承受沿绳方向的拉力.轻杆 - 不仅能产生和承受沿杆方向的拉力和压力,还能产生和承受不沿杆方向的拉力和压力。
轻弹簧—可以产生和承受沿弹簧伸缩方向的拉力和压力。
3、力的变化特点轻绳—张力的产生、变化、或消失不需要时间,具有突变性和瞬时性。
轻杆 - 拉力和压力的产生、变化或消失不需要时间,具有突变性和瞬时性.轻弹簧—弹力的产生、变化或消失需要时间,即只能渐变,不具有瞬时性,且在形变保持瞬间,弹力保持不变。
(注意 :当弹簧的自由端无重物时,形变消失不需要时间)4、连接体的运动特点轻绳 - 轻绳平动时,两端的连接体沿绳方向的速度(或速度分量)总是相等,且等于省上各点的平动速度;轻绳转动并拉直时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻杆—轻杆平动时,连接体具有相同的平动的速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧—在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大,即弹性势能最大时,两端连接体的速率相等;在弹簧转动时,连接体的转动半径随弹力变化,速度方向不一定垂直于弹力。
5、作功和能量转化特点轻绳 - 在连接体作匀速率和变速率圆周运动的过程中,绳的拉力都不作功;在绳突然拉直的瞬间,有机械能转化为绳的内能,即机械能不守恒.轻杆—在连接体作匀速率和变速率圆周运动的过程中,轻杆的法向力对物体不作功,而切向力既可以对物体作正功,也可以对物体作负功,但系统机械能守恒。
(完整版)高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习
高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习 一.轻绳模型1。
轻绳模型的特点:“绳"在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力.它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
2.轻绳模型的规律:①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
3。
绳子的合力一定的情况下,影响绳上拉力大小的因素是绳子的方向而不是绳子的长度。
4.力对绳子做的功,全部转化为绳对物体的做的功。
5.绳连动问题:①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,一般以物体的速度作为实际速度,绳的速度是物体速度的分速度,当绳与物体的速度夹角为θ 时,= cos v v θ绳物例1:如图所示,将一根不能伸长、柔软的轻绳两端分别系于A 、B 两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为1θ,绳子张力为F 1;将绳子B 端移至C 点,待整个系统达到平衡时,两段绳子间的夹角为2θ,绳子张力为F 2;将绳子B 端移至D 点,待整个系统达到平衡时,两段绳子间的夹角为3θ,绳子张力为F 3,不计摩擦,则( )A .1θ=2θ=3θB .1θ=2θ<3θC .F 1 〉F 2 〉F 3D .F 1 =F 2 〈F 31—1.如图所示,轻绳上端固定在天花板上的O 点,下端悬挂一个重为10 N 的物体A ,B 是固定的表面光滑的小圆柱体.当A 静止时,轻绳与天花板的夹角为30°,B 受到绳的压力是 ( )A.5 NB 。
10 NC 。
5错误! ND.10错误! N1—2。
高中物理 圆周运动中的轻绳、轻杆和轻弹簧
圆周运动中的轻绳、轻杆和轻弹簧圆周运动中常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,“轻绳”“轻杆”及“轻弹簧”是由各种实际情况中的绳、杆和弹簧抽象出来的理想物理模型.作为这一类模型,一般情况下,“轻”往往是(相对其他物体来说)指其质量可以忽略,所受重力可以忽略,而绳和杆则往往是其形体在同一直线上,且其长度不发生变化,而弹簧可以伸长也可以被压缩.由此导致这类模型在圆周运动中具有其特有的关系。
一、轻绳对物体只能产生沿绳收缩方向的拉力【例1】如图1所示,一摆长为L的单摆,摆球的质量为m,要使摆球能在竖直平面内做完整的圆周运动,那么摆球在最底点的速度v0至少要多大?解析小球在最高点的受力情况如图1所示,由牛顿第二定律得mg+T=mv2/L,由于m、L一定,所以小球在最高点的速度v越小,此时绳中拉力T就越小,当T=0时,小球具有不脱离轨的最小速度,因此当v0最小时,在最高点有mg=mv2/L,从最底点到最高点,小球机械能守恒,有(1/2)mv02=2mgL+(1/2)mv2,由以上各式联立解得v0的最小值为v0=.【总结】由于轻绳只能有拉力作用,因此只有当v0≥才能使小球做完整的圆周运动.它的这种规律与竖直平面内放置一半径为L的轨道,小球在内轨做完整的圆周运动情况类似.二、轻杆对物体既可以有拉力也可以有支撑力【例2】在例1中,将轻绳换成轻杆,要使摆球能在竖直平面内做完整的圆周运动,在最底点小球的速度v0至少要多大?解析如图2所示,小球在最高点既可以受到轻杆的拉力,又可以受到轻杆的支撑力,所以小球在最高点的合外力最小可以为零.因此,小球在最高点的速度最小且不脱离轨道,此速度可以为零.而小球在最高点的速度值v=则是小球在最高点受到轻杆对它弹力方向变化的临界值.即v<时,轻杆对它有向上的支撑力;v=时,轻杆对它无作用力;v>时,轻杆对它有向下的拉力.从最底点到最高点,由机械能守恒定律得(1/2)mv02=2mgL,解得v0=.【总结】由于轻杆对物体的作用既可以是拉力,又可以是支撑力,则物体在竖直平面内做完整的圆周运动,在最底点的速度只要大于即可.它的这种规律与竖直平面内放置圆管,小球在圆管内做完整的圆周运动相类似.如图3所示.三、轻弹簧对物体既可以有拉力,也可以有支持力,但长度随力的变化而变化例3有原长为L0的轻弹簧,劲度系数为k,一端系一质量为m的物体,另一端固定图1图2图3图4在转盘上的O点,如图4所示.物块随同转盘一起以角速度ω转动,物块与转盘间的最大静摩擦力为fm,求物块在转盘上的位置范围.【解析】由题意知,物块与转盘间有最大静摩擦力fm,当物块转动半径最小时,设为r1,此时弹簧被压缩的量为L0-r1,对物块而言,受有指向圆心的最大静摩擦力fm及弹簧的弹力F,且F=k(L0-r1),则fm-k(L0-r1)=mr1ω2,解得r1=(fm-kL0)/(mω2-k).当物块转动半径最大时,设为r2,此时弹簧的伸长量为(r2-L0),对物块而言,受有指向圆心的弹簧的弹力F及最大静摩擦力fm,且F=k(r2-L0),则k(r2-L0)-fm=mr2ω2,解得r2=(fm+kL0)/(k-mω2).所以物块所处的位置为(fm-kL0)/(mω2-k)≤r≤(fm+kL0)/(k-mω2).由以上分析可看出,在具体问题中,要注意分清轻绳、轻杆和轻弹簧的区别,现列表如下进行比较:类别特性作用力效果作用力方向形体在同一直线上的变化具体体现轻绳只能是拉力只能沿绳方向不变化轻杆既可以是拉力又可以是支撑力沿杆方向不变化轻弹簧既可以是拉力又可以是“推”力沿弹簧方向变化。
高考二轮物理复习专题:弹簧问题(附答案)
专题弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
高中物理弹簧弹力问题(含答案)
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变.即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a =与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为() A.0B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下D.大小为233g ,方向水平向右【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的图图图3-7-2图3-7-1图3-7-3N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ===【答案】C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有:11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了,物块1的重力势能增加了.【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g,弹力的改变量也为12()mm g +.所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物图图3-7-6 图3-7-8体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得:022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则:002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mgF =.]【答案】022gx 32mg说明:区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
绳、杆、弹簧模型有关问题的归类 物理 初中 力学模型
高中物理受力分析一、物体受力分析方法:把指定的研究对象在特定的物理情景中所受到的所有外力找出来,并画出受力图,就是受力分析。
对物体进行正确地受力分析,是解决好力学问题的关键。
1、受力分析的顺序:先找重力,再找接触力(弹力、摩擦力),最后分析其它力。
2、受力分析的几个步骤.①灵活选择研究对象 ②对研究对象周围环境进行分析:③审查研究对象的运动状态: ④根据上述分析,画出研究对象的受力分析图; 3、受力分析的三个判断依据: ①从力的概念判断,寻找施力物体; ②从力的性质判断,寻找产生原因;③从力的效果判断,寻找是否产生形变或改变运动状态。
二、隔离法与整体法1、整体法:以几个物体构成的整个系统为研究对象进行求解的方法。
在许多问题中用整体法比较方便,但整体法不能求解系统的内力。
2、隔离法:把系统分成若干部分并隔离开来,分别以每一部分为研究对象进行受力分析,分别列出方程,再联立求解的方法。
3、通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。
有时在解答一个问题时要多次选取研究对象,需要整体法与隔离法交叉使用。
三、例题与练习:例1、分析物体A 的受力A B A 、B 都静止AA 静止A 、B 都静止(绳竖直、光滑)例2、例3、如图所示,水平传送带上的物体。
(1)随传送带匀速运动 (2)传送带由静止起动如图,倾斜传送带上的物体(1)向上匀速运输 (2)向下匀速运输例4、如图所示,各图中,物体总重力为G ,请分析砖与墙及砖与砖的各接触面间是否有摩擦力存在?如有大小是多少?例5A、B 、C 都静止 分析C 所受力 a 、b 、c 都静止 分析a 所受力 (A 静止) C (A 、B 一起匀速向右运动)B(A 静止) v绳、杆、弹簧模型有关问题的归类分析一、三种模型弹力产生的特点:细绳只能发生拉伸形变,即只能提供因收缩而沿轴向里的弹力,但弹力的产生依赖于细绳受到的外力和自身的运动状态。
高中物理弹簧问题考点总结
25
25x0
返回导航页
二轮物理 第二部分 核心素养提升
返回导航页
4、弹力做功与动量能量的综合问题: 弹力是变力,求弹力的冲量和弹力做功时,不能直接
用冲量和功的定义式,一般用动量定理和动能定理。 如果弹簧被作为系统内的一个物体时,弹簧的弹力对
系统内物体不做功,不影响系统的机械能。 在弹力做功的过程中弹力是个变力,并与动量能量联
BCD
返回导航页
二轮物理 第二部分 核心素养提升
返回导航页
谢谢观看!
二轮物理 第二部分 核心素养提升
返回导航页
物理弹簧模型
二轮物理 第二部分 核心素养提升
返回导航页
弹簧是一个理想模型,涉及它的知识点有:胡克定 律、弹力做功与弹性势能的变化
F kx W弹EP初-EP末
二轮物理 第二部分 核心素养提升
返回导航页
问题类型有:弹簧的瞬时问题、平衡问题、非平衡问题、弹 力做功与动量能量的综合问题
二轮物理 第二部分 核心素养提升
(2019·安徽省淮北市二模)如图甲所示,水平地面上轻弹簧左端固定, 右端通过滑块压缩 0.4 m 锁定,t=0 时解除锁定释放滑块。计算机通过滑块上的 速度传感器描绘出滑块的速度图象如图乙所示。其中 Oab 段为曲线,bc 段为直 线,倾斜直线 Od 是 t=0 时的速度图线的切线,已知滑块质量 m=2.0 kg,取 g =10 m/s2,则下列说法正确的是( C )
封闭气体的体积减小h+x0
(1)求系统静止时,封闭气体的压强 p1 及弹簧的压缩量 x0 。2*105Pa、5cm
200
(2)若缓慢降低缸内气体温度,为使弹簧恰好恢复原长,则缸内气体的温度需降低至多少?
高中物理弹簧问题专题
弹簧类问题的研究一、命题趋向与考点轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,引起足够重视。
二、知识概要与方法㈠弹簧问题的处理办法1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k = —(21kx 22 —21kx 12),弹力的功等于弹性势能增量的负值。
弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
㈡弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f =kx 或△f =k △x 来求解。
3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
经典高中物理模型--绳子、弹簧和杆产生的弹力特点
1.如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
2.如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
3.如图所示,一质量为m的小球用轻绳悬挂在小车顶部,小车向左以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
6.解析:在细线未剪断前,由平衡条件可得
水平细线的拉力
弹簧的拉力
当剪断细线的瞬时,,而弹簧形变不能马上改变,故弹簧弹力F保持原值。在图所示中,。所以在剪断细线的瞬时F和mg的合力仍等于原的大小,方向水平向右。则可知小球的加速度方向沿水平向右,即与竖直成角,其大小为。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg与F2的合力与F1大小相等,方向相反,可以解得F1=mgtgθ。
(2)剪断后瞬间,绳OA产生的拉力F1消失,
对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化, 这时F2将发生瞬时变化,mg与F2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F合=mgsinθ,所以a=gsinθ。
绳子、弹簧和杆产生的弹力特点
模型特点:
1.轻绳
(1)轻绳模型的特点
“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
对弹簧来说,其伸长量大,形变恢复需要较长时间,认为弹簧的长度还没有发生变化。这时F2不发生变化,故mg与F2的合力仍然保持不变,与F1大小相等,方向相反,如图(4)所示,所以F合= F1=mgstgθ,
高一物理-弹簧专题
高一物理-弹簧类专题高中物理所涉及弹簧多为轻弹簧,即不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。
弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。
一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受力大小相同,弹簧读数始终等于任意一端弹力大小。
伸长量等于弹簧任意位置受到的力和劲度系数的比值(胡克定律)。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。
(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。
(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。
(压缩——拉伸变化)参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。
抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零的特点求解。
注:如果a相同,先整体后隔离。
隔离法求内力,优先对受力少的物体进行隔离分析。
2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:一般考察弹力与重力的平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绳拉物问题2012/8/ 1【问题综述】此类问题的关键是:1.准确判断谁是合运动,谁是分运动;实际运动是合运动2.根据运动效果寻找分运动;3.一般情况下,分运动表现在: ①沿绳方向的伸长或收缩运动; ②垂直于绳方向的旋转运动。
5.对多个用绳连接的物体系统,要牢记在绳的方向上各点的速度大小相等。
1.汽车通过绳子拉小船,则() A 、汽车匀速则小船一定匀速 B 、汽车匀速则小船一定加速 C 、汽车减速则小船一定匀速 D 、小船匀速则汽车一定减速 2:如图,汽车拉着重物G ,则() A 、汽车向左匀速,重物向上加速B 、汽车向左匀速,重物所受绳拉力小于重物重力C 、汽车向左匀速,重物所受绳拉力大于于重物重力D 、汽车向右匀速,重物向下减速3:如左图,若已知物体A 的速度大小为v A ,求重物B小?5如图所示,A 、B 度,β=30度时,物体A 的速度为2 m/s ,这时B 的速度为。
6.质量分别为m 和M 的两个物体跨过定滑轮如图所示,在M 沿光滑水平面运动的过程中,两物体速度的大小关系为()A .V 1﹤V 2B .V 1﹥V 2C .V 1=V 2解开绳拉物体问题的“死结”一、有关运动的合成和分解问题①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
【例1】如右图所示,A 、B 两物体通过一条跨过定滑轮的绳子相连接。
A 沿斜面下滑,B 沿水平面滑动。
由于A 、B 的运动方向均沿绳子的方向,所以两物体的速度均和与它们相连接的绳子的速度相同。
因而A 、B 两物体的速度大小相等。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不 相同,此类问题应该用运动的合成和分解的知识解答。
【例2】如右图所示,人用绳子通过定滑轮拉物体A ,当人以速度0v 匀速前进时,求物体A 的速度。
【例3】光滑水平面上有A 、B 两个物体,通过一根跨过定滑轮的轻绳子相连,如右图所示,它们的质量分别为A m 和B m 。
当水平力F 拉着A 且绳子与水平方向的夹角为45A θ=,30B θ=时,A 、B 两物体的速度之比是多少?A B v v =∶速度的突变问题对于物体的速度方向与绳子不平行的此类问题,由前面的分析可知,物体的速度可分解为沿绳子方向的分速度和垂直于绳子方向的分速度。
那么当绳子突然停止伸长或缩短时,沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度保持不变。
【例4】如右图所示,有一质量为m 的小球P 与穿过光滑水平板中央小孔O 的轻绳相连,用力拉着绳子另一端使P 在水平板内绕O 做半径为a 、角速度为1ω的匀速圆周运动。
求:(1)此时P 的速率多大?(2)若将绳子从这个状态迅速放松后又拉直,使P 绕O 做半径为b 的匀速圆周运动,从放松到拉直这段过程经过了多长时间?(3)P 做半径为b 的圆周运动的角速度2ω?11x t v ==。
动力学中的传送带问题一、传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向 二、传送带模型的一般解法 ①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响; ③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
一、水平放置运行的传送带1.如图所示,物体A 从滑槽某一高度滑下后又滑上粗糙的水平传送带,传送带静止不动时,A 滑至传送带最右端的速度为v 1,需时间t 1,若传送带逆时针转动,A 滑至传送带最右端的速度为v 2,需时间t 2,则() A .1212,v v t t >< B .1212,v v t t << C .1212,v v t t >>D .1212,v v t t ==2.如图7所示,一水平方向足够长的传送带以恒定的速度v 1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v 2沿直线向左滑向传送带后,经过一段时间又反回光滑水平面,速率为v 2′,则下列说法正确的是:()A .只有v 1=v 2时,才有v 2′=v 1B .若v 1>v 2时,则v 2′=v 2 C .若v 1<v 2时,则v 2′=v 2D .不管v 2多大,v 2′=v 2.3.物块从光滑斜面上的P 点自由滑下通过粗糙的静止水平传送带后落到地面上的Q 点.若传送带的皮带轮沿逆时针方向匀速转动,使传送带随之运动,如图所示,物块仍从P 点自由滑下,则()A .物块有可能落不到地面B .物块将仍落在Q 点QC .物块将会落在Q 点的左边D .物块将会落在Q 点的右边 5.(16分)如图17所示,水平传送带的长度L =5m ,皮带轮的半径R =0.1m ,皮带轮以角速度ω顺时针匀速转动。
现有一小物体(视为质点)以水平速度v 0从A 点滑上传送带,越过B 点后做平抛运动,其水平位移为S 。
保持物体的初速度v 0不变,多次改变皮带轮的角速度ω,依次测量水平位移S ,得到如图18所示的S —ω图像。
回答下列问题:(1)当010ω<<rad /s 时,物体在A 、B 之间做什么运动?(2)B 端距地面的高度h 为多大? (3)物块的初速度v 0多大?6.(2006年·全国理综Ⅰ)一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ.起始时,传送带与煤块都是静止的.现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度匀速运动.经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动.求此黑色痕迹的长度.二、倾斜放置运行的传送带1.如图所示,传送带与地面倾角θ=37°,从AB 长度为16m ,传送带以10m/s 的速率逆时针转动.在传送带上端A 无初速度地放一个质量为0.5kg 的物体,它与传送带之间的动摩擦因数为0.5.求物体从A 运动到B 需时间是多少?(sin37°=0.6,cos37°=0.8)2.如图3-2-24所示,传送带两轮A 、B 的距离L =11m ,皮带以恒定速度v =2m/s 运动,现将一质量为m 的物块无初速度地放在A 端,若物体与传送带间的动摩擦因数为μ=0.8,传送带的倾角为α=37°,那么物块m 从A 端运到B 端所需的时间是多少?(g 取10m/s 2,cos37°=0.8) 三、组合类的传送带1.如图所示的传送皮带,其水平部分AB 长s AB =2m ,BC 与水平面夹角θ=37°,长度s BC =4m ,一小物体P 与传送带的动摩擦因数μ=0.25,皮带沿A 至B 方向运行,速率为v =2m/s ,若把物体P 放在A 点处,它将被传送带送到C 点,且物体P 不脱离皮带,求物体从A 点被传送到C 点所用的时间.(sin37°=0.6,g =l0m/s 2)2.如图所示为一货物传送货物的传送带abc .传送带的ab 部分与水平面夹角α=37°,bc 部分与水平面夹角β=53°,ab 部分长度为4.7m ,bc 部分长度为3.5m.一个质量为m =1kg 的小物体A (可视为质点)与传送带的动摩擦因数μ=0.8.传送带沿顺时针方向以速率v =1m/s 匀速转动.若把物体A 轻放到a 处,它将被传送带送到c 处,此过程中物体A 不会脱离传送带.(sin37°=0.6,sin53°=0.8,g =10m/s 2) 求:物体A 从a 处被传送到b 处所用的时间;隔离法和整体法决定物体在斜面上运动状态的因素概念规律:图17图18ω/rad/sc1.隔离法和整体法(1).隔离法将研究系统内某个物体或物体的一部分从系统中隔离出来进行研究的方法 (2).整体法将系统内多个物体看做一个对象进行研究的方法 2.决定物体在斜面上运动状态的因素:若物体以初速V 。
沿倾角为θ的斜面向下运动,则:当μ=tan θ时,匀速;μ﹤tan θ时,加速;当μ﹥tan θ时,减速。
与m 无关(由重力沿斜面向下的分量mgsin θ跟摩擦力μmgcos θ大小的关系决定)。
例题:【例1】如图1---39所示,斜面上放一物体A 恰能在斜面上保持静止,如果在物体A 的水平表面上再放一重物,下面说法中正确的是() A .物体A 将开始加速下滑 B .物体A 仍保持静止 C .物体A 所受的摩擦力增大 D .物体A 所受的合力增大【例3】如图1---41所示,人重G 1,板重G 2,各滑轮摩擦、质量不计,为使系统平衡,人必须用多大的力拉绳?、G 1、G 2之间应满足什么关系?【例4】如图1---42所示,重为G 的均匀链条,两端用等长的轻绳连接挂在等高的地方,绳与水平方向成θ角,试求:(1).绳子的张力大小。
(2).链条最低点的张力大小.(2).将链条从最底点隔离开,只研究右半条链条,作其受力图如上页右。
练习题:1.如图1—43所示,两只相同的均匀光滑小球,置于半径为R 的圆柱形容器中,且小球的半径r 满足2r >R ,则以下关于A 、B 、C 、D 四点的弹力大小的说法中正确的是()A .D 点的弹力可以大于、等于或小于小球的重力B .D 点的弹力等于A 点的弹力(大小)C .B 点的弹力恒等于一个小球重力的2倍D .C 点弹力可以大于、等于或小于小球的重力2.如图1---44,A 、B 是质量均为M 的两条磁体,C 为木块,水平放置静止时,B对A 的弹力为F 1,C 对B 的弹力为F 2则()A .F 1=MgF 2=2MgB .F 1>MgF 2=2MgC .F 1<MgF 2=MgD .F 1>MgF 2>2Mg3.如图1—45,在两块相同的竖直木板之间有质量均为M 的4块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则2、3两块砖之间的摩擦力大小为____________.如为5块砖呢?4.如图1-46所示,放置在水平面上的直角劈M 上有一质量为m 的物体,若m 在其上匀速下滑,M 仍保持静止,则正确的是:() A .M 对地面的压力等于(m+M )g B .M 对地面的压力大于(m+M )g C .地面对M 没有摩擦力A θF 1 F 2θ θG图1—41S A N SN BC 图1---44F F 1 2 3 4图1—45D .地面对M 有向左的摩擦力5.如图1-47所示,要使静止在粗糙斜面上的物体A 下滑,可采用下列哪种办法?() A .对物体加一竖直向下的力B .减少物体的质量C .增大斜面的倾角D .在物体A 的后面放一个与A 完全相同的物体6.如图1-48所示,半径为R 的光滑球重为G ,光滑木块厚为h ,重为G 1,用至少多大的水平力F 推木块才能使球离开地面?7.(1998年上海)有一个直角支架AOB ,AO 水平放置,表面粗糙,AO 上套有小环P ,OB 上套有小环Q 且光滑,两环质量均为m ,两环间用质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图1—49,现将P环向左移动一小段距离,两环再次达到平衡,则移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力F N 和细绳的拉力F T 的变化情况是() A 、F N 不变,F T 变大B 、F N 不变,F T 变小 C 、F N 变大,F T 变大D 、F N 变大,F T 变小A α图1-47F 图1-48图1--49 OP QB A。