高一物理弹簧问题

合集下载

高一物理竞赛讲义-专题三 弹簧问题,惯性力

高一物理竞赛讲义-专题三 弹簧问题,惯性力

高一物理竞赛讲义 三、弹簧问题,惯性力【概念与规律】1、大小:弹簧类在 弹性限度内遵从胡克定律F=k ·x 。

非弹簧类弹力大小应由平衡条件或动力学规律求解。

2、方向:轻弹簧受力,有压缩和拉伸形变,既能产生拉力,又能产生压力,方向沿弹簧的轴线方向。

3、特点:绳子的拉力、桌面对物理的支持力等弹力是与微小形变有关的力。

当外界因素发生变时,此类弹力立即发生变化,而弹簧的弹簧与弹簧的明显形变有关,当外界因素发生变化时,弹簧的弹力瞬时值不变,此后随着形变量的逐步变化,弹力也逐步变化,4、弹性势能:对于弹簧,一般取弹簧无形变时的位置为零势能点,当弹簧被拉长或者压缩一段长度x 时,其弹性势能为2kx 21=E 5、惯性力牛顿第一定律、第二定律只适用于惯性系,为使牛顿第二定律能应用于非惯性系,可假想一个惯性力-ma f 1=,负号表示惯性力的方向和加速度的方向相反。

由此可得,在非惯性系中牛顿第二定律依然成立,只要在实际力系中加一惯性力1f 即可,m a f 1=+F ,惯性力是一种假想的力,它没有施力物体,也不存在反作用力。

静止在匀速转动的参照系'S 中的物体,在惯性系S 看来它具有向心加速度,必受到其他物体的作用力,若物体位于过原点并垂直于转轴的平面内,离转轴的距离为r ,转动参照系的角速度为ω,则物体必受F 的作用,其大小r m 2ω=F ,方向指向圆心,但在转动参照系看来它是静止不动的,为了在形式上能用牛顿定律解释物体的运动,必须认为物体不仅受真实力F 的作用,而且还受虚拟力f 作用,f 刚好与F 相平衡,其大小f=r m 2ω=F ,方向背离圆心,我们称f 为惯性离心力,简称为惯性力。

【例题与习题】1.如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态。

现缓慢向上提上面的木块,直到它刚离开上面弹簧。

在这过程中下面木块移动的距离为()A.B.C.D.2.S1、S2表示劲度系数分别为k1、k2的两根弹簧,k1>k2;a和b表示质量分别为m a和m b的两个小物块,m a>m b,将弹簧与物块按图所示的方式悬挂起来,现要求两根弹簧的总长度最短,则应使()A.S1在上,a在上B.S1在上,b在上C.S2在上,a在上D.S2在上,b在上3.图中a、b、c为三个物块,M、N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图并处于平衡状态()A.有可能N处于拉伸状态而M处于压缩状态B.有可能N处于压缩状态而M处于拉伸状态C.有可能N处于不伸不缩状态而M处于拉伸状态D.有可能N处于拉伸状态而M处于不伸不缩状态4.如图所示,在一粗糙水平地面上有两个质量分别为m 1和m 2的木块1和2,中间用一劲度系数为k 的轻弹簧连结起来,木块与地面间的动摩擦因数为μ,现用一水平力向右拉木块2,当两木块一起匀速运动时两木块之间的距离是( )A .g m kl 1μ+B .()g m m kl 21++μC .D .gm m mm k l 2121⎪⎪⎭⎫⎝⎛++μ5、质量分别为1m 和2m 的两滑块A 和B 通过一轻弹簧水平连接后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F 的作用下匀速运动,如图所示,如突然撤销拉力,则刚撤销后瞬间,二者的加速度B A a a 和分别为 ( )A. aA=0,aB=0B. aA>0,aB<0C. aA<0,aB>0D. aA<0,aB=06.如图所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相同的物体B 以速度v 向A 运动并与弹簧发生碰撞,A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是( )A .A 开始运动时B .A 的速度等于v 时C .B 的速度等于零时D .A 和B 的速度相等时7.轻质弹簧上端固定一块指令不计的薄板,竖直固定于水平面上,在薄板上面放一重物,保持平衡状态,现用力往下压重物,使弹簧再压缩一段,然后突然撤去压力,重物即被弹簧弹射起,则在弹射起的过程中重物的运动情况是( )A . 一直加速运动B .一直减速运动C .先加速后减速D .先减速后加速8.粗糙水平面上,一个小球向右运动,将弹簧压缩,随后又被弹回直到离开弹簧.则该小球从接触到离开弹簧这个过程中,加速度大小的变化情况是( )A .先增大后减小B .先减小后增大C .先增大后减小再增大D .先减小后增大再减小9.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端栓一质量为m 的小球,小球上下振动时,框架始终没有跳起,单出现了框架对地面的压力恰好为零的瞬间,则此时小球的加速度为速度;当小球的加速度恰好为零的瞬间,框架对地面的压力为。

弹簧问题专项复习及练习题(含详细解答)

弹簧问题专项复习及练习题(含详细解答)

高三物理第二轮专题复习(一)弹簧类问题轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。

问题类型:1、弹簧的瞬时问题弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。

弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。

2、弹簧的平衡问题这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。

3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。

弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。

有些问题要结合简谐运动的特点求解。

4、弹力做功与动量能量的综合问题弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。

如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。

在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。

它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。

分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。

规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。

当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。

系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。

(实际上应为机械能守恒)典型试题1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。

在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。

物块落在弹簧上,压缩弹簧,到达C点时,物块的速度为零。

高一物理弹力练习题

高一物理弹力练习题

高一物理弹力练习题高一物理弹力练习题弹力是物理学中一个重要的概念,它涉及到物体的形变和恢复力。

在高一物理学习中,学生们经常会遇到一些与弹力相关的练习题。

下面我们来看几个典型的弹力练习题,通过解答这些问题,我们可以更好地理解弹力的本质和应用。

1. 一个质量为2kg的物体悬挂在一根弹簧上,弹簧的劲度系数为200N/m。

当物体处于平衡位置时,弹簧的长度是多少?解析:弹簧的劲度系数表示单位长度的弹簧所具有的弹力。

根据胡克定律,弹簧的弹力与其伸长或压缩的长度成正比。

因此,我们可以使用公式 F = kx 来解决这个问题,其中 F 是弹力,k 是劲度系数,x 是弹簧的伸长或压缩长度。

在平衡位置,物体不受外力作用,所以弹簧的弹力与物体的重力相等。

即 F = mg,其中 m 是物体的质量,g 是重力加速度。

将这个等式代入到 F = kx 中,我们可以得到 mg = kx,进一步得到 x = mg/k。

代入具体数值,我们可以计算出 x = 2kg * 9.8m/s^2 / 200N/m = 0.098m。

因此,当物体处于平衡位置时,弹簧的长度为0.098m。

2. 一个质量为0.5kg的物体被一个劲度系数为500N/m的弹簧拉伸了0.2m,然后释放。

求物体在弹簧恢复原长时的速度。

解析:当物体被拉伸或压缩后,弹簧会产生一个恢复力,使物体回到平衡位置。

根据动能定理,物体在回到平衡位置时,它的动能等于势能。

在这个问题中,物体在平衡位置时的势能为零,所以我们可以使用动能定理来解决这个问题。

物体在被拉伸时,它的势能由弹簧的弹性势能提供。

根据公式PE = (1/2)kx^2,我们可以计算出势能 PE = (1/2) * 500N/m * (0.2m)^2 = 10J。

在物体回到平衡位置时,它的动能等于势能,即 (1/2)mv^2 = 10J。

代入具体数值,我们可以计算出 v = sqrt(2 * 10J / 0.5kg) = sqrt(40m^2/s^2) = 2m/s。

高中物理弹簧模型经典题型汇总

高中物理弹簧模型经典题型汇总

弹簧专题1、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.例1、如图3-7-15所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b、对质点的作用力均为F,则弹簧c对质点作用力的大小可能为( )A、0B、F mg+C、F mg-D、mg F-2、轻弹簧高中物理中描述一类物体时常在其前面加上限定词“轻”,如“轻结点”、“轻绳”、“轻弹簧”、“轻杆”、“轻滑轮”等.“轻"主要可以理解为物体质量对所研究的物理问题影响很小,可以忽略不计,它是一种理想化的物理模型。

根据牛顿第二定律F = ma知,由于“轻物体”质量为零,无论其加速度多大,所受合外力必然为零,与物体的运动状态无关.这也是它与常规物体的最大区别.例2、如图4所示,4个完全相同的轻质弹簧都处于水平位置,他们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以L1、L2、L3、L4依次表示4个弹簧的伸长量.则有()3、质量不可忽略的弹簧例3、如图所示,一质量为M、长为L的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.答案解析Fx=FLx图3-7-154、三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是轻质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变,即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变。

例4、如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.求解下列问题:(1)现将线L2剪断,求剪断L2的瞬间物体的加速度.(2)若将图甲中的细线L1换成长度相同,质量不计的轻弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体的加速度.例5、如图所示,一光滑圆环竖直固定在地面上,三个完全相同的质量均为m的小球穿在圆环上,其中小球A位于圆环最高点,小球B、C位于同一高度,小球A与小球B之间、小球A与小球C间用等长的轻质细绳相连,小球B与小球C用轻弹簧相连。

高中物理弹簧问题分类全解析

高中物理弹簧问题分类全解析

高中物理弹簧问题分类全解析一、有关弹簧题目类型 1、平衡类问题 2、突变类问题3、简谐运动型弹簧问题4、功能关系型弹簧问题5、碰撞型弹簧问题6、综合类弹簧问题 二、分类解析 1、平衡类问题例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k 1B.m2g/k 2C.m1g/k 2D.m2g/k 2解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即当上面木块离开弹簧时,受重力和弹力,则【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。

细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。

物体静止在斜面上,弹簧秤的示数为4.9N 。

关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。

则1m 所受支持力N 和摩擦力f 正确的是ACA .12sin N m g m g F θ=+-B .12cos N m g m g F θ=+-C .cos f F θ=D .sin f F θ=2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。

若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功),W 弹=-mgx -W F =-4.5J所以弹性势能增加4.5焦耳点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功2、突变类问题例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求(1)烧断细绳瞬间,小球的加速度(2)在C处弹簧与小球脱开瞬间,小球的加速度解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2,解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得F AC =mgsinθ2/sin(θ1+θ2)则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。

高一物理力学中的弹簧问题

高一物理力学中的弹簧问题

(2m)v
2 2
从弹簧压缩量最大至恢复原长过程中:
E p (2m)gx
AB分离后,对A:

1 2
(2Байду номын сангаас)v
2 3
BA
l
AB开始压缩弹簧至弹簧恢复原长过程中:
由以上各式,得:
8
轻质弹簧的特点: 1.弹力为变力,其大小遵循胡克定律 2.弹力不可突变(弹簧两端连接物体时) 3.弹簧的伸长量与压缩量相等时,弹簧具有的弹性势能相等
O A B
∴I=mu+mv
2
2.用劲度系数为k的轻弹簧把质量均为m的木板A、B连接组成 如图所示的装置,静置于水平地面上,A板在上,B板在下。 现用一个竖直向下的力F将木板A缓慢压到P点,撤去F后,A 向上运动,在以后的运动过程中能使B板恰好离开地面.
(1) 分析木板A被下压过程中F如何变化?
(2)撤去F瞬间,木板A的加速度多大?
(3)将木板A压到P点F所做的功
5
(3)将木板A压到P点F所做的功
C

xo xo
2xo
F
2xo
P
6
3.如图所示,轻弹簧的一端固定,另一端与滑块B相连,B 静止在水平导轨上的O点,此时弹簧处于原长.另一质量与 B相同的物块A从导轨上的P点以初速度v0向B滑行,当A滑 过距离l 时,与B相碰.碰撞时间极短,碰后A、B立即一起 运动,但互不粘连.已知最后A恰好返回出发点P并停止, 设滑块A和B均可视为质点,与导轨的动摩擦因数均为μ.重
处理弹簧类问题的方法: (1)通过画图理清弹簧关联物的运动情况及
弹簧的伸缩情况,明确临界状态的受力特点。 (2)充分把握弹簧运动的对称性,
合理选择力学规律解题。

高中物理-弹簧问题

高中物理-弹簧问题

弹簧问题轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。

无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。

合力恒等于零。

弹簧读数始终等于任意一端的弹力大小。

弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。

一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。

其伸长量等于弹簧任意位置受到的力和劲度系数的比值。

性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。

性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。

分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。

弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。

(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。

(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。

(压缩——拉伸变化)参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。

抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。

合力恒等于零的特点求解。

注:如果a相同,先整体后隔离。

隔离法求内力,优先对受力少的物体进行隔离分析。

2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:水平型:明确有无推力,有无摩擦力。

高一物理弹力试题答案及解析

高一物理弹力试题答案及解析

高一物理弹力试题答案及解析1.一根轻质弹簧一端固定,用大小为的力压弹簧的另一端,平衡时长度为;改用大小为的力拉弹簧,平衡时长度为.弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为A.B.C.D.【答案】C【解析】由胡克定律得 F=kx,式中x为形变量,设弹簧原长为l0,则有F1=k(l-l1),F2=k(l2-l),联立方程组可以解得。

所以C项正确【考点】本题考查了胡可定律。

2.关于力的概念,下列说法正确的是()A.一个力必定联系着两个物体,其中每个物体既是受力物体,又是施力物体B.放在桌面上的木块受到桌面对它向上的弹力,这是由于木块发生微小形变而产生的C.压缩弹簧时,手先给弹簧一个压力F,等弹簧再压缩x距离后才反过来给手一个弹力D.根据力的作用效果命名的不同名称的力,性质可能也不相同【答案】AD【解析】力是物体间的相互作用,受力物体同时也是施力物体,施力物体同时也是受力物体,所以A正确;产生弹力时,施力物体和受力物体同时发生形变,但弹力是由施力物体形变引起的,反作用力是由受力物体形变引起的,放在桌面上的木块受到桌面给它向上的弹力,这是由于桌面发生微小形变而产生的,故B不正确;力的作用是相互的,作用力和反作用力同时产生、同时消失,故C选项错误;根据力的作用效果命名的力,性质可能相同,也可能不相同,如向心力,可以是绳子的拉力,也可以是电场力,还可以是其他性质的力,D选项正确.3.如图所示,劲度系数为K2的轻质弹簧,竖直放在桌面上,上面压一质量为m的物块,劲度系数为K1的轻质弹簧竖直地放在物块上面,其下端与物块上表面连接在一起,现想使物块在静止时,下面弹簧承受物重的2/3,应将上面弹簧的上端A竖直向上提高的距离。

【答案】【解析】末态时物块受力分析,其中F1′与F2′分别是弹簧k1、k2的作用力,物块静止有F1′+F2′=mg初态时,弹簧k2(压缩)的弹力F2=mg末态时,弹簧k2(压缩)的弹力F2′=mg弹簧k2的长度变化量△x2==由F1′+F2′=mg,F2′=mg 得F1′=mg初态时,弹簧k1(原长)的弹力F1=0末态时,弹簧k1(伸长)的弹力F1′=mg弹簧k1的长度变化量△x1==所求距离为△x1+△x2=【考点】本题考查胡克定律。

重点高中物理必修一弹簧问题

重点高中物理必修一弹簧问题

精心整理高中物理弹簧模型问题一、物理模型:轻弹簧是不计自身质量,能产生沿轴线的拉伸或压缩形变,故产生向内或向外的弹力。

二、模型力学特征:轻弹簧既可以发生拉伸形变,又可发生压缩形变,其弹力方向一定沿弹簧方向,弹簧两端弹力的大小相等,方向相反。

三、弹簧物理问题:1.弹簧平衡问题:抓住弹簧形变量、运动和力、促平衡、列方程。

2.弹簧模型应用牛顿第二定律的解题技巧问题:(1) 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。

而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。

(2) 弹簧长度不变,弹力不变问题:当物体除受弹簧本身的弹力外,还受到其它外力时,当弹簧长度不发生变化时,弹簧的弹力是不变的,出就是形变量不变,抓住这一状态分析物体的另外问题。

(3) 弹簧中的临界问题:当弹簧的长度发生改变导致弹力发生变化的过程中,往往会出现临界问题:如“两物体分离”、“离开地面”、“恰好”、“刚好”……这类问题找出隐含条件是求解本类题型的关键。

3.弹簧双振子问题:它的构造是:一根弹簧两端各连接一个小球(物体),这样的装置称为“弹簧双振子”。

本模型它涉及到力和运动、动量和能量等问题。

本问题对过程分析尤为重要。

1.弹簧称水平放置、牵连物体弹簧示数确定【例1】物块1、2放在光滑水平面上用轻弹簧相连,如图1所示。

今对物块1、2分别施以相反的水平力F1、F2,且F1>F2,则:A .弹簧秤示数不可能为F1B .若撤去F1,则物体1的加速度一定减小C .若撤去F2,弹簧称的示数一定增大D .若撤去F2,弹簧称的示数一定减小即正确答案为A 、D【点评】对于轻弹簧处于加速状态时要运用整体和隔离分析,再用牛顿第二定律列方程推出表达式进行比较讨论得出答案。

若是平衡时弹簧产生的弹力和外力大小相等。

主要看能使弹簧发生形变的力就能分析出弹簧的弹力。

高一物理:平衡(绳杆弹簧)(答案)

高一物理:平衡(绳杆弹簧)(答案)

高一物理:平衡(绳杆弹簧)(参考答案)
一、选择题
1.【答案】C
2.【答案】AD
【解析】方法一:结点O和灯的重力产生了两个效果,一是沿AO向下的拉紧AO Array的分力F1,二是沿BO向左的拉紧BO绳的分力F2,分解示意图如图所示.
方法二:分析结点O与灯受力考虑到灯的重力与OB垂直,正交分解OA的拉力更
为方便,其分解如图所示.
3.【答案】AD
【解析】设轻弹簧A、B伸长量都为x,小球A的质量为m,则小球B的质量为2m。

对小球b,由平衡条件,
弹簧B中弹力为k B x=2mg;对小球a,由平衡条件,竖直方向k B x+mg=k A x cos 60°,联立解得:k A=3k B,选
项A正确,B错误;水平方向,轻绳上拉力F=k A x sin 60°,选项C错误,D正确。

4.【答案】D
6.【答案】C
【解析】考查受力分析、物体的平衡.对
以及水平向左的弹簧弹力
7.【答案】A
8.【答案】A
9.【答案】 C
【解析】将金属球的重力mg沿着垂直于AB边和垂直于BC边分解,F1=mg cos 30°,F2=mg sin 30°,所以F2
F1=3。

3
10.【答案】D
第1 页,共1 页。

高一物理弹簧综合试题

高一物理弹簧综合试题

高一物理弹簧综合试题1.A、B两球质量分别为m1与m2,用一劲度系数为K的弹簧相连,一长为l1的细线与m1相连,置于水平光滑桌面上,细线的另一端拴在竖直轴OO`上,如图所示,当m1与m2均以角速度w绕OO`做匀速圆周运动时,弹簧长度为l2。

求:(1)此时弹簧伸长量多大?绳子张力多大?(2)将线突然烧断瞬间两球加速度各多大?【答案】(1)(2)【解析】(1)m2只受弹簧弹力,设弹簧伸长Δl,满足KΔl=m2w2(l1+l2)∴弹簧伸长量对m1,受绳拉力T和弹簧弹力f做匀速圆周运动,满足:T-f=m1w2l1绳子拉力(2)线烧断瞬间A球加速度B球加速度【考点】圆周运动点评:本题考查了圆周运动向心力来源,并结合圆周运动知识建立等式求解。

本题还考察了物体的惯性知识。

2.如图所示,P是倾角为30°的光滑固定斜面.劲度系数为k的轻弹簧一端固定在斜面底端的固定挡板C上,另一端与质量为m的物块A相连接.细绳的一端系在物体A上,细绳跨过不计质量和摩擦的定滑轮,另一端有一个不计质量的小挂钩.小挂钩不挂任何物体时,物体A处于静止状态,细绳与斜面平行.在小挂钩上轻轻挂上一个质量也为m的物块B后,物块A沿斜面向上运动.斜面足够长,运动过程中B始终未接触地面.已知重力加速度为g,问:(1)求物块A刚开始运动时的加速度大小a.(2)设物块A沿斜面上升通过Q点位置时速度最大,求Q点到出发点的距离x0及最大速度vm.(3)把物块B的质量变为原来的N倍(N>0.5),小明同学认为,只要N足够大,就可以使物块A沿斜面上滑到Q点时的速度增大到2vm,你认为是否正确?如果正确,请说明理由,如果不正确,请求出A沿斜面上升到Q点位置的速度的范围.【答案】(1)(2);(3)不正确.【解析】(1)设绳的拉力大小为T,分别以A、B为对象用牛顿第二定律,T=ma,mg-T=ma(2)A加速上升阶段,弹簧恢复原长前对A用牛顿第二定律T+kx-mg/2=ma,对B用牛顿第二定律mg-T=ma,消去T得mg/2+kx=2ma,上升过程x减小,a减小,v增大;弹簧变为伸长后同理得mg/2-kx=2ma,上升过程x增大,a减小,v继续增大,当kx=mg/2时a=0,速度达到最大。

高中物理弹簧弹力问题(含答案)

高中物理弹簧弹力问题(含答案)

弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-= 1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F xT ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0 B.大小为233g ,方向竖直向下C.大小为233g ,方向垂直于木板向下 D. 大小为233g , 方向水平向右【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F(三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为图 3-7-4图图3-7-2图 3-7-1图3-7-323cos 3N F g a g m θ=== 【答案】 C. 四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 . 【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k + 故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()s i n A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m的物图 图3-7-6体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】 由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得: 022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mg F =.]【答案】022gx 32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。

高一物理弹簧专题

高一物理弹簧专题

高一物理弹簧专题1、如图所示,A 、B 两物体之间用轻质弹簧连接,用水平恒力F 拉A ,使A 、B 一起沿光滑水平面做匀加速直线运动,这时弹簧长度为L 1;若将A 、B 置于粗糙水平面上,用相同的水平恒力F 拉A ,使A 、B 一起做匀加速直线运动,此时弹簧长度为L 2。

若A 、B 与粗糙水平面之间的动摩擦因数相同,则下列关系式正确的是 ( )A .L 2<L 1B .L 2>L 1C .L 2=L 1D .由于A 、B 质量关系未知,故无法确定L 1、L 2的大小关系2、如图所示,A 、B 两物体的重力分别是G A =3N ,G B =4N ,A 有悬绳挂在天花板上,B 放在水平面上,A 、B 之间的轻弹簧的弹力F=2N ,则绳中张力F T 和B 对地面的压力FN 的可能值分别为( )A .7N 和0 B.5N 和2N C.1N 和6N D.2N 和5N3、如图所示,小车上有一个定滑轮,跨过定滑轮的绳一端系一重球,另一端系在弹簧秤上,弹簧秤固定在小车上.开始时小车处于静止状态。

当小车匀加速向右运动时,下述说法中正确的是: ( C )A .弹簧秤读数变大,小车对地面压力变大B .弹簧秤读数变大,小车对地面压力变小C .弹簧秤读数变大,小车对地面的压力不变D .弹簧秤读数不变,小车对地面的压力变大4、如右图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。

现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a 。

重力加速度大小为g 。

则有(C ) A .1a g =,2a g = B .10a =,2a g= C .10a =,2m M a g M += D .1a g =,2m M a g M +=5、如图所示,两质量相等的物块A 、B 通过一轻质弹簧连接,B 足够长、放置在水平面上,所有接触面均光滑。

高一物理弹力试题

高一物理弹力试题

高一物理弹力试题1.如图所示,物体质量为M,与弹簧A、B相连接,弹簧下端固定于地面上,弹簧A、B质量均不计,劲度系数分别为k1、k2。

试求用手拉住弹簧A的上端,缓慢上移多大距离时能使弹簧B产生的弹力大小变成原来的2/3?【答案】或【解析】B弹簧原先处于压缩状态,压缩量,上弹簧无形变.情况一:用手拉住弹簧A的上端,缓慢上移时,B弹簧仍处于压缩状态,压缩量则物体M上升的距离为由M受力平衡可知,A弹簧处于拉伸状态,伸长量则A的上端应上移。

情况二:用手拉住弹簧A的上端,缓慢上移时,B弹簧处于拉伸状态,伸长量则物体M上升的距离为,由M受力平衡可知,A弹簧处于拉伸状态,形变量则A的上端应上移【考点】胡克定律的应用;物体的平衡。

2.一物体静止在水平桌面上,则下列说法中正确的是A.物体对桌面的压力就是重力B.物体对桌面的压力使桌面向下发生了形变C.物体受到的重力与支持力是一对相互作用力D.桌面对物体的支持力与物体对桌面的压力是一对平衡力【答案】B【解析】物体静止在水平桌面上,物体对桌面的压力大小等于物体的重力,但不能说压力就是物体的重力,它们的施力物体和受力情况不同,A错误;力的一个作用效果是使物体发生形变,物体对桌面有向下的压力,使桌面发生形变,向下发生了弯曲,B正确;物体的重力是作用在物体上的力,支持力也是作用在这个物体上的力,这两个力大小相等、方向相反且作用在同一直线上,所以这两个力是一对平衡力,C错误;物体对桌面的压力是作用在桌面上,桌面对物体的支持力是作用在物体上的力,不是作用在同一个物体上,不是一对平衡力;D错误【考点】考查了弹力的产生原因,平衡力与相互作用力的区别3.放在水平地面上的砖块与地面的受力,下列分析正确的是A.砖块受到的支持力是砖块发生了形变B.地面受到的压力是砖块发生了形变C.砖块受到的支持力与地面受到的压力作用效果可以抵消D.砖块受到的重力就是地面受到的压力【答案】B【解析】砖块受到的支持力是因为地面发生形变,对砖产生向上的支持力,A错误;而地面受到的压力是由砖块发生形变对地面产生向下的弹力,B正确;砖块受到的支持力作用在砖上,而地面受到的压力的作用点在地面上,两个力是作用力与反作用力,不能相互抵消,C错误;砖块受到的重力是由于地球的吸引力而产生的,是重力,方向竖直向下,而砖对地面的压力是由于砖发生形变对地面产生的,是弹力,方向垂直于接触面,两个力的性质不同,方向也不一定相同,D错误。

高中物理弹簧问题总结

高中物理弹簧问题总结

高中物理弹簧问题总结弹簧是高中物理中一个重要的概念,也是一个常见的物理实验中的元件。

学习弹簧的性质和应用能够帮助我们更好地理解和应用力学以及弹性力学的原理。

下面是对高中物理弹簧问题的总结:一、弹簧的性质:1. 弹簧的弹性特性:弹簧具有恢复形变的能力,当受到外力时会发生形变,但当外力消失时能够恢复到初始形态。

2. 弹簧的刚性:在一定范围内,弹簧所受的力与形变成正比,即服从胡克定律。

3. 弹簧的弹性系数:弹簧的刚度可以用弹性系数来描述,即弹簧的劲度系数。

弹簧劲度系数越大,弹簧越难被拉伸或压缩。

二、胡克定律和弹性势能:1. 胡克定律:胡克定律描述了弹簧受力和形变之间的关系,也称为弹性力的大小与伸长或压缩的长度成正比。

2. 弹性势能:弹性势能是指弹簧在形变过程中储存的能量,储存的能量正比于弹簧劲度系数和形变量的平方。

三、串联和并联弹簧:1. 串联弹簧:将多个弹簧依次连接在一起,使之共同受力。

串联弹簧的总劲度系数等于各弹簧劲度系数的倒数之和。

2. 并联弹簧:将多个弹簧同时连接到相同的两个点上,使之同时受力。

并联弹簧的总劲度系数等于各弹簧劲度系数的和。

四、弹簧振子:1. 单摆弹簧振子:在一个质点下挂一根弹簧,使其成为一个振动系统。

单摆弹簧振子的周期与振子的长度和弹簧的劲度系数有关。

2. 弹簧振子的周期:弹簧振子的周期与振动的物体质量和弹簧的劲度系数成反比,与振动物体的下挂点到弹簧上竖直线的距离无关。

五、弹簧天平和弹簧测力计:1. 弹簧天平:弹簧天平是利用胡克定律实现测量物体质量的工具。

根据物体的质量对弹簧产生的形变,可以推算出物体的质量。

2. 弹簧测力计:弹簧测力计是一种测量物体受力的仪器,根据胡克定律以及弹簧劲度系数可以推算出物体所受的力。

弹簧问题是高中物理中经常出现的问题之一,理解了弹簧的性质和应用,能够更好地解决相关的物理计算题目。

同时,对于实际生活中的弹簧应用也有很大的参考价值,比如弹簧减震器、弹簧秤等等。

高中物理:一端固定一端可动的弹簧问题

高中物理:一端固定一端可动的弹簧问题

高中物理:一端固定一端可动的弹簧问题1、弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即或。

例1、劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。

解析:物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。

由匀变速直线运动公式及牛顿定律得:①②③解以上三式得:。

显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。

2、弹簧能承受拉伸的力,也能承受压缩的力。

例2、如图1所示,小圆环重固定的大环半径为R,轻弹簧原长为L(L<>解析:以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。

若弹簧处于压缩状态,小球受到斜向下的弹力,则N的方向无论是指向大环的圆心还是背向大环的圆心,小环都不能平衡。

因此,弹簧对小环的弹力F一定斜向上,大环施加的弹力刀必须背向圆心,受力情况如图2所示。

根据几何知识,“同弧所对的圆心角是圆周角的二倍”,即弹簧拉力N的作用线在重力mg和大环弹力N的角分线上。

所以另外,根据胡可定律:解以上式得:即只有正确分析出弹簧处于伸长状态,才能判断出弹力的方向。

3、很多由弹簧设计的物理问题,在其运动的过程中隐含着已知条件,只有充分利用这一隐含的条件才能有效的解决问题。

例3、已知弹簧劲度系数为k,物块重为m,弹簧立在水平桌面上,下端固定,上端固定一轻质盘,物块放于盘中,如图3所示。

现给物块一向下的压力F,当物块静止时,撤去外力。

在运动过程中,物块正好不离开盘,求:(1)给物块所受的向下的压力F。

(2)在运动过程中盘对物块的最大作用力。

解析:(1)由于物块正好不离开盘,可知物块振动到最高点时,弹簧正好处在原长位置,所以有:由对称性,物块在最低点时的加速度也为a,因为盘的质量不计,由牛顿第二定律得:物块被压到最低点静止时有:由以上三式得:(2)在最低点时盘对物块的支持力最大,此时有:,解得。

高一物理竞赛弹簧专题

高一物理竞赛弹簧专题

高一物理竞赛——弹簧专题一、弹力公式的应用例1、如图所示,两个弹簧的质量不计,劲度系数分别为k 1、k 2,它们的一端固定在质量为m 的物体上,另一端分别固定在P 、Q 点,当物体平衡时,上面的弹簧k 2处于原长,若要把物体的质量换成2 m (它的厚度不变,且均在弹簧的弹性限度内),再次平衡时,物体比第一次平衡时下降的距离x 为( )(A )mg /(k 1+k 2) (B )k 1k 2 m g / (k 1+k 2) (C )2 m g / (k 1+k 2) (D)2 k 1 k 2 m g / (k 1+k 2)。

二、瞬时加速度问题例2、如图所示,竖直光滑杆上套有一小球和两弹簧,两弹簧的一端与小球相连,另一端则分别用销钉M 、N 固定于杆上,小球处于静止状态。

设拔去销钉M 的瞬间,12m/s 2 ,若不拔去销钉M 而拔去销钉N练习1、如图所示,两根质量可忽略的轻弹簧静止系住一小球,弹簧处于竖直状态,若只撤去弹簧a ,撤去的瞬间小球的加速度大小为2.5米/秒2,若只撤去弹簧b ,则撤去瞬间小球的加速度可能为()(A )7.5米/秒2,方向竖直向上,(B )7.5米/秒2,方向竖直向下, (C )12.5米/秒2,方向竖直向上,(D )12.5米/秒2,方向竖直向下。

练习2、如图所示, 在升降机内用细线悬挂质量相同的两个小球1和2, 接. 现升降机正以加速度g 匀加速竖直上升, 两小球与轻弹簧组成的系统稳 定后忽然细线断了, 这时球1和球2的加速度a 1、a 2分别为(g 为重力加 速度)()A. a 1 = g , a 2 = gB. a 1 = 2g , a 2 =0 C. a 1 = 2g , a 2 = g D. a 1 = 3g , a 2 = g练习3、如图所示,A 、B 、C 三物的质量相等,A 、B 之间用弹簧连接,开始时,系统静止,剪断悬绳的瞬间,A 的加速度a A = ,C 的加速度 a c = 。

高一物理弹簧临界问题

高一物理弹簧临界问题

高一物理弹簧临界问题
高一物理弹簧的临界问题是一个涉及动力学和弹力学的复杂问题。

以下是解决此类问题的一般步骤:
1. 分析物体的受力情况:对于与弹簧相连的物体,我们需要分析其受到的重力、弹力和其他可能的力。

2. 确定临界条件:弹簧的临界状态通常发生在其形变量最大或最小的时候。

这些临界状态可能是物体速度为零、加速度为零、弹簧伸长量或压缩量最大等。

3. 运用动力学方程:根据牛顿第二定律,结合物体在临界点的速度和加速度信息,可以建立动力学方程。

4. 求解方程:解方程以找到物体的速度、加速度、弹簧的形变量等。

5. 考虑能量守恒:在某些情况下,弹簧的弹力可能会引起其他形式的能量变化,如动能和势能的相互转化。

在这种情况下,需要使用能量守恒定律来解决问题。

6. 分析多过程问题:对于涉及物体与弹簧相互作用的多过程问题,需要仔细分析每个过程中的受力情况和运动状态,并找出临界条件。

7. 总结答案:根据以上步骤,可以总结出物体与弹簧相互作用时的运动规律和临界条件,从而得出最终答案。

解决此类问题需要深入理解牛顿运动定律、能量守恒定律和胡克定律的应用,并且能够灵活运用这些知识来分析复杂的物理情景。

如有需要,可以查阅相关资料或咨询物理老师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧问题的应用
1.如图所示,弹簧的劲度系数为k,小球的重力为G,平衡时球在A位置。

现在用力F将小球向下拉长x至B位置,则此时弹簧的弹力为()
A.kx
B.kx+G
C.G-kx D 以上都不对
2.如图所示,两根弹簧原长20cm,劲度系数k=20N/m,小球质量为0.1kg,若不计弹簧的质量和小球的大小,球悬点O到小球之间的距离?(g取10N/kg)
3.如图所示,a、b、c为三个物体,M、N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图所示并处于平衡状态()。

A.有可能N处于拉伸状态而M处于压缩状态
B.有可能N处于压缩状态而M处于拉伸状态
C.有可能N处于不伸不缩状态而M处于拉伸状态
D.有可能N处于拉伸状态而M处于不伸不缩状态
4.如图所示,A、B两物体的重力分别是G A=3N,G B=4N,A有悬绳挂在天花板上,
B放在水平面上,A、B之间的轻弹簧的弹力F=2N,则绳中张力F T和B对地面的
压力FN的可能值分别为()
A.7N和0 B.5N和2N C.1N和6N D.2N和5N
5.如图所示,劲度系数为k2的轻质弹簧,竖直放在桌面上,上面压一质量为m 的物块,劲度系数为k1的轻质弹簧竖直地放在物块上面,其下端与物块上表面
连接在一起,现想使物块在静止时,下面弹簧承受物重的2/3,应将上面弹簧的上端A竖直向上提高多大的距离?
6.如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和
k2,上面的木块压在上面的弹簧上(但不栓接),整个系统处于平衡状态,现缓
慢地向上提上面的木块,直到它刚离开上面的弹簧,求这个过程中下面木块移动的距离。

7.如图所示,劲度系数为k1的轻质弹簧分别于质量为m1、m2的物体1、2连接。

劲度系数为k2的轻质弹簧的上端与物块2连接,下端压在桌面上(不连接)。


个系统处于静止状态,现使力将物块1缓慢地竖直上提,直到下面的那个弹簧的下端刚好脱离桌面,求中此过程物块1上升的高度。

相关文档
最新文档