《空调系统设计》PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∆P=∆Py+∆Pj (Pa)
(一)沿程压力损失的基本计算公式
长度为l(m)的风管沿程压力损失可按下式计算:
∆Py=∆pyl
(Pa)
式中 ∆py—单位管长沿程压力损失,也称为单位管长摩擦阻力损 失
,单位为Pa/ m,可查阅附录13以及有关设计手册中《风管单位长度
沿程压力损失计算表》进行计算。
a
7
(二)局部压力损失的基本计算公式 ∆Pj=ζ×υ2ρ/2 (Pa)
250×160
400×400
630×630
1000×800
1600×1000
250×200
500×200
800×320
1000×1000
1600×1250
250×250
500×250
800×400
1250×400
2000×800
320×160
500×320
800×500
1250×500
2000×1000
a
5
2.1.2风道设计的基本任务
一.风道设计的原则 风道设计时应统筹考虑经济、实用两条基本原则。
二.风道设计的基本任务: 1.确定风管的断面形状,选择风管的断面尺寸。 2.计算风管内的压力损失,最终确定风管的断面尺寸,并
选择合适的通风机。
a
6
风管的压力损失∆P由沿程压力损失∆Py和局部压力损失∆Pj两部分组 成,即:
薄钢板有普通薄钢板和镀锌薄钢板两种。钢板厚度,一般采用0.5 ~1.5mm左右。
对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢 板制作的风管。仅限于室内应用,且流体温度不可超过-10~+60℃。
以砖、混凝土等材料制作风管,主要用于与建筑、结构相配合的 场合。
a
3
三. 风管断面形状的选择
风管断面形状有圆形和矩形两种。圆形断面的风管强度大、阻力 小、消耗材料少,但加工工艺比较复杂,占用空间多,布置时难以 与建筑、结构配合,常用于高速送风的空调系统;矩形断面的风管 易加工、好布置,能充分利用建筑空间,弯头、三通等部件的尺寸 较圆形风管的部件小。为了节省建筑空间,布置美观,一般民用建 筑空调系统送、回风管道的断面形状均以矩形为宜。
2.风道的布置应根据工艺和气流组织的要求,可以采用架空明敷设, 也可以暗敷设于地板下、内墙或顶棚中。
3.风道的布置应力求顺直,避免复杂的局部管件。弯头、三通等管 件应安排得当,管件与风管的连接、支管与干管的连接要合理,以 减少阻力和噪声。
4.风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、 风量测定孔、采样孔等)或预留安装测量装置的接口。调节和测量 装置应设在便于操作和观察的地方。
a
9
1.假定流速法
假定流速法也称为比摩阻法。先按技术经济要求选定风管的风速,再
根据风管的风量确定风管的断面尺寸和阻力。这是低速送风系统目前
最常用的一种计算方法。
2.压损平均法
压损平均法也称为当量阻力法。这种方法以单位管长压力损失相等为
前提,在已知总作用压力的情况下,取最长的环路或压力损失最大的
环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再
管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。此
方法适用于高速空调系统的水力计算a 。
10
二.风道水力计算步骤
以假定流速法为例,说明风道水力计算的方法步骤: 1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图 ,作为水力计算草图。 2.在计算草图上进行管段编号,并标注管段的长度和风量。 管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头 )本身的长度。 3.选定系统最不利环路,一般指最远或局部阻力最多得环路。 4.根据造价和运行费用的综合最经济的原则,选择合理的空气流速 。根据经验总结,风管内的空气流速可按P111表6.3确定。
5.风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。
6.风道布置应在满足气流组织要求的基础上,达到美观、实用的原
则。
a
2
二. 风管材料的选择
用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、 铝板、砖及混凝土等。需要经常移动的风管,则大多采用柔性材料制 成各种软管,如塑料软管、金属软管、橡胶软管等。
风道的水力计算是在系统和设备布置、风管材料、各送、回风点 的位置和风量均已确定的基础上进行的。
风道水力计算的主要目的是确定各管段的管径(或断面尺寸)和 阻力,保证系统内达到要求的风量分配,最后确定风机的型号和动 力消耗。
风道水力计算方法比较多,如假定流速法、压损平均法、静压复 得法等。对于低速送风系统大多采用假定流速法和压损平均法,而 高速送风系统则采用静压复得法。
1250×800
160×160
320×320
630×250
1000×320
1250×1000
200×160
400×200
630×320
1000×400
1600×500
200×200
400×250
630×400
1000×500
1600×630
250×120
400×320
630×500 1000×630 1600×800
式中 ζ—局部阻力系数; υ —ζ与之对应的断面流速。 ρ—空气密度,标准状况下(大气压力为101325 Pa,温
度为20℃),ρ=1.2kg/m3; 附录14以及许多文献资料中,都载有各种各样管件的局部阻力
系数ζ计算表,可供设计时选用。
a
8
2.1.3 风道设计计算的方法与步骤
一.风道水力计算方法
第二章空气调节工程设计方法
§2.1空调系统风道设计
2.1.1风道设计的基本知识
一. 风道的布置原则 风道布置直接关系到空调系统的总体布置,它与工
艺、土建、电气、给排水等专业关系密切,应相互配合、 协调一致。
a
1
1.空调系统的风道在布置时应考虑使用的灵活性。当系统服务于 多 个房间时,可根据房间的用途分组,设置各个支风道,以便与调节。
根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合
各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差
值小于15%。该方法适用于风机压头已定,以及进行分支管路压损平
衡等场合。
3.静压复得法
静压复得法的含义是,当流体的全压一定时,风速降低,则静压增加
,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定
常用矩形风管的规格如下表所示。为了减少系统阻力,并考虑 空调房间吊顶高度的限制,进行风道设计时,矩形风管的高宽比宜 小于6,最大不应超过10。
百度文库
a
4
外边长(长×宽)(mm)
120×120
320×200
500×400
800×630
1250×630
160×120
320×250
500×500
800×800
(一)沿程压力损失的基本计算公式
长度为l(m)的风管沿程压力损失可按下式计算:
∆Py=∆pyl
(Pa)
式中 ∆py—单位管长沿程压力损失,也称为单位管长摩擦阻力损 失
,单位为Pa/ m,可查阅附录13以及有关设计手册中《风管单位长度
沿程压力损失计算表》进行计算。
a
7
(二)局部压力损失的基本计算公式 ∆Pj=ζ×υ2ρ/2 (Pa)
250×160
400×400
630×630
1000×800
1600×1000
250×200
500×200
800×320
1000×1000
1600×1250
250×250
500×250
800×400
1250×400
2000×800
320×160
500×320
800×500
1250×500
2000×1000
a
5
2.1.2风道设计的基本任务
一.风道设计的原则 风道设计时应统筹考虑经济、实用两条基本原则。
二.风道设计的基本任务: 1.确定风管的断面形状,选择风管的断面尺寸。 2.计算风管内的压力损失,最终确定风管的断面尺寸,并
选择合适的通风机。
a
6
风管的压力损失∆P由沿程压力损失∆Py和局部压力损失∆Pj两部分组 成,即:
薄钢板有普通薄钢板和镀锌薄钢板两种。钢板厚度,一般采用0.5 ~1.5mm左右。
对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢 板制作的风管。仅限于室内应用,且流体温度不可超过-10~+60℃。
以砖、混凝土等材料制作风管,主要用于与建筑、结构相配合的 场合。
a
3
三. 风管断面形状的选择
风管断面形状有圆形和矩形两种。圆形断面的风管强度大、阻力 小、消耗材料少,但加工工艺比较复杂,占用空间多,布置时难以 与建筑、结构配合,常用于高速送风的空调系统;矩形断面的风管 易加工、好布置,能充分利用建筑空间,弯头、三通等部件的尺寸 较圆形风管的部件小。为了节省建筑空间,布置美观,一般民用建 筑空调系统送、回风管道的断面形状均以矩形为宜。
2.风道的布置应根据工艺和气流组织的要求,可以采用架空明敷设, 也可以暗敷设于地板下、内墙或顶棚中。
3.风道的布置应力求顺直,避免复杂的局部管件。弯头、三通等管 件应安排得当,管件与风管的连接、支管与干管的连接要合理,以 减少阻力和噪声。
4.风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、 风量测定孔、采样孔等)或预留安装测量装置的接口。调节和测量 装置应设在便于操作和观察的地方。
a
9
1.假定流速法
假定流速法也称为比摩阻法。先按技术经济要求选定风管的风速,再
根据风管的风量确定风管的断面尺寸和阻力。这是低速送风系统目前
最常用的一种计算方法。
2.压损平均法
压损平均法也称为当量阻力法。这种方法以单位管长压力损失相等为
前提,在已知总作用压力的情况下,取最长的环路或压力损失最大的
环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再
管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。此
方法适用于高速空调系统的水力计算a 。
10
二.风道水力计算步骤
以假定流速法为例,说明风道水力计算的方法步骤: 1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图 ,作为水力计算草图。 2.在计算草图上进行管段编号,并标注管段的长度和风量。 管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头 )本身的长度。 3.选定系统最不利环路,一般指最远或局部阻力最多得环路。 4.根据造价和运行费用的综合最经济的原则,选择合理的空气流速 。根据经验总结,风管内的空气流速可按P111表6.3确定。
5.风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。
6.风道布置应在满足气流组织要求的基础上,达到美观、实用的原
则。
a
2
二. 风管材料的选择
用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、 铝板、砖及混凝土等。需要经常移动的风管,则大多采用柔性材料制 成各种软管,如塑料软管、金属软管、橡胶软管等。
风道的水力计算是在系统和设备布置、风管材料、各送、回风点 的位置和风量均已确定的基础上进行的。
风道水力计算的主要目的是确定各管段的管径(或断面尺寸)和 阻力,保证系统内达到要求的风量分配,最后确定风机的型号和动 力消耗。
风道水力计算方法比较多,如假定流速法、压损平均法、静压复 得法等。对于低速送风系统大多采用假定流速法和压损平均法,而 高速送风系统则采用静压复得法。
1250×800
160×160
320×320
630×250
1000×320
1250×1000
200×160
400×200
630×320
1000×400
1600×500
200×200
400×250
630×400
1000×500
1600×630
250×120
400×320
630×500 1000×630 1600×800
式中 ζ—局部阻力系数; υ —ζ与之对应的断面流速。 ρ—空气密度,标准状况下(大气压力为101325 Pa,温
度为20℃),ρ=1.2kg/m3; 附录14以及许多文献资料中,都载有各种各样管件的局部阻力
系数ζ计算表,可供设计时选用。
a
8
2.1.3 风道设计计算的方法与步骤
一.风道水力计算方法
第二章空气调节工程设计方法
§2.1空调系统风道设计
2.1.1风道设计的基本知识
一. 风道的布置原则 风道布置直接关系到空调系统的总体布置,它与工
艺、土建、电气、给排水等专业关系密切,应相互配合、 协调一致。
a
1
1.空调系统的风道在布置时应考虑使用的灵活性。当系统服务于 多 个房间时,可根据房间的用途分组,设置各个支风道,以便与调节。
根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合
各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差
值小于15%。该方法适用于风机压头已定,以及进行分支管路压损平
衡等场合。
3.静压复得法
静压复得法的含义是,当流体的全压一定时,风速降低,则静压增加
,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定
常用矩形风管的规格如下表所示。为了减少系统阻力,并考虑 空调房间吊顶高度的限制,进行风道设计时,矩形风管的高宽比宜 小于6,最大不应超过10。
百度文库
a
4
外边长(长×宽)(mm)
120×120
320×200
500×400
800×630
1250×630
160×120
320×250
500×500
800×800