浅谈数学开放题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈数学开放题

开放题是数学教学中的一种新题型,它是相对于传统的封闭题而言的。开放题的核心是培养学生的创造意识和创造能力,激发学生独立思考和创新的意识,这是一种新的教育理念的具体体现。现行数学教材中,习题基本上是为了使学生了解和牢记数学结论而设计的,学生在学习中缺乏主动参与的过程。那么在教材还没有提供足够的开放题之前,好的开放题从那里来?我认为最现实的办法是让“封闭”题“开放”。

学习的目的是为了使自然人过渡到社会人、使社会人更好地服务于社会,由于社会时刻在发生着变化,因此,一个良好的社会人必

需具备适应社会变化的能力。让学生懂得用现成的方法解决现成的问题仅仅是学习的第一步,学习的更高境界是提出新问题、提出解决问题的新方案。因此首先必须改变那种只局限于教师给题学生做题的被

动的、封闭的意识,为了使数学适应时代的需要,我们选择了数学开

放题作为一个切入口,开放题的引入,促进了数学教育的开放化和个性化,从发现问题和解决问题中培养学生的创新精神和实践能力。

关于开放题目前尚无确切的定论,通常是改变命题结构,改变设问方式,增强问题的探索性以及解决问题过程中的多角度思考,对命题赋予新的解释进而形成和发现新的问题。近两年高考题中也出现了开放题的“影子”,如1998年第(19)题:“关于函数f(x)=4Sin(2x+π/3)(x∈R),有下列命题:①由f(x1)=f(x2)=0可得

x 1-x 2必是π的整数倍;②y=f(x)的表达式可改写为y=4Cos(2x-π/6):③y=f(x)的图象关于点(-π/6,0)对称;④y=f(x)的图象关于直线x=-π/6对称。其中正确的命题是

──(注:把你认为正确的命题的序号都填上)”显然高中代数必修4上的例子“作函数y=3Sin(2x+π/3)的简图。”可作为其原型。学生如果明白这些道理就会产生对问题开放的需求,逐步形成自觉的开放意识。又如

2000年理19文20题函数单调性的参数取值范围问题(既有条件开放又

有结论的开放,条件上,对

112ax x ,是选择012x ,还是选择112x ?选择前者则得a x ax 1

,01

,以后的道路荆棘丛生,而选择后者则有0,11x ax ,以后的道路一片光明;结论开放体

现在结论分为两段,一段上可使函数单调,另一段上不单调,且证明不单调的方法是寻找反例);

从数学考试中引进一定的结合现实背景的问题和开放性问题,已引起了广大数学教育工作者的极大关注,开放题的研究已成为数学教育的一个热点。

相关文档
最新文档