离网(独立)-型光伏发电系统设计与简易计算方法
离网光伏系统设计方案
离网光伏系统设计方案一、概述二、需求分析1.电源需求:需确定离网负载需要供应的电能,包括负载功率、耗电时间等。
2.光伏资源:通过研究目标地区的光伏辐照度数据,确定该地区的光伏资源充足度。
3.系统可靠性:需要保证系统的可靠性和稳定性,使其能持续为负载提供电能。
三、系统组成1.光伏发电子系统:通过光伏组件将太阳能转化为直流电能,并通过充电控制器、功率优化器等电路对光伏发电系统进行控制和保护。
2.电池储能系统:储能系统由蓄电池组成,将光伏发电系统产生的电能进行储存,以供给离网负载使用。
根据负载需求和离网时间的长短,选择合适的电池容量和种类。
3.逆变器系统:将储存在电池中的直流电能转换为交流电能,以满足离网负载的使用需求。
逆变器系统还具有电压稳定、频率稳定和保护等功能。
4.控制系统:控制系统对光伏发电子系统、电池储能系统和逆变器系统进行集中控制和管理,确保系统的正常工作和高效运行。
四、系统设计考虑因素1.光伏组件的选择:根据目标地区光照条件选择高效的光伏组件,以提高系统的发电效率。
2.电池容量的确定:需根据负载需求和离网时间长短,以及光伏系统的发电能力,合理确定电池容量。
3.逆变器的选型:需选择适合离网光伏系统的逆变器,确保逆变器能够正常工作和输出满足负载需求的交流电。
4.控制系统的设计:控制系统需要具备监测、控制、保护和管理等功能,以实现对系统的全面控制和管理。
五、系统运行与维护1.系统运行:光伏发电系统将通过充电控制器对电池进行充电,并将电能转换为直流电供逆变器使用。
逆变器将直流电能转换为交流电供给离网负载使用。
2.系统维护:定期对光伏组件进行清洁和检查,确保其正常工作。
对电池进行定期充电和放电以防止过充和过放,延长电池寿命。
对逆变器和控制系统进行检查和维护,确保其正常工作。
六、系统优化1.节能优化:通过调整离网负载的使用电量,减少能量消耗,提高系统能量利用率。
2.多能互补:可通过增加其他可再生能源发电系统,如风力发电、水力发电等,与光伏系统组合使用,以增加系统的稳定性和可靠性。
新型离网光伏发电系统方案设计
新型离网光伏发电系统方案设计
一、研究背景
随着经济发展的加快,人们对能源的依赖也不断增加,其中电能的消
耗量不断增加,光伏发电作为可再生能源之一的优势越发凸显,越来越多
的人们开始重视这种可再生能源,认识到其能源的优势。
但是,传统的光
伏发电受电网接入限制,受地形和电网规划条件限制,导致很多人无法使
用这种技术,自给自足受到困扰,电力不足。
考虑到这个问题,研究开发
出离网光伏发电系统,从而解决用户的能源问题,真正实现自主发电,自
给自足,这是本文的研究背景。
二、研究内容
离网光伏发电系统是一种能够在电网外发电的能源系统。
它采用太阳
能转换成电能,利用电池存储电能,控制器调节发电,实现自主发电,解
决用户的电力不足问题。
本文针对此研究,主要是对其方案的设计,进行
如下研究内容:
1.在分析当地的气候条件,计算出需要的光伏发电系统容量,以便确
定所需的光伏发电系统组件的总容量;
2.确定系统组件的类型,并从技术性能,可靠性等方面考虑进行选型;
3.计算系统的配置,将系统组件分配到各个分支,达到最佳的配置;
4.计算系统指标。
离网型光伏发电系统设计方案
离网型光伏发电系统设计方案一、引言离网型光伏发电系统是指将光伏发电系统与电网完全隔离,并通过储能设备储存电能,提供给用户使用。
光伏发电系统通过太阳能板将太阳能转换为直流电能,再经过逆变器将直流电转换为交流电,供电给用户使用。
在无法接入传统电网的地区或需要独立供电的应用场景中,离网型光伏发电系统具有广泛的应用前景。
二、系统组成1.光伏电池组:光伏电池组是光伏发电系统的核心部件,由多个太阳能电池板组成。
太阳能板能够将阳光转化为直流电能,为系统提供能源。
2.充放电控制器:充放电控制器主要负责对光伏电池组进行控制和管理,确保系统的充电和放电过程稳定。
充放电控制器还可监测电池组的电压、电流和温度等参数,以提高系统的安全性和效率。
3.储能设备:储能设备是离网型光伏发电系统的关键组成部分,用于储存多余的电能,并在需要时释放。
常见的储能设备包括蓄电池、超级电容、储氢罐等。
蓄电池是较常用的储能设备,能够将电能长时间存储,并通过逆变器将储存的直流电转换为交流电。
4.逆变器:逆变器是将光伏电池组输出的直流电转换为交流电的关键设备。
逆变器可以将直流电的电压和频率转换为符合用户需求的交流电。
三、系统设计1.太阳能资源评估:根据光照强度和日照时间等要素,评估系统所处地区可利用的太阳能资源。
通过太阳能资源评估,确定光伏电池组的组件类型和数量,以及逆变器的容量。
2.负载需求分析:根据用户的用电需求,确定系统的负载容量和负载类型。
负载需求的分析包括负载功率和运行时间的估算。
对于不同类型的负载,可以分配不同的储能容量。
3.储能容量设计:储能容量的设计需要考虑系统的负载需求和太阳能资源。
通过计算所需的电能储存量,确定储能设备的容量。
储能设备的容量应能满足负载的用电需求,并在连续阴天等情况下保证供电稳定。
4.系统可靠性设计:离网型光伏发电系统的可靠性设计是确保系统正常运行的重要因素。
采用双冗余设计可以提高系统的可靠性,例如采用多组光伏电池板、多台储能设备和逆变器等。
光伏发电离网系统方案
1、离网太阳能发电系统2、客户需求4KW交流水泵,每天工作一小时,2-3天阴雨天,纯离网系统。
3太阳能供电系统:3.1太阳能发电系统原理图4.系统配置与参考价格太阳能电池组件高效晶硅电池组件200Wp*8=1.6KWp蓄电池太阳能专用蓄电池12V150AH * 8pcs,(14.4度电。
可以满足4KW负载工作1小时,三天用电量)控制器48V 50A*1pcs逆变器48V6KW*1pcs纯正弦波逆变器,满足4KW水泵工作,wire 4mm2×1 , 太阳能专用光伏支架光伏专用支架Q235钢材热镀锌工作温度-30℃─50℃参考报价RMB: 元报价有效期30天付款方式预付货款的50%作为定金,余款发货前付清。
交货时间收到定金后15-30天。
分项成本(RMB:元)1、光伏组件:36V200Wp8pcs*8 1.6KW 5760.002、48V50A充电控制、48V6KW纯正弦波逆变一体机:95003、蓄电池:12V 150Ah 8pcs 83504、支架:1000.00注:1. 本预算为概算。
具体价格需等方案及具体配置确定后才能决定。
2. 此报价为主要材料税前报价,不包括运费、安装费及基础施工费;3、由于水泵属于动力元件,开启的瞬间需要额定功率3——5倍的电量,否则水泵是没办法启动的,所以对逆变器要求很高,同样造价也偏高。
5.离网型供电方案多年的开发设计经验,系统设计安全可靠,效率高。
1.高效率2.发电量逐级跟踪系统,当发电量从早上到下午发生变化时,会自动安排不同的机组工作,降低系统自身损耗,3. 休眠功能当不需要负载输出时,机组自动进入休眠状态,降低系统损耗与常用的火力发电系统相比,我公司光伏发电的优点主要体现在:1,无枯竭危险,太阳光普照大地,没有地域的限制无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且勿须开采和运输2安全可靠,无噪声,无污染排放外,电源无高次谐波干扰,特别适用于通信电源;;3不受资源分布地域的限制,可利用建筑屋面的优势,平原、河道、海洋、高山、雪原、海岛、森林地区,任何需电的地方都可以使用晶体硅太阳能电池发电系统;4无需消耗燃料和架设输电线路即可就地发电供电;5高性能:晶体硅太阳能电池发电系统具有抗台风、抗冰雹、抗潮湿、抗紫外辐照等特点,组件系统可以在零下40度到零上70度环境下正常工作;6使用者从感情上容易接受;7经济使用:建设周期短,获取能源花费的时间短,维修成本底一次性投资终身受益。
光伏发电系统设计与简易计算方法
光伏发电系统设计与简易计算方法1.光伏发电系统的设计过程:(1)确定需求:首先需要确定光伏发电系统的用途和电能需求。
比如是为家庭供电还是为工业生产供电,以及每天需要消耗多少电能等。
(2)选取太阳能电池板:根据需求确定太阳能电池板的数量和种类。
通常情况下,太阳能电池板的输出功率越大,发电量越高,但成本也越高。
因此需要综合考虑需求和预算来选择合适的太阳能电池板。
(3)计算光伏发电系统的容量:根据需求和太阳能电池板的输出功率,可以计算出光伏发电系统的容量。
容量通常以千瓦(KW)或兆瓦(MW)来表示。
(4)安装位置和角度的确定:为了获得最大的太阳能辐射,需要选择合适的安装位置和角度。
通常情况下,太阳能电池板应该朝向太阳,并与地面的角度与纬度角相等。
(5)逆变器和电网连接设计:逆变器将太阳能电池板产生的直流电转换为交流电,并与电网连接。
逆变器的选择应该与太阳能电池板的容量相匹配,并且符合当地的电网连接要求。
2.光伏发电系统的简易计算方法:(1)计算每日平均输出电能:太阳能电池板的输出功率和每天的太阳辐射量决定了每日平均输出电能的大小。
通常情况下,可以根据太阳辐射量数据来估算每日平均输出电能。
(2)估算每年总发电量:根据每日平均输出电能和一年的天数,可以估算出每年的总发电量。
通常情况下,光伏发电系统的年发电量在设计时要满足需求。
(3)计算系统的收益:根据每年总发电量和电价,可以计算出光伏发电系统的收益。
收益可以用来评估系统的经济效益和回收期。
(4)考虑系统的容量因子:系统的容量因子是指实际发电量与理论发电量之比。
通常情况下,光伏发电系统的容量因子在设计时要满足一定的要求,以保证系统的稳定运行。
总结:光伏发电系统的设计和计算是一个复杂的过程,需要综合考虑需求、太阳能电池板的性能、安装位置和角度、逆变器的选择以及电网连接要求等因素。
通过合理的设计和计算,可以达到满足需求的光伏发电系统,并提高系统的发电效率和经济效益。
离网型光伏发电系统设计方案
离网型光伏发电系统设计方案
一、系统基本原理离网型光伏发电系统广泛应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。
系统一般由太阳电池组件组成的光伏方阵、太阳能充放电控制器、蓄电池组、离网型逆变器、直流负载和交流负载等构成。
光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能充放电控制器给负载供电,同时给蓄电池组充电;在无光照时,通过太阳能充放电控制器由蓄电池组给直流负载供电,同时蓄电池还要直接给独立逆变器供电,通过独立逆变器逆变成交流电,给交流负载供电。
图1 离网型光伏发电系统示意图
(1)太阳电池组件
太阳电池组件是太阳能供电系统中的主要部分,也是太阳能供电系统中价值最高的部件,其作用是将太阳的辐射能量转换为直流电能;
(2)太阳能充放电控制器
也称光伏控制器,其作用是对太阳能电池组件所发的电能进行调节和控制,最大限度地对蓄电池进行充电,并对蓄电池起到过充电保护、过放电保护的作用。
在温差较大的地方,光伏控制器应具备温度补偿的功能。
(3)蓄电池组
其主要任务是贮能,以便在夜间或阴雨天保证负载用电。
(4)离网型逆变器
离网发电系统的核心部件,负责把直流电转换为交流电,供交流负荷使用。
为了提高光伏发电系统的整体性能,保证电站的长期稳定运行,逆变器的性能指标非常重要。
二、主要组成部件介绍。
独立光伏系统装机容量如何快速计算?
独立光伏系统也叫离网光伏系统。
主要由太阳能光伏组件、控制器、储能蓄电池等组成,若要为交流负载供电,还需要配置逆变器,当然也可以选择控制逆变一体机。
那么离网光伏发电系统的装机容量如何计算呢?首先,设置光伏发电系统的初衷就是要充分利用太阳能资源,发出来的电能如不能送入电网,那么就需要就地消纳或存储起来之后消纳。
因此,离网光伏发电系统的装机容量就应与消纳该部分电能的设备容量直接相关,如果装机容量过大,发出来的电能消纳不完就会造成能源浪费,降低整个系统的经济性;如果装机容量过小,无法满足设备足够的运行时间,则会影响设备的使用。
离网光伏发电系统装机容量的确定,需要根据用电设备的实际容量,结合使用时间、当地的太阳能辐射量及天气情况综合确定,同时应考虑技术与经济的平衡问题。
01独立光伏发电装机容量计算根据国标图集15D202-4《建筑一体化光伏系统电气设计与施工》内公式可知,独立光伏系统装机容量应按如下公式计算:这里应注意的是其中的Ha,最差月日均太阳总辐照量,由于对于大部分地区,全年日均水平面太阳能总辐照量是一个波动较大的范围,该值的选取对于光伏系统装机容量的影响非常大,当进行独立光伏系统设计计算时,应考虑该系统是否必须保证在太阳能最差月也需要设备运行最够的小时数,通过技术与经济分析之后确定最为合理的Ha数值选取进行计算。
02独立光伏系统项目案例项目概况:北京某厂区1#厂房计划在屋顶设置独立光伏系统,供给本厂房内一台用电设备,用电总功率为 3.5KW,该项目采用BAPV系统。
该地区全年太阳水平面日辐射量范围在 1.963~6.013kWh/m2/day,年水平面太阳总辐照量为1393.6 kWh/m2,采用410W太阳能电池组件。
需配置储能蓄电池组,储能电池最大允许放电深度为0.65,单个蓄电池的电压12V,单个蓄电池的容量200 Ah,储能电池在无城市供电的情况下,应满足2天,每天4个小时的全负荷用电。
计算系统装机容量和年发电总量。
光伏发电系统设计计算方法
光伏发电系统设计计算方法1.负荷计算:根据需要供电的负荷类型和用电量,计算出系统的负荷需求。
如果用户使用电器的用电需求是已知的,可以直接计算出负荷需求。
如果用户使用电器的用电需求是未知的,则需要通过调查和统计数据,进行负荷估算。
2.光照条件计算:根据系统所处的地理位置、季节和时间,计算出每天的平均辐照量和太阳能电池组件的收集效率。
可以根据所在地的经度和纬度,通过太阳能辐射模型(如复合模型、平均模型和衰减模型等)进行计算。
3.电池储能容量计算:根据系统的负荷需求和所需供电时间,计算出电池所需的储能容量。
通常采用的方法是通过负荷的功率需求和供应时间来计算。
根据负荷的功率需求和供应时间计算出储能容量。
4.光伏组件数量计算:通过光伏组件的装载容量和系统的总需求负荷,计算出光伏组件的数量。
装载容量是指光伏组件在标准测试条件下的额定输出功率,通常以瓦特为单位。
可以通过光伏组件的装载容量和系统的总需求负荷来计算光伏组件的数量。
5.组串方案设计计算:根据光伏组件的开路电压和系统的额定电压,设计组串方案。
每个串的光伏组件的开路电压要小于系统的额定电压,以确保系统的稳定运行。
6.逆变器容量计算:根据系统的总需求负荷,计算逆变器的容量。
逆变器是将直流输入转换为交流输出的关键设备,所需的容量将取决于负载需求和光伏组件的装载容量。
7.布局设计计算:根据光照条件和场地的限制,设计光伏组件的布局方式。
布局方式可以是平面布置、架空布置、立体布置等。
通过计算和模拟,确定最佳的布局方式,以最大化光伏组件的收集效率。
8.性能参数计算:计算系统的性能参数,包括系统的平均每日发电量、发电效率和发电负载率等。
这些参数反映了系统的运行和性能情况,可以用来评估系统的实际效果和经济效益。
总结:光伏发电系统设计计算是一个复杂的过程,需要综合考虑多个因素,包括负荷需求、光照条件、储能容量、光伏组件数量、组串方案、逆变器容量、布局设计和性能参数等。
通过合理的计算和设计,可以确保光伏发电系统的稳定运行和最大化的能量产出。
太阳能离网电站原理及设计方法介绍
1、逆变器选择主要重要参数
1)电压等级等主要参数匹配
2)DC/AC转换效率
对太阳能光伏发电系统而言,逆变器的DC/AC转换效率十分重要。通常逆 变器的效率在70%--90%,优质逆变器可以达90%--96%。应当注意的是逆变的效 率往往随负载率而变。往往在负载率低于20%和高于80%时,DC/AC转换效率要 低一点。也有的逆变器在低负载时效率不高,而在负荷率超过30%以后,DC/AC 效率一直保持在较高水平上。
一、太阳能独立光伏发电原理:
指太阳能光伏发电系统不与公共电网连接的发电方式。典型特 征为:白天利用太阳能发电,并将电能存储在蓄电设备中。晚上利 用蓄电池中的电能为负载提供电能,其优点是能够根据具体用电情 况,不受电网覆盖、地理位置的约束,实地配备的光伏供电系统。
具体结构简图如下:
独立光伏发电系统的构成主要包括:太阳能电池组件(阵列)、蓄电池、 逆变器、控制器、接线箱等。 ❖太阳电池组件:属于发电系统,是指把利用半导体的光伏效应将太阳能辐射 能转换成直流电的太阳能电池片封装的阵列; ❖控制器:管理系统,对蓄电池充放电管理; ❖逆变器:逆变系统,将直流电转换成220V50Hz的交流电。 ❖蓄电池:能量储存系统;一般使用阀控式铅酸蓄电池、铅酸胶体蓄电池等 ❖支架、配电柜等辅助设备:辅助保护系统,汇总太阳电池组件的配线。内装 有浪涌保护器器、保险和开关等。
在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到 预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但 作为一种快速充电方法使用,仍受到一定的限制。
离网型太阳能光伏发电系统设计
离网型太阳能光伏发电系统设计离网型太阳能光伏发电系统是一种利用太阳能光伏板将太阳能转化为电能,不依赖于传统电网供电的独立发电系统。
在一些偏远地区、山区、海岛等电力资源匮乏的地方,离网型太阳能光伏发电系统成为一种重要的可再生能源发电方式。
本文将从组成部分、系统设计和优势等方面进行详细介绍。
太阳能光伏板组是系统的核心部分,通过光伏效应将太阳能转化为直流电能。
在选择光伏板时,需要考虑光伏板的功率、转换效率和可靠性等参数,以确保系统的稳定发电。
储能设备主要用于储存电能,以应对夜间或阴天等无法直接获取太阳能的情况。
目前常用的储能设备有铅酸蓄电池和锂离子电池等。
在选择储能设备时,需要考虑储能容量、寿命、充放电效率等因素。
逆变器用于将直流电能转化为交流电能,以满足家庭或办公室等用电需求。
逆变器的选择需要考虑输出功率、转换效率和负载容量等因素。
控制器是系统的智能控制中心,用于监测和控制光伏发电系统的运行状态。
控制器可以监测太阳能光伏板组的输出功率、电池的电量、负载的电流等信息,并能根据实际情况进行调节,以保证系统正常运行和安全运行。
在设计离网型太阳能光伏发电系统时,需要考虑以下几个方面。
首先,要确定系统的总功率需求,从而确定光伏板组和储能设备的容量。
其次,需要确定太阳能光伏板的安装方式和角度,以最大限度地提高光伏板的光吸收效率。
此外,还需要考虑光伏板组到储能设备的连线方式和长度,以减小能量传输损失。
最后,需要合理安装逆变器和控制器,并确保系统的运行安全可靠。
离网型太阳能光伏发电系统具有诸多优势。
首先,它不依赖于传统电网供电,无需支付电费,可以有效降低用电成本。
其次,太阳能是一种可再生能源,具有取之不尽、用之不竭的优势,对环境没有污染。
再次,光伏发电系统可以按需配置光伏板组和储能设备,灵活性高,适应性强。
此外,太阳能光伏发电系统的维护成本相对较低,寿命长,维护简便。
综上所述,离网型太阳能光伏发电系统是一种可行的可再生能源发电方式。
离网光伏系统设计方案
离网光伏系统设计方案1. 引言在能源紧缺和环境污染加剧的今天,利用可再生能源成为解决全球能源问题的重要途径。
光伏发电作为一种清洁、可再生的能源,得到了广泛应用。
离网光伏系统通过将光能转化为电能,为家庭和企业提供独立的电力供应方案。
本文将详细介绍离网光伏系统的设计方案。
2. 设计方案离网光伏系统的设计包括以下几个关键步骤:2.1 光伏板选择光伏板是光伏系统的核心组件,质量和性能的选择对系统的发电效率和安全性有着重要影响。
选择光伏板时应考虑光伏板的功率、温度系数、转换效率等因素。
通常情况下,多晶硅光伏板是一种较为理想的选择。
2.2 电池组设计电池组是光伏系统的能量存储装置,用于储存白天发电所产生的多余电能以供夜间使用。
在设计电池组时,需要考虑储能容量、充放电效率和充放电速度等因素。
常见的电池组选择包括铅酸电池、锂离子电池和钠硫电池等。
2.3 逆变器选择逆变器是将光伏板产生的直流电转换为交流电的关键设备。
通过选择合适的逆变器,能够将不断变化的光伏板输出电压稳定在标准电压输出。
逆变器的选择应考虑额定功率、运行温度和转换效率等因素。
2.4 系统监控与维护建立系统监控与维护机制,能够及时发现和解决系统故障,确保系统的正常运行。
系统监控能够实时监测光伏板的发电功率、电池组的充放电状态以及逆变器的运行情况,及时报警并采取措施维护系统。
3. 设计过程在设计离网光伏系统的过程中,需要考虑以下几个关键因素:3.1 负载需求根据实际负载需求,估算出所需的电能储存容量和系统发电能力。
在考虑到负载需求的同时,还需充分利用光伏系统发电的可再生特性,提高系统的经济性和可持续性。
3.2 组件和材料选择根据系统设计要求,选择合适的光伏板、电池组和逆变器等组件。
在选择材料时,不仅要考虑其性能指标,还要考虑质量、耐用性和成本等因素。
3.3 系统布局根据实际场地条件,对光伏板进行布局,确保最大限度地接收到太阳辐射。
同时,合理布置电池组和逆变器,提高系统的能量转换效率和安全性。
光伏发电系统设计与简易计算方法.
光伏发电系统设计与简易计算方法乛、離网(独立) 型光伏发电系统(一) 前言:光伏发电系统的设计与计算涉及的影响因素较多,不仅与光伏电站所在地区的光照条件、地理位置、气侯条件、空气质量有关,也与电器负荷功率、用电时间有关,还与需要確保供电的阴雨天数有关,其它尚与光伏组件的朝向、倾角、表面清洁度、环境温度等等因素有关。
而这些因素中,例如光照条件、气候、电器用电状况等主要因素均极不稳定,因此严格地讲,離网光伏电站要十分严格地保持光伏发电量与用电量之间的始终平衡是不可能的。
離网电站的设计计算只能按统计性数据进行设计计算,而通过蓄电池电量的变化调节两者的不平衡使之在发电量与用电量之间达到统计性的平衡。
(二) 设计计算依椐:光伏电站所在地理位置(緯度) 、年平均光辐射量F或年平均每日辐射量f(f=F/365) (详见表1)我国不同地区水平面上光辐射量与日照时间资料表1a) 年发电量G=Pm×F ×y×η/1Kw=30kwp ×1700kwh×1.1 ×0.54/1kw=30294(kwh)每天发电量g=G/365=30294/365=83(Kwh) ;或b)每天发电量g=Pm ×h1 ×y×η=30kwp ×4.6h×1.1 ×0.54=81.97(kwh)理论计算发电量81.97(kwh)与实际发电量81.68kwh十分接近,表明理论计算的正确性。
二、并网光伏发电系统设计计算并网光伏发电系统的设计比离网光伏发电系统简单,这不仅是因为离网光伏发电系统不需要蓄电池和充电控制器,且其供电对象是较稳定的电网。
故毋须考虑发电量与用电量之间的平衡,也不需要考虑负载的电阻、电感特性。
通常只需根据光伏组件总功率计算其发电量。
反之,根据需要的发电量设计并网发电系统设置。
(一) 设计依椐:1) 光伏发电系统所在地理位置(纬度) ;2) 当地年平均光辐射量;3) 需要年发电量或光伏组件总功率或投资规模或占地面积等;4) 并网电网电压,相数;(二) 并网发电系统设计计算1) 发电量或组件总功率计算:年平均每天发电量g=Pm×h1×y×η (kwh) 或g= Pm×F(M J/m2 ) ×y×η/3.6×365×1 (kwh) 或g= Pm×F(kwh/m2 ) ×y×η/365 (kwh)平均年发电量G=g×365 (kwh)2) 并网逆变器选用:并网逆变器的选用主要根据下列要求:a) 逆变器额定功率=0.85-1.2Pm;b) 逆变器最大输入直流电压>光伏方阵空载电压;c) 逆变器最输入直流电压范围>光伏方阵最小电压;d) 逆变器最大输入直流电流>光伏方阵短路电流;设D-------为前后间距;Φ------为光伏系统所处纬度(北半球为正,南半球为负);H-------为后排光伏组件底边至前排遮挡物上边的垂直高度;D=0.707H/tan〔arc sin(0.648cosΦ—0.399sinΦ) 〕举例:设Φ=32°D=0.707H/tan〔arc sin(0.648cos32°—0.399sinΦ32°) 〕=0.707H/tan〔arc sin(0.648×0.848—0.399×0.529) 〕=0.707H/tan〔arc sin(0.549—0.211)= 0.707H/tan〔arc sin0.338〕=0.707H/tan18.6°=0.707H/0.336=2.1H(四) 光伏方阵总功率与占地面积的关系:光伏方阵总功率与占地面积的关系取决于光伏组件的安装方式、光伏组件种类(晶体硅或薄膜电池)及其光伏组件光电转换效率。
光伏离网发电系统设计
2.太阳能电池矩阵计算 (1)太阳能电池组件串联数Ns 太阳能电池组件串联数Ns Ns Ns Ns UR Uoc Ns=UR/Uoc=Uf+Ud+Uc/Uoc #DIV/0!
Ns为太阳能电池组件串联数 UR为太阳能电池方阵输出的最小电压 Uoc为太阳能电池组件的最佳工作电压; Uf为蓄电池浮充电压;蓄电池的浮充电压和所选的蓄电池参数有关,应 Uf 等于在最低温度下所选蓄电池单体的最大工作电压乘以串联的电池数; Ud为二极管压降,一般取0.7V; Ud Uc为其他因素引起的压降; Uc 1 太阳能电池组件并联数Ns (2)太阳能电池组件并联数Ns 将太阳能电池方阵安装地点的太阳能日辐射量Ht,转换成在标准光强下的平均日辐射时数H; H Ht Qp Np Ioc Kop Cz H= Ht *2.778/10000h = 0
太阳能电池组件日发电量Qp 太阳能电池组件日发电量Qp
0 Qp=Ioc ×H ×Kop ×Cz (Ah) = Np太阳能电池组件并联数 Ioc为太阳能电池组件最佳工作电流; Kop为斜面修正系数; Cz为修正系数,主要为结合、衰减、灰尘、充电效率等损 失,一般取0.8;
太阳能电池组件并联数Np 太阳能电池组件并联数Np
太阳能离网发电系统设计 1.蓄电池容量设计BC 蓄电池容量设计BC BC BC A: QL: NL: T: CC: 1.2 BC=A*QL*(NL+1)*T/CC #DIV/0! AH AH
安全系数,取1.1~1.4之间 为负载日平均耗电量,QL=负载工作电流*日工作小时数 NL为最长连续阴雨天数,为保证连续阴雨天再加上第一个阴雨天前一天 晚上的工作,取NL+1 T0为温度修正系数,一般在0℃以上取1,-10 ℃以上取1.1,-10 ℃以 下取1.2; CC为蓄电池放电深度,一般铅酸电池取0.75;
离网(独立)-型光伏发电系统设计与简易计算方法
离网(独立)-型光伏发电系统设计与简易计算方法乛、離网(独立) 型光伏发电系统(一) 前言:光伏发电系统的设计与计算涉及的影响因素较多,不仅与光伏电站所在地区的光照条件、地理位置、气侯条件、空气质量有关,也与电器负荷功率、用电时间有关,还与需要確保供电的阴雨天数有关,其它尚与光伏组件的朝向、倾角、表面清洁度、环境温度等等因素有关。
而这些因素中,例如光照条件、气候、电器用电状况等主要因素均极不稳定,因此严格地讲,離网光伏电站要十分严格地保持光伏发电量与用电量之间的始终平衡是不可能的。
離网电站的设计计算只能按统计性数据进行设计计算,而通过蓄电池电量的变化调节两者的不平衡使之在发电量与用电量之间达到统计性的平衡。
(二) 设计计算依椐:光伏电站所在地理位置(緯度) 、年平均光辐射量F或年平均每日辐射量f(f=F/365) (详见表1)我国不同地区水平面上光辐射量与日照时间资料表1地区类别地区年平均光辐射量F年平均光照时间H(小时)年平均每天辐射量f(MJ/m2)年平均每天光照时间h(小时)年平均每天1kw/m2峰光照时间h1(小时) MJ/m2 .Kwh/m2一宁夏北部、甘肃北部、新疆南部、青海西部、西藏西部、6680-8401855-23333200-33018.3-23.08.7-9.0 5.0-6.3(印度、巴基斯坦北部)二河北西北部、山西北部、内蒙南部、宁夏南部、甘肃中部、青海东部、西藏东南部、新疆西部5852-6681625-18553000-32016.0-18.38.2-8.7 4.5-5.1三山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、江5016-58521393-16252200-30013.7-16.06.0-8.2 3.8-4.5苏北部、安徽北部、台湾西南部四湖南、湖北、广西、江西、淅江、福建北部、广东北部、陕西南部、江苏南部、安徽南部、黑龙江、台湾东北部4190-50161163-13931400-22011.5-13.73.8-6.0 3.2-3.8五四川、贵州3344-4190928-11631000-1409.16-11.52.7-3.8 2.5-3.2注:1)1 kwh=3.6MJ;亻2)f=F(MJ/m2 )/365天;3)h=H/365天;4) h1=F(KWh)/365(天)/1000(kw/m2 ) (小时) ;3) 5)表中所列为各地水平面上的辐射量,在倾斜光伏组件上的辐射量比水平面上辐射量多。
离网光伏发电系统方案
离网光伏发电系统方案随着能源危机的日益加剧,人们对可再生能源的需求也愈发迫切。
光伏发电作为一种清洁、可再生的能源形式,受到了广泛关注。
离网光伏发电系统作为光伏发电系统的一种,具有独立发电、不受电网限制、环保节能等优点,逐渐成为人们关注的焦点。
本文将就离网光伏发电系统的方案进行详细探讨。
首先,离网光伏发电系统的核心组成部分包括光伏组件、逆变器、电池组、控制器等。
光伏组件负责将太阳能转化为直流电能,逆变器则将直流电能转化为交流电能,电池组用于存储电能,控制器则起到调节和保护作用。
这些部件的选择和配置将直接影响系统的发电效率和稳定性。
其次,离网光伏发电系统的方案设计需要充分考虑当地的光照条件和用电需求。
合理选择光伏组件的类型和数量,确定逆变器的额定容量,设计电池组的储能容量,是确保系统正常运行的关键。
同时,还需要考虑系统的安装位置、倾斜角度、阴影遮挡等因素,以最大程度地提高系统的发电效率。
再者,离网光伏发电系统的方案设计还需要考虑系统的可靠性和安全性。
在选用光伏组件和电池组时,需要考虑其品牌和质量,以确保系统的长期稳定运行。
同时,还需要对系统进行过载、短路、过压、欠压等情况的保护设计,以防止发生安全事故。
最后,离网光伏发电系统的方案设计还需要考虑系统的维护和管理。
定期对光伏组件进行清洗、检查和维护,对电池组进行充放电管理,对逆变器和控制器进行检测和维护,是确保系统长期稳定运行的重要措施。
同时,还需要建立健全的监控系统,及时发现和处理系统运行中的问题。
总之,离网光伏发电系统的方案设计需要综合考虑多种因素,以确保系统的高效、稳定、安全运行。
只有在充分考虑当地条件和用电需求的基础上,选择合适的组件和配置方案,加强系统的维护和管理,才能真正实现离网光伏发电系统的可持续发展和利用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离网(独立)-型光伏发电系统设计与简易计算方法乛、離网(独立) 型光伏发电系统 (一) 前言:光伏发电系统的设计与计算涉及的影响因素较多,不仅与光伏电站所在地区的光照条件、地理位置、气侯条件、空气质量有关,也与电器负荷功率、用电时间有关,还与需要確保供电的阴雨天数有关,其它尚与光伏组件的朝向、倾角、表面清洁度、环境温度等等因素有关。
而这些因素中,例如光照条件、气候、电器用电状况等主要因素均极不稳定,因此严格地讲,離网光伏电站要十分严格地保持光伏发电量与用电量之间的始终平衡是不可能的。
離网电站的设计计算只能按统计性数据进行设计计算,而通过蓄电池电量的变化调节两者的不平衡使之在发电量与用电量之间达到统计性的平衡。
(二) 设计计算依椐:光伏二 河北西北部、山西北部、内5852-66801625-1855 3000-3200 16.0-18.3 8.2-8.7 4.5-5.1电站所在地理位置(緯度)、年平蒙南部、宁夏南部、甘肃中部、青海东部、西藏东南部、新疆西部均光辐射量F或年平均每日辐射量三山东、河南、5016-5851393-1622200-30013.7-16.06.0-8.2 3.8-4.5河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、江苏北部、安徽北部、台湾西南部250四湖南、湖北、广西、江西、淅江、福建北部、广东北部、陕西南部、江苏南部、安徽南部、黑龙江、4190-50161163-13931400-22011.5-13.73.8-6.0 3.2-3.8台湾东北部五四川、贵州3344-4190928-11631000-1409.16-11.52.7-3.8 2.5-3.2注:1)1 kwh=3.6MJ;亻2)f=F(MJ/m2 )/365天;3)h=H/365天;4) h1=F(KWh)/365(天)/1000(kw/m2 ) (小时) ;3) 5)表中所列为各地水平面上的辐射量,在倾斜光伏组件上的辐射量比水平面上辐射量多。
设y=倾斜光伏组件上的辐射量/水平面上辐射量=1.05—1.15。
故设计计算倾斜光伏组件面上辐射量时应乘以量量时应乘以y。
2. 各种电器负荷电功率w及其每天用电时间t;3. 確保阴雨天供电天数d;4. 蓄电池放电深度DOD(蓄电池放电量与总容量之比) ;(三) 设计计算:1. 每天电器用电总量Q:Q=( W1×t1十W2×t2十----------) (kwh)2. 光伏组件总功率Pm:Pm= a×Q/F×y×η/365×3.6×1或Pm=a×Q/f×y×η/3.6×1或Pm= (a×Q/h1×y×η ) (kwp)Pm----光伏组件峰值功率,单位:WP 或K WP (标定条件:光照强度1000W/m2,温度25℃,大气质量AM1.5)a-----全年平均每天光伏发电量与用电量之比此值1≤a≤dη-----发电系统综合影响系数(详见表2)光伏发电系统各种影响因素分析表表2系数代号系数名称损失率备注η1组件表面清洁度损失约3%η2温升损失0.4%/℃η3 方阵组合损失约3%η4 最大功率点偏离损失约4%η5 组件固定倾角损失约8%η6 逆变器效率85-93%η7线损约3%η8蓄电池过充保护损失约3%η9充电控制器损耗约8%η10蓄电池效率80-90%合计η1) 离网交流系统2) 离网直流系统3) 并网系统η1----------η10η1----η5*η7---η10η1 -----η7η=52-56%η=59-63%η=72-78%3. 蓄电池容量C:C=d×Q/DOD×η6×η9×η10 (kwh)-----( 交流供电)C=d×Q/DOD×η9×η10 (kwh)-----( 直流供电)4. 蓄电池电压V、安时数AH、串联数N与并联数M设计:蓄电池总安时数AH=蓄电池容量C/蓄电池组电压V蓄电池电压根据负载需要确定,通常有如下几种:1.2v;2.4v;3.6v;4.8v;6v;12v;24v;48v;60v;110v;220v蓄电池串联数N=蓄电池组电压V/每只蓄电池端电压v蓄电池并联数M=蓄电池总安时数AH/每只蓄电池AH数5. 光伏组件串联与并联设计:光伏组件串联电压和组件串联数根据蓄电池串联电压确定:(见表3、表4、表5) (晶体硅)光伏组件串联电压和组件串联数表3蓄电池122448220组端电压(V)充电电173468308压(V)光伏组件最大16.5-17.516.5-17.53416.5-17.53416.5-17.534功率电压(V)光伏组12142189件串联数(晶体硅)光伏组件端电压与电池片串联数表4蓄电池1.22.43.64.869电压(V)光伏组 1.68 3.36 5.04 6.728.412.6件端电电(充电电压)(V)串联电4810141826池片数(CIS薄膜)光伏组件端电压与电池片串联数表5蓄电池1.22.43.64.869电压(V)光伏组件端电1.68 3.36 5.04 6.728.412.6压(充电电压)(V)串联电61016222640池片数光伏组件并联数M=光伏组件总功率Pm /每块组件峰值功率×组件串联数6. 充电控制器选用主要根据下列要求选用:1) 最大输入电压≥光伏方阵串联空载电压1.2-1.5倍;2) 最大输入电流≥光伏方阵并联短路电流1.2-1.5倍;3) 输入并联支路数≥光伏方阵并联数;4) 额定功率≥最大负载功率总和1.2-1.5倍;5) 输出最大电流≥最大负载电流1.2倍充电控制器应具有过充、欠压保护;防反充和接反保护功能。
7. 逆变器选用主要根据下列要求选用:1) 最入电压≥蓄电池串联电压;2) 额定功率≥负载最大功率1.2-1.5倍;(对于感性负载,需考虑启动电流) ;3) 输出电压=负载额定电压;4) 输出电流波形根据负载要求可以为方波或准正弦波或正弦波;逆变器应具有输出过电压和过电流保护。
(四) 离网电站实际发电举例1) 西藏昌都地区一座总功率Pm=30kwp 离网光伏电站,经910天运行,累计发电74332kwh。
平均每天发电量g=74332kwh/910天=81.68kwh。
2) 理论计算:昌都地处西藏东南部,查表1,年平均辐射量为1625-1855kwh/m2 ,取F=1700kwh/m2 或h1 =4.6ha) 年发电量G=Pm×F ×y×η/1Kw=30kwp ×1700kwh×1.1×0.54/1kw=30294(kwh)每天发电量g=G/365=30294/365=83(Kwh) ;或b)每天发电量g=Pm ×h1 ×y×η=30kwp ×4.6h×1.1 ×0.54=81.97(kwh)理论计算发电量81.97(kwh)与实际发电量81.68kwh十分接近,表明理论计算的正确性。
二、并网光伏发电系统设计计算并网光伏发电系统的设计比离网光伏发电系统简单,这不仅是因为离网光伏发电系统不需要蓄电池和充电控制器,且其供电对象是较稳定的电网。
故毋须考虑发电量与用电量之间的平衡,也不需要考虑负载的电阻、电感特性。
通常只需根据光伏组件总功率计算其发电量。
反之,根据需要的发电量设计并网发电系统设置。
(一) 设计依椐:1) 光伏发电系统所在地理位置(纬度) ;2) 当地年平均光辐射量;3) 需要年发电量或光伏组件总功率或投资规模或占地面积等;4) 并网电网电压,相数;(二) 并网发电系统设计计算1) 发电量或组件总功率计算:年平均每天发电量g=Pm×h1×y×η (kwh) 或g= Pm×F(M J/m2 ) ×y×η/3.6×365×1 (kwh) 或g= Pm×F(kwh/m2 ) ×y×η/365 (kwh)平均年发电量G=g×365 (kwh)2) 并网逆变器选用:并网逆变器的选用主要根据下列要求:a) 逆变器额定功率=0.85-1.2Pm;b) 逆变器最大输入直流电压>光伏方阵空载电压;c) 逆变器最输入直流电压范围>光伏方阵最小电压;d) 逆变器最大输入直流电流>光伏方阵短路电流;e) 逆变器额定输入直流电压=光伏方阵最大功率电压;f) 额定输出电压=电网额定电压;g) 额定频率=电网频率;h) 相数=电网相数;并网逆变器的输出波形畸变、频率误差等应满足并网技术要求。
此外,必须具有短路、过压、欠压保护和防孤岛效应等功能。
三、光伏组件方阵设计:(一) 光伏组件水平倾角设计:光伏组件水平倾角的设计主要取决于光伏发电系统所处纬度和对一年四季发电量分配的要求。
1) 对于一年四季发电量要求基本均衡的情况,可以按以下方式选择组件倾角:光伏发电系统光伏组件水平倾角所处纬度纬度0°--- 25°倾角等于纬度纬度26°--- 40°倾角等于纬度加5°∽10°纬度41°----55°倾角等于纬度加10°∽15°纬度>55°倾角等于纬度加15°∽20°2)在我国大部分地区通常可以采用所在纬度加7°的组件水平倾角。
对于要求冬季发电量较多情况,可以采用所在纬度加11°的组件水平倾角。
对于要求夏季发电量较多情况,可以采用所在纬度减11°的组件水平倾角。
(二)光伏方阵倾角与朝向对发电量的影响:光伏方阵倾角与朝向对发电量有很大影响,一般光伏方阵应面向正南方(北半球) ,合理的倾角在前面巳论述。
但在有些场合,组件的倾角和朝向不一定理想。
这就会对光伏方阵的对发电量的产生明显的影响。
下图是光伏方阵倾角与朝向对发电量影响的大致关系图。
(三) 光伏方阵前后两排间距或与前方遮挡物之间的间距设计:光伏方阵前后间距或与前方遮挡物之间的间距如果不合理设计,则会影响光伏系统的发电量,尤其在冬季。
光伏方阵前后间距或与前方遮挡物之间的间距的设计与光伏系统所在纬度、前排方阵或遮挡物高度有关。
设D-------为前后间距;Φ------为光伏系统所处纬度(北半球为正,南半球为负);H-------为后排光伏组件底边至前排遮挡物上边的垂直高度;D=0.707H/tan〔arc sin(0.648cosΦ—0.399sinΦ) 〕举例:设Φ=32°D=0.707H/tan〔arc sin(0.648cos32°—0.399sinΦ32°) 〕=0.707H/tan〔arc sin(0.648×0.848—0.399×0.529) 〕=0.707H/tan〔arc sin(0.549—0.211)= 0.707H/tan〔arc sin0.338〕=0.707H/tan18.6°=0.707H/0.336=2.1H(四) 光伏方阵总功率与占地面积的关系:光伏方阵总功率与占地面积的关系取决于光伏组件的安装方式、光伏组件种类(晶体硅或薄膜电池)及其光伏组件光电转换效率。