牛顿运动定律的临界问题

合集下载

第15讲 牛顿运动定律中临界问题(解析版)

第15讲 牛顿运动定律中临界问题(解析版)

第15讲牛顿运动定律中的临界问题11、临界问题物体由某种物理状态转变为另种物理状态时,所要经历的种特殊的转折状态,称为临界状态.这种从种状态变成另种状态的分界点就是临界点,此时的条件就是临界条件。

2、临界问题的标志(1)题目中出现“恰好”“刚好”等关键词句,明显表明此过程即为临界点。

(2)题目中出现“取值范围”“多长时间”“多大距离”等词句,表明题述过程存在着“起止点”,而这些“起止点”一般对应着临界状态。

(3)题目中出现“最大”最小”“至多”“至少”等词句,表明题述的过程存在着极值,这个极值点往往是临界点。

4、处理临界问题的方法(1)极限法如果在题目中出现“最大”、“最小”、“刚好”等关键词时,一般隐含着临界问题。

处理这类问题时,常常把物理问题或过程推向极端,从而得到临界状态及临界条件,以达到快速求解问题的目的。

(2)假设法有些物理过程没有出现明显的临界问题的线索,但在变化过程中可能出现临界状态,也可能不会出现临界状态。

解答此类问题,一般用假设法,即假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,即可得出结论。

(3)数学方法将物理过程转化为数学表达式,然后根据数学中求极值的方法,求出临界条件。

涉及三角函数、二次函数、不等式等数学知识。

5、临界问题解决步骤:(1)依据题中提示语言判定临界问题及分类;(2)确定临界状态下临界条件;(3)按照牛二定律做题步骤解决问题:①明确研究对象②受力分析③正交分解④分析各坐标系运动状态列方程:若为平衡状态列平衡方程;若为非平衡状态列牛顿第二定律。

一、利用极值法求解临界问题[例1]如图所示,质量为m=1kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=2kg,斜面与物块间的动摩擦因数为μ=0.2,地面光滑,现对斜面体施一水平推力F,要使物体m相对斜面静止,试确定推力F的取值范围。

【答案】推力F的取值范围为14.25N≤F≤33.53N.【解析】(1)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块受力如下图所示,取加速度的方向为x轴正方向:对物块分析,在水平方向有F N sinθ﹣μF N cosθ=ma1,竖直方向有F N cosθ+μF N sinθ﹣mg=0,对整体有F1=(M+m)a1,代入数值得,F1=14.35N.(2)设物块处于相对斜面向上滑动的临界状态时的推力为F2,对物块受力分析,在水平方向有F N sinθ+μF N cosθ=ma2,竖直方向有F N cosθ﹣μF N sinθ﹣mg=0,对整体有F2=(M+m)a2,代入数值得,F2=33.53N综上所述可知推力F的取值范围为:14.25N≤F≤33.53N.答:推力F的取值范围为14.25N≤F≤33.53N.二、利用假设法求解临界问题[例2]一物块在粗糙斜面上,在平行斜面向上的外力F作用下斜面和物块始终处于静止状态,当按图甲所示规律变化时.物体与斜面间的摩擦力大小变化规律可能是图乙中的()A. B. C. D.【答案】D【解析】设t=0时刻F=F0,则F与t的关系式为F=F0-kt,k是图线斜率的大小.A、D若t=0时刻物体受到的静摩擦力方向沿斜面向上,由平衡条件得:摩擦力F f=mgsinα-F=mgsinα-(F0-kt)=kt+(mgsinα-F0),若mgsinα=F0,则有F f=kt,当F=0时,F f=mgsinα,保持不变.则A错误,D正确;B、C若t=0时刻物体受到的静摩擦力方向沿斜面向下,由平衡条件得知,摩擦力F f=F-mgsinα,当F减小时,摩擦力先减小,减小到零后,摩擦力反向增大,故BC错误;故选D.三、利用数学方法求解临界问题[例3]如图所示,一质量m=0.4kg的小物块,以v0=2m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2s的时间物块由A点运动到B点,A、B之间的距离L=10m。

牛顿运动定律专题03动力学的临界和极值问题

牛顿运动定律专题03动力学的临界和极值问题

§专题03:动力学的临界和极值问题教学目标:教学重点、难点:新课引入:教学过程:一、临界和极值在应用牛顿定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有临界现象。

此时要采用极限分析法,看物体在不同加速度时,会有哪些现象发生,尽快找出临界点,求出临界条件。

在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。

这类问题称为临界问题。

在解决临界问题时,进行正确的受力分析和运动分析,找出临界状态是解题的关键。

1、相互接触的物体,它们分离的临界条件是:它们之间的弹力N,而且此时它们的速度相等,加速度相同。

【例】如图,在竖直立在水平面的轻弹簧上面固定一块质量不计的薄板,将薄板上放一重物,并用手将重物往下压,然后突然将手撤去,重物即被弹射出去,则在弹射过程中,(即重物与弹簧脱离之前),重物的运动情况是()A、一直加速B、先减速,后加速C、先加速、后减速D、匀加速答案:C【例】如图所示,劲度系数为k 的轻弹簧竖直固定在水平面上,上端固定一质量为0m 的托盘,托盘上有一个质量为m 的木块。

用竖直向下的力将原长为0l 的弹簧压缩后突然撤去外力,则m 即将脱离0m 时的弹簧长度为( )A 、0lB 、()k g m m l +-00C 、k mg l -0D 、kg m l 00- 答案:A【例】如图所示,物体A 静止在台秤的秤盘B 上,A 的质量为kg m A 5.10=,B 的质量kg m B 5.1=,弹簧质量不计,劲度系数m N k /800=,现给A 施加一个竖直向上的力F ,使它向上做匀加速直线运动,已知力F 在开始的s t 2.0=内是变力,此后是恒力,求F 的最大值和最小值。

答案:N 168、N 72解:由题意可知,它们将在s t 2.0=时分离。

牛顿运动定律 典型例题 参考答案

牛顿运动定律 典型例题 参考答案

牛顿运动定律典型例题参考答案一、连接体问题(整体法与隔离法):1.二体连接问题例题1:F=(M+m)g F=(M+m)g F=(M+m)g F=(M+m)g例题2:例题3:2.多体连接问题:例题4:例题5:二、 超失重问题:例题1:BC例题2:A 例题3:C 例题4:A例题5:D三、 等环境问题(力的质量分配原则):例题1.例题2.D四、 临界值问题: 例题1. 解析:(1)ma sin N cos T =α-αmg cos N sin T =α+α当g 31a =时,N=68.4(N ) T=77.3(N ) (2) 若N=0,则有'm a cos T =αm g sin T =α )s /m (17g 3gctg 'a ==α=例题2.五、 瞬时值问题:例题1:解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。

此类问题应注意两种模型的建立。

先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。

可知,F mg 2=,F F mg mg 122=+='。

剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。

例题2:C例题3,D 例题4: (a=gsinθ ,a=gtanθ ) 例题5、BD 六、 分离问题:例题1:例题2:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。

据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma ,当N=0时,物体与平板分离,所以此时ka g m x )(-= 因为221at x =,所以kaa g m t )(2-= 例题3:七、 相对滑动问题:例题1:例题2:BC 例题3:ABC例题4:例题5:例题6:例题7:八、 传送带问题:例题1:D例题2:解析: 物体放上传送带以后,开始一段时间,其运动加速度2m/s 10cos sin =+=m mg mg a θμθ。

牛顿运动定律的综合应用——动力学图像、连接体及临界极值问题-高考物理复习

牛顿运动定律的综合应用——动力学图像、连接体及临界极值问题-高考物理复习
列叙述正确的是( D )
A.当拉力0<F<12 N时,A静止不动 B.当拉力F>12 N时,A相对B滑动
图6 C.当拉力F=16 N时,B受到A的摩擦力等于12 N D.在细线可以承受的范围内,无论拉力F多大,A相对B始终静止
目录
研透核心考点
解析 由于物体 B 放在光滑的水平面上,因此只要拉 力 F 不是零,A、B 将一起加速运动,所以当拉力 0< F<12 N 时,A 不会静止不动,A 错误;若 A、B 能发 生相对滑动,则有 a=μmmBAg=0.2×26×10 m/s2=6 m/s2,对 A、B 整体,由牛顿 第二定律可得发生相对滑动时的拉力为 F=(mA+mB)a=(6+2)×6 N=48 N,超 出了绳子的最大拉力,由此可知,在绳子承受的最大拉力 20 N 范围内,无论拉 力 F 多大,A、B 始终处于相对静止状态,B 错误,D 正确;当拉力 F=16 N 时,对整体,由牛顿第二定律可得 F=(mA+mB)a′,解得 a′=mA+F mB=61+62 m/s2 =2 m/s2,则 B 受到 A 的摩擦力 f=mBa′=2×2 N=4 N,C 错误。
目录
研透核心考点
解析 在相同时间内(b 未触地),a、b 加速度的大小相 等,速度变化量大小相等,D 错误;将 a、b 看成一个 整体,由牛顿第二定律得 F 合=4mg-2mgsin θ= (2m+4m)a,解得 a=g2,故 B 正确;以 b 为研究对象, 设拉力为 T,由牛顿第二定律有 4mg-T=4ma,解得 T=2mg,故 A 错误;由几何关系知,两侧绳子的夹角 为 60°,则绳子对定滑轮的力为 F=2Tcos 30°=2 3mg, 故 C 正确。
目录
研透核心考点
3.连接体问题的分析 整体法、隔离法的交替运用,若连接体内各物体具有相同的加速度,且要求 物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合 适的研究对象,应用牛顿第二定律求出作用力。即“先整体求加速度,后隔 离求内力”。

牛顿第二定律临界问题

牛顿第二定律临界问题

高中物理教案学案第三章 牛顿运动定律第五课时 牛顿定律应用中的临界和极值问题1、知识回顾: ⑴如图所示,水平放置的长木板AB 上静置一个小物块,小物块与木板之间的动摩擦因数μ恒定。

现将木板绕其A 端沿逆时针方向缓慢旋转,下列图线中能最好地描述小物块沿长木板滑下的加速度a 和长木板与水平面间夹角θ的关系的是( B )。

⑵质点所受的力F 随时间变化的规律如图所示,力的方向始终在一直线上,已知t =0时质点的速度为零。

在图示t 1、t 2、t 3和t 4各时刻中,质点的速度最大的是:( B ).A .t lB .t 2C .t 3D .t 42、典型例题分析:【例1】传送带是一种常用的运输工具,它被广泛地应用于矿山、码头、货场等生产实际中,在车站、机场等交通场所它也发挥着巨大的作用。

如图所示为车站使用的水平传送带装置模型,绷紧的传送带水平部分AB 的长度L =5m ,并以V 传=2m /s 的速度向右传动。

现将一个可视为质点的旅行包轻轻地无初速地放在传送带的A 端,已知旅行包与皮带之间的动摩擦因数μ=0.2。

求:⑴旅行包在传送带上从A 端运动到B 端所用的时间;⑵若要旅行包在传送带上从A 端运动到B 端所用的时间最短,则传动的速度大小应满足什么条件(g =10m /s 2)【解析】⑴由于旅行包的初速为零,在开始阶段,旅行包速度小于传送带的速度,故旅行包相对于传送带向左运动,其受到的滑动摩擦力向右,此滑动摩擦力使旅行包产生加速度,旅行包向右做初速度为零的匀加速运动(如图所示)。

但旅行包是否是匀加速运动到B 端,却要看旅行包从A 端运动到B 端过程中是否一直受到滑动摩擦力作用。

判断依据是这一 fV 传过程中若旅行包一直做匀加速运动,其到达B 端的速度V B 是否大于皮带传动的速度V 传:①V B ≤V 传,则旅行包一直做匀加速运动;②若V B >V 传,则旅行包先做匀加速直线运动后做匀速运动。

根据牛顿第二定律可得: f =ma ,N -mg =0。

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点.4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化.质量为m 、半径为R 的小球用长度也为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( )A .小车正向右做减速运动,加速度大小可能为3gB .小车正向左做减速运动,加速度大小可能为33gC .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mgD .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg=tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ,小球与车顶接触的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离开车厢顶部,D 项错误.[答案] C二、绳子断裂与松弛的临界条件绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0.如图所示,小车内固定一个倾角为θ=37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则:(1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?(2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?[解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力,则得到F cos θ=ma 0 F sin θ-mg =0a 0=g tan θ=403m/s 2.(1)a 1=5 m/s 2<a 0,这时小球没有脱离斜面,对小球受力分析如图乙所示,由牛顿第二定律得 F cos θ-F N sin θ=ma 1 F sin θ+F N cos θ-mg =0 解得F =20 N ,F N =10 N.(2)a2=20 m/s2>a0,这时小球脱离斜面,设此时细线与水平方向之间的夹角为α,对小球受力分析如图丙所示,由牛顿第二定律得F cos α=ma2F sin α=mg两式平方后相加得F2=(ma2)2+(mg)2解得F=(ma2)2+(mg)2=20 5 N.[答案](1)20 N(2)20 5 N三、相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值,并且还要考虑摩擦力方向的多样性.(多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是()A.若μmg小于kx,则小车的加速度方向一定向左B.若μmg小于kx,则小车的加速度最小值为a=kx-μmgm,且小车只能向左加速运动C.若μmg大于kx,则小车的加速度方向可以向左也可以向右D.若μmg大于kx,则小车的加速度最大值为kx+μmgm,最小值为kx-μmgm[解析]若μmg小于kx,而弹簧又处于压缩状态,则物块所受弹簧弹力和静摩擦力的合力水平向左,即小车的加速度一定向左,A对;由牛顿第二定律得kx-F f=ma,当F f=μmg时,加速度方向向左且最小值为a min=kx-μmgm,随着加速度的增加,F f减小到零后又反向增大,当再次出现F f=μmg时,加速度方向向左达最大值a max =kx+μmgm,但小车可向左加速,也可向右减速,B错;若μmg大于kx,则物块所受弹簧弹力和静摩擦力的合力(即加速度)可能水平向左,也可能水平向右,即小车的加速度方向可以向左也可以向右,C对;当物块的合外力水平向右时,加速度的最大值为μmg-kxm,物块的合外力水平向左时,加速度的最大值为μmg+kxm,则小车的加速度最大值为kx+μmgm,最小值为0,D错.[答案]AC四、加速度或速度最大的临界条件当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(多选)(2016·潍坊模拟)如图所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F ,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F 1=kv ,其中k 为常数,则圆环运动过程中( )A .最大加速度为FmB .最大加速度为F +μmgmC .最大速度为F +μmgμkD .最大速度为mgk[解析] 当F 1<mg 时,由牛顿第二定律得F -μ(mg -kv )=ma ,当v =mg k 时,圆环的加速度最大,即a max =Fm ,选项A 正确,B 错误;圆环速度逐渐增大,F 1=kv >mg ,由牛顿第二定律得F -μ(kv -mg )=ma ,当a =0时,圆环的速度最大,即v max =F +μmgμk,选项C 正确,D 错误. [答案] AC五、数学推导中的极值问题将物理过程通过数学公式表达出来,根据数学表达式解出临界条件,通常用到三角函数关系.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得: L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为: F min =1335N. [答案] (1)3 m/s 2 8 m/s (2)30°1335N 六、滑块一滑板模型中的临界问题在滑块—滑板模型中,若两者一起运动时优先考虑“被动”的“弱势”物体,该物体通常具有最大加速度,该加速度也为系统一起运动的最大加速度,否则两者将发生相对运动.(2016·湖北荆州模拟)物体A 的质量m 1=1 kg ,静止在光滑水平面上的木板B 的质量为m 2=0.5 kg 、长l =1 m ,某时刻A 以v 0=4 m/s 的初速度滑上木板B 的上表面,为使A不至于从B 上滑落,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,若A 与B 之间的动摩擦因数μ=0.2,试求拉力F 应满足的条件.(忽略物体A 的大小)[解析] 物体A 滑上木板B 以后,做匀减速运动, 加速度a A =μg ①木板B 做加速运动,有F +μm 1g =m 2a B ②物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v t ,则v 20-v 2t 2a A =v 2t2a B+l ③ 且v 0-v t a A =v ta B④ 由③④式,可得a B =v 202l-a A =6 m/s 2,代入②式得F =m 2a B -μm 1g =0.5×6 N -0.2×1×10 N =1 N ,若F <1 N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1 N. 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才能不会从B的左端滑落.即有:F =(m 1+m 2)a , μm 1g =m 1a ,所以F =3 N ,若F 大于3 N ,A 就会相对B 向左端滑下. 综上,力F 应满足的条件是1 N ≤F ≤3 N. [答案] 1 N ≤F ≤3 N1.(2016·西安质检)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()A.3μmg B.4μmg C.5μmg D.6μmg解析:选D.纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m +m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确.2.(多选)(2016·湖北黄冈模拟)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是()A.物体与弹簧分离时,弹簧处于原长状态B.弹簧的劲度系数为750 N/mC.物体的质量为2 kgD.物体的加速度大小为5 m/s2解析:选ACD.物体与弹簧分离时,弹簧的弹力为零,轻弹簧无形变,所以选项A正确;从题图乙中可知ma =10 N,ma=30 N-mg,解得物体的质量为m=2 kg,物体的加速度大小为a=5 m/s2,所以选项C、D正确;弹簧的劲度系数k=mgx0=200.04N/m=500 N/m,所以选项B错误.3.(多选)如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力解析:选BC.甲方式中,F最大时,A刚要离开地面,A受力如图丙所示,则F N1cos θ=mg①对B:F′N1sin θ=ma1②由牛顿第三定律可知F′N1=F N1③乙方式中,F 最大时,B 刚要离开地面,B 受力如图丁所示,则F N2cos θ=mg ④ F N2sin θ=ma 2⑤由①③④可知F N2=F N1=F N1′⑥由②⑤⑥式可得a 2=a 1,对整体易知F 2=F 1, 故选项B 、C 正确,选项A 、D 错误.4.如图所示,水平桌面光滑,A 、B 物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A 物体质量为2m ,B 和C 物体的质量均为m ,滑轮光滑,砝码盘中可以任意加减砝码.在保持A 、B 、C 三个物体相对静止共同向左运动的情况下,B 、C 间绳子所能达到的最大拉力是( )A.12μmg B .μmg C .2μmg D .3μmg 解析:选B.因桌面光滑,当A 、B 、C 三者共同的加速度最大时,F BC =m C a 才能最大.这时,A 、B 间的相互作用力F AB 应是最大静摩擦力2μmg ,对B 、C 整体来讲:F AB =2μmg =(m B +m C )a =2ma ,a =μg ,所以F BC =m C a =μmg ,选项B 正确.5.如图所示,用细线将质量为m 的氢气球拴在车厢地板上的A 点,此时细线与水平方向成θ=37°角,气球与固定在水平车顶上的压力传感器接触,小车静止时,细线恰好伸直但无弹力,压力传感器的示数为气球重力的12.重力加速度为g ,sin37°=0.6,cos 37°=0.8.现要保持细线方向不变而传感器示数为零,下列方法中可行的是( )A .小车向右加速运动,加速度大小为12gB .小车向左加速运动,加速度大小为12gC .小车向右减速运动,加速度大小为23gD .小车向左减速运动,加速度大小为23g解析:选C.小车静止时细线无弹力,气球受到重力mg 、空气浮力f 和车顶压力F N ,由平衡条件得f =mg +F N =32mg ,即浮力与重力的合力为12mg ,方向向上.要使传感器示数为零,则细线有拉力F T ,气球受力如图甲所示,由图乙可得12mg ma =tan 37°,小车加速度大小为a =23g ,方向向左.故小车可以向左做加速运动,也可以向右做减速运动,C 选项正确.6.如图所示,质量为m =1 kg 的物体,放在倾角θ=37°的斜面上,已知物体与斜面间的动摩擦因数μ=0.3,最大静摩擦力等于滑动摩擦力,取g =9.8 m/s 2,sin 37°=0.6,cos 37°=0.8.要使物体与斜面相对静止且一起沿水平方向向左做加速运动,则其加速度多大?解析:当物体恰不向下滑动时,受力分析如图甲所示 F N1sin 37°-F f1cos 37°=ma 1F f1sin 37°+F N1cos 37°=mg F f1=μF N1解得a 1=3.6 m/s 2当物体恰不向上滑动时,受力分析如图乙所示F N2sin 37°+F f2cos 37°=ma2F N2cos 37°=mg+F f2sin 37°F f2=μF N2解得a2=13.3 m/s2因此加速度的取值范围为3.6 m/s2≤a≤13.3 m/s2.答案:3.6 m/s2≤a≤13.3 m/s2。

高中物理牛顿运动定律的应用_牛顿运动定律的应用之临界极值问题

高中物理牛顿运动定律的应用_牛顿运动定律的应用之临界极值问题

牛顿运动定律的应用-牛顿运动定律的应用之临界极值问题接触的物体是否会发生分离等等,这类问题就是临界问题。

在应用牛顿运动定律解决临界问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有临界现象,此时要采用假设法或极限分析法,看物体以不同的加速度运动时,会有哪些现象发生,尽快找出临界点,求出临界条件。

2. 若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态;3. 若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;4. 若题目要求“最终加速度”、“稳定加速度”等,即是求收尾加速度或收尾速度。

F N=0。

2. 相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值。

3. 绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T=0。

4. 加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度。

当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的加速度为零或最大。

题设中若出现“最大”“最小”“刚好”等这类词语时,一般就隐含着临界问题,解决这类问题时,常常是把物理问题(或物理过程)引向极端,进而使临界条件或临界点暴露出来,达到快速解决有关问题的目的。

2. 假设法:有些物理问题在变化过程中可能会出现临界问题,也可能不出现临界问题,解答这类题,一般要用假设法。

假设法是解物理问题的一种重要方法。

用假设法解题,一般依题意从某一假设入手,然后运用物理规律得出结果,再进行适当讨论,从而找出正确答案。

物理学中临界问题的分析方法

物理学中临界问题的分析方法

物理学中临界问题的分析方法作者:周玉美来源:《中国校外教育·理论》2008年第03期[摘要]在物理问题中临界问题很常见,如何解答临界问题往往是比较难的问题。

本文以牛顿运动定律的临界问题为例来探讨临界问题的求解方法。

[关键词]物理学临界问题求解方法一、什么是临界问题我们在解答物理力学问题时,经常碰到这样的词语,作用力的最大或最小值、速度的最大或最小值、加速度的最大或最小值等等.我们把物体由一种运动状态转变到另一种运动状态,由一种物理现象转变为另一种物理现象,在发生转变的时刻一些物理量的最大或最小值,叫做临界值.如何求得临界值,有时是解答物理题的关键,它不仅要对题中的物理情景作深入的研究,而且要熟练地应用数学知识去作解答。

二、分析临界问题的一般方法在有关牛顿运动定律的临界问题涉及的物理量主要是力、加速度、速度、位移。

在分析此类问题的时候,我们主要抓住分析“力”的变化。

因为力是决定物体运动的主要因素。

着重要分析力的大小的变化规律、方向变化、受力数目的变化、力的性质的变化(比如,静摩擦力转化为动摩擦力)。

这些变化往往蕴含着临界状态的出现,此时有利于我们找到临界条件。

在追击类问题中要注意物体的速度关系,特别是速度相等往往是一个重要条件。

三、分析临界问题所要用到的数学工具临界问题经常涉及到一些极值问题。

求解临界问题往往伴随的不等式的应用,自燃也就会牵涉到一些与相关的数学知识。

如三角函数,定积求和或定和求积,二次方程判别式等。

例题如下:例1.图1所示,一个质量为m =10kg的物体,放在粗糙的水平面上,物体与水平面的静摩擦因数为.25,今对物体施以向右上方的拉力F,求:物体开始滑动时F的最小值和此时F与水平方向的夹角(g值取)解析:使物体开始滑动的含义是物体与水平面由静止转变为相对运动,可见物体存在一个处于转折的临界状态,构成一个临界问题;如果在F达到某一值,物体开始运动,因此,F此时为临界作用力,要求的就是F的临界值.例题 2.在光骨的水平轨道上有两个半径都是r的小球A和B,质量分别为m和2m,当两球心间距离大于L(L比2r大得多)时,两球之间无相互作用力;当两球心间距离等于或小于L时,两球间存在相互作用的是恒定斥力F。

牛顿运动定律临界问题

牛顿运动定律临界问题


FmA (mM)a①
mgMa②
A mm FmA
联立①②两式解出 FmAm(mM M)g B M
量变积累到一定程度,发生质变,出现临界状态.
牛顿运动定律临界问题
⑵设保持A、B相对静止施于B的最大拉力为FmB ,此时A、B之间 达到最大静摩擦力μmg,对于整体和物体A,分别应用牛顿第二
定律
FmB(mM)a①
[小结] 存在静摩擦的连接系统, 当系统外力大于最大静摩 擦力时, 物体间不一定有相对滑动;相对 滑动与相对静止的临界条件是:
静摩擦力达最大值
牛顿运动定律临界问题
解决临界问题的基本思路 (1)认真审题,仔细分析研究对象所经历的变化的物理过程, 找出临界状态。 (2)寻找变化过程中相应物理量的变化规律,找出临界条件。 (3)以临界条件为突破口,列临界方程,求解问题。
a
θ
牛顿运动定律临界问题
解: 取小球为研究对象并受力分析 建立正交坐标系
则沿x轴方向 Fcosθ-FNsinθ=ma 沿y轴方向 Fsinθ+FNcosθ=mg
将 θ=370 、a1=g 、a2=2g 分别代入
得 F1=1.4mg F2= 2.2mg
FN1=0.2mg
FN2= - 0.4mg
当a=gcotθ= 4g/3 时,支持力FN =0 小球即将脱离斜面
若要保持A和B相对静止,则施于A的水平拉力F的 A mm
最大值为多少?若要保持A和B相对静止,则施于B B M
的水平拉力F的最大值为多少?若要把B从A下表面 拉出,则施于B的水平拉力最小值为多少?
解:⑴设保持A、B相对静止施于A的最大拉力为FmA ,此时A、B之间 达到最大静摩擦力μmg,对于整体和物体B,分别应用牛顿第二定

牛顿运动定律的应用——临界极值问题

牛顿运动定律的应用——临界极值问题

牛顿运动定律的应用——临界极值问题典型问题一:张紧的绳子变成松驰绳子的临界条件是F T =01.如图所示,小球的质量为m ,斜面光滑,小球与斜面向右匀加速运动,求: (1)为保持小球与斜面体相对静止,问斜面体的最大加速度不能超过多少? (2)当a=g/2时,求绳子的张力多大?2.小车在水平路面上加速向右运动,一质量为m 的小球用一条水平线和一条斜线(与竖直方向成300)把小球系于车上,求下列情况下,两绳的拉力: (1)加速度a 1=g/3 (2)加速度a 2=2g/3典型问题二:相互挤压的物体发生分离的临界条件是F N =03.在光滑的水平地面上有一质量为M 、倾角为θ的表面光滑斜劈A ,在劈顶端的钉子上系着一条长为l 的轻线,线下端栓一个质量为m 的小球B 。

用如图所示的方向的水平恒力F 拉劈,求B 相对A 静止时线的拉力T 。

4.一个弹簧秤放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质最M=l0.5kg ,Q 的质量m=1.5kg ,弹簧的质量不计,劲度系数k=800N /m ,系统处于静止,如下图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向+卜做匀加速运动,已知在前0.2s 时间内,F 为变力,0.2s 以后,F 为恒力.求力F 的最大值与最小值.(取g=10m /s 2).5.如图3—46,在光滑水平面上放着紧靠在一起的A 、B 两物体,B 的质量是A 的2倍,B 受到水平向右的恒力F B =2N ,A 受到的水平力F A =(9-2t)N(t 的单位是s) .从t =0开始计时,则:A .A 物体在3s 末时刻的加速度是初始时刻的5/11倍;B .t>4s 后,B 物体做匀加速直线运动;C .t=4.5s 时,A 物体的速度为零;D .t>4.5s 后,A 、B 的加速度方向相反.典型问题三:相对静止的物体发生相对运动临界条件是f=f m5.如图所示,物体A 放存固定的斜面B 上,在A 上施加一个竖直向下的恒力F ,下列说法中正确的有( )(A )若A 原来是静止的,则施加力F 后,A 仍保持静止a(B )若A 原来是静止的,则施加力F 后,A 将加速下滑(C )若A 原来是加速下滑的,则施加力F 后,A 的加速度不变 (D )若A 原来是加速下滑的,则施加力F 后,A 的加速度将增大6.如图,将质量为m 的滑块放在倾角为θ的固定斜面上。

动力学中的图象问题、临界问题牛顿运动定律的适用范围典型例题解析

动力学中的图象问题、临界问题牛顿运动定律的适用范围典型例题解析

动力学中的图象问题、临界问题牛顿运动定律的适用范围·典型例题解析【例1】如图25-1所示,木块A、B静止叠放在光滑水平面上,A的质量为m,B的质量为2m.现施水平力F拉B,A、B刚好不发生相对滑动,一起沿水平面运动.若改用水平力F′拉A,使A、B也保持相对静止,一起沿水平面运动,则F′不得超过[ ] A.2FB.F/2C.3FD.F/3解析:水平力F拉B时,A、B刚好不发生相对滑动,这实际上是将要滑动,但尚未滑动的一种临界状态,从而可知此时的A、B间的摩擦力即为最大静摩擦力.先用整体法考虑,对A、B整体:F=(m+2m)a:再将A隔离可得A、B间最大静摩擦力:f m=ma=F/3;若将F′作用在A上,隔离B可得:B能与A一起运动,而A、B不发生相对滑动的最大加速度:a′=f m/2m;再用整体法考虑,对A、B整体:F′=(m+2m)a′=F/2因而正确选项为B.点拨:“刚好不发生相对滑动”是摩擦力发生突变(由静摩擦力突变为滑动摩擦力)的临界状态.由此求得的最大静摩擦力正是求解此题的突破口.【例2】在光滑的水平面上,一个质量为0.2kg的物体在1.0N的水平力作用下由静止开始做匀加速直线运动,2.0s后将此力换为方向相反、大小仍为1.0N 的力,再过2.0s将力的方向再换过来……,这样,物体受到的力的大小虽然不变,方向却每过2.0s变换一次,求经过半分钟物体的位移及半分钟末的速度分别为多大?解析:在最初2s内物体的加速度为a=F/m=1/0.2m/s2=5m/s2,物体做初速度为零的匀加速直线运动,这2s内的位移为s=at2/2=1/2×5×22m=10m 2s末物体的速度为v=at=5×2m/s=10m/s2s末力的方向改变了,但大小没变,加速度大小仍是5m/s2,但方向也改变了,物体做匀减速直线运动.到4s末,物体的速度为v t=v0-at=10m/s-5×2m/s=0故在第二个内的位移为==+·=2s s vt (v v )/2t 10m 20t所以,物体在前4s 内的位移为s 1+s 2=20m .可以看出,第二个4s 物体将重复第一个4s 内的运动情况:前2s 内做初速度为零的匀加速直线运动,后2s 内做匀减运动且后2s 末的速度为零.依此类推,物体在半分钟内的v -t 图线如图25-2所示,物体在半分钟内的位移为s =7(s 1+s 2)+s 1=7×20m +10m =150m ,半分钟末物体的速度为10m/s .点拨:物体从静止开始,每经过4s ,物体的运动状态重复一次.这一特点经过v -t 图线的描述,变得一目了然,充分显示了借助于图象解题的优点.【问题讨论】本题中,若物体在该水平力作用下由静止开始运动,第一次在1.0s 后将力换为相反方向,以后,再每经过2.0s 改变一次力的方向,则该题的答案又如何?【例3】用细绳拴着质量为m 的重物,从深为H 的井底提起重物并竖直向上作直线运动,重物到井口时速度恰为零,已知细绳的最大承受力为T ,则用此细绳子提升重物到井口的最短运动时间为多少?点拨:(1)由题意可知,“最大”承受力及“最短”作用时间均为本题的临界条件.提重物的作用时间越短,要求重物被提的加速度越大,而细绳的“最大”承受力这一临界条件又对“最短”时间附加了制约条件.显然这两个临界条件正是解题的突破口.(2)重物上提时的位移一定,这是本题的隐含条件.(3)开始阶段细绳以最大承受力T 上提重物,使其以最大加速度加速上升;紧接着使重物以最大加速度减速上升(绳子松驰,物体竖直上抛),当重物减速为零时恰好到达井口,重物这样运动所需时间为最短. 答案:例=-例θ=°时,=3 t 2HT /g(T mg) 4 60X 53mmn 【问题讨论】该题还可以借助速度图线分析何种情况下用时最短.一般而言,物体可经历加速上升、匀速上升和减速上升三个阶段到达井口,其v -t 图线如图25-3中的图线①所示;若要时间最短,则应使加速上升和减速上升的加速度均为最大,其v -t 图线如图25-3中②所示.显然在图线与坐标轴围成面积一定的条件下,图线②所需时间最短.【例4】一个物体在斜面上以一定的速度沿斜面向上运动,斜面底边水平,斜面倾角θ可在0~90°间变化,设物体达到的最大位移x 和倾角θ间关系如图25-4所示,试计算θ为多少时x 有最小值,最小值为多少?点拨:这是一道由图线给出的信息作为已知条件的习题.由图线可知,θ=90°时,物体竖直上抛,所能达到的最大高度x 1=10m ,以此求得上抛的初速度v 0;θ=0°时,物体在水平面上作匀减速直线运动,最大位移x 2=103m ,以此求得物体与接触面间动摩擦因数μ:当斜面倾角为任意值θ时,物体上滑加速度的大小为:a =gsin θ+μgcos θ,代入v t 2-v 02=2ax 讨论求解即可.答案:=-例θ=°时,=3 t 2HT /g(T mg) 4 60X 53m mn跟踪反馈1.如图25-5所示,在粗糙平面上,物体在水平拉力作用下做匀加速直线运动.现使F 不断变小,则在滑动过程中[ ]A .物体的加速度不断变小,速度不断增大B .物体的加速度不断增大,速度不断变小C .物体的加速度先变大再变小,速度先变小再变大D .物体的加速度先变小再变大,速度先变大再变小2.一个物体在水平面上受到恒定的水平力作用,从静止开始运动,经过时间t 后撤去外力,物体继续运动,其v -t 图线如图25-6所示,则在此过程中,水平拉力和滑动摩擦力的大小之比为F ∶f =________.3.如图25-7所示,在光滑水平面上挨放着甲、乙两物块.已知m2=2m1,乙受到水平拉力F2=2N,甲受到一个随时间变化的水平推力F1=(9-2t)N作用.当t=________秒时,甲、乙两物块间开始无相互挤压作用.4.甲物体由A地出发,从静止开始作加速度为a1的匀加速运动,后作加速度大小为a2的匀减速运动,到B地时恰好停止运动.乙物体由A地出发始终作加速度为a的匀加速运动,已知两个物体从A到B地所用的时间相同,求证:1/a=1/a1+1/a2(提示:本题借助图象法求解较为简捷明了.根据习题所描述的物理过程,作出甲、乙两物体的v-t图线,如图25-8所示,再由题意及图线可知甲加速过程的末速度、减速过程的初速度及乙加速运动至B地的末速度相等,均为最大速度v m.由时间关系可知v m/a=v m/a1+v m/a2)参考答案:1.D 2.3∶1 3.4s 4.略。

牛顿运动定律八大题型

牛顿运动定律八大题型
拓展:若在5s末撤去F,试求物体还能继 续前滑多远?
一:两类基本问题
类型二:已知运动求受力
【例2】一个滑雪的人,质量m=50kg,以 v0=2m/s的初速度沿山坡匀加速滑下,山 坡的倾角θ=370,在t=5s的时间内滑下的 路程x=60m,求滑雪人与山坡之间的动 摩擦因数μ(不计空气阻力)。
拓展1:若滑雪者以16m/s的初速度从坡底向上冲,试求 t1=1.0s和t2=3.0s两个时刻,滑雪者距离坡底的距离? 拓展2:若滑雪者回到坡底后仍能在水平面上继续滑行, 且μ值不变,不计转弯消耗,求它最后停在何处?
六:连接体问题
【变式1】光滑水平面上静止叠放着n个 完全相同的木块,质量均为m。今给第一 个木块一个水平方向的恒力F的作用,使 得n个木块一起向右做加速运动,如图所 示。求此时第k和k+1个木块之间的相互 作用力大小。
二:变加速问题
【变式】如图所示,自由下落的 小球,从它接触竖直放置的弹簧 开始,到小球速度为零的过程中, 小球的速度和加速度的变化情况 是( ) A.加速度变大,速度变小 B.加速度变小,速度变大 C.加速度先变小后变大,速度先变大后变小 D.加速度先变小后变大,速度先变小后变大
二:变加速问题
【拓展】质量为40kg的雪 撬在倾角θ=37°的斜面 上向下滑动(如图甲), 所受的空气阻力与速度成 正比。今测得雪撬运动的 v-t图像如图7乙所示,且 AB是曲线的切线,B点 坐标为(4,15),CD是 曲线的渐近线。试求空气 的阻力系数k和雪撬与斜 坡间的动摩擦因数μ。
二:瞬时性问题
【变式】如图所示,两根轻弹簧与两个质量都 为m的小球连接成的系统,上面一根弹簧的上端 固定在天花板上,两小球之间还连接了一根不 可伸长的细线。该系统静止,细线受到的拉力 大小等于4mg。在剪断了两球之间的细线的瞬间, 球A的加速度和球B的加速度分别是( )

牛顿运动定律应用临界与极值问题

牛顿运动定律应用临界与极值问题

牛顿运动定律应用(三)临界与极值问题临界问题:当物体由一种物理状态变为另一种物理状态时,可能存在一个过渡的转折点,这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件。

解答临界问题的关键是找临界条件。

许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,一定要抓住这些特定的词语发掘其内含规律,找出临界条件。

极值问题:是指研究动力学问题中某物理量变化时出现的最大值或最小值一、平衡中的临界与极值问题在平衡问题中当物体平衡状态即将被打破时常常会出现临界现象,分析这类问题要善于通过研究变化的过程与物理量来寻找临界条件。

解题的关键是依据平衡条件及相关知识进行分析,常见的解题方法有假设法、解析法、极限分析法等。

1.跨过定滑轮的轻绳两端,分别系着物体A和物体B,物体A放在倾角为θ的斜面上,如图甲所示.已知物体A的质量为m,物体A与斜面的动摩擦因数为μ(μ<tanθ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(按最大静摩擦力等于滑动摩擦力处理).2:如图所示,水平面上两物体m1、m2经一细绳相连,在水平力F 的作用下处于静止状态,则连结两物体绳中的张力可能为( )A、零B、F/2C、FD、大于F3.三段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OB 是水平的,A 端、B 端固定。

若逐渐增加C端所挂物体的质量,则最先断的绳A 、必定是OAB 、必定是OBC 、必定是OCD 、可能是OB ,也可能是OC二.非平衡态中的临界与极值问题(一.在动力学的问题中,物体运动的加速度不同,物体的运动状态不同,此时可能会出现临界现象。

分析这类问题时挖掘隐含条件,确定临界条件,对处于临界准确状态的研究对象进行受力分析,并灵活应用牛顿第二定律是解题的关键,常见的解题方法有极限法、假设法等。

牛顿运动定律中的临界和极值问题

牛顿运动定律中的临界和极值问题

牛顿运动定律中的临界和极值问题牛顿运动定律中的临界和极值问题动力学中的典型临界问题包括接触与脱离的临界条件、相对静止或相对滑动的临界条件、绳子断裂与松弛的临界条件以及速度最大的临界条件。

对于接触与脱离的临界条件,当两物体相接触或脱离时,接触面间弹力FN等于0.对于相对静止或相对滑动的临界条件,当两物体相接触且处于相对静止时,常存在着静摩擦力,此时相对静止或相对滑动的临界条件是静摩擦力达到最大值。

对于绳子断裂与松弛的临界条件,绳子断与不断的临界条件是绳子张力等于它所能承受的最大张力,绳子松弛的临界条件是FT等于0.对于速度最大的临界条件,在变加速运动中,当加速度减小为零时,速度达到最大值。

解决临界极值问题常用方法有极限法、假设法和数学法。

极限法可以把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的。

假设法常用于临界问题存在多种可能时,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时。

数学法则将物理过程转化为数学公式,根据数学表达式解出临界条件。

举例来说,对于接触与脱离类的临界问题,可以考虑以下几个例子:例1:在劲度系数为k的弹簧下端挂一质量为m的物体,物体下有一托盘,用托盘托着物体使弹簧恰好处于原长,然后使托盘以加速度a竖直向下做匀速直线运动(a<g),试求托盘向下运动多长时间能与物体脱离?例2:竖直固定的轻弹簧,其劲度系数为k=800N/m,上端与质量为3.0kg的物块B相连接。

另一个质量为1.0 ___的物块A放在B上。

先用竖直向下的力F=120N压A,使弹簧被压缩一定量后系统静止,突然撤去力F,A、B共同向上运动一段距离后将分离,分离后A上升最大高度为0.2m,取g=10m/s,求刚撤去F时弹簧的弹性势能?例3:质量均为m的A、B两物体叠放在竖直轻质弹簧上并保持静止,用大小等于mg的恒力F向上拉A,当运动距离为h时A与B分离。

牛顿运动定律中的临界问题

牛顿运动定律中的临界问题

牛顿运动定律临界问题(一)临界问题1.临界状态:在物体的运动状态变化的过程中,相关的一些物理量也随之发生变化。

当物体的运动变化到某个特定状态时,有关的物理量将发生突变,该物理量的值叫临界值,这个特定状态称之为临界状态。

临界状态是发生量变和质变的转折点。

2.关键词语:在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件。

3.解题关键:解决此类问题的关键是对物体运动情况的正确描述,对临界状态的判断与分析。

4.常见类型:动力学中的常见临界问题主要有两类:一是弹力发生突变时接触物体间的脱离与不脱离、绳子的绷紧与松弛问题;一是摩擦力发生突变的滑动与不滑动问题。

(二)、解决临界值问题的两种基本方法1.以物理定理、规律为依据,首先找出所研究问题的一般规律和一般解,然后分析和讨论其特殊规律和特殊解。

2.直接分析、讨论临界状态和相应的临界值,找出相应的物理规律和物理值弹簧类【例1】一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度。

如图7所示。

现让木板由静止开始以加速度a(a<g)匀加速向下移动。

求经过多长时间木板开始与物体分离。

【例2】如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P的质量m=12kg,弹簧的劲度系数k=300N/m。

现在给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在t=0.2s内F是变力,在0.2s以后F是恒力,g=10m/s2,则F的最小值是,F的最大值是。

图7图8【例3】一弹簧秤的秤盘质量m 1=1.5kg ,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k=800N/m ,系统处于静止状态,如图9所示。

现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2s 内F 是变化的,在0.2s 后是恒定的,求F 的最大值和最小值各是多少?(g=10m/s 2)接触类【例4】如图10,在光滑水平面上放着紧靠在一起的AB两物体,B的质量是A的2倍,B受到向右的恒力FB =2N ,A受到的水平力FA =(9-2t)N ,(t 的单位是s)。

牛顿运动定律常见题型

牛顿运动定律常见题型

牛顿运动定律复习1、 连接体问题解题思路:整体法与隔离法的灵活运用a) 各部分间没有相对运动,或者虽有相对运动但为匀速运动:整体及各部分有相同的加速度,整体法求加速度,隔离法求各物体受力情况。

b) 各部分间有相对运动且不是匀速运动:整体及部分间没有共同的加速度,且整体的加速度不等于各部分的加速度平均。

必须灵活运用整体法及隔离法求解问题。

整体的加速度用整体法求解,部分的加速度用隔离法求解;受力情况运用整体、隔离及牛三定律等求解。

例1、 如图所示,小车向右做匀加速运动的加速度大小为a ,bc 为固定在小车上的水平横杆,物块M 串在杆上,M 通过细线悬吊着一小铁球m , M 、m 均相对小车静止,细线与竖直方向的夹角为θ.若小车的加速度逐渐增大到2a 时,M 仍与小车保持相对静止,则A .横杆对M 的作用力增加到原来的2倍B .细线的拉力增加到原来的2倍C .细线与竖直方向的夹角增加到原来的2倍D .细线与竖直方向夹角的正切值增加到原来的2倍例2、 如图所示,水平地面上有两块完全相同的木块AB ,水平推力F 作用在A 上,用F AB 代表A 、B 间的相互作用力,下列说法可能正确的是A .若地面是完全光滑的,则F AB =FB .若地面是完全光滑的,则F AB =F /2C .若地面是有摩擦的,且AB 未被推动,可能F AB =F /3D .若地面是有摩擦的,且AB 被推动,则F AB =F /2例3、 如图所示,一质量为M 的直角劈B 放在水平面上,在劈的斜面上放一质量为m 的物体A ,用一沿斜面向上的力F 作用于A 上,使其沿斜面匀速上滑,在A 上滑的过程中直角劈B 相对地面始终静止,则关于地面对劈的摩擦力f 及支持力N 正确的是A .f = 0 ,N = Mg +mgB .f 向左,N <Mg +mgC .f 向右,N <Mg +mgD .f 向左,N =Mg +mg例4、 某人拍得一张照片,上面有一个倾角为α的斜面,斜面上有一辆无动力的小车,小车上悬挂一个小球,如图所示,悬挂小球的悬线与垂直斜面的方向夹角为β,下面判断正确的是A 、如果βα=,小车一定处于静止状态B 、如果0β=,斜面一定是光滑的C 、如果βα>,小车一定是沿斜面加速向下运动D 、无论小车做何运动,悬线都不可能停留图中虚线的右侧例5、 如图所示,一轻绳通过一光滑定滑轮,两端各系一质量为m 1和m 2的物体,m 1放在地面上,当m 2的质量发生变化时,m 1的加速度a 的大小与m 2的关系大致如下图中的图( ).αβF V α B A2、 弹簧类问题可视为特殊的连接体问题,注意关键点:弹簧的弹力不能突变。

牛顿第二定律生活常例

牛顿第二定律生活常例

牛顿第二定律生活常例牛顿第二定律在力学中的地位之高是显而易见的。

它的具体应用在高考中属于必考内容。

用牛顿运动定律分析各种物体不同的运动状态变化与所受合外力的关系是力学中的根本问题。

有些问题同学们接受起来有一定难度,现举以下几例来加以探讨,希望对同学们有帮助。

一、瞬间问题分析牛顿第二定律所揭示的是力的瞬时作用规律,描述的是力的瞬时作用效果――产生加速度。

物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的.当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失.其同时关系就是牛顿第二定律的瞬时性原理。

. 例1如图1所示,a图中M、m之间用一弹簧相连,b图中M、m之间用一非弹性绳(细线)相连,将连接M的上端细线剪断的瞬间,ab图中M、m一物体的加速度各是多少?图1的b图中M、m之间用一非弹性绳(细线)相连,细线不能发生明显的弹性形变,所以细线的形变发生改变,与细线相连接的物体不需要发生一定的位移,所以细线形变的改变不需要时间,即在剪断细线的瞬间,细线的形变就会发生改变,瞬间变为零.所以b图中在剪断连接M细线的瞬间,m的加速度为g,M的加速度也为g。

归纳总结:求解瞬间加速度问题的关键是弹性绳和非弹性绳的区别,对于弹性绳在瞬间弹力不变,而对于非弹性绳在瞬间弹力发生突变,根据弹力的变化,求出物体所受的合外力,再根据牛顿第二定律求解加速度. 二、超重和失重当物体在竖直方向上向上加速运动或向下减速运动时,物体有竖直向上的加速度,物体处于超重;当物体竖直向下加速运动或竖直向上减速运动时,物体有竖直向下的加速度,物体处于失重;如果竖直向下的加速度为重力加速度g,此时物体对其悬挂物(支持物)的拉力(压力)为零,称为完全失重。

产生这种现象的原因可由牛顿第二定律来解释。

例2竖直升降的电梯内的天花板上悬挂着一根弹簧秤,如图4所示,弹簧秤的秤钩上悬挂一个质量m=4kg的物体,试分析下列情况下电梯的运动情况(g取10m/2):(1)当弹簧秤的示数T1=40N,且保持不变.(2)当弹簧秤的示数T2=32N,且保持不变.(3)当弹簧秤的示数T3=44N,且保持不变.解析:选取物体为研究对象,它受到重力mg和竖直向上的拉力T的作用。

高一物理牛顿运动定律中的临界问题

高一物理牛顿运动定律中的临界问题

高一物理牛顿运动定律中的临界问题在应用牛顿定律解题时常遇来临界问题,它包括:平衡物体(a=0)的平衡状态即将被打破而还没有被打破的瞬间:动向物体(a≠0)的状态即将发生突变而还没有变化的瞬间。

临界状态也可概括为加快度即将发生突变的状态。

加快度发生突变的本质原因是物体的外力发生了突变,物体处于临界状态,必定隐含着某些力(如弹力、摩擦力等)的突变。

抓住这些力突变的条件,是我们解题的重点。

一、和绳子拉力相联系的临界情况例1.小车在水平路面上加快向右运动,一质量为m的小球用一条水平线和一条斜线(与竖直方向成30°角) 把小球系于车上,求下列情况下,两绳的拉力:(1)加快度a1=g3(2)加快度a2=2g3解析:小车处于平衡态(a=0) 对小球受力剖析如下列图所示:0.F T2当加快度a由0渐渐增大的过程中,开始阶段,因m在竖直方向的加快度为角不变,不变,那么,加快度增大(即合外力增大),OA绳承受的拉力必减小,当哪2)而称在一个加快度,物体所受的合外力是的水平分FT1力,当时,当增大,(OA绳数可能抛状态),在竖直方向的分FF1量不变,而其水平方向的分量必增加(因合外力增大),角一定增大,设为 a.当即:0F3=tanθng,mz3=tanθng,a0=tanθg=√33ga 1=g3<a寸.F T2=0当F T1sinθ−P T2=ma1(1) Pₙcosθ=max(2)解得Fn =2√33mg,F n=√3−13mga2=2g3>a0时, Fn-0“P P1sinα=ma2①F P1cosα=mg②tanα=a2g ,解得P Fi=√133mg,点评:1.经过受力剖析和对运动过程的剖析找到本题中弹力发生突变的临界状态是绳子OA拉力恰巧为零:2.弹力是被动力,其大小和方向应由物体的状态和物体所受的其他力来确定。

二、和静摩擦力相联系的临界情况例2.质量为 m=1kg的物体,放在=39ⁿ的斜面上如下列图所示,物体与斜面的动摩擦因数,气候如物体与斜面体一同沿水平方向向左加快运动,则其加快度多大?。

临界条件

临界条件

2.常见临界问题的条件
(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力FN
=0.
(2)相对滑动的临界条件:静摩擦力达到 最大值 .
(3)绳子断裂与松弛的临界条件:绳子断裂的临界条件是绳中张力等于它
所能承受的最大张力;绳子松弛的临界条件是FT=0.
(4)最终速度(收尾速度)的临界条件:物体所受合外力为 零 .
例题4、如图所示,质量均为m=500g的木块A、B叠放在一 起,轻弹簧的劲度为k=100N/m,上、下两端分别和B与水 平面相连。原来系统处于静止。现用竖直向上的拉力F拉 A,使它以a=2.0m/s2的加速度向上做匀加速运动。求: ⑴经过多长时间A与B恰好分离? ⑵上述过程中拉力F的最小值F1和最大值F2各多大? ⑶刚施加拉力F瞬间A、B间压力多大?
第三章 牛顿运动定律
专题强化三 动力学临界极值问题
动力学中的临界与极值问题 1.临界或极值条件的标志 (1)题目中“刚好”“恰好”“正好”等关键词句,明显表明题述的过程 存在着 临界 点. (2)题目中“取值范围”“多长时间”“多大距离”等词句,表明题述过 程存在着“起止点”,而这些“起止点”一般对应着 临界 状态. (3)题目中“最大”“最小”“至多”“至少”等词句,表明题述的过程 存在着极值,这个极值点往往是临界点.
例题3.如图所示,一个弹簧台秤的秤盘质量和弹簧质 量都不计,盘内放一个物体P处于静止,P的质量 m=12kg,弹簧的劲度系数k=300N/m。现在给P施加一 个竖直向上的力F,使P从静止开始向上做匀加速直线 运动,已知在t=0.2s内F是变力,在0.2s以后F是恒 力,g=10m/s2,则F、倾角为45°的光滑斜面体固定在平板小车上,将质量为10 kg的小球用轻绳挂在斜面的顶端,如图所示。 (1)当小车以加速度a=1/3g,沿图示方向运动时(向右),求绳 中的张力; (2)当小车以加速度a=g,沿图示方向运动时(向右),求绳中 的张力。(g取10m/s2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿运动定律的应用----------临界问题
一、临界问题
在物体的运动变化过程中,往往会出现某个特殊的状态,相关物理量在这个特定状态前后会发生突变,这种运动状态称为临界状态。

临界状态通常分为运动(速度、加速度)变化的临界状态和力(摩擦力、弹力)变化的临界状态。

1、运动变化的临界状态:运动的物体出现最大或最小速度,相互作用的物体在运动中达到共同的速度等。

2、力变化的临界状态:
相互作用的物体间静摩擦力达到最大时将要发生相对滑动。

相互接触的物体运动中因为弹力逐渐减小直至减小到零将要发生分离等。

二、分析临界问题的一般步骤
1、通过受力分析和过程分析找到临界状态;
2、弄清在临界状态下满足的临界条件;如:两相互滑动的物体恰好不脱离、同向运动的两个物体相距最近的临界条件是两物体达到共同的速度。

3、使用物理方法或数学方法求解。

【例1】(弹力变化的临界)如图1所示,在倾角为θ的光滑斜
面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k ,C 为一固定挡板.系统处于静止状态.现开始用一恒力F 沿斜面方向拉物块A
使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d .重力加速度为g .
变式1.如图2所示,一弹簧秤的托盘质量m 1=1.5kg ,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k =800N/m ,开始时系统处于静止状态.现给
P 施加一个竖直向上的力F ,使P 从静止开始做匀加速直线运动,已知在最
初0.2s 内F 是变化的,在0.2s 后F 是恒定的,求F 的最大值和最小值各是
多少.(取g =10m/s 2)
【例2】(摩擦力变化的临界)如图3所示,物体A 叠放在物体B 上,B 置于光滑水平面上.A 、B 质量分别为m A =6 kg 、m B =2 kg ,A 、B 之间的动摩擦因数μ=0.2, F 从10逐渐增大到50N 在此过程中,下列说法准确的是( ).
A .当拉力F <12 N 时,两物体均保持相对静止状态
B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对滑动
C .两物体从受力开始就有相对运动
D .当拉力超过48 N 时,开始相对滑动 θ C 图1
A B 图2
【例3】(临界加速度)如图4所示,一细线的一端固定于倾角为45°的光滑斜面体的顶端P 处,细线的另一端拴一质量为m 的小球.当
斜面体以a =2g 的加速度向左运动时,线中拉力为多大?
【例4】(运动变化的临界)
如图5所示,长为1.5m 的长木板B 静止放在水平冰面上,小物块A 以某一初速度从木板B 的左端滑上长木板B .若小物块A 可视为质点,它与长木板B 的质量相同,A 、B 间的动摩擦因数μ1=0.25.木块与冰面的动摩擦因数为0.1.为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度应满足什么条件?(取g =10m/s 2)
变式1.如图6所示,一平板车以某一速度v 0匀速行驶,某时刻一货箱(可视为质点)无初速度地放置于平板车上,货箱离车后端的距离为l =3m ,
货箱放入车上的同时,平板车开始刹车,刹车过程可视为做
a =4m/s 2的匀减速直线运动.已知货箱与平板车之间的摩擦
因数为μ=0.8,g =10m/s 2.为使货箱不从平板上掉下来,平
板车匀速行驶的速度v 0应满足什么条件?
(变式:若μ=0.2呢)
变式2: 如图7所示为车站使用的水平传送带的模型,它的水平传送带的长度为L =8m ,传送带的皮带轮的半径可忽略,现有一个旅行包(视为质点)以v 0=10m/s 的初速度水平地滑上水平传送带.已知旅行包与皮带之间的动摩擦因数为μ=0.6.皮带轮与皮带之间始终不打滑。

求旅行包运动到B 端时的速度。

皮带轮顺时针匀速转动时,皮带的速度为v 。


5 图
6 图4。

相关文档
最新文档