导数高考题(大题)PDF.pdf
导数21 大题(其他、中档、中上、未)-2022年全国一卷新高考数学题型细分汇编
导数——大题——其他中下:1.(2022年湖北宜昌夷陵中学J39)青岛胶东国际机场的显著特点之一是弯曲曲线的运用,衡量曲线弯曲程度的重要指标是曲率.曲线的曲率定义如下:若()f x ¢是()f x 的导函数,()f x ''是()f x ¢的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''=⎡⎤⎦'+⎣.已知函数()()()ln cos 10,0x f x ae x b x a b =---≥>,若0a =,则曲线()y f x =在点()()1,1f 处的曲率为22.(1)求b ;(2)若函数()f x 存在零点,求a 的取值范围;(①)(3)已知1.098ln 3 1.099<<,0.048 1.050e <,0.0450.956e -<,证明:1.14ln π 1.15<<.(求导,中下;第二问,未;)导数——大题——其他中档:1.(2022年广东肇庆J36)已知函数()()ax f x axe a b x =++,()(1)ln g x x x =+.(1)当1a b =-=时,证明:当,()0x ∈+∞时,()()f x g x >;(②)(2)若对(0,)∀∈+∞x ,都[1,0]b ∃∈-,使()()f x g x ≥恒成立,求实数a 的取值范围.(切线放缩,比较大小,中档;第二问,未;)导数——大题——中档、中上、未:1.(2022年河北演练二J40)已知函数(1)ln (),()|ln |1x xf xg x x x -==+.(1)若()()(1,1)f m g n m n =>>,证明:m n >;(③)(2)设函数()(1)ln (1)F x x x a x =--+,若()0F x =有两个不同的实数根12,x x ,且12x x <,证明:221eax x >⋅.(中档,未;第二问,未;)2.(2022年湖北荆州中学J19)已知函数f (x )=e x -e -x -a sin x ,其中e 是自然对数的底数.(1)当x >0,f (x )>0,求a 的取值范围;(④)(2)当x >1时,求证:12x x e e x x ---+>sin sin(ln )x x -.(中档,未;第二问,未;)3.(2022年湖北荆门四校J21)已知函数3()ln()4f x ax x ax=++(其中实数0a >)的最小值为5,(1)求实数a 的值;(⑤)(2)若不等式()(4)5f x k x ≥++恒成立,求实数k 的取值范围.(中上,未;第二问,未;)4.(2022年湖北襄阳五中J23)已知函数()()e ln ln 1(0)x af x x a a x-=-++>(e 是自然对数的底数).(1)当1a =时,试判断()f x 在()1,+∞上极值点的个数;(⑥)(2)当1e 1a >-时,求证:对任意1x >,()1f x a >.(中档,未;第二问,未;)2.(2022年河北衡水中学J15)已知函数(),n f x nx x x R =-∈,其中*,2n N n ∈≥.(Ⅰ)讨论()f x 的单调性;(⑦)(Ⅱ)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(中上,未;第二问,未;)(Ⅲ)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证:21-21ax x n<+-1.(2022年湖南师大附中J11)已知函数()()()1ln 1f x x x a x =+--.(⑧)(1)若1a =,比较(log 10f 与()5log 9f 的大小;(2)讨论函数()f x 的零点个数.(中档,未;第二问,未;)1.(2022年江苏江阴J61)已知函数()e (1ln )x f x m x =+,其中m >0,f '(x )为f (x )的导函数,设()()ex f x h x '=,且5()2h x ≥恒成立.(1)求m 的取值范围;(⑨)(中档,未;第二问,未;)(2)设函数f (x )的零点为x 0,函数f '(x )的极小值点为x 1,求证:x 0>x 1.1.(2022年山东枣庄一模J60)已知函数()()e sin xf x x a x a =-∈R .(1)若[]0,πx ∀∈,()0f x ≥,求a 的取值范围;(⑩)(2)当59a ≥-时,试讨论()f x 在()0,2π内零点的个数,并说明理由.(中档,未;第二问,未;)①【答案】(1)1;(2)10,e⎡⎤⎢⎥⎣⎦;(3)证明见解析.【解析】【分析】(1)将0a =代入并计算()1f ,()f x '',根据曲率直接计算即可.(2)等价转化为()ln cos 1xx x a e+-=有根,然后令()()ln cos 1xx x g x e+-=并研究其性质,最后进行判断可得结果.(3)依据(2)条件可知1ln 1x x e-+≤,然后根据π3113π,π3ln 1ln 13πe e -+<+<判断即可.【详解】(1)当0a =时,()()ln cos 1f x x b x =---,()1f b =-.()()1sin 1f x b x x '=-+-,()()21cos 1f x b x x''=+-.∴()f x 在()1,b -处的曲率为3212122b k b +==⇒=.(2)()()()ln cos 1ln cos 10x xx x f x ae x x a e +-=---=⇒=令()ln 1h x x x =+-,则()111x h x x x-'=-=当()0,1∈x 时,()0h x '>,当()1,∈+∞x 时,()0h x '<所以函数()h x 在()0,1单调递增,在()1,+¥单调递减,所以()(1)0h x h ≤=,则ln 1x x +≤又令()x x m x e =,则()1'xxm x e -=当()0,1∈x 时,()0m x '>,当()1,∈+∞x 时,()0m x '<所以函数()m x 在()0,1单调递增,在()1,+¥单调递减所以()1(1)m x m e≤=令()()ln cos 1xx x g x e+-=,∴()ln 11x x x x g x e e e+≤≤≤,当且仅当1x =时取“=”,显然,当1a e>时,()f x 无零点.当10a e ≤≤时,()11g a e =≥,111cos 110ee g a e e ⎛⎫-+- ⎪⎛⎫⎝⎭=<≤ ⎪⎝⎭∴存在1,1x e ⎛⎫∈ ⎪⎝⎭使()0g x a =,符合题意.综上:实数a 的取值范围为10,e ⎡⎤⎢⎥⎣⎦.(3)由(2)知ln 11xx e e+≤,∴1ln 1x x e -+≤(当且仅当1x =时取“=”)∴π10.0483πln 13e e -+<<,∴0.048ln π1ln 3 1.0501 1.099 1.15e <-+<-+<又∵310.045π3ln 1πe e -+<<,∴0.045ln πln 31 1.09810.956 1.14e ->+->+->综上:1.14ln π 1.15<<.【点睛】关键点点睛:第(1)问关键在于求导;第(2)问关键在于等价转化的使用以及常用不等式(ln 1x x +≤)的使用以及放缩法;第(3)问在于利用第(2)问的条件ln 11xx e e+≤进行比较.②【答案】(1)证明见解析;(2)1,e∞⎡⎫+⎪⎢⎣⎭.③【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由()()(1,1)f m g n m n =>>,列出m 与n 的关系式,利用指数对数的运算性质进行化简与放缩即可证明;(2)把()0F x =化成()f x a =的形式,根据导数确定()f x 的单调性与极值,画出简图,确定12,x x 与1的大小关系,利用(1)的结论,可以得到12,x x 与e a 的关系,进而可证得结论.【小问1详解】证明:由()()(1,1)f m g n m n =>>,得(1)ln |ln |ln 1m mn n m -==+,则有(1)ln 1121ln 1111e(e)m m m m m m m m m n mmm ----++++====<,所以m n >;【小问2详解】证明:令()(1)ln (1)0(0)F x x x a x x =--+=>,化简可得(1)ln 1x xa x -=+,即()f x a =,2212ln 2ln 1()(1)(1)(1)x x x x x f x x x x x +--'=+=+++,令1()2ln g x x x x=+-,221()10x x xg =++>',所以()g x 在()0,∞+上单调递增且(1)0g =,则()g x 即()0f x '<时()0,1x ∈,()0f x '>时()1,x ∈+∞,可得()f x 在()0,1上单调递减,在()1,+∞单调递增,且有(1)0f =,由下图可知,1201x x <<<,0a >,又2222(1)ln ()ln e ln e =(e )1a a a x x f x a g x -====+,即22()=(e )(1,e 1)a a f x g x >>,由(1)可得2e ax >⋅⋅⋅①,又由1()f x a =得1111111111(1)ln (1)ln 1(()ln e ln e =(e )111a a a x x x x f f x a g x x x --======++,即1111((e )(1,e 1)a a f g x x >>,由(1)可得11e a x >⋅⋅⋅②,①②相乘可得221e a x x >,即221e a x x >⋅.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.④22.【答案】解:(1)由题意可知f '(x )=e x +e -x -a cos x ,①当0<a ≤2时,由-1≤cos x ≤1可知-2≤-a ≤a cos x ≤a ≤2,又因为e x +e -x ≥2恒成立,所以f '(x )=e x +e -x -a cos x ≥0恒成立,所以y =f (x )在[0,+∞)上恒为增函数.又f (0)=0,所以f (x )>0对x >0恒成立;②当a >2时,,且可知y =e x +e -x 与y =a cos x 必有一个交点,不妨设为x 0,所以y =f (x )在[0,x 0)上为减函数,在[x 0,+∞)为增函数,又f (0)=0,所以f (x 0)<0,与题意不符,故舍去.综合可知a 的取值范围是(0,2].(2),只需证,即证,即证e x -e -x -2sin x >e ln x -e -ln x -2sin (ln x ),即证f (x )>f (ln x )(此时a =2),由(1)问可知当0<a ≤2时y =f (x )在[0,+∞)上恒为增函数.所以即证x >ln x ,不妨令g (x )=x -ln x ,则所以y =g (x )在(0,1)递减,(1,+∞)递增.又因为g (x )min =g (1)=1>0所以g (x )=x -ln x >0恒成立,即x >ln x ,所以原结论得证.⑤【答案】(1)2;(2)(],4-∞-.【解析】【分析】(1)对()f x 求导,构造2()43(0)g x ax ax x =+->并由二次函数性质判断其零点0x 及区间符号,进而确定()f x 的单调性、极值,结合已知最值列方程得003ln2(41)6041x x ++-=+,再构造中间函数求零点,进而求a 的值;(2)令2(0)t x t =>问题转化为()0F t ≥对(0,)t ∈+∞恒成立,构造中间函数研究()F t 的最值,并判断单调性,最后可求k 的范围.【小问1详解】由题设,2243()(0)ax ax f x x ax +-'=>且0a >,令2()43(0)g x ax ax x =+->,则()g x 在(0,)+∞上递增且(0)30=-<g ,所以()0g x =有唯一正实根,记为0x ,则200430ax ax +-=.当00x x <<时,()0g x <即()0f x '<,()f x 单调递减,当0x x >时,()0>g x 即()0f x '>,()f x 单调递增,所以极小值也是最小值为00003()ln()45f x ax x ax =++=.又200430ax ax +-=,可得00341ax x =+,故003ln2(41)6041x x ++-=+,令3()ln26(1)h t t t t =+->,其中041t x =+,则121()20t h t t t-'=-+=>,所以()h t 在(1,)+∞上单调递增且(3)0h =,而3t =,即012x =,从而2a =.综上,实数a 的值为2.【小问2详解】由题意,3ln(2)502x kx x+--≥恒成立,令2(0)t x t =>.令3()ln 5(0)2kt F t t t t =+-->,则2226()2kt t F t t-+-'=,令2()26(0)t kt t t ϕ=-+->ⅰ、当0k ≥时,(1)202kF =--<,不合题意,舍去,ⅱ、当0k <时,()0t ϕ=有唯一的正实根,记为0t ,且200260t kt -=<,则0(0,3)t ∈且0312kt t -=当00t t <<时,()0t ϕ<,即()0F t '<,当0t t >时,()0t ϕ>,即()0F t '>所以()F t 在0(0,)t 单调递减,在0(,)t +∞上单调递增,则极小值也是最小值为00000036ln 5ln 62()kt t F t t t t +--+==-.要使()0F t ≥对(0,)t ∈+∞恒成立,则0()0F t ≥.令6()ln 6(03)m x x x x =+-<<,则26()0x m x x-'=<,即()m x 在(0,3)上递减,又(1)0m =,所以不等式()0m x ≥的解集为(]0,1,故001t <≤,又(]020062,0,1,k t t t -=+∈则k 的取值范围是(],4-∞-.【点睛】关键点点睛:(1)构造中间函数,并结合导数研究()f x 单调性、最值,根据已知求得参数间的函数关系及参数范围;(2)令2(0)t x t =>,根据已知确定隐零点0t 与参数k 的关系,并求出0t 的范围,进而求k 的范围.⑥【答案】(1)()f x 在()1,+∞上只有一个极值点,即唯一极小值点;(2)证明见解析【解析】【分析】(1)求出函数的导数,判断其正负,结合零点存在定理,判断函数的单调性,求得答案;(2)求出函数的导数,构造函数()=e 1x axh x x ---,判断其正负情况,确定函数单调性,进而确定函数的最小值()000ln ln 11(1)x a f x x -++-=,故可将原问题转化为对任意1x >,()001ln ln 111x a x a-++>-,再构造函数,利用其单调性即可证明结论.【小问1详解】当1a =时,()1e ln ln2x f x x x-=-+,则1122(1)(e )e (1)11()x x xx x x f x x x x ------'=-=,设1()=e1x x x x ϕ---,则11()e 11x x x ϕ-=---在()1,+∞上是增函数,当1x +→时,()x ϕ→-∞,(2)e 20ϕ=->,所以存在0(1,2)x ∈,使得0()0x ϕ=,当0(1,)x x ∈时,()0x ϕ<,则()0f x '<,即()f x 在0(1,)x 上单调递减,当0(,)x x ∈+∞时,()0x ϕ>,则()0f x '>,即()f x 在0(1,)x 上单调递增,所以()f x 在()1,+∞上只有一个极值点,即唯一极小值点;【小问2详解】证明:由22(1)(e )e (1)11()x a x a xx x x f x x xx ------'=-=,设()=e1x ax h x x ---,则1()e 11x ah x x -=---在()1,+∞上是增函数,当1x +→时,()h x →-∞,因为1e 1a >-,所以1(1)e 10h a a +=-->,所以存在0(1,1)x a ∈+,使得0000()e01x ax h x x -=-=-,当0(1,)x x ∈时,()0h x <,则()0f x '<,即()f x 在0(1,)x 上单调递减,当0(,)x x ∈+∞时,()0h x >,则()0f x '>,即()f x 在0(1,)x 上单调递增,故0x x =是函数()()e ln ln 1(0)x af x x a a x -=-++>的极小值点,也是最小值点,则()0000e ln l 1)n ()(x af x x f x a x --+=+≥,又因为000e1x ax x -=-,所以()000ln ln 11(1)x a f x x -++-=,即证:对任意1x >,()001ln ln 111x a x a-++>-,即证:对任意1x >,()001ln ln 111x a x a->-+-,设()ln 11g x x x =--,则()ln 11g x x x =--在()1,+∞上单调递减,因为0(1,1)x a ∈+,所以0()(1)g x g a >+,故()001ln ln 111x a x a->-+-,故对任意1x >,()1f x a>.【点睛】本题考查了利用导数判断函数的极值点的个数以及证明不等式成立的问题,综合性较强,要能熟练求导,利用导数判断函数的单调性以及求函数最值,解答的关键是根据函数或导数的特点,构造函数,进而结合零点存在定理判断导数正负,求得函数的最值,利用函数最值进而证明不等式成立.⑦【答案】(Ⅰ)当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减.(Ⅱ)见解析;(Ⅲ)见解析.【详解】(Ⅰ)由()n f x nx x =-,可得,其中*n N ∈且2n ≥,下面分两种情况讨论:(1)当n 为奇数时:令()0f x '=,解得1x =或1x =-,当x 变化时,(),()f x f x '的变化情况如下表:x (,1)-∞-(1,1)-(1,)+∞()f x '-+-()f x所以,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增.(2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增;当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减.(Ⅱ)证明:设点P 的坐标为0(,0)x ,则110n x n -=,20()f x n n '=-,曲线()y f x =在点P 处的切线方程为()00()y f x x x =-',即()00()()g x f x x x '=-,令()()()F x f x g x =-,即,则0()()()F x f x f x -'''=由于1()n f x nx n -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减,又因为0()0F x '=,所以当0(0,)x x ∈时,0()0F x '>,当0(,)x x ∈+∞时,0()0F x '<,所以()F x 在0(0,)x 内单调递增,在0(,)x +∞内单调递减,所以对任意的正实数x 都有0()()0F x F x ≤=,即对任意的正实数x ,都有()()f x g x ≤.(Ⅲ)证明:不妨设12x x ≤,由(Ⅱ)知()()20()g x n nx x =--,设方程()g x a =的根为2x ',可得202.a x x n n '=+-,当2n ≥时,()g x 在(),-∞+∞上单调递减,又由(Ⅱ)知222()()(),g x f x a g x '≥==可得22x x '≤.类似的,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当(0,)x ∈+∞,()()0n f x h x x -=-<,即对任意(0,)x ∈+∞,()().f x h x <设方程()h x a =的根为1x ',可得1a x n'=,因为()h x nx =在(),-∞+∞上单调递增,且111()()()h x a f x h x '==<,因此11x x '<.由此可得212101a x x x x x n''-<-=+-.因为2n ≥,所以11112(11)111n n n C n n ---=+≥+=+-=,故1102n n x -≥=,所以2121a x x n-<+-.【解析】1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式.⑧【答案】(1)(()25log 10log 9f f >(2)当2a ≤时,()f x 有1个零点;当2a >时,()f x 有3个零点【解析】【分析】(1)利用导数判断函数()f x 在()1,+∞上的单调性,根据函数的单调性即可得出答案;(2)求出函数的导函数()f x ',再利用导数可求得()min 2f x a '=-,再分20a -≥和20a -<两种情况讨论,结合零点的存在性定理,从而可得出结论.【小问1详解】解:当1a =时,()()()1ln 1f x x x x =+--,()1ln 11ln x f x x x x x+'=+-=+,当1x >时,()0f x '>,所以()f x 在()1,+∞上单调递增,因为2445log 10log 10log 9log 91=>>>,所以(()25log 10log 9f f >;【小问2详解】解:()11ln ln 1x f x x a x a x x +'=+-=++-,令()1ln 1g x x a x =++-,则()()221110-'=-=>x g x x x x x,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在()0,1上递减,在()1,+∞上递增,所以()()min 12g x g a ==-,即()min 2f x a '=-,①若20a -≥,即2a ≤,则()0f x '≥,()f x 在()0,∞+上递增,因为()10f =,则1x =为()f x 的唯一零点;②若20a -<,即2a >,则()()min 10f x f ''=<,因为e 1a >,()1e 10e aaf '=+>,则()f x '在()1,+∞内仅有个零点,记为n ,因为0e 1a -<<,()e e 21a af a -'=-+设()e 21a h a a =-+,则当2a >时,()e 20ah a '=->,所以()h a 在()2,+∞内单调递增,从而()()22e 30h a h >=->,即()e 0af -'>,所以()f x 在()0,1内仅有一个零点,记为m ,于是,当()0,x m ∈或(),x n ∈+∞时,()0f x '>,当(),x m n ∈时,()0f x '<,所以函数()f x 在(),n +∞和()0,m 上递增,在(),m n 上递减,因为01m n <<<,()10f =,则()0f m >,()0f n <,故()f x 在(),m n 内有唯一零点,因为()()()e e 1e 12e 0aa a a f a a a ----=-+--=-<,则()f x 在()0,m 内有唯一零点,因为()()()e e 1e 120a a af a a a =+--=>,则()f x 在(),m +∞内有唯一零点,所以()f x 在()0,∞+内有3个零点.综上所述,当2a ≤时,()f x 有1个零点;当2a >时,()f x 有3个零点.【点睛】本题考查了利用导数求函数的单调区间及最值问题,考查了利用导数研究函数的零点的问题,考查了二次求导,考查了学生的数据分析能力及分类讨论思想,属于难题.⑨【答案】(1)3,2⎡⎫+∞⎪⎢⎣⎭(2)证明见解析【解析】【分析】(1)求导可得()'f x 解析式,即可得()h x 解析式,利用导数求得()h x 的单调区间和最小值,结合题意,即可得m 的范围.(2)求得()f x ''解析式,令22()1ln (0)m m t x m x x x x=++->,利用导数可得()t x 的单调性,根据零点存在性定理,可得存在21,12x ⎛⎫∈ ⎪⎝⎭,使得t (x 2)=0,进而可得f '(x )在x =x 2处取得极小值,即x 1=x 2,所以11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭,令()1ln s x m x =+,分析可得s (x 1)<0,即可得证【小问1详解】由题设知()e (1ln )x m f x m x x'=++,则1ln (())0h m m x x x x ++>=,所以22(1)()m m m x h x x x x -'=-=当x >1时,h '(x )>0,则h (x )在区间(1,+∞)是增函数,当0<x <1时,h '(x )<0,则h (x )在区间(0,1)是减函数,所以h (x )min =h (1)=512m +≥,解得32m ≥,所以m 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭【小问2详解】222e 1ln e )n (1l x x m m m m m m x m x x x x x x f x ⎛⎫⎛⎫+++-=++- ⎪ ⎪⎝⎭⎝'=⎭'令22()1ln (0)m m t x m x x x x=++->则2322()m m m t x x x x '=-+=2233(1)1(22)0m x m x x x x ⎡⎤-+-+⎣⎦=>恒成立,所以t (x )在(0,+∞)单调递增.又1(1)10,1l 3ln 20n 2122t m t m ⎛⎫=+>=-≤- ⎪⎝⎭<,所以存在21,12x ⎛⎫∈ ⎪⎝⎭,使得t (x 2)=0,当x ∈(0,x 2)时,t '(x )<0,即f ''(x )<0,则f '(x )在(0,x 2)单调递减;当x ∈(x 2,+∞)时,t '(x )>0,即f ''(x )>0,则f '(x )在(x 2,+∞)单调递增;所以f '(x )在x =x 2处取得极小值.即x 1=x 2,所以t (x 1)=0,即11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭,所以1122111(12)21ln 0m x m m m x x x x -+=-=<,令()1ln s x m x =+,则s (x )在(0,+∞)单调递增;所以s (x 1)<0因为f (x )的零点为x 0,则01ln 0m x +=,即s (x 0)=0所以s (x 1)<s (x 0),所以x 0>x 1【点睛】解题的关键是熟练掌握利用导数求函数单调区间,极(最)值的方法,并灵活应用,难点在于,需结合零点存在性定理,判断零点所在区间,再进行分析和求解,属中档题.⑩【答案】(1)(],1-∞(2)若591a -≤≤,()f x 在(0,2)π内无零点;若1a >,()f x 在(0,2)π内有且仅有1个零点,证明见解析.【解析】【分析】(1)求导,然后,分别讨论0a ≤,01a <≤和1a >时的单调性即可.(2)根据(1)的结论,分别讨论590a -≤≤,01a <≤和1a >时零点的个数.【小问1详解】'()(1)e cos x f x x a x=+-①若0a ≤,当[0,]x π∈时,0a -≥,sin 0x ≥,()e ()sin 0x f x x a x =+-≥,当且仅当0x =时取等号,可见,0a ≤符合题意.②若01a <≤,当[0,]2x π∈时,0'()(1)e cos 10f x x a x a ≥+-≥-≥;当,2x π⎛⎤∈π ⎥⎝⎦时,cos 0x <,'()(1)e (cos )0x f x x a x =++⋅->.可见,当[]0,x π∈时,'()0f x ≥,当且仅当1a =,且0x =时取等号.所以()f x 在[0,]π上单调递增,所以,()(0)0f x f ≥=.所以01a <≤符合题意.③若1a >,因为(1)e x y x =+在[]0,π上单调递增,cos y a x =-在[]0,π上单调递增,所以,'()(1)e cos x f x x a x =+-在[]0,π上单调递增,又'(0)10f a =-<,2'((1)e 022f πππ=+>,由零点存在定理及'()f x 的单调性,存在唯一的0(0,2x π∈,使得0'()0f x =.当0(0,)x x ∈时,0'()'()0f x f x <=,()f x 单调递减,所以,()(0)0f x f <=.可见,1a >不符合题意.综上,a 的取值范围是(],1-∞【小问2详解】①若590a -≤≤,由(1),(]0,x π∈时,()0f x >,()f x 在(]0,π内无零点.当(),2x ∈ππ时,1sin 0x -≤<,0sin 1x <-≤,sin a x a -≥,又由e x y x =单调递增,则33()e sin e 3e 593 2.7590.0490x f x x a x a ππ=->+>->⨯-=>.可见,若590a -≤≤,()f x 在(0,2)π内无零点.②若01a <≤,由(1),(]0,x π∈时,()0f x >,()f x 在(]0,π内无零点.当(,2)x ππ∈时,sin 0x ->,()e (sin )0x x f x x a x xe =+->>.可见,若01a <≤,()f x 在(0,2)π内无零点.③若1a >,由(1),存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,当0(0,)x x ∈时,0'()'()0f x f x <=.()f x 单调递减;当0(,)x x π∈时,0'()'()0f x f x >=,()f x 单调递增.又(0)0f =,所以0()(0)0f x f <=.又()e 0f πππ=>,由零点存在定理及()f x 的单调性,存在唯一的10(,)x x π∈,使得1()0f x =.可见,()f x 在(]0,π内存在唯一的零点.当(,2)x ππ∈时,sin 0,sin 0x a x <->,所以,()e sin e 0x x f x x a x x =->>,所以,()f x 在(,2)ππ内没有零点,可见,()f x 在(0,2)π有且仅有1个零点.综上所述,若591a -≤≤,()f x 在(0,2)π内无零点;若1a >,()f x 在(0,2)π内有且仅有1个零点.【点睛】关键点睛:通过导数讨论含参函数的单调性时,要对参数进行分类讨论,分类讨论时,要注意做到不重不漏;讨论含参函数的零点个数时,要利用零点存在定理来讨论零点个数,利用零点存在定理讨论零点个数时,要注意结合单调性讨论,属于难题。
高中数学导数大题压轴高考题选
高中数学导数大题压轴高考题选(总41页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除函数与导数高考压轴题选一.选择题(共2小题)1.(2013•安徽)已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为()A.3 B.4 C.5 D.62.(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]其中真命题的序号是()A.①②B.①③C.②④D.③④二.选择题(共1小题)3.(2012•新课标)设函数f(x)=的最大值为M,最小值为m,则M+m= .三.选择题(共23小题)4.(2014•陕西)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.5.(2013•新课标Ⅱ)已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.6.(2013•四川)已知函数,其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.7.(2013•湖南)已知函数f(x)=.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.8.(2013•辽宁)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.9.(2013•陕西)已知函数f(x)=e x,x∈R.(Ⅰ)若直线y=kx+1与f (x)的反函数g(x)=lnx的图象相切,求实数k的值;(Ⅱ)设x>0,讨论曲线y=f (x)与曲线y=mx2(m>0)公共点的个数.(Ⅲ)设a<b,比较与的大小,并说明理由.10.(2013•湖北)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.11.(2012•辽宁)设f(x)=ln(x+1)++ax+b(a,b∈R,a,b为常数),曲线y=f (x)与直线y=x在(0,0)点相切.(I)求a,b的值;(II)证明:当0<x<2时,f(x)<.12.(2012•福建)已知函数f(x)=axsinx﹣(a∈R),且在上的最大值为,(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.13.(2012•湖北)设函数f(x)=ax n(1﹣x)+b(x>0),n为正整数,a,b为常数,曲线y=f(x)在(1,f(1))处的切线方程为x+y=1(Ⅰ)求a,b的值;(Ⅱ)求函数f(x)的最大值;(Ⅲ)证明:f(x)<.14.(2012•湖南)已知函数f(x)=e x﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.15.(2012•四川)已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距.(Ⅰ)用a和n表示f(n);(Ⅱ)求对所有n都有成立的a的最小值;(Ⅲ)当0<a<1时,比较与的大小,并说明理由.16.(2011•四川)已知函数f(x)=x+,h(x)=.(Ⅰ)设函数F(x)=f(x)﹣h(x),求F(x)的单调区间与极值;(Ⅱ)设a∈R,解关于x的方程log4[f(x﹣1)﹣]=log2h(a﹣x)﹣log2h(4﹣x);(Ⅲ)试比较f(100)h(100)﹣与的大小.17.(2011•陕西)设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.18.(2011•四川)已知函数f(x)=x+,h(x)=.(Ⅰ)设函数F(x)=18f(x)﹣x2[h(x)]2,求F(x)的单调区间与极值;(Ⅱ)设a∈R,解关于x的方程lg[f(x﹣1)﹣]=2lgh(a﹣x)﹣2lgh(4﹣x);(Ⅲ)设n∈N n,证明:f(n)h(n)﹣[h(1)+h(2)+…+h(n)]≥.19.(2010•四川)设,a>0且a≠1),g(x)是f(x)的反函数.(Ⅰ)设关于x的方程求在区间[2,6]上有实数解,求t的取值范围;(Ⅱ)当a=e,e为自然对数的底数)时,证明:;(Ⅲ)当0<a≤时,试比较||与4的大小,并说明理由.20.(2010•全国卷Ⅱ)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.21.(2010•陕西)已知函数f(x)=,g(x)=alnx,a∈R,(Ⅰ)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有共同的切线,求a的值和该切线方程;(Ⅱ)设函数h(x)=f(x)﹣g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式;(Ⅲ)对(Ⅱ)中的φ(a)和任意的a>0,b>0,证明:φ′()≤≤φ′().22.(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.23.(2009•湖北)在R上定义运算:(b、c∈R是常数),已知f1(x)=x2﹣2c,f2(x)=x﹣2b,f(x)=f1(x)f2(x).①如果函数f(x)在x=1处有极值,试确定b、c的值;②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;③记g(x)=|f′(x)|(﹣1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k 的取值范围.(参考公式:x3﹣3bx2+4b3=(x+b)(x﹣2b)2)24.(2009•湖北)已知关于x的函数f(x)=﹣x3+bx2+cx+bc,其导函数为f′(x).令g(x)=|f′(x)|,记函数g(x)在区间[﹣1、1]上的最大值为M.(Ⅰ)如果函数f(x)在x=1处有极值﹣,试确定b、c的值:(Ⅱ)若|b|>1,证明对任意的c,都有M>2(Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值.25.(2008•江苏)请先阅读:在等式cos2x=2cos2x﹣1(x∈R)的两边求导,得:(cos2x)′=(2cos2x﹣1)′,由求导法则,得(﹣sin2x)•2=4cosx•(﹣sinx),化简得等式:sin2x=2cosx•sinx.(1)利用上题的想法(或其他方法),结合等式(1+x)n=C n0+C n1x+C n2x2+…+C n n x n(x∈R,正整数n≥2),证明:.(2)对于正整数n≥3,求证:(i);(ii);(iii).26.(2008•天津)已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.(Ⅰ)当时,讨论函数f(x)的单调性;(Ⅱ)若函数f(x)仅在x=0处有极值,求a的取值范围;(Ⅲ)若对于任意的a∈[﹣2,2],不等式f(x)≤1在[﹣1,1]上恒成立,求b的取值范围.四.解答题(共4小题)27.(2008•福建)已知函数f(x)=ln(1+x)﹣x(1)求f(x)的单调区间;(2)记f(x)在区间[0,n](n∈N*)上的最小值为b n令a n=ln(1+n)﹣b n(i)如果对一切n,不等式恒成立,求实数c的取值范围;(ii)求证:.28.(2007•福建)已知函数f(x)=e x﹣kx,(1)若k=e,试确定函数f(x)的单调区间;(2)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围;(3)设函数F(x)=f(x)+f(﹣x),求证:F(1)F(2)…F(n)>(n∈N*).29.(2006•四川)已知函数,f(x)的导函数是f′(x).对任意两个不相等的正数x1、x2,证明:(Ⅰ)当a≤0时,;(Ⅱ)当a≤4时,|f′(x1)﹣f′(x2)|>|x1﹣x2|.30.(2006•辽宁)已知f0(x)=x n,其中k≤n(n,k∈N+),设F(x)=C n0f0(x2)+C n1f1(x2)+…+C n n f n(x2),x∈[﹣1,1].(1)写出f k(1);(2)证明:对任意的x1,x2∈[﹣1,1],恒有|F(x1)﹣F(x2)|≤2n﹣1(n+2)﹣n﹣1.函数与导数高考压轴题选参考答案与试题解析一.选择题(共2小题)1.(2013•安徽)已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为()A.3 B.4 C.5 D.6【解答】解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得=.∵x1<x2,∴,.而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2.不妨取0<x1<x2,f(x1)>0.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f (x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x的方程3(f (x))2+2af(x)+b=0的只有3不同实根.故选:A.2.(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]其中真命题的序号是()A.①②B.①③C.②④D.③④【解答】解:在①中,反例:f(x)=在[1,3]上满足性质P,但f(x)在[1,3]上不是连续函数,故①不成立;在②中,反例:f(x)=﹣x在[1,3]上满足性质P,但f(x2)=﹣x2在[1,]上不满足性质P,故②不成立;在③中:在[1,3]上,f(2)=f()≤,∴,故f(x)=1,∴对任意的x1,x2∈[1,3],f(x)=1,故③成立;在④中,对任意x1,x2,x3,x4∈[1,3],有=≤≤=[f(x1)+f(x2)+f(x3)+f(x4)],∴[f(x1)+f(x2)+f(x3)+f(x4)],故④成立.故选D.二.选择题(共1小题)3.(2012•新课标)设函数f(x)=的最大值为M,最小值为m,则M+m=2.【解答】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.三.选择题(共23小题)4.(2014•陕西)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.【解答】解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值为f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x>0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上是增函数,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),则h(b)<h(a).∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值范围是[,+∞).5.(2013•新课标Ⅱ)已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【解答】(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.6.(2013•四川)已知函数,其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.【解答】解:(I)当x<0时,f(x)=(x+1)2+a,∴f(x)在(﹣∞,﹣1)上单调递减,在[﹣1,0)上单调递增;当x>0时,f(x)=lnx,在(0,+∞)单调递增.(II)∵x1<x2<0,∴f(x)=x2+2x+a,∴f′(x)=2x+2,∴函数f(x)在点A,B处的切线的斜率分别为f′(x1),f′(x2),∵函数f(x)的图象在点A,B处的切线互相垂直,∴,∴(2x1+2)(2x2+2)=﹣1.∴2x1+2<0,2x2+2>0,∴=1,当且仅当﹣(2x1+2)=2x2+2=1,即,时等号成立.∴函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值为1.(III)当x1<x2<0或0<x1<x2时,∵,故不成立,∴x1<0<x2.当x1<0时,函数f(x)在点A(x1,f(x1)),处的切线方程为,即.当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为,即.函数f(x)的图象在点A,B处的切线重合的充要条件是,由①及x1<0<x2可得﹣1<x1<0,由①②得=.∵函数,y=﹣ln(2x1+2)在区间(﹣1,0)上单调递减,∴a(x1)=在(﹣1,0)上单调递减,且x1→﹣1时,ln(2x1+2)→﹣∞,即﹣ln(2x1+2)→+∞,也即a(x1)→+∞.x1→0,a(x1)→﹣1﹣ln2.∴a的取值范围是(﹣1﹣ln2,+∞).7.(2013•湖南)已知函数f(x)=.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.【解答】解:(Ⅰ)易知函数的定义域为R.==,当x<0时,f′(x)>0;当x>0时,f′(x)<0.∴函数f(x)的单调递增区间为(﹣∞,0),单调递减区间为(0,+∞).(Ⅱ)当x<1时,由于,e x>0,得到f(x)>0;同理,当x>1时,f(x)<0.当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2.由(Ⅰ)可知:x1∈(﹣∞,0),x2∈(0,1).下面证明:∀x∈(0,1),f(x)<f(﹣x),即证<.此不等式等价于.令g(x)=,则g′(x)=﹣xe﹣x(e2x﹣1).当x∈(0,1)时,g′(x)<0,g(x)单调递减,∴g(x)<g(0)=0.即.∴∀x∈(0,1),f(x)<f(﹣x).而x2∈(0,1),∴f(x2)<f(﹣x2).从而,f(x1)<f(﹣x2).由于x1,﹣x2∈(﹣∞,0),f(x)在(﹣∞,0)上单调递增,∴x1<﹣x2,即x1+x2<0.8.(2013•辽宁)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.【解答】(I)证明:①当x∈[0,1)时,(1+x)e﹣2x≥1﹣x⇔(1+x)e﹣x≥(1﹣x)e x,令h(x)=(1+x)e﹣x﹣(1﹣x)e x,则h′(x)=x(e x﹣e﹣x).当x∈[0,1)时,h′(x)≥0,∴h(x)在[0,1)上是增函数,∴h(x)≥h(0)=0,即f(x)≥1﹣x.②当x∈[0,1)时,⇔e x≥1+x,令u(x)=e x﹣1﹣x,则u′(x)=e x﹣1.当x∈[0,1)时,u′(x)≥0,∴u(x)在[0,1)单调递增,∴u(x)≥u(0)=0,∴f(x).综上可知:.(II)解:设G(x)=f(x)﹣g(x)=≥=.令H(x)=,则H′(x)=x﹣2sinx,令K(x)=x﹣2sinx,则K′(x)=1﹣2cosx.当x∈[0,1)时,K′(x)<0,可得H′(x)是[0,1)上的减函数,∴H′(x)≤H′(0)=0,故H(x)在[0,1)单调递减,∴H(x)≤H(0)=2.∴a+1+H(x)≤a+3.∴当a≤﹣3时,f(x)≥g(x)在[0,1)上恒成立.下面证明当a>﹣3时,f(x)≥g(x)在[0,1)上不恒成立.f(x)﹣g(x)≤==﹣x.令v(x)==,则v′(x)=.当x∈[0,1)时,v′(x)≤0,故v(x)在[0,1)上是减函数,∴v(x)∈(a+1+2cos1,a+3].当a>﹣3时,a+3>0.∴存在x0∈(0,1),使得v(x0)>0,此时,f(x0)<g(x0).即f(x)≥g(x)在[0,1)不恒成立.综上实数a的取值范围是(﹣∞,﹣3].9.(2013•陕西)已知函数f(x)=e x,x∈R.(Ⅰ)若直线y=kx+1与f (x)的反函数g(x)=lnx的图象相切,求实数k的值;(Ⅱ)设x>0,讨论曲线y=f (x)与曲线y=mx2(m>0)公共点的个数.(Ⅲ)设a<b,比较与的大小,并说明理由.【解答】解:(I)函数f(x)=e x的反函数为g(x)=lnx,∴.设直线y=kx+1与g(x)的图象相切于点P(x0,y0),则,解得,k=e﹣2,∴k=e﹣2.(II)当x>0,m>0时,令f(x)=mx2,化为m=,令h(x)=,则,则x∈(0,2)时,h′(x)<0,h(x)单调递减;x∈(2,+∞)时,h′(x)>0,h(x)单调递增.∴当x=2时,h(x)取得极小值即最小值,.∴当时,曲线y=f (x)与曲线y=mx2(m>0)公共点的个数为0;当时,曲线y=f (x)与曲线y=mx2(m>0)公共点的个数为1;当时,曲线y=f (x)与曲线y=mx2(m>0)公共点个数为2.(Ⅲ)===,令g(x)=x+2+(x﹣2)e x(x>0),则g′(x)=1+(x﹣1)e x.g′′(x)=xe x>0,∴g′(x)在(0,+∞)上单调递增,且g′(0)=0,∴g′(x)>0,∴g(x)在(0,+∞)上单调递增,而g(0)=0,∴在(0,+∞)上,有g(x)>g(0)=0.∵当x>0时,g(x)=x+2+(x﹣2)•e x>0,且a<b,∴,即当a<b时,.10.(2013•湖北)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.【解答】解;(Ⅰ)由题意得f'(x)=(r+1)(1+x)r﹣(r+1)=(r+1)[(1+x)r﹣1],令f'(x)=0,解得x=0.当﹣1<x<0时,f'(x)<0,∴f(x)在(﹣1,0)内是减函数;当x>0时,f'(x)>0,∴f(x)在(0,+∞)内是增函数.故函数f(x)在x=0处,取得最小值为f(0)=0.(Ⅱ)由(Ⅰ),当x∈(﹣1,+∞)时,有f(x)≥f(0)=0,即(1+x)r+1≥1+(r+1)x,且等号当且仅当x=0时成立,故当x>﹣1且x≠0,有(1+x)r+1>1+(r+1)x,①在①中,令(这时x>﹣1且x≠0),得.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r(r+1),即,②当n>1时,在①中令(这时x>﹣1且x≠0),类似可得,③且当n=1时,③也成立.综合②,③得,④(Ⅲ)在④中,令,n分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由[S]的定义,得[S]=211.11.(2012•辽宁)设f(x)=ln(x+1)++ax+b(a,b∈R,a,b为常数),曲线y=f (x)与直线y=x在(0,0)点相切.(I)求a,b的值;(II)证明:当0<x<2时,f(x)<.【解答】(I)解:由y=f(x)过(0,0),∴f(0)=0,∴b=﹣1∵曲线y=f(x)与直线在(0,0)点相切.∴y′|x=0=∴a=0;(II)证明:由(I)知f(x)=ln(x+1)+由均值不等式,当x>0时,,∴①令k(x)=ln(x+1)﹣x,则k(0)=0,k′(x)=,∴k(x)<0∴ln(x+1)<x,②由①②得,当x>0时,f(x)<记h(x)=(x+6)f(x)﹣9x,则当0<x<2时,h′(x)=f(x)+(x+6)f′(x)﹣9<<=∴h(x)在(0,2)内单调递减,又h(0)=0,∴h(x)<0∴当0<x<2时,f(x)<.12.(2012•福建)已知函数f(x)=axsinx﹣(a∈R),且在上的最大值为,(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.【解答】解:(I)由已知得f′(x)=a(sinx+xcosx),对于任意的x∈(0,),有sinx+xcosx>0,当a=0时,f(x)=﹣,不合题意;当a<0时,x∈(0,),f′(x)<0,从而f(x)在(0,)单调递减,又函数在上图象是连续不断的,故函数在上上的最大值为f(0)=﹣,不合题意;当a>0时,x∈(0,),f′(x)>0,从而f(x)在(0,)单调递增,又函数在上图象是连续不断的,故函数在上上的最大值为f()==,解得a=1,综上所述,得(II)函数f(x)在(0,π)内有且仅有两个零点.证明如下:由(I)知,,从而有f(0)=﹣<0,f()=>0,又函数在上图象是连续不断的,所以函数f(x)在(0,)内至少存在一个零点,又由(I)知f(x)在(0,)单调递增,故函数f(x)在(0,)内仅有一个零点.当x∈[,π]时,令g(x)=f′(x)=sinx+xcosx,由g()=1>0,g(π)=﹣π<0,且g(x)在[,π]上的图象是连续不断的,故存在m∈(,π),使得g(m)=0.由g′(x)=2cosx﹣xsinx,知x∈(,π)时,有g′(x)<0,从而g(x)在[,π]上单调递减.当x∈(,m),g(x)>g(m)=0,即f′(x)>0,从而f(x)在(,m)内单调递增故当x∈(,m)时,f(x)>f()=>0,从而(x)在(,m)内无零点;当x∈(m,π)时,有g(x)<g(m)=0,即f′(x)<0,从而f(x)在(,m)内单调递减.又f(m)>0,f(π)<0且f(x)在[m,π]上的图象是连续不断的,从而f(x)在[m,π]内有且仅有一个零点.综上所述,函数f(x)在(0,π)内有且仅有两个零点.13.(2012•湖北)设函数f(x)=ax n(1﹣x)+b(x>0),n为正整数,a,b为常数,曲线y=f(x)在(1,f(1))处的切线方程为x+y=1(Ⅰ)求a,b的值;(Ⅱ)求函数f(x)的最大值;(Ⅲ)证明:f(x)<.【解答】解:(Ⅰ)因为f(1)=b,由点(1,b)在x+y=1上,可得1+b=1,即b=0.因为f′(x)=anx n﹣1﹣a(n+1)x n,所以f′(1)=﹣a.又因为切线x+y=1的斜率为﹣1,所以﹣a=﹣1,即a=1,故a=1,b=0.(Ⅱ)由(Ⅰ)知,f(x)=x n(1﹣x),则有f′(x)=(n+1)x n﹣1(﹣x),令f′(x)=0,解得x=在(0,)上,导数为正,故函数f(x)是增函数;在(,+∞)上导数为负,故函数f(x)是减函数;故函数f(x)在(0,+∞)上的最大值为f()=()n(1﹣)=,(Ⅲ)令φ(t)=lnt﹣1+,则φ′(t)=﹣=(t>0)在(0,1)上,φ′(t)<0,故φ(t)单调减;在(1,+∞),φ′(t)>0,故φ(t)单调增;故φ(t)在(0,+∞)上的最小值为φ(1)=0,所以φ(t)>0(t>1)则lnt>1﹣,(t>1),令t=1+,得ln(1+)>,即ln(1+)n+1>lne所以(1+)n+1>e,即<由(Ⅱ)知,f(x)≤<,故所证不等式成立.14.(2012•湖南)已知函数f(x)=e x﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.【解答】解:(1)f′(x)=e x﹣a,令f′(x)=0,解可得x=lna;当x<lna,f′(x)<0,f(x)单调递减,当x>lna,f′(x)>0,f(x)单调递增,故当x=lna时,f(x)取最小值,f(lna)=a﹣alna,对一切x∈R,f(x)≥1恒成立,当且仅当a﹣alna≥1,①令g(t)=t﹣tlnt,则g′(t)=﹣lnt,当0<t<1时,g′(t)>0,g(t)单调递增,当t>1时,g′(t)<0,g(t)单调递减,故当t=1时,g(t)取得最大值,且g(1)=1,因此当且仅当a=1时,①式成立,综上所述,a的取值的集合为{1}.(2)根据题意,k==﹣a,令φ(x)=f′(x)﹣k=e x﹣,则φ(x1)=﹣[﹣(x2﹣x1)﹣1],φ(x2)=[﹣(x1﹣x2)﹣1],令F(t)=e t﹣t﹣1,则F′(t)=e t﹣1,当t<0时,F′(t)<0,F(t)单调递减;当t>0时,F′(t)>0,F(t)单调递增,则F(t)的最小值为F(0)=0,故当t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0,从而﹣(x2﹣x1)﹣1>0,且>0,则φ(x1)<0,﹣(x1﹣x2)﹣1>0,>0,则φ(x2)>0,因为函数y=φ(x)在区间[x1,x2]上的图象是连续不断的一条曲线,所以存在x0∈(x1,x2),使φ(x0)=0,即f′(x0)=K成立.15.(2012•四川)已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距.(Ⅰ)用a和n表示f(n);(Ⅱ)求对所有n都有成立的a的最小值;(Ⅲ)当0<a<1时,比较与的大小,并说明理由.【解答】解:(Ⅰ)∵抛物线与x轴正半轴相交于点A,∴A()对求导得y′=﹣2x∴抛物线在点A处的切线方程为,∴∵f(n)为该抛物线在点A处的切线在y轴上的截距,∴f(n)=a n;(Ⅱ)由(Ⅰ)知f(n)=a n,则成立的充要条件是a n≥2n3+1即知,a n≥2n3+1对所有n成立,特别的,取n=2得到a≥当a=,n≥3时,a n>4n=(1+3)n≥1+=1+2n3+>2n3+1当n=0,1,2时,∴a=时,对所有n都有成立∴a的最小值为;(Ⅲ)由(Ⅰ)知f(k)=a k,下面证明:首先证明:当0<x<1时,设函数g(x)=x(x2﹣x)+1,0<x<1,则g′(x)=x(x﹣)当0<x<时,g′(x)<0;当时,g′(x)>0故函数g(x)在区间(0,1)上的最小值g(x)min=g()=0∴当0<x<1时,g(x)≥0,∴由0<a<1知0<a k<1,因此,从而=≥=>=16.(2011•四川)已知函数f(x)=x+,h(x)=.(Ⅰ)设函数F(x)=f(x)﹣h(x),求F(x)的单调区间与极值;(Ⅱ)设a∈R,解关于x的方程log4[f(x﹣1)﹣]=log2h(a﹣x)﹣log2h(4﹣x);(Ⅲ)试比较f(100)h(100)﹣与的大小.【解答】解:(Ⅰ)由F(x)=f(x)﹣h(x)=x+﹣(x≥0)知,F′(x)=,令F′(x)=0,得x=.当x∈(0,)时,F′(x)<0;当x∈(,+∞)时,F′(x)>0.故x∈(0,)时,F(x)是减函数;故x∈(,+∞)时,F(x)是增函数.F(x)在x=处有极小值且F()=.(Ⅱ)原方程可化为log4(x﹣1)+log2 h(4﹣x)=log2h(a﹣x),即log2(x﹣1)+log2=log2,⇔⇔①当1<a≤4时,原方程有一解x=3﹣;②当4<a<5时,原方程有两解x=3;③当a=5时,原方程有一解x=3;④当a≤1或a>5时,原方程无解.(Ⅲ)设数列 {a n}的前n项和为s n,且s n=f(n)g(n)﹣从而有a1=s1=1.当2<k≤100时,a k=s k﹣s k﹣1=,a k﹣=[(4k﹣3)﹣(4k﹣1)]==>0.即对任意的2<k≤100,都有a k>.又因为a1=s1=1,所以a1+a2+a3+…+a100>=h(1)+h(2)+…+h(100).故f(100)h(100)﹣>.17.(2011•陕西)设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.【解答】解:(Ⅰ)由题设易知f(x)=lnx,g(x)=lnx+,∴g′(x)=,令g′(x)=0,得x=1,当x∈(0,1)时,g′(x)<0,故g(x)的单调递减区间是(0,1),当x∈(1,+∞)时,g′(x)>0,故g(x)的单调递增区间是(1,+∞),因此x=1是g(x)的唯一极值点,且为极小值点,从而是最小值点,∴最小值为g(1)=1;(Ⅱ)=﹣lnx+x,设h(x)=g(x)﹣=2lnx﹣x+,则h′(x)=,当x=1时,h(1)=0,即g(x)=,当x∈(0,1)∪(1,+∞)时,h′(x)<0,h′(1)=0,因此,h(x)在(0,+∞)内单调递减,当0<x<1,时,h(x)>h(1)=0,即g(x)>,当x>1,时,h(x)<h(1)=0,即g(x)<,(Ⅲ)满足条件的x0 不存在.证明如下:证法一假设存在x0>0,使|g(x)﹣g(x0)|<成立,即对任意x>0,有,(*)但对上述x0,取时,有 Inx1=g(x0),这与(*)左边不等式矛盾,因此,不存在x0>0,使|g(x)﹣g(x0)|<成立.证法二假设存在x0>0,使|g(x)﹣g(x0)|成<立.由(Ⅰ)知,的最小值为g(x)=1.又>Inx,而x>1 时,Inx 的值域为(0,+∞),∴x≥1 时,g(x)的值域为[1,+∞),从而可取一个x1>1,使 g(x1)≥g(x0)+1,即g(x1)﹣g(x0)≥1,故|g(x1)﹣g(x0)|≥1>,与假设矛盾.∴不存在x0>0,使|g(x)﹣g(x0)|<成立.18.(2011•四川)已知函数f(x)=x+,h(x)=.(Ⅰ)设函数F(x)=18f(x)﹣x2[h(x)]2,求F(x)的单调区间与极值;(Ⅱ)设a∈R,解关于x的方程lg[f(x﹣1)﹣]=2lgh(a﹣x)﹣2lgh(4﹣x);(Ⅲ)设n∈N n,证明:f(n)h(n)﹣[h(1)+h(2)+…+h(n)]≥.【解答】解:(Ⅰ)F(x)=18f(x)﹣x2[h(x)]2=﹣x3+12x+9(x≥0)所以F′(x)=﹣3x2+12=0,x=±2且x∈(0,2)时,F′(x)>0,当x∈(2,+∞)时,F′(x)<0所以F(x)在(0,2)上单调递增,在(2,+∞)上单调递减.故x=2时,F(x)有极大值,且F(2)=﹣8+24+9=25.(Ⅱ)原方程变形为lg(x﹣1)+2lg=2lg,⇔⇔,①当1<a<4时,原方程有一解x=3﹣,②当4<a<5时,原方程有两解x=3±,③当a=5时,原方程有一解x=3,④当a≤1或a>5时,原方程无解.(Ⅲ)由已知得h(1)+h(2)+…+h(n)=,f(n)h(n)﹣=,从而a1=s1=1,当k≥2时,a n=s n﹣s n﹣1=,又===>0即对任意的k≥2,有,又因为a1=1=,所以a1+a2+…+a n≥,则s n≥h(1)+h(2)+…+h(n),故原不等式成立.19.(2010•四川)设,a>0且a≠1),g(x)是f(x)的反函数.(Ⅰ)设关于x的方程求在区间[2,6]上有实数解,求t的取值范围;(Ⅱ)当a=e,e为自然对数的底数)时,证明:;(Ⅲ)当0<a≤时,试比较||与4的大小,并说明理由.【解答】解:(1)由题意,得a x=>0故g(x)=,x∈(﹣∞,﹣1)∪(1,+∞)由得t=(x﹣1)2(7﹣x),x∈[2,6]则t′=﹣3x2+18x﹣15=﹣3(x﹣1)(x﹣5)列表如下:x 2 (2,5)5 (5,6)6t' + ﹣t 5 递增递减25极大值32所以t最小值=5,t最大值=32所以t的取值范围为[5,32](5分)(Ⅱ)=ln()=﹣ln令u(z)=﹣lnz2﹣=﹣2lnz+z﹣,z>0则u′(z)=﹣=(1﹣)2≥0所以u(z)在(0,+∞)上是增函数又因为>1>0,所以u()>u(1)=0 即ln>0即(9分)(3)设a=,则p≥1,1<f(1)=≤3,当n=1时,|f(1)﹣1|=≤2<4,当n≥2时,设k≥2,k∈N*时,则f(k)=,=1+所以1<f(k)≤1+,从而n﹣1<≤n﹣1+=n+1﹣<n+1,所以n<<f(1)+n+1≤n+4,综上所述,总有|﹣n|<4.20.(2010•全国卷Ⅱ)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.【解答】解:(1)当x>﹣1时,f(x)≥当且仅当e x≥1+x令g(x)=e x﹣x﹣1,则g'(x)=e x﹣1当x≥0时g'(x)≥0,g(x)在[0,+∞)是增函数当x≤0时g'(x)≤0,g(x)在(﹣∞,0]是减函数于是g(x)在x=0处达到最小值,因而当x∈R时,g(x)≥g(0)时,即e x≥1+x所以当x>﹣1时,f(x)≥(2)由题意x≥0,此时f(x)≥0当a<0时,若x>﹣,则<0,f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,则f(x)≤当且仅当h(x)≤0因为f(x)=1﹣e﹣x,所以h'(x)=af(x)+axf'(x)+f'(x)﹣1=af(x)﹣axf(x)+ax﹣f(x)(i)当0≤a≤时,由(1)知x≤(x+1)f(x)h'(x)≤af(x)﹣axf(x)+a(x+1)f(x)﹣f(x)=(2a﹣1)f(x)≤0,h(x)在[0,+∞)是减函数,h(x)≤h(0)=0,即f(x)≤(ii)当a>时,由(i)知x≥f(x)h'(x)=af(x)﹣axf(x)+ax﹣f(x)≥af(x)﹣axf(x)+af(x)﹣f(x)=(2a﹣1﹣ax)f(x)当0<x<时,h'(x)>0,所以h'(x)>0,所以h(x)>h(0)=0,即f(x)>综上,a的取值范围是[0,]21.(2010•陕西)已知函数f(x)=,g(x)=alnx,a∈R,(Ⅰ)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有共同的切线,求a的值和该切线方程;(Ⅱ)设函数h(x)=f(x)﹣g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式;(Ⅲ)对(Ⅱ)中的φ(a)和任意的a>0,b>0,证明:φ′()≤≤φ′().【解答】解:(Ⅰ)f'(x)=,g'(x)=有已知得解得:a=,x=e2∴两条曲线的交点坐标为(e2,e)切线的斜率为k=f'(e2)=∴切线的方程为y﹣e=(x﹣e2)(Ⅱ)由条件知h(x)=﹣alnx(x>0),∴h′(x)=﹣=,①当a>0时,令h′(x)=0,解得x=4a2.∴当0<x<4a2时,h′(x)<0,h(x)在(0,4a2)上单调递减;当x>4a2时,h′(x)>0,h(x)在(4a2,+∞)上单调递增.∴x=4a2是h(x)在(0,+∞)上的惟一极值点,且是极小值点,从而也是h(x)的最小值点.∴最小值φ(a)=h(4a2)=2a﹣aln(4a2)=2a[1﹣ln (2a)].②当a≤0时,h′(x)=>0,h(x)在(0,+∞)上单调递增,无最小值.故h(x)的最小值φ(a)的解析式为φ(a)=2a[1﹣ln (2a)](a>0).(Ⅲ)证明:由(Ⅱ)知φ′(a)=﹣2ln2a对任意的a>0,b>0=﹣=﹣ln4ab,①φ′()=﹣2ln(2×)=﹣ln(a+b)2≤﹣ln4ab,②φ′()=﹣2ln(2×)=﹣2ln=﹣ln4ab,③故由①②③得φ′()≤≤φ′().22.(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.23.(2009•湖北)在R上定义运算:(b、c∈R是常数),已知f1(x)=x2﹣2c,f2(x)=x﹣2b,f(x)=f1(x)f2(x).①如果函数f(x)在x=1处有极值,试确定b、c的值;②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;③记g(x)=|f′(x)|(﹣1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k 的取值范围.(参考公式:x3﹣3bx2+4b3=(x+b)(x﹣2b)2)【解答】解:①依题意,解得或.若,,′(x)=﹣x2+2x﹣1=﹣(x﹣1)2≤0f(x)在R上单调递减,在x=1处无极值;若,,f′(x)=﹣x2﹣2x+3=﹣(x﹣1)(x+3),直接讨论知,f(x)在x=1处有极大值,所以为所求.②解f′(t)=c得t=0或t=2b,切点分别为(0,bc)、,相应的切线为y=cx+bc或.解得x=0或x=3b;解即x3﹣3bx2+4b3=0得x=﹣b或x=2b.综合可知,b=0时,斜率为c的切线只有一条,与曲线的公共点只有(0,0),b≠0时,斜率为c的切线有两条,与曲线的公共点分别为(0,bc)、(3b,4bc)和、.③g(x)=|﹣(x﹣b)2+b2+c|.若|b|>1,则f′(x)在[﹣1,1]是单调函数,M=max{|f′(﹣1)|,|f′(1)|}={|﹣1+2b+c|,|﹣1﹣2b+c|},因为f′(1)与f′(﹣1)之差的绝对值|f′(1)﹣f′(﹣1)|=|4b|>4,所以M>2.若|b|≤1,f′(x)在x=b∈[﹣1,1]取极值,则M=max{|f′(﹣1)|,|f′(1)|,|f′(b)|},f′(b)﹣f′(±1)=(b∓1)2.若﹣1≤b<0,f′(1)≤f′(﹣1)≤f′(b;若0≤b≤1,f′(﹣1)≤f′(1)≤f′(b),M=max{|f′(﹣1)|,|f′(b)|}=.当b=0,时,在[﹣1,1]上的最大值.所以,k的取值范围是.24.(2009•湖北)已知关于x的函数f(x)=﹣x3+bx2+cx+bc,其导函数为f′(x).令g(x)=|f′(x)|,记函数g(x)在区间[﹣1、1]上的最大值为M.(Ⅰ)如果函数f(x)在x=1处有极值﹣,试确定b、c的值:(Ⅱ)若|b|>1,证明对任意的c,都有M>2(Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值.【解答】(Ⅰ)解:∵f'(x)=﹣x2+2bx+c,由f(x)在x=1处有极值可得解得,或若b=1,c=﹣1,则f'(x)=﹣x2+2x﹣1=﹣(x﹣1)2≤0,此时f(x)没有极值;若b=﹣1,c=3,则f'(x)=﹣x2﹣2x+3=﹣(x+3)(x﹣1)当x变化时,f(x),f'(x)的变化情况如下表:x (﹣∞,﹣3)﹣3 (﹣3,1)1(1,+∞)f'(x)﹣0 + 0 ﹣f(x)↘极小值﹣12 ↗极大值↘∴当x=1时,f(x)有极大值,故b=﹣1,c=3即为所求.(Ⅱ)证法1:g(x)=|f'(x)|=|﹣(x﹣b)2+b2+c|当|b|>1时,函数y=f'(x)的对称轴x=b位于区间[﹣1.1]之外.∴f'(x)在[﹣1,1]上的最值在两端点处取得故M应是g(﹣1)和g(1)中较大的一个,∴2M≥g(1)+g(﹣1)=|﹣1+2b+c|+|﹣1﹣2b+c|≥|4b|>4,即M>2证法2(反证法):因为|b|>1,所以函数y=f'(x)的对称轴x=b位于区间[﹣1,1]之外,∴f'(x)在[﹣1,1]上的最值在两端点处取得.故M应是g(﹣1)和g(1)中较大的一个假设M≤2,则M=maxg{(﹣1),g(1),g(b)}将上述两式相加得:4≥|﹣1﹣2b+c|+|﹣1+2b+c|≥4|b|>4,导致矛盾,∴M>2(Ⅲ)解法1:g(x)=|f'(x)|=|﹣(x﹣b)2+b2+c|(1)当|b|>1时,由(Ⅱ)可知f'(b)﹣f'(±1)=b(∓1)2≥0;(2)当|b|≤1时,函数y=f'(x)的对称轴x=b位于区间[﹣1,1]内,此时M=max{g(﹣1),g(1),g(b)}由f'(1)﹣f'(﹣1)=4b,有f'(b)﹣f'(±1)=b(∓1)2≥0①若﹣1≤b≤0,则f'(1)≤f'(﹣1)≤f'(b),∴g(﹣1)≤max{g(1),g(b)},于是②若0<b≤1,则f'(﹣1)≤f'(1)≤f'(b),∴g(1)≤maxg(﹣1),g(b)于是综上,对任意的b、c都有而当时,在区间[﹣1,1]上的最小值故M≥k对任意的b、c恒成立的k的最大值为.解法2:g(x)=|f'(x)|=|﹣(x﹣b)2+b2+c|(1)当|b|>1时,由(Ⅱ)可知M>2(2)当|b|≤1y=f'(x)时,函数的对称轴x=b位于区间[﹣1,1]内,此时M=max{g(﹣1),g(1),g(b)}4M≥g(﹣1)+g(1)+2g(b)=|﹣1﹣2b+c|+|﹣1+2b+c|+2|b2+c|≥|﹣1﹣2b+c+(﹣1+2b+c)﹣2(b2+c)|=|2b2+2|≥2,即下同解法125.(2008•江苏)请先阅读:在等式cos2x=2cos2x﹣1(x∈R)的两边求导,得:(cos2x)′=(2cos2x﹣1)′,由求导法则,得(﹣sin2x)•2=4cosx•(﹣sinx),化简得等式:sin2x=2cosx•sinx.(1)利用上题的想法(或其他方法),结合等式(1+x)n=C n0+C n1x+C n2x2+…+C n n x n(x∈R,正整数n≥2),证明:.(2)对于正整数n≥3,求证:(i);(ii);(iii).【解答】证明:(1)在等式(1+x)n=C n0+C n1x+C n2x2+…+C n n x n两边对x求导得n(1+x)n﹣1=C n1+2C n2x+…+(n﹣1)C n n﹣1x n﹣2+nC n n x n﹣1移项得(*)(2)(i)在(*)式中,令x=﹣1,整理得所以(ii)由(1)知n(1+x)n﹣1=C n1+2C n2x+…+(n﹣1)C n n﹣1x n﹣2+nC n n x n﹣1,n≥3两边对x求导,得n(n﹣1)(1+x)n﹣2=2C n2+3•2C n3x+…+n(n﹣1)C n n x n﹣2在上式中,令x=﹣1,得0=2C n2+3•2C n3(﹣1)+…+n(n﹣1)C n2(﹣1)n﹣2即,亦即(1)又由(i)知(2)由(1)+(2)得(iii)将等式(1+x)n=C n0+C n1x+C n2x2+…+C n n x n两边在[0,1]上对x积分由微积分基本定理,得所以26.(2008•天津)已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.(Ⅰ)当时,讨论函数f(x)的单调性;(Ⅱ)若函数f(x)仅在x=0处有极值,求a的取值范围;(Ⅲ)若对于任意的a∈[﹣2,2],不等式f(x)≤1在[﹣1,1]上恒成立,求b的取值范围.【解答】解:(Ⅰ)f'(x)=4x3+3ax2+4x=x(4x2+3ax+4).当时,f'(x)=x(4x2﹣10x+4)=2x(2x﹣1)(x﹣2).令f'(x)=0,解得x1=0,,x3=2.当x变化时,f'(x),f(x)的变化情况如下表:x (﹣∞,0) 0 (0,)(,2) 2 (2,+∞)f′(x)﹣ 0 + 0 ﹣ 0 +f(x)↘极小值↗极大值↘极小值↗所以f(x)在,(2,+∞)内是增函数,在(﹣∞,0),内是减函数.(Ⅱ)f'(x)=x(4x2+3ax+4),显然x=0不是方程4x2+3ax+4=0的根.为使f(x)仅在x=0处有极值,必须4x2+3ax+4≥0成立,即有△=9a2﹣64≤0.解些不等式,得.这时,f(0)=b是唯一极值.因此满足条件的a的取值范围是.(Ⅲ)由条件a∈[﹣2,2],可知△=9a2﹣64<0,从而4x2+3ax+4>0恒成立.当x<0时,f'(x)<0;当x>0时,f'(x)>0.因此函数f(x)在[﹣1,1]上的最大值是f(1)与f(﹣1)两者中的较大者.为使对任意的a∈[﹣2,2],不等式f(x)≤1在[﹣1,1]上恒成立,当且仅当,即,在a∈[﹣2,2]上恒成立.所以b≤﹣4,因此满足条件的b的取值范围是(﹣∞,﹣4].四.解答题(共4小题)27.(2008•福建)已知函数f(x)=ln(1+x)﹣x(1)求f(x)的单调区间;(2)记f(x)在区间[0,n](n∈N*)上的最小值为b n令a n=ln(1+n)﹣b n(i)如果对一切n,不等式恒成立,求实数c的取值范围;(ii)求证:.【解答】解:(1)因为f(x)=ln(1+x)﹣x,所以函数定义域为(﹣1,+∞),且f′(x)=﹣1=.由f′(x)>0得﹣1<x<0,f(x)的单调递增区间为(﹣1,0);由f’(x)<0得x>0,f(x)的单调递减区间为(0,+∞).(2)因为f(x)在[0,n]上是减函数,所以b n=f(n)=ln(1+n)﹣n,则a n=ln(1+n)﹣b n=ln(1+n)﹣ln(1+n)+n=n.(i)因为对n∈N*恒成立.所以对n∈N*恒成立.则对n∈N*恒成立.设,n∈N*,则c<g(n)对n∈N*恒成立.考虑.因为=0,所以g(x)在[1,+∞)内是减函数;则当n∈N*时,g(n)随n的增大而减小,又因为=1.所以对一切n∈N,g(n)>1因此c≤1,即实数c的取值范围是(﹣∞,1].(ⅱ)由(ⅰ)知.下面用数学归纳法证明不等式(n∈N+)①当n=1时,左边=,右边=,左边<右边.不等式成立.②假设当n=k时,不等式成立.即.当n=k+1时,<===,即n=k+1时,不等式成立综合①、②得,不等式成立.所以,所以+<+…+=﹣1.即.28.(2007•福建)已知函数f(x)=e x﹣kx,(1)若k=e,试确定函数f(x)的单调区间;(2)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围;(3)设函数F(x)=f(x)+f(﹣x),求证:F(1)F(2)…F(n)>(n∈N*).【解答】解:(Ⅰ)由k=e得f(x)=e x﹣ex,所以f'(x)=e x﹣e.由f'(x)>0得x>1,故f(x)的单调递增区间是(1,+∞),由f'(x)<0得x<1,故f(x)的单调递减区间是(﹣∞,1).(Ⅱ)由f(|﹣x|)=f(|x|)可知f(|x|)是偶函数.于是f(|x|)>0对任意x∈R成立等价于f(x)>0对任意x≥0成立.由f'(x)=e x﹣k=0得x=lnk.①当k∈(0,1]时,f'(x)=e x﹣k>1﹣k≥0(x>0).此时f(x)在[0,+∞)上单调递增.故f(x)≥f(0)=1>0,符合题意.②当k∈(1,+∞)时,lnk>0.当x变化时f'(x),f(x)的变化情况如下表:x (0,lnk)lnk (lnk,+∞)f′(x)﹣0 +f(x)单调递减极小值单调递增由此可得,在[0,+∞)上,f(x)≥f(lnk)=k﹣klnk.依题意,k﹣klnk>0,又k>1,∴1<k<e.综合①,②得,实数k的取值范围是0<k<e.(Ⅲ)∵F(x)=f(x)+f(﹣x)=e x+e﹣x,∴F(x1)F(x2)=,∴F(1)F(n)>e n+1+2,F(2)F(n﹣1)>e n+1+2,F(n)F(1)>e n+1+2.由此得,[F(1)F(2)F(n)]2=[F(1)F(n)][F(2)F(n﹣1)][F(n)F(1)]>(e n+1+2)n故,n∈N*.29.(2006•四川)已知函数,f(x)的导函数是f′(x).对任意两个不相等的正数x1、x2,证明:(Ⅰ)当a≤0时,;(Ⅱ)当a≤4时,|f′(x1)﹣f′(x2)|>|x1﹣x2|.【解答】解:证明:(Ⅰ)由得=而①又(x1+x2)2=(x12+x22)+2x1x2>4x1x2∴②∵∴∵a≤0,aln≥aln(③由①、②、③得(x12+x22)++aln>()2++aln,即.(Ⅱ)证法一:由,得∴=下面证明对任意两个不相等的正数x1,x2,有恒成立即证成立∵设,则,令u′(x)=0得,列表如下:tu′(t)﹣0 +u(t)□极小值□∴∴对任意两个不相等的正数x1,x2,恒有|f'(x1)﹣f'(x2)|>|x1﹣x2|证法二:由,得∴=∵x1,x2是两个不相等的正数∴设,u(t)=2+4t3﹣4t2(t>0)则u′(t)=4t(3t﹣2),列表:tu′(t)﹣0 +u(t)□极小值□∴即∴即对任意两个不相等的正数x1,x2,恒有|f′(x1)﹣f′(x2)|>|x1﹣x2|30.(2006•辽宁)已知f0(x)=x n,其中k≤n(n,k∈N+),设F(x)=C n0f0(x2)+C n1f1(x2)+…+C n n f n(x2),x∈[﹣1,1].(1)写出f k(1);(2)证明:对任意的x1,x2∈[﹣1,1],恒有|F(x1)﹣F(x2)|≤2n﹣1(n+2)﹣n﹣1.【解答】解:(1)由已知推得f k(x)=(n﹣k+1)x n﹣k,从而有f k(1)=n﹣k+1(2)证法1:当﹣1≤x≤1 时,F(x)=x2n+nc n1x2(n﹣1)+(n﹣1)c n2x2(n﹣2)+…+(n﹣k+1)c n k x2(n﹣k)+…+2c n n﹣1x2+1当x>0时,F′(x)>0所以F(x)在[0,1]上为增函数因函数F(x)为偶函数,所以F(x)在[﹣1,0]上为减函数所以对任意的x1,x2∈[﹣1,1],|F(x1)﹣F(x2)|≤F(1)﹣F(0)F(1)﹣F(0)=C n0+nc n1+(n﹣1)c n2+…+(n﹣k+1)c n k+…+2c n n﹣1=nc n n﹣1+(n﹣1)c n n﹣2+…+(n﹣k+1)c n n﹣k+…+2c n1+c n0∵(n﹣k+1)c n n﹣k=(n﹣k)c n n﹣k+c n k=nc n﹣1k+c n k(k=1,2,3,…,n﹣1)F(!)﹣F(0)=n(c n﹣11+c n﹣12+…+c n﹣1k﹣1)+(c n1+c n2+…+c n n﹣1)+c n0=n(2n﹣1﹣1)+2n﹣1=2n﹣1(n+2)﹣n﹣1因此结论成立.证法2:当﹣1≤x≤1 时,F(x)=x2n+nc n1x2(n﹣1)+(n﹣1)c n2x2(n﹣2)+…+(n﹣k+1)c n k x2(n﹣k)+…+2c n n﹣1x2+1当x>0时,F′(x)>0所以 F(x)在[0,1]上为增函数因函数 F(x)为偶函数所以 F(x)在[﹣1,0]上为减函数所以对任意的x1,x2∈[﹣1,1],|F(x1)﹣F(x2)|≤F(!)﹣F(0)F(!)﹣F(0)=c n0+nc n1+(n﹣1)c n2+…+(n﹣k+1)c n k+…+2c n n﹣1又因F(1)﹣F(0)=2c n1+3c n2+…+kc n k﹣1+…+nc n n﹣1+c n0所以2[F(1)﹣F(0)]=(n+2)[c n1+c n2+…+c n k﹣1+…+c n n﹣1]+2c n0F(1)﹣F(0)=[c n1+c n2+…+c n k﹣1+…+c n n﹣1]+c n0=因此结论成立.证法3:当﹣1≤x≤1时,F(x)=x2n+nc n1x2(n﹣1)+(n﹣1)c n2x2(n﹣2)+…+(n﹣k+1)c n k x2(n﹣k)+…+2c n n﹣1x2+1当x>0时,F′(x)>0所以F(x)在[0,1]上为增函数因函数F(x)为偶函数所以F(x)在[﹣1,0]上为减函数所以对任意的x1,x2∈[﹣1,1],|F(x1)﹣F(x2)|≤F(!)﹣F(0)F(!)﹣F(0)=c n0+nc n1+(n﹣1)c n2+…+(n﹣k+1)c n k+…+2c n n﹣1由x[(1+x)n﹣x n]=x[c n1x n﹣1+c n2x n﹣2+…+c n k x n﹣k+…+c n n﹣1+1]=c n1x n+c n2x n﹣1+…+c n k x n﹣k+1+…+c n n﹣1x2+x对上式两边求导得(1+x)n﹣x n+nx(1+x)n﹣1﹣nx n=nc n1x n﹣1+(n﹣1)c n2x n﹣2+…+(n﹣k+1)c n k x n﹣k+…+2c n n﹣1x+1F(x)=(1+x2)n+nx2(1+x2)n﹣1﹣nx2n∴F(1)﹣F(0)=2n+n2n﹣1﹣n﹣1=(n+2)2n﹣1﹣n﹣1.因此结论成立.。
2024全国高考真题数学汇编:导数在研究函数中的应用
2024全国高考真题数学汇编导数在研究函数中的应用一、单选题1.(2024上海高考真题)已知函数()f x 的定义域为R ,定义集合 0000,,,M x x x x f x f x R ,在使得 1,1M 的所有 f x 中,下列成立的是()A .存在 f x 是偶函数B .存在 f x 在2x 处取最大值C .存在 f x 是严格增函数D .存在 f x 在=1x 处取到极小值二、多选题2.(2024全国高考真题)设函数2()(1)(4)f x x x ,则()A .3x 是()f x 的极小值点B .当01x 时, 2()f x f xC .当12x 时,4(21)0f xD .当10x 时,(2)()f x f x 3.(2024全国高考真题)设函数32()231f x x ax ,则()A .当1a 时,()f x 有三个零点B .当0a 时,0x 是()f x 的极大值点C .存在a ,b ,使得x b 为曲线()y f x 的对称轴D .存在a ,使得点 1,1f 为曲线()y f x 的对称中心三、填空题4.(2024全国高考真题)曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,则a 的取值范围为.四、解答题5.(2024全国高考真题)已知函数3()e x f x ax a .(1)当1a 时,求曲线()y f x 在点 1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.6.(2024全国高考真题)已知函数 1ln 1f x ax x x .(1)当2a 时,求 f x 的极值;(2)当0x 时, 0f x ,求a 的取值范围.7.(2024全国高考真题)已知函数 1ln 1f x a x x .(1)求 f x 的单调区间;(2)当2a 时,证明:当1x 时, 1e x f x 恒成立.8.(2024上海高考真题)对于一个函数 f x 和一个点 ,M a b ,令 22()()s x x a f x b ,若 00,P x f x 是 s x 取到最小值的点,则称P 是M 在 f x 的“最近点”.(1)对于1()(0)f x x x,求证:对于点 0,0M ,存在点P ,使得点P 是M 在 f x 的“最近点”;(2)对于 e ,1,0x f x M ,请判断是否存在一个点P ,它是M 在 f x 的“最近点”,且直线MP 与()y f x 在点P 处的切线垂直;(3)已知()y f x 在定义域R 上存在导函数()f x ,且函数()g x 在定义域R 上恒正,设点11,M t f t g t , 21,M t f t g t .若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,试判断 f x 的单调性.9.(2024北京高考真题)设函数 ln 10f x x k x k ,直线l 是曲线 y f x 在点 ,0t f t t 处的切线.(1)当1k 时,求 f x 的单调区间.(2)求证:l 不经过点 0,0.(3)当1k 时,设点 ,0A t f t t , 0,C f t , 0,0O ,B 为l 与y 轴的交点,ACO S 与ABO S 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S △△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10 ,1.60ln51.61 ,1.94ln71.95 )10.(2024天津高考真题)设函数 ln f x x x .(1)求 f x 图象上点 1,1f 处的切线方程;(2)若 f x a x 在 0,x 时恒成立,求a 的值;(3)若 12,0,1x x ,证明 121212f x f x x x .11.(2024全国高考真题)已知函数3()ln (1)2x f x ax b x x (1)若0b ,且()0f x ,求a 的最小值;(2)证明:曲线()y f x 是中心对称图形;(3)若()2f x 当且仅当12x ,求b 的取值范围.参考答案1.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数2,1,111,1x f x x x x即可判断.【详解】对于A ,若存在()y f x 是偶函数,取01[1,1]x ,则对于任意(,1),()(1)x f x f ,而(1)(1)f f ,矛盾,故A 错误;对于B ,可构造函数 2,1,,11,1,1,x f x x x x满足集合 1,1M ,当1x 时,则 2f x ,当11x 时, 1,1f x ,当1x 时, 1f x ,则该函数 f x 的最大值是 2f ,则B 正确;对C ,假设存在 f x ,使得 f x 严格递增,则M R ,与已知 1,1M 矛盾,则C 错误;对D ,假设存在 f x ,使得 f x 在=1x 处取极小值,则在1 的左侧附近存在n ,使得 1f n f ,这与已知集合M 的定义矛盾,故D 错误;故选:B.2.ACD【分析】求出函数 f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数 f x 在 1,3上的值域即可判断C ;直接作差可判断D.【详解】对A ,因为函数 f x 的定义域为R ,而 22141313f x x x x x x ,易知当 1,3x 时, 0f x ,当 ,1x 或 3,x 时, 0f x 函数 f x 在 ,1 上单调递增,在 1,3上单调递减,在 3, 上单调递增,故3x 是函数 f x 的极小值点,正确;对B ,当01x 时, 210x x x x ,所以210x x ,而由上可知,函数 f x 在 0,1上单调递增,所以 2f x f x ,错误;对C ,当12x 时,1213x ,而由上可知,函数 f x 在 1,3上单调递减,所以 1213f f x f ,即 4210f x ,正确;对D ,当10x 时, 222(2)()12141220f x f x x x x x x x ,所以(2)()f x f x ,正确;故选:ACD.3.AD【分析】A 选项,先分析出函数的极值点为0,x x a ,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a 上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,则()(2)f x f b x 为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a ,由于1a ,故 ,0,x a 时()0f x ,故()f x 在 ,0,,a 上单调递增,(0,)x a 时,()0f x ,()f x 单调递减,则()f x 在0x 处取到极大值,在x a 处取到极小值,由(0)10 f ,3()10f a a ,则(0)()0f f a ,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a ,3(2)410f a a ,则(1)(0)0,()(2)0f f f a f a ,则()f x 在(1,0),(,2)a a 上各有一个零点,于是1a 时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a ,a<0时,(,0),()0x a f x ,()f x 单调递减,,()0x 时()0f x ,()f x 单调递增,此时()f x 在0x 处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x ,即32322312(2)3(2)1x ax b x a b x ,根据二项式定理,等式右边3(2)b x 展开式含有3x 的项为303332C (2)()2b x x ,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b 为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a ,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a ,于是266(126)(1224)1812a a x a x a即126012240181266a a a a,解得2a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax ,2()66f x x ax ,()126f x x a ,由()02a f x x ,于是该三次函数的对称中心为,22a a f ,由题意(1,(1))f 也是对称中心,故122a a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x ;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ;(3)任何三次函数32()f x ax bx cx d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x 的解,即,33b b f aa是三次函数的对称中心4. 2,1 【分析】将函数转化为方程,令 2331x x x a ,分离参数a ,构造新函数 3251,g x x x x 结合导数求得 g x 单调区间,画出大致图形数形结合即可求解.【详解】令 2331x x x a ,即3251a x x x ,令 32510,g x x x x x 则 2325351g x x x x x ,令 00g x x 得1x ,当 0,1x 时, 0g x , g x 单调递减,当 1,x 时, 0g x , g x 单调递增, 01,12g g ,因为曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,所以等价于y a 与 g x 有两个交点,所以 2,1a .故答案为:2,1 5.(1) e 110x y (2)1, 【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a 和0a 两种情况,利用导数判断单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可;解法二:求导,可知()e x f x a 有零点,可得0a ,进而利用导数求 f x 的单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可.【详解】(1)当1a 时,则()e 1x f x x ,()e 1x f x ,可得(1)e 2f ,(1)e 1f ,即切点坐标为 1,e 2 ,切线斜率e 1k ,所以切线方程为 e 2e 11y x ,即 e 110x y .(2)解法一:因为()f x 的定义域为R ,且()e x f x a ,若0a ,则()0f x 对任意x R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,则 120g a a a,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, ;解法二:因为()f x 的定义域为R ,且()e x f x a ,若()f x 有极小值,则()e x f x a 有零点,令()e 0x f x a ,可得e x a ,可知e x y 与y a 有交点,则a ,若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,符合题意,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,因为则2,ln 1y a y a 在 0, 内单调递增,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, .6.(1)极小值为0,无极大值.(2)12a 【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a 、102a 、0a 分类讨论后可得参数的取值范围.【详解】(1)当2a 时,()(12)ln(1)f x x x x ,故121()2ln(1)12ln(1)111x f x x x x x,因为12ln(1),11y x y x在 1, 上为增函数,故()f x 在 1, 上为增函数,而(0)0f ,故当10x 时,()0f x ,当0x 时,()0f x ,故 f x 在0x 处取极小值且极小值为 00f ,无极大值.(2) 11ln 11ln 1,011a x ax f x a x a x x x x,设 1ln 1,01a x s x a x x x,则222111211111a a x a a ax a s x x x x x ,当12a 时, 0s x ,故 s x 在 0, 上为增函数,故 00s x s ,即 0f x ,所以 f x 在 0, 上为增函数,故 00f x f .当102a 时,当0x 0s x ,故 s x 在210,a a 上为减函数,故在210,a a上 0s x s ,即在210,a a上 0f x 即 f x 为减函数,故在210,a a上 00f x f ,不合题意,舍.当0a ,此时 0s x 在 0, 上恒成立,同理可得在 0, 上 00f x f 恒成立,不合题意,舍;综上,12a .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.7.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x 时,1e 21ln 0x x x 即可.【详解】(1)()f x 定义域为(0,) ,11()ax f x a x x当0a 时,1()0ax f x x,故()f x 在(0,) 上单调递减;当0a 时,1,x a时,()0f x ,()f x 单调递增,当10,x a时,()0f x ,()f x 单调递减.综上所述,当0a 时,()f x 的单调递减区间为(0,) ;0a 时,()f x 的单调递增区间为1,a ,单调递减区间为10,a.(2)2a ,且1x 时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ,令1()e 21ln (1)x g x x x x ,下证()0g x 即可.11()e 2x g x x ,再令()()h x g x ,则121()e x h x x,显然()h x 在(1,) 上递增,则0()(1)e 10h x h ,即()()g x h x 在(1,) 上递增,故0()(1)e 210g x g ,即()g x 在(1,) 上单调递增,故0()(1)e 21ln10g x g ,问题得证8.(1)证明见解析(2)存在,0,1P (3)严格单调递减【分析】(1)代入(0,0)M ,利用基本不等式即可;(2)由题得 22(1)e x s x x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到 10200s x s x ,对两等式化简得 01()f xg t ,再利用“最近点”的定义得到不等式组,即可证明0x t ,最后得到函数单调性.【详解】(1)当(0,0)M 时, 222211(0)02s x x x x x ,当且仅当221x x 即1x 时取等号,故对于点 0,0M ,存在点 1,1P ,使得该点是 0,0M 在 f x 的“最近点”.(2)由题设可得 2222(1)e 0(1)e x x s x x x ,则 2212e x s x x ,因为 221,2e x y x y 均为R 上单调递增函数,则 2212e xs x x 在R 上为严格增函数,而 00s ,故当0x 时, 0s x ,当0x 时, 0s x ,故 min 02s x s ,此时 0,1P ,而 e ,01x f x k f ,故 f x 在点P 处的切线方程为1y x .而01110MP k ,故1MP k k ,故直线MP 与 y f x 在点P 处的切线垂直.(3)设 221(1)()s x x t f x f t g t ,222(1)()s x x t f x f t g t ,而 12(1)2()s x x t f x f t g t f x , 22(1)2()s x x t f x f t g t f x ,若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,设 00,P x y ,则0x 既是 1s x 的最小值点,也是 2s x 的最小值点,因为两函数的定义域均为R ,则0x 也是两函数的极小值点,则存在0x ,使得 10200s x s x ,即 10000212()()0s x x t f x f x f t g t ① 20000212()()0s x x t f x f x f t g t ②由①②相等得 044()0g t f x ,即 01()0f x g t ,即 01()f x g t,又因为函数()g x 在定义域R 上恒正,则 010()f xg t 恒成立,接下来证明0x t ,因为0x 既是 1s x 的最小值点,也是 2s x 的最小值点,则 1020(),()s x s t s x s t ,即 2220011x t f x f t g t g t ,③ 2220011x t f x f t g t g t ,④③ ④得 222200222()2()22()x t f x f t g t g t 即 22000x t f x f t ,因为 2200,00x t f x f t 则 0000x t f x f t,解得0x t ,则 10()f tg t 恒成立,因为t 的任意性,则 f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到 01()f x g t,再利用最值点定义得到0x t 即可.9.(1)单调递减区间为(1,0) ,单调递增区间为(0,) .(2)证明见解析(3)2【分析】(1)直接代入1k ,再利用导数研究其单调性即可;(2)写出切线方程()1()(0)1k y f t x t t t,将(0,0)代入再设新函数()ln(1)1t F t t t ,利用导数研究其零点即可;(3)分别写出面积表达式,代入215ACO ABO S S 得到13ln(1)21501t t t t ,再设新函数15()13ln(1)2(0)1t h t t t t t研究其零点即可.【详解】(1)1()ln(1),()1(1)11x f x x x f x x x x,当 1,0x 时, 0f x ;当 0,x ,()0f x ¢>;()f x 在(1,0) 上单调递减,在(0,) 上单调递增.则()f x 的单调递减区间为(1,0) ,单调递增区间为(0,) .(2)()11k f x x ,切线l 的斜率为11k t,则切线方程为()1()(0)1k y f t x t t t,将(0,0)代入则()1,()111k k f t t f t t t t,即ln(1)1k t k t t tt ,则ln(1)1t t t ,ln(1)01t t t ,令()ln(1)1t F t t t,假设l 过(0,0),则()F t 在(0,)t 存在零点.2211()01(1)(1)t t t F t t t t ,()F t 在(0,) 上单调递增,()(0)0F t F ,()F t 在(0,) 无零点, 与假设矛盾,故直线l 不过(0,0).(3)1k 时,12()ln(1),()1011x f x x x f x x x.1()2ACO S tf t ,设l 与y 轴交点B 为(0,)q ,0t 时,若0q ,则此时l 与()f x 必有交点,与切线定义矛盾.由(2)知0q .所以0q ,则切线l 的方程为 111ln 1x t y t t t,令0x ,则ln(1)1t y q y t t.215ACO ABO S S ,则2()15ln(1)1t tf t t t t,13ln(1)21501t t t t ,记15()13ln(1)2(0)1th t t t t t, 满足条件的A 有几个即()h t 有几个零点.2222221313221151315294(21)(4)()21(1)(1)(1)(1)t t t t t t t h t t t t t t ,当10,2t时, 0h t ,此时 h t 单调递减;当1,42t时, 0h t ,此时 h t 单调递增;当 4,t 时, 0h t ,此时 h t 单调递减;因为1(0)0,0,(4)13ln 520131.6200.802h h h,15247272(24)13ln 254826ln 548261.614820.5402555h,所以由零点存在性定理及()h t 的单调性,()h t 在1,42上必有一个零点,在(4,24)上必有一个零点,综上所述,()h t 有两个零点,即满足215ACO ABO S S 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.10.(1)1y x (2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a ,再证明2a 时条件满足;(3)先确定 f x 的单调性,再对12,x x 分类讨论.【详解】(1)由于 ln f x x x ,故 ln 1f x x .所以 10f , 11f ,所以所求的切线经过 1,0,且斜率为1,故其方程为1y x .(2)设 1ln h t t t ,则 111t h t t t,从而当01t 时 0h t ,当1t 时 0h t .所以 h t 在 0,1上递减,在 1, 上递增,这就说明 1h t h ,即1ln t t ,且等号成立当且仅当1t .设 12ln g t a t t ,则ln 1f x a x x x a x x a x g .当 0,x0, ,所以命题等价于对任意 0,t ,都有 0g t .一方面,若对任意 0,t ,都有 0g t ,则对 0,t 有112012ln 12ln 1212g t a t t a t a t at a t t t,取2t ,得01a ,故10a .再取t,得2022a a a,所以2a .另一方面,若2a ,则对任意 0,t 都有 212ln 20g t t t h t ,满足条件.综合以上两个方面,知a 的值是2.(3)先证明一个结论:对0a b ,有 ln 1ln 1f b f a a b b a.证明:前面已经证明不等式1ln t t ,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b,所以ln ln ln 1ln 1b b a a a b b a,即 ln 1ln 1f b f a a b b a.由 ln 1f x x ,可知当10e x 时 0f x ,当1ex 时()0f x ¢>.所以 f x 在10,e上递减,在1,e上递增.不妨设12x x ,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x 时,有122122121ln 1f x f x f x f x x x x x x ,结论成立;情况二:当1210e x x 时,有 12121122ln ln f x f x f x f x x x x x .对任意的10,e c,设ln ln x x x c cln 1x x 由于 x单调递增,且有1111111ln 1ln11102e2e ec c,且当2124ln 1x c c,2cx2ln 1c 可知2ln 1ln 1ln 102c x x c.所以 x 在 0,c 上存在零点0x ,再结合 x 单调递增,即知00x x 时 0x ,0x x c 时 0x .故 x 在 00,x 上递减,在 0,x c 上递增.①当0x x c 时,有 0x c ;②当00x x112221e e f f c,故我们可以取1,1q c .从而当201cx q1ln ln ln ln 0x x x c c c c c c q c.再根据 x 在 00,x 上递减,即知对00x x 都有 0x ;综合①②可知对任意0x c ,都有 0x ,即ln ln 0x x x c c .根据10,e c和0x c 的任意性,取2c x ,1x x,就得到1122ln ln 0x x x x .所以12121122ln ln f x f x f x f x x x x x 情况三:当12101e x x时,根据情况一和情况二的讨论,可得11e f x f21e f f x而根据 f x 的单调性,知 1211e f x f x f x f或 1221e f x f x f f x .故一定有12f x f x 成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合 f x 的单调性进行分类讨论.11.(1)2 (2)证明见解析(3)23b【分析】(1)求出 min 2f x a 后根据()0f x 可求a 的最小值;(2)设 ,P m n 为 y f x 图象上任意一点,可证 ,P m n 关于 1,a 的对称点为 2,2Q m a n 也在函数的图像上,从而可证对称性;(3)根据题设可判断 12f 即2a ,再根据()2f x 在 1,2上恒成立可求得23b .【详解】(1)0b 时, ln 2xf x ax x,其中 0,2x ,则112,0,222f x a a x x x x x,因为 22212x x x x,当且仅当1x 时等号成立,故 min 2f x a ,而 0f x 成立,故20a 即2a ,所以a 的最小值为2 .,(2) 3ln12x f x ax b x x的定义域为 0,2,设 ,P m n 为 y f x 图象上任意一点,,P m n 关于 1,a 的对称点为 2,2Q m a n ,因为 ,P m n 在 y f x 图象上,故 3ln 12m n am b m m,而 3322ln221ln 122m m f m a m b m am b m a m m,2n a ,所以 2,2Q m a n 也在 y f x 图象上,由P 的任意性可得 y f x 图象为中心对称图形,且对称中心为 1,a .(3)因为 2f x 当且仅当12x ,故1x 为 2f x 的一个解,所以 12f 即2a ,先考虑12x 时, 2f x 恒成立.此时 2f x 即为 3ln21102x x b x x在 1,2上恒成立,设 10,1t x ,则31ln201t t bt t在 0,1上恒成立,设 31ln2,0,11t g t t bt t t,则2222232322311t bt b g t bt t t,当0b ,232332320bt b b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当203b 时,2323230bt b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当23b ,则当01t 时, 0g t故在 上 g t 为减函数,故 00g t g ,不合题意,舍;综上, 2f x 在 1,2上恒成立时23b .而当23b 时,而23b 时,由上述过程可得 g t 在 0,1递增,故 0g t 的解为 0,1,即 2f x 的解为 1,2.综上,23b .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.。
高三数学:2024届高考数学导数大题精选30题(解析版)(共31页)
2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。
导数19 大题(切线)1-2022年全国一卷新高考数学题型细分汇编
导数——大题——切线:1.(2022年江苏徐州J53)已知0a >,函数()x f x ax xe =-.(I )求曲线()y f x =在点(0,(0))f 处的切线方程:(II )证明()f x 存在唯一的极值点(①)(III )若存在a ,使得()f x a b ≤+对任意x ∈R 成立,求实数b 的取值范围.(切线,易;第二问,未;)2.(2022年江苏常州J59)已知函数()()ln xxe f x a x x =+-,a R ∈.(1)当1a =时,求曲线()y f x =在1x =处的切线方程;(②)(2)讨论函数()f x 的零点个数.(切线,易;第二问,未;)3.(2022年福建福州联考J01)已知函数()ln(1)ln x f x ae x b =-+-(1)若()f x 在0x =处的切线方程为1y =,(i )求a ,b 的值;(ii )讨论()f x 的单调性.(③)(2)若b a =,证明:()f x 有唯一的极小值点.(切线,中下;单调性,中下;第二问,未;)4.(2022年福建福州J05)设函数()1ex f x x a -=+,曲线()y f x =在1x =-处的切线与y 轴交于点210,e e ⎛⎫- ⎪⎝⎭;(1)求a ;(④)(2)若当[)2,x ∈-+∞时,()()1f x b x ≥-,记符合条件的b 的最大整数值、最小整数值分别为M ,m ,求M m +.注:e 2.71828=⋅⋅⋅为自然对数的底数.(切线,中下;第二问,未;)1.(2022年福建三明一中J39)已知函数()()ln()x f x e x a x a x =-+++,a R ∈.(1)当1a =时,求函数()f x 的图象在0x =处的切线方程;(⑤)(2)若函数()f x 在定义域上为单调增函数.①求a 最大整数值;②证明:23341ln 2(ln (ln )(ln231n n en e +++++<-L .(切线,易;第二问,未;)2.(2022年湖南长沙一中J02)已知函数()()()e xf x x b a =+-.(0b >)在()()1,1f --处的切线l方程为()e 1e e l 0x y -++-=.(1)求a ,b ,并证明函数()y f x =的图象总在切线l 的上方(除切点外);(⑥)(2)若方程()f x m =有两个实数根1x ,2x .且12x x <.证明:()2112e 11em x x --≤+-.(切线,中下;第二问,未;)1.(2022年高考乙卷J04)已知函数()()ln 1exf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(⑦)(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.(切线,易;第二问,未;)1.(2022年湖北华师附中J61)已知函数()e ln ()x f x x a x a R =-∈在1x =处的切线方程为2e 1)+y x b =-(.(1)求实数,a b 的值;(⑧)(2)(i )证明:函数()y f x =有且仅有一个极小值点0x x =,且01(,1)2x ∈;(ii )证明:03141()1515f x <<.(切线,中下;第二问,未;)参考数据:ln 20.693≈e 1.648≈,0.55e 1.734≈,11303e 0.69-≈.2.(2022年河北演练一J39)已知函数()ln f x x bx a =++,其中,a b ∈R .(⑨)(1)若1a =,曲线()y f x =在2x =处的切线与直线210x y ++=平行,求()f x 的极值;(2)当1,1b a =≤-时,证明:2()ex f x x-≥.(切线,中下,单调性,极值,中下;第二问,未;)3.(2022年河北联考J42)设函数2()e mx f x x mx t =+-+在(0,(0))f 处的切线经过点(1,1).(1)求t 的值,并且讨论函数()f x 的单调区间;(⑩)(2)当1m =时,,()0x ∈+∞时,不等式(2)(2)4[()()]f x f x b f x f x -->--恒成立,求b 的取值范围.(切线,中下,单调性,中下;第二问,未;)1.(2022年湖北襄阳五中J24)已知函数()e 2xf x ax b =-+在0x =处的切线经过点()1,2.(1)若函数()f x 至多有一个零点,求实数a 的取值范围;(⑪)(2)若函数()f x 有两个不同的零点()1212,x x x x <,且25x >,求证:12211x x a ax >-.(23e 2.7,e 7.4,e 20.1≈≈≈)(切线,中下;零点分析,中档,未;第二问,未;)1.(2022年湖南三湘名校J45)已知函数()x f x e =(其中e 是自然对数的底数).过点(,1)(0)P m m >作曲线()y f x =的两条切线,切点坐标分别为()()()121212,e ,,e x x x x x x <.(1)若21x =,求m 的值;(⑫)(2)证明:12x x +随着m 的增大而增大.(切线,易;第二问,未;)2.(2022年湖北武汉J01)定义在π,2⎛⎫-+∞ ⎪⎝⎭上的函数()()sin f x x k x =-.(⑬)(1)当π6k =时,求曲线()y f x =在点π,06⎛⎫⎪⎝⎭处的切线与两坐标轴所围成的三角形的面积;(2)将()f x 的所有极值点按照从小到大的顺序排列构成数列{}n x ,若()()120f x f x +=,求k 的值.(切线,中下;第二问,未;)3.(2022年湖北四校联考J17)已知函数()()e ln (0),ln x f x a x b x g x x x x=+->=+.(⑭)(1)若曲线()y f x =在1x =处的切线方程为2e 3y x =+-,求,a b ;(2)在(1)的条件下,若()()f m g n =,比较m 与n 的大小并证明.(切线,中下;第二问,未;)①【答案】(I )(1),(0)y a x a =->;(II )证明见解析;(III )[),e -+∞【解析】【分析】(I )求出()f x 在0x =处的导数,即切线斜率,求出()0f ,即可求出切线方程;(II )令()0f x '=,可得(1)x a x e =+,则可化为证明y a =与()y g x =仅有一个交点,利用导数求出()g x 的变化情况,数形结合即可求解;(III )令()2()1,(1)xh x x x e x =-->-,题目等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,利用导数即可求出()h x 的最小值.【详解】(I )()(1)x f x a x e =-+',则(0)1f a '=-,又(0)0f =,则切线方程为(1),(0)y a x a =->;(II )令()(1)0x f x a x e =-+=',则(1)x a x e =+,令()(1)x g x x e =+,则()(2)x g x x e '=+,当(,2)x ∈-∞-时,()0g x '<,()g x 单调递减;当(2,)x ∈-+∞时,()0g x '>,()g x 单调递增,当x →-∞时,()0g x <,()10g -=,当x →+∞时,()0g x >,画出()g x 大致图像如下:所以当0a >时,y a =与()y g x =仅有一个交点,令()g m a =,则1m >-,且()()0f m a g m '=-=,当(,)x m ∈-∞时,()a g x >,则()0f x '>,()f x 单调递增,当(),x m ∈+∞时,()a g x <,则()0f x '<,()f x 单调递减,x m =为()f x 的极大值点,故()f x 存在唯一的极值点;(III )由(II )知max ()()f x f m =,此时)1(1,m a m e m +>-=,所以()2max {()}()1(1),mf x a f m a m m e m -=-=-->-,令()2()1,(1)xh x x x e x =-->-,若存在a ,使得()f x a b ≤+对任意x ∈R 成立,等价于存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥,()2()2(1)(2)x x h x x x e x x e =+-=+'-,1x >-,当(1,1)x ∈-时,()0h x '<,()h x 单调递减,当(1,)x ∈+∞时,()0h x '>,()h x 单调递增,所以min ()(1)h x h e ==-,故b e ≥-,所以实数b 的取值范围[),e -+∞.【点睛】关键点睛:第二问解题的关键是转化为证明y a =与()y g x =仅有一个交点;第三问解题的关键是转化为存在(1,)x ∈-+∞,使得()h x b ≤,即min ()b h x ≥.②【答案】(1)11y e=-;(2)答案不唯一,见解析.【解析】【分析】(1)求出导函数()'f x ,得切线斜率(1)f ',从而可得切线方程;(2)定义域是(0,)+∞,在0a ≤时直接由函数()f x 的解析式确定无零点(需用导数证明ln 0x x -<),在1a >时,由导函数()'f x ,得单调性,确定函数的最大值为(1)f ,根据(1)f 的正负分类讨论.在(1)0f >时,通过证明()0f a <和1(0f a<,得零点个数.【详解】(1)当1a =时,()ln x x e f x x x =+-,()111f e=-,()111xe xf x x -'=+-,()10f '=,所以曲线()y f x =在1x =处的切线方程为11y e=-.(2)函数()f x 的定义域为()0,∞+,()()1111111e e e x x x x x x a f x a a x x x x ---⎛⎫⎛⎫'=+-=+⋅=-+ ⎪ ⎪⎝⎭⎝⎭.①当0a =时,()0e xxf x =>,()f x 无零点.②当0a >时,10e x ax+>,令()0f x '>,得01x <<,令()0f x '<,得1x >,所以()f x 在()0,1上单调递增,在()1,+∞上单调递减,所以()f x 有最大值()11ef a =-.当10ea -<,即1e >a 时,()f x 无零点.当10e a -=,即1a e=时,()f x 只有一个零点.当10a e ->,即10a e<<时,()10f >,()()ln a a e f a a a a =+-,令()ln 1g x x x =-+,则()111xg x x x-'=-=,则()g x 在()0,1上单调递增,在()1,+∞上单调递减,所以()()max 10g x g ==,所以()ln 10g x x x =-+≤,因此当10a e <<时,ln 1a a -<-,()()1ln 1a a a a a f a a a a a a e e e ⎛⎫=+-<-=- ⎪⎝⎭.因为0a >,所以1ae >,于是()110af a a e ⎛⎫<-< ⎪⎝⎭.又()f x 在()0,1上单调递增,()10f >,且1a <,所以()f x 在()0,1上有唯一零点.1111111ln ln 1a aa a f a a a a a e a e ⎛⎫⎛⎫=+-=-- ⎪ ⎪⎝⎭⎝⎭,当10a e<<时,1e a >,令()2e x h x x =-,其中x e >,则()2xh x e x '=-,令()2xx e x ϕ=-,x e >,则()20xx e ϕ'=->,所以()h x '在(),e +∞上单调递增,()20eh x e e '>->,所以()h x 在(),e +∞上单调递增,()20eh x e e >->,故当x e >时,2x e x >.因为1e a >,所以211ae a ⎛⎫> ⎪⎝⎭,即11aa e a <,所以111ln 1ln 1aa f a a a a a a e ⎛⎫=--<-- ⎪⎝⎭.由ln 10x x -+≤,得11ln10a a -+<,即1ln 10a a--+<,得ln 10a a a --<,于是10f a ⎛⎫< ⎪⎝⎭.又()10f >,11a>,()f x 在()1,+∞上单调递减,所以()f x 在()1,+∞上有唯一零点.故10ea <<时,()f x 有两个零点.③当0a <时,由ln 10x x -+≤,得ln 10x x -≤-<,则()ln 0a x x ->,又当0x >时,0e xx>,所以()0f x >,()f x 无零点.综上可知,0a ≤或1a e >时,()f x 无零点;1a e =时,()f x 只有一个零点;10a e<<时,()f x 有两个零点.【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的零点个数.解题关键是求出函数的导数()'f x ,由()'f x 确定单调性和最值,本题在最大值(1)f 0>的情况下,通过证明()f a 0<和10f a ⎛⎫< ⎪⎝⎭,结合零点存在定理得出零点个数.难度较大,对学生的要求较高,属于困难题.③【答案】(1)(i )11a b =⎧⎨=⎩,(ii )答案见解析(2)证明见解析【分析】(1)(i )求出导数,由题可得(0)0(0)1f f =⎧⎨='⎩即可求出;(ii )根据导数的正负即可求出.(2)求出导数,构造函数()(1)1x g x ae x =+-,利用零点存在定理可判断函数的变化情况,得出单调性即可判断.(1)(i )()11xf x ae x =-+',由已知得,(0)0(0)1f f =⎧⎨='⎩,故10ln 1a a b -=⎧⎨-=⎩,解得11a b =⎧⎨=⎩;(ii )1()(1)1xf x e x x '=->-+,显然()'f x 在(1,)-+∞上单调递增,又(0)0f '=,所以10x -<<时,()0f x '<;0x >时,()0f x '>,因此()f x 在(1,0)-上单调递减,在(0,)+∞上单调递增.(2)()ln(1)ln xf x ae x a =-+-,则1(1)1()11x xae x f x ae x x '+-=-=++,令()(1)1x g x ae x =+-,0a >,1x ≥-,显然()g x 在[1,)-+∞上单调递增,又(1)0g -<,10g a ⎛⎫> ⎪⎝⎭,所以存在11,t a ⎛⎫∈- ⎪⎝⎭,使得()0g t =,当1x t -<<时,()0<g x ;x t >时,()0>g x ,所以1x t -<<时,()0f x '<;x t >时,()0f x '>,即()f x 在(1,)t -上单调递减;在(,)t ∞+上单调递增,因此f (x )有唯一极小值点t .④【答案】(1)e(2)8【解析】【分析】(1)求出函数的导数,根据导数的几何意义求出()f x 在1x =-处的切线方程,根据切线与y 轴交于点210,e e ⎛⎫-⎪⎝⎭,即可求得a ;(2)法一:由(1)知()1e e xf x x -=+,则不等式可化为()1e 1e 0x x b x ---+≥,构造函数()()1e1e x g x x b x -=--+,利用导数并讨论导数的正负,从而求得存在()02,x ∈-+∞,()()()01000min e 1e 0x g x g x x b x -==--+≥,分离参数,表示出()0101e x b x -=+,构造新函数,结合导数求得32e e3e 3b --≤≤,进而求得答案;法二:讨论x 的取值范围,从而分离出参数b ,在1x >,21x -£<的情况下,分别构造函数,利用导数判断单调性求的最值,最后确定32e e3e 3b --≤≤,由此可得答案;法三:令2x =-,由()()1f x b x ≥-可解得32e e13b --≥>-,从而取0m =,证明证当0b =时,不等式1e e 0x x -+≥在2x ≥-时恒成立,令2x =,由()()1f x b x ≥-,解得3e b ≤,故取8M =,再证当8b =时,不等式()1e 81e 0x x x ---+≥在2x ≥-时恒成立,由此求得答案.【小问1详解】依题意得:()()11e x f x x -'=+,所以()10f '-=.又因为()211e f a -=-+,所以()f x 在1x =-处的切线方程为21ey a =-+,因为曲线()y f x =在1x =-处的切线与y 轴交于点210,e e ⎛⎫- ⎪⎝⎭,所以2211e e e a -+=-,解得e a =.【小问2详解】解法一:由(1)知()1e e xf x x -=+,则不等式可化为()1e 1e 0x x b x ---+≥,设()()1e1e x g x x b x -=--+,则()()11e x g x x b -='+-,设()()x g x ϕ'=,则()()12e x x x ϕ-=+',因为[)2,x ∈-+∞,所以()0x ϕ'≥,所以()x ϕ在[)2,-+∞单调递增,即()g x '在[)2,-+∞单调递增,所以()()3min 2e g x g b -=-=-'-',①若3e b -≤-,则()()20g x g '-'≥≥,所以()g x 在[)2,-+∞单调递增,所以()()3min 22e3e 0g x g b -=-=-++≥,解得32e e 3b --≥,所以332e e e 3b ---≤≤-;②若3e b ->-,则()()min 20g x g =-'<',因为()g x '在[)2,-+∞单调递增,当3e 0b --<≤时,()100eg b ='->,则存在()2,0x ∈-使得()0g x '=,当0b >时,取{}max 0,ln 1n b =+,则()0g n >,所以存在()12,x n ∈-,使得()10g x '=,综上,当3e b ->-时,存在()02,x ∈-+∞,使得()00g x '=,即()0101e 0x x b -+-=,故当02x x -<<时,()0g x '<,则()g x 在()02,x -单调递减,当0x x >时,()0g x '>,则()g x 在()0,x +∞单调递增,所以()()()01000min e1e 0x g x g x x b x -==--+≥,(*)由()0101e 0x x b -+-=,得()0101e x b x -=+,代入(*)得()()()000111200000e 1e 1e 1e e 0x x x x x x x x ----+-+=-+++≥,设()()211e e x F x x x -=---+,则()()()()2112e 21e x x F x x x x x --=-+---'=+,因为2x ≥-,所以由()0F x '=得1x =,当21x -<<时,()0F x '>,所以()F x 在()2,1-上单调递增,当1x >时,()0F x '<,所以()F x 在()1,+∞单调递减,又因为()32e e 0F -=-+<,()11e 0F =+>,()20F =,所以当2x >时,()0F x <,所以满足()012001ee 0x x x --+++≥的0x 的取值范围是022x -<≤,又因为()0101ex b x -=+,设()()11e x H x x -=+,则()()12e 0x H x x -+'=≥,所以()H x 在()2,-+∞单调递增,所以3e 3e b --<≤,综上所述32e e 3e 3b --≤≤,又因为32e e 103---<<,83e 9<<所以0m =,8M =,所以8M m +=.解法二:由(1)知:()1e e x f x x -=+,则()1e 1e 0x x b x ---+≥,①当1x =时,左边等于1e 0+≥恒成立,此时b ∈R ;②当1x >时,原不等式可化为1e e 1x x b x -+≤-对任意()1,x ∈+∞恒成立.设()1e e 1x x h x x -+=-,则()()()2121e e1x x x h x x --'--=设()()211e e x k x x x -=---,则()()()()2112e 21e x x k x x x x x --=+-'=+-.因为1x >,所以()0k x '>,所以()k x 在()1,+∞上单调递增.又因为()()220h k '==,所以2x =是()h x '在()1,+∞上的唯一零点,所以当12x <<时,()0h x '<,()h x 在()1,2上单调递减,当2x >时,()0h x '>,()h x 在()2,+∞上单调递增,所以()()min 23e h x h ==,所以3e b ≤.③当21x -£<时,原不等式可化为1e e 1x x b x -+≥-,此时对于②中函数()k x 的导函数,()()()()2112e 21e x x k x x x x x --=+-'=+-,可知当21x -£<时,()0k x '<,所以()k x 在21x -£<单调递减,且()325ee 0k --=-<,所以当21x -£<时,()()20k x k <-<,所以当21x -£<时,()0h x '<,所以()h x 在[)2,1-上单调递减,所以()3max 2e e (2)3h x h --=-=,所以32e e 3b --≥,综上所述32e e 3e 3b --≤≤,又因为32e e 103---<<,83e 9<<所以0m =,8M =,所以8M m +=.解法三:令2x =-,由()()1f x b x ≥-得()32e 3e b --≥--,解得32e e 13b --≥>-,取0m =,下证当0b =时,不等式1e e 0x x -+≥在2x ≥-时恒成立,设()1e e x g x x -=+,则()()11e x g x x -=+',由()0g x '=可得1x =-,当21x -<<-时,()0g x '<,所以()g x 单调递减,当1x >-时,()0g x '>,所以()g x 单调递增,所以()()2min 11e 0e g x g =-=-+≥,所以0m =符合题意;令2x =,由()()1f x b x ≥-得2e 20b -+≥,解得3e b ≤,取8M =,下证当8b =时,不等式()1e81e 0x x x ---+≥在2x ≥-时恒成立,设()1e e x h x x -=+,则()()11e x h x x -=+',令()0h x '=,则1x =-,所以当21x -<<-时,()0h x '<,则()h x 在()2,1-上单调递减,当1x >-时,()0h x '>,则()h x 在()1,+∞上单调递增,所以()()211e 0e h x h ≥-=->,所以当21x -≤≤时,()1e81e 0x x x ---+≥恒成立.当1x >时,10x ->,所以()()813e 1x x -<-,所以()()11e 81e e 3e 1e x x x x x x ----+>--+,设()()1e 3e 1e x k x x x -=--+,则()()11e 3e x k x x -'=+-,设()()x k x ϕ'=,则()()12e 0x x x ϕ-+'=≥,所以()k x '在()1,+∞单调递增,且()20k '=,所以当12x <<时,()0k x '<,则()k x 在()1,2单调递减,当2x >时,()0k x '>,则()k x 在()2,+∞单调递增,所以()()min 20k x k ==,所以()0k x ≥,所以()1e 81e 0x x x ---+≥,综上当8M =时,不等式()1e81e 0x x x ---+≥在2x ≥-时恒成立,所以8M m +=.【点睛】本小题主要考查函数的单调性、导数、导数的几何意义及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查分类与整合思想、数形结合思想、一般与特殊思想,涉及的核心素养有直观想象、数学抽象、数学运算、逻辑推理等,体现综合性与创新性.⑤【答案】(1)10x y -+=(2)①2②见解析【解析】【详解】试题分析:(1)将1a =代入到函数()f x ,再对()f x 求导,分别求出()0f 和()'0f ,即可求出切线方程;(2)①若函数()f x 在定义域上为单调增函数,则()'0f x ≥恒成立,则先证明1x e x ≥+,构造新函数,求出单调性,再同理可证ln 1x x ≤-,即可求出a 的最大整数值;②由①得()ln 2x e x ≥+,令1t x t -+=,可得11ln tt t e t -++⎛⎫≥ ⎪⎝⎭,累加后利用等比数列求和公式及放缩法即可得证.试题解析:(1)当1a =时,()()()1ln 1xf x e x x x =-+++∴()01f =,又()()'ln 1xf x e x =-+,∴()'01f =,则所求切线方程为1y x -=,即10x y -+=.(2)由题意知,()()'ln xf x e x a =-+,若函数()f x 在定义域上为单调增函数,则()'0f x ≥恒成立.①先证明1x e x ≥+.设()1x g x e x =--,则()'1xg x e =-,则函数()g x 在(),0-∞上单调递减,在()0,+∞上单调递增,∴()()00g x g ≥=,即1x e x ≥+.同理可证ln 1x x ≤-∴()ln 21x x +≤+,∴()1ln 2xe x x ≥+≥+.当2a ≤时,()'0f x >恒成立.当3a ≥时,()'01ln 0f a =-<,即()()'ln 0xf x e x a =-+≥不恒成立.综上所述,a 的最大整数值为2.②由①知,()ln 2x e x ≥+,令1t x t-+=,∴111ln 2ln t t t t e t t -+-++⎛⎫⎛⎫≥+= ⎪ ⎪⎝⎭⎝⎭∴11ln t t t e t -++⎛⎫≥ ⎪⎝⎭.由此可知,当1t =时,0ln2e >.当2t =时,213ln 2e -⎛⎫> ⎪⎝⎭,当3t =时,324ln 3e -⎛⎫> ⎪⎝⎭, ,当t n =时,11ln nn n e n -++⎛⎫≥ ⎪⎝⎭.累加得0121n e e e e ---+++++> 23341ln2ln ln ln 23n n n +⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .又0121n e e e e ---+++++= 11111111n e e e e e⎛⎫- ⎪⎝⎭<=---,∴2334ln2ln ln 23⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭1ln 1nn e n e +⎛⎫++< ⎪-⎝⎭ .点睛:(1)导数综合题中对于含有字母参数的问题,一般用到分类讨论的方法,解题时要注意分类要不重不漏;(2)对于恒成立的问题,直接转化为求函数的最值即可;(3)对于导数中,数列不等式的证明,解题时常常用到前面的结论,需要根据题目的特点构造合适的不等式,然后转化成数列的问题解决,解题时往往用到数列的求和及放缩法.⑥【答案】(1)1,1a b ==;证明见解析(2)证明见解析【解析】【分析】(1)求出函数的导函数,依题意可得()10f -=,()111ef -=-+',即可解得a 、b ,从而得到()()()1e 1x f x x =+-,设()f x 在()1,0-处的切线l 方程为()y h x =,令()()()F x f x h x =-,利用导数说明函数的单调性,即可得证;(2)由(1)知()()11f x h x ≥,设()h x m =的根为1x ',则1e 11em x '=-+-,即可得到11x x '≤,在设()y f x =在()0,0处的切线方程为()y t x =,令()()()T x f x t x =-,利用导数说明函数的单调性,即可得到()()22f x t x ≥.设()t x m =的根为2x ',则2x m '=,再说明22x x '≥,即可得证;【小问1详解】解:将1x =-代入切线方程()e 1e e l 0x y -++-=,有0y =,所以()10f -=,所以()()1110e f b a ⎛⎫-=-+-= ⎪⎝⎭,又()()1e x f x x b a +'=+-,所以()111e e b f a -=-=-+',若1ea =,则2e 0b =-<,与0b >予盾,故1a =,1b =.∴()()()1e 1x f x x =+-,()00f =,()10f -=,设()f x 在()1,0-处的切线l 方程为()()111e y h x x ⎛⎫==-+⎪⎝⎭,令()()()F x f x h x =-,即()()()()11e 111e x F x x x ⎛⎫=+---+ ⎪⎝⎭,所以()()12e e x F x x =+-',当2x -≤时,()()112e 0e ex F x x =+-≤-<',当2x >-时,设()()()12e ex G x F x x =+-'=,()()3e 0x G x x =+>',故函数()F x '在()2,-+∞上单调递增,又()10F '-=,所以当()2,1x ∈--时,()0F x '<,当()1,x ∈-+∞时,()0F x '>,综合得函数()F x 在区间(),1-∞-上单调递减,在区间()1,-+∞上单调递增,故()()10F x F ≥-=,即函数()y f x =的图象总在切线l 的上方(除切点外).【小问2详解】解:由(1)知()()11f x h x ≥,设()h x m =的根为1x ',则1e 11em x '=-+-,又函数()h x 单调递减,故()()()111f x h h x x =≥',故11x x '≤,设()y f x =在()0,0处的切线方程为()y t x =,因为()00f =,()()2e 1xf x x '=+-,所以()01f '=,所以()t x x =.令()()()()()1e 1x T x f x t x x x =-=+--,()()2e 2xT x x =+-',当2x -≤时,()()2e 220xT x x =+-≤-<',当2x >-时,设()()()2e 2x H x T x x ==+-',则()()3e 0xH x x =+>',故函数()T x '在()2,-+∞上单调递增,又()00T '=,所以当()2,0x ∈-时,()0T x '<,当()0,x ∈+∞时,()0T x '>,综合得函数()T x 在区间(),0∞-上单调递减,在区间()0,∞+上单调递增,所以()()00T x T ≥=,即()()22f x t x ≥.设()t x m =的根为2x ',则2x m '=,又函数()t x 单调递增,故()()()222f x t t x x =≥',故22x x '≥,又11x x '≤,所以()221112e e 111e 1em m x x x x m -⎛⎫''-≤-=--+=+ ⎪--⎝⎭.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.⑦【答案】(1)2y x=(2)(,1)-∞-【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【小问1详解】()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0ex x f x x f =++=,所以切点为(0,0)11(),(0)21ex x f x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x=【小问2详解】()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a x f x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a - ,当,()0x ∈+∞,则()e 20x g x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+ ,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+<又1(1)0eg -=>所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.⑧【答案】(1)2,2ea b ==-(2)(i )证明见解析;(ii )证明见解析【解析】【分析】(1)直接利用导数的意义列方程组()()()'1211f e f e ⎧=-⎪⎨=⎪⎩,即可解得;(2)(i )求出导函数2()(1)e x f x x x '=+-.利用导数和零点存在对立即可证明;(ii )求出0000001()e 2ln 2(ln )1x f x x x x x =-=-+,令11()2(ln )(1)12x x x x ϕ=-<<+,利用导数判断出()y x ϕ=在(,1)2上单调递减,即可证明122741()(2(ln 2)2(2331015x ϕϕ<=+<+=;要证031()15f x >,即证0320312ln 15x x x x+>.令()x F x x =1(1)2x <<,利用导数证明出1()( 2.332F x F >≈;令32312ln 115()(1)2x G x x x+=<<,利用导数证明出1130max()(e ) 2.312G x G -=≈,得到()()G x F x <,即可证明.【小问1详解】定义域为(0,)+∞,'((e )1)xa f x x x=+-由题意知()()()()'1221121f e a e f e b e ⎧=-=-⎪⎨=-+=⎪⎩,解得2,2e a b ==-.【小问2详解】(i )由(1)知()e 2ln x f x x x =-,2()(1)e xf x x x'=+-令()()h x f x '=,则22()(2)e 0xh x x x'=++>,从而()y h x =即()y f x '=单调递增又13e 8(1)2e 20,()022f f -''=->=<,故存在唯一的01(,1)2x ∈使得0()0f x '=x 0(0,)x 0x 0(,)x +∞()'f x -0+()f x极小值从而()y f x =有且仅有一个极小值点0x x =,且01(,1)2x ∈(ii )00002()(1)e 0x f x x x '=+-=,()y f x =的极小值000000()e 2ln 2(ln )1x f x x x x x =-=-+令11()2(ln )(1)12x x x x ϕ=-<<+,则222'()0(1)x x x ϕ=--<+,从而()y x ϕ=在1(,1)2上单调递减,122741()(2(ln 2)2(2331015x ϕϕ<=+<+=,故041()15f x <下证031()15f x >0320312ln e15x x x x+>一方面令e ()xF x x =1(1)2x <<,则32e (21)()02x x F x x -'=>,则()F x 在1(,1)2上单调递增,从而1()()2e 2.332F x F >=≈另一方面,令32312ln 115()(1)2x G x x x +=<<,52113ln 10'()x G x x --=令()0'=G x 有1130e x -=x 11301(,e )2-1130e-1130(e,1)-()G x '+0-()G x极大值从而110.5530max 44()(e)e 1.734 2.31233G x G -==≈⨯≈从而()()G x F x <32312ln e15xx xx+>成立,故031()15f x >.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值);(3)利用导数求参数的取值范围;(4)利用导数证明不等式.⑨【答案】(1)极大值为(1)0f =,无极小值.(2)证明见解析.【解析】【分析】(1)根据导数的几何意义得1b =-,进而得'11()10xf x x x-=-==,再列表求解即可;(2)根据题意,只需证明2e ln e e xx x x a ≥+,由于函数e ,0x y x x >=在()0,∞+上单调递增,e 0x y x =>,故转化为证明2ln e t t a ≥+,再令()2ln ,0et t g t a t -->=,再求函数最值即可证明.【小问1详解】解:1a =,()ln 1f x x bx =++,'1()f x b x=+,因为曲线()y f x =在2x =处的切线与直线210x y ++=平行,所以,'11(2)22f b =+=-,解得1b =-,所以,()ln 1f x x x =-+,'11()10xf x x x-=-==,解得1x =,所以,x ,'()f x ,()f x 的变化情况如下表,x ()0,11()1,+∞'()f x ++()f x 单调递增极大值单调递减所以,当1x =时,()f x 有极大值(1)0f =,无极小值.【小问2详解】解:当1,1b a =≤-,()ln f x x x a =++,因为222()e ee ln ln e ex x x x f x x x x x a x a x --≥⇔≥++⇔≥+,所以只需证明2e ln e exx x x a ≥+成立即可.令e ,0x y x x >=,则()'1e 0,0xy x x =+>>,所以,函数e ,0x y x x >=在()0,∞+上单调递增,即e 0x y x =>.令e ,0xx t t =>,则22e ln e ln e ex x x tx a t a ≥+⇔≥+,令()2ln ,0e t t g t a t -->=,则()2'2211e e e t t t t g --==,所以,当()20,et ∈时,()'0g t <,()g t 单调递减,当()2e ,t ∈+∞时,()'0g t >,()g t 单调递增,所以,()()22e1ln e1a a g g t ≥=--=--,因为1a ≤-,所以10a --≥,即()0g t ≥,所以2ln ett a ≥+成立,所以2()ex f x x-≥成立,证毕.⑩【答案】(1)0=t ;()f x 的单调递减区间为(,0)-∞,单调递增区间为(0,)+∞.(2)b 的取值范围为(,2]-∞.【分析】(1)、先求出切线方程,根据切线经过点(1,1)即可求出t 的值;求出()f x ',分0m ≥,0m <两种情况讨论函数的单调区间即可;(2)、将原不等式转化为函数值在,()0x ∈+∞时恒大于零问题,分类讨论即可得到b 的取值范围.(1)2()e mx f x x mx t =+-+ ,()e 2mxf x m x m '∴=+-,(0)0f '∴=,又()01f t =+ ,∴切线方程为1y t =+,又 切线经过点(1,1),11t ∴+=,0t ∴=,故2()e mx f x x mx =+-,()()1e 2e 2mx mx f x m x m m x '=-=+-+.①、若0m ≥,则当(,0)x ∈-∞时,e 10mx -≤,()0f x '<;当,()0x ∈+∞时,e 10mx -≥,()0f x '>.所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.②、若0m <,则当(,0)x ∈-∞时,e 10mx ->,()0f x '<;当,()0x ∈+∞时,e 10mx -<,()0f x '>.所以()f x 在(,0)-∞上单调区间递减,在(0,)+∞上单调区间递增.综上所述:()f x 的单调递减为(,0)-∞,单调递增(0,)+∞.(2)当1m =时,2()e x f x x x =+-,22(2)(2)e 4e x x x f x f x -∴----=,()()e e 2x x x f x f x -----=,(2)(2)4[()()]f x f x b f x f x -->-- ,()22e e 4e e 42x x x x x b x --∴----≥,()22e e 4e e (84)0x x x x b b x --∴---+-≥在,()0x ∈+∞上恒成立.设()22()e e 4e e (84)x x x xg x b b x --=---+-,,()0x ∈+∞()()()()22()2e e 2e e 422e e 2e e 22x x x xx x x x g x b b b ----⎡⎤'∴=+-++-=+-+-+⎣⎦,且e e2xx-+>.①、当2b ≤时,e e 20,e e 220x x x x b --+->+-+>,()0g x '∴≥,当且仅当0x =时等号成立,所以()g x 在,()0x ∈+∞上单调递增,而()00g =,所以对0x >时,()0>g x .符合题意②、当2b >时,若x 满足2e e 22x x b -<+<-,即(20ln 12x b b b <<--时,()0g x '<,而(0)0g =,因此(20ln 12x b b b <<-+-时,()0<g x ,不符合题意.综上:b 的取值范围为(,2]-∞.⑪【答案】(1)2e 2a ≤(2)证明见解析【解析】【分析】(1)根据切线过点()1,2可得2b a =,参变分离后研究()e 1xg x x =-的单调性,得到极值,数形结合得到答案;(2)在第一问基础上,得到22e a >,对不等式变形,结合放缩,转化为只需证22212e 20(4)t t t +->>,二次求导后得到证明.【小问1详解】()e 2x f x a =-',∴()012f a '=-,∴0x =处的切线方程为()121y a x b =-++,切线过点()1,2,所以2b a =,∴()e 22x f x ax a =-+.∵()()1e 0,f f x =≠∴的零点不为1,∴e 21xa x =-在()(),11,-∞+∞ 上至多一个解.设1t x =-,则1e 2()t a g t t+==在()(),00,∞-+∞U 上至多一个解.1122111()()e e t t t g t t t t++-'=-=,令()0g t '>得:1t >,令()0g t '<得:01t <<或0t <,∴()g t 在(),0∞-和(]0,1上单调递减,[)1,+∞上单调递增,当0t <时,()0g t <恒成立,当0t >时,()g t 在1t =处取得极小值,且2(1)e g =,画出函数图象如图所示:所以22(1)e a g ≤=时,()f x 至多有一个零点,∴2e 2a ≤【小问2详解】由(1)知,要想有两个不同零点,则22e a >且12(0,1),(1,)t t ∈+∈∞,即()()121,2,2,x x ∈∈+∞,故要证12211x x a ax >-,只需证121ax x >-,由(1)知()()11110,1,1,2t x x =-∈∴∈,故只需证221x t a -=<,∵21222e (14)2t t x t a +==->.只需证:21222e (4)2t t t t +><,即22212e 20(4)t t t +->>,令()()()121e 24,e 4t t h t t t h t t ++=->'=-,15()e 4e 40t h t +''=->->,∴()h t '在()4,+∞上递增,∴()5416)e 0(h t h '>'=->,∴()h t 在()4,+∞上递增,∴()()54e 320h t h >=->,∴2122e 2t t +>,∴12211x x a ax >-【点睛】导函数研究函数零点问题,参变分离是一种重要方法,把零点问题转化为函数交点问题,通过构造函数,研究构造函数的单调性,极值和最值,数形结合得到答案.⑫【答案】(1)1em =(2)证明见解析【分析】(1)由导数的几何意义求切线方程,由点P 在切线上列方程求m 的值;(2)由导数的几何意义可得1x ,2x 是方程11e x m x =+-的两根,设21(0)x x t t -=>由此可得()1222e 1e e tx x tt +-=,证明t 随着m 的增大而增大,12e x x +随着t 的增大而增大,由此证明12x x +随着m 的增大而增大.(1)因为21x =,所以切点为(1,)e ,又()e x f x '=,则(1)e f '=,所以切线方程为e(1)e e y x x =-+=,因为切线过点(,1)P m ,所以1e m =,解得1em =;(2)设切点为()00,e x x ,因为()()000 e x f x f x '==,则切线方程为()000e e x x y x x =-+,因为切线过点(,1)P m ,所以()0001e e xxm x =-+,整理得0011(0)e x m x m =+->,所以1x ,2x 是方程11e xm x =+-的两根,设1()1e xg x x =+-,则1()1e x g x '=-,令()0g x '=,解得0x =,当0x <时,()0g x '<,()g x 在(,0)-∞上单调递减,当0x >时,()0g x '>,()g x 在(0,)+∞上单调递增,所以120x x <<,设1()g x m =的两根为()1212,0x x x x ''''<<,其中10m m >>,则由()g x 单调性可知,11220x x x x ''<<<<,所以2121x x x x ''->-,设21(0)x x t t -=>,即t 随着m 的增大而增大,因为12121111e e x x m x x =+-=+-,所以111111e e x x t x x t ++=++,整理得1e 1e e t x tt -=,所以21e 1e et x x tt +-==,所以()1222e 1e (0)e t x x t t t +-=>,设()22e 1()(0)et t h t t t -=>,则()()()()()2222322e e 1e 2e e 1e 1(2)e 2()e e t t t t t tttt t t t t t h t t t '⎡⎤-⋅-+⋅---++⎣⎦==,设()(2)e 2t t t t ϕ=-++,则()(1)e 1t t t ϕ'=-+,()(1)e 1t m t t =-+,则'()e 0t m t t =>所以()t ϕ'单调递增,所以()(0)0t ϕϕ''>=,所以()t ϕ单调递增,所以()(0)0t ϕϕ>=,即()0,()h t h t '>单调递增,所以12e x x +随着t 的增大而增大,又t 随着m 的增大而增大,所以12x x +随着m 的增大而增大.【点睛】本题解决的关键在于根据函数方程的思想确定1x ,2x 是方程11e xm x =+-的两根和构造函数证明12e x x +随着21x x -的增大而增大.⑬【答案】(1)2π144(2)π2【解析】【分析】(1)根据导数的几何意义及点斜式,再结合三角形的面积公式即可求解;(2)根据已知条件及正切函数的性质,利用导数法求函数的极值及函数存在性定理,再根据零点范围及三角函数相等的角的关系即可求解.【小问1详解】当π6k =时,()()ππsin ,sin cos 66f x x x f x x x x ⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎝⎭'⎭,故ππ1sin 662f ⎛⎫== ⎪'⎝⎭.曲线()y f x =在点π,06⎛⎫⎪⎝⎭处的切线的斜率为π162k f ⎛⎫== ⎪⎝⎭',曲线()y f x =在点π,06⎛⎫⎪⎝⎭处的切线方程为1π26y x ⎛⎫=- ⎪⎝⎭,令π0,12x y ==-.所以切线与y 轴的交点π0,12⎛⎫- ⎪⎝⎭.此时所求三角形的面积为21πππ2126144⨯-⨯=.【小问2详解】()()sin cos f x x x k x=+-'当ππ22x -<<时,()()cos tan f x x x x k =⋅+-'.由函数tan y x x =+在区间ππ,22⎛⎫- ⎪⎝⎭上递增,且值域为R ,故存在唯一0ππ,22x ⎛⎫∈- ⎪⎝⎭,使得00tan x x k +=.此时当0π2x x -<<时,()()0,f x f x '<单调递减;当0π2x x <<时,()()0,f x f x '>单调递增,因此10x x =.同理,存在唯一'0π3π,22x ⎛⎫∈ ⎪⎝⎭,使得''00tan x x k +=.此时当'0π2x x <<时,()()0,f x f x '>单调递增;当'03π2x x <<时,()()0,f x f x '<单调递减,因此'20x x =.由()()211111111sin 10,tan ,cos cos cos x f x x k x f x x x x =-=-=-=-'.同理:()222222sin 1cos cos cos x f x x x x =-=-.由()()120f x f x +=,整理得:()12121cos cos 10cos cos x x x x ⎛⎫+-=⎪⎝⎭.又12ππ3π222x x -<<<<,故12cos cos 1x x ≠,则有()122cos cos cos πx x x =-=-由2πππ22x -<-<,故12πx x =-或()12πx x =--.又1122tan tan k x x x x =+=+,当12πx x =-时,不满足,舍去.所以()12πx x =--,即12πx x +=,则1122tan tan π22x x x x k +++==.综上所述,π2k =.【点睛】解决此题的关键,第一问根据导数的几何意义及三角形的面积公式即可;第二问利用导数法求函数的极值的步骤,但此时无法解决导数函数的零点,只能通过函数零点存在性定理得出,再结合已知条件及零点范围及三角函数相等角的关系即可.⑭【答案】(1)2,1a b ==(2)m n ≤,证明见解析【解析】【分析】(1)求导得()'f x ,再求(1)f '的值即得切线的斜率,求出切点,利用点斜式求出切线方程,对比系数即可得答案;(2)先证明e 1x x ≥+,再令()()()h x f x g x =-,利用前面的结论说明()0h x ≥,最后根据()g x 的单调性证明即可.【小问1详解】解:()()()()2e 1(0),1e ,1x x af x x f b f a x x-=+>'=-=',所以()y f x =在1x =处的切线方程为e y ax b a =+--,比较系数可得2,1a b ==.【小问2详解】m n ≤.证明:设()=e 1xx x ϕ--,则()=e -1xx ϕ',令()>0x ϕ',则0x >;令()0ϕ'<x ,则0x <则0x =是()ϕx 的极小值点同时也是最小值点,故()()00x ϕϕ≥=即e 1x x ≥+(当且仅当0x =时等号成立).令()()()h x f x g x =-,则()()ln e ln 1e ln 10xx x h x x x x x x-=+--=---≥,当且仅当ln 0=x x -=“”取“”,所以()(),f x g x ≥则有()(),f m g m ≥而()(),()()f m g n g m g n =∴≤,又()11,()g x g x x'=+∴ 单调递增,所以m n ≤.。
《导数大题压轴题难点突破》(PDF)
《难点突破》压轴题----函数与导数常考题型一、要点归纳1.曲线()y f x =在0x x =处的切线的斜率等于0()f x ',且切线方程为000()()()y f x x x f x '=-+.2.若可导函数()y f x =在x x =处取得极值,则0()0f x '=.反之,不成立.3.对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。
4.函数()f x 在区间I 上递增(减)的充要条件是:x I ∀∈,()f x '0≥(0)≤恒成立(()f x '不恒为0).5.函数()f x (非常量函数)在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程()0f x '=在区间I 上有实根且为非二重根。
(若()f x '为二次函数且I=R ,则有0∆>).6.()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或()f x '0≤在I 上恒成立.7.若x I ∀Î,()f x 0>恒成立,则min ()f x 0>;若x I ∀∈,()f x 0<恒成立,则max ()f x 0<.8.若0x I ∃∈,使得0()f x 0>,则max ()f x 0>;若0x I∃∈,使得0()f x 0<,则min ()f x 0<.9.设()f x 与()g x 的定义域的交集为D ,若x ∀∈D ()()f x g x >恒成立,则有[]min ()()0f x g x ->.10.若对11x I ∀∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >.若对11x I ∀∈,22x I ∃∈,使得12()()f x g x >,则min min ()()f x g x >.若对11x I ∀∈,22x I ∃∈,使得12()()f x g x <,则max max ()()f x g x <.11.已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B ,若对11x I ∀∈,22x I ∃∈,使得1()f x =2()g x 成立,则A B ⊆.12.若三次函数f(x)有两个极值点,当且仅当方程()0f x '=一定有两个不等实根12x x 、,若三次函数f(x)没有极值点,则方程()0f x '=有两个相等的实根或没实根..13.证题中常用的不等式:①1xe x≥+②1xex-≥-③xeex ≥④316xex >⑤ln +1(1)x x x ≤>-()⑥ln 1(1)12x x x x -<>+⑦22ln 11(0)22x x x x <->⑧111ln ()1(1)2x x x x x x x-≤≤-≤-≥⑨ln 11(0)x x x x≤->二、常考题型:题型一:恒成立求参数的最值或取值范围问题1.1()010.1xax f x e x x y x-==+-=+已知函数在处的切线方程为(Ⅰ)求a 的值;(Ⅱ)()1,f x <若求x 的取值范围.2.已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-.3.已知函数ln(1)()(0)x f x x x+=>(Ⅰ)判断函数()f x 的单调性;(Ⅱ)是否存在实数a 使得关于x 的不等式ln(1)x ax +<在(0,)+∞上恒成立?若存在,求出a 的取值范围,若不存在,试说明理由.4.已知函数1ln ()xf x x+=.(Ⅰ)设a >0,若函数)(x f 在区间1(,2a a +上存在极值,求实数a 的取值范围;(Ⅱ)如果当x ≥1时,不等式2()1k kf x x -≥+恒成立,求实数k 的取值范围.5.已知函数2()23.xf x e x x =+-(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)如果当1x ≥时,不等式25()(3)12f x x a x ≥+-+恒成立,试求实数a 的取值范围.6.设()ln af x x x x=+,32()3g x x x =--.(Ⅰ)当2a =时,求曲线()y f x =在1x =处的切线方程;(Ⅱ)若存在12,[0,2]x x ∈,使12()()g x g x M-≥成立,求满足上述条件的最大整数M ;(Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.7.设函数(),x f x xe =2().g x ax x =+(Ⅰ)若()f x 与()g x 具有完全相同的单调区间,求a 的值;(Ⅱ)若当0x ≥时恒有()(),f x g x ≥求a 的取值范围.8.已知函数()xf x e =,()1g x x =+(Ⅰ)判断函数()()f x g x -零点的个数,并说明理由;(Ⅱ)当0x ≥时,()11axf x x≥++恒成立,求实数a 的取值范围.9.已知函数32()31()f x ax x a x R =++∈,.(Ⅰ)当0a <时,求函数f(x)的极值.(Ⅱ)设函数'1()()(21)13h x f x a x =+-+,(1,](1)x b b ∈->-,如果存在(,1],a ∈-∞-,对任意(1,]x b ∈-都有()0h x ≥成立,试求b 的最大值.10.设函数2()ln ,,f x a x bx a b R =-∈(Ⅰ)若函数()f x 在1x =处与直线12y =-相切,①求实数,a b 的值;②求函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦的最大值;(Ⅱ)当0b =时,若不等式()f x m x ≥+对所有的(230,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立,求实数m 的取值范围.11.已知函数211()ln()22f x ax x ax =++-(a 为常数,0a >).(Ⅰ)若12x =是函数()f x 的一个极值点,求a 的值;(Ⅱ)求证:当02a <≤时,()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上是增函数;(Ⅲ)若对任意..的a ∈(1,2),总存在..01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(1)f x m a >-成立,求实数m 的取范围.12.已知函数()()()3212f x x a x a a x=+--+()a ∈R ,()'f x 为()f x 的导数.(Ⅰ)当3a =-时,证明()y f x =在区间()1,1-上不是单调....函数;(Ⅱ)设()19163g x x =-,是否存在实数a ,对于任意的[]11,1x ∈-,存在[]20,2x ∈,使得()()1122f x ax g x '+=成立?若存在,求出a 的取值范围;若不存在,说明理由.13.已知函数2()ln (1).xf x a x x a a =+->(Ⅰ)求()f x 的单调增区间;(Ⅱ)若存在[]12,1,1,x x ∈-使得12()()1(f x f x e e a -≥-是自然数),求实数的取值.范围14.设函数2()mxf x ex mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值范围.15.已知函数R a x x axx x f ∈-+-+=,1)1ln()(.(Ⅰ)当0>a 时,求函数)(x f 的单调区间;(Ⅱ)若存在0>x ,使)(11)(Z a x xx x f ∈+-<++成立,求a 的最小值.16.设函数()1.xf x e -=-(Ⅰ)证明:当1,();1x x f x x >-≥+时(Ⅱ)当0,()1xx f x ax ≥≤+时恒成立,求a 的取值范围.17.已知函数2()(1)(1).x f x x e x x =-->(Ⅰ)试判断方程()0f x =根的个数.(Ⅱ)()(1,),k k f x k ≤+∞若为整数,且不等式在上恒成立求的最大值.18.设函数()2xf x e ax =--(Ⅰ)求()f x 的单调区间(Ⅱ)若1,a k =为整数,且当0x >时,'()()10,x k f x x -++>求k 的最大值.题型二:导数与函数的切线问题19.已知函数312()ln ,()23f x x x g x ax x e=⋅=--.(Ⅰ)求()f x 的单调增区间和最小值;(Ⅱ)若函数()y f x =与函数()y g x =在交点处存在公共切线,求实数a 的值;(Ⅲ)若2(0,]x e ∈时,函数()y f x =的图象恰好位于两条平行直线1:l y kx =;2:l y kx m =+之间,当1l 与2l 间的距离最小时,求实数m 的值.20.已知函数()ln().f x x a ax =-+(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)若(,1),a ∈-∞-函数'()()g x a f x =的图象上存在12,P P 两点,其横坐标满足1216x x -<<<,且()g x 的图象在此两点处的切线互相垂直,求a 的取值范围.21.已知在函数321253y x x x =--+的曲线上存在唯一点P 00(,)x y ,过点P 作曲线的切线l 与曲线有且只有一个公共点P,则切线l 的斜率k =______________.22.已知函数2(),.xf x e ax ex a R =+-∈(Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求函数()f x 的单调区间;(Ⅱ)试确定a 的取值范围,使得曲线()y f x =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P .题型三:导数与函数的零点及零点关系问题23.已知函数3()sin (),[0]22f x ax x a R π=-∈且在,上的最大值.π-3为2(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()f x 在(0,)π内的零点个数,并加以证明.24.已知函数()xf x x ae=-()a R Î有两个零点12,x x ,且12x x <.(Ⅰ)求a 的取值范围;(Ⅱ)证明21x x 随着a 的减小而增大;(Ⅲ)证明12x x +随着a 的减小而增大.25.已知函数()2ln ()2a f x x x x x a a R =--+Î,在其定义域内有两个不同的极值点.(Ⅰ)求a 的取值范围;(Ⅱ)记两个极值点为12,x x ,且12x x <,已知0λ>,若不等式112e x x ll+<×恒成立,求λ的取值范围.26.已知函数()(0)axf x x e a =->.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 有两个零点12,x x ,且12x x <,试证明12x ae x <.27.已知函数()f x =1x x e-(x ∈R)(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)已知函数()y g x =对任意x 满足()(4)g x f x =-,证明:当x >2时,()f x >()g x ;(Ⅲ)如果1x ≠2x ,且1()f x =2()f x ,证明:12x x +>4.28.已知函数2)1(2)(-+-=x a e x x f x)(有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是的两个零点,证明:x 1+x 2<2.29.已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=-+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;32.已知()()ln ().f x x x mx m R =-∈(Ⅰ)当1m =时,()f x 的图象在()1,1-处的切线l 恰与函数(01)xy a a a =>≠且的图象相切,求实数a 的值.(Ⅱ)若函数21()ln 212F x x x mx =+-+的两个极值点为1212,,x x x x <且,求证:21()1()f x f x <-<.33.设函数'()ln(1),()(),0,f x x g x xf x x =+=≥其中'()f x 是()f x 的导函数.(Ⅰ)令11()(),()(()),,n n g x g x g x g g x n N ++==∈求()n g x 的表达式;(Ⅱ)若()()f x ag x ≥恒成立,求实数a 的取值范围;(Ⅲ)设n N +∈,比较(1)(2)()g g g n ++⋅⋅⋅+与()n f n -的大小,并加以证明.34.已知函数f(x)=e x-kx,x∈R.(Ⅰ)若k=e ,试确定函数f(x)的单调区间;(Ⅱ)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k 的取值范围;(Ⅲ)设函数F(x)=f(x)+f(-x),求证:F(1)F(2)…F(n)>()122nn e++(n∈N *).《难点突破》(答案)压轴题----函数与导数常考题型二、常考题型:题型一:恒成立求参数的最值或取值范围问题2.解:(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+,由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。
导数大题综合(含答案)
导数大题综合1.(2022春·广东东莞·高二校联考期中)已知函数()2395f x x x =-+.(1)求函数()f x 的单调递减区间;(2)求函数()f x 的极值.2.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数()ln f x ax x x =-,且()f x 在e x =处的切线方程是0x y b ++=.(1)求实数a ,b 的值;(2)求函数()f x 的极值.3.(2022春·广东佛山·高二佛山一中校考期中)已知函数()2ln f x x a x bx =++在()()1,1f 处的切线方程为30x y ++=.(1)求a 、b 的值;(2)求()f x 的极值点,并计算两个极值之和.4.(2022春·广东深圳·高二校考期中)已知=1x -是函数()323f x x x ax =-++的一个极值点.(1)求()f x 的单调区间;(2)求()f x 在区间[]4,4-上的最大值.5.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()ln 2f x x x =+.(1)求函数()f x 的极值;(2)证明:2()f x x x>-.6.(2022春·广东深圳·高二校考期中)已知函数()2ln f x x a x =-.(1)若函数()f x 在点()()3,3f 处切线的斜率为4,求实数a 的值;(2)若函数()()21ln 222a ag x x f x x ⎛⎫=--- ⎪⎝⎭在[]1,4上是减函数,求实数a 的取值范围.7.(2022春·广东深圳·高二深圳市高级中学校考期中)已知函数()2ln f x ax x =+.(1)讨论()f x 的单调性;(2)设函数()2g x x =-+,若任意31,e x ⎡⎤∈⎣⎦,使得()()f x g x ≤,求a 的取值范围.8.(2022春·广东江门·高二校联考期中)已知函数()32f x x ax bx c =+++的图象在点()1,1P -处的切线斜率为12-,且()f x 在=1x -处取得极值.(1)求()f x 的解析式;(2)当[]2,2x ∈-时,求()f x 的最大值与最小值.9.(2022春·广东广州·高二校考期中)已知函数()1ln f x x a x =--(其中a 为参数).(1)求函数()f x 的单调区间:(2)若对任意()0,x ∈+∞都有()0f x ≥成立,求实数a 的取值集合.10.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()2cos sin f x ax ax x x =--(1)当1a =时,求()f x 在[],ππ-上的值域;(2)当0x >时,()0f x ≥,求实数a 的取值范围.11.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数2()ln (1)()2=+-+∈R a f x x x a x a ,2()()(1)2=-++a g x f x x a x .(1)讨论()f x 的单调性;(2)任取两个正数12,x x ,当12x x <时,求证:()()()1212122--<+x x g x g x x x .12.(2022春·广东深圳·高二校考期中)已知函数()1ln f x a x bx x=++且曲线()y f x =在点()()1,1f 处的切线方程为210x y -+=.(1)求实数,a b 的值;(2)若关于x 的不等式()3222m f x x x-≥+恒成立,求实数m 的取值范围.13.(2022春·广东广州·高二广州市第十六中学校考期中)已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间;(2)若2a =,求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最值;(3)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围.(参考数据:ln 20.693≈)14.(2022春·广东佛山·高二顺德一中校考期中)已知函数()e ln =--x af x a xx x(1)当0a =时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最值;(2)讨论函数()f x 的单调性.15.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()ln (2)f x x ax a x =-+-.(1)讨论()f x 的单调性;(2)若函数()y f x =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明:()00f x '<.16.(2022春·广东佛山·高二佛山市顺德区郑裕彤中学校考期中)已知函数()2sin cos 2a f x x x x =++,R a ∈.(1)当0a =时,求函数()f x 在x π=处的切线方程;(2)当12a =-时,求函数()f x 在[],x ππ∈-上的最值.17.(2022春·广东佛山·高二佛山一中校考期中)已知函数21()ln 2f x x ax a =-+,(1)当1a =时,求()f x 的最值;(2)若ln 2()2f x £恒成立,求a 的取值范围.18.(2022春·广东江门·高二江门市第二中学校考期中)已知函数()e xf x ax =-,R a ∈.(1)若e a =,证明:当1x >时,()0f x >;(2)讨论()f x 零点的个数19.(2022春·广东深圳·高二深圳市高级中学校考期中)已知函数()2sin 1,R f x x a x a =++∈.(1)设函数()()g x f x '=,若()y g x =在区间0,2π⎡⎤⎢⎣⎦上是增函数,求a 的取值范围;(2)当2a =-时,证明函数()f x 在区间()0,π上无零点.20.(2022春·广东东莞·高二校联考期中)已知函数()()22ln f x ax a x x=-++(1)若1x =函数的极值点,求a 的值;(2)若1a ≥,求证:当[]1,e x ∈时,()0f x '≥,其中e 为自然对数的底数.21.(2022春·广东清远·高二统考期中)已知函数()e 1xxf x =-.(1)求证:()f x 在()1,+∞上单调递减(2)若对于任意()0,x ∈+∞,都有()2e x af x a≥+恒成立,求正实数a 的取值范围.22.(2022春·广东佛山·高二校考期中)已知函数()()ln af x x a R x=+∈.(1)判断函数()f x 在区间)2,e -⎡+∞⎣上的零点个数;(2)若函数()f x 在1x =处的切线平行于直线20x y -=,且在[]()1,271828e e =.上存在一点0x ,使得()0001x mf x x +<成立,求实数m .23.(2022春·广东广州·高二广州市第七中学校考期中)已知函数21()e (,)2xf x a x b a b R =--∈.(1)若函数()f x 在0x =处的切线方程为1y x =-,求实数a ,b 的值;(2)若函数()f x 在1x x =和2x x =两处取得极值,求实数a 的取值范围.24.(2022春·广东广州·高二广州市玉岩中学校考期中)已知2()e (2)e (R)x x f x a a x a =+--∈(1)当1a =时,求证:()0f x ≥;(2)若()f x 有两个零点,求a 的取值范围.25.(2022春·广东深圳·高二校考期中)已知函数()21ln 2f x x mx x =-+,m ∈R .(1)当2m =时,求函数()f x 的单调区间;(2)若2m =-,正实数a 、b 满足()()0f a f b ab ++=,求证:a b +≥26.(2022春·广东江门·高二江门市新会东方红中学校考期中)已知函数e ()ln e x f x x x x -=--,2e 1()e ()2x g x ax a a R -=-++∈.(1)求函数e ()()e x x f x ϕ-=+的最小值;(2)设函数()()()F x f x g x =+的两个不同极值点分别为12,x x ()12x x <,求实数a 的取值范围.27.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)设函数()()()ln 12af x x a x x =+-+.(1)若0a =,求()f x 的单调区间;(2)若()f x 在区间(2,)+∞单调递增,求整数a 的最大值.28.(2022春·广东广州·高二校考期中)已知函数()sin x x x f -=.(1)判断函数()f x 是否存在极值,并说明理由;(2)设函数()()ln F x f x m x =-,若存在两个不相等的正数1x ,2x ,使得()()1122F x x F x x +=+,证明:212x x m <.29.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()2ln =++f x x ax bx (其中,a b 为常数且0a ≠)在1x =处取得极值.(1)当12a =时,求()f x 的单调区间;(2)若()f x 在(]0,e 上的最大值为1,求a 的值.30.(2022春·广东佛山·高二校联考期中)已知函数()e ()=-∈R x f x ax a .(1)讨论()f x 的单调性.(2)若0a =,证明:对任意的1x >,都有432()3ln f x x x x x ≥-+.导数大题综合答案1.(2022春·广东东莞·高二校联考期中)已知函数()2395f x x x =-+.(1)求函数()f x 的单调递减区间;(2)求函数()f x 的极值.的切线方程是0x y b ++=.(1)求实数a ,b 的值;(2)求函数()f x 的极值.3.(2022春·广东佛山·高二佛山一中校考期中)已知函数()2ln f x x a x bx =++在()()1,1f 处的切线方程为30x y ++=.(1)求a 、b 的值;(2)求()f x 的极值点,并计算两个极值之和.所以,函数()f x 的极大值点为12x =,极大值为2ln 224f ⎛⎫=-- ⎪⎝⎭,极小值点为22x =,极小值为()22ln 26f =-,所以,函数()f x 的极大值和极小值为()133224f f ⎛⎫+=-⎪⎝⎭.4.(2022春·广东深圳·高二校考期中)已知=1x -是函数()323f x x x ax =-++的一个极值点.(1)求()f x 的单调区间;(2)求()f x 在区间[]4,4-上的最大值.(1)()'236f x x x a =-++, =1x -是函数()f x 的一个极值点∴()'190f a -=-+=,∴9a =,∴()'2369f x x x =-++,令()'0f x <,解得1x <-或3x >;令()'0f x >,解得13x -<<.所以函数()f x 的减区间为()(),1,3,∞∞--+,增区间为()1,3-.(2)由(1)()3239f x x x x =-++,又 ()f x 在[]4,1--上单调递减,在[]1,3-上单调递增,在[]3,4上单调递减∴函数()f x 在的极大值为()327f =,又()476f -=,∴函数()f x 在区间[]4,4-上的最大值为()476f -=.5.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()ln 2f x x x =+.(1)求函数()f x 的极值;(2)证明:2()f x x x>-.(1)若函数()f x 在点()()3,3f 处切线的斜率为4,求实数a 的值;(2)若函数()()21ln 222a ag x x f x x ⎛⎫=--- ⎪⎝⎭在[]1,4上是减函数,求实数a 的取值范围..(1)讨论()f x 的单调性;(2)设函数()2g x x =-+,若任意31,e x ⎡⎤∈⎣⎦,使得()()f x g x ≤,求a 的取值范围.的图象在点1,1P -处的切线斜率为12-,且()f x 在=1x -处取得极值.(1)求()f x 的解析式;(2)当[]2,2x ∈-时,求()f x 的最大值与最小值.(2)由(1)可知,()f x 在[)2,1--上单调递增,在(]1,2-上单调递减,且()115f -=,()212f =-,()28f -=,∴()max 15f x =,()min 12f x =-.9.(2022春·广东广州·高二校考期中)已知函数()1ln f x x a x =--(其中a 为参数).(1)求函数()f x 的单调区间:(2)若对任意()0,x ∈+∞都有()0f x ≥成立,求实数a 的取值集合.(1)当1a =时,求()f x 在[],ππ-上的值域;(2)当0x >时,()0f x ≥,求实数a 的取值范围.【详解】(1)由题意知()2cos sin f x x x x x =--,()()21cos sin f x x x x '=-+,[],x ππ∈-时,1cos 0x -≥,sin 0x x ≥,[],x ∴∈-ππ时,()0f x '≥恒成立,所以()f x 单调递增,∴()()()f f x f ππ-≤≤,即()33f x -π≤≤π所以()f x 的值域为[]3,3ππ-.(2)注意到()00f =,()2cos sin cos f x a a x ax x x '=-+-,若1a ≥,()()2cos sin 2cos sin f x ax x x x x x x =--≥--,由(1)知,当[]0,x π∈时,()()00f x f ≥=;当(),x π∈+∞时,2cos sin 2110x x x x x x x -->--=->,所以()0f x ≥恒成立,符合题意;若0a ≤,()()2cos sin f x ax x x =--,当[]0,x π∈时,()0f x ≤,不合题意,舍去;11.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数2()ln (1)()2=+-+∈R f x x x a x a ,2()()(1)2=-++a g x f x x a x .(1)讨论()f x 的单调性;(2)任取两个正数12,x x ,当12x x <时,求证:()()()1212122--<+x x g x g x x x .12.(2022春·广东深圳·高二校考期中)已知函数()ln f x ax bx x=++且曲线()y f x =在点()()1,1f 处的切线方程为210x y -+=.(1)求实数,a b 的值;(2)若关于x 的不等式()3222mf x x x-≥+恒成立,求实数m 的取值范围.∴()()min 11g x g ==-⎡⎤⎣⎦,即1m ≤-所以实数m 的取值范围为(],1-∞-.13.(2022春·广东广州·高二广州市第十六中学校考期中)已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间;(2)若2a =,求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最值;(3)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围.(参考数据:ln 20.693≈)14.(2022春·广东佛山·高二顺德一中校考期中)已知函数()ln =--f x a xx x(1)当0a =时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最值;(2)讨论函数()f x 的单调性.当1e a <<时,当ln 1a x <<时,()0f x '<,()f x 单调递减;当0ln x a <<或1x >时,()0f x ¢>,()f x 单调递增;当e a =时,()0f x ¢>在定义域上恒成立,()f x 单调递增;当e a >时,当1ln x a <<时,()0f x '<,()f x 单调递减;当01x <<或ln x a >时,()0f x ¢>,()f x 单调递增;综上:当1a ≤时,()f x 的单调递增区间为()1,+∞,单调递减区间为()0,1;当1e a <<时,()f x 的单调递增区间为()0,ln a ,()1,+∞,单调递减区间为()ln ,1a ;当e a =时,()f x 的单调递增区间为()0,∞+;当e a >时,()f x 的单调递增区间为()0,1,()ln ,a +∞;单调递减区间为()1,ln a .15.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()ln (2)f x x ax a x =-+-.(1)讨论()f x 的单调性;(2)若函数()y f x =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明:()00f x '<.16.(2022春·广东佛山·高二佛山市顺德区郑裕彤中学校考期中)已知函数()2sin cos 2f x x x x =++,R a ∈.(1)当0a =时,求函数()f x 在x π=处的切线方程;(2)当12a =-时,求函数()f x 在[],x ππ∈-上的最值.∵21336362f f πππ⎛⎫⎛⎫-==-+ ⎪ ⎝⎭⎝⎭,∴()2max 16362f x π=-+.∵()()214f f πππ-==--,()01f =,∴()2min14f x π=--.17.(2022春·广东佛山·高二佛山一中校考期中)已知函数21()ln 2f x x ax a =-+,(1)当1a =时,求()f x 的最值;(2)若ln 2()2f x £恒成立,求a 的取值范围.(1)若e a =,证明:当1x >时,()0f x >;(2)讨论()f x 零点的个数(1)设函数()()g x f x '=,若()y g x =在区间0,2π⎡⎤⎢⎣⎦上是增函数,求a 的取值范围;(2)当2a =-时,证明函数()f x 在区间()0,π上无零点.(1)若1x =函数的极值点,求a 的值;(2)若1a ≥,求证:当[]1,e x ∈时,()0f x '≥,其中e 为自然对数的底数.21.(2022春·广东清远·高二统考期中)已知函数()e 1x f x =-.(1)求证:()f x 在()1,+∞上单调递减(2)若对于任意()0,x ∈+∞,都有()2e x af x a≥+恒成立,求正实数a 的取值范围.22.(2022春·广东佛山·高二校考期中)已知函数()()ln f x x a R x=+∈.(1)判断函数()f x 在区间)2,e -⎡+∞⎣上的零点个数;(2)若函数()f x 在1x =处的切线平行于直线20x y -=,且在[]()1,271828e e =.上存在一点0x ,使得()0001x mf x x +<成立,求实数m .23.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()e (,)2xf x a x b a b R =--∈.(1)若函数()f x 在0x =处的切线方程为1y x =-,求实数a ,b 的值;(2)若函数()f x 在1x x =和2x x =两处取得极值,求实数a 的取值范围.(1)解:()e '=-x f x a x ,因为函数()f x 在0x =处的切线方程为1y x =-,所以(0)1f '=,即1a =,(1)当1a =时,求证:()0f x ≥;(2)若()f x 有两个零点,求a 的取值范围.观察图象知,当且仅当01a <<时,直线y 所以a 的取值范围是01a <<.25.(2022春·广东深圳·高二校考期中)已知函数()2ln 2f x x mx x =-+,m ∈R .(1)当2m =时,求函数()f x 的单调区间;(2)若2m =-,正实数a 、b 满足()()0f a f b ab ++=,求证:a b +≥,2e 1()e ()2x g x ax a a R -=-++∈.(1)求函数e ()()e x x f x ϕ-=+的最小值;(2)设函数()()()F x f x g x =+的两个不同极值点分别为12,x x ()12x x <,求实数a 的取值范围.27.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)设函数()()()ln 12f x x a x x =+-+.(1)若0a =,求()f x 的单调区间;(2)若()f x 在区间(2,)+∞单调递增,求整数a 的最大值.(1)判断函数()f x 是否存在极值,并说明理由;(2)设函数()()ln F x f x m x =-,若存在两个不相等的正数1x ,2x ,使得()()1122F x x F x x +=+,证明:212x x m <.为常数且0a ≠)在1x =处取得极值.(1)当12a =时,求()f x 的单调区间;(2)若()f x 在(]0,e 上的最大值为1,求a 的值.(1)讨论()f x 的单调性.(2)若0a =,证明:对任意的1x >,都有432()3ln f x x x x x ≥-+.。
导数20 大题(切线)2-2022年全国一卷新高考数学题型细分汇编
导数——大题——切线:1.(2022年河南益阳J37)已知函数()ln x f x x =,()()()21(0)2x g x axf x a x a =--->,()g x '为()g x 的导函数.(1)若直线y x b =+是曲线()y f x =的切线,求实数b 的值;(2)求()g x 的最大值;(①)(3)设()()1122,,,A x y B x y 是函数()y g x =图象上任意不同的两点,线段AB 的中点为()00,C x y ,记直线AB 的斜率为k ,证明:()'0k g x >.(切线,易;第二问,未;)1.(2022年广东启光卓越J21)已知函数()()3ln f x x ax ax a =+-∈R .(1)若1a =,求曲线()y f x =在1x =处的切线方程;(②)(2)若()0f x ≤在[)1,x ∞∈+上恒成立,求实数a 的取值范围.(切线,易;第二问,未;)2.(2022年广东惠州三模J17)已知函数ln ()xa xf x e a x=--(e 为自然对数的底数)有两个零点.(1)若1a =,求()f x 在1x =处的切线方程;(③)(2)若()f x 的两个零点分别为2,x x ,证明:12212x x e x x e+>.(切线,易;第二问,未;)3.(2022年广东六校联考J34)若()e x f x k =,且直线e y x =与曲线()y f x =相切.(1)求k 的值;(④)(切线,中下;第二问,未;)(2)证明:当[1,2]a ∈,不等式22()sin 23f x a x x x +-≥+对于[0,)x ∀∈+∞恒成立.1.(2022年江苏苏州J19)已知函数21()e cos 2=++xf x a b x x (其中a ,b 为实数)的图象在点(0,(0))f 处的切线方程为y x =.(1)求实数a ,b 的值;(⑤)(切线,中下;第二问,未;)(2)证明:方程()|ln sin |f x x x =+有且只有一个实根.2.(2022年江苏南京宁海中学J13)已知0a >且1a ≠,函数21()log 2a f x x ax =+.(1)若e a =,求函数()f x 在1x =处的切线方程;(⑥)(2)若函数()f x 有两个零点,求实数a 的取值范围.(切线,易;第二问,未;)3.(2022年江苏南京五中J12)已知a R ∈,函数()()214ln 12f x x ax x =-++.(1)当0a =时,求曲线()f x 在点()()0,0f 处的切线方程;(2)若()f x 在区间),0(+∞上存在两个不同的极值点.①求a 的取值范围;(⑦)②若当0x ≥时恒有()f x t >成立,求实数t 的取值范围.(参考数据:ln 20.69≈,ln 3 1.10≈)(切线,易;零点分析,中档;第三问,未;)4.(2022年山东百师联盟J56)已知函数()()()211ln 2f x ax a x x a R =+--∈.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(⑧)(2)若方程()0f x =有两个不等实数根,求实数a 的取值范围.(切线,易;第二问,未;)1.(2022年山东淄博三模J20)已知,2m m ∈≥N ,,a b 为函数()()e xx f x m m=-的两个零点,a b <,曲线()y f x =在点(,0)a 处的切线方程为()y g x =,其中e 2.71828= 为自然对数的底数.(1)当0x >时,比较()f x 与()g x 的大小;(⑨)(切线,中下;第二问,未;)(2)若120x x <<,且12()()f x f x n ==,证明:212ln ln nx x m m-<+.导数——大题——切线(中档、中上、未):4.(2022年广东佛山J11)已知函数1()e 1xf x x a=-+,其中a ∈R 且0a ≠.(⑩)(1)设0a >,过点11,2A ⎛⎫--⎪⎝⎭作曲线:()C y f x =的切线(斜率存在),求切线的斜率;(2)证明:当1a =或20e a <≤时,1()(1)2f x ax x ≥≥-.(切线,中档;第二问,未;)①【答案】(1)1b =-(2)最大值为2ln 2a a a a+-(3)证明见解析【解析】【分析】(1)由()'1fx =,结合切点坐标求得b 的值.(2)由()'g x 求得()g x 的最大值.(3)将()'0k g x >转化为21221121ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,利用换元法,结合导数来证得不等式成立.【小问1详解】()f x 的定义域为()0,∞+,令()'21ln 1xfx x-==,2ln 10x x +-=,令()()()2'1ln 10,20h x x x x h x x x=+->=+>,()h x 在()0,∞+上递增,()10h =,所以()h x 有唯一零点1.所以方程2ln 10x x +-=有唯一解1x =.()10f =,即切点为()1,0,将()1,0代入y x b =+得01,1b b =+=-.【小问2详解】()()()()()22211ln 122ln 2x x x x x g x axf x a x ax a x a x a x =---=⋅---=--,其中0,0x a >>,()()2'11x a x a ag x x a x x-+-+=-+-=()()1x x a x -+-=,所以()g x 在区间()()()'0,,0,a g x g x >递增;在区间()()()',,0,a g x g x +∞<递减.所以()()()22maxln 1ln 22a a g x g a a a a a a a a ==---=+.【小问3详解】由(2)得()()2ln 12x g x a x a x =---,()'1a g x x a x =-+-,依题意1202x x x +=,要证明()'0k g x >,即证明'2112212y y x x g x x -+⎛⎫> ⎪-⎝⎭,即证明()()21'12212g x g x x x g x x -+⎛⎫> ⎪-⎝⎭,即证明()()22212212122111ln 1ln 121222x x a x a x a x a x x x a a x x x x +>-⎡⎤-------⎢⎦-⎣+-+⎥,整理得212121ln ln 2x x x x x x ->-+,不妨设120x x <<,即证()2121212ln ln x x x x x x -->+,即证21221121ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,令211x t x =>,即证()2144ln 2,ln 20111t t t t t t ->=-+->+++,构造函数()()4ln 211m t t t t =+->+,()()()()2'22114011t m t t t t t -=-=>++,()m t 在()1,+∞上递增,()()10m t m >=,所以4ln 201t t +->+成立.得证()'0k g x >成立.【点睛】证明不等式的方法有分析法和综合法,本题采用的是分析法.即从结论()'0k g x >出发,化简得到21221121ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,然后利用换元法,结合导数即可证得不等式成立.②【答案】(1)330x y --=(2)1,2⎛⎤-∞- ⎥⎝⎦【解析】【分析】(1)当1a =时,求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)分析可知,不等式()()1f x f ≤在[)1,+∞上恒成立,对实数a 的取值进行分类讨论,利用导数分析函数()f x 在[)1,+∞上的单调性,验证()()1f x f ≤能否恒成立,综合可得出实数a 的取值范围.【小问1详解】解:当1a =时,()3ln f x x x x =+-,则()2131f x x x'=+-,所以,()10f =,()13f '=,此时,曲线()y f x =在1x =处的切线方程为()31y x =-,即330x y --=.【小问2详解】解:()0f x ≤在[)1,x ∞∈+上恒成立,且()10f =,所以,()()1f x f ≤,因为()3ln f x x ax ax =+-,所以,()213f x ax a x'=+-.①当0a =时,()10f x x'=>,此时函数()f x 在[)1,+∞上单调递增,则()()10f x f ≥=,不合乎题意;②当0a <时,令()()g x f x '=,则()2130g x a x '=-<,此时函数()f x '在[)1,+∞上单调递减.若()1210f a '=+≤,即当12a ≤-时,对任意的1≥x ,()()10f x f ''≤≤且()f x '不恒为零,此时,函数()f x 在[)1,+∞上单调递减,则()()10f x f ≤=,合乎题意;若()1210f a '=+>,即当102a -<<时,取0113a x a-=>,则2011311a x a a -->-=-,则()200131x x a ->-,此时()2311110ax x -+<-+=,所以,()()20020000311130ax x f x ax a x x -+'=+-=<,所以,存在()101,x x ∈,使得()10fx '=,当11x x <<时,()0f x '>,此时函数()f x 单调递增,则()()110f x f >=,不合乎题意;③当0a >时,因为()2ln 260f a =+>,与题设矛盾,不合乎题意.综上所述,实数a 的取值范围是1,2⎛⎤-∞- ⎥⎝⎦.【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数,解题的关键在于计算得出()10f =,结合端点效应将问题转化为()()1f x f ≤恒成立,然后借助导数分析函数()f x 在[)1,+∞上的单调性求解即可.③【答案】(1)(1)y e x =-;(2)证明见解析.【解析】【分析】(1)利用切点和斜率求得切线方程.(2)由()0f x =化简得到ln()xxa xe xe =,利用换元法,将要证12212x x e x x e +>转化为证明1ln 21t t t ->+,结合导数证得结论成立.【详解】(1)当1a =时,ln ()1xx f x e x=--,21ln ()x xf x e x -'=-.又(1)1f e =-,所以切点坐标为(1,1)e -,切线的斜率为(1)1k f e '==-,所以切线的方程为(1)(1)(1)y e e x --=--,即(1)y e x =-.(2)由己知得.(ln )()0x xe a x x f x x-+==有两个不等的正实根,所以方程(ln )0x xe a x x -+=有两个不等的正实根,即ln()0x x xe a xe -=有两个不等的正实根,ln()x x a xe xe =①.要证12212x x e x x e +>,只需证12212()()x x x e x e e ⋅>,即证1212()()2x xln x e ln x e +>,-令111x t x e =,222xt x e =,所以只需证12ln ln 2t t +>.由①得11ln a t t =,22ln a t t =,所以2121(ln ln )a t t t t -=-,2121(ln ln )a t t t t +=+,消去a 得221121212122111ln ln ln (ln ln )1t t t t t t t t t t t t t t ⎛⎫+ ⎪+⎝⎭+=-=--,只需证2211211ln 21t t t t t t ⎛⎫+ ⎪⎝⎭>-.设120t t <<,令21t t t =,则1t >,所以只需证1ln 21t t t ->+.令1()ln 21t h t t t -=-+,1t >,则22214(1)()0(1)(1)t h t t t t t '-=-=>++,所以()(1)0h t h >=,即当1t >时,4ln 201t t +->+成立.所以12ln ln 2t t +>,即12212()()x x x e x e e ⋅>,即12212x x e x x e+>.【点睛】证明不等式恒成立问题,可利用构造函数法,结合导数求最值来进行求解.④【答案】(1)1k =(2)证明见解析【解析】【分析】(1)设切点为00(,)x y ,则有000()e ()ef x x f x '=⎧⎨=⎩,解之即可的解;(2)要证当[1,2]a ∈,不等式22()sin 23f x a x x x +-≥+对于[0,)x ∀∈+∞恒成立,只需证当[1,2]a ∈时,不等式22e sin 23x a x x x +-≥+对于[0,)x ∀∈+∞恒成立,令2()2e sin 23,[0,)x h x a x x x x =+---∈+∞,只需证明()min 0h x ≥即可,利用导数求出函数()h x 的最小值,即可得证.【小问1详解】解:设切点为00(,)x y ,()e x f x k ¢=,则000000()e e e ()e e e x x f x x k x f x k =⎧⎧=⇒⎨⎨==⎩'⎩,解得:01,1x k ==,1k ∴=;【小问2详解】证明:要证当[1,2]a ∈,不等式22()sin 23f x a x x x +-≥+对于[0,)x ∀∈+∞恒成立,只需证当[1,2]a ∈时,不等式22e sin 23x a x x x +-≥+对于[0,)x ∀∈+∞恒成立,令2()2e sin 23,[0,)x h x a x x x x =+---∈+∞,令()()2e cos 23,[0,)xg x h x a x x x ==+-'-∈+∞,()2e sin 2,[0,)x g x a x x '=--∈+∞,令()sin ,[0,)m x x x x =-∈+∞,则o 0(c )1s x m x =-≥',所以函数()m x 在()0,∞+上递增,所以()(0)0m x m ≥=,所以sin ,[0,)x x x ≤∈+∞,故()()2e sin 22e 22e 222e 1xxxxg x a x ax x x '=--≥--≥--=--,()[)()e 1,0,x x x x ϕ=--∈+∞令,则()e 10,(0)x x x ϕ'=-≥≥,所以函数()x ϕ在()0,∞+上递增,所以()(0)0x ϕϕ≥=,所以()()2e 10xg x x '≥--≥,所以函数()g x 在()0,∞+上递增,即函数()h x '在()0,∞+上递增,又(0)230h a +-'=≥,所以()0h x '≥,所以()h x 在()0,∞+上递增,又因为(0)0h =,故()0,[0,)h x x ≥∀∈+∞恒成立,即当[1,2]a ∈,不等式22()sin 23f x a x x x +-≥+对于[0,)x ∀∈+∞恒成立.【点睛】本题考查了导数的几何意义,还考查了利用导数证明不等式问题,考查了放缩及转换思想,考查了学生的数据分析能力、计算能力及逻辑推理能力,难度很大.⑤【答案】(1)1,1.a b =⎧⎨=-⎩(2)证明见解析【解析】【分析】(1)求导,得()e sin '=-+x f x a b x x ,由题知(0)0(0)1f a b f a =+=⎧⎨=='⎩,解方程得解.(2)令()ln sin g x x x =+,分三种情况讨论:当[,)x π∈+∞,[1,)x π∈,(0,1)x ∈时()g x 的零点情况;令()()|ln sin |x f x x x ϕ=-+,分两种情况讨论:当()00,x x ∈,()0,x x ∈+∞时,对()ϕx 求导,借助()ϕx 单调性及零点存在性定理,判断()ϕx 的零点情况,进而得证.【小问1详解】因为21()e cos 2=++xf x a b x x ,所以()e sin '=-+x f x a b x x .因为()y f x =的图象在(0,(0))f 处的切线为y x =,所以(0)0(0)1f a b f a =+=⎧⎨=='⎩解得1,1.a b =⎧⎨=-⎩【小问2详解】令函数()ln sin g x x x =+,定义域为(0,)+∞.当[,)x π∈+∞时,ln 1,sin 1x x >≥-,所以()ln sin 0g x x x =+>;当[1,)x π∈时,ln 0,sin 0x x ≥>,所以()ln sin 0g x x x =+>;当(0,1)x ∈时,由1()cos 0g x x x+'=>知()g x 在(0,1)上单调递增,又11(1)sin10,1sin0e e⎛⎫=>=-+< ⎪⎝⎭g g 且函数连续不间断,所以0(0,1)x ∃∈,有()000ln sin 0g x x x =+=.综上所述,函数()g x 在(0,)+∞有唯一的零点0(0,1)x ∈,且()g x 在()00,x 上恒小于零,在()0,x +∞上恒大于零.令函数()()|ln sin |x f x x x ϕ=-+,讨论如下:①当()00,x x ∈时,21()()|ln sin |e cos ln sin 2=-+=-+++xx f x x x x x x x ϕ,求导得1()e (sin cos )⎛⎫=++++ ⎪'⎝⎭xx x x x x ϕ.因为12,sin cos 2x x x x +≥+≥-,所以1()e (sin cos )0⎛⎫=++++> ⎪⎝⎭'x x x x x x ϕ,即函数()ϕx 在()00,x 单调递增.又因为()()0022000000011e cos ln sin e cos 022=-+++=-+>xx x x x x x x ϕ,()333e 363e 63311e e cos e e 3sin e e e sin e 3cos e 022---------⎛⎫=-+-+=++--< ⎪⎝⎭ϕ,所以函数()ϕx 在()00,x 存在唯一的零点,所以方程()|ln sin |f x x x =+在()00,x 上有唯一的零点.②当()0,x x ∈+∞时,21()()|ln sin |e cos ln sin 2=-+=-+--xx f x x x x x x x ϕ.法一:由(1)易证21e cos 2-+>xx x x 在(0,)+∞上恒成立.事实上,令21()e cos 2=-+-xh x x x x ,则()e sin 1=+'+-x h x x x .因为()e (cos 1)0=++''>x h x x ,所以()h x '在(0,)+∞上单调递增,所以()(0)0h x h ''>=,即()h x 在(0,)+∞上单调递增,所以()(0)0h x h >=,即21e cos 2-+>xx x x 在(0,)+∞上恒成立.从而21()e cos ln sin ln sin ln 102=-+-->--≥--≥xx x x x x x x x x x ϕ,所以方程()|ln sin |f x x x =+在()0,x +∞上无零点.综上所述,方程()|ln sin |f x x x =+有且只有一个实根.法二:因为1ln x x -≥,所以ln(1)x x ≥+,所以e 1x x ≥+,所以e ln (1)(1)2-≥+--=x x x x ,所以2211e cos ln sin (2sin cos )022-+--≥--+>xx x x x x x x ,所以方程()|ln sin |f x x x =+在()0,x +∞上无零点.综上所述,方程()|ln sin |f x x x =+有且只有一个实根.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题第一问考查导数的几何意义,第二问利用导数求函数的单调区间,判断单调性,并借助零点存在性定理研究方程的实根,考查数形结合思想的应用.⑥【答案】(1)()1112y e x e =+--(2)110,,1a e e ⎛⎫⎛⎫∈⋃ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】(1)由a e =时,得到()21ln 2f x x ex =+,求导,进而得到()()1,1f f ',写出切线方程;(2)将函数()f x 有两个零点,转化为函数2ln x y x =与1ln 2y a a =-的图象在()0,x ∈+∞上有两个交点求解.【小问1详解】解:当a e =时,()21ln 2f x x ex =+,则()1f x ex x'=+,故()1111f e e '=+=+,1x =时,()111ln122f e e =+=,故切点为11,2e ⎛⎫ ⎪⎝⎭,所以()f x 在1x =处的切线方程为()()1112y e e x -=+-,即()1112y e x e =+--.【小问2详解】函数()f x 有两个零点,⇔方程21log 02a x ax +=在()0,x ∈+∞上有两个根,⇔方程2ln 1ln 2x a a x =-在()0,x ∈+∞上有两个根,⇔函数2ln xy x=与1ln 2y a a =-的图象在()0,x ∈+∞上有两个交点,设()2ln x g x x =,则()312ln x g x x -'=,()312ln 0x g x x -'=>时,0x e <<;()312ln 0xg x x-'=<时,x e >,所以()2ln xg x x=在(e 上单调递增,在)e +∞上单调递减,由()10g =,12g e e =,当1x >时,()0g x >,当x →+∞时,()0g x →,作图如下:由图得110ln 22a a e <-<,即1ln 0a a e-<<,设()()ln 0h x x x x =>,则()1ln h x x '=+,()1ln 0h x x '=+>时,1x e >,()1ln 0h x x '=+<时,10x e<<;所以()ln h x x x =在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,因为01x <<时ln 0x <,且()10h =,所以当01x <<时,()10h x e-≤<;当1x >时,()0h x >,又因为()min 11h x h e e⎛⎫==- ⎪⎝⎭,所以1ln 0x x e -<<的解集为110,,1e e ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭综上所述110,,1a e e ⎛⎫⎛⎫∈⋃ ⎪ ⎪⎝⎭⎝⎭.⑦【答案】(1)4y x =;(2)①34a <<;②158ln 22t ≤-.【解析】【分析】(1)利用导数的几何意义,求()()0,0f 处的切线方程即可.(2)①由题意知,()2140x a x a --+-=有两个不相等的正根,即可求a 的取值范围;②由①得到()f x 的单调区间,可知要使0x ≥时,恒有()f x t >成立,只需满足()(){}2min 0,t f f x <,而2212152a a a x -++-=,结合①的结论得()21,3x ∈,则()()3222222222414ln 121x x x f x x x x ++=-+++,构造中间函数并应用导数研究单调性,确定()2f x 的范围,即可比较()()20,f f x 的大小,进而求t 的取值范围.【详解】(1)当0a =时,()()214ln 12f x x x =++,则()41f x x x '=++,∴()00=f ,()04f '=,即所求的切线方程为4y x =.(2)①()()214411x a x a f x x x x a --+-+'=-=++,设()f x 在),0(+∞上的极值点为1x ,()212x x x <,则1x ,2x 是方程()2140x a x a --+-=的两正根,∴()()2401021440a a a a ⎧->⎪-⎪>⎨⎪⎪∆=--->⎩,解得34a <<.②由①知:当10x x ≤<时,()0f x ¢>,所以()f x 单调递增;当12x x x <<时,()0f x ¢<,所以()f x 单调递减;当2x x >时,()0f x ¢>,所以()f x 单调递增.∴要使0x ≥时,恒有()f x t >成立,只需满足()(){}2min 0,t f f x <.由2212152a a a x -++-=,34a <<,则()21,3x ∈,又222241x x a x ++=+,∴()()()322222222222224114ln 14ln 1221x x x f x x ax x x x x ++=-++=-+++,()21,3x ∈.设()()322144ln 121x x x F x x x x ++=-+++,()1,3x ∈,则()()()()2131x x x F x x --+'=+.∴()0F x '<,()F x 在()1,3上单调递减,即()()1538ln 22F x F >=-,从而()2158ln 22f x >-.由ln 20.69≈,得158ln 202-<,又()00=f ,∴()(){}215min 0,8ln 22f f x >-,得158ln 22t ≤-.【点睛】关键点点睛:第二问,①求()f x ¢的解析式,将问题转化为()2140x a x a --+-=有两个不相等的正根求参数范围;②由①判断()f x 的区间单调性,将问题转化为()(){}2min 0,t f f x <,再构造中间函数并应用导数求()2f x 的范围,并比较()()20,f f x 的大小关系.⑧【答案】(1)12y =(2)(2,)+∞【解析】【分析】(1)求导,利用导数的几何意义求出切线斜率,求出切线方程;(2)求定义域,求导,对导数因式分解,由最小值小于0得到2a >,进而证明充分性成立,a 的其他范围均不合要求,得到a 的取值范围.【小问1详解】当1a =时,21()ln 2f x x x =-,所以1()f x x x'=-,又有1(1),(1)02f f ==',所以切线方程为12y =.【小问2详解】()f x 的定义域为(0,)+∞,∵21()(1)ln 2f x ax a x x =---,∴21(1)1(1)(1)()(1)ax a x ax x f x ax a x x x---+-=---==',若方程()0f x =有两个不等实数根,即函数()f x 有两个不同的零点,当0a ≥时,由()0f x '<得:(0,1)x ∈,由()0f x '>得(1,)x ∈+∞,所以函数()f x 在()0,1上单调递减,在(1,)+∞上单调递增,∴若函数()f x 有两个不同的零点则必有1(1)102f a =-+<,即2a >.此时,在(1,)x ∈+∞上有(2)22(1)ln 22ln 20f a a =---=->,在(0,1)x ∈上,2120x x -<-<,∵()21()2ln 2f x a x x x x =-+-,∴()1ln 2f x a x x >-+-,∴111122221e e ln e e 02a a a f a ----⎛⎫⎛⎫>-+-=> ⎪ ⎪⎝⎭⎝⎭∴()f x 在区间()0,1、(1,)+∞上各有一个零点,故2a >满足题意;当1a =-时,∵函数()f x 在(0,)+∞上单调递减,∴函数()f x 至多一个零点,不合题意;当10a -<<时,∵函数()f x 在区间(0,1)上单调递减,在11,a ⎛⎫-⎪⎝⎭上单调递增,在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减,∴函数()f x 的极小值为1(1)102f a =->,∴函数()f x 至多一个零点,不合题意;当1a <-时.∵函数()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递减,在1,1a ⎛⎫- ⎪⎝⎭上单调递增,在(1,)+∞上单调递减,∴函数()f x 的极小值为11111(1)ln 1ln()022f a a a a a a a ⎛⎫⎛⎫-=+---=-+-> ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 至多一个零点,不合题意.综上所述,实数a 的取值范围是(2,)+∞.【点睛】导函数研究函数的零点个数问题,一般思路为求定义域,求导,得到函数极值,最值情况,进而由最值情况先得到必要性,再证明充分性.⑨【答案】(1)()()f xg x >(2)证明见解析【解析】【分析】(1)利用函数导数的几何意义求出切线斜率,再由点斜式求切线方程,作差即可比较大小;(2)先求出曲线()y f x =在点(ln ,0)m 处的切线方程,作差后构造函数()()()F x f x h x =-,利用导数求最小值为0,可得()()f x h x ≥,设()h x n =的正根为0x ,可得2103(11ln ln x x mn x x m m m --<-=++,再利用放缩法求证即可.【小问1详解】令()(e )0xx f x m m=-=,因为a b <所以函数()f x 的两个零点分别是0a =,ln b m =,e ()(1)1xf x x m+'=-,所以11(0)1m f m m -='-=,所以曲线()y f x =在点(0,0)处的切线方程为1my x m-=,所以1(e )(e 1)()()x x x m x m x x m m mf xg -=---=-,若0x >,则()()0f x g x ->,即()()f x g x >.【小问2详解】e ()(1)1xf x x m+'=-,所以(ln )ln f m m =',所以曲线()y f x =在点(ln ,0)m 处的切线方程为ln (ln )y m x m =-,记()ln (ln )h x m x m =-,)(()()()ln (l )n e xF x x m mf x h x m x m =-=---,e (1)l 1(n )x x m m F +-=-',2)0(()e xF mx x '+'>=,所以()F x '在(0,)+∞上单调递增,又(ln )0F m '=,所以当(0,ln )x m ∈时,()0F x '<,()F x 单调递减;当(ln ,)x m ∈+∞时,()0F x '>,()F x 单调递增,所以()F x 在ln x m =处取得极小值,即()(ln )0F x F m ≥=,即当0x ≥时,()()f x h x ≥,设()h x n =的正根为0x ,则0ln (ln )m x m n -=,所以0ln ln nx m m=+,因为()h x 是增函数,220()()()h x f x n h x ≤==,即20x x ≤,结合(1),设1()m g x x n m -==的根为3x ,则31mnx m=-,因为()g x 为减函数,113()()()g x f x n g x <==,所以13x x ≥,所以2103()11ln ln x x mn x x m m m --<-=++,设1()ln x x x x ϕ-=-,22111()0(2)x x x x x xϕ-=-=>≥',所以()ϕx 在[2,)+∞上单调递增,1()(2)ln 202x ϕϕ≥=->,所以1ln 0m m m-->,所以11ln m mm -<,所以112ln ln m mm m >+-,()()e 11x f x x m +'=-,()(2)0xe f x x m=+'>',所以′(p 单调递增,因为1(0)10f m'=-<,(ln )ln 0f m m '=>,所以存在唯一4(0,ln )x m ∈,使得4()0f x '=,当4(0)x x ∈,时,()0f x '<,()f x 单调递减;当4(,)x x ∈+∞时,()0f x '>,()f x 单调递增;因为(0)(ln )0f f m ==,若关于x 的方程()f x n =有两个正根,必有0n <,所以(112ln ln m m n m nm +<-,所以212ln ln n x x m m-<+【点睛】思路点睛:本题第二问难度很大,证明212ln ln nx x m m-<+的过程中,用导数最值先证明2103(11ln ln x x m n x x m m m --<-=++,再利用()112ln ln mm n m n m +<-放缩得证,思维难度较大,属于难题.⑩【答案】(1)112a -;(2)证明见解析.【解析】【分析】(1)设出切点坐标,对函数()f x 求导,再借助导数的几何意义列式计算作答.(2)当1a =时,不等式等价转化为证1e 12xx x -≥+,当20ea <≤时,转化证明111e e 22x x ax x a -≥-,作差构造函数即可推理作答.【小问1详解】0a >,11()e 21x f x a x '=-+,而1(1)0e f a -=>,即点11,2A ⎛⎫-- ⎪⎝⎭不在曲线C 上,设切点000(,()),1T x f x x >-,则切线AT 的斜率为00011()e 21x f x a x k '=+=,又001()21f x k x +=+,于是得00002()111e 2(1)21x f x a x x +=++000002(1)1e 12(e 1)1x x x x x a a +-+=-++,整理得:002e 110x x x a ++=,即00002e 011x x a x =++,有00021(e )011x x a x +=++,而0021e 011x a x +>++,因此,00x =,11(0)2f a '=-,所以切线的斜率为112a -.【小问2详解】当1a =时,1x ≥-,111()e 10e 1222x x f x ax x x x x ≥⇔-+≥⇔-≥+令()e 1x h x x =--,求导得()e 1x h x '=-,当0x <时,()0h x '<,当0x >时,()0h x '>,即函数()h x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,R x ∀∈,()(0)0h x h ≥=,即e 1x x ≥+,因此当1x ≥-时,111(1)e 11222xx x x x ++-≥+=≥+,当且仅当0x =时取“=”,则1e 102xx x -+≥,于是得当1a =且1x ≥-时,1()2f x ax ≥.当20e a <≤时,1x ≥-,111()e 122x f x ax ax x a ≥⇔-≥+,令1e )(1)(21111()e ()22x x x x a x ax x a a ϕ-=+-=--,1x ≥-,由20e a <≤得10a ->,则(1)(11()e )02x x a a ϕ'+->=,即()ϕx 在[1,)-+∞上单调递增,又(1)11(1))0e (2a a ϕ=--≥-,即当1x ≥-时,()(1)0x ϕϕ≥-≥,于是得当20e a <≤,1x ≥-时,111e e 22x x ax x a -≥-,而1e 12xx x -≥+,因此,11e 12x ax x a -≥+,从而得当20e a <≤,1x ≥-时1()2f x ax ≥,所以当1a =或20e a <≤时,1()(1)2f x ax x ≥≥-.【点睛】思路点睛:解决过某点的函数f (x )的切线问题,先设出切点坐标00(,)x y ,求导并求出切线方程000()()y y f x x x '-=-,然后将给定点代入切线方程转化为方程根的问题求解.。
导数高考大题
函数与导数综合【2020年】1.(2020·新课标Ⅰ)已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 2.(2020·新课标Ⅱ)已知函数f (x )=sin 2x sin2x . (1)讨论f (x )在区间(0,π)的单调性; (2)证明:33()8f x ≤; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22nx ≤34nn .3.(2020·新课标Ⅲ)设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 4.(2020·北京卷)已知函数2()12f x x =-. (Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅱ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值. 5.(2020·江苏卷)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?6.(2020·江苏卷)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =⊆⎡⎣,求证:n m -≤7.(2020·山东卷)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.8.(2020·天津卷)已知函数3()ln ()f x x k x k R =+∈,()f x '为()f x 的导函数. (Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程; (ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅱ)当3k -时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-.9.(2020·浙江卷)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点; (Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:(ⅰ0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.【2019年】8.【2019年高考全国Ⅰ卷】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点.9.【2019年高考全国Ⅱ卷】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线. 10.【2019年高考全国Ⅲ卷】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.11.【2019年高考北京】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.12.【2019年高考天津】设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-.13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x >(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)e x ∈+∞均有(),2xf x a ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 【2018年】20. (2018年浙江卷)已知函数f (x )=−ln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 21. (2018年天津卷)已知函数,,其中a >1.(I )求函数的单调区间;(II )若曲线在点处的切线与曲线在点处的切线平行,证明;(III )证明当时,存在直线l ,使l 是曲线的切线,也是曲线的切线22. (2018年北京卷)设函数=[].(Ⅰ)若曲线y= f (x )在点(1,)处的切线与轴平行,求a ;(Ⅱ)若在x =2处取得极小值,求a 的取值范围.23. (2018年江苏卷)记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S 点”.(1)证明:函数与不存在“S 点”; (2)若函数与存在“S 点”,求实数a 的值; (3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S 点”,并说明理由.24. (2018年江苏卷)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧(P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC 与MN 所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大. 25. (2018年全国I 卷理数)已知函数.(1)讨论的单调性; (2)若存在两个极值点,证明:26. (2018年全国Ⅲ卷理数)已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.27. (2018年全国Ⅱ卷理数)已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.【2017年】4.【2017课标1,理21】已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.5.【2017课标II ,理】已知函数()2ln f x ax ax x x =--,且()0f x ≥。
直击2024年高考——高三数学导数题型专练(全国版)
导数题型专练【利用公式和四则运算求导】 【例1】下列求导运算正确的是( ) A.⎝⎛⎭⎫1ln x ′=-1x ln 2x B .(x 2e x )′=2x +e x C.⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-sin ⎝⎛⎭⎫2x -π3 D.⎝⎛⎭⎫x -1x ′=1+1x 2 【答案】 AD【解析】 ⎝⎛⎭⎫1ln x ′=-1ln 2x ·(ln x )′=-1x ln 2x , 故A 正确;(x 2e x )′=(x 2+2x )e x ,故B 错误;⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-2sin ⎝⎛⎭⎫2x -π3,故C 错误;⎝⎛⎭⎫x -1x ′=1+1x 2,故D 正确.【复合函数求导】 【例2】设函数,若,则.【答案】 1; 【解析】 函数, , ,,解得, 故答案为:.【根据导数构造抽象函数】 【例3】已知可导函数的导函数为,若对任意的,都有,且为奇函数,则不等式的解集为( ).A.B.C.D.【答案】 A; 【解析】 设,由,得:,故函数在递减,由为奇函数,得, ∴,即,∵不等式,∴,即, 结合函数的单调性得:, 故不等式的解集是.故选.【求在某点处的切线方程】【例4】曲线y =2x -1x +2在点(-1,-3)处的切线方程为__________.【答案】 5x -y +2=0【解析】 y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.【求过某点处的切线方程】【例5】y =2x 2+8过点P(1,2)的切线方程是( ). A. y =−4x +6B. y =12x −10C. y =−4x +6或y =12x −10D. y =4x +6或y =12x −10【答案】 C;【解析】 设切点坐标为(x 0 ,2x 02+8),y ′=4x ,∴切线斜率k =4x 0,则2x 02+8−2x 0−1=4x 0,解得x 0=−1或3,∴所求切线方程为y =−4x +6或y =12x −10.【根据切线求参数问题】【例6】直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于( ) A .4 B .3C .2D .1【答案】 A【解析】 ∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵ f (x )=a ln x +b ,∴ f ′(x )=ax , 由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln 1+b =2,解得b =2,故2a +b =2+2=4.【例7】过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________. 【答案】 (1,+∞)【解析】 由y ′=a e x ,若切点为(x 0,0e x a ), 则切线方程的斜率k =0'|x x y ==0e x a >0,∴切线方程为y =0e x a (x -x 0+1), 又P (1,e)在切线上, ∴0e x a (2-x 0)=e ,即ea =0e x (2-x 0)有两个不同的解,令φ(x )=e x (2-x ), ∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0; 当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=e , 又x →-∞时,φ(x )→0; x →+∞时,φ(x )→-∞, ∴0<ea <e ,解得a >1,即实数a 的取值范围是(1,+∞).【两曲线的公切线】【例8】已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( ) A .0 B .-1 C .3 D .-1或3【答案】 D【解析】 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g x =x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.【利用导数确定函数图象】 【例9】已知函数,则的图象大致为( ).A. B.C. D.【答案】A;【解析】令,则,由,得,即函数在上单调递增,由得,即函数在上单调递减,所以当时,函数有最小值,,于是对任意的,有,故排除、,因为函数在上单调递减,则函数在上单调递增,故排除.故选.【利用导数求具体函数的单调性】【例10】函数f(x)=x2-2ln x的单调递减区间是()A.(0,1) B.(1,+∞)C.(-∞,1) D.(-1,1)【答案】A【解析】∵f′(x)=2x-2 x=2(x+1)(x-1)x(x>0),令f′(x)=0,得x=1,∴当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.【例11】若函数f(x)=ln x+1e x,则函数f(x)的单调递减区间为________.【答案】(1,+∞)【解析】f(x)的定义域为(0,+∞),f′(x)=1x-ln x-1e x,令φ(x)=1x-ln x-1(x>0),φ′(x)=-1x2-1x<0,φ(x)在(0,+∞)上单调递减,且φ(1)=0,∴当x∈(0,1)时,φ(x)>0,当x∈(1,+∞)时,φ(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.【利用导数求含参函数的单调性】【例12】已知函数.讨论的单调性.【答案】当时,增区间为,无减区间;当时,增区间为,减区间为.【解析】函数的定义域为:,,①当时,恒成立,在上单调递增,无减区间;②当时,令,解得,∴增区间为,减区间为综上:当时,增区间为,无减区间;当时,增区间为,减区间为.【例13】已知函数是自然对数的底数).讨论的单调性.【答案】 当时,在上单调递减; 当时,在上单调递减,在上单调递增. 【解析】,当时,,在上单调递减; 当时,由得,所以在上单调递减;由得,所以在上单调递增.综上,当时,在上单调递减;当时,在上单调递减,在上单调递增.【导数解决单调性的应用-比较大小】【例14】已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 【答案】 A【解析】 因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝⎛⎭⎫0,π2上单调递增,所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5.【导数解决单调性的应用-解不等式】【例15】已知函数f (x )=e x -e -x -2x +1,则不等式f (2x -3)>1的解集为________.【答案】 ⎝⎛⎭⎫32,+∞【解析】 f (x )=e x -e -x -2x +1,定义域为R , f ′(x )=e x +e -x -2≥2e x ·e -x -2=0,当且仅当x =0时取“=”, ∴f (x )在R 上单调递增, 又f (0)=1,∴原不等式可化为f (2x -3)>f (0), 即2x -3>0,解得x >32, ∴原不等式的解集为⎝⎛⎭⎫32,+∞.【导数解决单调性的应用-求参数范围】【例16】已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上单调递增,则实数a 的取值范围为________. 【答案】 ⎣⎡⎭⎫43,+∞ 【解析】 由题意知f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立, 即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立, ∵⎝⎛⎭⎫-x +1x max =83, ∴2a ≥83,即a ≥43.【根据函数图象判断极值】【例17】设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A.函数f(x)有极大值f(-3)和f(3)B.函数f(x)有极小值f(-3)和f(3) C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)【答案】D【解析】由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).【利用导数求函数的极值】【例18】已知函数,其中.求函数的极值.【答案】当时,在单调递减,无极值,当时,在单调递增,上单调递减.∴有极大值.【解析】,,令得,,当时,在单调递减,无极值,当时,在单调递增,上单调递减.∴有极大值.【例19】已知函数.判断函数的极值点的个数,并说明理由.【答案】当时,函数有一个极值点;当或时,函数有两个极值点,当时,函数无极值点.【解析】因为,所以.()当时,有,令,得.当变化时,和的变化情况如下:所以当时,函数只有一个极值点.()当时,令,得,.①当时,.当变化时,和的变化情况如下:所以当时,函数有两个极值点.②当时,恒成立,所以在上单调递增,所以当时,函数无极值点.③当时,,当变化时,和的变化情况如下:所以当时,函数有两个极值点,综上,当时,函数有一个极值点;当或时,函数有两个极值点,当时,函数无极值点.【已知极值(点)求参数】【例20】函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则a +b 等于()A .-7B .0C .-7或0D .-15或6【答案】 A【解析】 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10,解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3,检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时,f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减,当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.【利用导数求函数的最值】【例21】函数的最小值为 . 【答案】 ; 【解析】 当时,,,此时单调递减,此时.当时,,, 当时,,单调递减, 时,,单调递增, ∴此时,∵,∴的最小值为. 【例22】已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).【答案】(1) e 2-3e +1;(2) h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.【解析】 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1;②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ;③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e.综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.【数形结合法研究函数零点】【例23】已知函数f (x )=e x -a (x +2).(1)当a =1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【解析】 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)令f (x )=0,得e x =a (x +2),即1a =x +2e x ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0;当x ∈(-1,+∞)时,φ′(x )<0,所以φ(x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时,φ(x )→-∞;x →+∞时,φ(x )→0,所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞.【利用函数性质研究函数零点】【例24】已知函数f (x )=x -a ln x (a >0).(1)求函数f (x )的单调区间;(2)求函数g (x )=12x 2-ax -f (x )的零点个数.【解析】 (1)函数f (x )的定义域为(0,+∞),由f (x )=x -a ln x 可得f ′(x )=1-a x =x -a x ,由f ′(x )>0可得x >a ;由f ′(x )<0可得0<x <a ,所以f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由g (x )=12x 2-ax -x +a ln x=12x 2-(a +1)x +a ln x ,可得g ′(x )=x -(a +1)+a x令g ′(x )=0可得x =1或x =a ,因为g (1)=12-a -1=-a -12<0,g (2a +3)=12(2a +3)2-(a +1)(2a +3)+a ln(2a +3)=a +a ln(2a +3)+32>0,当a >1时,g (x )在(1,a )上单调递减,所以g (1)>g (a ),所以g (a )<0,所以g (x )有一个零点,当a =1时,g (x )在(0,+∞)上单调递增,所以g (x )有一个零点,当0<a <1时,g (x )在(0,a )上单调递增,在(a ,1)上单调递减,在(1,+∞)上单调递增,此时g (a )=12a 2-(a +1)a +a ln a=-12a 2-a +a ln a <0,g (x )只有一个零点,综上所述,g (x )在(0,+∞)上只有一个零点.【导数构造问题】【例25】已知定义在R 上的函数f (x ),其导函数为f ′(x ),当x >0时,f ′(x )-f (x )x >0,若a=2f (1),b =f (2),c =4f ⎝⎛⎭⎫12,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .b <a <cD .a <b <c 【答案】 B【解析】 构造函数g (x )=f (x )x (x >0),得g ′(x )=xf ′(x )-f (x )x 2=1x ⎣⎡⎦⎤f ′(x )-f (x )x , 由题知当x >0时,f ′(x )-f (x )x >0,所以g ′(x )>0,故g (x )在(0,+∞)上单调递增,所以f (2)2>f (1)1>f ⎝⎛⎭⎫1212,即f (2)>2f (1)>4f ⎝⎛⎭⎫12,即b >a >c .【例26】(多选)已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)<e 2f (0)B .f (2)>e 2f (0)C .e 2f (-1)>f (1)D .e 2f (-1)<f (1)【答案】 AC【解析】 构造F (x )=f (x )e x ,则F ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,导函数f ′(x )满足f ′(x )<f (x ),则F ′(x )<0,F (x )在R 上单调递减,根据单调性可知A ,C 选项正确.【例27】(多选)定义在⎝⎛⎭⎫0,π2上的函数f (x ),已知f ′(x )是它的导函数,且恒有cos x ·f ′(x )+sin x ·f (x )<0成立,则有( )A .f ⎝⎛⎭⎫π6>2f ⎝⎛⎭⎫π4 B.3f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D.2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4 【答案】 CD【解析】 构造函数g (x )=f (x )cos x ⎝⎛⎭⎫0<x <π2. 则g ′(x )=f ′(x )cos x +f (x )sin x (cos x )2<0,即函数g (x )在⎝⎛⎭⎫0,π2上单调递减, 所以g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π3,所以f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3, 同理g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π4, 即2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4.【同构法导数构造】【例28】若存在x ,y ∈(0,+∞)使得x ln(2ax )+y =x ln y ,则实数a 的最大值为( ) A.1eB.12eC.13eD.2e【答案】 B【解析】 由x ln(2ax )+y =x ln y ,得ln(2a )=ln y x -y x ,令t =y x >0,g (t )=ln t -t ,则g ′(t )=1t -1=1-t t ,当0<t <1时,g ′(t )>0,当t >1时,g ′(t )<0,所以g (t )在(0,1)上单调递增,在(1,+∞)上单调递减,所以当t =1时,g (t )取得极大值即最大值g (1)=-1,因为当t →0时,g (t )→-∞,所以g (t )∈(-∞,-1],所以ln 2a ≤-1,所以0<a ≤12e ,所以实数a 的最大值为12e .【分参法解决恒成立问题】【例29】已知函数f (x )=(x -2)e x -12ax 2+ax (a ∈R ).(1)当a =0时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当x ≥2时,f (x )≥0恒成立,求a 的取值范围.【解析】(1)当a =0时,f (x )=(x -2)e x ,f (0)=(0-2)e 0=-2,f ′(x )=(x -1)e x ,k =f ′(0)=(0-1)e 0=-1,所以切线方程为y +2=-(x -0),即x +y +2=0.(2)方法一 当x ≥2时,f (x )≥0恒成立,等价于当x ≥2时,(x -2)e x -12ax 2+ax ≥0恒成立.即⎝⎛⎭⎫12x 2-x a ≤(x -2)e x 在[2,+∞)上恒成立.当x =2时,0·a ≤0,所以a ∈R .当x >2时,12x 2-x >0,所以a ≤(x -2)e x 12x 2-x=2e x x 恒成立. 设g (x )=2e x x ,则g ′(x )=2(x -1)e x x 2, 因为x >2,所以g ′(x )>0,所以g (x )在区间(2,+∞)上单调递增.所以g (x )>g (2)=e 2,所以a ≤e 2.综上所述,a 的取值范围是(-∞,e 2].【整体法解决恒成立问题】【例30】已知函数f (x )=e x -1-ax +ln x (a ∈R ). (1)若函数f (x )在x =1处的切线与直线3x -y =0平行,求a 的值;(2)若不等式f (x )≥ln x -a +1对一切x ∈[1,+∞)恒成立,求实数a 的取值范围.【解析】(1)f ′(x )=e x -1-a +1x ,∴f ′(1)=2-a =3,∴a =-1,经检验a =-1满足题意,∴a =-1,(2)f (x )≥ln x -a +1可化为e x -1-ax +a -1≥0,x >0,令φ(x )=e x -1-ax +a -1,则当x ∈[1,+∞)时,φ(x )min ≥0,∵φ′(x )=e x -1-a ,①当a ≤1e 时,φ′(x )>0,∴φ(x )在[1,+∞)上单调递增,∴φ(x )min =φ(1)=1-a +a -1=0≥0恒成立,∴a ≤1e 符合题意.②当a >1e 时,令φ′(x )=0,得x =ln a +1.当x ∈(0,ln a +1)时,φ′(x )<0,当x ∈(ln a +1,+∞)时,φ′(x )>0,∴φ(x )在(0,ln a +1)上单调递减,在(ln a +1,+∞)上单调递增.当ln a +1≤1,即1e <a ≤1时,φ(x )在[1,+∞)上单调递增,φ(x )min =φ(1)=0≥0恒成立,∴1e <a ≤1符合题意.当ln a +1>1,即a >1时,φ(x )在[1,ln a +1)上单调递减,在(ln a +1,+∞)上单调递增, ∴φ(x )min =φ(ln a +1)<φ(1)=0与φ(x )≥0矛盾.故a >1不符合题意.综上,实数a 的取值范围为(-∞,1].【双变量的恒(能)成立问题】【例31】设f (x )=a x +x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围. 解 (1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M 成立. g ′(x )=3x 2-2x =x (3x -2),令g ′(x )=0,得x =0或x =23,∵g ⎝⎛⎭⎫23=-8527, 又g (0)=-3,g (2)=1, ∴当x ∈[0,2]时,g (x )max =g (2)=1,g (x )min =g ⎝⎛⎭⎫23=-8527, ∴M ≤1-⎝⎛⎭⎫-8527=11227, ∴满足条件的最大整数M 为4.(2)对任意的s ,t ∈⎣⎡⎦⎤12,2有f (s )≥g (t ),则f (x )min ≥g (x )max .由(1)知当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (2)=1, ∴当x ∈⎣⎡⎦⎤12,2时,f (x )=a x +x ln x ≥1恒成立, 即a ≥x -x 2ln x 恒成立.令h (x )=x -x 2ln x ,x ∈⎣⎡⎦⎤12,2,∴h ′(x )=1-2x ln x -x , 令φ(x )=1-2x ln x -x , ∴φ′(x )=-3-2ln x <0,h ′(x )在⎣⎡⎦⎤12,2上单调递减,又h ′(1)=0,∴当x ∈⎣⎡⎦⎤12,1时,h ′(x )≥0, 当x ∈[1,2]时,h ′(x )≤0,∴h (x )在⎣⎡⎦⎤12,1上单调递增,在[1,2]上单调递减,∴h (x )max =h (1)=1,故a ≥1.∴实数a 的取值范围是[1,+∞).【利用导数证明不等式】【例32】已知函数g (x )=x 3+ax 2.(1)若函数g (x )在[1,3]上为单调函数,求a 的取值范围;(2)已知a >-1,x >0,求证:g (x )>x 2ln x .(1)解 由题意知,函数g (x )=x 3+ax 2,则g ′(x )=3x 2+2ax ,若g (x )在[1,3]上单调递增,则g ′(x )=3x 2+2ax ≥0在[1,3]上恒成立,则a ≥-32;若g (x )在[1,3]上单调递减,则g ′(x )=3x 2+2ax ≤0在[1,3]上恒成立,则a ≤-92.所以a 的取值范围是⎝⎛⎦⎤-∞,-92∪⎣⎡⎭⎫-32,+∞. (2)证明 由题意得,要证g (x )>x 2ln x ,x >0,即证x 3+ax 2>x 2ln x ,即证x +a >ln x ,令u (x )=x +a -ln x ,x >0,可得u ′(x )=1-1x =x -1x ,x >0,当0<x <1时,u ′(x )<0,函数u (x )单调递减;当x >1时,u ′(x )>0,函数u (x )单调递增.所以u (x )≥u (1)=1+a ,因为a >-1,所以u (x )>0,故当a >-1时,对于任意x >0,g (x )>x 2ln x .【例33】已知函数f (x )=a ln x +x .(1)讨论f (x )的单调性;(2)当a =1时,证明:xf (x )<e x .(1)解 f (x )的定义域为(0,+∞),f ′(x )=a x +1=x +a x .当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0;若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减.(2)证明 当a =1时,要证xf (x )<e x ,即证x 2+x ln x <e x ,即证1+ln x x <e x x 2.令函数g (x )=1+ln x x ,则g ′(x )=1-ln x x 2.令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,所以g (x )max =g (e)=1+1e ,令函数h (x )=e x x 2,则h ′(x )=e x (x -2)x 3.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以h (x )min =h (2)=e 24.因为e 24-⎝⎛⎭⎫1+1e >0,所以h (x )min >g (x )max ,即1+ln x x <e x x 2,从而xf (x )<e x 得证.【例34】已知函数f (x )=e x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当x >-2时,求证:f (x )>ln(x +2).(1)解 由f (x )=e x ,得f (0)=1,f ′(x )=e x ,则f ′(0)=1,即曲线y =f (x )在点(0,f (0))处的切线方程为y -1=x -0,所以所求切线方程为x -y +1=0.(2)证明 设g (x )=f (x )-(x +1)=e x -x -1(x >-2),则g ′(x )=e x -1,当-2<x <0时,g ′(x )<0;当x >0时,g ′(x )>0,即g (x )在(-2,0)上单调递减,在(0,+∞)上单调递增,于是当x =0时,g (x )min =g (0)=0,因此f (x )≥x +1(当且仅当x =0时取等号),令h (x )=x +1-ln(x +2)(x >-2),则h ′(x )=1-1x +2=x +1x +2, 则当-2<x <-1时,h ′(x )<0,当x >-1时,h ′(x )>0,即有h (x )在(-2,-1)上单调递减,在(-1,+∞)上单调递增,于是当x =-1时,h (x )min =h (-1)=0,因此x +1≥ln(x +2)(当且仅当x =-1时取等号),所以当x >-2时,f (x )>ln(x +2).【隐零点问题】【例35】已知函数f (x )=ln x -ax (a ∈R ).(1)讨论函数f (x )的单调性;(2)证明不等式e x -2-ax >f (x )恒成立. 【解析】 (1) f ′(x )=1x -a =1-ax x (x >0),当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a ,所以当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0,f (x )单调递增; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增, 在⎝⎛⎭⎫1a ,+∞上单调递减.(2)设函数φ(x )=e x -2-ln x (x >0),则φ′(x )=e x -2-1x ,可知φ′(x )在(0,+∞)上单调递增.又由φ′(1)<0,φ′(2)>0知,φ′(x )=0在(0,+∞)上有唯一实数根x 0,且1<x 0<2, 则φ′(x 0)=02ex −-1x 0=0, 即02e x −=1x 0. 当x ∈(0,x 0)时,φ′(x )<0,φ(x )单调递减;当x ∈(x 0,+∞)时,φ′(x )>0,φ(x )单调递增,所以φ(x )≥φ(x 0)=02ex −-ln x 0, 结合02e x −=1x 0, 知x 0-2=-ln x 0,所以φ(x )≥φ(x 0)=1x 0+x 0-2=x 20-2x 0+1x 0=(x 0-1)2x 0>0, 则φ(x )=e x -2-ln x >0,即不等式e x -2-ax >f (x )恒成立.【极值点偏移问题】【例36】已知函数f (x )=a e x -x ,a ∈R .若f (x )有两个不同的零点x 1,x 2.证明:x 1+x 2>2.【解析】由f (x )=a e x -x =0,得x e x -a =0,令g (x )=x e x -a ,则g ′(x )=1-x e x ,由g ′(x )=1-x e x >0,得x <1;由g ′(x )=1-x e x <0,得x >1.所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,由于x 1,x 2是方程g (x )=0的实根,不妨设x 1<1<x 2,方法一 (对称化构造函数法)要证x 1+x 2>2, 只要证x 2>2-x 1>1.由于g (x )在(1,+∞)上单调递减,故只要证g (x 2)<g (2-x 1), 由于g (x 1)=g (x 2)=0,故只要证g (x 1)<g (2-x 1),令H (x )=g (x )-g (2-x )=x e x -2-x e 2-x (x <1), 则H ′(x )=1-x e x -1-x e 2-x =(e 2-x -e x )(1-x )e 2, 因为x <1,所以1-x >0,2-x >x ,所以e 2-x >e x ,即e 2-x -e x >0,所以H ′(x )>0,所以H (x )在(-∞,1)上单调递增. 所以H (x 1)<H (1)=0,即有g (x 1)<g (2-x 1)成立,所以x 1+x 2>2.方法二 (比值代换法)设0<x 1<1<x 2,由g (x 1)=g (x 2),得1212e e x x x x −−=,等式两边取对数得ln x 1-x 1=ln x 2-x 2.令t =x 2x 1>1,则x 2=tx 1,代入上式得ln x 1-x 1=ln t +ln x 1-tx 1,得x 1=ln t t -1,x 2=t ln t t -1. 所以x 1+x 2=(t +1)ln t t -1>2⇔ln t -2(t -1)t +1>0, 设g (t )=ln t -2(t -1)t +1(t >1),所以g ′(t )=1t -2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0, 所以当t >1时,g (t )单调递增, 所以g (t )>g (1)=0,所以ln t -2(t -1)t +1>0,故x 1+x 2>2.。
导数14 大题(单调性分类讨论)2-2022年全国一卷新高考数学题型细分汇编
第1页共22页导数——大题——单调性分类讨论:1.(2022年湖南衡阳八中J27)已知a ∈R ,函数()()ln 1f x x a x =+-,()xg x e =.2.(1)讨论()f x 的单调性;(①)3.(2)过原点分别作曲线()y f x =和()y g x =的切线1l 和2l ,求证:存在0a >,使得切线1l 和2l 的斜率互为倒数;4.(3)若函数()()2h x x a f x =+-的图象与x 轴交于两点()1,0A x ,()2,0B x ,且120x x <<.设012x x x λμ=+,其中常数λ、μ满足条件1λμ+=,0μλ≥>,试判断函数()h x 在点()()00,M x h x 处的切线斜率的正负,并说明理由.(单调性分类讨论,一次函数,中下;第二问,未;)5.(2022年湖南衡阳八中J28)设函数f (x )=ax 2-a -ln x ,其中a ∈R.6.(I )讨论f (x )的单调性;(②)7.(II )确定a 的所有可能取值,使得11()xf x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。
(单调性分类讨论,简单的二次函数,中下;第二问,未;)8.(2022年湖南永州J30)已知函数()()e xf x a x a =-∈R .9.(1)求()f x 的极值;(③)10.(2)若()21121212e e 0t tat at t t t t ==<<时,()1220t t t λλ-+>恒成立,求实数λ的取值范围.11.(单调性,极值,ex ,分类讨论,中下;第二问,未;)12.(2022年湖南岳阳一中J34)已知函数()()()ln 2f x a x x a R =+-∈.13.(1)讨论()f x 的单调性和最值;(④)14.(2)若关于x 的方程21e ln (0)2xm m m m x =->+有两个不等的实数根12,x x ,求证:122e e x x m+>.15.(单调性分类讨论,一次函数,中下;第二问,未;)1.(2022年广东中山三模J25)已知函数()e ()=-∈R x f x ax a .第2页共22页2.(1)讨论()f x 的单调性.(⑤)(单调性分类讨论,涉及ex ,中下;第二问,未;)3.(2)若0a =,证明:对任意的1x >,都有432()3ln f x x x x x ≥-+.1.(2022年山东泰安J10)已知函数()()ln f x g x x =-.(⑥)2.(1)若函数21()ln 2g x x ax a x =++,讨论()f x 的单调性.3.(2)若函数2211()ln 2g x x x x x x ⎛⎫=-+ ⎪⎝⎭,证明:1ln 2()2f x +>.4.(单调性分类讨论,二次函数可因式分解,中下;第二问,未;)5.(2022年山东J53)已知函数()()1ln 0f x a x x x=+>.6.(1)讨论函数()f x 的单调性;(⑦)(单调性分类讨论,一次函数,中下;第二问,未;)7.(2)若存在1x ,2x 满足120x x <<,且121x x =+,()()12f x f x =,求实数a 的取值范围.8.(2022年山东聊城一模J40)已知函数()()2ln ,f x ax x g x x nx m =-=-+.9.(1)讨论()f x 的单调性;(⑧)(单调性分类讨论,一次函数,中下;第二问,未;)10.(2)当104a <<时,若对于任意的0x >,都有()()0f x g x ,求证:2ln 4nm <<.11.(2022年山东菏泽一模J37)已知函数()1e xf x ax -=-.12.(1)讨论()f x 的单调性;(⑨)(单调性分类讨论,涉及ex ,中下;第二问,未;)13.(2)若()224a f x x -≥对于任意0x ≥恒成立,求实数a 的取值范围.1.(2022年山东猜想J54)已知函数()()1ln f x a x a R x=+∈,()21g x x x x =--.2.(1)讨论()f x 的单调性;(⑩)3.(2)若函数()()()F x f x g x =+存在两个极值点1x ,2x ,且曲线()y F x =在12x x x =第3页共22页方程为()y G x =,求使不等式()()F x G x <成立的x 的取值范围.4.(单调性分类讨论,一次函数,中下;第二问,未;)5.(2022年江苏南京六校联调J03)已知函数x a e x f x)1()(-+=,x x ax x g cos sin )(++=6.(1)求函数)(x f 的最值;(⑪)(单调性分类讨论,最值,涉及ex ,中下;第二问,未;)7.(2)令)()()(x g x f x h -=,求函数)(x h 在区间),4(+∞-π上的零点个数,并说明理由.4.(2022年广东深圳一模J23)已知函数()()22ln 121f x x a x ax =-+-+(a R ∈).5.(1)求函数()f x 的单调区间;(⑫)6.(2)若函数()f x 有两个零点1x ,2x .7.(i )求实数a 的取值范围;8.(ii )求证:1211a x x +>+(单调性分类讨论,二次函数可因式分解,中下;第二问,未;)①【答案】(1)答案见解析;(2)证明见解析;(3)函数()h x 在点()()00,M x h x 处的切线斜率为正.理由见解析.【分析】(1)求出导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间;(2)由导数求得2l 的斜率,从而得1l 的斜率为1e,设()f x 的切点坐标为00(,)x y ,利用导数几何意义得000()y f x x '=得出关于a 的方程,再引入新函数,利用导数证明此方程有正数解;(3)求出()h x ,()h x ',由12()()0h x h x -=得出用12,x x 表示a 的式子,0()h x '中就消去了a ,通过设12x t x =,得到关于t 的函数,而且(0,1)t ∈,利用不等式的性质和导数的知识确定其正负即可.(1)()f x 的定义域是(0,)+∞,1()f x a x'=-,0a ≤时,()0f x '>恒成立,()f x 在(0,)+∞递增,0a >时,10x a <<时,()0f x '>,1x a >时,()0f x '<,()f x 的增区间是1(0,a,减区间是1(,)a+∞.(2)1()f x a x'=-,()e x g x '=,设()g x 的切线方程是y kx =,则e x k =,显然0k >,ln x k =,切点为(ln ,)k k ,于是ln kk k=,解得e =k ,所以2l 的斜率为e ,于是1l 的斜率为1e设()f x 的切点坐标为00(,)x y ,由011e a x -=,0e e 1x a =+,又00()1e f x x =,所以e e 1eln (1)e 1e 1e e 1a a a a +-=⨯+++,整理得ln(e 1)a a =+,设()ln(e 1)G x x x =+-,e e 1e ()1e 1e 1xG x x x --'=-=++,当e 10e x -<<时,()0G x '>,()G x 递增,而(0)0G =,所以e 1()0eG ->,e 1ex ->时,()0'<G x ,()G x 递减,又343(e )ln(e 1)e 580G =+-<-<,所以存在30e 1(,e )ex -∈,使得0()0G x =,因此关于a 的方程ln(e 1)a a =+有正数解.所以存在0a >,使得切线1l 和2l 的斜率互为倒数;(3)2()ln h x x x ax =-+,1()2h x x a x'=-+,因为函数()()2h x x a f x =+-的图象与x 轴交于两2点()1,0A x ,()2,0B x ,且120x x <<.所以2111122222()ln 0()ln 0h x x x ax h x x x ax ⎧=-+=⎨=-+=⎩,两式相减得:22121212(ln ln )()0x x x x a x x ---+-=,121212ln ln ()x x a x x x x -=-+-,1λμ+=01212121()()2()h x h x x a x x x x λμλμλμ''=+=-+++121212ln ln ()x x x x x x -=-+-121212()x x x x λμλμ-+++12121212ln ln 1(21)()x x x x x x x x λλμ-=--+--+因为1λμ+=,0μλ≥>,所以210λ-≤,又120x x <<,120x x -<,所以12(21)()0x x λ--≥,下面考虑121212ln ln 1x x x x x x λμ---+即112212ln x x x x x x λμ--+的符号,令12(0,1)x t x =∈,1122121ln ln x x x t t x x x t λμλμ---=-++,设1()ln t H t t t λμ-=-+,(0,1)t ∈,222222222221(1)(21)()()()()()t t t t t t H t t t t t t t λμλλλμμλλμμλμλμλμ+--+-+-++'=-==+++2222(1)()()t t t t λμλμ--=+,因为01,0t λμ<<<≤,所以10t -<,2220t λμ-<,所以()0H t '>在(0,1)上恒成立,所以()H t 在(0,1)上是增函数,所以()(1)0H t H <=,即112212ln0x x xx x x λμ--<+,又120x x -<,所以121212ln ln 10x x x x x x λμ-->-+,所以12121212ln ln 1(21)()0x x x x x x x x λλμ---+->-+,即0()0h x '>,所以函数()h x 在点()()00,M x h x 处的切线斜率为正.【点睛】本题考查用导数求函数的单调区间,导数的几何意义,研究方程根的分布等等,解题关键是掌握转化与化归思想,方程有正数解问题转化为函数有正的零点,这就可结合零点存在定理用导数知识来研究函数的性质,判断函数值的正负,通过换元法,设12x t x =,化不确定为确定,化二元为一元:(0,1)t ∈,转化为研究函数()H t 的正负.本题对学生的逻辑思维能力,运算求解能力要求较高,属于困难题.②22.(I )2121'()20).ax f x ax x x x-=-=>(0a ≤当时,'()f x <0,()f x 在0+∞(,)内单调递减.0a >当时,由'()f x =0,有2x a=此时,当x ∈12a(时,'()f x <0,()f x 单调递减;当x ∈1+)2a∞时,'()f x >0,()f x 单调递增.(II )令()g x =111ex x --,()s x =1e x x --.则'()s x =1e1x --.而当1x >时,'()s x >0,所以()s x 在区间1+)∞(,内单调递增.又由(1)s =0,有()s x >0,从而当1x >时,()f x >0.当0a ≤,1x >时,()f x =2(1)ln 0a x x --<.故当()f x >()g x 在区间1+)∞(,内恒成立时,必有0a >.当102a <<时,2a由(I )有)(1)02f f a<=,从而(02g a>,所以此时()f x >()g x 在区间1+)∞(,内不恒成立.当12a ³时,令()()()(1)h x f x g x x =-³,当1x >时,3212222111112121()2e 0xx x x x h x ax x x x x x x x x --+-+¢=-+->-+-=>>,因此,()h x 在区间(1,)+¥单调递增.又因为(1)=0h ,所以当1x >时,()()()0h x f x g x =->,即()()f x g x >恒成立.综上,1[,)2a Î+¥③【答案】(1)答案见解析(2)1,2⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)对()f x 求导得()e 1xf x a '=-,分别讨论0a ≤和0a >时,求不等式()0f x '>,()0f x '<的解集,再由极值的定义可求得结果;(2)()1220t t t λλ-+>恒成立,转化为()()()12121221122112++21122112e e ===e +e e e e e e +e t t t t t t t t t t t t t t t t t t t t a t t λ---->+--对任意12101lnt t a <<<<恒成立,进一步令21t t m -=,e e m m mλ->-对任意0m >恒成立,令()e e 0m m m h m λ-=-->,分类讨论120λ-≥和120λ-<是否满足()min 0h m >,即可得出答案.【小问1详解】解:函数()e xf x a x =-的定义域为R ,()e 1xf x a '=-,当0a ≤时,()0f x '<在x ∈R 恒成立,()f x 在x ∈R 单调递减,故()f x 无极值;当0a >时,令()e 10xf x a '=-=,则1lnln x a a==-,(),ln x a ∈-∞-时,()0f x '<,()f x 在(),ln x a ∈-∞-单调递减;()ln ,x a ∈-+∞时,()0f x '>,()f x 在()ln ,x a ∈-+∞单调递增;故()f x 在1lnln x a a==-取极小值,且1ln 1ln f a a ⎛⎫=+ ⎪⎝⎭,无极大值综上,当0a ≤时,()f x 无极值;当0a >时,()f x 在1ln ln x a a==-取极小值,且1ln 1ln f a a ⎛⎫=+ ⎪⎝⎭,无极大值.【小问2详解】解:∵()21121212e e 0t t at at t t t t ==<<,∴2121e e 1t t a a t t ==,即22e 0t a t -=且11e 0t a t -=∴()111e 0tf t a t =-=且()222e 0tf t a t =-=,即1t ,2t 为()f x 的两个零点∴由(1)知,当0a >时,()f x 在ln x a =-取极小值,且()ln 1ln 0f a a -=+<,故10ea <<又∵()1e 10f a =-<,∴12101ln t t a<<<<,又∵()1220t t t λλ-+>恒成立,∴1212t t t t λ>+对任意12101ln t t a<<<<恒成立,∵1212e 0e 0t t a t a t ⎧-=⎨-=⎩,∴()2121e e t tt t a +=+,12+221e t t t t a =且2121e e t tt t a -=-∴()()()12121221122112++21122112e e ===e +e e e e e e +e t t t t t t t t t t t t t t t t t t t t a t t λ---->+--对任意12101ln t t a<<<<恒成立∴令21t t m -=,则0m >,e e m mmλ->-对任意0m >恒成立,则0λ>.∴e e 0m mmλ--->对任意0m >恒成立令()e e 0m mm h m λ-=-->,则()1e +e m m h m λ-'=-当120λ-≥,即12λ≥时,()1e +e 0m m h m λ-'=->恒成立故()h m 在()0,m ∈+∞为单调递增函数,又∵()00h =,∴()0h m >对0m >恒成立当120λ-<,即102λ<<时,()h m '为单调增函数,又∵()1020h λ'=-<,1ln 0h λλ⎛⎫'=> ⎪⎝⎭,∴010,ln m λ⎛⎫∃∈ ⎪⎝⎭使()00h m '=,当()00,m m ∈时,()0h m ¢<,故()h m 在()00,m m ∈单调递减∴当()00,m m ∈时,()()00h m h <=,不合题意综上,实数λ的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.【点睛】本题考查利用导数判断函数的单调性求函数的极值及导数在恒成立求参问题中的应用,考查学生的运算求解能力和转化与化归能力.属于综合型、难度大型试题.④【答案】(1)见解析(2)见解析【解析】【分析】(1)求出函数的导数,分类讨论得到导数的符号后可得函数的单调性和最值.(2)利用同构可得原方程即为2e x x m +=有两个不同的实数根12,x x ,结合构造法可证122e e x x m+>成立.【小问1详解】()2122a a x f x x x --'=-=++,其中2x >-若0a ≤,则()0f x ¢<在()2,-+∞上恒成立,故()f x 在()2,-+∞上为减函数,故()f x 无最值.若0a >,当()2,2x a ∈--时,()0f x ¢>;当()2,x a ∈-+∞时,()0f x ¢<;故()f x 在()2,2a --上为增函数,在()2,a -+∞上为减函数,故()max ()2ln 2f x f a a a a =-=-+,()f x 无最小值.【小问2详解】方程21e ln (0)2xm m m m x =->+即为()e ln 2ln 2x m x m x x ++=+++,故()ln ln eln e 2ln 2x mx m x x +++=+++,因为ln y x x =+为()0,+∞上的增函数,所以ln 2e e x m x x m ++==所以关于x 的方程21e ln (0)2xm m m m x =->+有两个不等的实数根12,x x 即为:2e x x m +=有两个不同的实数根12,x x .所以12122e ,2e x xx m x m +=+=,所以()1212e -exx x x m -=,不妨设12x x >,12t x x =-,故()()12121212e e e e e e x x x x x x x x m -+=+-,要证:122e e x x m+>即证()()1212122e e e e x x x x x x m m -+>-,即证()121212e12e 1x x x x x x ---+>-,即证()()e 120e 1ttt t +>>-,即证()()e 12e 20ttt t +>->,设()()e 12e 2tts t t =+-+,则()()e 1e 2e 1e 1t t t ts t t t '=++-=-+,故()e 0ts t t ''=>,所以()s t '在()0,+∞上为增函数,故()()00s t s ''>=,所以()s t 在()0,+∞上为增函数,所以()()00s t s >=,故122e e x xm+>成立.【点睛】思路点睛:对于较为复杂的与指数、对数有关的方程,可以考虑利用同构将其转化为简单的方程,从而利用常见的极值点偏移的方法来处理零点不等式.⑤【答案】(1)单调性讨论见解析(2)证明见解析【解析】【分析】(1)求导,根据a 的符号分类讨论即可;(2)考虑x 的取值范围,采用缩放法可以证明.【小问1详解】()'e x f x a =-,当0a ≤时,()'fx >,()f x 是单调递增的;当0a >时,令()'e 0x f x a =-=,得到0ln x a =,当(),ln x a ∈-∞时,()'f x <,()f x 单调递减;当()ln ,x a ∈+∞时,()'f x >,()f x 单调递增;【小问2详解】由题意,1x >时,()4323ln f x x x x x ≥-+等价于()2e 3ln 1x x x x x x≥-+,设()()()'2e 1e ,x x x h x h x x x -==,当1x >时,()'0h x >,()h x 单调递增,()()1e h x h >=…①,设()()'1ln 1,10k x x x k x x=--=->,()k x ∴是增函数,()()ln 110k x x x k =-->=,即1ln ,ln 1x x x x ->->-,()2223ln 1311231x x x x x x x x -+>+-+=-++,()()223ln 1231x x x x x x x -+>-++,令()()23223123p x x x x x x x =-++=-++,()'2661p x x x =-++=66066061212x x ⎛⎫⎛⎫+--- ⎪⎪ ⎪⎪⎝⎭⎝⎭,当66012x +>时,()'0p x <,当6606601212x +<<时,()'0p x >,66012x +∴=时,()p x 取最大值566013126+=⨯+,608<,566015141382.53126312618∴⨯+<⨯+=<,即()p x 的最大值小于2.5,由①可知,()e h x > 2.5>,∴当1x >时,()()()h x p x k x >>,即()4323ln f x x x x x≥-+;【点睛】本题的第二问要从1x >考虑,因为e xx的最小值就是在1x =取得,对于原不等式,由于导数计算过于复杂,因此考虑对ln x 进行缩放,使得计算比较简单.⑥【答案】(1)当1a ≥时,f (x )在(0,)+∞上单调递增;当1a <时,f (x )在(0,1-a )上单调递减,在(1-a ,+∞)上单调递增;(2)证明见解析【解析】【分析】(1)由题意可得21()(1)ln 2f x x ax a x =++-,求导,分1a ≥和1a <讨论即可;(2)令()ln h x x x =-,利用导数确定()h x 的单调性并求出最小值,再令2()ln ,0x x x x ϕ=->,利用导数确定()ϕx 的单调性并求出最小值即可得证.【小问1详解】解:因为,所以21()(1)ln 2f x x ax a x =++-,()f x 的定义域为(0,)+∞,1(1)(1)()a x x a f x x a x x-++-'=++=.当1a ≥时,()0,()f x f x ≥'在(0,)+∞上单调递增.当1a <时,若(0,1)x a ∈-,则()0,()f x f x <'单调递减;若(1,)x a ∈-+∞,则()0,()f x f x >'单调递增.综上所述:当1a ≥时,f (x )在(0,)+∞上单调递增;当1a <时,f(x)在(0,1-a )上单调递减,在(1-a,+∞)上单调递增;【小问2详解】证明:211()(ln )ln 2f x x x x x x x ⎡⎤=-+-⎢⎥⎣⎦.设()ln h x x x =-,则1()x h x x=-'.当(0,1)x ∈时,()0,()h x h x <'单调递减;当(1,)x ∈+∞时,()0,()h x h x >'单调递增.所以min ()(1)1,ln 1h x h x x ==-≥,因此222211111(ln )2222x x x x x x x x x x ⎡⎤⎛⎫-+≥+≥⨯= ⎪⎢⎥⎣⎦⎝⎭,当且仅当1x =时,等号成立.设2()ln ,0x x x x ϕ=->,则221()x x xϕ-'=.当20,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0,()x x ϕϕ<'单调递减:当2,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0,()x x ϕϕ>'单调递增.因此min2121ln 2()ln 2222x ϕϕ⎛⎫+==-= ⎪ ⎪⎝⎭,从而1ln 2()()2f x x ϕ+≥≥,则1ln 2()2f x +≥,因为212≠,所以1ln 2()2f x +≥中的等号不成立,故1ln 2()2f x +>.⑦【答案】(1)当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x 在10,a ⎛⎫⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;(2)()2,+∞.【解析】【分析】(1)根据a 的正负性,结合导数的性质分类讨论求解即可;(2)根据已知等式构造函数()1ln h t a t t t=+-,利用导数的性质,结合一元二次方程的求解根公式判断该函数的单调性,再通过构造新函数,利用导数的性质进行求解即可.【小问1详解】函数()f x 的定义域为()0,∞+,()21ax f x x -'=.当0a ≤时,()0f x <′,()f x 在()0,∞+上单调递减;当0a >时,令()0f x <′,得10x a <<,令()0f x >′,得1x a>,所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述,当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;【小问2详解】()()21212121211111ln ln ln 0x f x f x a x a x a x x x x x =⇒+=+⇒+-=,又121x x =+,则21212212121121ln 0ln 0x x x x x x x x a a x x x x x x +++-=⇒+-=.令211x t x =>,即方程1ln 0a t t t+-=在()1,+∞上有解.令()1ln h t a t t t=+-,()1,t ∈+∞,则()2211a t t at t h t t t⎛⎫-+ ⎪-+-⎝⎭'==,()1,t ∈+∞.12t t+>,当2a ≤时,()0h t '<,()h t 在()1,+∞上单调递减,又()10h =,则()0h t <在()1,t ∈+∞上恒成立,不合题意;当2a >时,240a ->,令210t at -+-=,可知该方程有两个正根,因为方程两根之积为1且1t >,所以242a a t +-=.当241,2a a t ⎛⎫-∈ ⎪ ⎪⎝⎭时,()0h t '>,当24,2a a t ⎛⎫+-∈+∞⎪ ⎪⎝⎭时,()0h t '<;则241,2a a t ⎛⎫-∈ ⎪ ⎪⎝⎭时,()()10h t h >=,而()()221ee 1e 2eaa a a h aa a =+-<+->.令()()21e2xx x x ϕ=+->,则()2e x x x ϕ'=-,令()()m x x ϕ=',()2e 0xm x '=-<,则()x ϕ'在()2,+∞上单调递减,()()224e 0x ϕϕ'<'=-<,则()x ϕ在()2,+∞上单调递减,()()225e 0x ϕϕ<=-<,即()e0ah <,故存在204,e 2a a a t ⎛⎫+-∈⎪ ⎪⎝⎭,使得()00h t =,故2a >满足题意.综上所述,实数a 的取值范围是()2,+∞.【点睛】关键点睛:根据等式的形式构造新函数,再根据不等式的形式构造新函数是解题的关键.⑧【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求出()1()0f x a x x'=->,分0a 和0a >两种情况讨论即可得答案;(2)由(1)根据函数零点存在定理存在12110,,,x x a a ∞⎛⎫⎛⎫∈∈+ ⎪ ⎪⎝⎭⎝⎭,使得()()120f x f x ==,由对于任意的0x >,都有()()0f x g x ,可得12,x x 也是函数()g x 的两个零点,即12,x x 是方程20x nx m -+=的根,所以1212,x x n x x m +==,又1122ln ,ln ax x ax x ==,所以()()121212ln ln ln ln m x x x x a x x ==+=+,所以2ln 4nm <<等价于()121224x x a x x +<+<,由104a <<,不等式右边易证,左边要证122x x a +>,即证212x x a >-,构造函数2()()p x f x f x a ⎛⎫=-- ⎪⎝⎭即可证明.【小问1详解】解:()f x 的定义域为(0,)+∞,1()f x a x'=-,当0a 时,对于任意的0x >,都有()0f x '<,所以()f x 在(0,)+∞内单调递减;当0a >时,令()0f x '>,解得1x a >;令()0f x '<,解得10x a<<,所以()f x 在10,a ⎛⎫ ⎪⎝⎭内单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭内单调递增;【小问2详解】证明:因为当10,4a ⎛⎫∈ ⎪⎝⎭时,()f x 在10,a ⎛⎫⎪⎝⎭内单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭内单调递增,又21111ln 1ln 40,(1)0,2ln 0f a f a f a a a a ⎛⎫⎛⎫=+<-<=>=+> ⎪ ⎪⎝⎭⎝⎭,所以存在12110,,,x x a a ∞⎛⎫⎛⎫∈∈+ ⎪ ⎪⎝⎭⎝⎭,使得()()120f x f x ==,且当()10,x x ∈时,()0f x >,当()12,x x x ∈时,()0f x <,当()2,x x ∈+∞时,()0f x >,因为对于任意的0x >,都有()()0f x g x ,所以12,x x 也是函数()g x 的两个零点,即12,x x 是方程20x nx m -+=的根,所以1212,x x n x x m +==,又因为1122ln ,ln ax x ax x ==,所以()()121212ln ln ln ln m x x x x a x x ==+=+,所以2ln 4n m <<等价于()121224x x a x x +<+<,因为104a <<,所以()12124x x a x x ++<,下面证明:122x x a +>.要证122x x a +>,即证212x x a>-,因为2121,,,()x x f x a a ⎛⎫-∈+∞ ⎪⎝⎭在1,a ⎛⎫+∞ ⎪⎝⎭内单调递增,所以只需证()212f x f x a ⎛⎫>-⎪⎝⎭,又因为()()12f x f x =,所以也只需证()112f x f x a ⎛⎫>-⎪⎝⎭,设2()()p x f x f x a ⎛⎫=--⎪⎝⎭,则2()()p x f x f x a ⎛⎫'='+'- ⎪⎝⎭222a a x x a =-⎛⎫- ⎪⎝⎭,因为221x x a a⎛⎫-< ⎪⎝⎭,所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0p x '<,所以()p x 在10,a ⎛⎤⎥⎝⎦上单调递减,又因为10p a ⎛⎫=⎪⎝⎭,所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0p x >,即2()f x f x a ⎛⎫>- ⎪⎝⎭,因为110,x a ⎛⎫∈ ⎪⎝⎭,所以()112f x f x a ⎛⎫>- ⎪⎝⎭,所以122x x a +>成立,即()122a x x +>,因此2ln 4n m <<.【点睛】关键点点睛:本题(2)问解题的关键是根据函数零点存在定理判断存在12110,,,x x a a ∞⎛⎫⎛⎫∈∈+ ⎪ ⎪⎝⎭⎝⎭,使得()()120f x f x ==,从而可得12,x x 也是函数()g x 的两个零点,即12,x x 是方程20x nx m -+=的根,进而将欲证不等式2ln 4nm <<等价转化为证明()121224x x a x x +<+<.⑨【答案】(1)当0a ≤时,()f x 在(),-∞+∞上单调递增;当0a >时,()f x 在(),1ln a -∞+上单调递减,在()1ln ,a ++∞上单调递增(2)122e24ln 2a --≤≤-【解析】【分析】(1)分类讨论0a ≤与0a >两种情况,函数求导即可判断函数的增减区间.(2)将函数代入后化简即可将式子转化为1122e e 2x x ax x ----≤≤-+,对两侧函数分别求导求出最值即可求出实数a 的取值范围.【小问1详解】()1e x f x a-='-①当0a ≤时,()0f x '>,()f x 在(),-∞+∞上单调递增;②当0a >时,令()1e0x f x a --'==,1ln x a =+,当(),1ln x a ∈-∞+时,()0f x '<,()f x 在(),1ln a -∞+上单调递减;当()1ln ,x a ∈++∞时,()0f x '>,()f x 在()1ln ,a ++∞上单调递增;【小问2详解】由()224a f x x -≥,得2212e 42x a a x ax x -⎛⎫≥++=+ ⎪⎝⎭,对于任意0x ≥恒成立,因此1122ee 2x x ax x ----≤≤-+,记()12ex h x x -=-+,由()1211e 02x h x -=-+=',得12ln 2x =+,当[]0,12ln 2x ∈+时,()h x 单调递减,当[]12ln 2,x ∈++∞时,()h x 单调递增,所以()min 12ln 2h x =-,因此24ln 2a ≤-;记()12e x t x x -=--,易知()t x 在调递减,所以()()12max0e t x t -==-,所以122e a -≥-;综上,122e24ln 2a --≤≤-.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.⑩【答案】(1)答案见解析;(2)2a ⎛ ⎝.【解析】【分析】(1)先对函数求导,然后结合导数与单调性关系对a 进行分类讨论,确定导数符号,进而确定函数的单调性;(2)先对()F x 求导,然后结合极值存在条件可转化为()0F x '=有两个不等正实数解,结合二次方程根的存在条件及方程的根与系数关系及导数几何意义求出切线方程,构造函数()()()h x F x G x =-,结合导数与单调性关系进而可求.【详解】解:(1)()21-='ax f x x ,当0a ≤时,()0f x '<恒成立,函数()f x 在()0,∞+上单调递减,当0a >时,易得当1x a >时,()0f x '>,当10x a<<时,()0f x '<,故()f x 在1,a ⎛⎫+∞⎪⎝⎭上单调递增,在10,a ⎛⎫⎪⎝⎭上单调递减,(2)()()()2ln F x f x g x a x x x =+=+-,所以()2221a x x aF x x x x-+'=+-=,0x >,因为()()()F x f x g x =+存在两个极值点1x ,2x ,所以()220x x aF x x-+'==有两个不等正实数解,即220x x a -+=有两个不等式正根,所以18002a a∆=->⎧⎪⎨>⎪⎩,解得108a <<,因为122a x x =,122a x x x ==所以212a F a '=-,ln 22222a a a a a F =+-所以曲线()y F x =在12x x x =处的切线方程为()ln 22122222a a a a a y a x ⎛⎛-+=-- ⎝⎝,即()()321ln 222a a a G x y a x ==-+-,令()()()23ln 22ln 222a a a h x F x G x x a x ax =-=+-+-,()2222220x a x ax ah x xx-+'==>,故()h x 在()0,∞+上单调递增,且02a h =,故当02ax <<时,()0h x <,即()()F x G x <,故x 的范围2a ⎛ ⎝.【点睛】关键点点睛:解不等式比较常用的方法是构造新函数,研究函数的单调性,明确函数的零点,即可明确不等式何时成立.⑪解析:(1)1)(-+='a e x f x,(1)当−1≥0,即时,得'x >0恒成立,此时函数)(x f 在R 上单调递增,故函数)(x f 在R 上无最大最小值………………………2分○2当−1<0,即<1时,由'x =0,解得=l?(1−p ,当>l?(1−p 时,'x >0,f (x )单调递增当<l?(1−p 时,'x <0,f (x )单调递减所以=l?(1−p 时,f (x )取最小值即)1ln()1(1))1(ln()(min a a a a f x f --+-=-=………………………4分(2)x x e x g x f x h x-+-=-=4sin(2)()()(π,则14cos(2)(-+-='πx e x h x ○1当)43,4(ππ-∈x 时,由)4cos(π+=x y 在区间)43,4(ππ-上单调递减,知:)(x h '在)43,4(ππ-上单调递增,且01)0(<-='h ,01243(43>-+='ππe h ,知:函数)(x h '在)43,4(ππ-上有唯一的零点)43,0(0π∈x 。
(完整版)导数练习题(含答案)
导数概念及其几何意义、导数的运算一、选择题:1 已知,若,则a 的值等于32()32f x ax x =++(1)4f '-=ABCD1931031631332 已知直线与曲线,则b 的值为1y kx =+3y x ax b =++切于点(1,3)A3B-3C5D-53 函数的导数为2y x a a =+2()(x-)ABCD 222()x a -223()x a +223()x a -222()x a +4 曲线在点处的切线与坐标轴围成的三角形的面积为313y x x =+4(1,)3A B C D192913235已知二次函数的导数为,对于任意实数x ,有,则2y ax bx c =++(),(0)0f x f ''>()0f x ≥的最小值为(1)(0)f f 'A3BC 2 D52326 已知函数在处的导数为3,则的解析式可能为()f x 1x =()f x A B2()(1)3(1)f x x x =-+-()2(1)f x x =-CD 2()2(1)f x x =-()1f x x =-7 下列求导数运算正确的是AB211(1x x x'+=+21(log )ln 2x x '=CD 3(3)3log x x e '=⋅2(cos )2sin x x x x'=-8 曲线在处的切线的倾斜角为32153y x x =-+1x =AB C D6π34π4π3π9 曲线在点处的切线方程为3231y x x =-+(1,1)-A BCD 34y x =-32y x =-+43y x =-+45y x =-10设函数的图像上的点处的切线斜率为k ,若,则函数的sin cos y x x x =+(,)x y ()k g x =()k g x =图像大致为11 一质点的运动方程为,则在一段时间内相应的平均速度为253s t =-[1,1]t +∆ABCD 36t ∆+36t -∆+36t ∆-36t -∆-12 曲线上的点到直线的最短距离是()ln(21)f x x =-230x y -+=ABCD 013 过曲线上的点的切线平行于直线,则切点的坐标为32y x x =+-0P 41y x =-0P A B(0,1)(1,0)-或(1,4)(1,0)--或CD (1,4)(0,2)---或(2,8)(1,0)或14 点P 在曲线上移动,设点P 处切线的倾斜角为,则角的取值范围是323y x x =-+ααABC D [0,]2π3[0,)[,)24πππ 3[,)4ππ3(,]24ππ二、填空题15 设是二次函数,方程有两个相等实根,且,则的表达式()y f x =()0f x =()22f x x '=+()y f x =是______________16 函数的导数为_________________________________2sin x y x=17 已知函数的图像在点处的切线方程是,则_________()y f x =(1,(1))M f 122y x =+(1)(1)f f '+=18 已知直线与曲线有公共点,则k 的最大值为___________________________y kx =ln y x =三、解答题19 求下列函数的导数(1)(2) (3)(4) 1sin 1cos xy x-=+y =y =+tan y x x =⋅20 已知曲线与,直线与都相切,求直线的方程21:C y x =22:(2)C y x =--l 12,C C l 21 设函数,曲线在点处的切线方程为()bf x ax x=-()y f x =(2,(2))f74120x y --=(1)求的解析式()f x(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并()y f x =0x =y x =求此定值。
2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析
2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知曲线y=f(x)在x=5处的切线方程是y=-x+5,则f(5)与f′(5)分别为() A.5,-1B.-1,5C.-1,0D.0,-1答案D解析由题意可得f(5)=-5+5=0,f′(5)=-1,故选D.2.已知函数f(x)=x sin x+ax,且f1,则a等于()A.0B.1C.2D.4答案A解析∵f′(x)=sin x+x cos x+a,且f1,∴sin π2+π2cosπ2+a=1,即a=0.3.若曲线y=mx+ln x在点(1,m)处的切线垂直于y轴,则实数m等于() A.-1B.0C.1D.2答案A解析f(x)的导数为f′(x)=m+1x,曲线y=f(x)在点(1,m)处的切线斜率为k=m+1=0,可得m=-1.故选A.4.已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2020(x)等于()A.-sin x-cos x B.sin x-cos xC.-sin x+cos x D.sin x+cos x答案B解析∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,∴f3(x)=f2′(x)=-sin x-cos x,∴f4(x)=f3′(x)=-cos x+sin x,∴f5(x)=f4′(x)=sin x+cos x=f1(x),∴f n(x)是以4为周期的函数,∴f2020(x)=f4(x)=sin x-cos x,故选B.5.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x(其中e为自然对数的底数),则f′(e)等于()A .1B .-1C .-eD .-e -1答案D解析已知f (x )=2xf ′(e)+ln x ,其导数f ′(x )=2f ′(e)+1x,令x =e ,可得f ′(e)=2f ′(e)+1e ,变形可得f ′(e)=-1e ,故选D.6.函数y =12x 2-ln x 的单调递减区间为()A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)答案B解析由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].7.(2019·沈阳东北育才学校模拟)已知定义在(0,+∞)上的函数f (x )=x 2+m ,g (x )=6ln x -4x ,设两曲线y =f (x )与y =g (x )在公共点处的切线相同,则m 值等于()A .5B .3C .-3D .-5答案D解析f ′(x )=2x ,g ′(x )=6x -4,令2x =6x-4,解得x =1,这就是切点的横坐标,代入g (x )求得切点的纵坐标为-4,将(1,-4)代入f (x )得1+m =-4,m =-5.故选D.8.(2019·新乡模拟)若函数f (x )=a e x +sin x 在-π2,0上单调递增,则a 的取值范围为()B .[-1,1]C .[-1,+∞)D .[0,+∞)答案D解析依题意得,f ′(x )=a e x +cos x ≥0,即a ≥-cos xe x 对x ∈-π2,0恒成立,设g (x )=-cos xe x ,x ∈-π2,0,g ′(x )g ′(x )=0,则x =-π4,当x ∈-π2,-g ′(x )<0;当x -π4,0时,g ′(x )>0,故g (x )max =g (0,则a ≥0.故选D.9.(2019·河北衡水中学调研)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为()A.2000π9B.4000π27C .81πD .128π答案B解析小圆柱的高分为上下两部分,上部分同大圆柱一样为5,下部分深入底部半球内设为h (0<h <5),小圆柱的底面半径设为r (0<r <5),由于r ,h 和球的半径5满足勾股定理,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导V ′=-π(3h -5)·(h +5),当0<h ≤53时,体积V 单调递增,当53<h <5时,体积V 单调递减.所以当h =53时,小圆柱体积取得最大值,V max ==4000π27,故选B.10.(2019·凉山诊断)若对任意的0<x 1<x 2<a 都有x 2ln x 1-x 1ln x 2<x 1-x 2成立,则a 的最大值为()A.12B .1C .eD .2e答案B解析原不等式可转化为1+ln x 1x 1<1+ln x 2x 2,构造函数f (x )=1+ln x x ,f ′(x )=-ln xx2,故函数在(0,1)上导数大于零,单调递增,在(1,+∞)上导数小于零,单调递减.由于x 1<x 2且f (x 1)<f (x 2),故x 1,x 2在区间(0,1)上,故a 的最大值为1,故选B.11.(2019·洛阳、许昌质检)设函数y =f (x ),x ∈R 的导函数为f ′(x ),且f (x )=f (-x ),f ′(x )<f (x ),则下列不等式成立的是(注:e 为自然对数的底数)()A .f (0)<e -1f (1)<e 2f (2)B .e -1f (1)<f (0)<e 2f (2)C .e 2f (2)<e -1f (1)<f (0)D .e 2f (2)<f (0)<e -1f (1)答案B解析设g (x )=e -x f (x ),∴g ′(x )=-e -x f (x )+e -x f ′(x )=e -x (f ′(x )-f (x )),∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )为减函数.∵g (0)=e 0f (0)=f (0),g (1)=e -1f (1),g (-2)=e 2f (-2)=e 2f (2),且g (-2)>g (0)>g (1),∴e -1f (1)<f (0)<e 2f (2),故选B.12.(2019·廊坊省级示范高中联考)已知函数f (x )=-13x 3-12x 2+ax -b 的图象在x =0处的切线方程为2x -y -a =0,若关于x 的方程f (x 2)=m 有四个不同的实数解,则m 的取值范围为()A.-323,-B.-2-323,-2答案D解析由函数f (x )=-13x 3-12x 2+ax -b ,可得f ′(x )=-x 2-x +a ,则f (0)=-b =-a ,f ′(0)=a =2,则b =2,即f (x )=-13x 3-12x 2+2x -2,f ′(x )=-x 2-x +2=-(x -1)(x +2),所以函数f (x )在(-2,1)上单调递增,在(-∞,-2),(1,+∞)上单调递减,又由关于x 的方程f (x 2)=m 有四个不同的实数解,等价于函数f (x )的图象与直线y =m 在x ∈(0,+∞),上有两个交点,又f (0)=-2,f (1)=-56,所以-2<m <-56,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·陕西四校联考)已知函数f (x )=ln x +2x 2-4x ,则函数f (x )的图象在x =1处的切线方程为________________.答案x -y -3=0解析∵f (x )=ln x +2x 2-4x ,∴f ′(x )=1x +4x -4,∴f ′(1)=1,又f (1)=-2,∴所求切线方程为y -(-2)=x -1,即x -y -3=0.14.已知函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则实数a 的取值范围是________.答案-1e2,解析f ′(x )=ln x +1x (x -a )=ln x +1-ax,函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则f ′(x )有两个变号零点,即f ′(x )=0有两个不等实根,即a =x (ln x +1)有两个不等实根,转化为y =a 与y =x (ln x +1)的图象有两个不同的交点.令g (x )=x (ln x +1),则g ′(x )=ln x +2,令ln x +2=0,则x =1e 2,即g (x )=x (ln x +1)[g (x )]min =-1e 2,当x →0时,g (x )→0,当x →+∞时,f (x )→+∞,所以结合f (x )的图象(图略)可知a -1e 2,15.(2019·山师大附中模拟)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.答案-1,12解析由函数f (x )=x 3-2x +e x -1e x f ′(x )=3x 2-2+e x +1e x ≥-2+e x +1ex ≥-2+2e x ·1e x=0,当且仅当x =0时等号成立,可得f (x )在R 上递增,又f (-x )+f (x )=(-x )3+2x +e -x -e x +x 3-2x +e x -1e x 0,可得f (x )为奇函数,则f (a -1)+f (2a 2)≤0,即有f (2a 2)≤0-f (a -1)=f (1-a ),即有2a 2≤1-a ,解得-1≤a ≤12.16.(2019·湖北黄冈中学、华师附中等八校联考)定义在R 上的函数f (x )满足f (-x )=f (x ),且对任意的不相等的实数x 1,x 2∈[0,+∞)有f (x 1)-f (x 2)x 1-x 2<0成立,若关于x 的不等式f (2mx -ln x-3)≥2f (3)-f (-2mx +ln x +3)在x ∈[1,3]上恒成立,则实数m 的取值范围是______________.答案12e ,1+ln 36解析∵函数f (x )满足f (-x )=f (x ),∴函数f (x )为偶函数.又f (2mx -ln x -3)≥2f (3)-f (-2mx +ln x +3)=2f (3)-f (2mx -ln x -3),∴f (2mx -ln x -3)≥f (3).由题意可得函数f (x )在(-∞,0)上单调递增,在[0,+∞)上单调递减.∴|2mx -ln x -3|≤3对x ∈[1,3]恒成立,∴-3≤2mx -ln x -3≤3对x ∈[1,3]恒成立,即ln x2x ≤m ≤ln x +62x对x ∈[1,3]恒成立.令g (x )=ln x2x ,x ∈[1,3],则g ′(x )=1-ln x 2x 2∴g (x )在[1,e ]上单调递增,在(e,3]上单调递减,∴g (x )max =g (e)=12e .令h (x )=ln x +62x ,x ∈[1,3],则h ′(x )=-5-ln x2x 2<0,∴h (x )在[1,3]上单调递减,∴h (x )min =h (3)=6+ln 36=1+ln 36.综上可得实数m 的取值范围为12e ,1+ln 36.三、解答题(本大题共70分)17.(10分)(2019·辽宁重点高中联考)已知函数f (x )=x 3+mx 2-m 2x +1(m 为常数,且m >0)有极大值9.(1)求m 的值;(2)若斜率为-5的直线是曲线y =f (x )的切线,求此直线方程.解(1)f ′(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0,令f ′(x )=0,则x =-m 或x =13m ,当x 变化时,f ′(x )与f (x )的变化情况如下表:f ′(x )+0-0+f (x )增极大值减极小值增从而可知,当x =-m 时,函数f (x )取得极大值9,即f (-m )=-m 3+m 3+m 3+1=9,∴m =2.(2)由(1)知,f (x )=x 3+2x 2-4x +1,依题意知f ′(x )=3x 2+4x -4=-5,∴x =-1或x =-13,又f (-1)=6,=6827,所以切线方程为y -6=-5(x +1)或y -6827=-即5x +y -1=0或135x +27y -23=0.18.(12分)(2019·成都七中诊断)已知函数f (x )=x sin x +2cos x +ax +2,其中a 为常数.(1)若曲线y =f (x )在x =π2处的切线斜率为-2,求该切线的方程;(2)求函数f (x )在x ∈[0,π]上的最小值.解(1)求导得f ′(x )=x cos x -sin x +a ,由f a -1=-2,解得a =-1.此时2,所以该切线的方程为y -2=-2x +y -2-π=0.(2)对任意x ∈[0,π],f ″(x )=-x sin x ≤0,所以f ′(x )在[0,π]内单调递减.当a ≤0时,f ′(x )≤f ′(0)=a ≤0,∴f (x )在区间[0,π]上单调递减,故f (x )min =f (π)=a π.当a ≥π时,f ′(x )≥f ′(π)=a -π≥0,∴f (x )在区间[0,π]上单调递增,故f (x )min =f (0)=4.当0<a <π时,因为f ′(0)=a >0,f ′(π)=a -π<0,且f ′(x )在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x 0∈(0,π),使得f ′(x 0)=0,且f (x )在[0,x 0]上单调递增,在[x 0,π]上单调递减.故f (x )的最小值等于f (0)=4和f (π)=a π中较小的一个值.①当4π≤a <π时,f (0)≤f (π),故f (x )的最小值为f (0)=4.②当0<a <4π时,f (π)≤f (0),故f (x )的最小值为f (π)=a π.综上所述,函数f (x )的最小值f (x )min,a ≥4π,π,a <4π.19.(12分)(2019·武汉示范高中联考)已知函数f (x )=4ln x -mx 2+1(m ∈R ).(1)若函数f (x )在点(1,f (1))处的切线与直线2x -y -1=0平行,求实数m 的值;(2)若对于任意x ∈[1,e ],f (x )≤0恒成立,求实数m 的取值范围.解(1)∵f (x )=4ln x -mx 2+1,∴f ′(x )=4x -2mx ,∴f ′(1)=4-2m ,∵函数f (x )在(1,f (1))处的切线与直线2x -y -1=0平行,∴f ′(1)=4-2m =2,∴m =1.(2)∵对于任意x ∈[1,e ],f (x )≤0恒成立,∴4ln x -mx 2+1≤0,在x ∈[1,e ]上恒成立,即对于任意x ∈[1,e ],m ≥4ln x +1x 2恒成立,令g (x )=4ln x +1x 2,x ∈[1,e ],g ′(x )=2(1-4ln x )x 3,令g ′(x )>0,得1<x <14e ,令g ′(x )<0,得14e <x <e ,当x 变化时,g ′(x ),g (x )的变化如下表:x 14(1,e )14e14(e ,e)g ′(x )+0-g (x )极大值∴函数g (x )在区间[1,e ]上的最大值g (x )max =g (14e )=141244ln e 1(e )+=2e e ,∴m ≥2ee,即实数m 的取值范围是2ee ,+20.(12分)已知函数f (x )=ln x -ax (ax +1),其中a ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围.解(1)依题意知,函数f (x )的定义域为(0,+∞),且f ′(x )=1x -2a 2x -a =2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a,函数f (x )当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a ,函数f (x )-1a,+.(2)①当a =0时,函数f (x )在(0,1]内有1个零点x 0=1;②当a >0时,由(1)知函数f (x )若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;若0<12a <1,即当a >12时,f (x )1上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足0,即ln 12a ≥34,又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;③当a <0时,由(1)知函数f (x )-1a,+若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;若0<-1a <1,即a <-1时,函数f (x )-1a,1上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].21.(12分)(2019·湖北黄冈中学、华师附中等八校联考)在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边BC 的直线DE 将△ADE 剪去,得到所需的梯形钢板BCED ,记这个梯形钢板的周长为x (单位:米),面积为S (单位:平方米).(1)求梯形BCED 的面积S 关于它的周长x 的函数关系式;(2)若在生产中,梯形BCED 试确定这个梯形的周长x 为多少时,该零件才可以在生产中使用?解(1)∵DE ∥BC ,△ABC 是正三角形,∴△ADE 是正三角形,AD =DE =AE ,BD =CE =3-AD ,则DE +2(3-AD )+3=9-AD =x ,S =(3+AD )·(3-AD )·sin 60°2=3(12-x )(x -6)4(6<x <9),化简得S =34(-x 2+18x -72)(6<x <9).故梯形BCED 的面积S 关于它的周长x 的函数关系式为S =34(-x 2+18x -72)(6<x <9).(2)∵由(1)得S =34(-x 2+18x -72)(6<x <9),令f (x )=S x =x -72x +x <9),∴f ′(x )1令f ′(x )=0,得x =62或x =-62(舍去),f (x ),f ′(x )随x 的变化如下表:x(6,62)62(62,9)f ′(x )+0-f (x )单调递增极大值单调递减∴当x =62时,函数f (x )=S x有最大值,为f (62)=923-36.∴当x =62米时,该零件才可以在生产中使用.22.(12分)(2019·衡水中学调研)已知函数f (x )=k e x -x 2(其中k ∈R ,e 是自然对数的底数).(1)若k =2,当x ∈(0,+∞)时,试比较f (x )与2的大小;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),求k 的取值范围,并证明:0<f (x 1)<1.解(1)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x ,令h (x )=2e x -2x ,h ′(x )=2e x -2,由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)上为增函数,所以h (x )=2e x -2x >h (0)=2>0,即f ′(x )=2e x -2x >0在(0,+∞)上恒成立,从而f (x )=2e x -x 2在(0,+∞)上为增函数,故f (x )=2e x -x 2>f (0)=2.(2)函数f (x )有两个极值点x 1,x 2,则x 1,x 2是f ′(x )=k e x -2x =0的两个根,即方程k =2x ex 有两个根,设φ(x )=2x e x ,则φ′(x )=2-2x ex ,当x <0时,φ′(x )>0,函数φ(x )单调递增且φ(x )<0;当0<x <1时,φ′(x )>0,函数φ(x )单调递增且φ(x )>0;当x >1时,φ′(x )<0,函数φ(x )单调递减且φ(x )>0.作出函数φ(x )的图象如图所示,要使方程k =2x e x 有两个根,只需0<k <φ(1)=2e,故实数k f (x )的两个极值点x 1,x 2满足0<x 1<1<x 2,由f ′(x 1)=1e x k -2x 1=0得k =112e x x ,所以f (x 1)=1e x k -x 21=112e x x 1e x -x 21=-x 21+2x 1=-(x 1-1)2+1,由于x 1∈(0,1),所以0<-(x 1-1)2+1<1,所以0<f (x 1)<1.。
导数18 大题(零点分析)中档-2022年全国一卷新高考数学题型细分汇编
导数——大题——零点分析(中档,中上、未):1.(2022年山东东营J58)已知函数221()2()2x ax f x x x a e =+-∈R ( 2.71828e =…是自然对数的底数).(1)若()f x 在(0.2)x ∈内有两个极值点,求实数a 的取值范围;(①)(2)1a =时,讨论关于x 的方程211()2|ln |()2x f x x x b x b xe⎡⎤-++=∈⎢⎥⎣⎦R 的根的个数.(零点分析,中档;第二问,未;)2.(2022年江苏南京J09)已知函数()f x =e 2x ,()(21)g x m x =+,m >0,设()()()h x f x g x =-(1)若函数()h x 有两个零点,求实数m 的取值范围;(②)(2)若直线()y g x =是直线()f x =e 2x 的一条切线,求证:∀a >b ,都有22()()2a h a h b e a b--- .(零点分析,中档;第二问,未;)1.(2022年湖南长沙长郡中学J19)已知()()()2ln ln f x ax x x x x =+--有三个不同零点1x ,2x ,3x ,且123.x x x << (1)求实数a 的范围;(③)(2)求证:3121232.ln ln ln x x x x x x ++>(零点分析,中档;第二问,未;)1.(2022年湖北四校联考J16)已知函数()()()1sin cos f x a x x x a R =+-∈.(④)(1)若()f x 在5,26ππ⎛⎫⎪⎝⎭上有零点,求实数a 的取值范围;(2)若04a π-<≤,记()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值为()g a ,求()g a 的取值范围.(零点分析,中档,未;第二问,未;)2.(2022年湖南邵阳J41)已知函数()()2ln ,f x x a x a R =-∈.(1)讨论函数()f x 的零点个数;(⑤)(2)若函数()f x 存在两个不同的零点12,x x ,证明:12x x e >.(零点分析,中档;第二问,未;)1.(2022年广东仿真J04)(12分)已知函数()f x axlnx =,(0)a ≠.(⑥)(1)若函数1()()1g x f x x ='++(其中:()f x '为()f x 的导数)有两个极值点,求实数a 的取值范围;(2)当1a =时,求证:()sin 1x f x e x <+-.(零点分析,中档;第二问,未;)1.(2022年河北J47)已知函数()()()e ln 0x af x x a a -=-+>.(1)证明:函数()f x '在()0,∞+上存在唯一的零点;(⑦)(2)若函数()f x 在区间()0,∞+上的最小值为1,求a 的值.(零点分析,中档;第二问,未;)1.(2022年广东佛山一中J29)(本小题12分)已知函数()ln 2sin f x x x x =-+.(1)证明:()f x 在区间π0,2⎛⎫ ⎪⎝⎭存在唯一的极值点;(⑧)(2)试讨论()f x 的零点个数.(零点分析,中档;第二问,未;)①【答案】(1)22e e a <<;(2)答案见解析.【解析】【分析】(1)若()f x 在(0,2)x ∈内有两个极值点,则()0f x '=在(0,2)x ∈内有两个不相等的变号根,等价于0x e ax -=在(0,2)x ∈上有两个不相等的变号根.令()x g x e ax =-,分类讨论()g x 有两个变号根时a 的范围;(2)化简原式可得:2()|ln |,(0,)xxh x x b x e =--∈+∞,分别讨论(1,)x ∈+∞和(0,1)x ∈时()h x 的单调性,可得()h x 的最小值,分类讨论最小值与0的关系,结合()h x 的单调性可以得到零点个数.【详解】(1)由题意可求得()()22(2)()2x xxa x x x e ax f x x ee'---=+-=,因为()f x 在(0,2)x ∈内有两个极值点,所以()0f x '=在(0,2)x ∈内有两个不相等的变号根,即0x e ax -=在(0,2)x ∈上有两个不相等的变号根.设()x g x e ax =-,则()x g x e a '=-,①当0a 时,(0,2),()0x x g x e a '∈=->,所以()g x 在(0,2)上单调递增,不符合条件.②当0a >时,令()0x g x e a '=-=得ln x a =,当ln 2a ,即2a e 时,(0,2),()0x x g x e a '∈=-<,所以()g x 在(0,2)上单调递减,不符合条件;当ln 0a ,即01a < 时,(0,2),()0x x g x e a '∈=->,所以()g x 在(0,2)上单调递增,不符合条件;当0ln 2a <<,即21a e <<时,()g x 在(0,ln )a 上单调递减,(ln ,2)a 上单调递增,若要0xe ax -=在(0,2)x ∈上有两个不相等的变号根,则(0)0,(2)0,(ln )0,0ln 2,g g g a a >⎧⎪>⎪⎨<⎪⎪<<⎩,解得22e e a <<.综上所述,22e e a <<.(2)设2211()|ln |()2|ln |,(0,)2x x x h x x f x x x b x b x xee ⎡⎤=--+-=--∈+∞⎢⎥⎣⎦,令2x x y e =,则212x x y e '-=,所以2x x y e =在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减.(ⅰ)当(1,)x ∈+∞时,ln 0x >,则2()ln x xh x x b e=--,所以22()21x xe h x ex x '-⎛⎫=+- ⎪⎝⎭.因为2210,0xe x x->>,所以()0h x '>,因此()h x 在(1,)+∞上单调递增.(ⅱ)当(0,1)x ∈时,ln 0x <,则2()ln x xh x x b e=---,所以22()21x xe h x ex x '-⎛⎫=-+- ⎪⎝⎭.因为()22221,,1,01,1,x xxe ee ex x ∈><<∴>即21,xe x-<-,又211,x -<所以22()210x xe h x ex x '-⎛⎫=-+-< ⎪⎝⎭,因此()h x 在(0,1)上单调递减.综合(ⅰ)(ⅱ)可知,当(0,)x ∈+∞时,2()(1)h x h e b -=-- ,当2(1)0h e b -=-->,即2b e -<-时,()h x 没有零点,故关于x 的方程根的个数为0,当2(1)0h e b -=--=,即2b e -=-时,()h x 只有一个零点,故关于x 的方程根的个数为1,当2(1)0h e b -=--<,即2b e ->-时,①当(1,)x ∈+∞时,221()ln ln ln 1x x h x x b x b x b e e ⎛⎫=-->-+>-- ⎪⎝⎭,要使()0h x >,可令ln 10x b -->,即()1,bx e+∈+∞;②当(0,1)x ∈时,121()ln ln ln 12x x h x x b x e b x b e -⎛⎫=-----+>--- ⎪⎝⎭,要使()0h x >,可令ln 10x b --->,即()10,bx e--∈,所以当2b e ->-时,()h x 有两个零点,故关于x 的方程根的个数为2,综上所述:当2b e -<-时,关于x 的方程根的个数为0,当2b e -=-时,关于x 的方程根的个数为1,当2b e ->-时,关于x 的方程根的个数为2.【点睛】本题考查已知极值点的个数求参数,以及分类讨论求函数的零点个数问题,属于难题.关键点点睛:分类讨论求函数的零点时,(1)先从函数有无零点得到参数的一个范围;(2)函数有零点时,再判断函数零点是否在给定区间内,得到参数下一步的范围.②【答案】(1)()1,+∞(2)证明见解析【解析】【分析】(1)根据零点存在性定理进行判定;(2)根据题意,求出切线,然后转化所给不等式逐步分析求证.【小问1详解】()()()22ln e 21,2e 202x x mh x m x h x m x =-+==⇒='-当ln 2m x <时,()()0,h x h x '<单调递减;当ln 2mx >时,()()0,h x h x '>单调递增,()min ln ()ln 1ln 2m h x h m m m m m⎛⎫∴==-+=- ⎪⎝⎭要使()h x 有两个零点,首先必有ln 01m m m -<⇒>当1m >时,注意到()()2110,e 212em h h m m m ⎛⎫-=>=-+ ⎪⎝⎭2224220m m m m m >--=->()h x ∴在1ln ,22m ⎛⎫- ⎪⎝⎭和ln ,2m m ⎛⎫⎪⎝⎭上各有一个零点,符合题意综上:m 取值范围为()1,+∞【小问2详解】证明:()22e xf x '=,设()()21g x m x =+与()f x 切于()20,ex P x ()()()00220202e 20,1,21,e 2121exx x m x m g x x h x x m x ⎧=⎪∴⇒=∴=∴=+∴=--⎨+=⎪⎩要证:()()22e 2ah a h b a b-≤-⇔-证:222e 2e 22e 2a b a a ba b--+≤--即证:222e e 2e a b a a b-≤-,即证:()221e2b aa b --≤-令22,0a b t t -=>⇔证明:1e ,e 1t t t t ---≤+≥构造()()()e ,1e0,ttF t t F t F t --=+=>∴'-在()0,∞+上()()01F t F ∴>=,证毕!【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.③【答案】(1)()2e e 11e e 1-+-(,)(2)答案见解析【解析】【分析】(1)先利用参变量分离法,可得ln ln x xa x x x=--,然后构造函数ln ()ln x xh x x x x=--,判断()h x 单调性,然后作出函数的大致图像,确定a 的范围即可;(2)由(1)知,12301e x x x <<<<<,可设ln ()xu x x=,则1()1h x u u =--,然后利用导数确定()u x 的图像,由根的分布情况及111ln x u x =,32223ln ln x x u x x ==运算可得结果.【小问1详解】解:令()0f x =,得2ln (0)ln x ax x x x x+=>-,∴ln ln x x a x x x =--.设ln ()ln x xh x x x x=--,221ln (1)1ln ()(ln )x x x x x h x x x x ----=--'2222(1ln )(ln )(ln )x x x x x x x ⎡⎤---⎣⎦=-22222(1ln )2ln (ln )ln (1ln )(2ln )(ln )(ln )x x x x x x x x x x x x x x ⎡⎤----⎣⎦==--设()2ln x x x ϕ=-,121()2x x x x ϕ'-=-=,易知()x ϕ在102⎛⎫ ⎪⎝⎭,单调递减,在12⎛⎫+∞ ⎪⎝⎭,单调递增,∴min 11()()1ln1ln 2022x ϕϕ==-=+,∴()2ln 0x x x ϕ=->,则由()0h x '=,得1x =或e x =,令()0h x '>,解得()1,e x ∈;令()0h x '<,解得()()01e,x ∞∈⋃+,()h x ∴在()01,单调递减,在()1,e 单调递增,在()e,∞+单调递减,()h x ∴有极小值()11h =,有极大值()()2e 1e e 1e e 1e e e 1h -+=-=--,又1ln ()ln 1xh x x x x=--,当0x +→时,ln 1ln =⋅→-∞x x x x ,()∴→+∞h x ,当x →+∞时,ln 0xx→,∴()1h x →,()h x ∴的图像如下:由图可知,要使()f x 有3个不同零点,即()h x a =有3个不同零点,实数a 的取值范围为()2e e 11,e e 1⎛⎫-+ ⎪ ⎪-⎝⎭.【小问2详解】由(1)知,12301e x x x <<<<<,令ln ()x u u x x ==,则1()1h x u u=--,21ln xu x-=',故当()0,e x ∈时,()u x 单调递增;当()e,x ∞∈+时,()u x 单调递减.且0x +→时,u ∞→-;()10u =;x →+∞时,0u →;()()max1e .eu x u ==所以ln ()xu x x=的图像如下:由11u a u-=-,得1(1)(1)u u a u --=-,即2(1)10u a u a +-+-=,由根的分布知:2(1)10u a u a +-+-=有两根1u ,2u ,且1210eu u <<<,由图①②知,111ln x u x =,32223ln ln x x u x x ==,又121211u u au u a+=-⎧⎨=-⎩,∴1212u u u u +=,∴12111u u +=,∴3121231211212ln ln ln x x x x x x u u u ++=+=-,又10<u ,∴110u ->,故3121232ln ln ln x x x x x x ++>.【点睛】本题考查利用导数研究函数的零点,利用导数证明不等式,考查逻辑思维能力和运算求解能力,属于难题.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.④【答案】(1)31,16π⎛⎫--- ⎪ ⎪⎝⎭(2)22,024⎫-⎪⎪⎣⎭【解析】【分析】(1)令()cos sin x xF x x=,求出其导数后可判断函数的单调性,从而可求其值域,故可求实数a 的取值范围;(2)求出()f x ',令()()G x f x =',求出()G x ',利用题设条件可得()0G x '>,从而可得()f x '在0,2π⎛⎫⎪⎝⎭存在唯一的零点且可得()f x '的符号情况,从而可得()f x 的单调性,故可得其最小值,再利用导数可求其取值范围.【小问1详解】由()0f x =得cos 1sin x x a x +=,令()cos sin x xF x x=,则()2sin cos 0sin x x x F x x -'=<,所以()F x 在5,26ππ⎛⎫⎪⎝⎭上单调递减,()53,06F x π⎛⎫∈- ⎪ ⎪⎝⎭,从而531,16a π⎛⎫∈--- ⎪ ⎪⎝⎭.【小问2详解】令()()cos sin G x f x a x x x '==+,因为0,,024x a ππ⎛⎫∈-≤< ⎪⎝⎭,故()()1sin cos 0G x a x x x '=-+>,所以()G x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,又()00G a =<,022G ππ⎛⎫=> ⎪⎝⎭,所以存在唯一实数00,2x π⎛⎫∈ ⎪⎝⎭,使得()00G x =,且当()00,x x ∈时,()0f x '<,当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x '>,故()f x 在()00,x 上单减,在0,2x π⎛⎫⎪⎝⎭上单增,从而()f x 的最小值()()()00001sin cos g a f x a x x x ==+-,∵000cos sin 0a x x x +=,∴000sin cos x x a x -=,故()()()00000001sin cos sin cos x g a f x a x x x x x ==+-=-.令()sin 0cos 2x x h x x x π-⎛⎫=<< ⎪⎝⎭,则()2sin cos 0cos x x xh x x +'=-<,所以()h x 在0,2π⎛⎫⎪⎝⎭上单减,由题意04a π-<≤可得()()004h h x h π⎛⎫< ⎪⎝⎭≤,所以004x π<≤,令()sin 0cos 4x H x x x x π⎛⎫=-< ⎪⎝⎭≤,则()()222cos cos 1sin cos sin cos cos cos x x x x x x x H x x x x--+=-=()2sin cos sin 0cos x x x x x -+=<,所以()H x 在0,4π⎛⎤⎥⎝⎦上单减,故()g a 的取值范围为22,024⎫-⎪⎪⎣⎭.【点睛】思路点睛:含参数的零点问题,可利用参变分离把参数的范围问题转化为不含参数的新函数的值域问题,在函数的单调性的讨论中,如果导函数的零点不易求得,可虚设零点来简化问题的讨论.⑤【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)先对函数()f x 进行求导,然后对a 进行分类讨论,便可得到函数()f x 零点的个数;(2)利用(1)的结论,便可知函数在2a e >时有两个零点,再构造一个新函数,可将双变量变为单变量,对该新函数进行研究即可.【小问1详解】因为()()2220a x af x x x x x-'=-=>①当0a ≤,()0f x '>,函数()f x 在区间()0,∞+单调递增,(i )0a =时,函数()f x 在()0,∞+上无零点;(ii )0a <,由0x →时,()f x →-∞,()20f e e a =->,∴()f x 在()0,∞+只有一个零点;②当0a >时,函数()f x 在区间2a ⎛ ⎝上单调递减,在区间2a ⎫+∞⎪⎪⎭上单调递增;(注意0x →时,()f x →+∞,x →+∞时,()f x →+∞)所以()ln 1ln 22222a a a a a f x f a ⎛⎫≥=-=- ⎪⎝⎭,(i )02a f >即02e a <<时,()f x 无零点;(ii )02a f =,即2a e =时,()f x 只有一个零点;(iii )02a f <即2a e =时,()f x 有两个零点;综上所述,当0a <或2a e =时,()f x 在只有一个零点;当02a e ≤<时,()f x 无零点;当2a e >时,()f x 有两个零点;方法二:0a =时,函数()2f x x =在()0,∞+上无零点;0a ≠时,由()21ln 0x f x a x =⇒=,令()2ln x g x x =,则()()312ln 0x g x x x -'=>,由()312ln 0x g x x e x -'==⇒=,则(x e ∈时,()g x 单调递增,)x e ∞∈+时,()g x 单调递减,则()12g x ge e =≤,做出简图,由图可知:(注意:0x →时,()g x →-∞,x →+∞时()0g x →)当10a <或12e a =,即0a <或2a e =时,21ln x a x=只有一个根,即()f x 在()0,∞+只有一个零点;当1102a e <<时,即2a e >时,21ln x a x =有两个根,即()f x 在()0,∞+有两个零点;当112a e>时,即02e a <<时,21ln x a x =无实根,即()f x 在()0,∞+无零点;综上所述,当0a <或2a e =时,()f x 在只有一个零点;当02a e ≤<时,()f x 无零点;当2a e >时,()f x 有两个零点;【小问2详解】由(1)可知2a e >时,()f x 有两个零点,设两个零点分别为12,x x ,且210x x >>,由()()21112222ln 00ln 0x a x f x f x x a x ⎧-===⇒⎨-=⎩,即211222ln ln x a x x a x ⎧=⎨=⎩,所以()()222212122121ln ln ,ln ln x x a x x x x a x x +=+-=-,即()222121122221ln ln ln ln x x x x x x x x -+=+-要证明12x x e >,即证12ln ln 1x x +>,需证()2221122221ln ln 1x x x x x x ++>-,再证2221212221ln ln x x x x x x -->+,然后证221221211ln 01x x x x x x ⎛⎫- ⎪⎝⎭->⎛⎫+ ⎪⎝⎭,设21x x x =,则1x >,即证221ln 01x x x -->+,即22ln 101x x +->+,令()()22ln 111h x x x x =+->+,则()()()()()()22222222222141140111x x x x h x x x x x x x +--'=-==>+++,故函数()h x 在()1,+∞上单调递增,所以()()10h x h >=,即有22ln 101x x +->+,所以12x x e >.⑥【答案】见解析【详解】(1)依题意知:(0,)x ∈+∞,()f x alnx a '=+,∴1(),((0,))1g x alnx a x x =++∈+∞+∴22(21)()(1)ax a x a g x x x +-+'=+,()g x 有两个极值点,()g x ∴'在(0,)+∞有两个变号零点,令()0g x '=得:2(21)0ax a x a +-+=,(0)a ≠,关于x 的一元二次方程有两个不等的正根,记为1x ,2x ,∴1212000x x x x >⎧⎪+>⎨⎪⋅>⎩ ,即410210a a a -+>⎧⎪-⎨->⎪⎩,解得14102a a ⎧<⎪⎪⎨⎪<<⎪⎩,∴104a <<,故a 的取值范围为:1(0,)4.(2)证明:当1a =时,()sin 1sin 1sin 10x x x f x e x xlnx e x e x xlnx <+-⇔<+-⇔+-->,设()sin 1(0)x M x e x xlnx x =+-->,()cos (1)x M x e x lnx '=+-+,()2x M x e lnx ∴'-- ,先证1x e x >+,令()1x g x e x =--,()1x g x e '=-,当0x >时,()0g x '>,()g x ∴在[0,)+∞上单调递增,又(0)0g = ,0x ∴>时()0g x >,即1x e x >+.再证1lnx x - ,令()1h x lnx x =-+,11()1x h x x x -'=-=,当01x <<时,()0h x '>,()h x 单调递增;当1x >时,()0h x '<,()h x 单调递减.()h x h ∴ (1)0=,1lnx x ∴- 成立,()2(1)(1)20x M x e lnx x x ∴'=-->++--=,(0,)x ∴∈+∞时,()M x 单调递增,∴当[1x ∈,)+∞,()M x M (1)sin110e =+->,∴当(0,1)x ∈,0xlnx ->,0()sin 1sin 1sin 010x x M x e x xlnx e x e ∴=+-->+->+-=,(0,)x ∴∈+∞,()0M x >,命题得证.⑦【答案】(1)证明见解析(2)12【分析】(1)首先求出函数的导函数,即可得到()f x '在()0,∞+上单调递增,再计算(0)f ',构造函数,利用导数说明(0)0f '<,再计算(1)f a '+,即可得到(1)0f a '+>,从而得证;(2)由(1)可知存在唯一的0(0,)x ∈+∞,使得0()0f x '=,即001x a e x a -=+,即可得到min 0()()f x f x =,即可得到001ln()1x a x a -+=+,再根据1ln y x x=-的单调性得到01x a =-,即可得到121a e -=,从而求出a 的值;(1)证明:∵()()()e ln 0x a f x x a a -=-+>,∴()1e x a f x x a--'=+.∵e x a y -=在区间()0,∞+上单调递增,1y x a=+在区间()0,∞+上单调递减,∴函数()f x '在()0,∞+上单调递增.又1(0)a aa a e f e a ae --'=-=,令()(0)a g a a e a =->,()10a g a e '=-<,则()g a 在()0,∞+上单调递减,()(0)1g a g <=-,故(0)0f '<.令1m a =+,则1()(1)021f m f a e a ''=+=->+,所以函数()f x '在()0,∞+上存在唯一的零点.(2)解:由(1)可知存在唯一的0(0,)x ∈+∞,使得0001()e 0x a f x x a -'=-=+,即001x a e x a -=+().函数1()x a f x e x a-'=-+在()0,∞+上单调递增,∴当0(0,)x x ∈时,()0f x '<,()f x 单调递减;当0(,)x x ∈+∞时,()0f x '>,()f x 单调通增;∴0min 00()()e ln()x a f x f x x a -==-+,由()式得min 0001()()ln()f x f x x a x a==-++.∴001ln()1x a x a-+=+,显然01x a +=是方程的解,又∵1ln y x x =-是单调递减函数,方程001ln()1x a x a -+=+有且仅有唯一的解01x a +=,把01x a =-代入()式,得121a e -=,∴12a =,即所求实数a 的值为12.【点睛】思路点睛:函数的零点问题,一般需要利用函数的单调性和零点存心定理进行判断,对于导数零点不易求的情形,可通过虚设零点来处理.⑧答案:【解析】(1)函数()f x 的定义域为(0,)+∞,导函数为1()12cos f x x x'=-+.……1分当π02x <<时,21()2sin 0f x x x ''=--<,所以()f x '在π0,2⎛⎫ ⎪⎝⎭单调递减.………2分又因为π303πf ⎛⎫'=> ⎪⎝⎭,π2102πf ⎛⎫'=-< ⎪⎝⎭,根据函数零点存在定理,()f x '在区间π0,2⎛⎫ ⎪⎝⎭有且只有一个零点0ππ,32x ⎛⎫∈ ⎪⎝⎭.…………3分当00x x <<时,()0f x '>;当0x x >时,()0f x '<.因此,()f x 在0(0,)x 单调递增,在0π,2x ⎛⎫ ⎪⎝⎭单调递减,故()f x 在区间π0,2⎛⎫ ⎪⎝⎭存在唯一的极值点0x x =.…………4分(2)令()ln g x x x =-,则1()1g x x '=-.当01x <<时,()0g x '>;当1x >时,()0g x '<.因此,()g x 在(0,1)单调递增,在(1,)+∞单调递减.………………………5分由于()()2sin ()2f x g x x g x =+≤+,且当4x >时,()(2)ln 442g x g <=-<-,故当3π42x ≥>时,()0f x <,从而()f x 在区间3π,2⎡⎫+∞⎪⎢⎣⎭没有零点.………………7分当π3π22x <<时,cos 0x <,从而12()110πf x x '<-<-<,()f x 在π3π,22⎛⎫ ⎪⎝⎭单调递减.又πππ3πln 20,02222f f ⎛⎫⎛⎫=-+>< ⎪ ⎪⎝⎭⎝⎭,根据函数零点存在定理,()f x 在区间π3π,22⎛⎫ ⎪⎝⎭有且只有一个零点1π3π,22x ⎛⎫∈ ⎪⎝⎭.………………………………………………9分当π02x <<时,由(1)知()f x 在0(0,)x 单调递增,在0π,2x ⎛⎫ ⎪⎝⎭单调递减.又0πππ1(1)10,()0662f g g f x f ⎛⎫⎛⎫⎛⎫=+<+=>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,根据函数零点存在定理,()f x 在区间π0,2⎛⎫ ⎪⎝⎭有且只有一个零点20π,6x x ⎛⎫∈ ⎪⎝⎭.………11分综上所述,()f x 有且只有2个零点.…………………………………………………12分。
高等数学-——导数与微分练习题.pdf
C:若函数 f (x) 在点 x0 处不可导,则函数 f (x) 在点 x0 处左、右导数只有一个不存在
x≥0
()
(5)若 f (x) = x −1 , 则 f (x) 在 x = 1 处可导
()
(6) f (x) = 3 x 在 (−∞, +∞) 内均可导
()
(7)若函数 f (u) 可导,则 [ f (ln x)]′ = f ′(ln x)
()
(8)若 y = x2ex ,则 y′′ − 2 y′ + y = 0
dx
五、证明题
1.
设函数
f (x) = arctan 1+ x ,证明 dy 1− x
=
x
1 2+
1
dx
2.
证明:函数
f
(
x
)
=
⎧ ax + b, ⎨⎩ex −1, x
x ≤
> 0
0
在 x = 0 处可导的充要条件是 a = 1, b = 0 .
3.
证明:
f
(
x)
=
⎧⎪ ⎨
x3
sin
1 x
,
x
≠
0
在定义域内处处可微.
则 a, b 之值为(
)
A: a = 2,b = −1 B: a = 1,b = −3
C: a = 0,b = −2
D: a = −3,b = 1
(5)下列结论正确的是(
)
A:若左、右导数都存在,则函数 f (x) 在点 x0 处可导
B:函数 f (x) 在点 x0 处不可导的充要条件是左、右导数都不存在
⎛ ⎜⎝
arctan
2025新高考数学计算题型精练专题03 导数计算(解析版)
2025新高考数学计算题型精练导数计算1.求下列函数的导数:(1)cos sin cos xy x x -=;(2)221e x y x +=.【答案】(1)()21sin cos x x --;(2)()222141exx ++【详解】(1)()()()()22sin sin cos cos sin cos 1sin cos sin cos x x x x x xy x x x x ---+'==---;(2)()()22221221221e 21e 41e xx x y x x x +++''=++=+.2.求下列函数的导数.(1)()()221f x x =-+;(2)()()ln 41f x x =-;(3)()322x f x +=;(4)()f x =;【答案】(1)84x -(2)441x -(3)3232ln2x +⨯【详解】(1)因为()()2221441f x x x x =-+=-+,所以()84f x x '=-.(2)因为()()ln 41f x x =-,所以()441f x x '=-.(3)因为()322x f x +=,所以()3232ln2x f x +'=⨯(4)因为()f x =,所以()f x '==3.求下列函数的导数:(1)32235y x x =-+;(2)241y x x =++;(3)2log y x =;(4)e n xy x =;(5)31sin x y x-=;(6)sin sin cos xy x x=+.【答案】(1)266x x -(2)()22241x x ----+(3)1ln 2x (4)()1e n xx n x -+(5)()2323sin 1cos sin x x x x x--(6)11sin 2x+【详解】(1)()()32223566y x x x x ''''=-+=-.(2)()()()22242411y x x x x ''--'=+=+++()22241x x --=--+.(3)()21log ln 2y x x ''==.(4)()()()11e e e e e n x n x n x n x n x y x x nx x x n x --'''=+=+=+.(5)()()()()33321sin 1sin 1sin sin x x x x x y x x '''---⎛⎫-'== ⎪⎝⎭()2323sin 1cos sin x x x x x --=.(6)()sin sin cos x y x x ''=+()()()()2sin sin cos sin sin cos sin cos x x x x x x x x ''+-+=+()()()2cos sin cos sin cos sin sin cos x x x x x x x x +--=+()2111sin 2sin cos x x x ==++.4.求下列函数的导数:(1)1)1y ⎫=+-⎪⎭;(2)3ln (0,1)x y x a a a =+>≠;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭(4)2ln(23)1x y x +=+.【答案】(1)11y x ⎫'=+⎪⎭;(2)3ln (0xy a a a x '=+>且1)a ≠;(3)1sin 42cos 42y x x x --'=;(4)y '()()222212(23)ln(23)(23)1x x x x x x +-++=++【详解】(1)1)11y ⎫==-=⎪⎭,11y x '⎛⎫'∴===+⎪⎭⎝.(2)()'33ln ln (0,1)xxy x aa a a a x=+=+>≠'.(3)11sin 2cos 2sin(4)sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭ ,111sin 44cos 4sin 42cos 4222x x x x x x y '∴=--⋅=--.(4)()()()2222[ln(23)]1ln(23)11x x x x y x ''++-++'=+()()222(23)12ln(23)231x x x x x x '+⋅+-++=+()()222212(23)ln(23)(23)1x x x x x x +-++=++.5.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;(3)sin cos 22x y xx =-;【答案】(1)6sin =-'y x x ;(2)1ln +='+x y x x ;(3)11cos 2y x '=-.【详解】(1)因为23cos =+y x x ,所以6sin =-'y x x ;(2)因为()1ln =+y x x ,所以1ln +='+x y x x;(3)因为1sin cos sin 222y x x x x x =-=-,所以11cos 2y x '=-;6.求下列函数的导数.(1)22y x x -=+;(2)2ln 1xy x =+【答案】(1)322y x x -=-';(2)()()22112ln 1x x xy x-+'=+【详解】(1)322y x x -=-';(2)()()()()()22222212ln ln 1ln 111x x xx x x x x y xx ⎛⎫+-'' ⎪+-+⎝⎭'==++()()()2222112ln 12ln 11x x x x x x x x x -+-+==++.7.求下列函数的导数:(1)2()(1sin )(1)f x x x =+-;(2)()31x xf x x =-+.【答案】(1)()2cos 12(1sin )x x x x --+;(2)213ln 3(1)x x -+.【详解】(1)22()(1sin )(1)(1sin )(1)f x x x x x '''=+-++-2cos (1)(1sin )(2)x x x x =-++-()2cos 12(1sin )x x x x =--+(2)()((3)1x xf x x '''=-+2()(1)(1)3ln 3(1)x x x x x x ''+-+=-+213ln 3(1)x x =-+.8.求下列函数的导数:(1)22log (3);y x x =(2)cos(21).x y x+=【答案】(1)22log (3).ln 2x y x x '=+(2)()22sin 21cos(21).x x x y x -+-+'=【详解】(1)[]2222()log (3)log (3)y x x x x '''=+2232log (3)3ln 2x x xx =+22log (3)ln 2xx x =+.(2)[]2cos(21)cos(21)x x x x y x''+-+'=()22sin 21cos(21)x x x x -+-+=.9.求下列函数的导数:(1)111x y x x+=+-;(2)ln(21)y x x =+.【答案】(1)22221(1)x x y x x +-'=-(2)2ln(21)21xy x x '=+++.【详解】(1)2222(1)(1)(1)121(1)(1)x x y x x x x --+⨯-'=-=---22221(1)x x x x +-=-;(2)12ln(21)2ln(21)2121xy x x x x x '=++⋅⋅=++++.10.求下列函数的导数:(1)()ln 21x y x+=;(2)()ln 25y x =-;(3)sin 2cos 222y x x x ππ⎛⎫⎛⎫=++ ⎪ ⎝⎭⎝⎭.【答案】(1)()()()2221ln 2121x x x y x x-++'=+(2)225y x '=-(3)1sin 42cos 42y x x x --'=【详解】(1)()()()()()2221ln21ln 21ln 21ln 2121x x x x x x x x x y x x x '+'⋅-+''+-+⎡⎤+⎡⎤⎣⎦+'===⎢⎥⎣⎦()()()()222ln 21221ln 212121xx x x x x x x x -+-+++==+.(2)令25u x =-,ln y u =,则()112ln 222525y u u u x x '''=⋅=⋅=⋅=--.(3)因为()11sin 2cos 2sin 4sin 42222y x x x x x x x πππ⎛⎫⎛⎫=++=+=- ⎪ ⎪⎝⎭⎝⎭,所以()11111sin 4sin 4sin 44cos 4sin 42cos 422222y x x x x x x x x x x''⎛⎫⎛⎫=-+-=--⋅=-- ⎪ ⎪⎝⎭⎝⎭'.11.求下列函数的导函数.(1)324ln 1y x x x =+-+;(2)24cos 2xy x -=+;(3)21e sin +=x y x .【答案】(1)21122x x x +-(2)()()2222sin 2cos 82x x x x x x ++-+(3)()212sin cos e x x x ++【详解】(1)'21122y x x x=+-;(2)()()()()()22'2222sin 224cos 2sin 2cos 822x x x x xx x x xy xx+--++-==++;(3)()'2121212e sin e cos 2sin cos e x x x y x x x x +++=+=+.12.求下列函数的导数.(1)(11y⎛=+ ⎝;(2)ln xy x=.【答案】(1)'y =,(2)'21ln x y x -=【详解】解:(1)因为(11221111y x x-⎛=+==- ⎝,所以31'22211111)22222x y x x x --+=--=-=-,(2)由ln x y x =,得'21ln x y x -=13.求下列函数的导数:(1)5log 2y x =;(2)8x y =;(3)cos 2y x =;(4)()432y x =.【答案】(1)1ln 5y x '=(2)8ln8x y '=(3)2sin 2y x '=-(4)1013323y x =【详解】(1)555log 2log 2log x x =+ 1ln 5y x '∴=(2)8ln8x y '=(3)令2,t x =则cos y t =()()()cos 2cos 2sin 22sin 2x t x y y t x t x t x''''''∴=⋅⇒=⋅=-⨯=-,故2sin 2y x '=-(4)()10444414313333334222233y x x y xx -'==⋅∴=⨯= 14.求下列函数的导数:(1)8y x =;(2)4x y =;(3)3log y x =;(4)sin(2y x π=+;(5)2e y =.【答案】(1)'78y x =;(2)'4ln 4x y =⋅;(3)'1ln 3y x =⋅;(4)'sin y x =-;(5)'0y =.【详解】(1)8y x =,'78y x =;(2)4x y =,'4ln 4x y =⋅;(3)3log y x =,'1ln 3y x =⋅;(4)sin()cos 2y x x π=+=,'sin y x =-;(5)2e y =,'0y =.15.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)ln y x =;(5)cos y x =.【答案】(1)1112y x '=(2)54y x'=-(3)3ln 3xy '=(4)1y x '=(5)sin y x '=-【详解】(1)()121112y x x ''==(2)()4545144y x x x x --'⎛⎫''===-=- ⎪⎝⎭(3)()ln 333x x y ''==(4)()1ln y x x''==(5)()cos sin y x x''==-16.求下列函数的导函数(1)4235+6y x x x =--;(2)21y x x=+;(3)2cos y x x =;(4)tan y x =【答案】(1)3465y x x =--';(2)321y x '=-;(3)22cos sin y x x x x -'=;(4)21cos y x'=【详解】(1)由4235+6y x x x =--,则3465y x x =--';(2)由21y x x =+,则321y x '=-;(3)由2cos y x x =,则22cos sin y x x x x -'=;(4)由sin tan cos x y x x ==,则2222cos sin 1cos cos x x y x x+'==.17.求下列函数的导函数.(1)()3224f x x x =-+;(2)()32113f x x x ax =-++(3)()cos ,(0,1)f x x x x =+∈;(4)2()3ln f x x x x =-+-(5)sin y x =;(6)11x y x +=-【答案】(1)2()68f x x x =-+(2)2()2f x x x a'=-+(3)()sin 1f x x '=-+(4)1()23f x x x'=--+(5)cos y x '=(6)22(1)y x '=--【详解】解:(1)由()3224f x x x =-+,则()'268f x x x =-+;(2)由()32113f x x x ax =-++,则()'22f x x x a =-+;(3)由()cos ,(0,1)f x x x x =+∈,则()1sin ,(0,1)f x x x =-∈;(4)由2()3ln f x x x x =-+-,则'1()23f x x x=-+-;(5)由sin y x =,则'cos y x =;(6)由11x y x +=-,则'''22(1)(1)(1)(1)2(1)(1)x x x x y x x +⨯--+⨯-==---.18.求下列函数的导数:(1)221()(31)y x x =-+;(2)cos x y e x =;【答案】(1)y ′=18x 2+4x -3;(2)y ′=ex (cos x -sin x ).【详解】(1)2222(21)(31)(21)(31)4(31)3(21)1843y x x x x x x x x x '''=-++-+=++-=+-,(2)()cos (cos )cos sin (cos sin )x x x x x y e x e x e x e x e x x '''=+=-=-.19.求下列函数在指定点处的导数.(1)()πf x x =,1x =;(2)()sin f x x =,π2x =.【答案】(1)π(2)0【详解】(1)解:因为()πf x x =,所以()1f x x ππ-'=,所以()1f π'=.(2)解:因为()sin f x x =,所以()cos f x x '=,所以cos 022f ππ⎛⎫'== ⎪⎝⎭.20.求下列函数的导数.(1)12y x =;(2)41y x=;(3)3x y =;(4)5log y x =.【答案】(1)1112y x '=(2)54y x '=-(3)3ln3xy '=(4)1=ln5y x '【详解】(1)12y x =,则1112y x '=(2)441y x x -==,则41544y x x --'-==-(3)3x y =,则3ln3x y '=(4)5log y x =,则1=ln 5y x '21.求下列函数的导数:(1)23cos =+y x x ;(2)()1ln =+y x x ;【答案】(1)6sin =-'y x x ;(2)1ln 1y x x'=++【详解】解:(1)因为23cos =+y x x所以()()23cos 6sin y x x x x '''=+=-,即6sin =-'y x x(2)因为()1ln =+y x x所以()()()()111ln 1ln ln 1ln 1y x x x x x x x x x '''=+++=++⋅=++,即1ln 1y x x'=++22.求下列函数的导数.(1)()()22331y x x =+-;(2)1sin 1cos xy x-=+.【答案】(1)21849y x x '=-+(2)21cos sin (1cos )'--+=+x x y x 【详解】(1)解:因为326293y x x x =-+-,所以21849y x x '=-+(2)()()2cos (1cos )1sin sin (1cos )x x x x y x -+---=+',21cos sin (1cos )x xx --+=+.23.求下列函数的导数.(1)()()ln sin f x x x x =+;(2)()()521exx f x +=.【答案】(1)()ln sin cos 1f x x x x x '=+++(2)()()()42192e xx x f x +-'=【详解】(1)()()()1ln sin ln sin ln sin cos f x x x x x x x x x x x x ⎛⎫'''=+++=+++ ⎪⎝⎭ln sin cos 1x x x x =+++.(2)()()()()()()454525e 212121e 102121e e x x x xx x x x x f x '++-++-+'==()()()()442110212192e ex xx x x x +--+-==.24.求下列函数的导数:(1)()2sin 2x f x x x=+(2)()()3e ln 24xf x x =+【答案】(1)()()()()222cos 2sin 222x x x x x f x x x +-+'=+(2)()()33e 3e ln 224xxf x x x =+++'【详解】(1)()2sin 2xf x x x=+,()()()()222cos 2sin 222x x x x x f x xx +-+'=+(2)()()3e ln 24xf x x =+,()()()3333e 3e ln 242242e 3e ln 24x xxxx f x x x x '=++++=++.25.求下列函数的导数:(1)()f x =(2)()cos 21x y x+=.【答案】(1)21x x +(2)()()22sin 21cos 21x x x x -+-+(2)求商的导数,[]2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦,由复合函数的的导数得[]cos(21)sin(21)(21)2sin(21)x x x x ''+=-++=-+ .【详解】(1)因为()f x =所以()()122'211221x x x f x x -+⋅===+'.(2)()()()'2cos 21cos 21x x x x f x x ⎡⎤+-+⎣⎦''=()22sin 21cos(21)x x x x -+-+=.26.求下列函数的导函数.(1)()()22331y x x =+-;(2)233x y x +=+.【答案】(1)21849x x -+(2)()222633x x x--++【详解】(1)()()22331y x x =+- ,()()()()()()2222233123314313231849y x x x x x x x x x '''∴=+-++-=-++=-+;(2)233x x y +=+ ,()()()()()()()()()2222222222333332363333x x x x x x x x x xxxy ''∴++-+++-+--+=='=+++.27.求下列函数的导数:(1)32234y x x =--;(2)ln xy x=.【答案】(1)266x x -(2)21ln x x -【详解】(1)322(2)(3)(4)66y x x x x ''''=--=-(2)()2221ln ln ln ()1ln x xx x x x x x y x x x ⋅-''⋅-⋅-'===28.求下列函数的导数:(1)31x x y e-=(2)ln(52)y x =+(3)cos(21)x y x +=【答案】(1)3231e x x x y -+'+=(2)552y x '=+(3)22sin(21)cos(21)x x x y x +++'=-【详解】(1)∵31xx y e-=,则()()()()()()''333232221e 1e 31e 31e e e x xxxx xx x xx x x y ----++-++===',故3231e xx x y -+'+=.(2)设52u x =+,则ln ,52u y u u x ==+,则()()()()''''15ln 52552u y y u u x u x '==+=⨯=+,故552y x '=+.(3)∵cos(21)x y x+=,则[]()2222sin(21)cos(21)2sin(21)cos(cos(21)cos 2121)x x x x x x y x x x x x x x ''+⋅-+⋅⎡⎤⎣⎦'==-+-++++=-,故22sin(21)cos(21)x x x y x +++'=-.29.求下列函数的导数.(1)n 1l y x x =+;(2)sin cos 22x y x x =-;(3)cos ex xy =【答案】(1)211y x x '=-.(2)11cos 2y x '=-(3)sin cos e x x x y +'=-.【详解】(1)22111(ln )(y x x x x''=+=-;(2)由已知1sin 2y x x =-,所以11cos 2y x '=-;(3)22(cos )e cos (e )sin e cos e sin cos (e )e e x x x x x x xx x x x x xy ''--⋅-⋅+'===-.30.求下列函数的导数:(1)21y x x=+;(2)e sin x y x =;(3)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()e sin cos x y x x '=+(3)y '=()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x(2)解:()()()e sin e sin e sin e cos e sin cos x x x x x y x x x x x x '''=+=+=+(3)解:()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .31.()2ln 3=+y x x x .【答案】y '=()223ln 33x x x x ++++【详解】()()22ln 3ln 3y x x x x x x '⎡⎤''=+++⎣⎦()()221ln 3233x x x x x x =++⋅⋅++()223ln 33x x x x +=+++.32.21y x x =+;【答案】312y x -=-'【详解】221y x x x x-=+=+,()2312y x x x --'''=+=-.33.求下列函数的导数(1)2(2)(31)y x x =-+;(2)2cos 2x y x=【答案】(1)2272411y x x '=--(2)y '222cos(2)2sin(2)(cos 2)x x x x x +=【详解】(1)因为2232(2)(31)(2)(961)912112y x x x x x x x x =-+=-++=---,所以()()()32291211272411y x x x x x ''''=--=--(2)222222()cos 2(cos 2)2cos 2(2sin 2)cos 2(cos 2)(cos 2)x x x x x x x x x y x x x '''⎛⎫---'=== ⎪⎝⎭222cos(2)2sin(2)(cos 2)x x x x x +=34.求下列函数的导数(1)()2112f x x x x=--;(2)()e ln sin x f x x x =++【答案】(1)()3221x x f x x -+'=;(2)()1e cos xf x x x '=++【详解】(1)解:因为()2112f x x x x =--,则()3222111x x f x x x x -+=-+='.(2)解:因为()e ln sin x f x x x =++,则()1e cos xf x x x'=++.35.求下列函数的导数.(1)ln(21)y x =+;(2)sin cos x y x=;(3)()2ln 1y x x =+;(4)1()23()()y x x x =+++.【答案】(1)221y x '=+;(2)21cos y x =';(3)()2222ln 11x x xy +++'=;(4)231211y x x =++'.【详解】(1)函数ln(21)y x =+,所以()12212121y x x x '=⋅+=++'.(2)函数sin cos x y x =,所以()()''22222sin cos sin cos cos sin 1cos cos cos x x x x x x y x x x -+=='=.(3)函数2)ln(1y x x =+,所以22222212ln(1(1)())ln 111x x x x x x y x '++⋅⋅+=++++'=.(4)依题意,32123()()()6116y x x x x x x ==++++++,所以231211y x x =++'.36.求下列函数的导函数.(1)()4ln =+f x x x ;(2)()sin cos =-x f x x x;(3)()21e xf x -=.【答案】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+;(3)21()2e x f x '-=.【详解】(1)31()4f x x x '=+;(2)()2cos sin sin x x xf x x x'-=+.(3)2121(21()e )e 2x x x x f --'==⋅-'.37.求下列函数的导数.(1)y =(2)()()()123y x x x =+++;(3)y =【答案】(1)52322332sin cos 2x x x x x x y ---=-+-+';(2)231211y x x =++';(3)()221y x '=-【详解】(1) 13523222sin sin x x x x y x x x x -++==++∴()()3322sin y x x x x --'⎛⎫'''=++ ⎪⎝⎭52322332sin cos 2x x x x x x ---=-+-+.(2) ()()2323236116y x x x xx x =+++=+++,∴231211y x x =++'.(3)21y x===-∴()()()222122111y x x x '-'⨯-⎛⎫=== ⎪-⎝⎭--.38.求下列函数的导数:(1)()()311y x x =--;(2)sin 3y x =;(3)21ex x y +=.【答案】(1)32431y x x =--';(2)3cos 3y x =';(3)221e xx x y -+'=-【详解】(1)()()()()()()''3332321111131431y x x x x x x x x x =--+--=-+--'=-;(2)令3u x =,则sin y u =,所以()()''3sin 3cos 3cos3y x u u x =⋅==';(3)()()()()()()''2222221e 1e 2e 1e 21e e e x xx xxx xxx x x x x y +-+-+-+=='=-.39.求下列函数的导数:(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)()2ln 35y x =+.【答案】(1)21πcos 0,cos 2y x x x ⎛⎫'=+∈ ⎪⎝⎭;(2)()2223563535x x y x x '+'==++【详解】(1)πsin tan 0,2y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭()()()22cos cos sin sin sin 1πsin cos cos ,0,cos cos 2cos x x x x x y x x x x x x x '⋅-⋅-⎛⎫⎛⎫''=+=+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)()2ln 35y x =+()2223563535x xy x x '+'==++40.求下列函数的导数:(1)21y x x =+;(2)()2ln 3=+y x x x .【答案】(1)312y x -=-'(2)()223ln 33x x x x ++++【详解】(1)解:()331212--=+-⋅=-'y x x ;(2)()()()22223()ln 3ln 3ln 33+'⎡⎤'=+++=++'⎣⎦+x y x x x x x x x x x .41.求下列函数的导数.(1)()2ln 2xx f x x +=;(2)()()3ln 45f x x =+.【答案】(1)()312ln ln 222xx x x -+-;(2)1245x +【详解】(1)函数()2ln 2xx f x x +=的定义域为()0+∞,.所以()()()()()()22232ln 2ln 212ln ln 222xxxx x x x x x f x x x ''+-+-+-'==(2)函数()()()3ln 453ln 45f x x x =+=+的定义域为54⎛⎫-+∞ ⎪⎝⎭,.所以()()'345124545x f x x x +==++'42.求下列函数的导数:(1)()2321cos y x x x =++;(2)2y =(3)18sin ln y x x x =+-;(4)32cos 3log xy x x x =-;(5)33sin 3log xy x x =-;(6)e cos tan x y x x =+.【答案】(1)()2(62)cos 321sin x x x x x +-++;(2)132291122x x --+;(3)17118cos x x x+-;(4)()332ln 2cos 2sin 3log 3log e x x x x x ---;(5)()313ln 3sin 3cos 3log e x x x x x +-⋅;(6)21e cos e sin cos x xx x x-+.【详解】(1)()()()22321cos 321cos y x x x x x x '''=+++++⋅()2(62)cos 321sin x x x x x =+-++.(2)3122235y x x x -==+-+,所以1222213331311222912y x x x x --'=⨯⋅+-⋅=-+.(3)17118cos y x x x'=+-.(4)()()()()332cos 2cos 3log log x x y x x x x x x'⎡⎤''''=+-+⎢⎥⎣⎦()332ln 2cos 2sin 3log 3log e x x x x x =---.(5)()()13sin 3sin 3ln 3x xy x x x '''=+-⋅()313ln 3sin 3cos 3log e x x x x x=+-⋅.(6)sin e cos tan e cos cos x xxy x x x x=+=+,故()()()()2sin cos cos sin e cos e cos cos x x x x x xy x x x''-'''=+⋅+21=e cos e sin cos x x x x x-+.43.求下列函数的导数:(1)2e axbxy -+=;(2)2sin(13)y x =-;(3)y(4)y =(5)2lg sin 2x y x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦;(6)221cos e x x y ⎛⎫+= ⎪⎝⎭.【答案】(1)2(2)eax bxax b -+-+(2)6cos(13)x --(3)()()()231cos 2sin 22ln 213x x x x x --+⋅+⋅+(4)cos 2(1sin )x x +(5)22cos 122lg e 2sin 2x x x x x ⎛⎫+ ⎪⎛⎫⎝⎭+⋅⋅ ⎪⎛⎫⎝⎭+ ⎪⎝⎭(6)22(1)1sin 2e e x x x x ⎛⎫-+ ⎪⎝⎭【详解】(1)因为函数2e axbxy -+=可以看做函数e u y =和2u ax bx =-+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2e u ax bx ''=⋅-+()e 2u ax b =⨯-+2(2)e axbxax b -+=-+;(2)因为函数2sin(13)y x =-可以看做函数2sin y μ=和13u x =-的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅()()2sin 13x μ''=⋅-()2cos 3μ=⨯-6cos(13)x =--;(3)因为函数y =y =()cos 2xu x =+的复合函数,根据复合函数求导公式可得,xu x y y u '''=⋅,又因为函数()cos 2xu x =+可以看做函数cos t μ=和2x t x =+的复合函数,根据复合函数求导公式可得,xt x t μμ'''=⋅所以x u t xy y u t ''''=⋅⋅()()cos2xt x'''=⋅⋅+()()231sin2ln213xtμ-⎛⎫=⨯-⨯+⎪⎝⎭()()()231cos2sin22ln213x x xx x-⎡⎤=+-+⨯+⎣⎦()()()231cos2sin22ln213x x xx x-=-+⋅+⋅+;(4)函数y=()1ln1sin2y x=+因为函数()1ln1sin2y x=+可以看做函数1ln2yμ=和1sinu x=+的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,所以x u xy y u'''=⋅()1ln1sin2xμ'⎛⎫'=⋅+⎪⎝⎭1cos2xμ⎛⎫=⨯⎪⎝⎭cos2(1sin)xx=+;(5)因为函数2lg sin2xy x⎡⎤⎛⎫=+⎪⎢⎥⎝⎭⎣⎦可以看做函数lgy u=和2sin2xu x⎛⎫=+⎪⎝⎭的复合函数,根据复合函数求导公式可得,x u xy y u'''=⋅,又因为函数2sin2xu x⎛⎫=+⎪⎝⎭可以看做函数sin tμ=和22xt x=+的复合函数,根据复合函数求导公式可得,x t xtμμ'''=⋅所以x u t xy y u t''''=⋅⋅()()2lg sin2xt xμ'⎛⎫''=⋅⋅+⎪⎝⎭()11cos2ln102t xμ⎛⎫⎛⎫=⨯⨯+⎪⎪⎝⎭⎝⎭22cos122lg e2sin2x xxx x⎛⎫+⎪⎛⎫⎝⎭=+⋅⋅⎪⎛⎫⎝⎭+⎪⎝⎭;(6)函数221cos e x x y ⎛⎫+= ⎪⎝⎭可化为211cos 2e 2x x y ⎛⎫++ ⎪⎝⎭=,因为函数2221cos e 2xx y ⎛⎫++ ⎪⎝⎭=可以看做函数1cos 2y μ+=和222e xx u +=的复合函数,根据复合函数求导公式可得,x u x y y u '''=⋅,所以xu x y y u '''=⋅21cos 222e xx μ''⎛⎫++⎛⎫= ⎪ ⎪⎝⎭⎝⎭()224e e 221sin 2e x x x x x μ⎡⎤-+⎢⎥=-⋅⎢⎥⎣⎦21242sin 2e x x x μ⎛⎫-+-=-⋅ ⎪⎝⎭22(1)1sin 2e e x x x x ⎛⎫-+= ⎪⎝⎭.44.求下列函数的导数.(1)()()1ln 2y x x =+;(2)21e x y x+=.【答案】(1)y '()1ln 21x x =++(2)212122e ex x x y x ++-='【详解】(1)()()()()()()()111ln 21ln 2ln 21ln 21y x x x x x x x x x'=+++=++⋅=++⎡⎤⎣'⎦'(2)()2121212122e e 2e e x x x x x x x y x x ++++'⋅-⋅-==''45.求下列函数的导数.(1)y =(2)()621e 1x y x -+=-【答案】(1)()241y x -'=-;(2)()()521e 182x y x x -+'=--【详解】(1)2211221x y x ++===-()()()()()22212212211x x x x x y x x '''+--+-+⎛⎫'== ⎪-⎝⎭-()()()()222122411x x x x --+-==--(2)()()()()666212121e 1e 1e 1x x x y x x x -+-+-+'''⎡⎤⎡⎤'=-=-+-⎣⎦⎣⎦()()()()6552121212e 1e 61e 182x x x x x x x -+-+-+=--+⋅-=--46.求下列函数的导数.(1)52234y x x =--;(2)e sin xy x=.【答案】(1)4106y x x '=-;(2)2e sin e cos sin x x x xy x-'=【详解】(1)()()()5252423423106y x x x x x x ''''-==--=-(2)()()2e sin sin e e sin sin x x xx x y x x '''-⎛⎫'== ⎪⎝⎭2e sin e cos sin x x x x x -47.求下列函数的导数:(1)2sin y x x =;(2)n 1l y x x=+;(3)tan y x x =⋅;(4)()()()123y x x x =+++;(5)()()22332y x x =+-;(6)cos e xxy =.【答案】(1)22sin cos y x x x x '=+(2)211y x x'=-(3)2tan cos x y x x '=+(4)231211y x x =++'(5)21889y x x '=-+(6)sin cos e xx xy +'=-【详解】(1)()()()2222sin sin sin 2sin cos y x x x x x x x x x x ''''==+=+;(2)()21111ln ln y x x x x x x''⎛⎫⎛⎫''=+=+=- ⎪ ⎪⎝⎭⎝⎭;(3)()()222sin cos sin tan tan tan tan tan cos cos x x x y x x x x x x x x x x x x '+⎛⎫'''=⋅=+=+⋅=+⋅ ⎪⎝⎭2tan cos x x x =+;(4)()()()()()()123123y x x x x x x '''=+++++++⎡⎤⎡⎤⎣⎦⎣⎦()()()()()()()()()123123123x x x x x x x x x '''=+++++++++++()()()()()()231312x x x x x x =++++++++231211x x =++.(5)()()()()()()2222233223324323231889y x x x x x x x x x '''=+-+++=-++=-+;(6)()2cos 1111sin cos cos cos sin cos e e e e e e e x x x x x x xx x x y x x x x ''+⎛⎫⎛⎫⎛⎫''==+=-⋅+⋅-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.。
利用导数求单调区间的一些大题(含答案)
例1.1.已知函数已知函数321()3f x x ax b =-+在2x =-处有极值处有极值. . (1) 求函数()f x 的单调区间;的单调区间;(2) 求函数()f x 在[]3,3-上有且仅有一个零点,求b 的取值范围。
的取值范围。
例2.已知函数232)1(31)(x k x x f +-=,k x x g -=31)(,且)(x f 在区间),2(+¥上为增函数.函数.(1)、求实数k 的取值范围;的取值范围; (2)、若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.的取值范围.解:解:(1) (1) (1) 由由321()3f x x ax b =-+,得22'()32f x x ax a =--令222a '()320,=-,(0)3f x x ax a x a a =--==>1得x当(),'()x f x f x 变化时,的变化情况如下表:x (,)3a -¥-3a- (,)3a a - a(,)a +¥()f x+_ 0 +'()f x极大值极大值极小值极小值由上述表格可知,32235()=()()()()11333327a a a a f x f a a a -=-----+=+极大值3333()()11f x f a a a a a ==--+=-极大值(2)(2)由(由(由(11)可知()(,)(,)3a f x a -¥-+¥在和上单调递增,在-a(,a ,a))3上单调递减,上单调递减, 当33501,()=()10,()=f(a)=1-a 0327a a f x f a f x <£-=+>³极大值极小值a()-y f x \=¥在(,+)3上最多只有一个实数根,且此零点仅在1a =时取得时取得又()y f x =在(,)3a -¥-上单调递增,且2(1)(1)0f a a a a -=-=-£()--y f x \=¥a在(,)3上最多有一个实数根上最多有一个实数根 于是,当01a <£时,函数()y f x =有1个或2个零点,即函数()y f x =至多有两个实数根。
函数与导数经典常考压轴大题
函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x 22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.02证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .3(2024·上海松江·二模)已知函数y =x ⋅ln x +a (a 为常数),记y =f (x )=x ⋅g (x ).(1)若函数y =g (x )在x =1处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:f (x )+f (t -x )≥f (t )-t ln2+a ;(3)当a =1时,求证:g (x )+cos x <e x x.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x ∈D ,m ≤f x ⇔m ≤f x min ;(2)∀x ∈D ,m ≥f x ⇔m ≥f x max ;(3)∃x ∈D ,m ≤f x ⇔m ≤f x max ;(4)∃x ∈D ,m ≥f x ⇔m ≥f x min .3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-axe x a∈R.(1)讨论f x 的单调性;(2)若关于x的不等式f x >a1-x无整数解,求a的取值范围.2(2024·黑龙江哈尔滨·一模)已知函数f x =xe x-ae x,a∈R.(1)当a=0时,求f x 在x=1处的切线方程;(2)当a=1时,求f x 的单调区间和极值;(3)若对任意x∈R,有f x ≤e x-1恒成立,求a的取值范围.3(2024·陕西安康·模拟预测)已知函数f x =ln x+1,g x =e x-1.(1)求曲线y=f x 与y=g x 的公切线的条数;(2)若a>0,∀x∈-1,+∞,f x+1≤a2g x +a2-a+1,求a的取值范围.04零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x轴(或直线y=k)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x-1,g x =ln x+b.(1)求函数F x =x-1f x 的单调区间;(2)若总存在两条直线和曲线y=f x 与y=g x 都相切,求b的取值范围.2(2024·北京房山·一模)已知函数f(x)=e ax+1 x.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设g(x)=f (x)⋅x2,求函数g(x)的极大值;(3)若a<-e,求函数f(x)的零点个数.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.2(2024·河北沧州·一模)已知函数f x =x a e2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.3(2024·全国·模拟预测)已知函数f (x )=e x -sin x .(1)若f (x )≥ax 2+1对于任意x ∈[0,+∞)恒成立,求a 的取值范围;(2)若函数f (x )的零点按照从大到小的顺序构成数列x n ,n ∈N *,证明:2ni =1x i <-2n 2+n π;(3)对于任意正实数x 1,x 2,证明:e x 2-x 2-1 e x 1>sin x 1+x 2 -sin x 1-x 2cos x 1.1已知函数f x =ax -ln x x ,a >0.(1)若f x 存在零点,求a 的取值范围;(2)若x 1,x 2为f x 的零点,且x 1<x 2,证明:a x 1+x 2 2>2.2已知函数f x =3ln x -ax .(1)讨论f x 的单调性.(2)已知x 1,x 2是函数f x 的两个零点x 1<x 2 .(ⅰ)求实数a 的取值范围.(ⅱ)λ∈0,12 ,f x 是f x 的导函数.证明:f λx 1+1-λ x 2 <0.3如图,对于曲线Γ,存在圆C 满足如下条件:①圆C 与曲线Γ有公共点A ,且圆心在曲线Γ凹的一侧;②圆C 与曲线Γ在点A 处有相同的切线;③曲线Γ的导函数在点A 处的导数(即曲线Γ的二阶导数)等于圆C 在点A 处的二阶导数(已知圆x -a 2+y -b 2=r 2在点A x 0,y 0 处的二阶导数等于r 2b -y 0 3);则称圆C 为曲线Γ在A 点处的曲率圆,其半径r 称为曲率半径.(1)求抛物线y =x 2在原点的曲率圆的方程;(2)求曲线y =1x的曲率半径的最小值;(3)若曲线y =e x 在x 1,e x 1 和x 2,e x 2x 1≠x 2 处有相同的曲率半径,求证:x 1+x 2<-ln2.4已知函数f x =ax2+x-ln x-a.(1)若a=1,求f x 的最小值;(2)若f x 有2个零点x1,x2,证明:a x1+x22+x1+x2>2.5已知函数f x =12e2x+a-2e x-2ax.(1)若曲线y=f x 在0,a-32处的切线方程为4ax+2y+1=0,求a的值及f x 的单调区间.(2)若f x 的极大值为f ln2,求a的取值范围.(3)当a=0时,求证:f x +5e x-52>32x2+x ln x.6已知函数f x =12x2+x+a ln x+1,a∈R.(1)讨论f x 的单调性;(2)证明:当a<-1时,a2+f x >1.7已知函数f x =x ln x+ax+1a∈R.(1)若f x ≥0恒成立,求a的取值范围;(2)当x>1时,证明:e x ln x>e(x-1).(1)判断函数f(x)的单调性(2)证明:①当a≥0时,f(x)≤0;②sin1n+1+sin1n+2+⋯+sin12n<ln2,n∈N*.9牛顿迭代法是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.比如,我们可以先猜想某个方程f x =0的其中一个根r在x=x0的附近,如图6所示,然后在点x0,f x0处作f x 的切线,切线与x轴交点的横坐标就是x1,用x1代替x0重复上面的过程得到x2;一直继续下去,得到x0,x1,x2,⋯,x n.从图形上我们可以看到x1较x0接近r,x2较x1接近r,等等.显然,它们会越来越逼近r.于是,求r近似解的过程转化为求x n,若设精度为ε,则把首次满足x n-x n-1<ε的x n称为r的近似解.已知函数f x =x3-x+1,a∈R.(1)试用牛顿迭代法求方程f x =0满足精度ε=0.5的近似解(取x0=-1,且结果保留小数点后第二位);(2)若f x +3x2+6x+5+ae x≤0对任意x∈R都成立,求整数a的最大值.(计算参考数值:e≈2.72,e1.35≈3.86,e1.5≈4.48,1.353≈2.46,1.352≈1.82)(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.11已知函数f x =x2-2a ln x-2(a∈R).(1)讨论f x 的单调性;(2)若不等式f x ≤2ln x2+x2-2x在区间(1,+∞)上有解,求实数a的取值范围.12已知函数f x =xe x,其中e=2.71828⋯为自然对数的底数.(1)求函数f x 的单调区间;(2)证明:f x ≤e x-1;(3)设g x =f x -e2x+2ae x-4a2+1a∈R,若存在实数x0使得g x0≥0,求a的最大值.13已知函数f x =e x-1-ax a∈R.(1)若函数f x 在点1,f1处的切线与直线x+2ey+1=0垂直,求a的值;(2)当x∈0,2时,讨论函数F x =f x -x ln x零点的个数.14已知函数f(x)=e2x-(2a-1)e x-ax.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.15已知函数f x =e x-x2+a,x∈R,φx =f x +x2-x.(1)若φx 的最小值为0,求a的值;(2)当a<0.25时,证明:方程f x =2x在0,+∞上有解.16已知f (x )=x ex,g (x )=ln x x .(1)求函数y =f (x )、y =g (x )的单调区间和极值;(2)请严格证明曲线y =f (x )、y =g (x )有唯一交点;(3)对于常数a ∈0,1e,若直线y =a 和曲线y =f (x )、y =g (x )共有三个不同交点x 1,a 、x 2,a 、x 3,a ,其中x 1<x 2<x 3,求证:x 1、x 2、x 3成等比数列.17已知函数f x =sin x -ax ⋅cos x ,a ∈R .(1)当a =1时,求函数f x 在x =π2处的切线方程;(2)x ∈0,π2时;(ⅰ)若f x +sin2x >0,求a 的取值范围;(ⅱ)证明:sin 2x ⋅tan x >x 3.18f(x)=2sin(x+φ)-a+e-x,φ∈0,π2,已知f(x)的图象在(0,f(0))处的切线与x轴平行或重合.(1)求φ的值;(2)若对∀x≥0,f(x)≤0恒成立,求a的取值范围;(3)利用如表数据证明:157k=1sinkπ314<106.eπ314e-π314e78π314e-78π314e79π314e-79π314 1.0100.990 2.1820.458 2.2040.45419数值线性代数又称矩阵计算,是计算数学的一个重要分支,其主要研究对象包括向量和矩阵.对于平面向量a =(x ,y ),其模定义为|a |=x 2+y 2.类似地,对于n 行n 列的矩阵A nn =a 11a 12a 13⋯a 1n a 21a 22a 23⋯a 2n a 31a 32a 33⋯a 3n ⋮⋮⋮⋮,其模可由向量模拓展为A =∑ni =1∑nj =1a 2ij12(其中a ij为矩阵中第i 行第j 列的数,∑为求和符号),记作A F,我们称这样的矩阵模为弗罗贝尼乌斯范数,例如对于矩阵A 22=a 11a 12a21a 22=2435,其矩阵模A F =∑n i =1∑nj =1a 2ij12=22+42+32+52=3 6.弗罗贝尼乌斯范数在机器学习等前沿领域有重要的应用.(1)∀n ∈N *,n ≥3,矩阵B nn =100⋯0020⋯0003⋯0⋮⋮⋮⋮00⋯n,求使B F >35的n 的最小值.(2)∀n ∈N *,n ≥3,,矩阵C nn =1cos θcos θcos θ⋯cos θcos θ0-sin θ-sin θcos θ-sin θcos θ⋯-sin θcos θ-sin θcos θ00sin 2θsin 2θcos θ⋯sin 2θcos θsin 2θcos θ⋮⋮⋮⋮⋮⋮0000⋯(-1)n -2sin n -2θ(-1)n -2sin n -2θcos θ0000⋯0(-1)n -1sin n -1θ求C F.(3)矩阵D mn =ln n +2n +100⋅⋅⋅0ln n +1n 22ln n +1n 220⋅⋅⋅0⋮ln 43n -1n -1ln 43 n -1n -1ln 43 n -1n -1⋅⋅⋅0ln 32 n n ln 32 n n ln 32 nn ⋅⋅⋅ln 32nn,证明:∀n ∈N *,n ≥3,D F >n 3n +9.20已知函数f x =sin x -ln 1+ax .(1)若x ∈0,π2时,f x ≥0,求实数a 的取值范围;(2)设n ∈N *,证明:sin 13+ln 32-ln n +2n +1<nk =1sin 1k k +2 <34.1函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;2(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【解析】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4(t +1)2=(t -1)2t (t +1)>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.【解析】(1)当a =1时,f x =2e x -12x 2+1,f x =2e x -x ,则f 0 =3,f 0 =2,则切线方程为y -3=2x ,因此曲线y =f x 在点0,f 0 处的切线方程为2x -y +3=0.(2)证明:函数f x =a +1 e x -x ,x 1,x 2是y =f x 的两个零点,所以x 1=a +1 e x 1,x 2=a +1 e x 2,则有x 1+x 2=a +1 e x 1+e x 2,且x 2-x 1=a +1 e x 2-e x1,由x 1<x 2,得a +1=x 2-x 1e x 2-ex 1.要证x 1+x 2>2,只要证明a +1 e x 1+e x 2>2,即证x 2-x 1 e x 2+ex1e x 2-ex 1>2.记t =x 2-x 1,则t >0,e t >1,因此只要证明t ⋅e t +1e t -1>2,即t -2 e t +t +2>0.记h t =t -2 e t +t +2(t >0),则h t =t -1 e t +1,令φt =t -1 e t +1,则φ t =te t ,当t >0时,φ t =te t >0,3所以函数φt =t -1 e t +1在0,+∞ 上递增,则φt >φ0 =0,即h t >h 0 =0,则h t 在0,+∞ 上单调递增,∴h t >h 0 =0,即t -2 e t +t +2>0成立.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.【解析】(1)因为f x =ln x +x 2-2ax ,x >0,所以f(x )=1x +2x -2a =2x 2-2ax +1x,令g (x )=2x 2-2ax +1,则Δ=4a 2-8=4a 2-2 ,因为a >0,当0<a ≤2时,Δ≤0,则g (x )≥0,即f (x )≥0,此时f (x )在(0,+∞)上单调递增,当a >2时,Δ>0,由g (x )=0,得x 3=a -a 2-22,x 4=a +a 2-22,且x 3<x 4,当0<x <x 3或x >x 4时,g (x )>0,即f (x )>0;当x 3<x <x 4时,g (x )<0,即f (x )<0,所以f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减;综上,当0<a ≤2时,f (x )在(0,+∞)上单调递增,当a >2时,f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减,其中x 3=a -a 2-22,x 4=a +a 2-22.(2)由(1)可知,x 3,x 4为f (x )的两个极值点,且x 3<x 4,所以x 1=x 3,x 2=x 4,且x 1,x 2是方程2x 2-2ax +1=0的两不等正根,此时a >2,x 1+x 2=a >0,x 1⋅x 2=12,所以x 1∈0,22 ,x 2∈22,+∞ ,且有2ax 1=2x 21+1,2ax 2=2x 22+1,则2f x 1 -f x 2 =2ln x 1+x 21-2ax 1 -ln x 2+x 22-2ax 2=2ln x 1+x 21-2x 21-1 -ln x 2+x 22-2x 22-1 =-2x 21+2ln x 1-ln x 2+x 22-1=x 22-212x 22+2ln12x 2-ln x 2-1=x 22-12x 22-32ln x 22-2ln2-1令t =x 22,则t ∈12,+∞ ,令g t =t -12t -32ln t -2ln2-1,则g t =1+12t 2-32t =2t -1 t -1 2t 2,当t ∈12,1 时,g t <0,则g t 单调递减,当t ∈1,+∞ 时,g t >0,则g t 单调递增,所以g t min =g 1 =-1+4ln22,所以2f x 1 -f x 2 的最小值为-1+4ln22.402证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.【解析】(1)f x =me x -2x +m ,f 2 =me 2-4+m ,f 2 =me 2-4+m ,则有4e 2=me 2-4+m ,4e 2×2-me 2-4+m -4e 2=0,解得m =4;(2)由m =4,故f x =4e x -x 2+4x -4,要证对一切x ≥0,都有f x ≥e 2x 2,即证4e x ≥e 2+1 x 2-4x +4对一切x ≥0恒成立,即证e 2+1 x 2-4x +4e x ≤4对一切x ≥0恒成立,令g x =e 2+1 x 2-4x +4e x,gx =2e 2+1 x -4-e 2+1 x 2+4x -4e x =-e 2+1 x 2+2e 2+3 x -8e x=-e 2+1 x -4 x -2 e x ,则当x ∈0,4e 2+1 ∪2,+∞ 时,g x <0,则当x ∈4e 2+1,2时,g x >0,即g x 在0,4e 2+1 、2,+∞ 上单调递减,在4e 2+1,2上单调递增,又g 0 =4e 0=4,g 2 =4e 2+1 -4×2+4e 2=4e 2+4-8+4e 2=4,故g x ≤4对一切x ≥0恒成立,即得证.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .【解析】(1)当a =4时,f (x )=(x -4)e x +x +4,则f (x)=(x-3)e x+1,得f (0)=-2,又f(0)=0,所以f(x)在x=0处的切线为y=-2x;(2)f(x)=(x-a)e x+x+a≥0对∀x∈[0,+∞)恒成立,f (x)=(x+1-a)e x+1,设g(x)=(x+1-a)e x+1(x≥0),则g (x)=(x+2-a)e x,当2-a≥0即a≤2时,g (x)≥0,g(x)在[0,+∞)上单调递增,且g(0)=2-a≥0,所以g(x)≥0,即f (x)≥0,此时f(x)在[0,+∞)上单调递增,且f(0)=0,所以f(x)≥0对∀x∈[0,+∞)恒成立.当2-a<0即a>2时,令g (x)<0⇒0<x<a-2,g (x)>0⇒x>a-2,所以函数g(x)在(0,a-2)上单调递减,在(a-2,+∞)上单调递增,则g(x)min=g(a-2)=1-e a-2<0,又g(0)=2-a<0,所以在(0,a-2)上恒有g(x)<0,即f (x)<0,函数f(x)在(0,a-2)上单调递减,且f(0)=0,则在(0,a-2)上有f(x)<0,不符合题意.综上,a≤2,即实数a的取值范围为(-∞,2](3)由a n+1=2a na n+2,得1a n+1-1a n=12,又1a1=1,所以数列1a n是以1为首项,以12为公差的等差数列,故1a n=1+12(n-1)=n+12,所以a n=2n+1.当n=1时,S1+13=a1+13=43<ln6恒成立;当n≥2时,先证:2n+1<ln n+2n,即证2n+1<ln n+1+1n+1-1=ln1+1n+11-1n+1,设x=1n+1,则0<x<1,即证2x<ln1+x1-x(0<x<1),令h(x)=2x-ln 1+x1-x(0<x<1),则h (x)=2-1x+1-11-x=-2x21-x2<0,所以h(x)在(0,1)上单调递减,故h(x)<h(0)=0,即2x<ln 1+x1-x,即2n+1<ln n+2n.所以当n≥2时,S n+13=13+23+24+⋯+2n+1<ln6+ln42+ln53+⋯+ln n+2n=ln6×4×5×⋯×n(n+1)(n+2)2×3×4×5×⋯×n=ln[(n+1)(n+2)].综上,S n+13<ln[(n+1)(n+2)].3(2024·上海松江·二模)已知函数y=x⋅ln x+a(a为常数),记y=f(x)=x⋅g(x).(1)若函数y=g(x)在x=1处的切线过原点,求实数a的值;(2)对于正实数t,求证:f(x)+f(t-x)≥f(t)-t ln2+a;(3)当a=1时,求证:g(x)+cos x<e xx.【解析】(1)由题意,函数y=x⋅ln x+a,且y=f(x)=x⋅g(x),可得g(x)=f(x)x=ln x+ax,x>0,则g (x)=1x-ax2=x-ax2,5所以g (1)=1-a,又因为g(1)=ln1+a=a,所以g x 在x=1处的切线方程为y=(1-a)(x-1)+a,又因为函数y=g(x)在x=1处的切线过原点,可得0=(1-a)⋅(0-1)+a,解得a=1 2 .(2)设函数h x =f x +f t-x,t>0,可得h x =x ln x+(t-x)ln(t-x)+2a,其中0<x<t,则h x =ln x+1-ln(t-x)-1=lnxt-x,令h x >0,可得xt-x>1,即2x-tt-x>0,即2x-tx-t<0,解得t2<x<t,令h x <0,可得0<xt-x<1,解得0<x<t2,所以h x 在t2,t上单调递增,在0,t2上单调递减,可得h x 的最小值为ht2,所以h x ≥h t2 ,又由ht2=f t2 +f t-t2=t ln t2+2a=f t -t ln2+a,所以f x +f t-x≥f t -t ln2+a.(3)当a=1时,即证ln x+1x <e xx-cos x,由于cos x∈[-1,1],所以e xx-cos x≥e xx-1,只需证ln x+1x<e xx-1,令k x =ln x+1x-e xx+1,x>0,只需证明k x <0,又由k x =1x-1x2-e x(x-1)x2=(1-e x)(x-1)x2,因为x>0,可得1-e x<0,令k x >0,解得0<x<1;令k x <0,解得x>1,所以k x 在(0,1)上单调递增,在(1,+∞)上单调递减,所以k x 在x=1处取得极大值,也时最大值,所以k x max=k1 =2-e<0,即k x <0,即a=1时,不等式g(x)+cos x<e xx恒成立.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x∈D,m≤f x ⇔m≤f x min;(2)∀x∈D,m≥f x ⇔m≥f x max;(3)∃x∈D,m≤f x ⇔m≤f x max;(4)∃x∈D,m≥f x ⇔m≥f x min.673、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-ax e x a ∈R .(1)讨论f x 的单调性;(2)若关于x 的不等式f x >a 1-x 无整数解,求a 的取值范围.【解析】(1)f x =1-a -ax e x ,当f x =0,得x =1-aa ,当a >0时,x ∈-∞,1-a a时,fx >0,f x 单调递增,x ∈1-a a,+∞ 时,f x <0,f x 单调递减,当a <0时,x ∈-∞,1-aa时,f x <0,f x 单调递减,x ∈1-a a,+∞ 时,f x >0,f x 单调递增,当a =0时,f x =e x ,函数f x 在R 上单调递增,综上可知,a >0时,函数f x 的单调递增区间是-∞,1-a a,单调递减区间是1-aa ,+∞ ,a <0时,函数f x 的单调递减区间是-∞,1-a a ,单调递增区间是1-aa ,+∞ ,a =0时,函数f x 的增区间是-∞,+∞ ,无减区间.(2)不等式1-ax e x >a 1-x ,即a x -x -1e x<1,设h x =x -x -1e x ,h x =1-2-x e x =e x +x -2e x,设t x =e x +x -2,t x =e x +1>0,所以t x 单调递增,且t 0 =-1,t 1 =e -2>0,所以存在x 0∈0,1 ,使t x 0 =0,即h x 0 =0,当x ∈-∞,x 0 时,h x <0,h x 单调递减,当x ∈x 0,+∞ 时,h x >0,h x 单调递增,所以h x ≥h x 0 =x 0e x-x 0+1ex,因为e x≥x +1,所以h x ≥h x 0 =x 0e x-x 0+1e x 0≥x 0x 0+1 -x 0+1e x 0=x 20+1ex>0,当x ≤0时,h x ≥h 0 =1,当x ≥1时,h x ≥h 1 =1,不等式1-ax e x >a 1-x 无整数解,即a x -x -1e x<1无整数解,若a ≤0时,不等式恒成立,有无穷多个整数解,不符合题意,若a ≥1时,即1a≤1,因为函数h x 在-∞,0 上单调递减,在1,+∞ 上单调递增,所以x ∈Z 时,h x ≥min h 0 ,h 1 =1≥1a ,所以h x <1a 无整数解,符合题意,当0<a <1时,因为h 0 =h 1 =1<1a ,显然0,1是a ⋅h x <1的两个整数解,不符合题意,8综上可知,a ≥1.2(2024·黑龙江哈尔滨·一模)已知函数f x =xex -ae x ,a ∈R .(1)当a =0时,求f x 在x =1处的切线方程;(2)当a =1时,求f x 的单调区间和极值;(3)若对任意x ∈R ,有f x ≤e x -1恒成立,求a 的取值范围.【解析】(1)当a =0时,f x =xex ,则f x =1-x ex,f 1 =0,f 1 =1e ,所以切线方程为y =1e.(2)当a =1时,f x =xe -x -e x ,f x =1-x e -x -e x =1-x -e 2xex.令g x =1-x -e 2x ,g x =-1-2e 2x<0,故g x 在R 上单调递减,而g 0 =0,因此0是g x 在R 上的唯一零点即:0是f x 在R 上的唯一零点当x 变化时,f x ,f x 的变化情况如下表:x-∞,0 00,+∞f x +0-f x↗极大值↘f x 的单调递减区间为:0,+∞ ;递增区间为:-∞,0 f x 的极大值为f 0 =-1,无极小值(3)由题意知xe -x-ae x≤e x -1,即a ≥xe -x -e x -1e x,即a ≥x e2x -1e ,设m x =x e 2x -1e ,则mx =e 2x -2xe 2x e 2x2=1-2x e 2x ,令m x =0,解得x =12,当x ∈-∞,12 ,m x >0,m x 单调递增,当x ∈12,+∞ ,m x <0,m x 单调递减,所以m x max =m 12 =12e -1e =-12e,所以a ≥-12e3(2024·陕西安康·模拟预测)已知函数f x =ln x +1,g x =e x -1.(1)求曲线y =f x 与y =g x 的公切线的条数;(2)若a >0,∀x ∈-1,+∞ ,f x +1 ≤a 2g x +a 2-a +1,求a 的取值范围.【解析】(1)设f x =ln x +1,g x =e x -1的切点分别为x 1,f x 1 ,x 2,g x 2 ,则f x =1x,g (x )=e x ,故f x =ln x +1,g x =e x -1在切点处的切线方程分别为y =1x 1x -x 1 +ln x 1+1⇒y =1x 1x +ln x 1,y =e x 2x -x 2 +e x 2-1⇒y =e x 2x -x 2e x 2+e x2-1则需满足;91x 1=ex 2ln x 1=-x 2ex 2+e x 2-1,故ln1ex 2=-x 2e x 2+e x 2-1⇒e x 2-1 x 2-1 =0,解得x 2=0或x 2=1,因此曲线y =f x 与y =g x 有两条不同的公切线,(2)由f x +1 ≤a 2g x +a 2-a +1可得ln x +1 +1≤a 2e x -1 +a 2-a +1,即ln x +1 ≤a 2e x -a 对于∀x ∈-1,+∞ 恒成立,ln 0+1 ≤a 2e 0-a ,结合a >0,解得a ≥1设m (x )=ln x -x +1,,则当x >1时m (x )=1x-1<0,m x 单调递减,当0<x <1时,m (x )>0,m x 单调递增,故当m (x )≤m 1 =0,故ln x ≤x -1,因此ln x +1 ≤x ,x >-1 ,令F x =x -a 2e x +a ,x >-1 ,则F x =1-a 2e x ,令F x =1-a 2e x =0,得x =-2ln a ,当-2ln a ≤-1时,此时a ≥e ,F x =1-a 2e x <0,故F x 在x >-1上单调递减,所以F x <F -1 =-1-a 2e +a =-a 2+ea -e e =-a -e 2 2+e 24-e e≤-e -e 22+e 24+ee=e -2<0,所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,当-2ln a >-1时,此时1<a <e ,令F x =1-a 2e x >0,解得-1<x <-2ln a ,F x 单调递增,令F x =1-a 2e x <0,解得x >-2ln a ,F x 单调递减,故F x ≤F x max =F -2ln a =-2ln a -1+a ,令p a =-2ln a -1+a ,则p a =-2a +1=a -2a ,由于1<a <e ,所以p a =-2a +1=a -2a<0,故p a 在1<a <e 单调递减,故p a <p 1 ,即可p a <0,因此F x ≤F x max =F -2ln a =-2ln a -1+a <0⇒F x <0所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,综上可得a ≥104零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y =k )在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x -1,g x =ln x +b .(1)求函数F x =x -1 f x 的单调区间;10(2)若总存在两条直线和曲线y =f x 与y =g x 都相切,求b 的取值范围.【解析】(1)F x =x -1 f x =x -1 e x -1,F x =xe x -1,令F x >0,得x >0,令F x <0,得x <0,所以函数F x 的单调递增区间为0,+∞ ,单调递减区间为-∞,0 ;(2)∵f x =e x -1∴f x =e x -1在m ,e m -1 处的切线方程为y =e m -1x +1-m e m -1,∵g x =1x,∴g x =ln x +b 在点n ,ln n +b 处的切线方程为y =1nx +ln n +b -1,由题意得e m -1=1n(1-m )e m -1=ln n +b -1,则m -1 e m -1-m +b =0,令h m =m -1 e m -1-m +b ,则h (x )=me m -1-1,令φm =me m -1-1,则φ m =m +1 e m -1,当m <-1时,φ m <0,当m >-1时,φ m >0,所以函数φm 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,即函数h m 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,又h 1 =0,且当m ≤0时,h m <0,所以m <1时,h m <0,h (m )单调递减;当m >1时,h (m )>0,h (m )单调递增,所以h m min =h 1 =b -1,若总存在两条直线和曲线y =f x 与y =g x 都相切,则曲线y =h m 与x 轴有两个不同的交点,则h 1 =b -1<0,所以b <1,此时h b -1 =b -2 e b -2+1>-1e+1>0,h 3-b =2-b e 2-b +2b -3>2-b 3-b =b -322+34>0,所以b 的取值范围为-∞,1 .2(2024·北京房山·一模)已知函数f (x )=e ax +1x.(1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)设g (x )=f (x )⋅x 2,求函数g (x )的极大值;(3)若a <-e ,求函数f (x )的零点个数.【解析】(1)当a =0时,f (x )=1+1x ,f x =-1x 2,则f 1 =-1,f 1 =2,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -2=-x -1 ,即y =-x +3;(2)f (x )=ae ax -1x2,则g (x )=f (x )⋅x 2=ax 2e ax -1x ≠0 ,则g x =2axe ax +a 2x 2e ax =ax ax +2 e ax x ≠0 ,当a =0时,g x =-1,此时函数g x 无极值;当a >0时,令g x <0,则x >0或x <-2a ,令g x <0,则-2a<x <0,所以函数g x 在-∞,-2a ,0,+∞ 上单调递增,在-2a ,0 上单调递减,所以g x 的极大值为g -2a =4ae2-1;当a<0时,令g x <0,则x<0或x>-2a,令gx <0,则0<x<-2a,所以函数g x 在-∞,0,-2a,+∞上单调递增,在0,-2a上单调递减,而函数g x 的定义域为-∞,0∪0,+∞,所以此时函数g x 无极值.综上所述,当a≤0时,函数g x 无极大值;当a>0时,g x 的极大值为4ae2-1;(3)令f(x)=e ax+1x =0,则e ax=-1x,当x>0时,e ax>0,-1x<0,所以x>0时,函数f x 无零点;当x<0时,由e ax=-1x,得ax=ln-1x,所以a=-ln-xx,则x<0时,函数f x 零点的个数即为函数y=a,y=-ln-xx图象交点的个数,令h x =-ln-xxx<0,则h x =ln-x-1x2,当x<-e时,h x >0,当-e<x<0时,h x <0,所以函数h x 在-∞,-e上单调递增,在-e,0上单调递减,所以h x max=h-e=1 e,又当x→-∞时,h x >0且h x →0,当x→0时,h x →-∞,如图,作出函数h x 的大致图象,又a<-e,由图可知,所以函数y=a,h x =-ln-xx的图象只有1个交点,即当x<0时,函数f x 只有1个零点;综上所述,若a<-e,函数f(x)有1个零点.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.【解析】(1)由题意知f x 定义域0,+∞,当m=5时,f x =-4x3+5x-1,-4x3+5x-1≥ln xln x,-4x3+5x-1<ln x ,令g x =-4x3+5x-1,g x =-12x 2+5>0⇒0<x <6012,⇒g x 在0,6012 单调递增,6012,+∞ 单调递减,且g 1 =0,令h x =ln x ,则在0,+∞ 单调递增,而f 1 =0=h 1 ,又g 14 =316,h 14 =ln 14<-1,而g 0 =-1,所以当0<x <14时,g x >h x ,当14≤x <1时,g x >0>h x ,所以当0<x <1时,f x =g x ,当x ≥1时,f x =h x ,所以f x =-4x 3+5x -1,0<x <1ln x ,x ≥1,所以f x 在0,6012和1,+∞ 单调递增,在6012,1 单调递减.(ⅰ)当0<x <1时,f x =-12x 2+5,设切点M x 0,-4x 30+5x 0-1 ,则此切线方程为y =-12x 20+5 x -x 0 -4x 30+5x 0-1,又此切线过原点,所以0=-12x 20+5 0-x 0 -4x 30+5x 0-1,解得x 0=12,即此时切线方程是2x -y =0;(ⅱ)当x ≥1时,f x =ln x ,所以f x =1x,设切点为x 0,ln x 0 ,此时切线方程y =1x 0x -x 0 +ln x 0,又此切线过原点,所以0=1x 00-x 0 +ln x 0,解得x 0=e ,所以此时切线方程x -ey =0,综上所述,所求切线方程是:x -ey =0或2x -y =0;(2)(ⅰ)当m =5时,由(1)知,f x 在0,6012 和1,+∞ 单调递增,6012,1单调递减,且f 0 =1,f 14 =316>0,f 1 =0,此时f x 有两个零点;(ⅱ)当m >5时,当0<x <1时,-4x 3+5x -1<-4x 3+mx -1,由(1)知:g x =-4x 3+5x -1在0,6012 递增,6012,1递减,且g 1 =0,所以x ∈6012,+∞ 时,f x >0,而f 0 =-1,所以f x 在0,6012 只有一个零点,6012,+∞ 没有零点;(ⅲ)当0<m <5时,y =-4x 3+mx -1,此时y =-12x 2+m >0得0<x <m 12<6012,由(1)知,当x ≥1时,f x =ln x 只有一个零点x =1,要保证f x 只有一个零点,只需要当0<x <1时,f x =-4x 3+mx -1没有零点,f m12=-4m123+m m 12-1=m 3m 9-1<00<m<1 ,得0<m <3;(ⅳ)当m≤0时,当x∈0,+∞时,g x =-4x3+mx-1<0,此时f x 只有一个零点x=1,综上,f x 只有一个零点时,m<3或m>5 .05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.【解析】(1)因为f x =13x3-12a x2+2cos x+x cos x-sin x,所以f x =x2-ax+a sin x-x sin x=x-ax-sin x.设g x =x-sin x,则g x =1-cos x≥0,所以g x 在R上单调递增,且g0 =0,所以当x>0时,x-sin x>0;当x<0时,x-sin x<0.当a=0时,f x =x x-sin x≥0,所以f x 在R上单调递增.当a>0时,若x∈0,a,则f x <0,所以f x 单调递减;若x∈-∞,0或x∈a,+∞,则f x >0,所以f x 单调递增.当a<0时,若x∈a,0,则f x <0,所以f x 单调递减;若x∈-∞,a或x∈0,+∞,则f x >0,所以f x 单调递增.综上所述,当a=0时,f x 在R上单调递增;当a>0时,f x 在0,a上单调递减,在-∞,0,a,+∞上单调递增;当a<0时,f x 在a,0上单调递减,在-∞,a,0,+∞上单调递增. (2)①由(1)知,当a>0时,f x 在0,a上单调递减,在a,+∞上单调递增,又f0 =-a<0,所以f a <f0 <0,所以f x 在0,a上没有零点.因为x>0,所以f(x)=13x3-12a x2+2cos x+x cos x-sin x>13x3-12a x2+2-x-1=19x2x-92a+19x x2-9+19x3-a+1所以当x>92ax>3x>39a+9时,f x >0,此时f x 在a,+∞上只有1个零点.综上可得,f x 在0,+∞上只有1个零点.②由a>0,知f x 在0,a上单调递减,在a,+∞上单调递增,所以f x ≥f a =-16a3-sin a,所以f a +16a 3+12a 2+2sin a +π4 -1=12a 2+cos a -1.设h a =12a 2+cos a -1,则h a =a -sin a .由(1)知,当a >0时,a -sin a >0,所以当a >0时,h a >0,所以h a >0在0,+∞ 上单调递增,所以h a >h 0 =0,即f a >1-16a 3-12a 2-2sin a +π4 ,所以f x >1-16a 3-12a 2-2sin a +π4.2(2024·河北沧州·一模)已知函数f x =x ae2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.【解析】(1)当a =2时,f x =x 2e 2xfx =2x ⋅e 2x -x 2⋅e 2x ⋅2e 2x 2=-2x (x -1)e 2x 令f x =0,解得x =0或x =1,所以x 、f (x )、f (x )的关系如下表:x (-∞,0)0(0,1)1(1,+∞)f (x )-0+-f (x )单调递减单调递增1e 2单调递减所以函数f x 的单调递增区间为:(0,1),单调递减区间为:(-∞,0)和(1,+∞);极大值f (1)=1e2,极小值f (0)=0;(2)f (x )-cos ln f (x ) ≥a ln x 2-4x ⇔x a e 2x -cos ln x a e2x≥2a ln x -4x⇔e a ln x -2x -2(a ln x -2x )-cos (a ln x -2x )≥0令g (t )=e t -2t -cos t ,其中t =a ln x -2x ,设F (x )=a ln x -2x ,a >0F (x )=a x -2=a -2xx 令F (x )>0,解得:0<x <a2,所以函数F (x )在0,a 2上单调递增,在a2,+∞ 上单调递减,F (x )max =F a 2 =a ln a2-a ,且当x →0+时,F (x )→-∞,所以函数F (x )的值域为-∞,a ln a2-a ;又g (t )=e t -2+sin t ,设h (t )=e t -2+sin t ,t ∈-∞,a ln a2-a ,则h (t )=e t +cos t ,当t ≤0时,e t ≤1,sin t ≤1,且等号不同时成立,即g (t )<0恒成立;t。
大题 函数与导数(学生版)
函数与导数函数与导数问题是高考数学的必考内容。
从近几年的高考情况来看,在大题中考查内容主要有主要利用导数研究函数的单调性、极值与最值、不等式及函数零点等内容。
此类问题体现了分类讨论、转化与化归的数学思想,难度较大。
题型一:利用导数研究函数的单调性题型二:利用导数研究函数的极值题型三:利用导数研究函数的最值题型四:利用导数解决恒成立与能成立题型五:利用导数求解函数的零点题型六:利用导数证明不等式题型七:利用导数研究双变量问题题型八:利用导数研究极值点偏移问题题型九:隐零点问题综合应用题型十:导数与数列综合问题题型一:利用导数研究函数的单调性1(2024·河南郑州·高三校联考阶段练习)已知函数f(x)=x22+ax-(ax+1)ln x在x=1处的切线方程为y=bx+52(a,b∈R).(1)求a,b的值;(2)证明:f x 在1,+∞上单调递增.1、求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.2、求函数单调区间的步骤(1)确定函数f x 的定义域;(2)求f x (通分合并、因式分解);(3)解不等式f x >0,解集在定义域内的部分为单调递增区间;(4)解不等式f x <0,解集在定义域内的部分为单调递减区间.3、含参函数单调性讨论依据:(1)导函数有无零点讨论(或零点有无意义);(2)导函数的零点在不在定义域或区间内;(3)导函数多个零点时大小的讨论。
1(2024·安徽六安·高三统考期末)已知函数f x =x3+ax-6a∈R.(1)若函数f x 的图象在x=2处的切线与x轴平行,求函数f x 的图象在x=-3处的切线方程;(2)讨论函数f x 的单调性.2(2024·辽宁·校联考一模)已知f x =sin2x+2cos x.(1)求f x 在x=0处的切线方程;(2)求f x 的单调递减区间.题型二:利用导数研究函数的极值1(2024·湖南长沙·高三长沙一中校考开学考试)已知直线y=kx与函数f(x)=x ln x-x2+x的图象相切.(1)求k的值;(2)求函数f x 的极大值.1、利用导数求函数极值的方法步骤(1)求导数f (x);(2)求方程f (x)=0的所有实数根;(3)观察在每个根x0附近,从左到右导函数f (x)的符号如何变化.①如果f (x)的符号由正变负,则f (x0)是极大值;②如果由负变正,则f (x0)是极小值;③如果在f (x)=0的根x=x0的左右侧f (x)的符号不变,则不是极值点.根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.2(2024·广东汕头·统考一模)已知函数f x =ax-1x-a+1ln x a∈R.(1)当a=-1时,求曲线y=f x 在点e,f e处的切线方程;(2)若f x 既存在极大值,又存在极小值,求实数a的取值范围.3(2022·河南·高三专题练习)已知函数f(x)=e x-ax312,其中常数a∈R.(1)若f x 在0,+∞上是增函数,求实数a的取值范围;(2)若a=4,设g(x)=f(x)+x33-x2-x+1,求证:函数g x 在-1,+∞上有两个极值点.题型三:利用导数研究函数的最值1(2024·江苏泰州·高三统考阶段练习)已知函数f x =x4+ax3,x∈R.(1)若函数在点1,f1处的切线过原点,求实数a的值;(2)若a=-4,求函数f x 在区间-1,4上的最大值.函数f(x)在区间[a,b]上连续,在(a,b)内可导,则求函数f(x)最值的步骤为:(1)求函数f(x)在区间(a,b)上的极值;(2)将函数f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值;(3)实际问题中,“驻点”如果只有一个,这便是“最值”点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数高考题(非常实用)一、导数的基本应用(一)研究含参数的函数的单调性、极值和最值基本思路:定义域 →→ 疑似极值点 →→ 单调区间 →→ 极值 →→ 最值 基本方法: 一般通法:利用导函数研究法特殊方法:(1)二次函数分析法;(2)单调性定义法本组题旨在强化对函数定义域的关注,以及求导运算和分类讨论的能力与技巧【例题】(2009江西理17/22)设函数()xe f x x=. 求(1)函数()f x 的单调区间;(2)略.解: 函数定义域为),0()0,(+∞⋃−∞,'22111()x x xx f x e e e x x x−=−+=, 由'()0f x =,得 1x =.因为当0x <时或01x <<时,'()0f x <;当1x >时,'()0f x >;所以()f x 的单调增区间是:[1,)+∞; 单调减区间是: (,0)(0,1]−∞,.【例题】(2008北京理18/22)已知函数22()(1)x bf x x −=−,求导函数()f x ',并确定()f x 的单调区间.解:242(1)(2)2(1)()(1)x x b x f x x −−−−'=−3222(1)x b x −+−=−32[(1)](1)x b x −−=−−. 令()0f x '=,得1x b =−.当11b −=,即2b =时,2()1f x x =−,所以函数()f x 在(1)−∞,和(1)+∞,上单调递减.当11b −<,即2b <时,()f x '的变化情况如下表:当11b −>,即b所以,2b <11)−,上单调递增,2b =时,函数()f x 在(1)−∞,和(1)+∞,上单调递减. 2b >时,函数()f x 在(1)−∞,和(1)b −+∞,上单调递减,在(11)b −,上单调递增.本组题旨在强化对导函数零点进行分类讨论的意识、能力和技巧 【例题】(2009北京文18/22)设函数3()3(0)f x x ax b a =−+≠. (Ⅱ)求函数()f x 的单调区间与极值点. 解:∵()()()'230fx x a a =−≠,当0a <时,()'0fx >,函数()f x 在(),−∞+∞上单调递增,此时函数()f x 没有极值点.当0a >时,由()'0fx x =⇒=当(,x ∈−∞时,()'0fx >,函数()f x 单调递增,当(x ∈时,()'0f x <,函数()f x 单调递减,当)x ∈+∞时,()'0f x >,函数()f x 单调递增,∴此时x =()f x 的极大值点,x =()f x 的极小值点.点评:此题是2010届文科考试说明的样题,题目考查了对导函数零点进行分类的能力,旨在帮助学生巩固研究函数单调性的基本方法.【例题】(2009天津理20/22)已知函数22()(23)(),xf x x ax a a e x R =+−+∈其中a R ∈. (II )当23a ≠时,求函数()f x 的单调区间与极值. [].42)2()('22x e a a x a x x f +−++=解:.2232.220)('−≠−≠−=−==a a a a x a x x f 知,由,或,解得令 以下分两种情况讨论. (1)a 若>32,则a 2−<2−a .当x 变化时,)()('x f x f ,的变化情况如下表: x()a 2−∞−,a 2−()22−−a a ,2−a()∞+−,2af'(x) + 0 — 0 + f(x )↗极大值↘极小值↗.)22()2()2()(内是减函数,内是增函数,在,,,在所以−−∞+−−−∞a a a a x f.3)2()2(2)(2a ae a f a f a x x f −=−−−=,且处取得极大值在函数 .)34()2()2(2)(2−−=−−−=a e a a f a f a x x f ,且处取得极小值在函数(2)a 若<32,则a 2−>2−a ,当x 变化时,)()('x f x f ,的变化情况如下表: x()2−∞−a ,2−a()a a 22−−,a 2−()∞+−,a 2f'(x) + 0 — 0 + f(x )↗极大值↘极小值↗内是减函数。
,内是增函数,在,,,在所以)22()2()2()(a a a a x f −−∞+−−−∞ .)34()2()2(2)(2−−=−−−=a e a a f a f a x x f ,且处取得极大值在函数 .3)2()2(2)(2a ae a f a f a x x f −=−−−=,且处取得极小值在函数点评:此题与上一题考点相同,计算量略增,旨在帮助学生进一步提升对此类问题的认识和处理能力.【例题】(2008福建文21/22)已知函数32()2f x x mx nx =++−的图象过点(1,6)−−,且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m n 、的值及函数()y f x =的单调区间;(Ⅱ)若0a >,求函数()y f x =在区间(1,1)a a −+内的极值. 解:(Ⅰ)由函数()f x 图象过点(1,6)−−,得3m n −=−,……… ① 由32()2f x x mx nx =++−,得2()32f x x mx n'=++,则2()()63(26)g x f x x x m x n '=+=+++;而()g x 图象关于y 轴对称,所以-26023m +=⨯,所以3m =−, 代入①得 0n =.于是2()363(2)f x x x x x '=−=−.由()0f x '>得2x >或0x <,故()f x 的单调递增区间是(,0)−∞,(2,)+∞; 由()0f x '<得02x <<,故()f x 的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得()3(2)f x x x '=−,令()0f x '=得0x =或2x =.当x 变化时,()f x '、()f x 的变化情况如下表:由此可得:当01a <<时,()f x 在(1,1)a a −+内有极大值(0)2f =−,无极小值;当1a =时,()f x 在(1,1)a a −+内无极值;当13a <<时,()f x 在(1,1)a a −+内有极小值(2)6f =−,无极大值; 当3a ≥时,()f x 在(1,1)a a −+内无极值.综上所述,当01a <<时,()f x 有极大值2−,无极小值;当13a <<时,()f x 有极小值6−,无极大值;当1a =或3a ≥时,()f x 无极值.点评:本题是前面两个例题的变式,同样考查了对导函数零点的分类讨论,但讨论的直接对象变为了函数自变量的研究范围,故此题思路不难,旨在帮助学生加深对此类问题本质的认识,并提升其详尽分类,正确计算的水平.【例题】(2009安徽文21/21)已知函数2()1ln f x x a x x=−+−,a >0, (I)讨论()f x 的单调性;(II)设a=3,求()f x 在区间[1,2e ]上值域.其中e=2.71828…是自然对数的底数. 解:(Ⅰ)由于/22()1a f x x x =+−,令1t x=得/2()21(0)f x t at t =−+≠① 当280a ∆=−≤,即0a <≤时,/()0f x ≥恒成立,∴()f x 在(,0),(0,)−∞+∞上都是增函数.② 当280a ∆=−>,即a >由2210t at −+>得t <t >∴0x <或2a x >或02a x −<<又由2210t at −+<得t <<x <<综上,当0a <≤()f x 在(,0),(0,)−∞+∞上都是增函数;当a >()f x 在(−∞及)+∞上都是增函数,在(,22a a +是减函数.(2)当3a =时,由(1)知,()f x 在[1,2]上是减函数,在[22,]e 上是增函数.又2222(1)0,(2)23ln 20,()50f f f e e e ==−<=−−> ∴函数()f x 在区间[1,2e ]上的值域为222[23ln 2, e 5]e−−−.点评:(1)第一问在前面例题的理论基础上,进一步加大了运算的难度,涉及到了换元法,分母有理化等代数技巧;(2)第二问将问题延伸到了函数值域上,过程比较简单,是一个承上启下的过渡性问题.(二)利用函数的单调性、极值、最值,求参数取值范围基本思路:定义域 →→ 单调区间、极值、最值 →→ 不等关系式 →→ 参数取值范围 基本工具:导数、含参不等式解法、均值定理等【例题】(2008湖北文17/21)已知函数322()1f x x mx m x =+−+(m 为常数,且m >0)有.极大值...9.. (Ⅰ)求m 的值;(Ⅱ)若斜率为5−的直线是曲线()y f x =的切线,求此直线方程. 解:(Ⅰ)22()32()(3)0f x x mx m x m x m '=+−=+−=,则x m =或13x m =, 当x 变化时,()f x '与()f x 的变化情况如下表:从而可知,当x m =−时,函数()f x 取得极大值9, 即333()19f m m m m −=−+++=, ∴ 2m =. (Ⅱ)由(Ⅰ)知,32()241f x x x x '=+−+,依题意知2()3445f x x x '=+−=, ∴ 1x =−或13x =−. 又 168(1)6,()327f f −=−=, 所以切线方程为65(1)y x −=−+,或6815()273y x −=−+, 即 510x y +−=,或13527230x y +−=.点评:(1) 本题第一问是函数求极值的逆向设问,解题方法本质仍然是求含参数的函数的极值,难度不大;(2) 本题第二问是求曲线切线的逆向设问,解题过程进一步强化了对切点的需求. 【例题】(2009四川文20/22)已知函数32()22f x x bx cx =++−的图象在与x 轴交点处的切线方程是510y x =−.(I )求函数()f x 的解析式; (II )设函数1()()3g x f x mx =+,若.()g x 的极值存在.....,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.解:(I )由已知,切点为(2,0),故有(2)0f =,即430b c ++=……①又2()34f x x bx c '=++,由已知(2)1285f b c '=++=得870b c ++=……② 联立①②,解得1,1b c =−=.所以函数的解析式为32()22f x x x x =−+−(II )因为321()223g x x x x mx =−+−+令21()34103g x x x m '=−++= 当函数有极值时,方程..........2134103x x m −++=有实数解.....则4(1)0m ∆=−≥,得1m ≤. ①当1m =时,()0g x '=有实数23x =,在23x =左右两侧均有()0g x '>,故()g x 无极值②当1m <时,()0g x '=有两个实数根1211(2(233x x ==(),()g x g x '情况如下表:所以在(,1)∈−∞m 时,函数()g x 有极值; 当1(23=x 时,()g x 有极大值;当1(23=x 时,()g x 有极小值; 点评:(1) 本题第一问是求曲线切线的逆向设问,解题过程进一步强化了对切点的需求. (2) 本题第二问是函数求极值的逆向设问,解题方法本质仍然是求含参数的函数的极值,难度不大.★【例题】(2008全国Ⅱ文21/22) 设a ∈R , 233)(x ax x f −=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值; (Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围.解:(Ⅰ)2()363(2)f x ax x x ax '=−=−. 因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a −=,因此1a =.经验证,当1a =时,2x =是函数()y f x =的极值点.(Ⅱ) 由题设,3222()336(3)3(2)g x ax x ax x ax x x x =−+−=+−+. 当()g x 在区间[02],上的最大值为(0)g 时, (0)(2)g g ≥,即02024a −≥.故得65a ≤反之,当65a ≤时,对任意[02]x ∈,, 26()(3)3(2)5g x x x x x +−+≤23(210)5x x x =+−3(25)(2)5xx x =+−0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g . 综上,a 的取值范围为65⎛⎤−∞ ⎥⎝⎦,.点评:(1) 本题是求函数最值的逆向问题,答案所用的解法是一种比较特殊的方法,具有一定的思维难度. (2) 本题若用一般方法,则可求出g(0)=0,将问题转化为g(x)≤0的恒成立问题,此种解法的计算量将有所加大. ★【例题】(2009陕西理20/22)已知函数1()ln(1),01xf x ax x x−=++≥+,其中0a > (Ⅱ)求()f x 的单调区间;(Ⅲ)若()f x 的最小值为1,求a 的取值范围.解:(Ⅱ)∵0,0,x a ≥>∴10.ax +> 222'(),(1)(1)ax a f x ax x +−=++①当2a ≥时,在区间(0,)'()0,f x +∞>上,∴()f x 的单调增区间为(0,).+∞②当02a <<时,由'()0'()0f x x f x x >><<解得由解得∴()f x +∞的单调减区间为(0). (Ⅲ)当2a ≥时,由(Ⅱ)①知,()(0)1;f x f =的最小值为所以2a ≥.当02a <<时,由(Ⅱ)②知,()f x在x =处取得最小值(0)1,f f <= 所以,02a <<不成立.综上可知,若()f x 得最小值为1,则a 的取值范围是[2,).+∞点评:(1) 本题第三问是求函数最值的逆向问题,解题时根据单调性研究的分类标准,将验证参数取值范围是否成立,是计算量较小,但不容易发现的方法.(2) 本题若用一般方法,则可将问题转化为f(x)≥1的恒成立问题,此种解法的计算量将有所加大.(三)导数的几何意义(2008海南宁夏文21/22)设函数()bf x ax x=−,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y −−=.(Ⅰ)求()y f x =的解析式;(Ⅱ)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.解:(Ⅰ)方程74120x y −−=可化为734y x =−,当2x =时,12y =; 又()'2b f x a x =+,于是1222744b a b a ⎧−=⎪⎪⎨⎪+=⎪⎩,解得13a b =⎧⎨=⎩, 故()3f x x x =− (Ⅱ)设()00,P x y 为曲线上任一点,由'231y x=+知曲线在点()00,P x y 处的切线方程为 ()002031y y x x x ⎛⎫−=+− ⎪⎝⎭,即()00200331y x x x x x ⎛⎫⎛⎫−−=+− ⎪ ⎪⎝⎭⎝⎭令0x =,得06y x =−,从而得切线与直线0x =的交点坐标为060,x ⎛⎫− ⎪⎝⎭;令y x =,得02y x x ==,从而得切线与直线y x =的交点坐标为()002,2x x ; 所以点()00,P x y 处的切线与直线0,x y x ==所围成的三角形面积为0016262x x −=; 故曲线()y f x =上任一点处的切线与直线0,x y x ==所围成的三角形面积为定值6.二、导数应用的变式与转化 (一)函数的零点存在与分布问题问题设置:根据函数零点或方程实数根的个数求参数取值范围 基本方法: 通性通法:函数最值控制法特殊方法:(1)二次函数判别式法;(2)零点存在性定理二次函数 (1) 本组题旨在加深对二次函数零点存在性与分布问题的认识; (2) 本题旨在提升对函数与方程关系问题的认识水平; (3) 研究二次函数零点分布问题时,除了判别式法以外,应补充极值(最值)控制法,为三次函数零点分布研究做方法上的铺垫.【例题】(2009江西文17/22)设函数329()62f x x x x a =−+−. (1)略;(2)若方程()0f x =有且仅有一个实根,求a 的取值范围.解:因为 当1x <时, '()0f x >;当12x <<时, '()0f x <;当2x >时, '()0f x >; 所以 当1x =时,()f x 取极大值 5(1)2f a =−; 当2x =时,()f x 取极小值 (2)2f a =−;故当(2)0f > 或(1)0f <时, 方程()0f x =仅有一个实根. 解得 2a <或52a >. 点评:本题是零点问题的方程形式,用函数最值控制法解答,属于本类问题的原型题.【例题】(2009广东文21/21)已知二次函数)(x g y =的导函数的图像与直线2y x =平行,且)(x g y =在x =-1处取得最小值m -1(m 0≠).设函数xx g x f )()(=(1)若曲线)(x f y =上的点P 到点Q(0,2)的距离的最小值为2,求m 的值; (2))(R k k ∈如何取值时,函数kx x f y −=)(存在零点....,并求出零点. 解:(1)设()2g x ax bx c =++,则()2g x ax b '=+;又()g x '的图像与直线2y x =平行 22a ∴=,解得1a = 又()g x 在1x =−取极小值,∴12b−=−,解得2b = ()1121g a b c c m ∴−=−+=−+=−,解得c m =;所以()()2g x mf x x x x==++, 设(),o o P x y ,则()22222000002m PQ x y x x x⎛⎫=+−=++ ⎪⎝⎭22020222m x x =++≥24∴=,解得2m =±;(2)由()()120my f x kx k x x =−=−++=,得()2120k x x m −++=()* 当1k =时,方程()*有一解2m x =−,函数()y f x kx =−有一零点2mx =−;当1k ≠时,方程()*有二解()4410m k ⇔∆=−−>,若0m >,11k m >−,()y f x kx =−有两个零点x若0m <,11k m <−,()y f x kx =−有两个零点x 当1k ≠时,方程()*有一解()4410m k ⇔∆=−−=,即11k m=−,()y f x kx =−有一零点11x k =−点评:(1) 本题第一问是涉及均值定理的最值问题,题目计算量中等,思维难度不大;(2) 第二问涉及到的函数为二次函数,故而用含参二次方程的根系关系研究根的分布问题,是本部分的原型问题和重点问题.【例题】(2009重庆文19/21)已知2()f x x bx c =++为偶函数,曲线()y f x =过点(2,5),()()()g x x a f x =+.(Ⅰ)求曲线()y g x =有斜率为....0.的切线...,求实数a 的取值范围;(2)略 解:由偶函数性质得,()()f x f x −=,即22()()x b x c x bx c −+−+=++,解得0b =又曲线()y f x =过点(2,5),得225,c +=有1c =∵32()()()g x x a f x x ax x a =+=+++从而'2()321g x x ax =++, 曲线()y g x =有斜率为0的切线,故'()0g x =有实数解.即23210x ax ++=有实数解.∵此时有24120a =−≥解得(),a ∈−∞⋃+∞∴实数a 的取值范围:(),a ∈−∞⋃+∞点评:本题是以导数几何意义为载体的,研究二次函数零点的分布的问题,注意问题的转化.【例题】(07广东文21/21)已知a 是实数,函数()a x ax x f −−+=3222,如果函数()x f y =在.区间..[]1,1−上有零点....,求a 的取值范围. 解:若0a = , ()23f x x =− ,显然函数在[]1,1−上没有零点.若0a ≠,令 ()248382440a a a a ∆=++=++=, 解得a =①当32a −=时, ()y f x =恰有一个零点在[]1,1−上; ②当()()()()05111<−−=⋅−a a f f ,即15a <<时,()y f x =在[]1,1−上也恰有一个零点.③当()y f x =在[]1,1−上有两个零点时, 则()()208244011121010a a a a f f >⎧⎪∆=++>⎪⎪−<−<⎨⎪≥⎪⎪−≥⎩ 或 ()()208244011121010a a a a f f <⎧⎪∆=++>⎪⎪−<−<⎨⎪≤⎪⎪−≤⎩解得5a ≥或a <,综上,所求实数a 的取值范围是1a >或a ≤. 点评:本题以二次函数为载体,设定在区间范围上的零点存在性问题,解答时依零点个数进行分类讨论,涉及到含参二次方程根的分布研究、零点存在性定理. 是原型问题和重点题. 【例题】(2009浙江文21/22)已知函数32()(1)(2)f x x a x a a x b =+−−++ (,)a b ∈R . (I )若函数()f x 的图象过原点,且在原点处的切线斜率是3−,求,a b 的值; (II )若函数()f x 在区间(1,1)−上不单调...,求a 的取值范围. 解:(Ⅰ)由题意得)2()1(23)(2+−−+='a a x a x x f又⎩⎨⎧−=+−='==3)2()0(0)0(a a f b f ,解得0=b ,3−=a 或1=a(Ⅱ)函数)(x f 在区间)1,1(−不单调,等价于导函数)(x f '在)1,1(−既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(−上存在零点,根据零点存在定理,有0)1()1(<'−'f f ,即:0)]2()1(23)][2()1(23[<+−−−+−−+a a a a a a整理得:0)1)(1)(5(2<−++a a a ,解得15−<<−a三次函数(1) 本组题旨在加深对二次函数零点存在性与分布问题的认识; (2) 本题旨在提升对函数与方程关系问题的认识水平;(3) 本组题旨在加深对二次函数、三次函数零点分布问题的认识,进而深化对导数方法、极值、最值的理解.【例题】(2009陕西文20/22)已知函数3()31,0f x x ax a =−−≠ (I )求()f x 的单调区间;(II )若()f x 在1x =−处取得极值,直线y=m 与()y f x =的图象有三个不同的交点.........., 求m 的取值范围.解:(1)'22()333(),f x x a x a =−=−当0a <时,对x R ∈,有'()0,f x >所以()f x 的单调增区间为(,)−∞+∞当0a >时,由'()0f x >解得x <或x >'()0f x <解得x <<所以()f x 的单调增区间为(,)−∞+∞,单调减区间为(.(2)因为()f x 在1x =−处取得极大值, 所以'2(1)3(1)30, 1.f a a −=⨯−−=∴= 所以3'2()31,()33,f x x x f x x =−−=− 由'()0f x =解得121,1x x =−=. 由(1)中()f x 的单调性可知,()f x 在1x =−处取得极大值1,在1x =处取得极小值-3.因为直线y m =与函数()y f x =的图象有三个不同的交点, 所以m 的取值范围是(3,1)−.点评: (1) 本题是三次函数零点存在性问题的典型变式题,涉及图象交点向函数零点的转化关系;(2) 本题最终将问题转化为研究三次函数根的分布,采用极值(最值)控制法; (3) 在这里应结合上面例题进一步揭示研究二次方程与三次方程实根分布问题在方法上的本质关系,以便进一步加深对函数极值(最值)的认识和对利用导数研究函数性质.【例题】(2007全国II 理22/22)已知函数3()f x x x =−.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,若过点()a b ,可作曲线....()y f x =的三条切线.....,证明:()a b f a −<<解:(1)()f x 的导数2()31x x f '=−.曲线()y f x =在点(())M t f t ,处的切线方程为:()()()y f t f t x t '−=−,即23(31)2y t x t =−−.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =−−.若过点()a b ,可作曲线()y f x =的三条切线, 则方程32230t at a b −++=有三个相异的实数根.记32()23g t t at a b =−++,则2()66g t t at '=−6()t t a =−. 当t 变化时,()()g t g t ',变化情况:由()g t 的单调性,当极大值0a b +<或极小值()0b f a −>时,方程()0g t =最多有一个实数根;当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根; 当()0b f a −=时,解方程()0g t =得2a t t a =−=,,即方程()0g t =只有两个相异的实数根.综上所述,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根, 则0()0.a b b f a +>⎧⎨−<⎩,即()a b f a −<<.(1) 本题是前一个问题的延伸,其以导数几何意义为载体; (2) 本题最终将问题转化为研究三次函数根的分布,采用极值(最值)控制法; (3) 在这里应结合上面例题进一步揭示研究二次方程与三次方程实根分布问题在方法上的本质关系,以便进一步加深对函数极值(最值)的认识和对利用导数研究函数性质.(二)不等式恒成立与存在解问题问题设置:当不等关系在某个区间范围内恒成立或存在解为条件,求参数的取值范围 基本思路:转化为函数最值与参数之间的不等关系问题 基本方法: 通性通法:变量分离法、变量转换、最值控制法特殊方法:二次函数判别式法、二次函数根的分布研究【例题】(2009江西文17/22)设函数329()62f x x x x a =−+−.(1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值;(2)略解:'2()3963(1)(2)f x x x x x =−+=−−, 因为(,)x ∈−∞+∞,'()f x m ≥, 即239(6)0x x m −+−≥恒成立,所以 8112(6)0m ∆=−−≤, 得34m ≤−,即m 的最大值为34−点评:本题是二次函数在实数集上的恒成立问题,因其条件特殊,故用特殊方法求解.【例题】(2008安徽文20/22)设函数323()(1)1,32a f x x x a x a =−+++其中为实数. (Ⅰ)略;(Ⅱ)若'2()1f x x x a >−−+对任意(0,)a ∈+∞都成立,求实数x 的取值范围. 解:法一(变量转换,最值控制法):223(1)1ax x a x x a −++>−−+对任意(0,)a ∈+∞都成立.即22(2)20a x x x +−−>对任意(0,)a ∈+∞都成立设22()(2)2()g a a x x x a R =+−−∈,则对任意x R ∈,()g a 为单调递增函数()a R ∈所以对任意(0,)a ∈+∞,()0g a >恒成立的充分必要条件是(0)0g ≥. 即 220x x −−≥,20x −≤≤∴, 于是x 的取值范围是}{|20x x −≤≤ 法二(变量分离法):由题设知:223(1)1ax x a x x a −++>−−+对任意(0,)a ∈+∞都成即22(2)20a x x x +−−>对任意(0,)a ∈+∞都成立.于是2222x x a x +>+对任意(0,)a ∈+∞都成立,即22202x xx +≤+.解得x 的取值范围是}{|20x x −≤≤.点评:变量分离法可以任何一个变量分离出来,例如本题也可以求出二次方程的根,这样就是将变量x 分离出来了,但过程较复杂,不宜在此处选用. 【例题】(2008山东文21/22)设函数2132()x f x x eax bx −=++,已知2x =−和1x =为()f x 的极值点.(Ⅱ)讨论()f x 的单调性;(Ⅲ)设322()3g x x x =−,试比较()f x 与()g x 的大小. 解:(Ⅱ)因为13a =−,1b =−,所以1()(2)(e 1)x f x x x −'=+−,令()0f x '=,解得12x =−,20x =,31x =. 因为 当(2)x ∈−∞−,(01),时,()0f x '<;当(20)(1)x ∈−+∞,,时,()0f x '>.所以 ()f x 在(20)−,和(1)+∞,上是单调递增的;在(2)−∞−,和(01),上是单调递减的. (Ⅲ)由(Ⅰ)可知21321()e 3x f x x x x −=−−, 故21321()()e (e )x x f x g x x x x x −−−=−=−,令1()ex h x x −=−,则1()e 1x h x −'=−.令()0h x '=,得1x =,因为(]1x ∈−∞,时,()0h x '≤,所以()h x 在(]1x ∈−∞,上单调递减.故(]1x ∈−∞,时,()(1)0h x h =≥; 因为[)1x ∈+∞,时,()0h x '≥,所以()h x 在[)1x ∈+∞,上单调递增. 故[)1x ∈+∞,时,()(1)0h x h =≥.所以对任意()x ∈−∞+∞,,恒有()0h x ≥,又20x ≥,因此()()0f x g x −≥, 故对任意()x ∈−∞+∞,,恒有()()f x g x ≥.点评:本题是恒成立问题的一个变式应用.(2007湖北理20/21)已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同.(I )用a 表示b ,并求b 的最大值;(II )求证:...f(x )....≥. g(x)....,其中x > 0. 解:(Ⅰ)设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同.()2f x x a '=+∵,23()a g x x'=,由题意00()()f x g x =,00()()f x g x ''=. 即22000200123ln 232x ax a x b a x a x ⎧+=+⎪⎪⎨⎪+=⎪⎩,,由20032a x a x +=得:0x a =,或03x a =−(舍去). 即有222221523ln 3ln 22b a a a a a a a =+−=−. 令225()3ln (0)2h t t t t t =−>,则()2(13ln )h t t t '=−.于是当(13ln )0t t −>,即130t e <<时,()0h t '>;当(13ln )0t t −<,即13t e >时,()0h t '<.故()h t 在130e ⎛⎫ ⎪⎝⎭,为增函数,在13e ⎛⎫+ ⎪⎝⎭,∞为减函数, 于是()h t 在(0)+,∞的最大值为123332h e e ⎛⎫= ⎪⎝⎭.(Ⅱ)设221()()()23ln (0)2F x f x g x x ax a x b x =−=+−−>, 则()F x '23()(3)2(0)a x a x a x a x x x−+=+−=>. 故()F x 在(0)a ,为减函数,在()a +,∞为增函数,于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==−=. 故当0x >时,有()()0f x g x −≥,即当0x >时,()()f x g x ≥.点评: (1) 本题以曲线的切线问题的载体,在第一问中考查了函数最值的求法; (2) 第二问是恒成立问题的应用.(三)“零点存在与分布问题”与“恒成立、存在解问题”之间的关系(1) 研究对象的本质相同,因此解题方向一致:函数的极值或最值控制是解决这两类问题的通性通法,针对特殊类型的函数,如二次函数,又都可以用相应的函数性质进行研究; (2) 研究对象的载体不同,因此解题方法不同:前者是函数与其所对应的方程之间关系的问题,后者是函数与其所对应的不等式之间关系的问题;(3)原型问题是根本,转化命题是关键:二者都可以进一步衍生出其他形式的问题,因此往往需要先将题目所涉及的问题转化为原型问题,然后利用通性通法加以解决,在转化过程中应注意命题的等价性.【例题】(2009天津文21/22)设函数0),(,)1(31)(223>∈−++−=m R x x m x x x f 其中 (Ⅰ)略;(Ⅱ)求函数的单调区间与极值;(Ⅲ)已知函数)(x f 有三个互不相同的零点0,21,x x ,且21x x <.若对任意的],[21x x x ∈,)1()(f x f >恒成立,求m 的取值范围.解:(2)12)(22'−++−=m x x x f ,令0)('=x f ,得到m x m x +=−=1,1因为m m m −>+>11,0所以,当x 变化时,)(),('x f x f 的变化情况如下表:x )1,(m −−∞m −1)1,1(m m +−m +1),1(+∞+m)('x f+- 0 +)(x f极小值极大值)(x f 在)1,(m −−∞和),1(+∞+m 内减函数,在)1,1(m m +−内增函数. 函数)(x f 在m x +=1处取得极大值)1(m f +,且)1(m f +=313223−+m m 函数)(x f 在m x −=1处取得极小值)1(m f −,且)1(m f −=313223−+−m m(3)解:由题设, ))((31)131()(2122x x x x x m x x x x f −−−=−++−=所以方程13122−++−m x x =0由两个相异的实根21,x x ,故321=+x x , 且0)1(3412>−+=∆m ,解得21)(21>−<m m ,舍 因为123,32,221221>>=+><x x x x x x 故所以 若0)1)(1(31)1(,12121≥−−−=<≤x x f x x 则,而0)(1=x f ,不合题意 若,121x x <<则对任意的],[21x x x ∈有,0,021≤−≥−x x x x则0))((31)(21≥−−−==x x x x x x f 又0)(1=x f ,所以函数)(x f 在],[21x x x ∈的最小值为0,于是对任意的],[21x x x ∈,)1()(f x f >恒成立的充要条件是031)1(2<−=m f ,解得3333<<−m综上,m 的取值范围是)33,21(四、其它形式的问题【例题】(2008陕西文22/22)设函数3222()1,()21,f x x ax a x g x ax x =+−+=−+其中实数0a ≠. (Ⅰ)若0a >,求函数()f x 的单调区间;(Ⅱ)当函数()y f x =与()y g x =的图象只有一个公共点且()g x 存在最小值时,记()g x 的最小值为()h a ,求()h a 的值域;(Ⅲ)若()f x 与()g x 在区间(,2)a a +内均为增函数,求a 的取值范围.解:(Ⅰ) 22()323()()3af x x ax a x x a '=+−=−+,又0a >, ∴ 当3a x a x <−>或时,()0f x '>;当3a a x −<<时,()0f x '<, ∴()f x 在(,)a −∞−和(,)3a +∞内是增函数,在(,)3a a −内是减函数. (Ⅱ)由题意知 3222121x ax a x ax x +−+=−+,即22[(2)]0x x a −−=恰有一根(含重根).∴ 22a −≤0,即2−≤a 20a ≠,∴ [2,0)(0,2]a ∈−.当0a >时,()g x 才存在最小值,∴2]a ∈.211()()g x a x aa a=−+−,∴1(),2]h a a a a =−∈.∴()h a 的值域为2(,12−∞−.(Ⅲ)当0a >时,()f x 在(,)a −∞−和(,)3a+∞内是增函数,()g x 在1(,)a+∞内是增函数. 由题意得031a a a a a ⎧⎪>⎪⎪≥⎨⎪⎪≥⎪⎩,解得a ≥1; 当0a <时,()f x 在(,)3a −∞和(,)a −+∞内是增函数,()g x 在1(,)a−∞内是增函数. 由题意得02312a a a a a ⎧⎪<⎪⎪+≤⎨⎪⎪+≤⎪⎩,解得a ≤3−; 综上可知,实数a 的取值范围为(,3][1,)−∞−+∞.【例题】(2008湖南文21/21)已知函数43219()42f x x x x cx =+−+有三个极值点. (I )证明:275c −<<;(II )若存在实数c ,使函数)(x f 在区间[],2a a +上单调递减,求a 的取值范围. 解:(I )因为函数43219()42f x x x x cx =+−+有三个极值点, 所以32()390f x x x x c '=+−+=有三个互异的实根.设32()39,g x x x x c =+−+则2()3693(3)(1),g x x x x x '=+−=+−当3x <−时,()0,g x '> ()g x 在(,3)−∞−上为增函数;当31x −<<时,()0,g x '< ()g x 在(3,1)−上为减函数;当1x >时,()0,g x '> ()g x 在(1,)+∞上为增函数;所以函数()g x 在3x =−时取极大值,在1x =时取极小值.当(3)0g −≤或(1)0g ≥时,()0g x =最多只有两个不同实根.因为()0g x =有三个不同实根,所以(3)0g −>且(1)0g <.即2727270c −+++>,且1390c +−+<,解得27,c >−且5,c <故275c −<<.(II )由(I )的证明可知,当275c −<<时, ()f x 有三个极值点.不妨设为123x x x ,,(123x x x <<),则123()()()().f x x x x x x x '=−−− 所以()f x 的单调递减区间是1(]x −∞,,23[,]x x .若)(x f 在区间[],2a a +上单调递减,则[],2a a +⊂1(]x −∞,, 或[],2a a +⊂23[,]x x ,若[],2a a +⊂1(]x −∞,,则12a x +≤.由(I )知,13x <−,于是 5.a <−若[],2a a +⊂23[,]x x ,则2a x ≥且32a x +≤.由(I )知,23 1.x −<<又32()39,f x x x x c '=+−+当27c =−时,2()(3)(3)f x x x '=−+;当5c =时,2()(5)(1)f x x x '=+−. 因此,当275c −<<时,31 3.x << 所以3,a >−且2 3.a +≤即3 1.a −<<故5,a <−或3 1.a −<<反之, 当5,a <−或31a −<<时,总可找到(27,5),c ∈−使函数)(x f 在区间[],2a a +上单调递减.综上所述,a 的取值范围是(5)(3,1)−∞−−, (2008辽宁文22/22)设322()31()f x ax bx a x a b =+−+∈R ,在1x x =,2x x =处取得极值,且122x x −=.(Ⅰ)若1a =,求b 的值,并求()f x 的单调区间;(Ⅱ)若0a >,求b 的取值范围.解:22()323f x ax bx a '=+−.① ······················ 2分(Ⅰ)当1a =时,2()323f x x bx '=+−;由题意知12x x ,为方程23230x bx +−=的两根,所以12x x −= 由122x x −=,得0b =. ························· 4分从而2()31f x x x =−+,2()333(1)(1)f x x x x '=−=+−.当(11)x ∈−,时,()0f x '<;当(1)(1)x ∈−∞−+∞,,时,()0f x '>.故()f x 在(11)−,单调递减,在(1)−∞−,,(1)+∞,单调递增. ·········· 6分 (Ⅱ)由①式及题意知12x x ,为方程223230x bx a +−=的两根,所以123x x a−=.从而221229(1)x x b a a −=⇔=−, 由上式及题设知01a <≤. ························· 8分 考虑23()99g a a a =−,22()1827273g a a a a a ⎛⎫'=−=−− ⎪⎝⎭. ········· 10分 故()g a 在203⎛⎫ ⎪⎝⎭,单调递增,在213⎛⎫ ⎪⎝⎭,单调递减,从而()g a 在(]01,的极大值为2433g ⎛⎫= ⎪⎝⎭. 又()g a 在(]01,上只有一个极值,所以2433g ⎛⎫= ⎪⎝⎭为()g a 在(]01,上的最大值,且最小值为(1)0g =.所以2403b ⎡⎤∈⎢⎥⎣⎦,,即b 的取值范围为⎡⎢⎣⎦.。