一级倒立摆
(完整版)一级倒立摆系统分析
一级倒立摆的系统分析一、倒立摆系统的模型建立如图1-1所示为一级倒立摆的物理模型图1-1 一级倒立摆物理模型对于上图的物理模型我们做以下假设:M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆惯量F:加在小车上的力x:小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。
其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。
注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。
图1-2 小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:M ẍ=F-bẋ-N (1-1)由摆杆水平方向的受力进行分析可以得到以下方程:N =md 2dt 2(x +l sin θ) (1-2)即: N =mẍ+mlθcos θ−mlθ2sin θ (1-3)将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )ẍ+bẋ+mlθcos θ−mlθ2sin θ=F (1-4)为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P −mg =md 2dt 2(l cos θ) (1-5)P −mg =− mlθsin θ−mlθ2cos θ (1-6) 利用力矩平衡方程可以有:−Pl sinθ−Nl cosθ=Iθ (1-7)注意:此方程中的力矩方向,由于θ=π+ɸ,cosɸ=−cosθ,sinɸ=−sinθ,所以等式前面含有负号。
合并两个方程,约去P和N可以得到第二个运动方程:(I+ml2)θ+mgl sinθ=−mlẍcosθ (1-8)设θ=π+ɸ,假设ɸ与1(单位是弧度)相比很小,即ɸ<<1,则可以进行近似处理:cosθ=−1,sinθ=−ɸ,(dθdt )2=0。
用u来代表被控对象的输入力F,线性化后的两个运动方程如下:{(I+ml2)ɸ−mglɸ=mlẍ(M+m)ẍ+bẋ−mlɸ=u(1-9)假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到:{(I+ml2)Φ(s)s2−mglΦ(s)=mlX(s)s2(M+m)X(s)s2+bX(s)s−mlΦ(s)s2=U(s) (1-10) 由于输出为角度ɸ,求解方程组的第一个方程,可以得到:X(s)=[(I+ml2)ml −gs2]Φ(s) (1-11)或改写为:Φ(s)X(s)=mls2(I+ml2)s2−mgl(1-12)如果令v=ẍ,则有:Φ(s)V(s)=ml(I+ml2)s2−mgl(1-13)如果将上式代入方程组的第二个方程,可以得到:(M+m)[(I+ml2)ml −gs]Φ(s)s2+b[(I+ml2)ml+gs2]Φ(s)s−mlΦ(s)s2=U(s) (1-14) 整理后可得传递函数:Φ(s) U(s)=mlqs2s4+b(I+ml2)qs3−(M+m)mglqs2−bmglqs(1-15)其中q=[(M+m)(I+ml2)−(ml)2]假设系统状态空间方程为:X=AX+Buy=CX+Du (1-16) 方程组对ẍ,ɸ解代数方程,可以得到解如下:{ẋ=ẋẍ=−(I+ml2)bI(M+m)+Mml2ẋ+m2gl2I(M+m)+Mml2ɸ+(I+ml2)I(M+m)+Mml2uɸ=ɸɸ=−mlbI(M+m)+Mml2ẋ+mgl(M+m)I(M+m)+Mml2ɸ+mlI(M+m)+Mml2u(1-17)整理后可以得到系统状态空间方程:[ẋẍɸɸ]=[01000−(I+ml2)bI(M+m)+Mml2m2gl2I(M+m)+Mml200010−mlbI(M+m)+Mml2mgl(M+m)I(M+m)+Mml20][xẋɸɸ]+[(I+ml2)I(M+m)+Mml2mlI(M+m)+Mml2]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-18)由(1-9)的第一个方程为:(I+ml2)ɸ−mgl ɸ=mlẍ对于质量均匀分布的摆杆可以有:I=13ml2于是可以得到:(13ml2+ml2)ɸ−mgl ɸ=mlẍ化简可以得到:ɸ=3g4l ɸ+34lẍ(1-19)设X={x, ẋ, ɸ , ɸ},u=ẍ则有:[ẋẍɸɸ]=[010000000001003g4l0][xẋɸɸ]+[134l]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-20)以上公式推理是根据牛顿力学的微分方程验证的。
2020年终稿一级倒立摆精品版
目录1实验设备简介 (2)1.1倒立摆介绍 (2)1.2 研究倒立摆稳定性的意义 (3)1.3直线一级倒立摆 (3)2 倒立摆建模 (3)2.1 直线一阶倒立摆数学模型的推导 (3)2.1.1受力分析 (4)2.1.2微分方程建模 (5)2.1.3传递函数建模 (6)2.1.4状态空间数学模型 (6)2.2 实际系统模型建立 (8)3系统定性、定量分析 (9)3.1系统开环阶跃响应 (9)3.2系统稳定性与可控性分析 (11)3.2.1稳定性分析 (11)3.2.2能控性分析 (12)4 设计状态观测器 (12)4.1状态空间分析 (12)4.2 极点配置的设计步骤 (13)4.3极点配置的Matlab计算 (14)4.4极点配置的simulink电路仿真 (20)4.4.1无状态反馈仿真 (20)4.4.2有状态反馈的仿真 (21)4.5极点配置的综合分析 (22)5小结 (23)1实验设备简介1.1倒立摆介绍倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。
如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂,多变量,存在严重非线性,非自制不稳定系统。
常见的倒立摆一般由小车和摆杆两部分组成,其中摆杆可能是一级,二级或多级,在复杂的倒立摆系统中,摆杆的长度和质量均可变化。
系统是由计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分组成的闭环系统。
光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,摆杆的角度、角速度信号由光电码盘2反馈给运动控制卡。
计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相小车皮带电机摆杆图1:一级倒立摆结构图滑轨图2:一级倒立摆系统组成框图应的控制量,使电机转动,通过皮带,带动小车运动,保持摆杆平衡。
1.2 研究倒立摆稳定性的意义倒立摆的研究具有重要的工程背景。
机器人行走就类似倒立摆系统从日常生活中所见到的任何重心在上、也是支点在下的控制问题,到空间飞行器和各类伺服云台的稳定,都和倒立摆系统的稳定控制有很大相似性,故对其稳定控制在实际中有很多用场,如海上钻井平台的稳定控制、卫星发射架的稳定控制、火箭姿态控制、飞机安全着陆、化工过程控制等。
一级倒立摆数学模型建立
一、直线一级倒立摆系统的数学模型1、倒立摆系统是一种复杂的非线性系统,为了简化对系统的反洗,在建立数学模型的过程中,作以下假设:1.)小车、摆杆在运动过程中都是不变得刚体;2.)皮带轮与传动带之间没有相对滑动,皮带不能拉伸变长,传动带没有抖振以及伸长的现象;3.)交流伺服电机的输入和输出之间是纯线性的关系;而且忽略不计电机的电枢绕组中的电感等动态特性;4.)将整个系统运行中的摩擦、各种阻力及机械传动间隙等不确定性忽略不计。
通过上述假设,则可以将直线一级倒立摆系统抽象成小车和均质敢组成的系统,如图1.1所示。
图1.1倒立摆系统2、各参数符号含义如下:符号含义单位数值M 小车质量kg 1.096m 摆杆质量kg 0,109b 小车摩擦系数N/m/sec 0.1l 摆杆转动轴心到杆质心的长度m 0.25I 摆杆转动惯性Kg*m²0.0034g 重力加速度N/kg 9.8x 小车的水平位置mθ摆角大小radN 小车对摆杆水平方向作用力NP 小车对摆杆竖直方向作用力NF 电动机经传动机构给小车的力Nφ摆杆与垂直向上方向的夹角rad3、采用牛顿--欧拉方法建立直线型一级倒立摆系统的数学模型。
图1.2是系统中小车和摆杆的受力分析图。
(a)小车的受力分析 (b)摆杆受力分析图1.2小车与摆杆的受力分析对小车水平方向所受的力进行受力分析,可以得到方程:N x b F x M --=⋅⋅⋅ 式(1.1)对摆杆水平方向所受的力进行受力分析并化简整理,可以得到等式:θθθθsin cos 2⋅⋅⋅⋅⋅-==ml ml x m N 式(1.2)将式(1.2)带入式(1.1)中,可以得到系统的第一个运动方程:θθθθsin cos )(2⋅⋅⋅⋅⋅⋅-+++=ml ml x b x m M F 式(1.3)对摆杆垂直方向所受的力进行受力分析并化简整理,可以得到下面等式:θθθθcos sin 2⋅⋅⋅--=ml ml mg P 式(1.4)力矩平衡方程如下:⋅⋅=--θθθI Nl Pl cos sin 式(1.5)将有关P 和N 的等式代入式(1.5)中,得到系统的第二个运动方程:θθθcos sin )(2⋅⋅⋅⋅-=++x ml mgl ml I 式(1.6)假设φ与1(单位弧度)相比很小,即φ<<1,并设θ=π+φ(φ是摆杆与垂直向上方向的夹角),可以作近似处理:φθθθ-=-==⎪⎭⎫⎝⎛s i n ,1c o s,02dt d 式(1.7)将被控对象的输入力F 用u 来表示,可以得到两个线性化后运动方程,如下 所示:⎪⎩⎪⎨⎧=-++=-+⋅⋅⋅⋅⋅⋅⋅⋅⋅u m l x b x m M x m l m glm l I φφφ)()(2式(1.8)对方程组式(1.8)进行拉氏变换,得到:⎪⎩⎪⎨⎧=Φ-++=Φ-Φ+)()()()()()()()()(22222s U s s ml s bX s s X m M s s mlX s mgl s s ml I 式(1.9)假设初始条件为零,对上述方程组的第一个方程求解,可得:)()()(22s s g ml ml I s X Φ⎥⎦⎤⎢⎣⎡-+= 式(1.10)将式(1.10)代入方程组式(1.9)中的第二个方程,可得:222222)()()()()()()(s s ml s s s g ml ml I b s s s g ml ml I m M s U Φ-Φ⎥⎦⎤⎢⎣⎡-++Φ⎥⎦⎤⎢⎣⎡-++= 式(1.11)整理,可以得到摆角的传递函数为:sq bm gl s q m gl m M s q m l I b s sqm l s U s -+-++=Φ23242)()()()( 式(1.12)式中:]))([(222l m ml I m M q -++=将倒立摆的实际参数值代入上式,得到摆角的传递函数为:ss s s s s U s 3141.28853.270883.03566.2)()(2342-++=Φ 式(1.13)同理,可以得到小车位置的传递函数:sq bm gl s q m gl m M s q m l I b s qm gls q m l I s U s X -+-++-+=23242)()()()()( 式(1.14)将实际的参数值代入,得到小车位置的传递函数为:s s s s s s U s X 3141.28853.270883.01413.238832.0)()(2342--+-= 式(1.15)在方程组(1.8)中对⋅⋅x 、⋅⋅φ求解代数方程,得到解如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++++++++-==++++++++++-==⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅u Mm l m M I m l Mm l m M I m M m gl x Mm l m M I m lb u Mm l m M I m l I Mm l m M I gl m x Mm l m M I b m l I x xx 2222222222)()()()()()()()()(φφφφφ 式(1.16)设系统状态空间方程为:⎪⎩⎪⎨⎧+=+=⋅Du Cx y Bu Ax x 式(1.17)整理式(1.16),得到系统状态空间方程:u Mml m M I ml Mml m M I ml I x x Mml m M I m M mgl Mml m M I mlb Mml m M I gl m Mml m M I bml I x x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅2222222222)(0)()(00)()()(010000)()()(00010φφφφ 式(1.18)u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⋅⋅0001000001φφφ 式(1.19)将已知的M 、m 、b 、g 、l 、I 代入式(1.18)可得状态方程u x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅3566.208832.0008285.272357.00100006293.00883.000010φφφφ 式(1.20)输出方程u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⋅⋅0001000001φφφ 式(1.21)。
直线一级倒立摆建模
一、直线一级倒立摆建模1、微分方程的推导对于倒立摆系统,经过小心假设忽略掉一些次要因素后,倒立摆系统就是一个典型的刚体运动系统,可以在惯性坐标系统内应用景点力学理论建立系统的动力学方程。
微分方程的推导:在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示.图1做如下假设:M 小车质量m 摆杆质量b 小车摩擦系数L 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(考虑带摆杆初始位置为竖直向下)图2图2是系统中小车和摆杆的受力分析图。
其中,N和P为小车和摆杆的相互作用力的水平和垂直方向的分量。
在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,所以矢量方向定义如图2所示,图示方向为矢量的正方向。
分析小车水平方向所受合力,可以得到方程:(式1)由摆杆水平方向的受力进行分析可以得到下面等式:= (式2、式3)将式3代入式1可得系统第一个运动方程:(式4)为了推出系统第二个运动方程,对摆杆垂直向上的合力进行分析可得方程:= (式5 式6)力矩平衡方程如下:(式7)式中:合并式6、式7得第二个运动方程:(式8)设θ = π +φ(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ <<1,则可以进行近似处理:用u来代表被控对象的输入力F,线性化后两个运动方程如下:(式9)对式(3-9)进行拉普拉斯变换(推导传递函数时假设初始条件为0。
):(式10)整理后得到传递函数:(式11)其中:2、状态空间方程设系统状态空间方程为:(式12)方程组对解代数方程,得到解如下:(式13)整理后得到系统状态空间方程:(式14)3、实际系统模型假定系统物理参数设计如下:M 小车质量 1.08Kg m 摆杆质量 0.1Kgb 小车摩擦系数 0.1N/m/sec l 摆杆转动轴心到杆质心的长度 0.3mI 摆杆惯量 0.0027Kg*m*m将上述参数带入,可以得到以外界作用力作为输入的系统状态方程:======+++++++=⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅u x x x y u x x x x 000100001034577.20914849.0008966.26234577.0010000689655.00914849.000010φφφφφφφ二、对象的性能分析1、分析系统的单位阶跃响应:a=[0 1 0 0;0 -0.0914849 0.689655 0;0 0 0 1;0 -0.234577 26.8966 0] b=[0;0.914849;0;2.34577] c=[1 0 0 0;0 0 1 0] d=[0;0] a =0 1.0000 0 0 0 -0.0915 0.6897 0 0 0 0 1.0000 0 -0.2346 26.8966 0b =0.91482.3458c =1 0 0 00 0 1 0d =利用传递函数得到如下响应曲线[num,den]=ss2tf(a,b,c,d)num =0 -0.0000 0.9148 0.0000 -22.98860 -0.0000 2.3458 -0.0000 0 den =1.0000 0.0915 -26.8966 -2.2989 0 step(num,den)从图上可知其阶跃响应不稳定。
终稿一级倒立摆
目录1实验设备简介 (2)1.1倒立摆介绍 (2)1.2 研究倒立摆稳定性的意义 (3)1.3直线一级倒立摆 (3)2 倒立摆建模 (3)2.1 直线一阶倒立摆数学模型的推导 (3)2.1.1受力分析 (4)2.1.2微分方程建模 (5)2.1.3传递函数建模 (6)2.1.4状态空间数学模型 (6)2.2 实际系统模型建立 (8)3系统定性、定量分析 (9)3.1系统开环阶跃响应 (9)3.2系统稳定性与可控性分析 (11)3.2.1稳定性分析 (11)3.2.2能控性分析 (12)4 设计状态观测器 (12)4.1状态空间分析 (12)4.2 极点配置的设计步骤 (13)4.3极点配置的Matlab计算 (14)4.4极点配置的simulink电路仿真 (20)4.4.1无状态反馈仿真 (20)4.4.2有状态反馈的仿真 (20)4.5极点配置的综合分析 (21)5小结 (22)1实验设备简介1.1倒立摆介绍倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。
如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂,多变量,存在严重非线性,非自制不稳定系统。
常见的倒立摆一般由小车和摆杆两部分组成,其中摆杆可能是一级,二级或多级,在复杂的倒立摆系统中,摆杆的长度和质量均可变化。
系统是由计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分组成的闭环系统。
光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,摆杆的角度、角速度信号由光电码盘2反馈给运动控制卡。
计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相小车皮带电机摆杆图1:一级倒立摆结构图滑轨图2:一级倒立摆系统组成框图应的控制量,使电机转动,通过皮带,带动小车运动,保持摆杆平衡。
1.2 研究倒立摆稳定性的意义倒立摆的研究具有重要的工程背景。
机器人行走就类似倒立摆系统从日常生活中所见到的任何重心在上、也是支点在下的控制问题,到空间飞行器和各类伺服云台的稳定,都和倒立摆系统的稳定控制有很大相似性,故对其稳定控制在实际中有很多用场,如海上钻井平台的稳定控制、卫星发射架的稳定控制、火箭姿态控制、飞机安全着陆、化工过程控制等。
ppt直线一级倒立摆
倒立摆系统的应用领域
01
02
03
控制理论
倒立摆系统是控制理论中 常用的实验平台,用于研 究控制算法和系统稳定性 问题。
系统稳定性
倒立摆系统可以用来研究 系统的稳定性问题,例如 如何设计控制器使系统保 持稳定。
PPT直线一级倒立摆
目录
• 倒立摆系统简介 • PPT直线一级倒立摆系统模型 • PPT直线一级倒立摆系统的控制
策略 • PPT直线一级倒立摆系统的实验
研究 • PPT直线一级倒立摆系统的应用
前景和发展趋势
01
倒立摆系统简介
倒立摆系统的定义
倒立摆系统是一种具有不稳定平衡状 态的物理系统,其特点是具有一个自 由度的直线运动和一个绕垂直轴的旋 转运动。
建模与仿真
建立倒立摆系统的数学模型,通过仿真验证控制策略的有效性。
硬件实现
将控制算法嵌入到倒立摆系统的硬件中,进行实时控制。
软件实现
通过编写程序实现控制算法,通过上位机与倒立摆系统进行通信 和控制。
04
PPT直线一级倒立摆系统的 实验研究
实验目的和实验设备
实验目的
通过实验研究PPT直线一级倒立摆系 统的动态特性,分析系统的稳定性、 响应速度和抗干扰能力。
PPT直线一级倒立摆系统的原理
当摆杆受到外力作用时,会绕着摆杆的固定点进行摆动。由于上、下质量块之间 的相互作用力,使得摆杆在摆动过程中同时进行倒立摆动。
通过控制电路的控制,驱动机构可以按照指令信号进行摆动,从而实现倒立摆的 稳定控制。
PPT直线一级倒立摆系统的特点
直线一级倒立摆系统实验报告
直线一级倒立摆系统实验报告1. 实验目的:通过对直线一级倒立摆系统进行分析,掌握系统的基本原理、参数设置和控制策略;提高学生实际动手能力和科学实验能力。
2. 实验内容:(1)搭建直线一级倒立摆系统实验平台;(2)设置系统的动力学模型,采集系统的状态变量;(3)根据系统的特性设计控制策略,实现系统的稳定控制;(4)记录实验数据,并进行数据处理和分析。
3. 实验原理:直线一级倒立摆系统是一种经典的非线性控制系统,其原理和稳定性分析可以使用动力学建模方法来描述。
系统由直线弹簧、质量块、直线导轨和质量块的摆杆组成。
当摆杆处于垂直状态时,系统处于平衡状态;当摆杆被扰动后,系统进入不稳定状态,需要通过控制策略来实现其稳定控制。
在实验中,我们选取了单摆系统作为直线一级倒立摆系统的原形。
单摆系统由一个质点和一个线性弹簧组成,其状态变量为质点的位置和速度。
当质点处于平衡位置时,系统拥有稳定状态;当质点被扰动后,系统进入不稳定状态,需要通过控制策略来实现其稳定控制。
因此,我们可以使用单摆系统来研究直线一级倒立摆系统的控制策略。
4. 实验步骤:(1)搭建实验平台:搭建直线一级倒立摆系统实验平台,包括直线导轨、摆杆、质点、力传感器、位移传感器和控制电路等。
将质点放置在导轨上,并用摆杆将其固定在弹簧上。
使用力传感器和位移传感器来测量系统的状态变量。
(2)设置系统模型:对实验平台的动力学模型进行建模,将系统的状态变量与控制策略联系起来。
(3)设计控制策略:根据系统的特性设计相应的控制策略,使系统保持稳定状态。
常用的控制策略包括模型预测控制、PID控制、滑模控制等。
(4)记录实验数据:实验过程中需要记录系统的状态变量和控制参数,并进行数据处理和分析,得到实验结论。
5. 实验结果分析:通过对直线一级倒立摆系统的实验研究,我们发现系统的稳定控制需要根据其特性和实际情况来确定相应的控制策略。
在实验中,我们采用了模型预测控制策略,通过对系统的状态变量进行预测和调节,成功实现了系统的稳定控制。
直线一级倒立摆文档
0 0 1 0
0 I ml 2 ( M m) I mMl 2 B 0 ml 2 ( M m ) I mMl C I 44
带入参数得线性化后的系统参数矩阵为
1 0 0 0 0.0883167 0.629317 A 0 0 0 0 0.235655 27.8285
图. 4 Simulink 框图
图. 5 小车位置图
图. 6 摆杆与垂直方向角度图
Y轴
φ 摆杆 l F
X轴 小 X
图2
车
导轨
图 3 是将小车与摆杆分开受力分析的示意图。其中(a)图是小车的受力分析示意图, (b)图是摆杆的受力分析示意图。其中 N 和 P 分别为小车与摆杆相互作用的水平和垂直方 向的分量。执行装置的正方向由图. 2 所示的矢量方向确定。
P N F 小 (a)
图. 3 分析小车水平方向所受的合力,可以得到以下方程:
(3) (4)
cos ml 2 sin F bx ml (M m) x
分析摆杆垂直方向上的合力,可以得到下面的方程:
P mg m
即:
d2 (l cos 2 cos P mg ml
根据式(9)可得到如下的状态空间方程:
AX Bu X Y CX
其中
X x1
x2
x3
x4
T
1 0 ( I ml 2 )b 0 ( M m) I mMl 2 A 0 0 mlb 0 ( M m) I mMl 2
0 m 2l 2 g ( M m) I mMl 2 0 ( M m)mgl ( M m) I mMl 2
一级倒立摆实验(状态反馈)
第1章倒立摆系统介绍1.1 倒立摆系统简介倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。
1.2 倒立摆分类倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆,环形倒立摆,平面倒立摆和复合倒立摆等,倒立摆系统是在运动模块上装有倒立摆装置,由于在相同的运动模块上可以装载不同的倒立摆装置,倒立摆的种类由此而丰富很多,按倒立摆的结构来分,有以下类型的倒立摆:1) 直线倒立摆系列直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在主动小车和从动小车之间增加了一个弹簧,作为柔性关节。
直线倒立摆系列产品如图 1-1 所示。
一级倒立摆
d.模糊规则浏览器图形界面
e.模糊推理后的三维空间图
(四)仿真图的建立:
Step
1 Gain3 e xuanbi
7.3 mu Ke -K200s s+200 ec 8.4 Kec Fuzzy Logic Controller Ku Saturation Ka -24.6 Kac -3.1 Transfer Fcn1 200s s+200 x' = Ax+Bu y = Cx+Du State-Space vote
这里,我们采用基于MATLAB下的模糊控制方法来设 计控制器。采取解析法和仿真分析法分别对系统进行分析 和设计。 (一)建模:
系统采用拉格朗日动力学分析法 建立运动方程为:
" ( J1 m2 L2 )1" m2 L1L2 2 cos(1 2 ) 1
m2 L1 L sin(1 2 ) m2 gL1 sin sin 1 M
0 1 0 1 2 0 Vm . 0 1 29.43 0 . 20.82 2
而输出部分的
1 0 0 0 C 0 1 0 0
故输出为:
1 2 1 0 0 0 y . 0 1 0 0 1 . 2
鲁棒控制是自动控制领域 20 世纪末最重要的研究结 果之一。简单地说鲁棒控制处理的是不确定性对象,这种 不确定性包括外部扰动、模型参数变化未建模动态(即模型 与实际系统差异)、 执行器的误差等等。 鲁棒控制算法在倒立摆中的应用,尽管这方面的研究 工作还没有充分展开,但从已有的一些研究成果不难推断 出,鲁棒控制方法是解决倒立摆这一对象非线性、复杂性 和不确定性的一种工具。鲁棒控制的发展方向是面向不确 定性的研究对象,如何将其研究成果与实际应用相结合, 解决不确定系统的控制问题,或使已有的控制系统具有更 强的鲁棒性,这是一项艰巨而复杂的工作。倒立摆是一个 验证理论的正确性及实际应用中的可行性的典型对象。通 过将鲁棒控制算法应用到倒立摆中来验证鲁棒控制算法优 越性,最终将鲁棒算法的实际应用更进一步。
一级倒立摆系统分析
一级倒立摆系统分析一级倒立摆系统由一个垂直的支撑杆和一个质量为m、长度为l的摆杆组成。
摆杆的一端通过一个旋转关节连接在支撑杆的顶端,另一端可以自由地在重力作用下摆动。
我们将摆杆的摆动角度定义为θ,并假设摆杆的运动是平面运动,不考虑摆杆在垂直方向上的移动。
首先,我们需要建立一级倒立摆系统的动力学方程。
根据牛顿第二定律和角动量守恒定律,可以得到以下方程:1.支撑杆垂直方向受力平衡方程:-mgl sinθ = 0其中g为重力加速度。
2. 摆杆绕旋转关节的转动惯量为I = ml^2/3,根据转动惯量的定义可以得到角加速度α与力矩τ之间的关系:τ=Iα其中τ = ml^2/3α。
3.摆杆绕旋转中心的转动方程:τ = Iα = ml^2/3α = -mgl sinθ可以得到α与θ之间的关系:α = -3g/(2l)sinθ。
以上方程可以描述一级倒立摆系统在垂直方向上的平衡和旋转运动。
其中,第一条方程表示摆杆在垂直方向上的受力平衡,第二条方程表示摆杆的转动惯量及其与角加速度之间的关系,第三条方程表示摆杆绕旋转中心的转动方程。
接下来,我们可以通过线性化分析来研究一级倒立摆系统的稳定性。
线性化是一种将非线性系统近似为线性系统的方法,通过计算系统在一些平衡点附近的一阶导数来实现。
我们首先要找到一级倒立摆系统的平衡点。
根据第一条方程,当θ=0时,系统达到平衡。
在这个平衡点,摆杆不再摆动,所有受力均平衡。
接下来,我们对系统进行线性化。
首先将θ分解为平衡点的偏差值Δθ和小量δθ,即:θ=θ_e+Δθ+δθ其中θ_e为平衡点的角度。
将上述表达式带入到第三条方程中,并只保留一阶项,可以得到线性化的转动方程:α = -3g/(2l)(sinθ_e + cosθ_e Δθ +cosθ_e δθ)。
我们可以进一步线性化该方程,即将sinθ_e和cosθ_e在一阶项展开,并忽略二阶项,得到:α=-3g/(2l)(θ_e+Δθ+δθ)。
一级倒立摆系统最优控制
摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,许多抽象的控制理论概念都可以通过倒立摆实验直观的表现出来。
因此,倒立摆系统经常被用来检验控制策略的实际效果。
应用上,倒立摆广泛应用于航空航天控制、机器人,杂项顶杆表演等领域,研究倒立摆的精确控制对工业复杂对象的控制也有着重要的工程应用价值。
本文以固高公司生产的GIP-100-L型一阶倒立摆系统为研究对象,对直线一级倒立摆模型进行了建模,控制算法的仿真对比,并得出了相应的结论。
文中介绍了倒立摆的分类、特性、控制目标、控制方法等以及倒立摆控制研究的发展及其现状。
利用牛顿力学方法推到了直线以及倒立摆的动力学模型,求出其传递函数及其状态空间方程。
在建立了系统模型的基础下,本文还研究了倒立摆系统的线性二次型最优控制问题,并且使用了MATLAB软件进行仿真,通过改变LQR模块及状态空间模块中的参数,在仿真中取得了不同的控制效果,最终得到了最好的控制效果。
关键字:一级倒立摆线性系统、数学建模、最优控制、LQR、仿真目录1 一阶倒立摆的概述 (1)1.1倒立摆的起源与国内外发展现状 (1)1.2倒立摆系统的组成 (1)1.3倒立摆的分类: (1)1.4倒立摆的控制方法: (2)2.一阶倒立摆数学模型的建立 (3)2.1概述 (3)2.2数学模型的建立 (4)2.4实际参数代入: (5)3.定量、定性分析系统的性能 (7)3.1对系统的稳定性进行分析 (7)3.2 对系统的能空性和能观测性进行分析: (8)4.线性二次型最优控制设计 (9)4.1线性二次最优控制简介 (9)4.2 直线一级倒立摆LQR控制算法 (10)4.3 最优控制MATLAB仿真 (18)总结 (21)参考文献 (22)1 一阶倒立摆的概述1.1倒立摆的起源与国内外发展现状倒立摆的最初研究开始于二十世纪五十年代,麻省理工学院的控制理论专家根据火箭助推器原理设计出来一级倒立摆实验设备。
基于PID控制的一级倒立摆系统的研究
基于PID控制的一级倒立摆系统的研究一级倒立摆系统是控制理论中常用的一个实验模型,它能够很好地展示PID控制器的性能和效果。
本文将介绍一级倒立摆系统的建模过程、PID控制器的设计以及实验结果和分析。
一、一级倒立摆系统的建模为了进行控制系统设计,首先需要对一级倒立摆系统进行建模。
可以利用动力学方程来描述一级倒立摆系统的行为。
设系统的输入为电机的扭矩τ,输出为杆的角度θ。
根据牛顿第二定律,可以得到如下的动力学方程:mL²θ¨ + mgsinθL = τ其中,m是摆的质量,L是摆的长度,g是重力加速度,θ¨是杆的角加速度。
将动力学方程进行线性化,得到如下形式:θ¨=(g/L)θ+(τ/(mL²))这是一个二阶常微分方程,可以通过PID控制器进行控制。
二、PID控制器的设计PID控制器是一种经典的控制器,由比例、积分和微分三部分组成。
PID控制器的输出和输入之间的关系如下:u(t) = Kp e(t) + Ki ∫e(t)dt + Kd de(t)/dt其中,u(t)是控制器的输出,e(t)是控制误差,Kp、Ki和Kd分别是比例、积分和微分增益。
利用PID控制器,可以将控制器的输出u(t)作为电机的扭矩输入τ,实现对杆角度θ的控制。
具体的PID参数选择需要根据实际情况和控制要求进行调整和优化。
三、实验结果和分析通过实验,可以得到一级倒立摆系统的实际响应曲线。
利用PID控制器对系统进行控制,将杆保持在倒立状态。
实验结果显示,PID控制器可以有效控制一级倒立摆系统。
通过调整PID参数,可以调节系统的稳定性、响应速度和抗干扰性能。
总结本文基于PID控制,对一级倒立摆系统进行了研究。
通过建模和控制器设计,实现了对杆角度的控制。
实验结果证明了PID控制器在一级倒立摆系统中的良好性能和效果。
未来的研究可以进一步探索其他控制算法在一级倒立摆系统中的应用,以及优化控制器参数的方法。
一级直线倒立摆的控制策略与仿真分析
一级直线倒立摆的控制策略与仿真分析一、引言倒立摆系统是研究控制理论的一种典型的实验装置,具有成本低廉,结构简单,参数和结构易于调整的优点。
然而倒立摆系统具有高阶次、不稳定、多变量、非线性和强耦合特性,是一个绝对不稳定系统。
倒立摆实物仿真实验是控制领域中用来检验某种控制理论或方法的典型方案,它对一类不稳定系统的控制以及对深入理解反馈控制理论具有重要意义。
倒立摆系统在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果已经应用到航天科技和机器人学等诸多领域。
二、一级直线倒立摆模型的建立图1 一级直线倒立摆物理模型图2 小车和摆杆的受力分析图2.1 传递函数模型图1、2是系统中小车和摆杆的受力分析图。
设小车质量为M,摆杆质量为m,小车摩擦系数为b,摆杆转动轴心到杆质心的长度为l,摆杆的转动惯量为I,根据牛顿第二定律,可以得到系统的两个运动方程:F ml ml x b x m M =-+++∙∙∙∙∙∙θθθθsin cos )(2(1)θθθcos sin )(2∙∙∙∙-=++x m l m gl m l I (2)设φπθ+=, 假设φ与1(单位是弧度)相比很小,即c <<1,则可以进行近似处理:1cos -=θ,φθ-=sin ,0)(2=dtd θ。
用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:2()()I ml mgl ml x M m x b x ml uϕϕϕ∙∙∙∙∙∙∙∙∙+-=++-= (3)假设初始条件为0,对式(3)进行拉普拉斯变换得到:22222()()()()()()()()()I ml s s mgl s mlX s s M m X s s bX s s ml s s U s +Φ-Φ=++-Φ=(4)由于输出为角度φ,求解方程组的第一个方程,可以得到:mgl s ml I mls s X s -+=Φ222)()()((5)令∙∙=x v ,则有:mgls ml I mls V s -+=Φ22)()()((6) 把上式代入方程组的第二个方程,得到:)()()(])([)(])()[(222222s U s s ml s s sg ml ml I b s s s g ml ml I m M =Φ-Φ+++Φ-++(7)整理后得到传递函数:232()()()()mlss qb I ml M m mgl bmgl U s s s s q q qΦ=+++--(8) 其中])())([(22ml ml I m M q -++=。
(完整word版)一级倒立摆控制系统设计
基于双闭环PID控制的一阶倒立摆控制系统设计一、设计目的倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。
设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统.二、设计要求倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度.当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。
实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。
三、设计原理倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。
计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡.四、设计步骤首先画出一阶倒立摆控制系统的原理方框图一阶倒立摆控制系统示意图如图所示:分析工作原理,可以得出一阶倒立摆系统原理方框图:一阶倒立摆控制系统动态结构图下面的工作是根据结构框图,分析和解决各个环节的传递函数!1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中:M:小车质量m:为摆杆质量J :为摆杆惯量 F:加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知:(1) 摆杆绕其重心的转动方程为(2) 摆杆重心的运动方程为得(3)小车水平方向上的运动为22..........(4)x d xF F M d t -=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lg sin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩式中J 为摆杆的转动惯量:32m l J =sin cos ..........(1)y x J F l F l θθθ=-2222(sin ) (2)(cos ) (3)x y d F m x l d td F mg m l d t θθ=+=-若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 若取小车质量M=2kg,摆杆质量m=1kg,摆杆长度2 l =1m ,重力加速度取g=2/10s m ,则可以得一阶倒立摆简化模型:....0.44 3.330.412x F F θθθ⎧=-⎪⎨⎪=-+⎩ 拉氏变换即 G 1(s )= ; G 2(s)=一阶倒立摆环节问题解决!2.电动机驱动器选用日本松下电工MSMA021型小惯量交流伺服电动机,其有关参数如下: 驱动电压:U=0~100V 额定功率:PN=200W 额定转速:n=3000r/min 转动惯量:J=3×10-6kg 。
一阶倒立摆系统模型分析、状态反馈与观测器设计 ppt课件
•
21.4174 28.3480 计算 A GC 6.3224 122.1830
1 3.9281 0 0 78.5615 0 0 27.9079 1 0 152.8225 0.6747
ppt课件
21
• 带状态观测器的状态反馈系统为
• 比较 p(s) a s • 可求得
0.6747 5.9747k 4 k 2 24.2 58.6118 5.9747k 0.6747k k 193 3 2 1 0.6747k1 58.6118k 2 600 - 58.6118k1 900
ppt课件 17
• 解得 k1 15.3551 , k2 10.4136 , k3 45.8588 , k4 5.6804 • 则反馈增益阵为
K -15.3551-10.4136 45.8588 5.6804
• 状态反馈通过调整K能任意配置闭环系统的极点 ,有效地改善系统的性能。同时,系统解耦、镇 定、渐近跟踪以及最优控制等都离不开状态反馈 。但状态反馈的前提条件是必须得到系统内部的 各个状态变量,而系统的状态变量往往比较难获 取,甚至是无法测量,因此需要设计状态观测器 来重构系统的状态。
一阶倒立摆系统模型分析、状态反馈与 观测器设计
ppt课件
1
1.建立一级倒立摆数学模型
•
图1过程中忽略了空 气阻力和弹性形变等。
ppt课件 2
• 首先对摆杆进行受力分析,如图2所示。其中H表 示摆杆受到的水平方向力,N表示摆杆所受的竖直 方向的力,摆杆所受的旋转摩擦力矩用 c 表示, 则得到摆杆平面运动微分方程。
• 可知系统完全能观,满足全维观测器极点配置条 件。
平面一级倒立摆实验报告
平面倒立摆实验一、实验装置简介平面倒立摆是在XY平台的基础上,设计平面倒立摆摆杆组件,组成平面倒立摆控制系统,倒立摆是研究自动控制原理和智能控制控制算法的研究平台,系统本身是一个多变量,强耦合的非线性系统。
1.系统组成一套完整的平面摆系统主要由以下三部分组成,见图片1-1:(1).控制对象,平面摆机械本体;(2).电控箱;(3).计算机。
图片 1-1 平面倒立摆系统组成用户在计算机上发送的指令通过电控箱转化为控制信号传达给机械本体的执行部件;反馈元件采集的信号通过电控箱送回计算机并转化为可视的数据、曲线、图像等在显示器上显示出来。
1.1 平面摆机械本体图片1-2所示,GPIP200X系列XY平台平面摆是由下端的GXY系列XY平台和上端的摆部件组成,部件全部采用工业级元件。
图片 1-2 XY 平台本体外观平面倒立摆摆体说明图片 1-3 平面一级倒立摆摆体外观1.2控制箱控制箱是平台控制部分的核心,与机械本体驱动电机配套,为交流伺服型,电控箱内置交流伺服驱动器、开关电源、断路器、接触器、运动控制器端子板,按钮开关等,外观见图片 1-4图片 1-4交流伺服型电控箱外形图1.3计算机为保证系统良好运行,建议计算机系统配置不低于一定标准。
二、平面一级倒立摆的建模在多种机器人动力学建模方法中,具有代表性的是牛顿-欧拉方法和拉格朗日方法。
用牛顿定律求解多体动力学问题时,需要把多体系统切开,将各个组成部分看作是独立的子结构,先建立各自的动力学方程,然后建立系统的动力学方程,求解驱动力的同时也解出切开处的铰链约束力;但是要解算大量的微分方程组,带来了一定的运算量。
由于倒立摆系统中关节处的约束力并无太大的意义,且由于拉格朗日方程组形式对称,表达方便,便于利用MATHEMATICA 强大的符号运算功能编程实现,简化了求解难度。
所以,本文采用拉格朗日方程推导平面一级倒立摆系统的动力学模型。
采用如图所示的坐标:根据几何知识:其中l是倒立摆摆杆长度,,分别是摆杆在x-z,y-z平面的映射长度,为摆杆与z轴方向的夹角,,分别为摆杆在x-z,y-z平面的映射与z轴方向的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:倒立摆系统是一个典型的多变量、非线性、强藕合和快速运动的自然不稳定系统。
因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。
本文围绕一级倒立摆系统,采用模糊控制理论研究倒立摆的控制,先是理论上的计算,然后建模,最后在MATLAB/Simulink下仿真,验证了可行性。
关键词:倒立摆,模糊控制,MATLAB仿真第一章绪论1.1 倒立摆系统的重要意义倒立摆系统是研究控制理论的一种典型实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点,是一个具有高阶次、不稳定、多变量、非线性和强藕合特性的不稳定系统。
在控制过程中,它能有效地反映诸如可镇定性、鲁棒性、随动性以及跟踪等许多控制中的关键问题,是检验各种控制理论的理想模型。
迄今人们已经利用经典控制理论、现代控制理论以及各种智能控制理论实现了多种倒立摆系统的控制稳定。
倒立摆主要有:有悬挂式倒立摆、平行倒立摆、环形倒立摆、平面倒立摆;倒立摆的级数有一级、二级、三级、四级乃至多级;倒立摆的运动轨道可以是水平的,也可以是倾斜的:倒立摆系统己成为控制领域中不可或缺的研究设备和验证各种控制策略有效性的实验平台。
同时倒立摆研究也具有重要的工程背景:如机器人的站立与行走类似双倒立摆系统;火箭等飞行器的飞行过程中,其姿态的调整类似于倒立摆的平衡等等。
因此对倒立摆控制机理的研究具有重要的理论和实践意义。
1.2 倒立摆系统的控制方法自从倒立摆产生以后,国内外的专家学者就不断对它进行研究,其研究主要集中在下面两个方面:(1)倒立摆系统的稳定控制的研究(2)倒立摆系统的自起摆控制研究而就这两方面而言,从目前的研究情况来看,大部分研究成果又都集中在第一方面即倒立摆系统的稳定控制的研究。
目前,倒立摆的控制方法可分如下几类: (1)线性理论控制方法将倒立摆系统的非线性模型进行近似线性化处理获得系统在平衡点附近的线性化模型,然后再利用各种线性系统控制器设计方法得到期望的控制器。
如1976年Mori etc的把倒立摆系统在平衡点附近线性化利用状念空间的方法设计比例微分控制器。
1980年,Furuta etc基于线性化方法,实现了二级倒立摆的控制。
1984年,Furuta首次实现双电机三级倒立摆实物控制。
1984年,wattes研究了LQR(Linear Quadratic Regulator)方法控制倒立摆。
这类方法对一、二级的倒立摆(线性化后误差较小、模型较简单)控制时,可以解决常规倒立摆的稳定控制问题。
但对于像非线性较强、模型较复杂的多变量系统(三、四级以及多级倒立摆)线性系统设计方法的局限性就十分明显了。
(2)预测控制和变结构控制方法由于线性控制理论与倒立摆系统多变量、非线性之间的矛盾使人们意识到针对多变量、非线性对象,采用具有非线性特性的多变量控制解决多变量、非线性系统的必由之路。
人们先后开展了预测控制、变结构控制和自适应控制的研究。
预测控制是一种优化控制方法,强调实模型的功能而不是结构。
变结构控制是一种非连续控制,可将控制对象从任意位置控制到滑动曲面上,仍然保持系统的稳定性和鲁棒性,但是系统存在颤抖。
预测控制、变结构控制和自适应控制在理论上有较好的控制效果,但由于控制方法复杂,成本也高,不易在快速变化的系统上实时实现。
(3)智能控制方法在倒立摆系统中用到的智能控制方法主要有神经网络控制、模糊控制、仿人智能控制、拟人智能控制和云模型控制等。
利用神经网络的自适应能力、并行处理和高度鲁棒性,采用神经网络方法设计的控制系统将具有更快的速度、更强的适应能力和更强的鲁棒性。
但是神经网络控制方法存在的主要问题是缺乏一种专门适合于控制问题的动态神经网络,而且多层网络的层数、隐层神经元的数量、激发函数类型的选择缺乏指导性原则等。
拟人智能控制、模糊控制、神经网络控制等智能控制理论的问世,促进了当代自动控制理论的发展。
然而,基于这些智能控制理论所设计的系统往往需要庞大的知识库和相应的推理机,不利于实现实时控制。
这又阻碍了智能控制理论的发展,因此又有学者提出了一种新的理论一拟人控制理论。
仿人智能控制仿人智能控制的基本思想是通过对人运动控制的宏观结构和手动控制行为的综合模仿,把人在控制中的“动觉智能”模型化,提出了仿人智能控制方法。
研究结果表明,仿人智能控制方法解决复杂、强非线性系统的控制具有很强的实用性。
云模型控制利用云模型实现对倒立摆的控制,用云模型构成语言值,用语言值构成规则,形成一种定性的推理机制。
这种拟人控制不要求给出被控对象精确的数学模型,仅仅依据人的经验、感受和逻辑判断,将人用自然语言表达的控制经验,通过语言原子和云模型转换到语言控制规则器中,就能解决非线性问题和不确定性问题。
鲁棒控制方法---鲁棒控制的研究始于20世纪50年代,是一种解决非线性、复杂性和不确定性的工具,发展方向是面向那些不确定因素变化范围大和稳定裕度小的对象。
但是,鲁棒控制系统的设计要由高级专家完成。
一旦设计成功,就不需太多的人工干预。
另一方面,如果要升级或作重大调整,系统就要重新设计。
1.3 论文的主要工作本论文的主要工作是研究了直线一级倒立摆系统的模糊控制问题,用Matlab 和Simulink对一级倒立摆模糊控制系统进行了仿真,验证了设计的可行性。
具体内容如下:(1)论述了一级倒立摆数学建模方法,推导出他们的微分方程,以及线性化后的状态方程。
(2)讨论了单级倒立摆系统的模糊控制方法和操作步骤。
(3)用Simulink实现了单级倒立摆模糊控制仿真系统,分别给出一级倒立摆系统控制量的响应曲线。
通过仿真说明控制器的有效性和实现性。
(4)对论文的工作进行总结和下一步工作的展望。
第二章倒立摆的建模本章研究倒立摆系统的数学模型推导。
系统建模可以分为两种:机理建模和实验建模。
实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入和输出之间的关系。
机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统内部的输入一状态关系。
对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。
但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。
下面我们采用其中的牛顿一欧拉方法建立直线型一级倒立摆系统的数学模型。
2.1一级倒立摆的数学模型在忽略了空气阻力,各种摩擦之后,可以将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图2—1所示。
各参数符号含义如下:M小车质量单位:Kg ;m摆杆质量单位:kgb小车摩擦系数单位:N/m/sec1摆杆转动轴心到杆质心的长度单位:mI摆杆惯量单位:kgF加在小车上的力单位:Nx小车位置单位:kgψ摆杆与垂直向上方向的央角(ψ=θ-Π)单位:radθ摆杆与垂直向下方向的央角(考虑到摆杆初始位置为竖直向下) 单位:rad 图2—2是系统中小车和摆杆的受力分析图。
其中,N和助小车与摆杆相互作用力的水平和垂直方向的分量。
矢量定义如图2-2所示,图示方向为矢量正方向。
倒立摆的数学模型分析:根据图2-2所示的倒立摆系统简图,设计和分析其模糊控制器。
下面给出了该系统的微分方程(Kailaith ,1980;Craig ,1986)()()()t u m dt d ml +=+-τθθsin lg 222 (1)这里m 是摆杆的质量,l 是摆长,θ是从垂直方向上的顺时针偏转角,τ=u (t )为作用于杆的逆时针扭矩【u (t )是控制作用】,t 是时间,g 是重力加速度常数。
假设dt d x x θθ==21,为状态变量,有等式(1)给出的非线性系统的的状态空间表达式为 21x dt x d = ()()()()t u ml x g dt x d 2121sin -=从所周知,当偏转角θ很小时,有sin (θ)=θ,这里所测得θ用弧度表示。
由此式可将状态空间表达式线性化,并得 21x dt x d =()()()22121t u ml x l g dt x d -=若所测1x 用度表示,2x 用每秒度表示,当取l=g 和m=()2180g π时,线性离散时间状态空间表达式可用矩阵查分方程表式 ()()()k x k x k x 2111+=+()()()()k u k x k x k x -+=+2121在此问题中,设上述两变量的论域为 221≤≤-x 和s rad x s rad 552≤≤-,则设计步骤为x在其论域上建立三个隶属度函数,即如图 1所示的正值第1步。
首先,对1(P)、零(Z)和负值(N)。
然后,对x在其论域上亦建立3个隶属度函数,2即图2所示的正值(P)、零(Z)和负值(N)。
图2-3 输入x的分区1x的分区图2-4输入2第2步。
为划分控制空间(输出),对()k u在其论域上建立5个隶属度函数,()24u,如图3(注意,图上划分为7段,但此问题中只用了5段)。
-k≤24≤图2-5输出u 的分区第3步。
用表1所示的3*3规则表的格式建立9条规则(即使我们可能不需要这么多)。
本系统中为使倒立摆系统稳定,将用到θ和dt d θ。
表中的输出即为控制作用u(t)。
表1模糊控制规则表第4步。
我们可用表1中规则导出该控制问题的模型。
并用图解法来推导模糊运算。
假设初始条件为() 101=x 和 ()s rad x 402-=然后,我们在上例中取离散步长30≤≤k ,并用矩阵差分方程式导出模型的四部循环式。
模型的每步循环式都会引出两个输入变量的隶属度函数,规则表产生控制作用u(k)的隶属度函数。
我们将用重心法对控制作用的隶属度函数进行精确化,用递归差分方程解得新的1x 和2x 值为开始,并作为下一步递归差分方程式的输入条件。
分别为1x 和2x 的初始条件。
从模糊规则表(表1)有If(1x =P)and(2x =Z),then(u=P)If(1x =P)and(2x =N),then(u=Z)If(1x =Z)and(2x =Z),then(u=Z)If(1x =Z)and(2x =N),then(u=N)表示了控制变量u 的截尾模糊结果的并。
利用重心法精确化计算后的控制值为u=-2。
在已知u=-2控制下,系统的状态变为()()()3001211-=+=x x x()()()()10001212-=-+=u x x x依次类推,可以计算出下一步的控制输出u(1)。
模糊控制器能够满足倒立摆的运动控制。
第三章 模糊控制器的建立3.1 S 函数的编写S 函数见附录1.3.2在MTALAB 中的fuzzy 控制器的建立与封装在命令窗口中输入:fuzzy 然后回车可得出如下图所示:图3-1 模糊控制器设置界面然后对其各个变量进行设置其步骤如下图3-2:对输入变量X1进行设置如下图3-3所示:变量X2的设置如下图3-4所示:输出量的设置图3-5所示:模糊规则控制表的设置如下图3-6所示:设置出来的效果图如图3-7(a),(b),(c)所示:(a)(b)3.2 最终在MATLAB中的搭建出来的框图如下:主要的状态空间模块的参数设置如下:第四章仿真结果以及分析通过(fuzzy)模糊控制模块,可以和包含模糊控制器的fis文件联系起来,还可以随时改变输入输出论域,隶属度函数以及模糊规则。