4-1常用机构-机械概述
机械设计基础第二章--常用机构介绍
4—机架 1,3—连架杆→定轴转动 2—连杆→平面运动 整转副:二构件相对运动为
整周转动。
摆动副:二构件相对运动不 为整周转动。
曲柄:作整周转动的连架杆
摇杆:非整周转动的连架杆
C
2
B
3
1
A
D
4
二、平面四杆机构的常用形式
1、曲柄摇杆机构
(构件4为机架、构件2为机架)
2、双曲柄机构
}全回转副四杆机构
(二)曲柄为最短杆。 ▲铰链四杆机构存在曲柄的条件是:
(一)最短杆与最长杆长度之和小于或等于其 余两杆长度之和。
(二)机架或连架杆为最短杆。
4、曲柄滑块机构 二、平面四杆机构的内部演化:
第二节 凸轮机构
一、凸轮机构的组成与分类: 运动方式:将主动凸轮的连续转动或
移动转换成为从动件的移动或摆动。 分类:1、形状
①盘形凸轮机构——平面凸轮 机构
②移动凸轮机构——平面凸轮 机构
③圆柱凸轮机构——空间凸轮 机构
2、运动形式
按从动件的运动型式:
①尖底从动件:用于 低速;
②滚子从动件:应用 最普遍;
③平底从动件:用于 高速
O
r0
1 2 3
4
5
6 7 8
二、从动件的常用运动规律
从动件的运动规律——从动件在工作过程中, 其位移(角位移)、速度(角速度)和加 速度(角加速度)随时间(或凸轮转角) 变化的规律。
长 几何形状简单——便于加工,成本低。 3、缺点: ①只能近似实现给定的运动规律; ②设计复杂;
③只用于速度较低的场合。
由转动副联接四个构
件而形成的机构,称为铰 链四杆机构,如图所示。 图中固定不动的构件是机 架;与机架相连的构件称 为连架杆;不与机架直接 相连的构件称为连杆。连 架杆中,能作整周回转的 称为曲柄,只能作往复摆 动的称为摇杆。根据两连 架杆中曲柄(或摇杆)的数 目,铰链四杆机构可分为 曲柄摇杆机构、双曲柄机 构和双摇杆机构。
《机械基础》备课笔记
《机械基础》备课笔记绪论机械基础课程——综合性课程。
包括工程力学、机械工程材料、机械零件与传动等。
机械基础课程——基础性课程。
机械制造或维修;使用、研究机械或机器。
工程力学——为分析构件的强度、刚度与选择合理的结构提供基本理论与方法。
机械工程材料——为合理选择材料,充分发挥材料本身的潜在性能提供基础。
机械零件与传动——了解机构的工作原理、特点及应用,了解通用零件的类型、结构、材料、标准及选择方法。
第1章机械概述1-1 机器的组成一、机器和机构1、机器机器的特征:①、机器是人为的实体组合;②、各部分(实体)之间具有确定的相对运动;③、能够转换或传递能量,代替或减轻人类的劳动。
2、机构机构:由构件组合而成,各构件之间具有确定的相对运动。
机器包含机构;机构是机器的主要组成部分;机器可以包含一个或多个机构。
3、机械机械:机器和机构的总称。
4、构件、零件构件:在机械中具有独立运动的基本单元。
零件:机械制造的基本单元。
构件通常由一个或多个零件组成;构件是机械运动的基本单元。
机器由机构组合而成,机构由构件组合而成。
根据GB 10853-89《机器理论与机构学术语》的定义:机器:机器是执行机械运动的装置,用来变换或传递能量、物料与信息。
机构:机构是用来传递运动和力的、有一个构件为机架的、用运动副连接起来的构件系统。
机械:机器与机构的总称。
机械系统:由若干个机器与机构及其附属装置组成的系统。
机械原理:研究机构的结构原理及机器与机构的运动学和动力学的一门学科。
构件:机构中的运动单元体。
二、机器的组成1、原动机部分也称动力装置,作用是把其它形式的能量转变成机械能,以驱动机器各部分运动。
2、执行部分也称工作部分或装置,是机器直接完成具体工作任务的部分。
3、传动部分是原动机到工作机构之间的传动机构,以完成运动和动力的传递与转换。
4、操纵或控制部分作用是显示和反映机器的运行位置与状态,控制机器正常运行和工作。
1-2 金属材料的性能工艺性能:指金属材料从冶炼到成品的生产过程中,在各种加工条件下表现出来的性能。
机械设计基础-第4章-1-凸轮机构
30
30
120
120
90
δ
360
七、解析法设计凸轮轮廓曲线
1、偏置直动滚子从动件盘形凸轮轮廓的设计
建立凸轮转轴中心的坐标系xOy
根据反转法原理,凸轮以w转过j角;
B点坐标为
x y
(s0 (s0
s) sin j s) cosj
e cosj esinj
上式即为凸轮理论廓线方程
实际廓线与理论廓线在法线上相距
凸轮机构由凸轮、从动件和机架三部分组成。
凸轮机构是高副机构,易于磨损,因此只适用于传 递动力不大的场合。
示例一 内燃机配气机构
示例二 靠模车削机构
示例 绕线机的凸轮绕线机构
示例 缝纫机的凸轮拉线机构
凸轮机构的主要优点: 使从动件实现预定的运动规律,结接触,容易磨损。 用于传递动力不大的控制机构或调节机构。
2、自D0起,沿-ω方向取δ1-4 角,等分各部分,从D1起以 从动件长度为半径作圆,与基 圆交于C点。
3、C1D1起,分别量取β角, 与2的圆交于B点,连接B0、 B1、B2…,即为凸轮曲线。
例题:设计盘形凸轮机构,已知凸轮角速度ω1逆时针转动, 基圆半径r0=30mm,从动件的行程h=40mm。从动件的 位移线图如下:
第四章 凸轮机构及间歇运动机构
§4-1 凸轮机构的应用和分类 §4-2 从动件常用的运动规律 §4-3 盘形凸轮轮廓曲线的设计 §4-4 凸轮机构设计中应注意的问题 §4-5 间歇运动机构
§4-1 凸轮机构的应用和分类
凸轮是一种具有曲线轮廓或凹槽的构件,它通过与从 动件的高副接触,在运动时可以使从动件获得连续或不 连续的任意预期运动。
当凸轮继续以角速度ω1逆时针 转过角度δ2时,从动件尖顶从 C到D,在最远位置停止不动, 对应的δ2是远休止角。
机械传动基础和常用机构
一、机械传动概述
移动副的表示方法一、机械传动 Nhomakorabea述(2)高副 两构件通过点或线接触组成的运动副称为高
副。如轴与滚动轴承、凸轮机构和齿轮啮合 等。车轮与钢轨、凸轮与从动件、轮齿与轮 齿分别在接触处组成高副。组成平面高副二 构件间的相对运动是沿接触处切线t-t方向的 相对移动和在平面内的相对转动。 除上述平面运动副之外,机械中还经常见到 球面副和螺旋副。这些运动副两构件间的相 对运动是空间运动,故属于空间运动副。
这种使两构件直接接触并能产生一定相对运动的连接称为 运动副。(例如轴与轴承的连接、活塞与气缸的连接、传动齿轮两
个齿轮间的连接等都构成运动副)
构件组成运动副后,其独立运动受到约束,自由度便随之减少,两构 件组成的运动副,不外乎通过点、线或面的接触来实现。
按照接触特性,通常把运动副分为低副和高副两类。
=3×5 -2×7-0 =1
3、平面机构的自由度
计算机构自由度时应注意的事项 复合铰链:两个以上个构件在同一条轴线上形成的转动副。
由m个构件组成的复合铰链,共有(m-1)个转动副。
F 3n2pl ph 35 27 0 1
3、平面机构的自由度
机构具有确定运动的条件
原动件的数目=机构的自由度数F(F>0或F≥1)。
3.传动部分:把原动机的运动和动力传递给工作机。
4.控制部分:使机器的原动部分、传动部分、工作 部分按一定的顺序和规律运动,完成给定的工作循环。
一、机械传动概述
(二)机械传动的传动比和效率
传动比 i=n1/n2
机械效率
η=Po/Pi
一、机械传动概述
(三)机械传动的类型
摩擦传动
按
工
带传动、摩擦轮传动
常用机构(四连杆机构)1
机构演化方法
础
平 改变杆件长度,用移动副取代回转副
面 连 杆
扩大回转副 变更机架等
机
构
连架杆 B
连杆 2
C 连架杆
3
1
A
4
D
机 (1)改变杆件长度 —— 曲柄滑块机构
械
设 计
曲线导轨曲柄滑块机构
基
C
础
C
平
2
面
连
B
杆1
机
构A
4
对CD杆等效转化
B2
3
1
转动副变成移动副 A
4 D
lCD
3 D
e
b+c >a+d 、 b+d >a+c 、 c+d >a+b
B
a
A
并可得: a<b 、 a<c 、 a<d .
b f
d
C
c
D
曲柄存在的条件: (1)最短杆与最长杆长度之和小于或等于其余两杆长度和。 (2)曲柄是最短杆。
机 曲柄存在的条件:
械 设
(1)最短杆与最长杆长度之和小于或等于其余两杆长度之和
2
BD
b2
c2
2b c cosd
基 础
b
平 面
cosd
b2 c 2 2 a d cosj a 2 d 2
2bc
B
a
j
连 杆
分析
A
机
构 j =0 cos j =1 cos d d min
j =180° cos j = –1 cos d d max
C
d c
d
D
机械基础教材机器、机构、零件、构件基本概念的知识
机器都具有如下特征: 都是人为的各种实物的组合; 各种实物间具有确定的相对运动; 可代替或减轻人的劳动,有效地完成机械功或转换机械能。 凡具备上述三个特征的实物组合体称为机器。
二、零件与构件
构件是组成机构的基本运 动单元。可以是一个零件, 也可以是若干个零件固定联 接而成。
零件是组成机器的最小制造单元。经常用到的零件称为 通用零件,如螺钉、螺母、轴、齿轮、弹簧等。在特定的 机器中用到的零件称为专用零件。如汽轮机中的叶片、起 重机的吊钩、内燃机中的曲轴、连杆、活塞等。
三、机器的组成 根据功能的不同,一部完整的机器由以下几部分组成: 原动机部分 是机器的动力来源。常用的原动机有电动机、内燃机
本课程考核可以通过平时+考试相结合的形式进行。 平时考核 包括作业成绩、课堂练习和课程实验。 考试内容 应体现知识及技术应用的特点。 对在学习和应用上有创新的学生应予据用途不同,可分为: 动力机械 如电机、内燃机、发电机、液压机等,主要用来实现机械能量转
换成其他形式的能量。 加工机械 如轧钢机、包装机及各类机床,主要用来改变物料的结构形状、
性质及状态。 运输机械 如汽车、飞机、轮船、输送机等,主要用来改变人或物料的空间
位置。 信息机械 如复印机、传真机、摄像机;主要用来获取或处理各种信息。
二、本课程的任务 (1)能运用静力平衡条件求解简单力系的平衡问题。初步掌握零部件 的受力分析和强度计算方法; (2)了解常用工程材料种类、性能、牌号、应用及钢的热处理知识。 能合理选用典型零件的工程材料; (3)掌握有关公差标准基本内容和主要规定。正确理解技术图样上常 见的公差配合标注,具有选用公差与配合的初步能力;
《机械基础(少学时)(第2版)》电子教案 第4章
状及运动形式分,其类型及特点见表4-5。
下一页 返回
4.2 凸轮机构
• 2.凸轮机构的应用特点 • 与平面连杆机构相比,凸轮机构具有结构简单、紧凑、设计方便、便
于准确实现给定的运动规律和轨迹的特点;但由于凸轮轮廓与从动件 之间为点接触或线接触,易于磨损,所以多用于传力不大的机械、仪 表、控制机构中。
• 4.2.2 凸轮机构的工作特性及应用
• 1.凸轮机构的工作特性 • 凸轮机构中最常用的运动形式为凸轮作等速回转运动,从动件作往复
移动。如图4-19所示为最基本的对心外轮廓盘形凸轮机构。以凸轮轮 廓上最小半径所画的圆称为凸轮的基圆,其半径用r0表示。
上一页 下一页 返回
4.2 凸轮机构
• 图4-19中从动件位于最低位置,它的尖端与凸轮轮廓上点A(基圆与 曲线AB的连接点)接触。当凸轮按逆时针方向回转时,凸轮的从动 件按照一定的运动规律逐渐升到最高点B,这个过程称为推程。凸轮 转过的角度称为推程角Φ0。过B点凸轮继续回转,从动件在最高处停 止不动,直至C点处,此时走过的行程称为远停程。凸轮所转过的角 度称为远停角ΦS。过了C点,从动件按照一定的运动规律逐渐下降 至最低点D,这个行程称为回程。
上一页 下一页 返回
4.1 平面四杆机构
• 4.1.3 平面四杆机构的基本性质
• 1.曲柄存在的条件 • 平面四杆机构三种基本类型的主要区别,就在于连架杆是否为曲柄,
而连架杆能否成为曲柄,则取决于机构中各杆件的相对长度和最短杆 件所处的位置。铰链四杆机构存在曲柄,必须满足以下两个条件: • (1)连架杆与机架中必有一个是最短杆; • (2)最短杆与最长杆长度之和必小于或等于其余两杆长度之和。 • 根据曲柄存在的条件,推出平面四杆机构的三种基本类型的判别方法 如下:
机械设计基础第四章平面机构运动简图及自由度
三、计算机构自由度时应注意的几种情况
1)复合铰链
由三个或三个以上构件组成的轴线重合的转动副称为复合铰链。
由m个构件组成的复合铰链应含有(m-1)个转动副。
两构件用运动副联接后,彼此的相对运动受到某些约束。每个 低副引入两个约束,每个高副引入一个约束。
设某平面机构,除机架外共有n个活动构件,又有pL个 低副和pH个高副,根据自由构件的自由度、运动副引入 的约束,活动构件之间的关系,可以得出平面机构自由 度的计算公式如下:
平面机构的自由度 F = 3n - 2PL – PH
一、构件及其自由度
一个自由构件作平面运动时, 具有三个独立运动;沿x轴和y轴 的移动以及绕垂直于xOy平面内 任一点A转动。
一个作平面运动的自由构件 具有三个自由度。
二、运动副与约束
运动副:机构中两构件直接接触的可动联接。
运动副元素:两构件上参加接触而构成运动的部分, 如点、线、面。 约 束:两构件用运动副联接后,彼此的相对运动受 到某些限制。
b.两构件上某两点间 的距离在运动过程中 始终保持不变时;
c.联接构件与被联接 构件上联接点的轨迹 重合时;
虚约束经常发生的场合:
d.机构中对运动不起作用的对称部分。
e.两构件组成若干个轴线互相重合的转动副.
采用虚约束是为了改善构件的受力情况; 传递较大功率;或满足某种特殊需要。
例题1
n=8 Pl=11 Ph=1 F=1
§4.2.2 平面机构运动简图
机构运动简图是用规定的运动副符号及代表构件的线条来表 示机构的运动特性,并按一定的比例画成的简单图形。并利 用机构运动简图对机构进行结构、运动和动力等分析。
机械基础第4章
第4章 常用机构
3)
以杆3为机架, 便得到图(d)所示的曲柄摇块机构。
曲柄摇块机构 以BC 为机架 直动导杆机构 以滑块为机架
杆机构
BC )
为机架
>
C
4
C
4
C
4
1
3 3 B 1 2 B 2 A A 1
A
c)
(d)
(e)
第4章 常用机构
图 4-20 汽车自动卸料机构
第4章 常用机构 4) 直动导杆机构:以滑块4为机架, 则导杆1只相对滑块4作 往复移动。
第4章 常用机构
铰链四杆机构有整转副的条件
一、铰链四杆机构 运动副A成为周转副的条件: 由△BCD可得:
l2 l2 l1
l1 l1 ll l 4 4 4
l2 l3 l3
l3
l1 l 4 l 2 l3 由△BCD可得:
+
同理,可得:
第 4章 § 2常用机构 -2 铰链四杆机构有整转副的条件
第4章 常用机构
图 4-5 曲柄摇杆机构
(1) 具有急回运动。 急回运动(Quick Return Motion):主动件作匀速运动, 从动 件往复运动所需的时间不等的性质。 最大摆角:摇杆两极限位置的夹角φ。 在生产中, 利用机构的急回运动,将慢行程作为工作行程, 快 行程作为空回行程, 可提高生产效率。
第4章 常用机构
A
1 2 B
C 3
4
自卸卡车举升机构
第4章 常用机构
汽车转向机构
A A A E EE B B B
D D D C C C
第4章 常用机构 三、平面连杆机构的特点:
电子教案机械基础第4版电子教案4.常用机构课件
图4-12 双摇杆机构
图4-13 造型机翻台机构
4-1 平面连杆机构
图4-14所示的港口起重机也采用了双摇杆机构,该机构利用连杆上的特殊点M 来实现货物的水平 吊运。
图4-14 港口起重机
4-1 平面连杆机构
二、铰链四杆机构类型的判别 以上讨论了三种不同形式的四杆机构。为什么有不同形式之分呢?这是因为机构形式与各杆间的
图4-9 移动摄影台升降机构
图4-10 机车主动轮联动装置
4-1 平面连杆机构
根据曲柄相对位置的不同,可得到平行双曲柄机构(图4-11a)和反向双曲柄机构(图4-11b)。前 者两曲柄的回转方向相同,且角速度时时相等;而后者两曲柄的回转方向相反, 且角速度不等。由于 平行双曲柄机构具有等传动比的特点,故在传动机械中常常采用。
图4-18 曲柄滑块机构向导杆机构的演化
图4-20 曲柄摆动 导杆机构
4-1 平面连杆机构
4.摇块机构 在图4-18d中,以杆2为机架,便得到摇块机 构。图4-21所示的汽车自动卸料机构用的就是摇 块机构。 由以上分析可以看出,通过用移动副取代转 动副、改变构件的长度、以不同的构件作机架或 扩大转动副等方法,均能使铰链四杆机构演化成 满足各种运动要求的平面四杆机构。 此外,平面四杆机构又是平面连杆机构的基 本形式。在实际应用中,常将多个平面四杆机构 组合在一起,构成平面多杆机构,以满足各种不 同的工作要求。
4-2 凸轮机构
图4-24所示为凸轮自动送料机构。当带有凹 槽的凸轮1转动时,通过槽中的滚子驱使从动件2 作往复移动。凸轮每转一周,推出一个毛坯送到 加工位置。
图4-25所示为自动车床的横刀架进给机构。 当凸轮1转动时,其轮廓迫使从动杆2摆动,从动 杆上固定有扇形齿轮3,通过它带动齿条使横刀架 4完成所需要的进刀或退刀。
汽车机械基础-常用机构
图b所示为飞机起落架处于放下机轮的位置, 地面反力作用于机轮上使AB件为主动件,从 动件CD与连杆BC成一直线,机构处于止点, 只要用很小的锁紧力作用于CD杆即可有效
地保持着支撑状态。当飞机升空离地要收起 机轮时,只要用较小力量推动CD,因主动 件改为CD破坏了止点位置而轻易地收起机轮。
4.1 平面连杆机构
模块四常用机构
4.1
平面连杆机构
4.2
凸轮机构
4.1 平面连杆机构
平面连杆机构是由若干个刚性构件通过转动副或移动副连接而成 的机构,也称平面低副机构,组成平面连杆机构各构件的相对运动 均在同一平面或相互平行的平面内。
4.1 平面连杆机构
平面连杆机构的主要优点 :
(1)各构件之间的运动副元素均为面接触,故这类运动中单位面积上的压力较 小,承受载荷大。 (2)润滑条件好,磨损较轻。 (3)结构简单、易于加工,能保证较高的制造精度。 (4)能方便地实现转动、摆动、移动等基本运动形式,以及相互之间的转换。 (5)能实现一些较复杂的平面规律,从而获得多种运动轨迹,以满足不同工作 的要求。
1—ห้องสมุดไป่ตู้轮 2—导筒 3—气门
4.2 凸轮机构
一、凸轮机构概述 1. 凸轮机构的组成与特点
凸轮机构主要由凸轮、从动杆、机架3个部分组成
凸轮为主动件,做定轴等速运动
从动件按一定规律做往复移动或摆动
特点:
(1)凸轮机构结构简单、紧凑,只需改变凸轮的外廓形状,就可改变从 动件的运动规律,容易实现复杂运动的要求。 (2)凸轮外廓与从动件是点接触或线接触,易磨损,多用在传递动力不 大的场合; (3)凸轮机构可以高速启动,动作准确可靠。
K=
4.1 平面连杆机构
三、平面四杆机构的性质 2.压力角和传动角
机械设计基础常用机构概述
挤压机应用
连杆机构通过将旋转运动转换为直线运动,使挤压 机能够实现精确的挤出操作。
齿轮传动机构
齿轮传动机构是一种基于齿轮间的啮合传递动力的机构。它具有高效率、传动效果稳定和可靠性高的特点,广 泛应用于各种机械装置中。
平行轴齿轮传动
汽车悬挂系统
摇杆机构在汽车悬挂系统中用于实现悬挂装置的运动,提供舒适的驾驶体验。
连杆机构
摇杆机构在连杆机构中用于改变连杆的位置、方向和幅度,实现复杂的运动形式。
家用电器中的应用
带传动机构在洗衣机等家电中常用于传递动力和控 制旋转运动。
小型机械装置中的应用
带传动机构常用于小型机械装置,如打印机和食品 加工机。
链传动机构
链传动机构是一种使用链条传递动力的机构。它具有高负载能力、运动平稳和工作寿命长的特点,广泛 应用于自行车、摩托车和工业机械中。
1
自行车链传动机械设计基础常 Nhomakorabea机构概 述
在机械设计中,常用机构是那些用于转换和传递动力、运动和力矩的基本组 合。了解这些机构有助于提高机械设计的效率和创造力。
连杆机构
连杆机构是一种由连接在一起的杆件组成的机构,常用于将旋转运动转换为直线运动或反之。它在众多设备和 机器中广泛应用,例如发动机和挤压机。+
发动机应用
1 递进凸轮机构
递进凸轮机构通过凸轮的特定形状和从动件 的结构,实现复杂的运动规律,常用于自动 化生产线。
2 滑块凸轮机构
滑块凸轮机构通过凸轮轮廓的特点,使滑块 产生直线运动,常用于发动机的气门控制系 统。
曲柄连杆机构和凸轮机构的结合
曲柄连杆机构和凸轮机构的结合可以实现复杂的运动和动作规律,常用于内燃机、发动机和机床等装置中。
41汽车机械基础总结
项目四 汽车常用机构分析
任务一 铰链四杆机构在汽车中的应用 三、曲柄滑块机构
1.曲柄滑块机构的特性 ②若曲柄AB为主动件,曲柄滑块机构的最小传动角出现在曲 柄与机架垂直的位置。 ③若取滑块C为主动件,当滑块做往复直线运动时,通过连杆 BC可以带动曲柄AB做整周回转,但存在从动件曲柄与连杆 共线的两个死点位置,需要采取相应的措施。
传动角:压力角的余角 ,用 表 示。
越小或者越大,有效分力越大, 对机构传动越有利。
图4-1-5压力角和传动角
为保证机构的传力性能良好,设计时须限定最小传动角min 或最大压力角max。通常取min ≥40°~50°。
项目四 汽车常用机构分析
任务一 铰链四杆机构在汽车中的应用
二、铰链四杆机构的基本特性
传动角:压力角的余角 ,用 表 示。 越小或者源自大,有效分力越大, 对机构传动越有利。
图4-1-5压力角和传动角
项目四 汽车常用机构分析
任务一 铰链四杆机构在汽车中的应用
二、铰链四杆机构的基本特性
3.传力特性 压力角:在不计摩擦力、惯性力
和杆件的重力时,从动件上受力点 的速度方向与所受作用力方向之间 所夹的锐角,称为机构的压力角, 用 表示;
1.准备相应台数的汽车活塞连杆组、汽车转向机构 。 2.准备相应套数的常规拆装工具。 3.在教学现场准备一套多媒体教学设备和相关学习、参考 资料。
项目四 汽车常用机构分析
任务一 铰链四杆机构在汽车中的应用
1.分析汽车活塞连杆组的结构及运动特点,画出曲柄连杆 机构的运动简图,并分析曲柄和活塞之间的运动关系; 指出该机构的死点位置,说明机构通过死点位置的方法。
一、铰链四杆机构
机械原理第四章常用机构
2019/3/21
杨拴强 制 作
凸轮机构的应用
2019/3/21
杨拴强 制 作
凸轮机构的优点
结构简单、紧凑,占据空间较小;具有多 用性和灵活性,从动件的运动规律取决于 凸轮轮廓曲线的形状。对于几乎任意要求 的从动件的运动规律,都可以毫无困难地 设计出凸轮廓线来实现。
2019/3/21
杨拴强 制 作
一、棘轮机构的组成及工作原理
如图所示为单向式棘轮机构,其特点是摆 杆单向摆动时,棘轮沿同一方向转过一个 角度;而棘轮向另一个方向转动时,棘轮 静止不动。 常见的棘轮齿形为不对称梯形。为了便于 加工,当棘轮机构承受载荷不大时,可采 用三角形的棘轮轮齿,图示棘轮齿形即为 三角形。
2019/3/21
凸轮机构的缺点
凸轮轮廓线与从动件之间是点或线接触的 高副,易于磨损,故多用于传力不大的场 合。
2019/3/21
杨拴强 制 作
思考题
现实生活中,那些地方用到了凸轮机构, 他的目的是什么? 凸轮机构的优点是什么?缺点是什么?
2019/3/21
杨拴强 制 作
5.3棘轮机构简介及应用
杨拴强 福建江夏学院工业工程系
B A A
B
γ
F’ F” F γ C F α F’
F”
设计:潘存云
D D
当∠BCD最小或最大时,都有可能出现γ min
此位置一定是:主动件与机架共线两处之一。 γ C1 机构的传动角一般在运动链 C2 2 l 2 最终一个从动件上度量。 γ1 l 3 l A 1 B2 D l4 B1
设计:潘存云
2019/3/21
杨拴强 制 作
死点特性
摇杆为主动件, 且连杆与曲柄两 次共此时机构不能运动. 称此位置为: “死点” 避免措施: 两组机构错开排列,如火车轮机构; 靠飞轮的惯性(如内燃机、缝纫机等)。
工学第四章齿轮机构
假设rK = rb ,那么αK=0,即渐开线起始点A处的压力角为0
18
5、渐开线的形状取决于基圆的大小。即同一基圆展开的 渐开线的形状完全相同。
在相同压力角处: 〔如图4-4〕 rb↓→渐开线越弯曲,曲率半径↓;
图4-3
15
二、渐开线的特性
根据渐开线的形成过程,渐开线的特性有:
1、 BK= AB。 发生线在基圆上滚过的
长度BK等于基圆上被滚过的 圆弧长度AB。
2、渐开线上任一点的法线 必切于基圆;或者说基 圆的切线必为渐开线某 一点的法线。
B
Ⅱ
Vk k
k
K
Fn
rK
A
Ⅰ
O
rb
16
3、线段BK是渐开线在K点的曲率半径〔 用ρK 表示〕, B点是渐开线在K点的曲率中心。
26
§4—4 渐开线标准齿轮(Standard Involute Gears)
一、齿轮各局部的名称和符号
图4-6所示为标准直齿圆柱外齿轮的一局部。 齿:齿轮上每一个用于啮合
的凸起局部称为齿。每 一个轮齿的齿形是由2 段渐开线、3段圆弧、2 段过渡曲线所构成。
图4-6
27
1〕齿顶圆(addendum circle): 过齿轮各轮齿顶端所作的圆。
rb↑→渐开线越平直,曲率半径↑; rb→∞,那么渐开线成为直线,齿
条的齿廓是直线的渐开线。
6、基圆内无渐开线。 ∵ 渐开线是从基圆开始向外展开的。
图4-4
对齿轮加工,这话的意思是:刀具在基圆内所切的曲
线不是渐开线。 19
7、同一基圆上任意两条渐开线〔不管是同向还是反向〕 沿公法线方向的对应点之间的距离处处相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
器 传动部分:原动机到工作机构之间的联系部分
组 成
工作部分:直接完成具体工作任务部分
自动控制部分:控制机器正常运行和工作。
机构: (1)人工物体的组合; (2)各部分之间具有确定的相对运动,主要用于传递或转变运动形式。 机器和机构的区别: 机器完成有用的机械功或转换能量;机构只传递运动、力或改变运动形式 构件: 指互相之间能作相对运动的机件,构件是运动的单元。 零件: 指互相之间没有相对运动的机件,零件是制造的单元
选择 1.车床上的刀架属于机器的()。 A、工作部分 B、传动部分 C、原动部分 D、自动控制部分 2.下列关于构件概念的正确表述是 项 A、构件是机器零件组合而成的 B、构件是机器的装配单元 C、构件是机器的制造单元 D、构件是机器的运动单元
第三章
§4-1机械概述
知识梳理
2
知识要点
学习目标
强例化题训解练析
一、机械概述
机械、机器 急回
(-)铰连四杆机构
双曲柄机构
运动特性
死点
二、平面连杆机构
双摇杆机构
常 用 机 构
三、凸轮机构
(二)曲柄滑块机构
按凸轮形状分:盘形凸轮、移动凸轮、圆柱凸轮、圆锥凸轮 按从动件运动分:移动从动件、摆动从动件 按从动件结构形式分:尖顶式、滚子式、平底式
四、间歇机构
(一)棘轮机构 (二)槽轮机构
1材料力学基础知识
1、了解机械的概念,掌握机器与机构的区别。
机器的组成
机器 机械
机构
构件 零件
机械:机器和机构的统称
机器:(1)人工物体的组合;(2)各部分之间具有确定的相对运动;(3)能转换运动或传递能量
物料和信息;代替或减轻人类的劳动
机 原动部分:动力装置,常用电动机和内燃机。