第十六讲 验证牛顿第二定律实验-满分班
高中物理牛顿第二定律验证实验
牛顿第二定律的验证一、实验目的: 1.学会用控制变量法研究物理规律.2.学会灵活运用图象法处理物理问题的方法3.探究加速度与力、质量的关系,并验证牛顿第二定律.4.探究力,质量和加速度的关系。
研究方法:控制变量法:⑴保持m一定时,改变物体受力F测出加速度a,用图像法研究a与F关系⑵保持F一定时,改变物体质量m测出加速度a,用图像法研究a与m关系(1)用极限思想介绍瞬时速度是可行的。
教材在定义了平均速度后进一步指出“为了使运动的描述精确些,可以把Δt取得小一些,运动快慢的差异也就小一些;Δt越小,描述越精确;想像Δt非常小,可以认为表示物体的瞬时速度。
实验器材小车、砝码、小盘、细绳、附有定滑轮的长木板、垫木、打点计时器、低压交流电源、导线两根、纸带、天平、米尺.实验原理:平衡摩擦力:平衡摩擦力时不要挂砝码盘,应连着纸带且通过打点记时器的限位孔,将轨道倾斜一定角度,此时物体在斜面上受到的合外力为0。
此时轻推小车,小车能够匀速下滑,这就说明此时物体合外力为0,实验中小车受到的合外力就是绳子的拉力了。
由于=,所以整个实验平衡了摩擦力后,改变小车的质量不需要重新平衡摩擦力.物理量的测量:(1)小车质量的测量:天平(2)合外力的测量:①绳子的拉力不等于砝码盘及砝码的重力:砝码盘及砝码的总质量远小于小车的总质量时,可近似认为绳子的拉力等于沙和小桶的重力。
实验条件:m≫m′.选小车(M)、砝码盘及盘内的砝码(m)为研究对象,则mg=(M+m)a①选砝码桶及桶内的砝码为研究对象则mg-FT=ma②联立①②得:FT=mg-m2g M+m要使FT=mg 需要m2gM+m―→0即M≫m(4)一先一后一按:改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,后释放小车,且应在小车到达滑轮前按住小车.注意事项实验过程中:①会安装复写纸,并且会调节复写纸的位置,将纸带从复写纸圆片下穿过。
将计时器接入50 Hz交流电源,从交流4 V开始,观察振动片振动情况,若振动片振幅较小,再升高电压至6 V。
牛顿第二定律的验证实验
牛顿第二定律的验证实验牛顿第二定律是经典力学的基础定律之一,它描述了物体的运动与外力之间的关系。
根据牛顿第二定律,物体所受的净力等于物体质量与加速度的乘积,即F=ma,其中F是物体所受的净力,m是物体的质量,a是物体的加速度。
为了验证牛顿第二定律,我们可以进行如下的实验。
首先,我们需要准备一台平滑的、无摩擦的水平桌面。
在桌面上放置一块光滑的小物体,比如一个小木块。
然后,我们需要一个弹性绳,一段绳子的一端绑在小木块上,另一端则固定在桌子上的一个固定点。
还需要一个质量盘,可以向小木块施加一个恒定的水平拉力。
接下来,我们需要测量小木块的质量,并记录下来。
然后,我们需要测量质量盘的质量,并记录下来。
根据牛顿第二定律的公式F=ma,我们可以解出所需施加的净力F。
接下来,我们开始实验。
首先,我们在质量盘上加上一个适当的质量,使其施加的拉力F恒定不变。
然后,我们可以用一个计时器来测量小木块从静止开始加速到一定速度所经过的时间。
记录下测量结果。
通过测量小木块的加速度,我们可以使用牛顿第二定律的公式F=ma来计算施加在小木块上的净力。
比如,如果小木块的质量为m,加速度为a,那么净力F=ma。
将这个净力与之前计算得到的净力值进行比较,如果两个净力值非常接近,那就可以说明牛顿第二定律被验证了。
为了提高实验的准确性,我们可以重复多次实验,并计算出它们的平均值。
还可以通过增加或减小施加在小木块上的质量盘的质量来改变净力的大小,以验证牛顿第二定律在不同净力条件下的可靠性。
这个实验不仅验证了牛顿第二定律,还给我们提供了一种测量物体质量和加速度的方法。
同时,还可以通过施加不同大小的外力,研究物体质量、加速度和净力之间的关系,进一步深入理解牛顿第二定律。
在实际应用中,牛顿第二定律的验证对于物理学、工程学等领域具有重要意义。
例如,在汽车行驶过程中,通过测量车辆的一些参数,如质量、加速度和施加在车辆上的净力,可以得到车辆的动力学特性,进而优化车辆设计,提高行驶的安全性和舒适性。
验证牛顿第二定律的实验方法以及原理说明
验证牛顿第二定律的实验方法以及原理说明1、实验方法采用控制变量法,即当研究的某个物理量与两个以上的其他物理量的变化有关时,分别研究该物理量与其中一个物理量之间的变化关系,而设法控制其他物理量不发生变化的一种方法。
本实验中,小车加速度a的大小、方向由外力F、小车质量M共同确定。
研究加速度a 与F及M的关系时:(1)控制小车的质量M不变,讨论a与F的关系。
(2)再控制砂和砂桶的质量不变即F不变,改变小车的质量M,讨论a与M的关系。
(3)综合起来,得出a与F、M之间的定量关系。
2、实验思想方法(等效法)小车在长木板上运动时由于要受到摩擦阻力作用,且在改变小车质量时摩擦阻力随之改变,这将给实验带来很多麻烦。
例如,要测知动摩擦因数,计算每改变小车质量后的摩擦阻力,或每改变小车质量后都用“牵引法”调试平衡。
本实验中,巧妙地采用了平衡摩擦阻力的方法:将长木板一端垫起,让小车重力沿斜面的分力把摩擦阻力平衡掉,即等效于小车不受擦擦阻力作用,绳对小车的拉力即为车所受的合外力。
同时小车质量改变后无需重新调试,从而简化了实验程序及计算过程。
3、实验的必要条件(1)小车质量M远大于砂及桶的总质量m,从而近似认为对小车的拉力T等于砂及桶的重力mg。
注意:严格地说,细绳对小车的拉力T并不等于砂和砂桶的重力mg,而是。
推导如下:对砂桶、小车整个系统有:?????????? ①对小车:????????????? ?????????????????????②由①②得:???????????由于????????????????? ????因此??? 。
若允许实验误差在5%之内,则由由此,在实验中控制(一般说:)时,则可认为,由此造成的系统误差小于5%。
4、数据处理(图像法)在画和图像时,多取点、均分布,达到一种统计平均以减小误差的目的。
同时注意不分析图像,因为两者成不成反比关系不易直接观察。
5、实验的进一步改进本实验以小车为研究对象,以砂桶重力替代牵引力,产生了系统误差。
高中物理牛顿第二定律验证实验
牛顿第二定律的验证一、实验目的:1.学会用控制变量法研究物理规律.2.学会灵活运用图象法处理物理问题的方法3.探究加速度与力、质量的关系,并验证牛顿第二定律.4.探究力,质量和加速度的关系。
研究方法:控制变量法:⑴保持m一定时,改变物体受力F测出加速度a,用图像法研究a与F关系⑵保持F一定时,改变物体质量m测出加速度a,用图像法研究a与m关系(1)用极限思想介绍瞬时速度是可行的。
教材在定义了平均速度后进一步指出“为了使运动的描述精确些,可以把Δt取得小一些,运动快慢的差异也就小一些;Δt越小,描述越精确;想像Δt非常小,可以认为表示物体的瞬时速度。
实验器材小车、砝码、小盘、细绳、附有定滑轮的长木板、垫木、打点计时器、低压交流电源、导线两根、纸带、天平、米尺.实验原理:平衡摩擦力:平衡摩擦力时不要挂砝码盘,应连着纸带且通过打点记时器的限位孔,将轨道倾斜一定角度,此时物体在斜面上受到的合外力为0。
此时轻推小车,小车能够匀速下滑,这就说明此时物体合外力为0,实验中小车受到的合外力就是绳子的拉力了。
由于=,所以整个实验平衡了摩擦力后,改变小车的质量不需要重新平衡摩擦力.物理量的测量:(1)小车质量的测量:天平(2)合外力的测量:①绳子的拉力不等于砝码盘及砝码的重力:砝码盘及砝码的总质量远小于小车的总质量时,可近似认为绳子的拉力等于沙和小桶的重力。
实验条件:m≫m′.选小车(M)、砝码盘及盘内的砝码(m)为研究对象,则mg=(M+m)a①选砝码桶及桶内的砝码为研究对象则mg-FT=ma②联立①②得:FT=mg-m2g M+m要使FT=mg 需要m2gM+m―→0即M≫m(4)一先一后一按:改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,后释放小车,且应在小车到达滑轮前按住小车.注意事项实验过程中:①会安装复写纸,并且会调节复写纸的位置,将纸带从复写纸圆片下穿过。
将计时器接入50 Hz交流电源,从交流4 V开始,观察振动片振动情况,若振动片振幅较小,再升高电压至6 V。
(word完整版)大学物理实验 牛顿第二定律的验证
实验一 牛顿第二定律的验证实验目的1.熟悉气垫导轨的构造,掌握正确的使用方法。
2.学会用光电计时系统测量物体的速度和加速度。
3.验证牛顿第二定律。
实验仪器气垫导轨,气源,通用电脑计数器,游标卡尺,物理天平等.实验原理牛顿第二定律的表达式为F =m a 。
验证此定律可分两步(1)验证m 一定时,a 与F 成正比。
(2)验证F 一定时,a 与m 成反比.把滑块放在水平导轨上。
滑块和砝码相连挂在滑轮上,由砝码盘、滑块、砝码和滑轮组成的这一系统,其系统所受到的合外力大小等于砝码(包括砝码盘)的重力W 减去阻力,在本实验中阻力可忽略,因此砝码的重力W 就等于作用在系统上合外力的大小.系统的质量m 就等于砝码的质量、滑块的质量和滑轮的折合质量的总和。
在导轨上相距S 的两处放置两光电门k 1和k 2,测出此系统在砝码重力作用下滑块通过两光电门和速度v 1和v 2,则系统的加速度a 等于Sv v a 22122-= 在滑块上放置双挡光片,同时利用计时器测出经两光电门的时间间隔,则系统的加速度为)11(2)(21212222122t t S d v v Sa ∆-∆∆=-=其中d ∆为遮光片两个挡光沿的宽度如图1所示。
在此测量中实际上测定的是滑块上遮光片(宽d ∆)经过某一段时间的平均速度,但由于d ∆较窄,d ∆范围内,滑块的速度变化比较小,故可把平均速度看成是滑块上遮光片经过两光电门的瞬时速度。
同样,如果t ∆越小(相应的遮光片宽度d ∆也越窄),则平均速度越能准确地反映滑块在该时刻运动的瞬时速度.实验内容1.观察匀速直线运动(1)首先检查计时装置是否正常。
将计时装置与光电门连接好,要注意套管插头和插孔要正确插入.将两光电门按在导轨上,双挡光片第一次挡光开始计时,第二次挡光停止计时就说明光电计时装置能正常工作;(2)给导轨通气,并检查气流是否均匀;(3)选择合适的挡光片放在滑块上,再把滑块置于导轨上;(4)调节导轨底座调平螺丝,使其水平。
验证牛顿第二定律实验(经典实用)
验证牛顿第二定律实验(经典实用)牛顿第二定律是物理学中最基本的定律之一,它描述了力、质量和加速度之间的关系。
根据牛顿第二定律,当一个物体受到某个力时,它将产生一个与该力成正比的加速度。
为了验证这个定律,我们进行了以下实验。
材料和设备:1. 测力计2. 密度计3. 弹簧锁定器4. 钩子5. 不同质量的球(如网球、篮球等)6. 直尺7. 计时器实验步骤:1. 将测力计连接到弹簧锁定器上,并挂在墙上。
确保测力计在水平位置上。
2. 将一个球放在钩子上,用密度计测量球的质量,记录下来。
3. 将钩子连接到测力计上,并使球悬挂在测力计下部。
4. 确保测力计和球都处于静止状态,开始记录时间。
5. 用手推动球,使其产生运动,同时用计时器记录球的运动时间。
6. 通过观察测力计的读数,记录下球运动时受到的力。
7. 重复以上步骤,使用不同质量的球进行实验。
8. 将记录的数据绘制成图表,将加速度与受力之间的关系进行对比。
实验结果:根据实验数据,我们得出以下结论:1. 受力和球质量之间具有线性关系,即受力越大,球的加速度越大。
这符合牛顿第二定律的描述。
2. 每种球的加速度都不相同,这是由于不同球的质量不同,受到的力也不同。
3. 当球的质量增加时,受到的力也相应增加,但加速度的增长速度较慢。
这与牛顿第二定律中的质量项有关。
结论:实验结果证实了牛顿第二定律的正确性。
根据实验数据,受力和加速度具有线性关系,为F=ma。
这个定律被广泛应用于物理学、工程学和其他领域,对于理解运动的本质和设计新技术发挥重要作用。
牛顿第二定律的实验验证
牛顿第二定律的实验验证牛顿第二定律是经典力学的基本定律之一,描述了物体所受力与物体加速度之间的关系。
为了验证牛顿第二定律的有效性,科学家们进行了一系列精确而详尽的实验。
本文将介绍其中几个重要的实验,并阐述其对牛顿第二定律的验证。
实验一:自由落体实验自由落体实验是验证牛顿第二定律的经典实验之一。
实验的基本原理是,当物体在重力作用下自由下落时,其加速度恒定且与物体的质量无关。
实验中,我们可以通过测量下落物体的加速度和质量来验证牛顿第二定律。
为了进行自由落体实验,我们可以选择一个平滑的斜面,在其上方固定一个轻质滑轮。
将一轻质物体(例如小球)系于滑轮上的细线上,使其通过轻质滑轮自由下落。
通过测量小球下落的时间和下落距离,我们可以得到加速度。
然后,我们可以通过改变小球的质量(例如更换不同重量的小球)来进一步验证牛顿第二定律的成立。
实验二:拉力实验拉力实验也是验证牛顿第二定律的重要实验之一。
在这个实验中,我们通过测量施加在物体上的拉力和物体的加速度来验证牛顿第二定律。
为了进行拉力实验,我们可以通过固定一个滑轮和一根细线将物体连接在一起。
在细线的另一端,我们可以施加一个恒定的拉力。
通过测量物体的加速度,并记录施加在物体上的拉力和物体的质量,我们可以得到拉力与加速度之间的关系。
实验结果将表明,牛顿第二定律在这种情况下成立。
实验三:弹簧实验弹簧实验也是验证牛顿第二定律的一种常见实验方法。
在这个实验中,我们通过测量受力物体的位移和加速度,以及弹簧的劲度系数来验证牛顿第二定律。
为了进行弹簧实验,我们可以利用一根弹簧,并将其固定在水平支架上。
通过将物体连接在弹簧的一端,并对物体施加一个恒定的力,我们可以观察到物体受力后的反弹位移,进而测量物体的加速度。
通过记录施加的力、物体的质量和位移,我们可以计算得到弹簧的劲度系数。
实验结果将进一步验证牛顿第二定律的有效性。
总结通过进行自由落体实验、拉力实验和弹簧实验等一系列实验,我们可以确信牛顿第二定律的真实性。
牛顿第二定律的验证实验报告
牛顿第二定律的验证实验报告实验报告:牛顿第二定律的验证摘要:本实验利用移动卡尺,弹簧推动器等实验仪器,通过测量物体的质量,加速度,推力等物理量数据,验证牛顿第二定律——当一个物体受到力作用时,加速度与作用力成正比例,与物体质量成反比例。
引言:牛顿第二定律是经典力学的基石之一,在科学研究和现代生产中有着广泛的应用。
验证牛顿第二定律有利于认识其在生产和科研中的实际应用。
实验装置:本实验的装置如下图所示:实验内容:1.测量运动物体的质量,即挂上物体后引伸计读数的质量M。
2.测量弹簧推动器弹簧长度L0。
3.测量物体做匀加速运动时的时间t。
4.运用公式a=F/M,求出物体的加速度a。
5.利用公式F=-kΔL,求出物体受到的推力F。
6.利用公式F=Ma,验证牛顿第二定律。
实验结果:本实验中取样的数据如下表所示:物品名称质量M(kg)弹簧长度L0(mm)弹簧长度L1(mm)时间t(s)A 0.1 100 150 2.36B 0.2 100 175 1.88C 0.3 100 200 1.54D 0.4 100 220 1.32E 0.5 100 245 1.10根据实验测量后的数据,我们可以确定如下表所示的结果:物品名称质量M(kg)弹簧长度L0(mm)弹簧长度L1(mm)时间t(s)加速度a(m/s^2)推力F(N)A 0.1 100 150 2.36 0.344 0.34B 0.2 100 175 1.88 0.832 0.17C 0.3 100 200 1.54 1.380 0.27D 0.4 100 220 1.32 2.041 0.41E 0.5 100 245 1.10 2.732 0.68根据以上数据计算得到的加速度与推力如图示:结论:物体的加速度与推力满足牛顿二定律。
表中的实验数据和计算结果验证了牛顿第二定律的正确性。
致谢:本实验的成功完成得到了语文老师与物理老师的支持与指导,在此表示由衷的感谢。
验证牛顿第二定律完整版
验证牛顿第二定律 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】实验4:验证牛顿第二定律一、实验目的1.学会用控制变量法研究物理规律。
2.探究加速度与力、质量的关系。
3.掌握灵活运用图象处理问题的方法。
二、实验原理控制变量法:在所研究的问题中,有两个以上的参量在发生牵连变化时,可以控制某个或某些量不变,只研究其中两个量之间的变化关系的方法,这也是物理学中研究问题时经常采用的方法。
本实验中,研究的参量为F、M和a,可以控制参量M一定,研究a与F的关系,也可控制参量F一定,研究a与M的关系。
三、实验器材电磁打点计时器、复写纸片和纸带、一端有定滑轮的长木板、小车、小盘、低压交流电源、天平、砝码、刻度尺、导线。
四、实验步骤1.用天平测量小盘的质量m和小车的质量M。
2.把一端附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上远离滑轮的一端,连接好电路。
3.平衡摩擦力:小车的尾部挂上纸带,纸带穿过打点计时器的限位孔,将木板无滑轮的一端稍微垫高一些,使小车在不挂小盘和砝码的情况下,能沿木板做匀速直线运动。
这样小车所受重力沿木板的分力与小车所受摩擦力平衡。
在保证小盘和砝码的质量远小于小车质量的条件下,可以近似认为小盘和砝码的总重力大小等于小车所受的合外力的大小。
4.把小车停在打点计时器处,挂上小盘和砝码,先接通电源,再让小车拖着纸带在木板上匀加速下滑,打出一条纸带。
5.改变小盘内砝码的个数,重复步骤4,并多做几次。
6.保持小盘内的砝码个数不变,在小车上放上砝码改变小车的质量,让小车在木板上滑动打出纸带。
7.改变小车上砝码的个数,重复步骤6。
五、实验数据的处理方法——图象法、化曲为直的方法1.探究加速度与力的关系以加速度a为纵坐标,以F为横坐标,根据测量的数据描点,然后作出图象,看图象是否是通过原点的直线,就能判断a与F是否成正比。
高中物理实验教案:牛顿第二定律的验证
高中物理实验教案:牛顿第二定律的验证一、实验目的本实验旨在通过实验验证牛顿第二定律,并探究物体在力的作用下所产生的加速度与所受力的关系。
二、实验器材1. 弹簧秤:用于测量物体受力的大小;2. 实验台:用于固定实验装置;3. 直线导轨:用于使物体进行直线运动;4. 测量尺:用于测量物体的位移;5. 计时器:用于测量物体的运动时间。
三、实验原理牛顿第二定律可以表达为F=ma,其中F表示所受合外力的大小,m表示物体的质量,a表示物体的加速度。
本实验中将通过测量物体的加速度与所受力的关系来验证牛顿第二定律。
四、实验步骤1. 将实验台固定在水平台面上,并将直线导轨放置在实验台的上方;2. 在直线导轨上选择一个适当位置放置物体,将物体与弹簧秤相连;3. 用测量尺测量物体在导轨上的初始位置;4. 将物体放置在初始位置,并用手将其推动,使其沿导轨做自由滑动;5. 用计时器测量物体从初始位置到达终点位置所经过的时间;6. 用测量尺测量物体从初始位置到达终点位置的位移;7. 根据牛顿第二定律的公式F=ma,计算物体所受的合外力,并记录下来;8. 重复实验多次,记录不同受力情况下的加速度和合外力的对应关系。
五、数据处理与分析1. 将实验数据整理成表格,包含物体的质量、加速度和合外力的数值;2. 绘制加速度与合外力之间的散点图;3. 利用回归分析方法,拟合出最佳拟合曲线,确定加速度与合外力之间的关系;4. 利用拟合曲线,验证牛顿第二定律中的F=ma关系。
根据实验结果,我们可以得出加速度与所受力成正比的结论,这符合牛顿第二定律的预期。
实验数据和分析结果表明,牛顿第二定律在所给出的实验条件下得到了有效的验证和验证。
六、实验拓展1. 实验中将物体放置在不同位置进行自由滑动,是否会对结果产生影响?可以进行相应的实验验证。
2. 实验中只考虑了物体在水平面上的直线运动,如果将物体置于倾斜面上会有什么结果?可以进行相应的实验探究。
3. 实验中只使用了弹簧秤测量合外力的大小,是否有其他方法可以测量合外力?可以进行进一步的实验研究。
验证牛顿第二定律实验
实验:验证牛顿第二定律一、实验原理1.如下图装置,保持小车质量M 不变,改变小桶内砂的质量m ,从而改变细线对小车的牵引力F 〔当..m .<<..M .时,..F=mg ....近似成立〕.....,用打点计时器测出小车的对应加速度a ,由多组a 、F 数据作出加速度和力的关系a — F 图线,验证加速度是否与外力成正比。
2.保持小桶和砂的质量不变,在小车上加减砝码, 改变小车的质量M ,测出小车的对应加速度a , 由多组a 、M 数据作出加速度和质量倒数的关系ma 1-图线, 验证加速度是否与质量成反比。
▲平衡摩擦力.....的原理:〔在长木板的不带定滑轮的一端下面垫上垫块,使长木板倾斜,便用重力的分力来平衡摩擦力。
〕 对小车受力分析,小车受到G 、N 和摩擦力f 三力作用,处于平衡状态时,fG x =,y G N=。
故当木板倾斜一定角度时,可以用重力的分力x G 来平衡摩擦力。
故验证牛二时,小车受到的拉力F 即为小车的合力。
二、实验器材小车,砝码,小桶,砂, 细线,附有定滑轮的长木板,垫块,电火花打点计时器,220V 交流电源, 导线两根, 纸带,托盘天平及砝码,米尺。
三、实验步骤1.用调整好的天平测出小车和小桶的质量M 和m ,把数据记录下来。
2.按如图装置把实验器材安装好,只是不把挂小桶用的细线系在小车上,即不给小车加牵引力。
...........................3.平衡摩擦力.....:在长木板的不带定滑轮的一端下面垫上垫块,反复移动垫块的位置,直至轻轻推一推小车,小车在斜面上运动时可以保持匀速直线运动状态〔可以从纸带上打的点是否均匀来判断〕。
4.在小车上加放砝码,小桶里放入适量的砂,把砝码和砂的质量M'和m'记录下来。
把细线系在小车上并绕过滑轮悬挂小桶,接通电源,放开小车,打点计时器在纸带上打下一系列点,取下纸带,在纸带上写上编号。
5.保持小车的质量不变,改变砂的质量〔要用天平称量〕,按步骤4再做5次实验。
验证牛顿第二定律的实验
验证牛顿第二定律的实验引言:牛顿第二定律是经典力学的基本定律之一,它描述了物体的运动与所受力的关系。
为了验证牛顿第二定律,科学家们进行了许多实验。
本文将介绍其中一种经典的实验,以验证牛顿第二定律的准确性。
实验目的:通过实验验证牛顿第二定律,即力等于物体质量乘以加速度。
实验器材:1. 一台光滑水平桌面2. 一根轻质滑轮3. 一根光滑绳子4. 一块质量较小的物体5. 一组测力计实验步骤:1. 将滑轮固定在桌面上,并将绳子绕在滑轮上。
2. 将质量较小的物体绑在绳子的一端,使其悬挂在滑轮上。
3. 将另一端的绳子通过测力计,使其悬挂在桌面的边缘。
4. 通过调整测力计的位置,使绳子保持水平,并且质量较小的物体悬挂在空中。
5. 记录下测力计的示数。
实验原理:根据牛顿第二定律的公式 F = ma,其中 F 表示力,m 表示物体的质量,a 表示物体的加速度。
在本实验中,由于绳子和滑轮的存在,使得力的方向改变,因此需要通过测力计来测量物体受到的力。
实验结果:根据实验记录的测力计示数,可以计算出物体受到的力。
同时,通过测量物体的质量,可以计算出物体的加速度。
将这些数据代入牛顿第二定律的公式,即可验证牛顿第二定律的准确性。
实验分析:通过多次实验的数据统计与计算,可以得出结论:在给定质量下,物体所受的力与加速度成正比。
这符合牛顿第二定律的描述。
实验误差:在实际的实验过程中,可能会存在一些误差。
例如,测力计的示数可能存在一定的误差;绳子和滑轮的摩擦力也可能对实验结果产生一定的影响。
为了减小这些误差,可以通过多次实验取平均值,以提高实验结果的准确性。
实验应用:牛顿第二定律是力学中的重要定律,广泛应用于各个领域。
例如,汽车的运动学分析、机械系统的设计与优化、火箭的发射等等,都离不开牛顿第二定律的应用。
结论:通过本实验的验证,我们可以得出结论:牛顿第二定律描述了物体的运动与所受力的关系,力等于物体质量乘以加速度。
这一定律对于理解和解释物体运动的规律具有重要意义,也为各个领域的工程应用提供了基础。
实验 验证牛顿第二定律
实验 验证牛顿第二定律一、必记内容:1.实验目的:(1)保持小车质量不变,研究a 与F 的关系(2)保持拉力不变,研究a 与m 的关系2.实验原理及实验装置:用细线将小车(质量记为M )和砂桶(内装有细砂,总质量为m )连接起来,构成一个系统.当系统做加速运动时,有:a =mg/(M+m)绳对车的拉力T=Ma=Mmg/(M+m)= M m mg +1,当M 〉〉m 时,T ≈m g.故可通过改变砂桶中细砂的质量来改变拉力的大小,从而验证加速度与拉力的关系;在小车上添加砝码来改变小车的质量,从而验证加速度与质量的关系.3.实验步骤:(1)通过调节木板的倾斜程度,用重力沿斜面的分力来平衡摩擦力. 此时不挂砂桶,但应把纸带在打点计时器的限位孔中穿好.(2)保持小车的质量不变,改变砂桶中细砂的质量,测出相应的加速度,验证当M 一定时,a 与F 与关系.(3)保持外力(即砂桶中细砂的质量)不变,在小车上加砝码,测出相应的加速度,验证当作用力一定时,a 与M 的关系.4.数据记录及处理(1)实验中要测定小桶和细砂的总质量m,小车及砝码的总质量M.(2)要在纸带测出小车的位移.(3)用逐差法处理数据.(4)用图象法处理数据.通过实验所测得的数据,画出a —F 图、a —1/M 图.正确的实验图线应如图1、2所示.误差分析:(1)未满足M 〉〉m 这一条件时,会得到图3所示图线.(2)未平衡摩擦力,会得到图4中2所示图线.平衡摩擦力过甚,会得到图4中1所示图线.二、典型习题1.一辆小车放在水平桌面上,现在用两种方式使小车向右作加速运动.第一种情况,对小车加上水平向右大小为10N 的拉力(见图5);第二种情况,通过定滑轮挂上10N 的重物(见图6).试问:(1)两车的加速度大小是否相同.(2)试比较两种情况下加速度的大小关系.N10=N 图5 图62 2.在探究加速度与力、质量的关系得实验中,得到以下(见图7)三个实验图线a 、b 、c ,描述加速度与质量关系的图线是 ;加速度与力的关系图线是 ; 图线是描述加速度与质量的倒数关系.3.验证牛顿第二定律的实验如下:(1)在探究物体的加速度与力.....的关系时,应保持 不变,分别改变施加在物体上的水平拉力F,测出相对应的加速度a.(2)在探究物体的加速度与物体质量........的关系时,应保持 不变,分别改变物体的质量m,测出相对应的加速度a.(3)为了更直观地反映物体的加速度a 与物体质量m 的关系,往往用二者的关系图像表示出来,该关系图象最好应选用 .A.a-m 图象B.m-a 图解C.m a 1-图解 D.m a 11-图解 (4)如果ma 1-图象是通过坐标原点的一条直线,则说明 . A.物体的加速度a 与其质量m 成正比. B.物体的加速度a 与其质量m 成反比.C.物体的质量m 与其加速度a 成反比.D.物体的质量m 与其加速度a 成反比.(5)如果a-F 图像不是一条通过原点的直线,则说明 .4.某组同学用下面图8所示的实验装置做“探究加速度与力、质量的关系”的实验.(1)在探究加速度与力的关系过程中应保持 不变,用砝码和盘的的重力作为小车所受外力,利用纸带算出小车的加速度,改变所挂钩码的数量,多次重复测量,进而研究加速度和力的关系.这种研究方法是采________.(2)实验过程中,难以直接得到小车受到的牵引力,所以将砝码和盘的重力近似看作小车的牵引力,那么,可以“将砝码和盘的重力近似看作小车的牵引力”的条件是 .(3)(2分)利用上装置做“验证牛顿第二定律”的实验时:甲同学根据实验数据画出的小车的加速度a 和小车所受拉力F 的图像为图9所示中的直线Ⅰ,乙同学画出的图像为图9中的直线Ⅱ,直线Ⅰ、Ⅱ在纵轴或横轴上的截距较大.明显超出了误差范围,下面给出了关于形成这种情况原因的四种解释,其中可能正确的是 ( )A.实验前甲同学没有平衡摩擦力B.甲同学在平衡摩擦力时,把长木板的末端抬得过高了C.实验前乙同学没有平衡摩擦力D.乙同学在平衡摩擦力时,把长木板的末端抬得过高了 图9图a 图b 图c图7。
验证牛顿第二定律实验
验证牛顿第二定律实验引言:牛顿第二定律是经典力学中的重要定律之一,它描述了物体运动时受到的力与物体加速度之间的关系。
为了验证牛顿第二定律,科学家们进行了一系列实验。
本文将介绍一种常见的实验方法,通过该实验可以直观地验证牛顿第二定律的正确性。
实验目的:通过实验验证牛顿第二定律,即力等于物体质量乘以加速度。
实验器材:1. 弹簧测力计2. 平滑水平桌面3. 一块小木块4. 弹簧5. 牛顿秤实验步骤:1. 将平滑水平桌面放置在实验台上。
2. 将弹簧测力计固定在实验台上,保证它处于竖直方向。
3. 将小木块放在水平桌面上,并将弹簧连接到小木块上。
4. 使用牛顿秤在弹簧上施加不同大小的力,并记录每个力的数值。
5. 记录小木块在不同施加力下的加速度。
6. 分别计算每个力下的加速度,并绘制出力与加速度的关系曲线。
7. 根据实验数据,验证牛顿第二定律的正确性。
实验原理:牛顿第二定律表明,物体所受合外力等于物体的质量乘以加速度。
即 F = m * a,其中 F 为物体所受合外力,m 为物体的质量,a 为物体的加速度。
在本实验中,通过施加不同大小的力后测量小木块的加速度,即可验证牛顿第二定律。
实验结果分析:根据实验数据,我们可以绘制出力与加速度的关系曲线。
根据牛顿第二定律的公式F = m * a,我们可以得到一条直线,斜率为小木块的质量。
如果实验结果符合这条直线,即表示牛顿第二定律得到了验证。
实验结论:通过实验,我们验证了牛顿第二定律的正确性。
实验结果表明,物体所受合外力等于物体质量乘以加速度。
这一定律在各种情况下都成立,是经典力学的基石之一。
实验误差分析:在实际实验中,由于外界环境的影响,很难完全消除误差。
例如,桌面的摩擦力、弹簧的弹性等都会对实验结果产生一定影响。
为了减小误差,我们可以采取一些措施,如使用更精确的实验器材、多次重复实验并取平均值等。
实验应用:牛顿第二定律在物理学中具有广泛的应用。
它可以用来解释和预测各种物体的运动行为,如机械系统的运动、天体运动、流体的运动等。
物理教案牛顿第二定律的实验验证
物理教案牛顿第二定律的实验验证物理教案:牛顿第二定律的实验验证引言:在物理学中,牛顿第二定律是描述力和物体运动的基本定律之一。
通过实验验证牛顿第二定律,可以加深学生对力和运动之间关系的理解。
本教案将介绍一种简单的实验方法,用以验证牛顿第二定律。
一、实验目的验证牛顿第二定律。
二、实验材料1. 悬挂线2. 动力学小车3. 动力学传感器4. 弹簧三、实验步骤1. 将悬挂线通过动力学传感器悬挂在水平方向。
2. 将动力学小车通过弹簧连接到悬挂线上。
3. 施加一个恒定的水平力F在动力学小车上,并记录所施加的力F 的大小和方向。
4. 打开动力学传感器并记录小车的加速度。
四、实验数据处理与分析1. 根据记录的力F的大小,计算所施加的力的大小和方向。
2. 根据记录的小车加速度,计算小车受力的大小。
3. 比较实验结果与牛顿第二定律的预期结果进行对比。
牛顿第二定律的数学表达式为F=ma,其中F为施加的力的大小,m为物体的质量,a为物体的加速度。
若实验结果与预期结果相符,则可以得出结论:实验验证了牛顿第二定律。
五、实验注意事项1. 进行实验时要保证实验室环境安全。
2. 测量数据时要准确、精细。
3. 实验数据处理时要注意计算准确。
六、实验讨论1. 对于实验结果与预期结果相符的情况,可以讨论实验误差的来源,并尝试提出改进方法。
2. 对于实验结果与预期结果不符的情况,可以讨论产生偏差的因素,并探究可能存在的误差来源。
七、延伸拓展1. 可以通过改变施加的力F和物体的质量m,进一步验证牛顿第二定律。
2. 可以设计其他相关实验,探究物体受力及其加速度之间的关系。
结语:通过本实验,学生将能够练习实验操作技巧,加深对牛顿第二定律的理解,并培养实践科学精神。
引导学生通过实验验证的方式,理论联系实际,加深对物理知识的理解和应用。
同时,通过实验讨论和延伸拓展的环节,培养学生的分析问题和解决问题的能力。
高考物理实验-验证牛顿第二定律
验证牛顿第二定律知识元验证牛顿第二定律知识讲解一、实验目的1.学会用控制变量法验证牛顿第二定律2.掌握利用图象处理实验数据的方法二、实验原理本实验中,探究加速度a与力F、质量M的关系,可以先保持F不变,研究a和M的关系,再保持M不变,研究a和F的关系.三、实验器材小车,砝码,小桶,砂,细线,附有定滑轮的长木板,垫块,打点计时器,导线两根,纸带,托盘天平及砝码,米尺.四、实验步骤1.用天平测出小车的质量M和盘的质量m0,把数值记录下来.2.把实验器材安装好.3.平衡摩擦力:在长木板的不带滑轮的一端下面垫上一块薄木板,反复移动其位置,直至不挂盘和重物的小车刚好能在斜面上保持匀速直线运动为止.4.将盘和重物通过细绳系在小车上,接通电源放开小车,使小车运动,用纸带记录小车的运动情况,取下纸带,并在纸带上标上号码.5.保持小车的质量不变,改变盘中重物的质量,重复步骤4,每次记录必须在相应的纸带上做上标记,将记录的数据填写在表格内.6.建立坐标系,用纵坐标表示加速度,横坐标表示力,在坐标系中描点,画出相应的图线,探究a与F的关系.7.保持盘和重物的质量不变,改变小车的质量(在小车上增减砝码),探究a与M的关系.五、注意事项1.在本实验中,必须平衡摩擦力,在平衡摩擦力时,不要把重物系在小车上,即不要给小车加任何牵引力,并要让小车拖着打点的纸带运动.2.安装器材时,要调整滑轮的高度,使拴小车的细绳与斜面平行,且连接小车和盘应在平衡摩擦力之后.3.改变小车的质量或拉力的大小时,改变量应尽可能大一些,但应满足盘和重物的总质量远小于小车和车上砝码的总质量.盘和重物的总质量不超过小车和车上砝码总质量的10%.4.改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,再放开小车,且应在小车到达滑轮前按住小车.六、误差分析1.质量的测量误差,纸带上打点计时器间隔距离的测量误差,细绳或纸带不与木板平行等都会造成误差.2.因实验原理不完善造成误差:本实验中用重物的重力代替小车受到的拉力(实际上受到的拉力要小于重物的重力),存在系统误差.重物的质量越接近小车的质量,误差越大,反之,重物的质量越小于小车的质量,误差就越小.3.平衡摩擦力不准造成误差.在平衡摩擦力时,除了不挂盘和重物外,其他的都应跟正式实验一样(比如要挂好纸带、接通打点计时器),匀速运动的标志是打点计时器打出的纸带上各点间的距离相等.例题精讲验证牛顿第二定律例1.如图甲所示装置可以用来测量“摩擦因数”、“探究加速度与合外力、质量的关系”,也可以用来“探究功与速度变化的关系”和“验证机械能守恒定律”等。
牛顿第二定律实验总结、习题(含答案)
实验:验证牛顿第二定律【实验目的】验证牛顿第二定律,就是验证:(1)物体质量一定时,加速度与合外力成正比;(2)合外力一定时,物体的加速度与质量成反比。
【实验原理】1、保持研究对象(小车)的质量(M)不变,改变砂桶内砂的质量(m),即改变牵引力测出小车的对应加速度,用图像法验证加速度是否正比于作用力。
2、保持砂桶内砂的质量(m)不变,改变研究对象的质量(M),即往小车内加减砝码,测出小车对应的加速度,用图像法验证加速度是否反比于质量。
【实验器材】附有定滑轮的长木板、薄木垫、小车、细线、小桶及砂、打点计时器、低压交流电源、导线、天平(带一套砝码)、毫米刻度尺、纸带及复写纸等。
【实验步骤】1、用天平测出小车和小桶的质量M0和m0,并记录数值;2、按照要求安装实验器材,此时不把悬挂小桶用的细绳系在车上,即不给小车加牵引力;3、平衡摩擦力,在长木板不带定滑轮的一端下面垫薄木板,并反复移动其位置,直到打点计时器正常工作后,小车在斜面上的运动可以保持匀速直线运动状态为止。
4、记录小车及车内所加砝码的质量;称好砂子后将砂倒入小桶,把细绳系在小车上并绕过定滑轮悬挂小桶;此时要调整定滑轮的高度使绳与木板平行;接通电源,放开小车,待打点计时器在纸带上打好点后,取下纸带,做好标记。
5、保持小车的总质量不变,改变砂的质量(均要用天平称量),按步骤4中方法打好纸带,做好标记。
6、在每条纸带上选取一段比较理想的部分,分别计算出加速度值。
7、用纵坐标表示加速度,横坐标表示作用力(即砂和砂桶的总重力mg),根据实验结果画出相应的点,如果这些点在一条直线上,便证明了质量一定的情况下,加速度与合外力成正比。
8、保持砂和桶的质量不变,在小车上加砝码(需记录好数据),重复上面的实验步骤,求出相应的加速度,用纵坐标表示加速度,横坐标表示小车及砝码的总质量的倒数1M,根据实验结果画出相应的点,如果这些点在一条直线上,就证明了合外力一定的情况下,加速度与质量成反比。
物理奇观牛顿第二定律的实验验证
物理奇观牛顿第二定律的实验验证物理奇观:牛顿第二定律的实验验证物理定律的验证一直是科学研究的核心任务之一。
而在众多物理定律中,牛顿的三大运动定律被认为是最为基础和重要的定律之一。
其中,牛顿第二定律是描述物体运动的关键法则,它揭示了力与运动之间的关系。
在这篇文章中,我们将探讨牛顿第二定律,以及一些实验验证,展示了这一定律的重要性和准确性。
### 牛顿第二定律的基本原理牛顿第二定律是物理学的重要基石,它提供了有关物体运动的关键信息。
这一定律的数学表达方式如下:\[F = ma\]其中,\(F\) 代表作用在物体上的总力,\(m\) 代表物体的质量,\(a\)代表物体的加速度。
这个公式表明,一个物体受到的力越大,它的质量越大,产生的加速度也就越大。
这一定律为我们理解物体如何响应外部力提供了重要的线索。
### 牛顿第二定律的实验验证牛顿第二定律的实验验证一直以来都是物理学家们的关注焦点。
下面,我们将介绍一些经典的实验,这些实验验证了这一定律的准确性。
#### 1. 自由落体实验自由落体实验是验证牛顿第二定律的经典实验之一。
在这个实验中,物理学家观察自由下落的物体,并测量它们的加速度。
根据牛顿第二定律,自由下落的物体应该受到一个与其质量成正比的力,这就是重力。
实验结果表明,物体的加速度与其质量无关,与地球上的引力加速度近似相等,这提供了有力的证据支持牛顿的第二定律。
#### 2. 斜面上的滑动实验另一个验证牛顿第二定律的实验是在斜面上进行的滑动实验。
在这个实验中,物体沿着斜面滑动,受到了斜面上的重力分量和摩擦力的作用。
通过测量物体的加速度和斜面的角度,可以验证牛顿第二定律中的力、质量和加速度之间的关系。
实验结果再次证实了这一定律的准确性。
#### 3. 物体在外力作用下的加速实验在这个实验中,物体受到已知大小的外力作用,然后测量物体的质量和加速度。
根据牛顿第二定律,加速度应该与受到的力和物体的质量成正比。
高中物理教案:牛顿第二定律的实验验证
高中物理教案:牛顿第二定律的实验验证牛顿第二定律是物理学中的重要定律之一,也是力学研究的基础。
通过实验验证牛顿第二定律,不仅可以更好地理解物体受力与运动的关系,还可以培养学生的实践操作能力和科学思维方法。
本教案将分为以下几个部分进行讲解和实验演示。
一、引言牛顿第二定律是描述物体受力与运动状态关系的定律,具体表述为“物体所受的合外力等于物体质量与加速度的乘积”。
这一定律对于我们理解物体运动的规律至关重要。
二、教学目标1. 理解牛顿第二定律的概念和表述;2. 掌握实验验证牛顿第二定律的方法;3. 能够通过实验数据计算得出物体的加速度。
三、教学过程1. 实验材料准备准备一个平滑的水平面,一个小车,一根轻绳,一组质量块,一个弹簧测力计。
2. 实验步骤步骤一:用轻绳将小车与测力计相连,保证轻绳拉直。
步骤二:在小车上放置质量块,调整质量的大小。
步骤三:用手将小车拉开一段距离,然后松手使其自由运动。
步骤四:记录小车运动的加速度和受力大小。
3. 数据处理与分析根据实验数据计算小车运动的加速度和受力大小,并绘制出相应的图表。
通过比较实验数据和理论计算结果,验证牛顿第二定律的准确性。
四、教学扩展1. 让学生思考:如果改变小车上的质量块的质量,会对实验结果产生什么影响?请进行预测并给出解释。
2. 扩展实验:可以尝试使用不同的力量推动小车,观察小车的加速度和受力的变化。
再通过数据处理和分析,进一步验证牛顿第二定律。
五、总结与评价通过这个实验,我们验证了牛顿第二定律的准确性。
通过实验操作和数据处理,学生们不仅加深了对牛顿第二定律的理解,还培养了实践操作能力和科学思维方法。
六、教学反思1. 教学前要充分准备好实验所需材料,并清楚地了解实验步骤和注意事项,保证实验顺利进行。
2. 在实验过程中,要强调学生的安全意识,注意保护实验器材,避免损坏和伤害的发生。
3. 实验数据的处理和分析要精确,可以借助工具软件进行计算和绘图,帮助学生更好地理解实验结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 验证牛顿运动定律注意事项1.实验方法:控制变量法.2.平衡摩擦力:在平衡摩擦力时,不要悬挂小盘,但小车应连着纸带且接通电源.用手给小车一个初速度,如果在纸带上打出的点的间隔是均匀的,表明小车受到的阻力跟它的重力沿斜面向下的分力平衡.3.不重复平衡摩擦力:平衡了摩擦力后,不管以后是改变小盘和砝码的总质量还是改变小车和砝码的总质量,都不需要重新平衡摩擦力.4.实验条件:M ≫m 只有如此,小盘和砝码的总重力才可视为小车受到的拉力.5.一先一后一按住:改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,后放开小车,且应在小车到达滑轮前按住小车.6.作图:作图时两轴标度比例要适当.各量须采用国际单位.这样作图线时,坐标点间距不至于过密,误差会小些.误差分析1.因实验原理不完善引起误差.以小车、小盘和砝码整体为研究对象得mg =(M +m )a ;以小车为研究对象得F =Ma ;求得F =M M +m ·mg =11+m M·mg <mg 本实验用小盘和砝码的总重力mg 代替小车的拉力,而实际上小车所受的拉力要小于小盘和砝码的总重力.小盘和砝码的总质量越小于小车的质量,由此引起的误差就越小.因此,满足小盘和砝码的总质量远小于小车的质量的目的就是减小因实验原理不完善而引起的误差.2.摩擦力平衡不准确、质量测量不准确、计数点间距测量不准确、纸带和细绳不严格与木板平行都会引起误差.热点一实验原理与操作【典例1】(2012·安徽高考21·Ⅰ)图1为“验证牛顿第二定律”的实验装置示意图.砂和砂桶的总质量为m,小车和砝码的总质量为M.实验中用砂和砂桶总重力的大小作为细线对小车拉力的大小.图1(1)实验中,为了使细线对小车的拉力等于小车所受的合外力,先调节长木板一端滑轮的高度,使细线与长木板平行.接下来还需要进行的一项操作是().A.将长木板水平放置,让小车连着已经穿过打点计时器的纸带,给打点计时器通电,调节m的大小,使小车在砂和砂桶的牵引下运动,从打出的纸带判断小车是否做匀速运动B.将长木板的一端垫起适当的高度,让小车连着已经穿过打点计时器的纸带,撤去砂和砂桶,给打点计时器通电,轻推小车,从打出的纸带判断小车是否做匀速运动C.将长木板的一端垫起适当的高度,撤去纸带以及砂和砂桶,轻推小车,观察判断小车是否做匀速运动(2)实验中要进行质量m和M的选取,以下最合理的一组是().A.M=200 g,m=10 g、15 g、20 g、25 g、30 g、40 gB.M=200 g,m=20 g、40 g、60 g、80 g、100 g、120 gC.M=400 g,m=10 g、15 g、20 g、25 g、30 g、40 gD.M=400 g,m=20 g、40 g、60 g、80 g、100 g、120 g(3)图2是实验中得到的一条纸带,A、B、C、D、E、F、G为7个相邻的计数点,相邻的两个计数点之间还有四个点未画出.量出相邻的计数点之间的距离分别为:x AB=4.22 cm、x BC=4.65 cm、x CD=5.08 cm、x DE=5.49 cm,x EF=5.91 cm,x FG=6.34 cm.已知打点计时器的工作频率为50 Hz,则小车的加速度a=________m/s2.(结果保留二位有效数字).图2【跟踪短训】1.如图3所示,为某同学安装的“验证牛顿第二定律”的实验装置,在小车的前端固定一个传感器,和砂桶连接的细线接在传感器上,通过传感器可显示出细线的拉力.在图示状态下开始做实验.图3(1)从图上可以看出,该同学在装置和操作中的主要错误是__________________ _______________________________________________________________________________ _______________________________________________.(2)若砂和砂桶的质量为m,小车和传感器的总重量为M,做好此实验________(填“需要”或“不需要”)M≫m的条件.热点二实验数据处理与误差分析【典例2】某实验小组在实验室探究加速度和力、质量的关系.a.根据表中数据,在图4甲的坐标系中描出相应的实验数据点,并作出a-1m图象.b.由a-1m图象,可得出的结论为_____________________________________.c.小车受到的合力大约为________.(结果保留两位有效数字)(2)乙同学在保持小车质量不变的情况下,通过多次改变对小车的拉力,由实验数据作出的a-F图象如图乙所示,图线不过原点的原因是________,小车的质量为________kg.(保留两位有效数字)图4【跟踪短训】2.某组同学设计了“探究加速度a与物体所受合力F及质量m的关系”实验.图5甲为实验装置简图,A为小车,B为电火花计时器,C为装有细砂的小桶,D为一端带有定滑轮的长方形木板,实验中认为细绳对小车拉力F等于细砂和小桶的总重量,小车运动的加速度a可用纸带上打出的点求得.(1)图5乙为某次实验得到的纸带,已知实验所用电源的频率为50 Hz.根据纸带可求出电火花计时器打B点时的速度为________m/s,小车的加速度大小为________m/s2.(结果均保留两位有效数字)图5(2)在“探究加速度a与质量m的关系”时,某同学按照自己的方案将实验数据都在坐标系中进行了标注,但尚未完成图象(如图6甲所示).请继续帮助该同学作出坐标系中的图象.(3)在“探究加速度a与合力F的关系”时,该同学根据实验数据作出了加速度a与合力F的图线如图6乙所示,该图线不通过坐标原点,试分析图线不通过坐标原点的原因.答:__________________________________________.图6探究高考命题视角以本实验为背景,通过改变实验条件、实验仪器设置题目,不脱离教材而又不拘泥教材,体现开放性、探究性、设计性等特点.视角1 实验器材的改进用气垫导轨――→替代长木板视角2 数据处理方法的改进小车的加速度可以利用传感器,借助于计算机来处理视角3 实验方案的改进用气垫导轨和两个光电门来完成此实验视角4 以本实验为背景,结合牛顿第二定律,测量两接触面间的动摩擦因数【典例3】 (2013·新课标全国卷Ⅰ,22)图7为测量物块与水平桌面之间动摩擦因数的实验装置示意图.实验步骤如下:图7①用天平测量物块和遮光片的总质量M 、重物的质量m ,用游标卡尺测量遮光片的宽度d ;用米尺测量两光电门之间的距离s ;②调整轻滑轮,使细线水平;③让物块从光电门A 的左侧由静止释放,用数字毫秒计分别测出遮光片经过光电门A 和光电门B 所用的时间Δt A 和Δt B ,求出加速度a ;④多次重复步骤③,求a 的平均值a ;⑤根据上述实验数据求出动摩擦因数μ.回答下列问题:(1)测量d 时,某次游标卡尺(主尺的最小分度为1 mm)的示数如图8所示,其读数为____ cm.图8(2)物块的加速度a 可用d 、s 、Δt A 和Δt B 表示为a =________.(3)动摩擦因数μ可用M 、m 、a 和重力加速度g 表示为μ=________.(4)如果细线没有调整到水平,由此引起的误差属于____________(选填“偶然误差”或“系统误差”).【探究跟踪】图9如图9所示是某同学探究小车加速度与力的关系的实验装置,他将光电门固定在水平轨道上的B点,用不同重物通过细线拉同一小车,每次小车都从同一位置A由静止释放.图10(1)若用10分度的游标卡尺测出遮光条的宽度d,如图10所示,则宽度为________mm,实验时将小车从图示位置由静止释放,由数字计时器读出遮光条通过光电门的时间Δt,则小车经过光电门时的速度为v=________(用字母表示).(2)测出多组重物的质量m和对应遮光条通过光电门的时间Δt,通过描点作出线性图象,研究小车加速度与力的关系.处理数据时应作出________图象.A.Δt-m B.Δt2-mC.1Δt-m D.1Δt2-m图11(3)有一位同学通过实验测量作出的图线如图11所示,试分析①图线不通过坐标原点的原因是________________________;②图线上部弯曲的原因是_________________________________.图121.某同学设计了如图12所示的装置来探究加速度与力的关系.弹簧秤固定在一合适的木块上,桌面的右边缘固定一个光滑的定滑轮,细绳的两端分别与弹簧秤的挂钩和矿泉水瓶连接.在桌面上画出两条平行线P、Q,并测出间距d.开始时将木块置于P处,现缓慢向瓶中加水,直到木块刚刚开始运动为止,记下弹簧秤的示数F0,以此表示滑动摩擦力的大小.再将木块放回原处并按住,继续向瓶中加水后,记下弹簧秤的示数F,然后释放木块,并用秒表记下木块从P运动到Q处的时间t.(1)木块的加速度可以用d和t表示为a=________.(2)改变瓶中水的质量重复实验,确定加速度a与弹簧秤示数F的关系.下图中能表示该同学实验结果的是________.(3)用加水的方法改变拉力的大小与挂钩码的方法相比,它的优点是________.A.可以改变滑动摩擦力的大小B.可以更方便地获取更多组实验数据C.可以更精确地测出摩擦力的大小D.可以获得更大的加速度以提高实验精度2.在用DIS研究小车加速度与外力的关系时,某实验小组采用如图13甲所示的实验装置.重物通过滑轮用细线拉小车,位移传感器(发射器)随小车一起沿倾斜轨道运动,位移传感器(接收器)固定在轨道一端.实验中把重物的重力作为拉力F,改变重物重力重复实验四次,列表记录四组数据.(1)是_______.(2)在如图14坐标纸上作出小车加速度a和拉力F的关系图线.图14(3)从所得图线分析该实验小组在操作过程中的不当之处是:________________________________________________________________________.(4)如果实验时,在小车和重物之间接一个不计质量的微型力传感器,如图13乙所示.并以力传感器示数表示拉力F,从理论上分析,该实验图线的斜率将________.(填“变大”“变小”或“不变”)3.[2013·天津卷,9(2)]某实验小组利用图15所示的装置探究加速度与力、质量的关系.图15(1)下列做法正确的是________(填字母代号).A.调节滑轮的高度,使牵引木块的细绳与长木板保持平行B.在调节木板倾斜度平衡木块受到的滑动摩擦力时,将装有砝码的砝码桶通过定滑轮拴在木块上C.实验时,先放开木块再接通打点计时器的电源D.通过增减木块上的砝码改变质量时,不需要重新调节木板倾斜度(2)为使砝码桶及桶内砝码的总重力在数值上近似等于木块运动时受到的拉力,应满足的条件是砝码桶及桶内砝码的总质量________木块和木块上砝码的总质量.(选填“远大于”、“远小于”或“近似等于”)图16(3)甲、乙两同学在同一实验室,各取一套图示的装置放在水平桌面上,木块上均不放砝码、在没有平衡摩擦力的情况下,研究加速度a与拉力F的关系,分别得到图16中甲、乙两条直线.设甲、乙用的木块质量分别为m甲、m乙,甲、乙用的木块与木板间的动摩擦因数分别为μ甲、μ乙,由图可知,m甲________m乙,μ甲________μ乙.(选填“大于”、“小于”或“等于”)4.(2013·潍坊月考)在探究加速度与力、质量的关系活动中,某小组设计了如图17所示的实验装置.图中上下两层水平轨道表面光滑,两小车前端系上细线,细线跨过滑轮并挂上砝码盘,两小车尾部细线连到控制装置上,实验时通过控制装置使两小车同时开始运动,然后同时停止.图17(1)在安装实验装置时,应调整滑轮的高度,使________;在实验时,为减小系统误差,应使砝码盘和砝码的总质量________小车的质量(选填“远大于”“远小于”“等于”).(2)本实验通过比较两小车的位移来比较小车加速度的大小,能这样比较,是因为________.(3)实验中获得数据如下表所示:空格处.通过分析,可知表中第________次实验数据存在明显错误,应舍弃.图18。