七年级数学下册不等式试题及复习资料

合集下载

【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。

江西鹰潭市七年级数学下册第九章【不等式与不等式组】知识点复习(答案解析)

江西鹰潭市七年级数学下册第九章【不等式与不等式组】知识点复习(答案解析)

一、选择题1.不等式()2533x x ->-的解集为( ) A .4x <-B .4x >C .4x <D .4x >-2.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( )A .3a ≤-B .3a <-C .3a >D .3a ≥3.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤4.不等式组20240x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .5.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .266.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( ) A .2m >-B .2m >C .3m >D .2m <-7.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( )A .a <-2B .a ≤-2C .a >-2D .a ≥-28.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( ) A .100厘米B .101厘米C .102厘米D .103厘米9.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤10.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0ab> 11.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( ) A .x y >B .44x y ->-C .33x y ->-D .22x y > 二、填空题12.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.13.已知不等式组43103x x a -≤≤-⎧⎪⎨->⎪⎩有解,那么a 的取值范围是___________.14.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集为55x -≤<,则ab 的值为___________.15.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________. 16.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则整数解是________,m 的取值范围是________.17.当前我国的新冠疫情虽然有所控制,但防控仍不可掉以轻心,为做好秋季防疫工作,王老师带现金6820元为年级采购了额温枪和消毒酒精两种防疫物品,额温枪每个125元,消毒酒精每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于消毒酒精的数量).若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买消毒酒精的数量为__________________瓶.18.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分. 19.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限20.如果不等式组2{223xa xb +≥-<的解集是01x ≤<,那么+a b 的值为 . 21.如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______.三、解答题22.解方程组与不等式组.(1)解方程组244523x y x y -=-⎧⎨-=-⎩.(2)解不等式组4(1)710853x x x x +≤+⎧⎪-⎨-<⎪⎩. 23.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x xx +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩24.不等式组231,12(2)x x x -≥-⎧⎨-≥-+⎩.25.某公交公司有A ,B 型两种客车,它们的载客量和租金如下表:湖州五中根据实际情况,计划租用A,B型客车共5辆,同时送2016~2017学年度八年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若2016~2017学年度八年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.一、选择题 1.不等式组1322<4x x ->⎧⎨-⎩的解集是( )A .4x >B .1x >-C .14x -<<D .1x <-2.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中; 步骤二:将三个相同的玻璃球放入水中,结果水没有满; 步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下 B .20 cm 3以上,30 cm 3以下 C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下3.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .104.不等式32x x -≤的解集在数轴上表示正确的是( ) A .B .C .D .5.下列不等式的变形正确的是( ) A .由612m -<,得61m < B .由33x ->,得1x >- C .由03x>,得3x > D .由412a -<,得3a >-6.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( )A .5B .0C .-1D .-27.若|65|56x x -=-,则x 的取值范围是( )A .56x >B .56x <C .56x ≥ D .56x ≤8.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( )A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤-9.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .1110.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m11.若01x <<,则下列选项正确的是( ) A .21x x x<< B .21x x x<<C .21x x x<<D .21x x x<< 二、填空题12.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元. 13.对任意四个整数a 、b 、c 、d 定义新运算:a b c dad bc =-,若1<2 4 1x x -<12,则x 的取值范围是____.14.已知关于x 的不等式24132m x mx +-≤的解集是34x ≥,那么m 的值是________. 15.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.16.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______.17.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.18.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____ 19.已知a 为整数,且340218a <+<,则a 的值为____________. 20.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.21.若关于x 的不等式2x ﹣m≥1的解集如图所示,则m =_____.三、解答题22.解不等式组253(2)13212x x xx +≤+⎧⎪⎨+-≤⎪⎩, 并把不等式组的解集在数轴上表示出来,写出不等式组的非负整数解.23.某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元. (1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?24.某校购买了A 型课桌椅100套和B 型课桌椅150套供学生使用,共付款53000元.已知每套A 型课桌椅比每套B 型课桌椅多花30元.(1)求该校购买每套A 型课桌椅和每套B 型课桌椅的钱数.(2)因学生人数增加,该校需再购买A 、B 型课桌椅共100套,只有资金22000元,求最多能购买A 型课桌椅的套数.25.某电影院某日某场电影的票价是:成人票30元,学生票15元,满50人可以购团体票(不足50人可按50人计算,票价打9折).某班在4位老师的带领下去电影院看电影,学生人数为x 人.(1)若按个人票购买,该班师生买票共付费_________元(用含x 的代数式表示);若按团体票购买,该班师生买票共付费___________(用含x 的代数式表示,且46x ≥)(2)①如果该班学生人数为36人,该班师生买票最少可付费多少元?②如果该班学生人数为42人,该班师生买票最少可付费多少元?(3)用含x的代数式表示该班买票最少应付多少元?一、选择题1.定义一种新运算“a ☆b ”的含义为:当a ≥b 时,a ☆b =a +b ;当a <b 时,a ☆b =a ﹣b .例如:3☆(﹣4)=3+(﹣4)=﹣1,(-6)☆111(6)6222=--=-,则方程(3x ﹣7)☆(3﹣2x )=2的解为x=( ) A .1B .125C .6或125D .62.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a > B .3a ≤C .3a <D .3a ≥3.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解4.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5B .m≥5C .m <5D .m≤85.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分 D .某参赛选手得分可能为负数6.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .68m <<B .67≤<mC .67m ≤≤D .67m <≤7.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .8.若关于x 的不等式组132(2)x a x x ≥-⎧⎨≤+⎩仅有四个整数解,则a 的取值范围是( )A .12a ≤≤B .12a ≤<C .12a <≤D .12a <<9.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-15327-,π-,22中,有3个有理数,2个无理数C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为710.下列不等式说法中,不正确的是( ) A .若,2x y y >>,则2x > B .若x y >,则22x y -<- C .若x y >,则22x y >D .若x y >,则2222x y --<--11.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( ) A .x y >B .44x y ->-C .33x y ->-D .22x y> 二、填空题12.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个). 13.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.14.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集为55x -≤<,则a b 的值为___________. 15.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__. 16.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______. 17.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 18.不等式2x+9>3(x+4)的最大整数解是_____.19.若不等式组30x a x >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________. 20.不等式组()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩的解集为______21.如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______. 三、解答题22.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共10台,具体情况如下表:经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.(1)该企业有哪几种购买方案?(2)哪种方案更省钱?并说明理由.23.(1)解方程组:432 20 x yx y+=⎧⎨+=⎩(2)解不等式组:3(2)211124x xx x-<-⎧⎪⎨-≥-⎪⎩24.某校购买了A型课桌椅100套和B型课桌椅150套供学生使用,共付款53000元.已知每套A型课桌椅比每套B型课桌椅多花30元.(1)求该校购买每套A型课桌椅和每套B型课桌椅的钱数.(2)因学生人数增加,该校需再购买A、B型课桌椅共100套,只有资金22000元,求最多能购买A型课桌椅的套数.25.某商店需要购进A型、B型两种节能台灯共160盏,其进价和售价如下表所示.(1)若商店计划销售完这批台灯后能获利1100元,问A型、B型两种节能台灯应分别购进多少盏(注:获利=售价-进价)?(2)若商店计划投入资金少于4300元,且销售完这批台灯后获利多于1260元,请问有哪几种进货方案?并直接写出其中获利最大的进货方案.。

人教版七年级数学下册不等式与不等式组知识点及习题

人教版七年级数学下册不等式与不等式组知识点及习题

三不等式与不等式组1. 不等式的概念不等式:用不等号表示不等关系的式子,叫做不等式。

不等式的解集:1)对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

2)对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

3)求不等式的解集的过程,叫做解不等式。

用数轴表示不等式的方法2. 不等式基本性质1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

3. 一兀一次不等式一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,不等式的两边都是整式,这样的不等式叫做一元一次不等式。

解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为4. 一元一次不等式组一元一次不等式组:1)几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2)几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3)求不等式组的解集的过程,叫做解不等式组。

当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

一元一次不等式组的解法:1)分别求出不等式组中各个不等式的解集2 )利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

四不等式与不等式组1•全面调查:考察全体对象的调查方式叫做全面调查。

2•抽样调查:一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。

显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而, 也可起到全面调查的作用。

3抽样调查分类:根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。

概率抽样是按照概率论和数理统计的原理从调查研究的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。

(完整)七年级下册数学不等式与不等式组试卷

(完整)七年级下册数学不等式与不等式组试卷

一.选择题(每小题5分,共30分)1.下列各数是不等式3X+6>0的解的是()A.-1 B.-2 C.-3 D.-42.以下是各不等式的解集与其在数轴上的表示,正确的对应是( )A. B. C. D.0 1 0 1 0 1 0 1X≥1 X≤1 X>1 X>13.不等式组X>2的解集是()X<3A.X<3 B.X>2 C.2<X<3 D.无解4.如果不等式组x<8有解,那么x的取值范围是()x>mA.m>8B.m≥8C.m<8D.m≤85.课外阅读课上,老师将43本书分给各个小组,每组8本,还有剩余,每组9本,却又不够。

这个课外阅读小组共有()组A.4 B.5 C.6 D.76.已知△ABC的周长为18,BC=8,则这个三角形面积的最大值是( )A.10B.12C.24D.不能确定二.填空题.(每小题5分,共20分)7.已知0<X<兀,X是整数,则X的值是_____________.8.设求知数,列不等式:(1)一个工程队原定在10天内至少要挖土600立方米,在前两天一共完成了120立方米,由于整个工程调整工期,要求提前两天完成挖土任务,设经后 6 天内平均每天至少要挖土X立方米,则列出的不等式为____________.(2)一次智力测验,有20道选择题.评分标准是:对1题得5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答,至少答对几题,部分才不会低于60分?设小明至少答对的题数为X,则列出的不等式是___________.9.不等式1/X不是一元一次不等式,但是它的解集是存在的,它的解集是_____________.10.已知点A(1-a,a+2)在第二象限,则a的取值范围是_____________.三.解答题. (11题18分,12和13题各10分,14题12分)11.解不等式(组),并把解集在数轴上表示出来.(1) (X-1)/3-(X+4)/2>-2 (2) -3X-1>3 2X+1>3 (3) 2X-6<3X (X+2)/5-(X-1)/4≥012.小明要去福利院看望12个小朋友,打算用10元钱购买笔记本或圆珠笔,给每位小朋友一份礼物,已知每本笔记本0.9元,每支圆珠笔0.7元.问他最多能买多少本笔记本?13.利用不等式性质将1<X<2变为a<1-3x<b(a,b是常数)的形式。

部编数学七年级下册专题10《不等式与不等式组》解答题重点题型分类(解析版)含答案

部编数学七年级下册专题10《不等式与不等式组》解答题重点题型分类(解析版)含答案

专题10 《不等式与不等式组》解答题重点题型分类专题简介:本份资料专攻《不等式与不等式组》中“求一元一次不等式组中待定字母的值的情况”、“利用一元一次不等式(组)解决实际问题”、“方程组与不等式组相结合解决实际问题”、“利用不等式计算获利问题”、“运用一元一次不等式组进行方案设计”解答题重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。

考点1:求一元一次不等式组中待定字母的值的情况方法点拨:1.已知关于x 的不等式组21321x m x m ->ìí-<-î(1)如果不等式组的解集为67x <<,求m 的值;(2)如果不等式组无解,求m 的取值范围;【答案】(1)11;(2)5m £【分析】(1)解两个不等式得出12m x +>且213m x -<,根据不等式组的解集为67x <<得1622173m m +ì=ïïí-ï=ïî,解之可得答案;(2)根据不等式组无解,利用“大大小小找不到”可得12123m m +-…,解之可得答案.【详解】解:(1)由21x m ->,得:12m x +>,解不等式321x m -<-,得:213m x -<,Q 不等式组的解集为67x <<,∴1622173m m +ì=ïïí-ï=ïî,解得11m =;(2)Q 不等式组无解,\12123m m +-…,解得5m ….【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.对于任意实数a ,b ,定义一种新运算:a #b =a ﹣3b +7,等式右边是通常的加减运算.例如:3#5=3﹣3×5+7.(1)求5#x >0解集;(2)若3m <2#x <7有解,求x 的取值范围;(3)在(2)的条件下,若x 的解集中恰有3个整数解,求m 的取值范围.【答案】(1)x <4;(2)233x m <<-;(3)-1≤m <0【分析】(1)根据新定义得出关于x 的不等式,解之即可;(2)根据新定义列出关于x 的不等式组,再分别求解即可得出其解集;(3)由不等式组整数解的个数得出关于m 的不等式组,再进一步求解即可.【详解】解:(1)由题意得5-3x +7>0,解得x <4;(2)由题意,得:32373727x m x î-+>-+<ìí①②,解不等式①,得:23x >,解不等式②,得:x <3-m ,则不等式组的解集为233x m <<-;(3)∵该不等式组有3个整数解,∴3<3-m ≤4,解得-1≤m <0.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.已知不等式()132x m m ->-.()1若其解集为3x >,求m 的值;()2若满足3x >的每一个数都能使已知不等式成立,求m 的取值范围.【答案】(1) 1.5m =;(2) 1.5m ³【分析】(1)根据已知等式求出m 的范围即可;(2)根据题意确定出m 的范围即可.【详解】解:(1)不等式整理得:63x m m ->-,解得:62,x m >-由不等式的解集为3,x >得到623,m -=解得: 1.5m =;(2)由满足3x >的每一个数都能使已知不等式成立,得到623m -£,解得: 1.5m ³【点睛】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.4.若不等式组0122x a x x +³ìí->-î有3个整数解,则a 的取值范围是多少.【答案】2≤a <3【分析】先求出不等式组解集,然后再根据已知不等式组有3个整数解,列出不等式组确定a 的取值范围即可.【详解】解:0122x a x x +³ìí->-î①②解不等式①得:x ≥-a ,解不等式②x <1,∴不等式组的解集为-a ≤x <1,∵不等式组恰有3个整数解,∴-3<-a ≤-2,解得:2≤a <3.【点睛】本题主要考查了解一元一次不等式(组),不等式组的整数解等知识点,能根据不等式组的解集得出关于a 的不等式组是解答本题的关键.5.不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分,求a 的取值范围.【答案】113a -<£【分析】先求出不等式组2153136215x x x +-ì-<ïíï-£î的解集为13x -<£,然后分别讨论当0a >时,当0a <时,当0a =时,不等式1ax >-的解集,然后根据不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分进行求解即可.【详解】解:2153136215x x x +-ì-<ïíï-£î①②解不等式①得:1x >-,解不等式②得:23x -££,∴不等式的解集为13x -<£,∵1ax >-,∴当0a >时,1x a>-∵不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分,∴11a-£-,∴01a <£;同理当0a <时,1x a<-,∵不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分,∴13a->,∴103-<<a ;当0a =时,01>-恒成立,即关于x 的一元一次不等式1ax >-的解集为一切实数,∴此时也满足不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分,∴综上所述,113a -<£.【点睛】本题主要考查了解一元一次不等式和解一元一次不等式组,解题的关键在于能够熟练掌握解不等式的方法.6.已知关于x 的不等式4(x +2)﹣2>5+3a 的解都能使不等式(31)(23)32a x a x ++>成立,求a 的取值范围.【答案】115a -…【分析】先求出不等式4(x +2)-2>5+3a 的解集,再根据不等式(31)(23)32a x a x ++>用a 表示出x 的取值范围,最后解不等式组即可求出a 的取值范围.【详解】解:解不等式4(2)253x a +->+得:314a x ->,Q (31)(23)32a x a x ++>,解得:92ax >\31942a a -…解得:115a -….【点睛】本题考查的是解一元一次不等式,正确理解不等式的解集是解此题的关键.7.已知关于x 的不等式组()42127,6 1.7x x x a x ì-+>ïí-<+ïî(1)若该不等式组有且只有三个整数解,求a 的取值范围;(2)若不等式组有解,且它的解集中的任何一个值均不在5x ≥的范围内,求a 的取值范围.【答案】(1)12a £<;(2)25a £<【分析】(1)先求出不等式组的解集,再根据不等式组有且只有三个整数解求出整数解,得出关于a 的不等式组,从而求解;(2)结合不等式组有解及它的解集中的任何一个值均不在x ≥5的范围内,得出关于a 的不等式组,从而求解.【详解】解:(1)解不等式()42127x x -+>,得2x >.解不等式617x a x -<+,得7x a <-,∵该不等式组有且只有三个整数解,∴这三个整数解为3,4,5.∴576a <-£.∴12a £<.(2)∵该不等式组有解,由(1)知72a ->.∴该不等式组的解集为27x a <<-.又它的解集中的任何一个值均不在5x ≥的范围内,∴75a -£.解不等式组7275a a ->ìí-£î得符合题意的a 的取值范围为25a £<.【点睛】本题考查的是解一元一次不等式组和不等式的整数解,根据题意列出不等式,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.若一个不等式(组)A 有解且解集为()a x b a b <<<,则称2a b +为A 的解集中点值,若A 的解集中点值是不等式(组)B 的解(即中点值满足不等式组),则称不等式(组)B 对于不等式(组)A 中点包含.(1)已知关于x 的不等式组A :23560x x ->ìí->î,以及不等式B :15x -<£,请判断不等式B 对于不等式组A 是否中点包含,并写出判断过程;(2)已知关于x 的不等式组C :272131691x m x m +>+ìí-<-î和不等式D :43135x m x m >-ìí-<î,若D 对于不等式组C 中点包含,求m 的取值范围.(3)关于x 的不等式组E :22x n x m >ìí<î(n m <)和不等式组F :523x n x m n -<ìí->î,若不等式组F 对于不等式组E 中点包含,且所有符合要求的整数m 之和为9,求n 的取值范围.【答案】(1)不等式B 对于不等式组A 是中点包含,见解析;(2)316m -<<;(3)12n £<【分析】(1)先解不等式组A ,再按照要求求中点,再判断中点是否在B 不等式中即可.(2)先解不等式组C 、D ,再根据C 组的中点在D 不等式组中建立不等式,再解出m 取值范围.(3)先解不等式组E 、F ,再根据E 组的中点在F 不等式组中建立不等式,再解出m 取值范围,再根据符合要求的整数m 之和为9,缩小m 取值范围从而确定n 取值范围.【详解】(1)解不等式组A :23560x x ->ìí->î得46x <<,∴中点值为5x =又∵5x =在不等式B :15x -<£范围内,∴不等式B 对于不等式组A 是中点包含(2)解不等式C 得:33+5m x m -<<∴不等式组C 中点为:3+3+5=2+12m m m -解不等式D 得:51343m m x +-<<∵2m -1位于4m -和5133m +之间∴5134213m m m +-<-<解得:316m -<<(3)解不等式组E 得:2n <x <2m ,则中点值为n +m解不等式组F 得:32n m +<x <5+n ∵32n m +<n +m <5+n ∴5m n m <ìí<î∵所有符合要求的整数m 之和为9∴m 可取4,3,2∴12n £<【点睛】本题考查新定义概念的运用与求解,实际还是在考查不等式组的解法和不等式的性质,掌握好不等式组的解法和不等式性质是本题解题关键.考点2:利用一元一次不等式(组)解决实际问题方法点拨:列不等式解应用题基本步骤与列方程解应用题相类似,即:(1)审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解出所列的不等式的解集;(5)答:写出答案,并检验答案是否符合题意。

人教版七年级下知识点试题精选-不等式的定义

人教版七年级下知识点试题精选-不等式的定义

七年级下册不等式的定义一.选择题(共20小题)1.下列不等式中,对任何有理数都成立的是()A.x﹣3>0 B.|x+1|>0 C.(x+5)2>0 D.﹣(x﹣5)2≤02.据古田新闻报道,2012年4月4日古田县最高气温是23℃,最低气温是12℃,则当天古田县气温t(℃)的变化范围是()A.t≤23 B.t≥12 C.12<t<23 D.12≤t≤233.当x=﹣2时,下列不等式不成立的是()A.x﹣5<﹣6 B.x+2>0 C.3+2x>6 D.2(x﹣2)<﹣74.下列不等关系一定正确的是()A.|a|>0 B.﹣x2<0 C.(x+1)2≥0 D.a2>05.当x=1时,下列不等式成立的是()A.x+3>4 B.x﹣2<1 C.x+1>2 D.x﹣1<06.在数学表达式①﹣3<0;②4x+5>0;③x=3;④x2+x;⑤x≠﹣4;⑥x+2>x+1是不等式的有()A.2个 B.3个 C.4个 D.5个7.小林在水果摊上称了2斤苹果,摊主称了几个苹果说:“你看秤,高高的.”如果设苹果的实际质量为x斤,用不等式把这个“高高的”的意思表示出来是()A.x≤2 B.x≥2 C.x>2 D.x<28.“x为负数”的表达式是()A.x>0 B.x<0 C.x≥0 D.x≤09.在数学表达式:①﹣2<0;②3x﹣5>0;③x=1;④x2﹣x;⑤x≠﹣2;⑥x+2>x﹣1中,不等式有()A.2个 B.3个 C.4个 D.5个10.下列不等式总成立的是()A.4a>2a B.a2>0 C.a2>a D.﹣a2≤011.已知:①x+y=1;②x>y;③x+2y;④x2﹣y≥1;⑤x<0,其中属于不等式的有()个.A.2 B.3 C.4 D.512.无论x取什么数,下列不等式总成立的是()A.x+6>0 B.x+6<0 C.﹣(x﹣6)2<0 D.(x﹣6)2≥013.下列数学表达式中:①﹣2<0,②2x+3y>0,③x=2,④x2+2xy+y2,⑤x≠3,⑥x+1>2中,不等式有()A.1个 B.2个 C.3个 D.4个14.下列式子:①3>0;②4x+3y>0;③x=3;④x﹣1≠5;⑤x+2≤3是不等式的有()A.2个 B.3个 C.4个 D.5个15.式子:①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个 B.2个 C.3个 D.4个16.下列式子:①﹣7<0;②3x+1>0;③x≥2;④x﹣6.其中,是不等式的有()A.①②③B.①②④C.②③④D.①③④17.海尔冰箱背面铭牌上有“≤250V”标项,它表示()A.冰箱的额定电压是250VB.冰箱的额定电压小于250VC.冰箱的额定电压不能超过250VD.非上述说法18.下面给出5个式子:①3x>5;②x+1;③1﹣2y≤0;④x﹣2≠0;⑤3x﹣2=0.其中是不等式的个数有()A.2个 B.3个 C.4个 D.5个19.下列给出四个式子,①x>2;②a≠0;③5<3;④a≥b,其中是不等式的是()A.①④B.①②④C.①③④D.①②③④20.下列式子:①a+b=b+a;②﹣2>﹣5;③x≥﹣1;④y﹣4<1;⑤2m≥n;⑥2x﹣3,其中不等式有()A.2个 B.3个 C.4个 D.5个二.填空题(共20小题)21.某橙汁饮料标签上标有“橙果汁含量≥10%”,该不等式表示的含义是.22.比较下面两算式结果的大小:(﹣2)2+(﹣1)22×(﹣2)×(﹣1)23.2012年2月5日某市气象台预报该市气温是﹣2~5℃,这表示2月5日该市的最低气温是℃,最高气温是℃.设该市2月5日某一时刻气温为t℃,则关于t的不等关系是.24.比较下面两算式结果的大小:22+322×2×3.25.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为克.26.一般地,用符号“<”(或“≤”,“>”,“≥”)连接的式子叫做.27.k的值大于﹣1且不大于3,则用不等式表示k的取值范围是.(使用形如a≤x≤b的类似式子填空.)28.写出你学过的几何不等号:.29.的式子叫不等式.30.某天的气温不高于25℃,设这天的气温为t℃笔,那么t与25之间的关系是.31.坐在行驶在公路上的汽车里会看到不同的交通标志图形,它们有着不同的意义,如图所示;如果设汽车的质量为x,速度为y,宽度为l,高度为h,用不等式表示图中的意义为:(1);(2);(3);(4).32.今年4月某天的最高气温为8℃,最低气温为2℃,则这天气温t℃的t的取值范围是.33.爽爽的贵阳气候宜人,据贵阳晚报报道,2011年5月某日贵阳市最高气温是25℃,最低气温是17℃,则当天贵阳市的气温t(℃)的变化范围是.34.x2是非负数表示为:.(用适当的符号表示)35.用不等式表示“x与a的平方差不是正数”为.36.下列式子中:①2<0;②2x﹣3>0;③x=2012;④x2﹣x;⑤x≠0;⑥x+3>x+1,其中是不等式的有(填序号)37.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=.38.用不等号“>、<、≥、≤”填空:a2+10.39.比较下面两算式结果的大小:通过观察,归纳比较20062+200722×2006×2007,并写出能反映这种规律的一般结论.40.吉安市机关公车改革于今年4月1日正式开始实施,小明坐着爸爸新买的小车,在闹市区街道边发现一块标志牌(如图所示),小明知道这表示车速不超过这个字,请你用式子表示在该车道上车辆行驶速度v(km/h)的数值范围:.三.解答题(共10小题)41.有理数m,n在数轴上如图,用不等号填空.(1)m+n0;(2)m﹣n0;(3)m•n0;(4)m2n;(5)|m| |n|.42.在下列各题中的空格处,填上适当的不等号:(1);(2)(﹣1)2(﹣2)2;(3)|﹣a| 0;(4)4x2+10;(5)﹣x20;(6)2x2+3y+1x2+3y.43.已知有理数m,n的位置在数轴上如图所示,用不等号填空.(1)n﹣m0;(2)m+n0;(3)m﹣n0;(4)n+10;(5)m•n0;(6)m+10.44.用适当的符号表示下列关系:(1)x的与x的2倍的和是非正数;(2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的身体不比小刚轻.45.某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为多少克?46.在数轴上有A,B两点,其中点A所对应的数是a,点B所对应的数是1.已知A,B两点的距离小于3,请你利用数轴.(1)写出a所满足的不等式;(2)数﹣3,0,4所对应的点到点B的距离小于3吗?47.在生活中不等关系的应用随处可见.如图表示机动车驶入前方道路的最低时速限制.此标志设在高速公路或其他道路限速路段的起点,你会表示这些不等关系吗?48.一种药品的说明书上写着:“每日用量120~180mg,分3~4次服完.”一次服用这种药的剂量在什么范围?49.判断下列各式哪些是等式,哪些是不等式.(1)4<5;(2)x2+1>0;(3)x<2x﹣5;(4)x=2x+3;(5)3a2+a;(6)a2+2a≥4a﹣2.50.用不等式表示下列关系:哥哥存款x元,弟弟存款y,兄弟2人的存款总数少于1000元.七年级下册不等式的定义参考答案与试题解析一.选择题(共20小题)1.下列不等式中,对任何有理数都成立的是()A.x﹣3>0 B.|x+1|>0 C.(x+5)2>0 D.﹣(x﹣5)2≤0【分析】代入特殊值,对以下选项进行一一验证即可.【解答】解:A、当x=3时,x﹣3=0,所以该不等式不成立;故本选项错误;B、当x=﹣1时,|x+1|=0,所以该不等式不成立;故本选项错误;C、当x=﹣5时,(x+5)2=0,所以该不等式不成立;故本选项错误;D、因为(x﹣5)2≥0,所以无论x取何值都有﹣(x﹣5)2≤0,所以该不等式成立.故本选项正确;故选D.【点评】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.2.据古田新闻报道,2012年4月4日古田县最高气温是23℃,最低气温是12℃,则当天古田县气温t(℃)的变化范围是()A.t≤23 B.t≥12 C.12<t<23 D.12≤t≤23【分析】根据题意可得:当天古田县气温t(℃)的变化范围在23℃和12℃之间,利用不等号连接即可.【解答】解:由题意得:12≤t≤23,故选:D.【点评】本题考查了由实际问题抽象出一元一次不等式.用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.3.当x=﹣2时,下列不等式不成立的是()A.x﹣5<﹣6 B.x+2>0 C.3+2x>6 D.2(x﹣2)<﹣7【分析】将x=﹣2代入四个选项,比较左右两边数值的大小即可作出正确判断.【解答】解:当x=﹣2时,A、﹣7<﹣6,两个负数比较大小,绝对值大的反而小;B、1>0,正数大于0;C、﹣1>6;错误;D、﹣8<﹣7.两个负数比较大小,绝对值大的反而小.故选C.【点评】先将x=﹣2代入各式,再根据“正数大于0和负数,0大于一切负数,两个负数比较大小,绝对值大的反而小”进行判断.4.下列不等关系一定正确的是()A.|a|>0 B.﹣x2<0 C.(x+1)2≥0 D.a2>0【分析】根据绝对值及完全平方式的性质求解.【解答】解:A、|a|≥0,错误;B、﹣x2≤0,错误;C、(x+1)2≥0,正确;D、a2≥0,错误,故选C.【点评】本题考查了不等式的定义及非负数的性质,属于基础题比较简单.5.当x=1时,下列不等式成立的是()A.x+3>4 B.x﹣2<1 C.x+1>2 D.x﹣1<0【分析】先解不等式,再将x=1代入各式比较.【解答】解:容易解出:A、x>1,故选项错误;B、x<3,故正确.C、x>1,故选项错误;D、x<1.当x=1时,x<3成立.故选B.【点评】解答此题不仅要会解不等式,还要知道:“正数大于0和负数,0大于一切负数,两个负数比较大小,绝对值大的反而小.”6.在数学表达式①﹣3<0;②4x+5>0;③x=3;④x2+x;⑤x≠﹣4;⑥x+2>x+1是不等式的有()A.2个 B.3个 C.4个 D.5个【分析】根据不等式的定义对各选项进行逐一分析即可.【解答】解:①﹣3<0是用不等号连接的式子,故是不等式;②4x+5>0是用不等号连接的式子,故是不等式;③x=3是方程;④x2+x是代数式;⑤x≠﹣4是用不等号连接的式子,故是不等式;⑥x+2>x+1是用不等号连接的式子,故是不等式.故选C.【点评】本题考查的是不等式的定义,即用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.7.小林在水果摊上称了2斤苹果,摊主称了几个苹果说:“你看秤,高高的.”如果设苹果的实际质量为x斤,用不等式把这个“高高的”的意思表示出来是()A.x≤2 B.x≥2 C.x>2 D.x<2【分析】理解:高高的意思说比本身质量高.【解答】解:由题意:x>2.故选C.【点评】本题考查了不等式的定义,要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.8.“x为负数”的表达式是()A.x>0 B.x<0 C.x≥0 D.x≤0【分析】根据负数的定义即可解答.【解答】解:负数即为小于0的数,∴可表达为x<0,故选B.【点评】本题考查了负数的定义.9.在数学表达式:①﹣2<0;②3x﹣5>0;③x=1;④x2﹣x;⑤x≠﹣2;⑥x+2>x﹣1中,不等式有()A.2个 B.3个 C.4个 D.5个【分析】主要依据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【解答】解:根据不等式的定义,只要有不等符号的式子就是不等式,所以①,②,⑤,⑥为不等式,共有4个.故选C.【点评】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫不等式.解答此类题关键是要识别常见不等号:><≤≥≠.10.下列不等式总成立的是()A.4a>2a B.a2>0 C.a2>a D.﹣a2≤0【分析】对四个选项逐一分析,只要举出一个反例即可证明A、B、C不成立.【解答】解:A、a为0或负数时不成立,B、a=0时不成立,C、a=0时不成立,D、正确.故选D.【点评】根据不等式的定义和各式的特点解答,只要找到一个反例,就可证明A、B、C错误.11.已知:①x+y=1;②x>y;③x+2y;④x2﹣y≥1;⑤x<0,其中属于不等式的有()个.A.2 B.3 C.4 D.5【分析】主要依据不等式的定义﹣﹣﹣﹣﹣用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【解答】解:①x+y=1是等式;②x>y符合不等式的定义;③x+2y是多项式;④x2﹣y≥1符合不等式的定义;⑤x<0符合不等式的定义;故选B.【点评】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.12.无论x取什么数,下列不等式总成立的是()A.x+6>0 B.x+6<0 C.﹣(x﹣6)2<0 D.(x﹣6)2≥0【分析】通过解不等式可得A、B中x的取值范围;根据非负数的性质,可对C、D进行判断.【解答】解:A、x>﹣6时成立;B、x<﹣6时成立;C、根据非负数的性质,﹣(x﹣6)2≤0;D、根据非负数的性质,(x﹣6)2为非负数,所以(x﹣6)2≥0成立.故选D.【点评】解答此题不仅要会解不等式,还要知道非负数的性质.13.下列数学表达式中:①﹣2<0,②2x+3y>0,③x=2,④x2+2xy+y2,⑤x≠3,⑥x+1>2中,不等式有()A.1个 B.2个 C.3个 D.4个【分析】根据不等式的定义,不等号有<,>,≤,≥,≠,选出即可.【解答】解:不等式是指不等号来连接不等关系的式子,如<,>,≤,≥,≠,则不等式有:①②⑤⑥.故选D【点评】本题主要考查对不等式的意义的理解和掌握,能根据不等式的意义进行判断是解此题的关键.14.下列式子:①3>0;②4x+3y>0;③x=3;④x﹣1≠5;⑤x+2≤3是不等式的有()A.2个 B.3个 C.4个 D.5个【分析】主要依据不等式的定义﹣﹣﹣﹣﹣用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【解答】解:根据不等式的定义,只要有不等符号的式子就是不等式,所以:①3>0;②4x+3y>0;④x﹣1≠5;⑤x+2≤3为不等式,共有4个.故选:C.【点评】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.15.式子:①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个 B.2个 C.3个 D.4个【分析】找到用不等号连接的式子的个数即可.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选C.【点评】用到的知识点为:用“<,>,≤,≥,≠”连接的式子叫做不等式.16.下列式子:①﹣7<0;②3x+1>0;③x≥2;④x﹣6.其中,是不等式的有()A.①②③B.①②④C.②③④D.①③④【分析】主要依据不等式的定义﹣﹣﹣﹣﹣用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【解答】解:根据不等式的定义,只要有不等符号的式子就是不等式,所以①②③为不等式.故选:A.【点评】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.17.海尔冰箱背面铭牌上有“≤250V”标项,它表示()A.冰箱的额定电压是250VB.冰箱的额定电压小于250VC.冰箱的额定电压不能超过250VD.非上述说法【分析】根据不等式的定义进行解答即可.【解答】解:∵海尔冰箱背面铭牌上有“≤250V”标项,∴冰箱的额定电压为小于等于250V,即不能超过250V.故选C.【点评】本题考查的是不等式的定义,解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.18.下面给出5个式子:①3x>5;②x+1;③1﹣2y≤0;④x﹣2≠0;⑤3x﹣2=0.其中是不等式的个数有()A.2个 B.3个 C.4个 D.5个【分析】不等式就是含有不等号,表示不等关系的式子,据此即可判断.【解答】解:不等式有::①3x>5;③1﹣2y≤0;④x﹣2≠0共3个.故选B.【点评】本题考查了不等式的定义,理解定义是关键.19.下列给出四个式子,①x>2;②a≠0;③5<3;④a≥b,其中是不等式的是()A.①④B.①②④C.①③④D.①②③④【分析】根据不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式可得答案.【解答】解:①x>2;②a≠0;③5<3,④a≥b,是不等式,故选:D.【点评】此题主要考查了不等式的概念,关键是掌握凡是用不等号连接的式子都叫做不等式.常用的不等号有“<”、“>”、“≤”、“≥”、“≠”.20.下列式子:①a+b=b+a;②﹣2>﹣5;③x≥﹣1;④y﹣4<1;⑤2m≥n;⑥2x﹣3,其中不等式有()A.2个 B.3个 C.4个 D.5个【分析】主要依据不等式的定义﹣﹣﹣﹣﹣用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【解答】解:②﹣2>﹣5;③x≥﹣1;④y﹣4<1;⑤2m≥n是不等式,故选:C.【点评】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.二.填空题(共20小题)21.某橙汁饮料标签上标有“橙果汁含量≥10%”,该不等式表示的含义是橙果汁含量占饮料含量的百分比不小于10%.【分析】根据不等式的定义可得“橙果汁含量≥10%”表示的含义.【解答】解:“橙果汁含量≥10%”表示的含义是橙果汁含量占饮料含量的百分比不小于10%.故答案为:橙果汁含量占饮料含量的百分比不小于10%.【点评】考查了不等式的定义,本题关键是理解橙汁饮料标签上的含义.22.比较下面两算式结果的大小:(﹣2)2+(﹣1)2>2×(﹣2)×(﹣1)【分析】先通过计算出每个式子的结果,再比较其结果的大小即可求解.【解答】解:(﹣2)2+(﹣1)2=4+1=5,2×(﹣2)×(﹣1)=4,∵5>4,∴(﹣2)2+(﹣1)2>2×(﹣2)×(﹣1).故答案是:>.【点评】本题考查了不等式.只要分别计算出两边的值,再根据比较实数大小的法则进行比较即可解决问题.23.2012年2月5日某市气象台预报该市气温是﹣2~5℃,这表示2月5日该市的最低气温是﹣2℃,最高气温是5℃.设该市2月5日某一时刻气温为t℃,则关于t的不等关系是﹣2≤t≤5.【分析】根据不等式的定义进行解答即可.凡是用不等号连接的式子都叫做不等式.常用的不等号有“<”、“>”、“≤”、“≥”、“≠”.另外,不等式中可含未知数,也可不含未知数.【解答】解:2012年2月5日某市气象台预报该市气温是﹣2~5℃,这表示2月5日该市的最低气温是﹣2℃,最高气温是5℃.设该市2月5日某一时刻气温为t℃,则关于t的不等关系是﹣2≤t≤5.故答案为:﹣2,5,﹣2≤t≤5.【点评】本题考查的是不等式的定义,熟知用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式是解答此题的关键.24.比较下面两算式结果的大小:22+32>2×2×3.【分析】先通过计算出每个式子的结果,再比较其结果的大小即可求解.【解答】解:22+32=4+9=13,2×2×3=12,∵13>12,∴22+32>2×2×3.故答案是:>.【点评】本题考查了不等式.只要分别计算出两边的值,再根据比较实数大小的法则进行比较即可解决问题.25.一种饮料重约300克,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为不少于1.5克.【分析】根据题意求出蛋白质含量的最小值即可.【解答】解:∵某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,∴蛋白质含量的最小值=300×0.5%=1.5克,∴白质的含量不少于1.5克.故答案是:不少于1.5【点评】本题考查的是不等式的定义,根据题意求出蛋白质含量的最小值是解答此题的关键.26.一般地,用符号“<”(或“≤”,“>”,“≥”)连接的式子叫做不等式.【分析】根据不等式的定义进行解答.【解答】解:根据不等式的定义,只要有不等符号的式子就是不等式,故答案是:不等式.【点评】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.27.k的值大于﹣1且不大于3,则用不等式表示k的取值范围是﹣1<k≤3.(使用形如a≤x≤b的类似式子填空.)【分析】根据不大于意思是小于或等于以及大于的意思列出不等式即可.【解答】解:根据题意,得﹣1<k≤3.故填﹣1<k≤3.【点评】此题考查了不等式的定义,解题时要读懂题意,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.28.写出你学过的几何不等号:>,<,≥,≤,≠.【分析】根据不等号的意义,写出答案.【解答】解:我们学过的不等号有:≠、<、>、≤、≥,举例如下:(1)3a≥﹣5,(2)3a≤﹣5,它们的意义不一样,不<即“≥”的意思,不>即“≤”的意思.【点评】熟练掌握所学的不等号:≠、<、>、≤、≥.29.用不等号表示不等关系的式子叫不等式.【分析】根据不等式的定义解答.【解答】解:不等式是表示不等关系的式子;不等号有:“≠”“>”“<”“≥”或“≤”来表示;【点评】考查了不等式的定义,注:不等式可以含有未知数,也可以不含有未知数.30.某天的气温不高于25℃,设这天的气温为t℃笔,那么t与25之间的关系是t≤25.【分析】根据不等式的定义,不高于即小于或等于,故得出答案.【解答】解:根据不等式的定义,不高于即小于或等于,∴t≤25,故答案为t≤25.【点评】本题主要考查了不等式的定义,比较简单.31.坐在行驶在公路上的汽车里会看到不同的交通标志图形,它们有着不同的意义,如图所示;如果设汽车的质量为x,速度为y,宽度为l,高度为h,用不等式表示图中的意义为:(1)x≤5.5;(2)y≤30;(3)h≤3.5;(4)l≤2.【分析】此题抓住关键词为:限重,限速,限高,限宽.【解答】解:由题意可知,限重、限宽、限高、限速中的“限”字的意义就是不超过,也就是“≤”的意义.这样,该题即可迎刃而解.即:x≤5.5,y≤30,h≤3.5,l≤2.故答案是:x≤5.5,y≤30,h≤3.5,l≤2.【点评】本题考查数学不等式在实际生活中的应用.解题的关键是抓住“限”字来确定不等号.32.今年4月某天的最高气温为8℃,最低气温为2℃,则这天气温t℃的t的取值范围是2≤t≤8.【分析】这一天的气温应该大于或等于最低气温而小于或等于最高气温.【解答】解:因为最低气温是2℃,所以2≤t,最高气温是8℃,t≤8,则今天气温t(℃)的范围是2≤t≤8.故答案为:2≤t≤8.【点评】解答此题要知道,t包括2℃和8℃,符号是≤,≥.33.爽爽的贵阳气候宜人,据贵阳晚报报道,2011年5月某日贵阳市最高气温是25℃,最低气温是17℃,则当天贵阳市的气温t(℃)的变化范围是17≤t ≤25.【分析】根据不等式的定义,当天的气温在最低气温与最高气温之间,用不等式写出即可.【解答】解:∵最高气温是25℃,最低气温是17℃,∴气温t(℃)的变化范围是:17≤t≤25.故答案为:17≤t≤25.【点评】本题考查了不等式的定义,熟知不等式的意义是解题的关键.34.x2是非负数表示为:x2≥0.(用适当的符号表示)【分析】所谓非负数就是大于或者等于0.【解答】解:x2是非负数,即他大于或等于0,用符号表示为:x2≥0.故答案为:x2≥0.【点评】主要考查不等式的定义及其表达方式.35.用不等式表示“x与a的平方差不是正数”为x2﹣a2≤0.【分析】“x与a的平方差不是正数”,即“x与a的平方差小于等于0”.【解答】解:由题意得:x2﹣a2≤0.故答案是:x2﹣a2≤0.【点评】本题考查了不等式的定义.解决本题的关键是理解“不是正数”用数学符号应表示为:“≤0”.36.下列式子中:①2<0;②2x﹣3>0;③x=2012;④x2﹣x;⑤x≠0;⑥x+3>x+1,其中是不等式的有①②⑤⑥(填序号)【分析】要依据不等式的定义﹣﹣﹣﹣﹣用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【解答】解:根据不等式的定义,只要有不等符号的式子就是不等式,所以①②⑤⑥为不等式,共有4个.故答案为:①②⑤⑥.【点评】本题考查不等式的定义,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.37.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=﹣4.【分析】解答此题要理解“≥”“≤”的意义,判断出a和b的最值即可解答.【解答】解:因为x≥2的最小值是a,a=2;x≤﹣6的最大值是b,则b=﹣6;则a+b=2﹣6=﹣4,所以a+b=﹣4.故答案为:﹣4.【点评】解答此题要明确,x≥2时,x可以等于2;x≤﹣6时,x可以等于﹣6.38.用不等号“>、<、≥、≤”填空:a2+1>0.【分析】根据非负数的性质可得a2≥0,进而得到a2+1>0.【解答】解:根据a2≥0,∴a2+1>0,故答案为:>.【点评】此题主要考查了非负数的性质,关键是掌握偶次方具有非负性.39.比较下面两算式结果的大小:通过观察,归纳比较20062+20072>2×2006×2007,并写出能反映这种规律的一般结论.【分析】通过作差法比较大小,然后总结出规律,并借助数学知识验证规律是否成立.【解答】解:20062+20072﹣2×2006×2007=(2007﹣2006)2>0,所以20062+20072>2×2006×2007.一般结论:对于任意两个数a、b,a2+b2≥2ab.故答案为:>.【点评】此题考查比较代数式的大小的方法:可使用作差法,即左边式子﹣右边式子;若差大于0,则左>右;若差小于0,则左<右;若差等于0,则左=右.40.吉安市机关公车改革于今年4月1日正式开始实施,小明坐着爸爸新买的小车,在闹市区街道边发现一块标志牌(如图所示),小明知道这表示车速不超过这个字,请你用式子表示在该车道上车辆行驶速度v(km/h)的数值范围:v ≤10.【分析】根据图标可得出行驶速度的范围即可.【解答】解:由图可知:该车道上车辆行驶速度v(km/h)的数值范围v≤10,故答案为v≤10.【点评】本题考查了不等式的定义,掌握图标的意义是解题的关键.三.解答题(共10小题)41.有理数m,n在数轴上如图,用不等号填空.(1)m+n<0;(2)m﹣n<0;(3)m•n>0;(4)m2>n;(5)|m| >|n|.【分析】由数轴得到m<n<0,据此判断各式的大小.【解答】解:由数轴可得m<n<0,(1)两个负数相加,和仍为负数,故m+n<0;(2)相当于两个异号的数相加,符号由绝对值大的数决定,故m﹣n<0;(3)两个负数的积是正数,故m•n>0;(4)正数大于一切负数,故m2>n;(5)由数轴离原点的距离可得,|m|>|n|.【点评】解答此题要明确:两个负数的和是负数,两个负数的积是正数,两个负数比较大小,绝对值大的反而小等.42.在下列各题中的空格处,填上适当的不等号:(1)<;(2)(﹣1)2<(﹣2)2;(3)|﹣a| ≥0;(4)4x2+1>0;(5)﹣x2≤0;(6)2x2+3y+1>x2+3y.【分析】(1)根据两负数比较大小的法则进行比较即可;(2)先求出各数的值,再比较出其大小即可;(3)根据绝对值的性质进行解答即可;(4)、(5)、(6)根据不等式的基本性质进行解答即可.【解答】解:(1)∵﹣<﹣1,﹣>﹣1,∴﹣<﹣.故答案为:<;(2)∵(﹣1)2=1,(﹣2)2=4,1<4,∴(﹣1)2<(﹣2)2.故答案为:<;(3)∵|﹣a|为非负数,∴|﹣a|≥0.故答案为:≥;(4)∵4x2≥0,∴4x2+1>0.故答案为:>;(5)∵x2≥0,∴﹣x2≤0.故答案为:≤;(6)∵2x2≥x2,∴2x2+3y≥x2+3y,∴2x2+3y+1≥x2+3y.故答案为:>.【点评】本题考查的是不等式的基本性质,熟知不等式的基本性质是解答此题的关键.43.已知有理数m,n的位置在数轴上如图所示,用不等号填空.(1)n﹣m<0;(2)m+n<0;(3)m﹣n>0;(4)n+1<0;(5)m•n<0;(6)m+1>0.【分析】了解数轴上数的表示方法:原点右边的是正数,原点左边的是负数,右边的总比左边的数大.根据有理数的运算法则判断结果的符号.同号的两个数相加,取原来的符号;异号的两个数相加,取绝对值较大的数的符号;两个数相减的时候,如果被减数大,则差大于0,否则,差小于0;同号的两个数相乘,积为正数;异号的两个数相乘,积为负数.【解答】解:(1)因为n<0,m>0,所以n﹣m<0;(2)因为n<0、m>0,且|n|>1、|m|<1,所以m+n<0;(3)因为n<0,m>0,所以n﹣m>0;(4)因为n<0,|n|>1,所以n+1<0;(5)因为n<0,m>0,所以m•n<0;(6)因为0<m<1,所以m+1>0.【点评】了解数轴,能够根据有理数的运算法则正确判断结果的符号.44.用适当的符号表示下列关系:(1)x的与x的2倍的和是非正数;(2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的身体不比小刚轻.【分析】(1)非正数用“≤”表示;(2)、(4)不小于就是大于等于,用“≥”来表示;(3)不高于就是等于或低于,用“≤”表示;(5)不比小刚轻,就是与小刚一样重或者比小刚重.用“≥”表示.【解答】解:(1)x+2x≤0;(2)设炮弹的杀伤半径为r,则应有r≥300;(3)设每件上衣为a元,每条长裤是b元,应有3a+4b≤268;(4)用P表示明天下雨的可能性,则有P≥70%;(5)设小明的体重为a千克,小刚的体重为b千克,则应有a≥b.【点评】本题考查了不等式的定义.一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.45.某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,其中蛋白质的含量为多少克?【分析】根据题意求出蛋白质含量的最小值即可.【解答】解:∵某种饮料重约300g,罐上注有“蛋白质含量≥0.5%”,∴蛋白质含量的最小值=300×0.5%=1.5克,∴蛋白质的含量不少于1.5克.【点评】本题考查的是不等式的定义,根据题意求出蛋白质含量的最小值是解答此题的关键.46.在数轴上有A,B两点,其中点A所对应的数是a,点B所对应的数是1.已知A,B两点的距离小于3,请你利用数轴.(1)写出a所满足的不等式;(2)数﹣3,0,4所对应的点到点B的距离小于3吗?【分析】根据数轴上两点之间的距离为这两个数差的绝对值,列出不等式并解出结果.【解答】解:(1)根据题意得:|a﹣1|<3,得出﹣2<a<4,(2)由(1)得:到点B的距离小于3的数在﹣2和4之间,∴在﹣3,0,4三个数中,只有0所对应的点到B点的距离小于3.【点评】本题考查了数轴上两点之间的距离为两个数差的绝对值,以及解不等式,难度适中.47.在生活中不等关系的应用随处可见.如图表示机动车驶入前方道路的最低时速限制.此标志设在高速公路或其他道路限速路段的起点,你会表示这些不等关。

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。

七年级下-专题 不等式与不等式组的含参问题(解析版)

七年级下-专题 不等式与不等式组的含参问题(解析版)

七年级下册数学《第九章不等式与不等式组》专题不等式与不等式组的含参问题【例题1】若不等式(a﹣3)x>2的解集是x<2�−3,则a的取值范围是()A.a≠3B.a>3C.a<3D.a≤3【分析】根据不等式的性质可得a﹣3<0,由此求出a的取值范围.2�−3,【解答】解:∵(a﹣3)x>2的解集为x<∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故选:C.【点评】本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a﹣3小于0.【变式1-1】关于x的不等式(a﹣1)x>b的解集是x>��−1,则a的取值范围是()A.a<0B.a>0C.a<1D.a>1【分析】直接利用不等式的性质,得出a﹣1>0,进而得出答案.【解答】解:∵不等式(a﹣1)x>b的解集是x>��−1,∴a﹣1>0,解得:a>1.故选:D.【点评】此题主要考查了不等式的解集,正确得出a﹣1的符号是解题关键.【变式1-2】(2022•南京模拟)如果关于x的不等式(m﹣2)x>3解集为�<3�−2,则m的取值范围是()A.m≤2B.m≥2C.m<2D.m>2【分析】利用不等式的基本性质3:不等式的两边都乘以或除以同一个负数,不等号的方向改变.可得m﹣2<0,然后进行计算即可解答.【解答】解:∵关于x的不等式(m﹣2)x>3解集为�<3�−2,∴m﹣2<0,解得:m<2,故选:C.【点评】本题考查了不等式的基本性质,一元一次不等式的解法,掌握“不等式的基本性质”是解本题的关键.【变式1-3】(2022春•南山区期末)关于x的不等式(m+2)x>(m+2)的解集为x<1,那么m的取值范围是()A.m>0B.m<0C.m>﹣2D.m<﹣2【分析】根据不等式(m+2)x>(m+2)的解集为x<1,知m+2<0,解之即可.【解答】解:∵关于x的不等式(m+2)x>(m+2)的解集为x<1,∴m+2<0,解得m<﹣2,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.【变式1-4】(2022春•锦江区校级期中)若关于x的不等式(m﹣1)x<2的解集是x>2�−1,则m的取值范围是()A.m>1B.m<1C.m≠1D.m≤1【分析】根据不等式的性质得m﹣1<0,然后解关于m的不等式即可.【解答】解:∵关于x的不等式(m﹣1)x<2的解集里x>2�−1,∴m﹣1<0,∴m<1.故选:B.【点评】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式.基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.【变式1-5】(2022•南京模拟)若(a+3)x>a+3的解集为x<1,则a必须满足()A.a<0B.a>﹣3C.a<﹣3D.a>3【分析】根据已知解集,利用不等式的基本性质判断即可.【解答】解:∵(a+3)x>a+3的解集为x<1,∴a+3<0,解得:a<﹣3.故选:C.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.【变式1-6】(2023春•新城区校级月考)当m时,不等式(m+3)x≥2的解集是�≤2�+3.【分析】根据不等式的性质3(不等式的两边都乘以或除以同一个负数,不等号的方向要改变)得出m+3<0,求出即可.【解答】解:∵不等式(m+3)x≥2的解集是x≤2�+3,∴m+3<0,∴m <﹣3,故答案为:<﹣3.【点评】本题考查的是解一元一次不等式,熟知不等式的两边都乘以或除以同一个负数,不等号的方向要改变是解题的关键.【例题2】(2022秋•常德期末)关于x 的不等式组�>�−1�>�+2的解集是x >﹣1,则m=.【分析】根据同大取大,可得出关于m 的方程,求出m 的值即可.【解答】解:由�>�−1�>�+2的解集是x >﹣1,得∵m +2>m ﹣1,∴m +2=﹣1,解得m =﹣3,故答案为:﹣3.【点评】本题考查的是解一元一次不等式组,利用同大取大是解题关键.【变式2-1】(2023春•北碚区校级月考)关于x 的一元一次不等式13(��−1)>2−�的解集为x <﹣4,则m 的值是.【分析】先用含有m 的式子把原不等式的解集表示出来,然后和已知解集进行比对得出关于m 的方程,解之可得m 的值.【解答】解:13(��−1)>2−�13��−13>2−�,13��>73−�,mx >7﹣3m ,∵不等式13(��−1)>2−�的解集为x <﹣4,∴�<0,�<7−3��,∴7−3��=−4,∴7﹣3m =﹣4m ,∴m =﹣7,故答案为:﹣7.【点评】本题主要考查解一元一次不等式,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.【变式2-2】(2022春•顺德区校级期中)关于x 的一元一次不等式�−2�3≤−2的解集为x ≥4,则m 的值为()A .14B .7C .﹣2D .2【分析】先用含有m 的式子把原不等式的解集表示出来,然后和已知解集进行比对得出关于m 的方程,解之可得m 的值.【解答】解:解不等式�−2�3≤−2得:x ≥�+62,∵不等式的解集为x ≥4,∴�+62=4,解得m =2,故选:D .【点评】本题主要考查解一元一次不等式,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.【变式2-3】如图,是关于x 的不等式2x ﹣a ≤﹣1的解集,则a 的值为()A .a =﹣2B .a =﹣1C .a ≤﹣2D .a ≤﹣1【分析】解不等式得出x ≤�−12,结合数轴知x ≤﹣1,据此可得关于a 的方程,解之可得答案.【解答】解:由数轴上表示不等式解集的方法可知,此不等式的解集为x ≤﹣1,解不等式2x ﹣a ≤﹣1得,x ≤�−12,即�−12=−1,解得a =﹣1.故选:B .【点评】本题主要考查解一元一次不等式,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.【变式2-4】(2022春•西峡县期中)若关于x 的不等式2�+9>6�+1�−�<1的解集为x <2,则a 取值范围是.【分析】求出每个不等式的解集,根据已知得出关于k 的不等式,求出不等式的解集即可.【解答】解:解不等式组2�+9>6�+1①�−�<1②,得�<2�<�+1.∵不等式组2�+9>6�+1①�−�<1②的解集为x<2,∴a+1≥2,解得a≥1.故答案为:a≥1.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集和已知得出关于k的不等式,难度适中.【变式2-5】(2023•永定区一模)不等式组3�−9>0�>�的解集为x>3,则m的取值范围为.【分析】先求出不等式组的解集,再根据已知条件判断m范围即可.【解答】解:3�−9>0①�>�②,解不等式①得:x>3,又因为不等式组的解集为:x>3,x>m,∴m≤3.故答案为:m≤3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出m的范围是解此题的关键.【变式2-6】(2022春•武汉期末)若不等式�+16−2�−54≥1的解都能使不等式4x<2x+a+1成立,则实数a的取值范围是()A.a≥1.5B.a>1.5C.a<7D.1.5<a<7【分析】解不等式�+16−2�−54≥1得x≤54,解不等式4x<2x+a+1得x<�+12,根据题意得到关于a 的不等式,再解关于a 的不等式即可得出答案.【解答】解:解不等式�+16−2�−54≥1得x ≤54,解不等式4x <2x +a +1得x <�+12,∵不等式�+16−2�−54≥1的解都能使不等式4x <2x +a +1成立,∴�+12>54,∴a >1.5,故选:B .【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤和依据及不等式的基本性质.【变式2-7】(2022春•南关区校级期中)关于x 的不等式组3�−6>0�−�>−2的解集是2<x<5,则a 的值为.【分析】分别求出每一个不等式的解集,根据不等式组的解集可得关于a 的方程,解之即可.【解答】解:由3x ﹣6>0得:x >2,由a ﹣x >﹣2得:x <a +2,∵不等式组的解集为2<x <5,∴a +2=5,解得a =3,故答案为:3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【变式2-8】(2022秋•西湖区期中)已知关于x 的不等式组�−1≥�2�−�<3的解集为3≤x <5,则a +b =.【分析】先求出不等式组的解集,根据已知不等式组的解集是3≤x <5得出a +1=3,3+�2=5,求出a 、b ,再求出a +b 即可.【解答】解:�−1≥�①2�−�<3②,解不等式①,得x ≥a +1,解不等式②,得x <3+�2,所以不等式组的解集是a +1≤x <3+�2,∵关于x 的不等式组�−1≥�2�−�<3的解集为3≤x <5,∴a +1=3,3+�2=5,∴a =2,b =7,∴a +b =2+7=9,故答案为:9.【点评】本题考查了解一元一次不等式组,能根据不等式组的解集得出a +1=3和3+�2=5是解此题的关键.【变式2-9】若不等式组:�−�>2�−2�>0的解集是﹣1<x <1,则(a +b )2022=()A .﹣1B .0C .1D .2023【分析】分别求出每一个不等式的解集,根据不等式组的解集得出a 、b 的值,再代入计算即可.【解答】解:由x ﹣a >2,得x >a +2,由b ﹣2x >0,得x <�2,∵不等式组的解集为﹣1<x <1,∴a +2=﹣1,�2=1,解得a =﹣3,b =2,∴(a +b )2022=(﹣3+2)2022=(﹣1)2022=1,故选:C .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【例题3】(2022秋•零陵区期末)若关于x 的不等式组2�−6+�<04�−�>0有解,则m 的取值范围是()A .m ≤4B .m <4C .m ≥4D .m >4【分析】先根据不等式的性质求出不等式的解集,再根据不等式组有解得出3−12m <�4,再求出不等式的解集即可.【解答】解:2�−6+�<0①4�−�>0②,解不等式①,得x <3−12m ,解不等式②,得x >�4,∵关于x 的不等式组2�−6+�<04�−�>0有解,∴3−12m >�4,解得:m <4,故选:B .【点评】本题考查了解一元一次不等式组和解一元一次不等式,能得出关于m 的不等式是解此题的关键.【变式3-1】(2022春•漳州期末)若不等式组�−4<0�≥�有解,则m 的值可以是()A .3B .4C .5D .6【分析】先求出不等式①的解集,再根据不等式组有解得出m <4,再逐个判断即可.【解答】解:�−4<0①�≥�②,解不等式①,得x <4,∵不等式组�−4<0�≥�有解,∴m <4,A .∵3<4,∴m 能为3,故本选项符合题意;B .∵4=4,∴m不能为4,故本选项不符合题意;C.∵5>4,∴m不能为5,故本选项不符合题意;D.∵6>4,∴m不能为6,故本选项不符合题意;故选:A.【点评】本题考查了解一元一次不等式组,能根据不等式组有解得出m的取值范围是解此题的关键.【变式3-2】(2023春•中原区校级期中)若关于x的不等式组�<4�−�+8<0有解,则m的取值范围为.【分析】先根据不等式的性质求出不等式的解集,再根据不等式组有解得出4m≥8,再求出不等式的解集即可.【解答】解:解不等式﹣x+8<0,得x>8,∵关于x的不等式组�<4�−�+8<0有解,∴4m>8,解得:m>2,故答案为:m>2.【点评】本题考查了解一元一次不等式组和解一元一次不等式,能得出关于m的不等式是解此题的关键.【变式3-3】(2023春•莘县期中)已知关于x的不等式组�−�≥05−2�>1无解,则实数a的取值范围是.【分析】首先解每个等式,然后根据不等式组无解即可确定关于a的不等式,从而求解.【解答】解:�−�≥0⋯①5−2�>1⋯②,解①得x≥a,解②得x<2.根据题意得:a≥2.故答案是:a≥2.【点评】本题考查了一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【变式3-4】(2022春•兖州区期末)若不等式组�<�+1�>2�−1无解,则m的取值范围是()A.m<2B.m≤2C.m≥2D.无法确定【分析】根据不等式组无解得出不等式2m﹣1≥m+1,再求出不等式的解集即可.【解答】解:∵不等式组�<�+1�>2�−1无解,∴2m﹣1≥m+1,解得:m≥2,故选:C.【点评】本题考查了解一元一次不等式组和解一元一次不等式,能得出关于m的不等式是解此题的关键.【变式3-5】(2022春•都江堰市校级期中)若关于x的一元一次不等式组2�−�>02�−1+3�2<1无解,则a的取值范围.【分析】先求出每个不等式的解集,再根据不等式组无解得出关于a的不等式,再求出不等式的解集即可.【解答】解:2�−�>0①2�−1+3�2<1②,解不等式①,得x>�2,解不等式②,得x<3,∵关于x的一元一次不等式组2�−�>02�−1+3�2<1无解,∴�2≥3,解得:a≥6,故答案为:a≥6.【点评】本题考查了解一元一次不等式组,能得出关于a的不等式�2≥3是解此题的关键.【变式3-6】(2022春•齐河县期末)关于x的方程k﹣2x=3(k﹣2)的解为非负数,且关于x的不等式组�−2(�−1)≤32�+�3≥�有解,则符合条件的整数k的值的和为()A.4B.5C.2D.3【分析】求出每个不等式的解集,根据不等式组有解得出k≥﹣1,解方程得出x=﹣k+3,由方程的解为非负数知﹣k+3≥0,据此得k≤3,从而知﹣1≤k≤3,继而可得答案.【解答】解:解不等式x﹣2(x﹣1)≤3,得:x≥﹣1,解不等式2�+�3≥x,得:x≤k,∵不等式组有解,∴k ≥﹣1,解方程k ﹣2x =3(k ﹣2),得:x =﹣k +3,∵方程的解为非负数,∴﹣k +3≥0,解得k ≤3,则﹣1≤k ≤3,∴符合条件的整数k 的值的和为﹣1+0+1+2+3=5,故选:B .【点评】本题考查的是解一元一次方程和一元一次不等式组,正确求出每一个不等式解集和一元一次方程的解是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【变式3-7】(2022春•大渡口区校级期中)关于x 的方程3(k ﹣2﹣x )=3﹣5x 的解为非负数,且关于x 的不等式组�−2(�−1)≥32�+�3≤�无解,则符合条件的整数k 的值的和为()A .5B .2C .4D .6【分析】先解出方程的解和不等式组的解集,再根据题意即可确定k 的取值范围,从而可以得到符合条件的整数,然后相加即可.【解答】解:由方程3(k ﹣2﹣x )=3﹣5x ,得x =9−3�2,∵关于x 的方程3(k ﹣2﹣x )=3﹣5x 的解为非负数,∴9−3�2≥0,得k ≤3,�−2(�−1)≥3①2�+�3≤�②,由不等式①,得:x ≤﹣1,由不等式②,得:x ≥k ,∵关于x 的不等式组�−2(�−1)≥32�+�3≤�无解,∴k >﹣1,由上可得,k 的取值范围是﹣1<k ≤3,∴k 的整数值为0,1,2,3,∴符合条件的整数k 的值的和为:0+1+2+3=6,故选:D .【点评】本题考查解一元一次方程、解一元一次不等式组,解答本题的关键是求出k 的取值范围.【变式3-8】(2022秋•北碚区校级期末)若整数a 使关于x 的方程4�+12=4−�−2�2的解为非负数,且使关于y 的不等式组2�−13<−1+�32�−�4≥0的解集为y <﹣2,则符合条件的所有整数a 的和为()A .20B .21C .27D .28【分析】先求出方程的解,根据方程的解为非负数得出7−�2≥0,求出a ≤7,求出不等式组中每个不等式的解集,根据不等式组的解集为y ≤﹣2得出﹣2≤2a ,求出a ≥﹣1,得出﹣1≤a ≤7,求出整数a ,再求出和即可.【解答】解:解方程4�+12=4−�−2�2得:x =7−�2,∵整数a 使关于x 的方程4�+12=4−�−2�2的解为非负数,∴7−�2≥0,解得:a ≤7,2�−13<−1+�3①2�−�4≥0②,解不等式①,得y <﹣2,解不等式②,得y ≤2a ,∵不等式组2�−13<−1+�32�−�4≥0的解集为y <−2,∴﹣2≤2a ,∴a ≥﹣1,即﹣1≤a ≤7,∵a 为整数,∴a 为﹣1,0,1,2,3,4,5,6,7,和为﹣1+0+1+2+3+4+5+6+7=27,故选:C .【点评】本题考查了解一元一次不等式组,解二元一次方程组等知识点,能求出a 的取值范围是解此题的关键.【例题4】(2022秋•余姚市校级期末)已知关于x 的不等式3x ﹣a ≥1只有两个负整数解,则a 的取值范围是()A .﹣10<a <﹣7B .﹣10<a ≤﹣7C .﹣10≤a ≤﹣7D .﹣10≤a <﹣7【分析】先解不等式得出�≥�+13,根据不等式只有2个负整数解知其负整数解为﹣1和﹣2,据此得出−3<�+13≤−2,解之可得答案.【解答】解:∵3x ﹣a ≥1,∴�≥�+13,∵不等式只有2个负整数解,∴不等式的负整数解为﹣1和﹣2,则−3<�+13≤−2,解得:﹣10<a ≤﹣7.故选:B .【点评】本题主要考查一元一次不等式的整数解,解题的关键是熟练掌握解不等式的基本步骤和依据,并根据不等式的整数解的情况得出某一字母的不等式组.【变式4-2】(2023•大庆一模)若关于x 的不等式3x ﹣2m <x ﹣m 只有3个正整数解,则m 的取值范围是.【分析】首先解关于x 的不等式,然后根据x 只有3个正整数解,来确定关于m 的不等式组的取值范围,再进行求解即可.【解答】解:由3x ﹣2m <x ﹣m 得:�<�2,关于x不等式3x﹣2m<x﹣m只有3个正整数解,∴3≤�2<4,∴6≤m<8,故答案为:6≤m<8.【点评】本题考查了解不等式及不等式的整数解,熟练掌握解不等式的步骤是解题的关键.【变式4-3】(2022秋•海曙区期末)若关于x的不等式2﹣m﹣x>0的正整数解共有3个,则m的取值范围是()A.﹣1≤m<0B.﹣1<m≤0C.﹣2≤m<﹣1D.﹣2<m≤﹣1【分析】首先解关于x的不等式,求得不等式的解集,然后根据不等式只有3个正整数解,即可得到一个关于m的不等式组求得m的范围.【解答】解:解不等式2﹣m﹣x>0得:x<2﹣m,根据题意得:3<2﹣m≤4,解得:﹣2≤m<﹣1.故选:C.【点评】本题考查了一元一次不等式的整数解,此题比较简单,根据x的取值范围正确确定2﹣m的范围是解题的关键.在解不等式时要根据不等式的基本性质.【变式4-4】(2022•贵阳模拟)若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<12【分析】解关于x的不等式求得x≤�3,根据不等式的正整数解的情况列出关于m的不等式组,解之可得.【解答】解:移项,得:3x≤m,系数化为1,得:x≤�3,∵不等式的正整数解为1,2,3,∴3≤�3<4,解得:9≤m<12,故选:D.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.【变式4-5】(2023春•涡阳县期中)关于x5)<3�−8的解集中仅有﹣1和0两个整数解,且10a=2m+5,则m的取值范围是()A.﹣2.5<m≤2.5B.﹣2.5≤m≤2.5C.0<m≤2.5D.2<m≤2.5【分析】先根据不等式组的解集中仅有﹣1和0两个整数解,求出a的取值范围,再根据10a=2m+5,得m的取值范围即可.【解答】解:解不等式组得�<��>−2,∵不等式组解集中仅有﹣1和0两个整数解,∴0<a≤1,∵10a=2m+5,∴m=5a﹣2.5,∵﹣2.5<5a﹣2.5≤2.5,∴m的范围是﹣2.5<m≤2.5.故选:A .【点评】此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.【变式4-6】(2022秋•巴南区校级期中)若关于x≥2�4(�+1)有解,且最多有3个整数解,且关于y 的方程3y ﹣2=2�−3(8−�)2的解为非负整数,则符合条件的所有整数m 的和为()A .23B .26C .29D .39【分析】先解一元一次不等式组,根据题意可得2≤3�10<5,再解一元一次方程,根据题意可得2�−203≥0且2�−20310≤m <503且2�−203为整数,然后进行计算即可解答.≥2�①4(�+1)②,解不等式①得:x ≤3�10,解不等式②得:x ≥32,∵不等式组有解且至多有3个整数解,∴2≤3�10<5,∴203≤m <503,3y ﹣2=2�−3(8−�)2,解得:y =2�−203,∵方程的解为非负整数,∴2�−203≥0且2�−203为整数,∴m ≥10且2�−203为整数,综上所述:10≤m <503且2�−203为整数,∴m =10,13,16,∴满足条件的所有整数m 的和,10+13+16=39,故选:D .【点评】本题考查了一元一次方程的解,一元一次不等式组的整数解,准确熟练地进行计算是解题的关键.【变式4-7】(2022春•兴文县期中)已知关于x 的不等式组2�+4>03�−�<6.(1)当k 为何值时,该不等式组的解集为﹣2<x <2?(2)若该不等式组只有4个正整数解,求k 的取值范围.【分析】(1)解不等式组得到其解集,结合已知的解集明确6+�3=2,即可求出k 的值;(2)根据(1)的结论和不等式组只有四个正整数解,可得关于k 的不等式组,再解不等式组即可.【解答】解:(1)不等式组2�+4>03�−�<6,解不等式2x +4>0得:x >﹣2,解不等式3x ﹣k <6得:�<6+�3,∴该不等式组的解集为−2<�<6+�3.∵﹣2<x <2,∴6+�3=2,∴k =0,即k =0时,该不等式组的解集为﹣2<x <2.(2)由(1)知,不等式组2�+4>03�−�<6的解集为−2<�<6+�3,∵该不等式组只有4个正整数解,∴x =1,2,3,4,∴4<6+�3≤5,∴6<k ≤9.【点评】本题考查解一元一次不等式组,属于常考题型,第2问有一定难度,根据原不等式组解集的情况得出关于k 的不等式组是解题的关键.【变式4-8】(2022春•淮北月考)已知关于x 的不等式组�>−1�≤1−�(1)当k =﹣2时,求不等式组的解集;(2)若不等式组的解集是﹣1<x ≤4,求k 的值;(3)若不等式组有三个整数解,则k 的取值范围是.【分析】(1)将k =﹣2代入不等式组,然后利用“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则确定不等式组的解集;(2)利用“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则确定k 的取值范围;(3)根据不等式组中x >﹣1确定不等式组的整数解,然后利用“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则确定k 的取值范围.【解答】解:(1)当k =﹣2时,1﹣k =1﹣(﹣2)=3,∴原不等式组解得:x>−1x≤3,∴不等式组的解集为:﹣1<x≤3;(2)当不等式组的解集是﹣1<x≤4时,1﹣k=4,解得k=﹣3;(3)由x>﹣1,当不等式组有三个整数解时,则不等式组的整数解为0、1、2,又∵x≤2且x≤1﹣k,∴2≤1﹣k<3,1≤﹣k<2,解得﹣2<k≤﹣1.故答案为:﹣2<k≤﹣1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【变式4-9】(2022•南京模拟)已知关于x的不等式组5�+1>3(�−1)12�≤8−32�+2�恰有三个整数解.(1)求a的取值范围.(2)化简|a+3|﹣2|a+2|.【分析】(1)先求出每个不等式的解集,然后求出不等式组的解集,再根据不等式组恰好有三个整数解进行求解即可;(2)根据(1)所求可得a+3≥0,a+2<0,由此化简绝对值即可.【解答】解:(1)5�+1>3(�−1)①12�≤8−32�+2�②,解不等式①得:x >﹣2,解不等式②得:x ≤4+a ,∴不等式组的解集为﹣2<x ≤4+a ,∵不等式组前有三个整数解,∴1≤4+a <2,∴﹣3≤a <﹣2;(2)∵﹣3≤a <﹣2,∴a +3≥0,a +2<0,∴|a +3|﹣2|a +2|=a +3+2(a +2)=a +3+2a +4=3a +7.【点评】本题主要考查了根据不等式组的解集情况求参数,化简绝对值,正确求出不等式组的解集是解题的关键.【例题5】(2022秋•西湖区校级期中)关于x 的方程组�−�=�−2�+2�=2�+1的解满足2x +y>2,则m 的取值范围是.【分析】两方程相加得到2x +y =3m ﹣1,结合2x +y >2列出关于m 的不等式,解之可得【解答】解:�−�=�−2①�+2�=2�+1②,①+②得:2x +y =3m ﹣1,∵2x+y>2,∴3m﹣1>2,∴m>1,故答案为:m>1.【点评】本题主要考查解二元一次方程组,考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键.【变5-1】(2022春•长泰县期中)已知方程组2�+�=3+��+2�=1−�的解满足x﹣y<0,则()A.m>﹣1B.m>1C.m<﹣1D.m<1【分析】方程组两方程相减表示出x﹣y,代入已知不等式求出m的范围即可.【解答】解:2�+�=3+�①�+2�=1−�②,①﹣②得:x﹣y=2m+2,代入x﹣y<0得:2m+2<0,解得:m<﹣1.故选:C.【点评】此题考查了解一元一次不等式,以及二元一次方程组的解,熟练掌握不等式的解法是解本题的关键.【变5-2】(2022春•建邺区校级期末)若方程组2�+�=3+��+2�=−1−�的解满足x<y,则a 的取值范围是()A.a<﹣2B.a<2C.a>﹣2D.a>2【分析】将方程组中两方程相减,表示出x﹣y,代入x﹣y<0中,即可求出a的范围.【解答】解:2�+�=3+�①�+2�=−1−�②,①﹣②得:x ﹣y =4+2a ,∵x <y ,∴x ﹣y <0,∴4+2a <0,∴a <﹣2.故选:A .【点评】此题考查了解二元一次方程组,以及解一元一次不等式,表示出x ﹣y 是解本题的关键.【变5-3】(2022春•偃师市校级期中)已知不等式4−5�2−1<6的负整数解是方程2x ﹣3=ax 的解.求关于x 的一元一次不等式组7(�−�)−3�>−1115�+2<�的解集及其所有整数解的和.【分析】先求出不等式4−5�2−1<6的负整数解,再解方程求出a 的值,代入不等式组,求出不等式组的解集即可得答案.【解答】解:∵4−5�2−1<6,4﹣5x ﹣2<12,﹣5x <10,x >﹣2,∴不等式的负整数解是﹣1,把x =﹣1代入2x ﹣3=ax 得:﹣2﹣3=﹣a ,解得:a =5,把a=5代入不等式组得7(�−5)−3�>−11 15�+2<5,解不等式组得:6<x<15.∴所有整数解的和7+8+9+10+11+12+13+14=84.【点评】本题考查了解一元一次不等式及整数解,解一元一次方程,解不等式组的应用,主要考查学生的计算能力.【变5-4】(2022春•雁江区校级期中)已知a是不等式组5�−1>3(�+1)12�−1<7−32�的整数解,x,y满足方程组��−2�=8�+2�=0,求(x﹣y)(x2+xy+y2)的值.【分析】先解不等式组确定a的整数值,再将a值代入关于x、y的二元一次方程组中求解,最后求得(x+y)(x2﹣xy+y2)的值.【解答】解:解不等式①得:a>2,解不等式②得:a<4,∴不等式组的解集是:2<a<4,∴不等式组的整数解是3,∴方程组为3�−2�=8�+2�=0,解得�=2�=−1,∴(x+y)(x2﹣xy+y2)=(﹣1+2)(4+2+1)=7.【点评】本题考查了解一元一次不等式组,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取大,同小取小,小大大小中间找,大大小小解不了;也考查了解二元一次方程组以及求代数式的值.【变5-5】(2022春•南关区校级期中)若关于x、y的二元一次方程组5�+2�=5�7�+4�=4�的解满足不等式组2�+�<5�−�>−9,求出整数a的所有值.【分析】解方程组5�+2�=5�7�+4�=4�得出�=2��=−52�,代入不等式组2�+�<5�−�>−9得到关于a的不等式组,解之可得.【解答】解:5�+2�=5�①7�+4�=4�②,①×2﹣②,得:3x=6a,解得:x=2a,将x=2a代入①,得:10a+2y=5a,解得:y=−52a,∴方程组的解为�=2��=−5 2�.将�=2��=−52�代入不等式组组2�+�<5�−�>−9,得:4�−52�<5 2�+52�>−9,解得:﹣2<a<10 3,∴整数a的所有值为﹣1、0、1、2、3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.也考查了解二元一次方程组.�+4�=2+�的解满足﹣1<x+y≤3.【变5-6】(2023春•河南期中)已知方程组2�−�=1+2�(1)求a的取值范围;(2)当a为何整数时,不等式2ax﹣x>2a﹣1的解集为x<1?【分析】(1)两个方程相加可得出x+y=a+1,根据﹣1<x+y≤3列出关于a的不等式,解之可得答案;(2)根据不等式2ax﹣x>2a﹣1的解集为x<1、a为整数和(1)中a的取值范围,可以求得a的值.【解答】解:(1)两个方程相加可得3x+3y=3a+3,则x+y=a+1,根据题意,得:﹣1<a+1≤3,解得﹣2<a≤2,即a的取值范围是﹣2<a≤2;(2)由不等式2ax﹣x>2a﹣1,得(2a﹣1)x>2a﹣1,∵不等式2ax﹣x>2a﹣1的解集为x<1,∴2a﹣1<0,得a<0.5,又∵﹣2<a≤2且a为整数,∴a=﹣1,0,即a的值是﹣1或0.【点评】本题考查解二元一次方程组、解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确题意,利用不等式的性质解答.【变5-7】(2022春•威远县校级期中)已知方程组�+�=−7−��−�=1+3�的解满足x 为非正数,y 为负数.(1)求m 的取值范围;(2)当m 为何整数时,不等式2mx +x <4m +2的解集为x >2.【分析】(1)解方程组得�=�−3�=−2�−4,根据x 为非正数,y 为负数得�−3≤0①−2�−4<0②,解之可得答案;(2)由不等式2mx +x <2m +1,即(2m +1)x <2m +1的解集为x >1知2m +1<0,解之得出m <−12,再从﹣2<m ≤3中找到符合此条件的整数m 的值即可.【解答】解:(1)解方程组得�=�−3�=−2�−4,∵x 为非正数,y 为负数,∴�−3≤0①−2�−4<0②,解不等式①,得:m ≤3,解不等式②,得:m >﹣2,则不等式组的解集为﹣2<m ≤3;(2)∵不等式2mx +x <4m +2,即(2m +1)x <4m +2的解集为x >2,∴2m +1<0,解得m <−12,在﹣2<m ≤3中符合m <−12的整数为﹣1.【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【变5-8】(2022春•定远县校级期末)已知不等式组3(2�−1)<2�+8①2+3(�+1)8>3−�−14②.(1)求此不等式组的解集,并写出它的整数解;(2)若上述整数解满足不等式ax+6≤x﹣2a,化简|a+1|﹣|a﹣1|.【分析】(1)先解出每个不等式的解集,即可得到不等式组的解集,然后再写出它的整数解即可;(2)将(1)中的结果代入不等式ax+6≤x﹣2a,然后求出a的取值范围,再判断a+1和a ﹣1的正负情况,然后将所求式子去掉绝对值,再化简即可.【解答】解:(1)3(2�−1)<2�+8①2+3(�+1)8>3−�−14②,由①得:�<11 4,由②得:�>7 5,∴不等式组的解集为75<�<114,∴不等式组的整数解为x=2;(2)将x=2代入不等式ax+6≤x﹣2a,得:2a+6≤2﹣2a,解得a≤﹣1,∴a+1≤0,a﹣1≤﹣2,∴|a+1|﹣|a﹣1|=﹣(a+1)﹣(1﹣a)=﹣a﹣1﹣1+a=﹣2.【点评】本题考查解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.【变5-9】(2022春•乐安县期中)若关于x�−13�≤4−�恰有2个整数解,且关于x ,y 的方程组��+�=43�−�=0也有整数解,求出所有符合条件的整数m 的值.【分析】表示出不等式组的解集,由不等式组恰有2个整数解,确定出m 的范围,再由方程组有整数解,确定出符合题意整数m 的值即可.【解答】解:不等式组整理得:�>−2�≤�+45,∵不等式组恰有2个整数解,∴﹣2<x ≤�+45,即整数解为﹣1,0,∴0≤�+45<1,解得:﹣4≤m <1,即整数m =﹣4,﹣3,﹣2,﹣1,0,方程组��+�=4①3�−�=0②,①+②得:(m +3)x =4,解得:x =4�+3,把x =4�+3代入②得:y =12�+3,∵方程组的解为整数,∴m =﹣4,﹣2,﹣1.【点评】此题考查了解一元一次不等式组的整数解,以及二元一次方程组的解,熟练掌握各自的性质是解本题的关键.。

七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤ 3.不等式组1322<4x x ->⎧⎨-⎩的解集是( ) A .4x > B .1x >- C .14x -<< D .1x <- 4.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- 5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > 6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2 8.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-9.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a <-2B .a ≤-2C .a >-2D .a ≥-2 10.不等式1322x x -+>的解在数轴上表示正确的是( )A .B .C .D . 11.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 12.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3 二、填空题13.a b ≥,1a -+_____1b -+14.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.15.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 16.定义一种法则“⊗”如下:()()a a b a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.17.不等式组210360x x ->⎧⎨-<⎩的解集为_______. 18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.19.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.20.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.三、解答题21.解下列不等式(组):(1)2132x x -≤; (2)把它的解集表示在数轴上.3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩22.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 23.解不等式组:365(2)543123x x x x +-⎧⎪--⎨-<⎪⎩,并求出最小整数解与最大整数解的和. 24.(1)解方程组:35427x y x y -=⎧⎨+=⎩; (2)解不等式组:()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩. 25.不等式组3(2)4,21152x x x x --≥⎧⎪-+⎨<⎪⎩的解集为_______. 26.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x x x +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①② 解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.A解析:A【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩,解之即可得出x 的取值范围. 【详解】解:依题意,得:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩①②, 由①得:936x ≤4x ∴≤,由②得:()398x ->30,98x ∴->10,x >2,所以不等式组的解集为:24x <≤.故选:A .【点睛】本题考查了程序框图中的一元一次不等式组的应用,找准不等关系,正确列出一元一次不等式组是解题的关键.3.A解析:A【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集.【详解】解:解不等式13x ->得4x >,解不等式224x -<得1x >-,∴不等式组的解集为4x >.【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.C解析:C根据解一元一次不等式的方法解答即可.【详解】解:去括号,得2539x x ->-,移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <.故选:C .【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.5.C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.B解析:B【详解】设可打x 折,则有1200×10x -800≥800×5%,即最多打7折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.7.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.8.A解析:A【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-+⋯⎧⎨+⋯⎩=①=②①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>-2.故选:A.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.9.D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122 x ax x->⎧⎨->-⎩①②解①得:x>a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.10.B解析:B【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:∵1322x x -+>, ∴3122x x >+, ∴3322x <, ∴1x <, 将不等式解集表示在数轴上如下:故选:B .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.11.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.12.B解析:B【分析】直接利用单项式乘多项式得出a 的值,进而解不等式得出答案.【详解】解:∵x (x +a )=x 2﹣x ,∴x 2+ax =x 2﹣x ,∴a =﹣1,则不等式ax +3>0即为﹣x +3>0的解集是:x <3.故选:B .【点睛】此题主要考查了单项式乘多项式以及解不等式,正确得出a 的值是解题关键.二、填空题13.≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号. 14.15【分析】设至少答对x道题总分才不会低于6根据对1题给5分错1题扣3分不答题不给分也不扣分小华有3题未做总分不低于65分可列不等式求解【详解】解:设至少答对x道题总分才不会低于6根据题意得5x-3解析:15【分析】设至少答对x道题,总分才不会低于6,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于65分,可列不等式求解.【详解】解:设至少答对x道题,总分才不会低于6,根据题意,得5x-3(20-x-3)≥65,解之得x≥14.5.答:至少答对15道题,总分才不会低于6.故答案是:15.【点睛】本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.15.2﹤a≤3【分析】先解出第一个不等式的解集进而得到不等式组的解集再根据不等式组有3个整数解确定a的取值范围即可【详解】解:解不等式得:x﹥﹣1∴原不等式组的解集为:﹣1﹤x﹤a∵不等式组有3个整数解解析:2﹤a≤3【分析】先解出第一个不等式的解集,进而得到不等式组的解集,再根据不等式组有3个整数解确定a的取值范围即可.【详解】解:解不等式3112x+-<得:x﹥﹣1,∴原不等式组的解集为:﹣1﹤x﹤a,∵不等式组有3个整数解,∴2﹤a≤3,故答案为:2﹤a≤3.【点睛】本题考查了不等式组的整数解,能根据已知不等式组的整数解确定参数a的取值范围是解答的关键,必要时可借助数轴更直观.16.【分析】根据题意可得2m﹣5≤3然后求解不等式即可【详解】根据题意可得∵(2m-5)⊕3=3∴2m﹣5≤3解得:m≤4故答案为【点睛】本题主要考查解一元一次不等式解此题的关键在于准确理解题中新定义法解析:4m ≤【分析】根据题意可得2m ﹣5≤3,然后求解不等式即可.【详解】根据题意可得,∵(2m -5)⊕3=3,∴2m ﹣5≤3,解得:m≤4故答案为4m ≤.【点睛】本题主要考查解一元一次不等式,解此题的关键在于准确理解题中新定义法则的运算规律,得到一元一次不等式.17.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 18.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.19.【分析】先求出不等式的解再根据不等式的最大整数解确定a 的取值范围即可【详解】解:解得∵不等式的最大整数解为∴解得:;故答案为:【点睛】本题考查的是不等式的解正确的解不等式是解题的关键 解析:512a -<≤- 【分析】先求出不等式的解,再根据不等式的最大整数解确定a 的取值范围即可.【详解】解:解2310a x -->, 得213<-a x , ∵不等式2310a x -->的最大整数解为2-, ∴21-2-13<-≤a , 解得:512a -<≤-; 故答案为:512a -<≤-. 【点睛】本题考查的是不等式的解,正确的解不等式是解题的关键.20.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得 2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.三、解答题21.(1)2x ≤;(2)1≤x <4,数轴见详解.【分析】(1)通过去分母,移项,合并同类项,未知数系数化为1,即可求解;(2)通过去分母,移项,合并同类项,未知数系数化为1,分别求出两个不等式的解,进而即可求解,然后再数轴上表示不等式组的解,即可.【详解】(1)2132x x -≤, 2(21)3x x -≤,423x x -≤,432x x -≤,2x ≤;(2)3(2)41213x x x x --≤⎧⎪⎨+>-⎪⎩①② 由①得:x≥1,由②得:x <4,∴不等式组的解为:1≤x <4,在数轴上表示如下:【点睛】本题主要考查解一元一次不等式(组),熟练掌握解一元一次不等式的基本步骤,是解题的关键.22.(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.23.38x -<,6【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出答案.【详解】解:()3652543123x x x x ⎧+-⎪⎨---<⎪⎩①②, 由①得:8x ,由②得:3x >-,∴不等式组的解集为38x -<, x 的最小整数为2-,最大整数为8, x 的最小整数解与最大整数解的和为6.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,解题的关键是能根据不等式的解集求出不等式组的解集.24.(1)31x y =⎧⎨=⎩;(2)无. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)35427x y x y -=⎧⎨+=⎩①②, 由①5+⨯②得:310435x x +=+,解得3x =,将3x =代入②得:67y +=,解得1y =,则方程组的解为31x y =⎧⎨=⎩; (2)()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩①②,解不等式①得:5x ≤-,解不等式②得:2x >-,则不等式组无解.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.25.71x -<≤【分析】首先分别解出两个不等式的解集,再根据:同大取大;同小取小;大小小大中间找;大大小小找不到,写出不等式组的解集即可.【详解】 解:3(2)4211 52x x x x --≥⎧⎪⎨-+<⎪⎩①② 由①得,x≤1由②得,x >-7∴不等式组的解集为:-7<x≤1.故答案为:-7<x≤1.【点睛】此题主要考查了不等式组的解法,关键是熟练掌握不等式解集的取法.26.(1)1x >;(2)32x >-;(3)16x -<≤;(4)3x >. 【分析】(1)两边同除以2即可得;(2)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式即可得; (3)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集; (4)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集.【详解】(1)22x >,两边同除以2,得1x >;(2)452(1)x x +>+, 4522x x +>+,4225x x ->-,23x >-,32x >-; (3)32123x x x +>⎧⎪⎨≤⎪⎩①②,解不等式①得:1x >-,解不等式②得:6x ≤,则不等式组的解集为16x -<≤;(4)211841x x x x ->+⎧⎨+<-⎩①②, 解不等式①得:2x >,解不等式②得:3x >,则不等式组的解集为3x >.【点睛】本题考查了解一元一次不等式、解一元一次不等式组,熟练掌握不等式和不等式组的解法是解题关键.。

新人教版七年级数学下册第九章《不等式与不等式组》检测试题及答案(1)

新人教版七年级数学下册第九章《不等式与不等式组》检测试题及答案(1)

人教版七年级数学下册第九章不等式与不等式组复习测试题含答案一、选择题1. 下列式子:①x +2≤3;②x =3;③4x +3y >0;④x -1≠5;⑤ 3>0是不等式的有( )A. 2个B. 3个C. 4个D. 5个 2.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b 3.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( )①去分母,得5(x +2)>3(2x -1);②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 4.不等式组的解集表示在数轴上正确的是( )5.在关于x ,y 的方程组中,未知数满足x≥0,y >0,那么m 的取值范围在数轴上应表示为( )6.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 7.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m≤0D. -1≤m<0 8.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 239.“一方有难,八方支援”,某单位为一灾区中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A. 60B. 70C. 80D. 9010.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 二、填空题。

人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案) (94)

人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案) (94)

人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案)(1)解不等式:221223x x +-≥- (2)解不等式组:202(1)31x x x ->⎧⎨+-⎩,并把解集在数轴上表示出来. 【答案】(1)x ≤20;(2)2<x ≤3,数轴上表示见解析.【解析】【分析】(1)不等式去分母、去括号、移项合并、系数化为1即可求出不等式的解集;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集即可.【详解】解:(1)去分母,得3(2+x )≥2(2x ﹣1)﹣12,去括号,得6+3x ≥4x ﹣2﹣12,移项,得3x ﹣4x ≥﹣2﹣12﹣6,合并同类项,得﹣x ≥﹣20,系数化为1,得x ≤20;(2)由x ﹣2>0得,x >2,由2(x+1)≥3x ﹣1得,x ≤3,∴不等式组的解集是2<x ≤3,在数轴上表示为:【点睛】此题考查了解一元一次不等式(组),以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.32.为了加强对校内外安全监控,创建平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.(1)求a、b的值;(2)若购买该批设备的资金不超过11000元,且要求监控半径覆盖范围不低于1600米,两种型号的设备均要至少买一台,请你为学校设计购买方案,并计算最低购买费用.【答案】(1)a=850,b=700;(2)最省钱的购买方案为:购甲型设备2台,乙型设备13台.【解析】【分析】(1)根据购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元,可列出方程组,解之即可得到a 、b 的值;(2)可设购买甲型设备x 台,则购买乙型设备(15﹣x )台,根据购买该批设备的资金不超过11000元、监控半径覆盖范围不低于1600米,列出不等式组,根据x 的值确定方案,然后对所需资金进行比较,并作出选择.【详解】解:(1)由题意得:15032400a b b a -=⎧⎨-=⎩, 解得850700a b =⎧⎨=⎩; (2)设购买甲型设备x 台,则购买乙型设备(15﹣x )台,依题意得 850700(15)11000150100(15)1600x x x x ①②+-⎧⎨+-⎩, 解不等式①,得:x ≤313, 解不等式②,得:x ≥2,则2≤x ≤313, ∴x 取值为2或3.当x =2时,购买所需资金为:850×2+700×13=10800(元),当x =3时,购买所需资金为:850×3+700×12=10950(元),∴最省钱的购买方案为:购甲型设备2台,乙型设备13台.【点睛】本题考查了一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.要会用分类的思想来解决讨论方案的问题.33.解不等式组3222(1)33x x x x -<⎧⎨-+≥⎩①②,并将它的解集在数轴表示出来.【答案】x ≤1,将解集表示在数轴上见解析.【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上画出来【详解】解不等式①,得:x <2,解不等式②,得:x ≤1,将解集表示在数轴上如下:【点睛】此题考查在数轴上表示不等式的解集和解一元一次不等式组,解题关键在于先求出不等式的解集34.解不等式组43315x x x x -≥⎧⎪-⎨>--⎪⎩,并把解集在数轴上表示出来. 【答案】见解析【解析】【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.【详解】解:由不等式(1)得,x≤1,由不等式(2)得,x>﹣2,所以不等式组的解集为﹣2<x≤1.用数轴表示为【点睛】本题考查解一元一次不等式组,在数轴上表示不等式的解集.35.(1+2)﹣(2)解不等式组:562(3) 351344x xx x-≤+⎧⎪⎨--⎪⎩<.【答案】(1)(2)x<2【解析】【分析】(1)根据二次根式的乘法和合并同类项可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【详解】解:(1+2)﹣2 =+2 =-(2)562(3)351344x xx x-≤+⎧⎪⎨-<-⎪⎩①②,由不等式①,得x ≤4由不等式②,得x <2,∴原不等式组的解集是x <2.【点睛】本题考查二次根式的混合运算、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.36.(1)解方程组2313713x y x y +=⎧-=⎨⎩(2)解不等式组()102131x x x +>⎧+≥-⎨⎩【答案】(1){21x y ==-;(2)-1<x ≤3.【解析】【分析】(1)利用加减消元法解之即可,(2)分别解两个不等式,得到不等式的两个解集,找到其公共部分,就是不等式组的解集.【详解】 解:(1)2313713x y x y +=⎧⎨-=⎩①②, ①×3-②×2得:23y =-23,解得:y =-1,把y =-1代入①解得:x =2,原方程组的解集为:{21x y ==-,(2)()102131x x x >①②+⎧⎪⎨+≥-⎪⎩, 解不等式①得:x >-1,解不等式②得:x ≤3,即原不等式组的解集为:-1<x ≤3.【点睛】本题考查解一元一次不等式组和解二元一次方程组,解题的关键是正确掌握解一元一次不等式组和解二元一次方程组的方法.37.(1)解不等式组3(2)41213x x x x --≥⎧⎪+⎨>-⎪⎩ (2)已知A =222111x x x x x ++--- ①化简A②当x 满足不等式组1030x x -⎧⎨-<⎩且x 为整数时,求A 的值. (3)化简23651x x x x x+---- 【答案】(1) x ≤1;(2) 11x -,1;(3) 8x . 【解析】【分析】(1)根据解不等式组的方法可以解答本题;(2)①根据分式的减法可以化简A ;②根据不等式组和原分式可以确定x 的值,然后代入化简后A 的值即可解答本题;(3)根据分式的减法可以化简题目中的式子.【详解】解:(1)3(2)4121,3x x x x --≥⎧⎪⎨+>-⎪⎩①② 由不等式①,得x ≤1,由不等式②,得x <4,故原不等式组的解集为x ≤1;(2)①A =222111x x x x x ++---, ()()()21,111x x x x x +=-+-- 1,11x x x x +=--- 1,1x x x +-=- 11;x =- ②由不等式组1030x x -≥⎧⎨-<⎩,得 1≤x <3,∵x 满足不等式组1030x x -≥⎧⎨-<⎩且x 为整数,(x ﹣1)(x +1)≠0, 解得,x =2,当x =2时,A 1 1.21==-(3)23651x x x x x+---- ()()()3165,1x x x x x -+-+=- ()3365,1x x x x x -+--=- ()()81,1x x x -=- 8.x= 【点睛】本题考查分式的化简求值、解一元一次不等式,解答本题的关键是明确分式化简求值的方法和解不等式组的方法.38.某体育用品商店欲购进A 、B 两种品牌的足球进行销售,若购进A 种品牌的足球50个,B 种品牌的足球25个,需花费成本4250元;若购进A 种品牌的足球15个,B 种品牌的足球10个,需花费成本1450元.(1)求购进A 、B 两种品牌的足球每个各需成本多少元;(2)根据市场调研,A 种品牌的足球每个售价90元,B 种品牌的足球每个售价120元,该体育用品商店购进A 、B 两种品牌的足球进行销售,恰好用了7000元的成本.正值俄罗斯世界怀开赛,为了回馈新老顾客,决定A 品牌足球按售价降低20元出售,B 品牌足球按售价的7折出售,且保证利润不低于2000元,问A 种品牌的足球至少购进多少个.【答案】(1)购买一个A 种品牌的足球需要50元,购买一个B 种品牌的足球需要70元;(2)A 种品牌的足球至少购进63个.【解析】【分析】(1)设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元,根据“购进A 种品牌的足球50个,B 种品牌的足球25个,需花费成本4250元;若购进A 种品牌的足球15个,B 种品牌的足球10个,需花费成本1450元”可得出关于x 、y 的二元一次方程组,解方程组即可得出结论;(2)设购买A 种足球a 个,根据题意可得出关于a 的一元一次不等式,解不等式可得出a 的取值范围,由此即可得出结论.【详解】解:(1)设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元,依题意得: 5025425015101450,x y x y +=⎧⎨+=⎩解得: 5070.x y =⎧⎨=⎩答:购买一个A 种品牌的足球需要50元,购买一个B 种品牌的足球需要70元;(2)设购买A 种足球a 个,可得:()()7000509020501200.7702000,70a a ---+⨯-⨯≥ 解得:a ≥60, 因为700050,70a a -均为整数, 所以a 的最小整数值是63,答:A 种品牌的足球至少购进63个【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量关系找出关于x 、y 的二元一次方程组;(2)根据数量关系找出关于a 的一元一次不等式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组、不等式或不等式组)是关键.39.解不等式组131322378x x x ⎧->-⎪⎨⎪-≤⎩,并把解集在数轴上表示出来. 【答案】2<x ≤5,见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再在数轴上将解集表示出来即可.【详解】 解:解不等式131322x x ->-,得:x >2, 解不等式3x ﹣7≤8,得:x ≤5,则不等式组的解集为2<x ≤5,将解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.40.甲、乙两家超市以相同的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲超市累计购买商品价格总额超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品价格总额超出200元之后,超出部分按原价的九折优惠.若顾客累计购买商品价格总额超出300元,到哪家超市购物花费少?【答案】(1)顾客累计购买商品价格总额超出400元时,到甲超市购物花费少;(2)顾客累计购买商品价格总额超出300元而不到400元时,到乙超市购物花费少;(3)顾客累计购买商品价格总额为400元时,到两家超市购物花费一样.【解析】【分析】设顾客累计购买商品价格总额为x(x>300)元,由题意得到200+0.9(x ﹣200)=300+0.8(x﹣300),分甲超市购物花费少,乙超市购物花费少,两家超市购物花费一样,分别进行求解.【详解】设顾客累计购买商品价格总额为x(x>300)元,(1)若到甲超市购物花费少,则200+0.9(x﹣200)>300+0.8(x﹣300),解得x>400,即顾客累计购买商品价格总额超出400元时,到甲超市购物花费少.(2)若到乙超市购物花费少,则200+0.9(x﹣200)<300+0.8(x﹣300),解得x<400,即顾客累计购买商品价格总额超出300元而不到400元时,到乙超市购物花费少.(3)若200+0.9(x﹣200)=300+0.8(x﹣300),解得x=400,即顾客累计购买商品价格总额为400元时,到两家超市购物花费一样.【点睛】本题考查一元一次不等式的应用,解题的关键是读懂题意,列出不等式,再分情况讨论.。

第9章 不等式与不等式组【真题模拟练】(解析版)七年级数学下册单元复习(人教版)

第9章 不等式与不等式组【真题模拟练】(解析版)七年级数学下册单元复习(人教版)

第9章不等式与不等式组真题模拟练(时间:90分钟,分值:100分)一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2021•常德)若a b >,下列不等式不一定成立的是()A .55a b ->-B .55a b -<-C .a bc c>D .a c b c+>+【答案】C .【解析】解:A .∵a b >,∴55a b ->-,故本选项不符合题意;B .∵a b >,∴55a b -<-,故本选项不符合题意;C .∵a b >,∴当0c >时,a b c c >;当0c <时,a bc c<,故本选项符合题意;D .∵a b >,∴a c b c +>+,故本选项不符合题意;故选:C .2.(3分)(2021•河北)已知a b >,则一定有4a -□4b -,“□”中应填的符号是()A .>B .<C .D .=【答案】B .【解析】解:根据不等式的性质,不等式两边都乘同一个负数,不等号的方向改变.∴a b >,∴44a b -<-.故选:B .3.(3分)(2021•丽水)若31a ->,两边都除以3-,得()A .13a <-B .13a >-C .3a <-D .3a >-【答案】A .【解析】解:∵31a ->,∴不等式的两边都除以3-,得13a <-,故选:A .4.(3分)(2021•临沂)已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若0b >,则11a b<,其中正确的个数是()A .1B .2C .3D .4【答案】A .【解析】解:a b >,∴当0a >时,2a ab >,当0a =时,2a ab =,当0a <时,2a ab <,故①结论错误∴a b >,∴当||||a b >时,22a b >,当||||a b =时,22a b =,当||||a b <时,22a b <,故②结论错误;∵a b >,0b <,∴2a b b +>,故③结论错误;∵a b >,0b >,∴0a b >>,∴11a b<,故④结论正确;∴正确的个数是1个.故选:A .5.(3分)(2021•包头)定义新运算“?”,规定:?2a b a b =-.若关于x 的不等式?3x m >的解集为1x >-,则m 的值是()A .1-B .2-C .1D .2【答案】B .【解析】解∵?2a b a b =-,∴?2x m x m =-.∵?3x m >,∴23x m ->,∴23x m >+.∵关于x 的不等式?3x m >的解集为1x >-,∴231m +=-,∴2m =-.故选:B .6.(3分)(2021•临沂)不等式113x x -<+的解集在数轴上表示正确的是()A .B .C .D .【答案】B .【解析】解:去分母,得:133x x -<+,移项,得:331x x -<+,合并同类项,得:24x -<,系数化为1,得:2x >-,将不等式的解集表示在数轴上如下:故选:B .7.(3分)(2021•贵港)不等式组1231x x <-<+的解集是()A .12x <<B .23x <<C .24x <<D .45x <<【答案】C .【解析】解:不等式组化为123231x x x <-⎧⎨-<+⎩①②,由不等式①,得2x >,由不等式②,得4x <,故原不等式组的解集是24x <<,故选:C .8.(3分)(2021•南通)若关于x 的不等式组23120x x a +>⎧⎨-⎩恰有3个整数解,则实数a 的取值范围是()A .78a <<B .78a <C .78a <D .78a 【答案】C .【解析】解:23120x x a +>⎧⎨-⎩①②,解不等式①,得 4.5x >,解不等式②,得x a ,所以不等式组的解集是4.5x a <,∵关于x 的不等式组23120x x a +>⎧⎨-⎩恰有3个整数解(整数解是5,6,7),∴78a <,故选:C .9.(3分)(2021•湘潭)不等式组12480x x +⎧⎨-<⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】D .【解析】解:解不等式12x +,得:1x ,解不等式480x -<,得:2x <,则不等式组的解集为12x <,将不等式组的解集表示在数轴上如下:故选:D .10.(3分)(2021•永州)在一元一次不等式组21050x x +>⎧⎨-⎩的解集中,整数解的个数是()A .4B .5C .6D .7【答案】C .【解析】解:21050x x +>⎧⎨-⎩①②∵解不等式①得:0.5x >-,解不等式②得:5x ,∴不等式组的解集为0.55x -<,∴不等式组的整数解为0,1,2,3,4,5,共6个,故选:C .11.(3分)(2020•宜宾)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A .2种B .3种C .4种D .5种【答案】B .【解析】解:设购买A 型分类垃圾桶x 个,则购买B 型分类垃圾桶(6)x -个,依题意,得:500550(6)3100x x +-,解得:4x .∵x ,(6)x -均为非负整数,∴x 可以为4,5,6,∴共有3种购买方案.故选:B .12.(3分)(2020•重庆)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A .5B .4C .3D .2【答案】B .【解析】解:设还可以买x 个作业本,依题意,得:2.27640x ⨯+,解得:1410x .又∵x 为正整数,∴x 的最大值为4.故选:B .二、填空题(共10小题,满分30分,每小题3分)13.(3分)(2021•苏州)若21x +,且01y <<,则x 的取值范围为.【答案】102x <<.【解析】解:由21x y +=得21y x =-+,根据01y <<可知0211x <-+<,∴120x -<-<,∴102x <<.故答案为:102x <<.14.(3分)(2021•内江)已知非负实数a ,b ,c 满足123234a b c---==,设23S a b c =++的最大值为m ,最小值为n ,则nm的值为.【答案】1116.【解析】解:设123234a b ck ---===,则21a k =+,32b k =+,34c k =-,∴23212(32)3(34)414S a b c k k k k =++=++++-=-+.∵a ,b ,c 为非负实数,∴210320340k k k +⎧⎪+⎨⎪-⎩,解得:1324k-.∴当12k =-时,S 取最大值,当34k =时,S 取最小值.∴14()14162m =-⨯-+=,3414114n =-⨯+=.∴1116n m =.故答案为:1116.15.(3分)(2021•柳州)如图,在数轴上表示x 的取值范围是.【答案】2x >.【解析】解:在数轴上表示x 的取值范围是2x >.故答案为:2x >.16.(3分)(2021•眉山)若关于x 的不等式1x m +<只有3个正整数解,则m 的取值范围是.【答案】32m -<-.【解析】解:解不等式1x m +<得:1x m <-,根据题意得:314m <-,即32m -<-,故答案是:32m -<-.17.(3分)(2021•上海)不等式2120x -<的解集是.【答案】6x <.【解析】解:移项,得:212x <,系数化为1,得:6x <,18.(3分)(2021•丹东)不等式组213xx m-<⎧⎨>⎩无解,则m的取值范围.【答案】2m.【解析】解:213xx m-<⎧⎨>⎩①②,解不等式①得:2x<,解不等式②x m>,∵不等式组无解∴2m,故答案为:2m.19.(3分)(2021•荆门)关于x的不等式组()31213x ax x--<⎧⎪+⎨-⎪⎩恰有2个整数解,则a的取值范围是.【答案】56a<.【解析】解:解不等式()3x a--<,得:3x a>-,解不等式1213x x+-,得:4x,∵不等式组有2个整数解,∴233a-<,解得56a<.故答案为:56a<.20.(3分)(2020•攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有人进公园,买40张门票反而合算.【答案】33.【解析】解:设x人进公园,若购满40张票则需要:40(51)404160⨯-=⨯=(元),故5160x>时,解得:32x>,则当有32人时,购买32张票和40张票的价格相同,则再多1人时买40张票较合算;32133+=(人).则至少要有33人去世纪公园,买40张票反而合算.21.(3分)(2013•乌鲁木齐)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n 道题,则根据题意可列不等式.【答案】105(20)90n n -->.【解析】解:根据题意,得105(20)90n n -->.故答案为:105(20)90n n -->.22.(3分)(2020•宁夏)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为.【答案】6.【解析】解:设阅读过《西游记》的人数是a ,阅读过《水浒传》的人数是(b a ,b 均为整数),依题意,得:48a bb a >⎧⎪>⎨⎪<⎩,∵a ,b 均为整数∴47b <<,∴b 最大可以取6.故答案为:6.三、解答题(共5小题,满分34分)23.(6分)(2021•陕西)求不等式3125x -+>-的正整数解.【答案】见解析.【解析】解:去分母得:3510x -+>-,移项合并得:315x ->-,解得:5x <,则不等式的正整数解为1,2,3,4.24.(6分)(2017•呼和浩特)已知关于x 的不等式21122m mx x ->-.(1)当1m =时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】见解析.【解析】解:(1)当1m =时,不等式为2122x x->-,去分母得:22x x ->-,解得:2x <;(2)不等式去分母得:22m mx x ->-,移项合并得:(1)2(1)m x m +<+,当1m ≠-时,不等式有解,当1m >-时,不等式解集为2x <;当1m <-时,不等式的解集为2x >.25.(6分)(2021•兴安盟)解不等式组:21612152263x x x x+<+⎧⎪--⎨-⎪⎩,在数轴上表示解集并列举出非正整数解.【答案】见解析.【解析】解:解不等式216x x +<+得:5x <,解不等式12152263x x---得:2x -,将解集表示在数轴上如下:∴不等式组的解集为25x -<,∴不等式组的非正整数解为2-、1-、0.26.(8分)(2021•本溪)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?【答案】见解析.【解析】解:(1)设每本手绘纪念册的价格为x 元,每本图片纪念册的价格为y 元,依题意得:4135 52225 x yx y+=⎧⎨+=⎩,解得:3525 xy=⎧⎨=⎩.答:每本手绘纪念册的价格为35元,每本图片纪念册的价格为25元.(2)设可以购买手绘纪念册m本,则购买图片纪念册(40)m-本,依题意得:3525(40)1100m m+-,解得:10m.答:最多能购买手绘纪念册10本.27.(8分)(2021•黑龙江)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?【答案】见解析.【解析】解:(1)设购进1x万元,1件乙种农机具y万元.根据题意得:2 3.533x yx y+=⎧⎨+=⎩,解得:1.50.5 xy=⎧⎨=⎩,答:购进1件甲种农机具1.5万元,1件乙种农机具0.5万元.(2)设购进甲种农机具m件,购进乙种农机具(10)m-件,根据题意得:1.50.5(10)9.8 1.50.5(10)12m mm m+-⎧⎨+-⎩,解得:4.87m.∵m为整数.∴m可取5、6、7.∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件.11方案二:购买甲种农机具6件,乙种农机具4件.方案三:购买甲种农机具7件,乙种农机具3件.设总资金为w 万元.1.50.5(10)5w m m m =+-=+.∵10k =>,∴w 随着m 的减少而减少,∴5m =时,15510w =⨯+=最小(万元).∴方案一需要资金最少,最少资金是10万元.(3)设节省的资金用于再次购买甲种农机具a 件,乙种农机具b 件,由题意得:(1.50.7)(0.50.2)0.750.25a b -+-=⨯+⨯,其整数解:015a b =⎧⎨=⎩或37a b =⎧⎨=⎩,∴节省的资金全部用于再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件.方案二:购买甲种农机具3件,乙种农机具7件.。

七年级数学下册不等式与不等式组练习(知识点+综合练习及详细答案)

七年级数学下册不等式与不等式组练习(知识点+综合练习及详细答案)

不等式1、 用不等号“<”、“>”、“≤”、“≥”、“≠”表示不等关系的式子叫做不等式。

2、 能使不等式成立的未知数的值,叫做不等式的解。

3、 一个含有未知数的不等式的所有的解,组成这个不等式的解集,求不等式的解集的过程,叫做解不等式。

4、 不等式的性质:(1)如果a>b ,那么a+c>b+c;(2)如果a>b ,并且c>0,那么ac>bc(或c a >cb ); (3)如果a>b ,并且c<0,那么ac<bc(或c a <c b ); 5、 类似于一元一次方程,含有一个未知数,且未知数的次数是1的不等式,叫做一元一次不等式。

6、 列不等式的关键是领会语句中的数量关系,常用的不等关系有:a 是正数 a>0:a 是非负数 a ≤b (a 不大于b ,即a=b 或a<b 等)7、 一元一次不等式解题步骤:1去分母→2去括号→3移项→4合并同类项→5系数化为1。

注意:进行“去分母”和“系数化为1”时,要根据不等号两边同乘以(或除以)的数的正负,决定是否改变不等号的方向,若不能确定该数的正负,则要分正、负两种情况讨论。

8、一元一次不等式是表达现实世界中量与量之间不等关系的重要数学模型,应用不等式解决问题的一般步骤为:①审题,弄清题目中的数量关系,用字母表示未知数; ②找出题中隐含的一个不等关系,注意表达不等关系的术语,如:至多、至少、不大于、不小于等; ③列出不等式;④解不等式; ⑤根据实际问题写出符合题意的解。

不等式与不等式组单元测试题一.选择题1. 下列不等式中,是一元一次不等式的是( )A .112x +>B .29x >C .x-3<10yD .2x+8≤52.一种牛奶包装盒标明“净重300g ,蛋白质含量≥2.9%”.那么其蛋白质含量为( )A .2.9%及以上B .8.7gC .8.7g 及以上D .不足8.7g3.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( )A .ab >0B .a+b <0C .ab <1 D .a-b <04 ..若a >b ,则下列不等式成立的是( )A .a-3<b-3B .-2a >-2bC . 4 a <4 bD .a >b-15. x=-1不是下列哪一个不等式的解( )A .2x+1≤-3B .2x-1≥-3C .-2x+1≥3D .-2x-1≤3 6 . 如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )A .1030x x +>⎧⎨->⎩B .1030x x +>⎧⎨->⎩C .1030x x +<⎧⎨->⎩D .1030x x +<⎧⎨->⎩7.若关于的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足x+y <2,则a 的取值范围为( ) A .a <4 B .a >4 C .a <-4 D .a >-48. 设a ,b 是常数,不等式10x a b +>的解集为15x <,则关于x 的不等式bx-a >0的解集是( )A .15x >B .15x <-C .15x >-D .15x <二.填空题9.“a 是负数”用不等式可表示为10. 不等式2x+1>-5的解集是11. 已知a >b ,则12a c -+ 12b c -+.(填>、<或=).12. 在一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,得分不低于60分者得奖.得奖者至少应答对 道题。

江苏天一中学七年级数学下册第九章【不等式与不等式组】经典复习题(含解析)

江苏天一中学七年级数学下册第九章【不等式与不等式组】经典复习题(含解析)

一、选择题1.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )A .x <1B .x >1C .x <0D .x >02.不等式()31x -≤5x -的正整数解有( ) A .1个B .2个C .3个D .4个3.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( ) A .-a <-b <b <aB .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a4.如果a b >,可知下面哪个不等式一定成立( ) A .a b ->-B .11a b< C .2a b b +> D .2a ab >5.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( )A .5B .0C .-1D .-26.下列说法中不正确的是( ) A .若a b >,则a 1b 1->- B .若3a 3b >,则a b > C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<-7.若a b <,则下列各式中不一定成立的是( ) A .11a b -<-B .33a b <C .a b ->-D .ac bc <8.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m9.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( )A .a <-2B .a ≤-2C .a >-2D .a ≥-210.若关于x 的不等式组327x x a-<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ).A .3aB .3a >C .3aD .3a <11.下列是一元一次不等式的是( ) A .21x >B .22x y -<-C .23<D .29x <二、填空题12.若关于x 的不等式组25011222x x m +>⎧⎪⎨+⎪⎩,有四个整数解,则m 的取值范围是____________.13.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.14.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.15.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.16.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______.17.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.18.已知a >b ,则15a +c _____15b +c (填“>”“<”或“=”). 19.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________.20.不等式组20210x x +>⎧⎨-≤⎩的所有整数解的和是_____________21.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____.三、解答题22.某电器超市销售A 、B 两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A 种型号B 种型号 第一周 3台 5台 1800元 第二周4台10台3100元 (1)求A 、B 两种型号的电风扇的销售单价.(2)若A 、B 两种型号的电风扇每台进价分别为200元,170元,该超市准备采购这两种型号的电风扇共30台,且费用不多于5400元. ①最多能采购A 种型号的电风扇多少台?②设超市销售完这30台电风扇所获得的利润为W 元,试问利润能否达到1400元?若能,请给出相应的采购方案;若不能,请说明理由.23.解不等式组()41713843x x x x ⎧+≤+⎪⎨--<⎪⎩,并把它的解集在数轴上表示出来.24.解不等式组:263235x x x x +>-⎧⎨->-⎩①②25.解不等式(组),并将解集表示在数轴上: (1)6194x x ->-(2)13215232(3)4x x x x -+⎧-≥⎪⎨⎪-->⎩一、选择题1.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤2.已知实数a 、b ,下列命题结论正确的是( ) A .若a b >,则 22a b > B .若a b >,则22a b > C .若a b >,则22a b >D .若33a b >,则22a b >3.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥4.已知01m <<,则m 、2m 、1m( ) A .21m m m >> B .21m m m >> C .21m m m>>D .21m m m>> 5.若a b <,则下列不等式中不正确的是( )A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 6.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤77.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m8.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( )A .B .C .D .9.如果a >b ,那么下列不等式不成立...的是( )A .0a b ->B .33a b ->-C .1133a b >D .33a b ->-10.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( ) A .x y >B .44x y ->-C .33x y ->-D .22x y > 11.若关于 x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( )A .a 4<-B .a 4=-C .a 4?≥-D . a 4>-二、填空题12.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.13.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.14.在平面直角坐标系 xOy 中,点(,)P a b 的“变换点”Q 的坐标定义如下:当a b 时,Q点坐标为(,)b a -;当a b <时,Q 点坐标为(,)a b -. (1)(2,3)-的变换点坐标是_____________.(2)若(,0.52)a a -+的变换点坐标是(,)m n ,则m 的最大值是_____________.15.已知关于x 的不等式组010x a x -≥⎧⎨->⎩的整数解共有3个,则a 的取值范围是________.16.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.17.定义一种法则“⊗”如下:()()a ab a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.18.关于x 的不等式132x a x -≤⎧⎨-<⎩有5个整数解,则a 的取值范围是______.19.不等式2x+9>3(x+4)的最大整数解是_____.20.不等式组20210x x +>⎧⎨-≤⎩的所有整数解的和是_____________21.不等式组12153114xx -⎧≥-⎪⎨⎪-<⎩的所有正整数解为_____.三、解答题22.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.23.某校购买了A 型课桌椅100套和B 型课桌椅150套供学生使用,共付款53000元.已知每套A 型课桌椅比每套B 型课桌椅多花30元.(1)求该校购买每套A 型课桌椅和每套B 型课桌椅的钱数.(2)因学生人数增加,该校需再购买A 、B 型课桌椅共100套,只有资金22000元,求最多能购买A 型课桌椅的套数.24.大润发超市用6800元购进A 、B 两种计算器共120只,这两种计算器的进价、标价如下表.(1)这两种计算器各购进多少只?(2)元旦活动期间,超市决定将A 型计算器按标价的9折出售,为保证这批计算器全部售出后盈利不低于1400元,则B 型计算器最多打几折出售? 25.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x xx +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩一、选择题1.已知关于x 的不等式组521x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤32.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .103.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .24.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ). A . B . C .D .5.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种6.下列说法中不正确的是( ) A .若a b >,则a 1b 1->- B .若3a 3b >,则a b > C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<-7.若a b <,则下列不等式中不正确的是( ) A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 8.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤79.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m10.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( ) A .100厘米B .101厘米C .102厘米D .103厘米11.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤二、填空题12.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x my m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______. 13.a b ≥,1a -+_____1b -+14.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则整数解是________,m 的取值范围是________.15.若不等式00x b x a -<⎧⎨+>⎩的解集为23x <<,则a ,b 的值分别为_______________.16.令a 、b 两个数中较大数记作{}max ,a b 如{}max 2,33=,已知k 为正整数且使不等式{}max 21,33k k +-+≤成立,则关于x 方程21136x k x---=的解是_____________. 17.关于x 的不等式2x -a ≤-3的解集如图所示,则a 的值是______ .18.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.19.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.20.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____ 21.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____.三、解答题22.解不等式(或组): (1)2934x x++≤ (2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩23.筹建中的迪荡中学需720套单人课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组.每组每天可生产12张:生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.24.某商店需要购进A 型、B 型两种节能台灯共160盏,其进价和售价如下表所示.类型 价格A 型B 型 进价/(元/盏) 15 35 销售价/(元/盏)2045(1)若商店计划销售完这批台灯后能获利1100元,问A型、B型两种节能台灯应分别购进多少盏(注:获利=售价-进价)?(2)若商店计划投入资金少于4300元,且销售完这批台灯后获利多于1260元,请问有哪几种进货方案?并直接写出其中获利最大的进货方案.25.学校计划利用一片空地建造一个矩形的学生自行车棚(不考虑门),其中一面靠墙,这堵墙的长度为7.9米,计划建造车棚的面积为12平方米.现有可造车棚的建造材料总长为11米.(1)给出一种设计方案;(2)若矩形车棚的长、宽都要求为整数(单位:米),一共有几种方案?(3)若要使所有建造材料恰好用完,应怎么设计?。

(必考题)初中七年级数学下册第九单元《不等式与不等式组》经典复习题(含答案解析)

(必考题)初中七年级数学下册第九单元《不等式与不等式组》经典复习题(含答案解析)

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤3B解析:B 【分析】首先解不等式,然后根据不等式组无解确定a 的范围. 【详解】 解:5210x x a -≥-⎧⎨->⎩①②解不等式①,得3x ≤; 解不等式②,得x a >; ∵不等式组无解, ∴3a ≥; 故选:B . 【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .2D解析:D 【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值. 【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩,解不等式1x a -<-得:1x a <-, 解不等式113x-≤得:2x ≥-,∴不等式组的解集为:21x a -≤<-, 由数轴知该不等式组有3个整数解, 所以这3个整数解为-2、-1、0, 则11a -=, 解得:2a =, 故选:D . 【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.3.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤ D解析:D 【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集. 【详解】由数轴知,此不等式组的解集为-1<x≤3, 故选D . 【点睛】考查解一元一次不等式组,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >0A解析:A将x=0、y=1和x=1、y=0代入ax+b=y得到关于a、b的方程组,解之得出a、b的值,从而得到关于x的不等式,解之可得答案.【详解】解:根据题意,得:10 ba b=⎧⎨+=⎩,解得a=-1,b=1,则不等式-ax-b<0为x-1<0,解得x<1,故选:A.【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x的不等式,并熟练掌握解一元一次不等式的步骤和依据.5.不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A .B .C .D . C解析:C【解析】分析:先求出各不等式的解集,再求出其公共解集即可.详解:解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.若关于x的不等式组255332xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a的取值范围( )A.1162a-<-B.116a2-<<-C.1162a-<-D.1162a-- A【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-故选A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.7.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( )A .m >5B .m≥5C .m <5D .m≤8C解析:C 【解析】 ∵不等式组有解,∴m <5. 故选C .【方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键. 8.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18288A .胜一场积5分,负一场扣1分B .某参赛选手得了80分C .某参赛选手得了76分D .某参赛选手得分可能为负数B解析:B 【分析】由参赛者A 可得:胜一场得100÷20=5分,设负一场扣x 分,根据参赛者B 的得分列出方程,求出方程的解即可得出负一场扣多差分;设参赛选手胜y 场,则负(20-y )场,根据胜场的得分+负场的得分=选手得分,分别建立方程求出其解即可. 【详解】A .由参赛者A 可得:胜一场得100÷20=5分,设负一场扣x 分,根据参赛者B 的得分:5181288x ⨯-⨯=,解得:1x =,所以负一场扣1分;故本选项正确;B .设参赛选手胜y 场,则负(20-y )场,则()512080y y ⨯-⨯-=,解得503y =,∵y 为整数,∴参数选手不可能得80分;故本选项错误;C .设参赛选手胜y 场,则负(20-y )场,()512076y y ⨯-⨯-=,解得16y =,所以参数选手胜了16场,负了4场;故本选项正确;D .设参赛选手胜y 场,则负(20-y )场,()51200y y ⨯-⨯-<,解得103y <,所以当参赛选手低于4场胜利时候,得分就可能是负数;故本选项正确; 故选:B 【点睛】本题考查了总数÷分数=每份数的运用,列一元一次方程解实际问题的运用,结论猜想试题的运用,解答时关键胜场的得分+负场得分=总得分是关键.9.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤7B解析:B 【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围. 【详解】解不等式x ﹣m <0,得:x <m ,解不等式7﹣2x≤2,得:x≥52,因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤6.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.10.不等式325132x x++≤-的解集表示在数轴上是()A.B.C.D. B解析:B【分析】根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【详解】解:去分母,得,2(3x+2)≤3(x+5)﹣6,去括号,得6x+4≤3x+15﹣6,移项、合并同类项,得3x≤5,系数化为1,得,x≤53,在数轴上表示为:故选:B.【点睛】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.二、填空题11.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.1≤x <4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x <4解不等式②得x≥1所以不等式组的解集为:1≤x <4故答案为:1≤x <4【点睛】此题主要考查了求一元一次不解析:1≤x <4. 【分析】分别求出每一个不等式的解集,再找到公共部分即可得. 【详解】解:217?311?2x x x -<⎧⎪⎨+-≥⎪⎩①②解不等式①得,x <4, 解不等式②得,x≥1,所以,不等式组的解集为:1≤x <4. 故答案为:1≤x <4. 【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.12.已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________.【分析】首先写出连续3小于6的整数然后即可判断m 的取值范围【详解】由题意得:符合题意的整数解为543∴m 不能取值3可以取值2∴故答案为【点睛】本题考查了解不等式难度较低主要考查学生对不等式组知识点的解析:23m ≤<【分析】首先写出连续3小于6的整数,然后即可判断m 的取值范围. 【详解】由题意得:符合题意的整数解为5,4,3 ∴m 不能取值3,可以取值2 ∴23m ≤< 故答案为23m ≤<. 【点睛】本题考查了解不等式,难度较低,主要考查学生对不等式组知识点的掌握.整理出x 的取值范围分析整数解情况为解题关键.13.若||2x =,||3y =,且0x y +<,则x y -值为______.1或5【分析】由已知可以得到x=2或-2y=3或-3然后对xy 的取值进行分类讨论找出使x+y<0的取值组合即可求得x-y 的值【详解】解:∵|x|=2|y|=3∴x=2或-2y=3或-3(1)当x=2解析:1或5 【分析】由已知可以得到x=2或-2,y=3或-3,然后对x 、y 的取值进行分类讨论,找出使x+y<0的取值组合,即可求得x-y 的值. 【详解】解:∵|x|=2,|y|=3,∴x=2或-2,y=3或-3,(1)当x=2时,要使x+y<0 ,必须y=-3,此时x-y=2-(-3)=2+3=5; (2)当x=-2时,要使x+y<0 ,必须y=-3,此时x-y=-2-(-3)=-2+3=1; 故答案为1或5. 【点睛】本题考查绝对值、不等式和有理数加减法的综合应用,熟练掌握绝对值、不等式、有理数加减法及分类讨论的思想是解题关键 . 14.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.【分析】先解不等式组得出其解集为结合可得关于的方程解之可得答案【详解】解:由①得:由②得:不等式的解集为:∵关于的不等式组的解集为【点睛】本题考查的是利用一元一次不等式组的解集求参数熟悉相关性质是解 解析:152【分析】先解不等式组得出其解集为1262m x,结合76x -<<-可得关于m 的方程,解之可得答案. 【详解】 解:2()102153xm x ①②由①得:2210x m +->,221x m >-+, 12x m >-+ 由②得:212x <-,6x <-,∴不等式的解集为:162m x -+<<- ∵关于x 的不等式组的解集为76x -<<-,172m ∴-+=-152m ∴=【点睛】本题考查的是利用一元一次不等式组的解集求参数,熟悉相关性质是解题的关键. 15.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求解析:0 【分析】求出不等式组的解集,确定出最小整数解即可. 【详解】不等式组整理得:21x x ≤⎧⎨>-⎩,∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0. 【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键. 16.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌解析:35m <-【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可. 【详解】25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++,解得12mx -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-.【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.17.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.【分析】先求出不等式的解再根据不等式的最大整数解确定a 的取值范围即可【详解】解:解得∵不等式的最大整数解为∴解得:;故答案为:【点睛】本题考查的是不等式的解正确的解不等式是解题的关键 解析:512a -<≤- 【分析】先求出不等式的解,再根据不等式的最大整数解确定a 的取值范围即可. 【详解】解:解2310a x -->,得213<-a x , ∵不等式2310a x -->的最大整数解为2-,∴21-2-13<-≤a , 解得:512a -<≤-; 故答案为:512a -<≤-.【点睛】本题考查的是不等式的解,正确的解不等式是解题的关键.18.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来)【分析】根据相反数正负数和有理数加减运算的性质分析即可得到答案【详解】∵∴∴∴∵∴∴∵∴∴即故答案为:【点睛】本题考查了相反数正负数有理数大小比较有理数加减运算的知识;解题的关键是熟练掌握相反数正负 解析:a a b b a b a <+<<-<-【分析】根据相反数、正负数和有理数加减运算的性质分析,即可得到答案.【详解】∵0b -<∴0b >∴0b a a -+>∴b a a ->-,b a a +>∵0a b ⨯<∴0a <∴0a ->∵0a b +<∴b a <-∴0a a b b a b a <+<<<-<-即a a b b a b a <+<<-<-故答案为:a a b b a b a <+<<-<-.【点睛】本题考查了相反数、正负数、有理数大小比较、有理数加减运算的知识;解题的关键是熟练掌握相反数、正负数和有理数加减运算的性质,从而完成求解.19.如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______.a≥﹣3【分析】根据口诀同小取小可知不等式组的解集解这个不等式即可【详解】解这个不等式组为x <a ﹣4则3a+2≥a ﹣4解这个不等式得a≥﹣3故答案a≥﹣3【点睛】此题考查解一元一次不等式组掌握运算法解析:a ≥﹣3.【分析】根据口诀“同小取小”可知不等式组32{4x a x a +-<<的解集,解这个不等式即可. 【详解】解这个不等式组为x <a ﹣4,则3a +2≥a ﹣4,解这个不等式得a ≥﹣3故答案a ≥﹣3.【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键 20.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.【分析】表示出不等式组中两不等式的解集根据x 的范围确定出a 的值即可【详解】解不等式得解不等式得∵不等式组的解集为解得:故答案为:【点睛】本题考查了解一元一次不等式组能根据不等式的解集和已知得出关于的解析:5a =-【分析】表示出不等式组中两不等式的解集,根据x 的范围确定出a 的值即可.【详解】解不等式21x a ->得12a x +>, 解不等式122x x ->-得1x <,∵不等式组的解集为21x -<<,122a +=-, 解得:5a =-.故答案为:5a =-.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于a 的方程是解此题的关键.三、解答题21.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m .解析:(1)7-a ;(2)7700,1076;(3)6431,4523,2615【分析】(1)根据七巧数的定义,即可得到答案;(2)根据七巧数的定义,即可得到答案;(3)设m 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,根据题意得到a ,b ,c ,d 之间的数量关系,进而求出b 的范围,即可求解.【详解】(1)∵一个“七巧数”的千位数字为a ,∴其个位数字可表示为:7-a ,故答案是:7-a ;(2)由题意可得:最大的“七巧数”是:7700,最小的“七巧数”是:1076,故答案是:7700,1076;(3)设m 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则3()77a c b d a d c b +=-⎧⎪=-⎨⎪=-⎩①②③,把②③代入①,可得:7-d+7-b=3b-3d ,既:4b-2d=14,∴d=2b-7,∴百位数字为b ,个位数字为2b-7,十位数字为7-b ,∵2b-7≥0且7-b≥0,∴3.5≤b≤7,当b=4时,则d=1,a=6,c=3,m=6431,当b=5时,则d=3,a=4,c=2,m=4523,当b=6时,则d=5,a=2,c=1,m=2615,当b=7时,则d=7,a=0,c=0,不符合题意,∴ 满足条件的所有“七巧数”m 为:6431,4523,2615.【点睛】本题主要考查新定义问题,理解题意,列出方程和不等式,掌握分类讨论的思想方法,是解题的关键.22.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 解析:(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.23.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来. 解析:解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.24.解下列方程(方程组)或不等式(组).(1)[]{}3213(21)35x x ---+=(2)2(53)3(12)x x x +≤--(3)解方程214163x x --=-(4)解方程组2538x y x y +=⎧⎨-=⎩(代入法解) (5)372(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩ (6)0.35340.532m n m n m n m n +-⎧-=⎪⎪⎨+-⎪+=⎪⎩ 解析:(1)23x =-;(2)3x ≤-;(3)34x =;(4)31x y =⎧⎨=⎩;(5)15x -≤<;(6)71012m n ⎧=⎪⎪⎨⎪=⎪⎩. 【分析】(1)先去括号,然后移项、合并同类项,系数化为1,即可得到答案;(2)先去括号,然后移项、合并同类项,系数化为1,即可得到答案;(3)先去分母,去括号,然后移项、合并同类项,系数化为1,即可得到答案; (4)由代入消元法解方程组,即可得到答案;(5)先求出每个不等式的解集,即可得到不等式组的解集;(6)先把方程组去分母,然后进行整理,再利用加减消元法解方程组,即可得到答案.【详解】解:(1)[]{}3213(21)35x x ---+=,∴[]{}3216335x x ---+=,∴{}32165x x --=,∴{}3145x --=,∴3125x --=, ∴23x =-; (2)2(53)3(12)x x x +≤--, ∴10636x x x +≤-+,∴10736x x -≤--,∴39x ≤-,∴3x ≤-;(3)214163x x --=-,∴212(4)6x x -=--,∴21826x x -=--,∴43x =, ∴34x =; (4)2538x y x y +=⎧⎨-=⎩①②, 由①得:52x y =-③,把③代入②得:3(52)8y y --=,解得:1y =,把1y =代入①,得3x =,∴方程组的解为31x y =⎧⎨=⎩; (5)372(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩①② 解不等式①,得5x <;解不等式②,得1x ≥-;∴不等式组的解集为:15x -≤<;(6)0.35340.532m n m n m n m n +-⎧-=⎪⎪⎨+-⎪+=⎪⎩, 方程组整理得:5352153m n m n +=⎧⎨-=⎩①②, 由①-②,得:3618n =, ∴12n =, 把12n =代入②,得710m =, ∴方程组的解为:71012m n ⎧=⎪⎪⎨⎪=⎪⎩; 【点睛】本题考查了解一元一次方程,解二元一次方程组,解不等式,解不等式组,解题的关键是熟练掌握运算法则,正确的进行解题.25.解不等式(组):(1)24123x x ---≤;(2)63(4) 23253x xx x-≥-⎧⎪⎨++>⎪⎩①②.解析:(1)x≤4;(2)1<x≤3.【分析】(1)先去分母,再去括号、移项、合并同类项、系数化为1得到解集;(2)分别解不等式即可得到不等式组的解集.【详解】解:(1)去分母,得:3(x﹣2)﹣6≤2(4﹣x),去括号,得:3x﹣6﹣6≤8﹣2x,移项,得:3x+2x≤8+6+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式①,得:x≤3,解不等式②,得:x>1,则不等式组的解集为1<x≤3.【点睛】此题考查解不等式及不等式组,掌握解不等式的方法是解题的关键.26.解不等式组:23332x xxx>-⎧⎪⎨-+≥⎪⎩①②,并把它们的解集表示在数轴上.解析:(1)1<x≤3,图见解析【分析】求出不等式组中两个不等式的解集后,再求出两个解集的公共部分并在数轴上表示出来即可.【详解】解:解不等式①得:x>1,解不等式②得:x≤3,∴不等式组的解集为:1<x≤3,并可在数轴上表示如下:【点睛】本题考查不等式组的求解,熟练掌握求不等式解集公共部分的方法是解题关键. 27.解不等式,并把解表示在数轴上. 417366x x +≥- 解析:3x ≤,见解析【分析】先去分母,然后移项、合并同类项,系数化为1,即可得到答案.【详解】解:去分母,得2417x x ≥+-移项,得4271x x -≤-合并同类项,得26x ≤系数化为1,得3x ≤;把解表示在数轴上如图:【点睛】本题考查了解一元一次不等式,解题的关键是掌握解不等式的方法进行解题.28.计划对河道进行改造,现有甲乙两个工程队参加改造施工,受条件限制,每天只能由一个工程队施工.若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米施工任务:若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)该河道全长6000米,若两队合作工期不能超过90天,乙工程队至少施工多少天? 解析:(1)甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米;(2)乙工程队至少施工50天【分析】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据等量关系列出二元一次方程组,即可求解;(2)设乙工程队施工a 天,根据不等量关系,列出一元一次不等式,即可求解.【详解】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据题意得:3555024420x y x y +=⎧⎨+=⎩,解得:5080x y =⎧⎨=⎩, 答:甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米; (2)设乙工程队施工a 天,根据题意得:80a+50(90-a )≥6000,解得:a≥50,答:乙工程队至少施工50天【点睛】本题主要考查二元一次方程组与一元一次不等式的实际应用,找出等量关系和不等量关系,列出方程组和不等式,是解题的关键.。

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (58)

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (58)

人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案)一、单选题1.班级组织知识竞赛,小明用100元班费购买笔记本和碳素笔共30件作为奖品,已知笔记本每个2元,碳素笔每支5元,那么小明最多能买碳素笔()A.20支B.14支C.13支D.10支【答案】C【解析】【分析】先设小明最多能买碳素笔x支,则小明买笔记本()30x-本,再根据题意列出不等式求解即可.【详解】设小明最多能买碳素笔x支,则小明买笔记本()30x-本,故()5230100x x+-≤,解得x≤1133.因为碳素笔的支数应为整数,故小明最多能买碳素笔13支.故答案选:C.【点睛】本题是一元一次不等式在实际生活中的运用,解本题的关键是熟知不等式的性质,找到关键描述语,进而找到所求的量的等量关系.2.如果不等式组x ax b>⎧⎨<⎩无解,那么不等式组22x ax b+≥⎧⎨+≤⎩的解集是()A.2-b≤x≤2-a B.b-2≤x≤a-2C .2-a ≤x ≤2-bD .无解【答案】C【解析】【分析】 先求出不等式组的解集,利用不等式组的解集是无解可知,x 应该是大大小小找不到,所以可以判断出a ≥b ,当a =b 时没有交集,所以也是无解,不要漏掉相等这个关系.【详解】解:不等式组22x a x b +≥⎧⎨+≤⎩的解是2x a ≥-,2x b ≤-,∵不等式组x a x b >⎧⎨<⎩无解 ∴a b ≥∴2a 2b -≤-,∴解集应为22a x b -≤≤-.故答案选:C .【点睛】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,解集也是x 2>,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.3.若不等式组2260x a x +>⎧⎨-≤⎩有解,则a 的取值范围是( ) A .a ≤5B .a <5C .a <3D .a ≤3【答案】B【解析】【分析】解不等式组应先求出每个不等式的解集,再根据不等式组有解即可得到关于a 的不等式,求出a 的取值范围即可.【详解】 2260x a x +>⎧⎨-≤⎩①② 由①得,2x a >-,由②得,3x ≤∵此不等式组有解,∴a 23-< ,解得a 5<.故答案选:B.【点睛】本题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.4.关于x 的不等式-x +m ≥3的解集如图所示,则m 的值是( )A .0B .2C .-2D .-4【解析】【分析】本题是关于x 的不等式,应先只把x 看成未知数,求得x 的解集,再根据x ≤-1,求得a 的值.【详解】解:移项得,3x m ≤-,1x ≤-∴31m -=-解得:2m =.故答案选:B.【点睛】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.5.若方程组32223x y k y x +=⎧⎨-=⎩的解满足x <1,且y >1,则整数k 的个数是( ) A .4B .3C .2D .1【答案】A【解析】【分析】本题可运用加减消元法,将x 、y 用含k 的代数式表示,然后根据x <1,y >1得出k 的范围,再根据k 为整数可得出k 的值.32223x y k y x +=⎧⎨-=⎩①②,①﹣②,得:4x =2k ﹣3,∴x 234k -=. ∴x <1,∴234k -<1,解得:k 72<. 将x 234k -=代入②,得:2y 234k --=3,∴y 298k +=. ∴y >1,∴298k +>1,解得:k 12->,∴1722k -<<. ∴k 为整数,∴k 可取0,1,2,3,∴k 的个数为4个.故选A .【点睛】本题考查了二元一次方程和不等式的综合问题,通过把x ,y 的值用k 的代数式表示,再根据x 、y 的取值判断k 的值.6.解不等式组36219x x +≥⎧⎨-≤⎩①②解答过程如下:(1)解不等式①,得x ≥3.(2)解不等式②,得x ≤5.(3)把不等式①和②的解集表示在数轴上,如图.(4)原不等式组的解集为x ≥5.则开始出现错误的步骤是( )A .(1)B .(2)C .(3)D .(4)【答案】D【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】(1)不等式①,得x≥3;(2)不等式②,得x≤5;(3)把不等式①和②的解集在数轴上表示出来(4)原不等式组的解集为3≤x≤5.故开始出现错误的步骤是(4).故选D.【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.当x = 3时,下列不等式成立的是()A.x+3>5 B.x+3>6 C.x+3>7 D.x+3>8【答案】A【解析】【分析】根据不等式的定义求解即可.【详解】A、x+3=6>5,故A符合题意;B、x+3=6,故B不符合题意;C、x+3=6<7,故C不符合题意;D 、x+3=6<8,故D 不符合题意;故选:A .【点睛】本题考查了不等式,利用不等式的定义是解题关键.8.已知a =32x +,b =23x +,且a >2>b ,那么x 的取值范围是( ) A .x >1B .x <4C .1<x <4D .x <1【答案】C【解析】【分析】由已知a >2>b 求出a ,b 的取值,再代入求x 的取值.【详解】由题意得:22a b ⎧⎨⎩><,则322223x x +⎧⎪⎪⎨+⎪⎪⎩><,解得:14x x ⎧⎨⎩><. 所以该不等式组的解集为1<x <4.即x 的取值范围为1<x <4.故选C .【点睛】本题考查了解一元一次不等式组的应用.正确列出不等式组是解题的关键.9.下列说法正确的是( )A .x =1是不等式-2x <1的解集B .x =3是不等式-x <1的解集C .x >-2是不等式-2x <1的解集D .不等式-x <1的解集是x >-1【答案】D【解析】【分析】根据不等式的解集的定义依次分析各项即可.【详解】121,,2x x -- 故A 选项错误; 1,1,x x -- 故B 选项错误;121,,2x x --故C 选项错误; 1,1,x x --故本选项正确;故答案选:D.【点睛】本题考查的是不等式的解集,解题的关键是熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解集.10.若数a 使得关于x 的不等式组32235(12)x x x a x --⎧<⎪⎨⎪+≥-⎩,有且仅有四个整数解,且使关于y 的分式方程42322a y y y ++-++=1有整数解,则所有满足条件的整数a 的值之和是( )A .3B .2C .﹣2D .﹣3【答案】A【解析】【分析】 解关于x 的不等式组()3223512x x x a x --⎧<⎪⎨⎪+≥-⎩,根据“该不等式组有且仅有四个整数解”,得到关于a 的不等式,解之,解分式方程42322a y y y ++-++=1,根据“该方程有整数解,且y ≠﹣2”,得到a 的取值范围,结合a 为整数,取所有符合题意的整数a ,即可得到答案.【详解】 解:()3223512x x x a x --⎧<⎪⎨⎪+≥-⎩①②, 解不等式①得:x <5,解不等式②得:x 5-a 11≥, ∵该不等式组有且仅有四个整数解,∴该不等式组的解集为:5-a 11≤x <5, ∴0<5-a 11≤1, 解得:﹣6≤a <5,42322a y y y ++-++=1, 方程两边同时乘以(y +2)得:(a +4)﹣(2y +3)=y +2,去括号得:a +4﹣2y ﹣3=y +2,移项得:﹣2y ﹣y =2+3﹣4﹣a ,合并同类项得:﹣3y =1﹣a ,系数化为1得:y =a-13, ∵该方程有整数解,且y ≠﹣2,a ﹣1是3的整数倍,且a ﹣1≠﹣6,即a ﹣1是3的整数倍,且a ≠﹣5,∵﹣6≤a<5,∴整数a为:﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,又∵即a﹣1是3的整数倍,且a≠﹣5,∴a=﹣2或a=1或a=4,(﹣2)+1+4=3,故选:A.【点睛】本题考查了分式方程的解和一元一次不等式组的整数解,正确掌握解分式方程的方法和解一元一次不等式组的方法是解题的关键.。

新人教版七年级数学下册第九章《不等式与不等式组》单元测试(解析版)(1)

新人教版七年级数学下册第九章《不等式与不等式组》单元测试(解析版)(1)

人教版七年级数学下册第九章不等式与不等式组复习试题七年级数学下册第九章不等式与不等式组复习试题(含答案)一、选择题1.下列选项中是一元一次不等式组的是( )A.B.-C.D.2.下列说法中,错误的是( )A.不等式x<2的正整数解有一个B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x>-3D.不等式x<10的整数解有无数个3.下列说法不一定成立的是( )A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b4.如图,数轴上所表示关于x的不等式组的解集是( )A.x≥2B.x>2C.x>-1D.-1<x≤25.不等式组-的解集表示在数轴上正确的是( )6.不等式6-4x≥3x-8的非负整数解有( )A.2个B.3个C.4个D.5个7.对于实数x,我们规定:[x]表示不小于x的最小整数,例如:[1.4]=2,[4]=4,[-3.2]=-3,若=6,则x的取值可以是( )A.41B.47C.50D.588.张老师带领全班学生到植物园参观,门票每张10元,购票时才发现所带的钱不够,售票员告诉他:如果参观人数50人以上( 含50人)可以按团体票八折优惠,于是张老师购买了50张票,结果发现所带的钱还有剩余.那么张老师和他的学生至少有( )A.40人B.41人C.42人D.43人9.已知4<m<5,则关于x的不等式组--的整数解共有( )A.1个B.2个C.3个D.4个10把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本.这些图书有( )A.23本B.24本C.25本D.26本二、填空题)1.“x的4倍与2的和是负数”用不等式表示为.2.若23x m-1-2>19是关于x的一元一次不等式,则m=.3.不等式4+3x≥x-1的所有负整数解的和为.4.若不等式--无解,则实数a的取值范围是.5.三张卡片A,B,C上分别写有三个式子2x-1,,-3( x-2 ),其中A卡片上式子的值不超过B 卡片上式子的值,但不小于C卡片上式子的值,则x的取值范围是.6.定义新运算:对于任意实数a,b都有a b=3a-b+1,其中等式右边是通常的加法、减法及乘法运算,如:25=3×2-5+1=2,若不等式x m<5的解集表示在数轴上,如图所示,则m的值为.三、解答题1.解不等式3( x-1 )≤,并把它的解集在数轴上表示出来.2.已知:不等式-≤2+x,( 1 )解该不等式,并把它的解集表示在数轴上;( 2 )若实数a满足a>2,说明a是否是该不等式的解.3.解不等式组--并写出该不等式组的最大整数解.4.)已知不等式--1<6的负整数解是方程2x-3=ax的解,试求出不等式组--的解集.5.若不等式组--的解集为-2<x<3,求a+b的值.6.已知二元一次方程组--其中x<0,y>0,求a的取值范围,并把解集在数轴上表示出来.7.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.( 1 )求每辆大客车和每辆小客车的乘客座位数;( 2 )由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.8.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.( 1 )如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?( 2 )如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?参考答案:一、选择题DCCAC BCBBD二、填空题1. 4x+2<0.22.3. -3.4. a≤-1.5.≤x≤6.16. 2.三、解答题( 共66分)1由题意得6( x-1 )≤x+4,6x-6≤x+4,6x-x≤4+6,5x≤10,x≤2,将解集表示在数轴上如下:2.( 1 )2-x≤3( 2+x),2-x≤6+3x,-4x≤4,x≥-1,解集表示在数轴上如下:( 2 )∵a>2,不等式的解集为x≥-1,而2>-1,∴a是不等式的解.3.解( x-1 )≤1,得x≤3,解1-x<2,得x>-1,则不等式组的解集是-1<x≤3.∴该不等式组的最大整数解为3.4∵--1<6,4-5x-2<12,-5x<10,x>-2,∴不等式的负整数解是-1,把x=-1代入2x-3=ax,得-2-3=-a,解得a=5,把a=5代入不等式组,得--解不等式组,得<x<15.5.由--得∴-解得-∴a+b=-1.6.解方程组,得-由题意,得-解得-4<a<.∴解集在数轴上表示为:7. 1 )设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y个,根据题意,得-解得答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个.( 2 )设租用a 辆小客车人教版七年级下册 第九章 不等式与不等式组单元卷福州屏东中学2018-2019学年第二学期数学校本练习(3)班级: 姓名: 座号: 成绩:一、选择题(本题共6小题,每小题4分,共24分)1.下列不等式中,是一元一次不等式是( )A.x 2-1<0B.x -y ≠0C.x ≥1D.043≤-x2.若m <n ,则下列不等式中正确的是( )A.m -1>n -1B.-2m <-2nC.6m <6nD.44nm >3.关于x 的不等式的解集在数轴上表示如图所示,该不等式的解集是( )A.x ≤2B.x <2C.x ≥2D.x >2 4.如果关于x 的不等式(m -1)x <m -1的解集为x >1,那么m 的取值范围是( ) A.m >-1 B.m >1 C.m <-1 D.m <15.小诚家距离学校2700米,他步行的平均速度为75米/分,跑步的平均速度为180米/分,若他从家到达学校的时间不超过12分钟,则至少需要跑步多少分钟?设小诚需要跑步x 分钟,则可列关于x 的不等式为( ) A.2700180)12(75≤+-x x B.2700180)12(75≥+-x x C.12180752700≤-+x x D.12751802700≥-+xx6.若关于x 的不等式组⎩⎨⎧≥-<-04)1(2a x x 无解,则a 的取值范围为( )A.a ≤3B.a ≥3C.a <3D.a >3二、填空题(本题共6小题,每小题4分,共24分)7. 5与x 的2倍的差是非负数,用不等式表示为 。

【教师卷】初中数学七年级数学下册第九单元《不等式与不等式组》复习题(培优)(2)

【教师卷】初中数学七年级数学下册第九单元《不等式与不等式组》复习题(培优)(2)

一、选择题1.不等式32x x -≤的解集在数轴上表示正确的是( )A .B .C .D . B解析:B【分析】先求出不等式的解集,再根据不等式在数轴上的表示方法即可得.【详解】 32x x -≤,23x x --≤-,33x -≤-,1≥x ,由此可知,只有选项B 表示正确,故选:B .【点睛】本题考查了在数轴上表示一元一次不等式的解集,熟练掌握不等式的解法是解题关键. 2.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种C解析:C【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案.【详解】解:设用A 型货厢x 节,B 型货厢()50x -节, 根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤, 因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案.故选:C .【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.3.不等式组10,{360x x -≤-<的解集在数轴上表示正确的是( ) A .B .C .D . D解析:D【解析】 试题分析:10{360x x -≤-<①②,由①得:x≥1,由②得:x <2,在数轴上表示不等式的解集是:,故选D .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.4.若实数3是不等式2x a 20--<的一个解,则a 可取的最小整数为( )A .2B .3C .4D .5D解析:D【分析】将x 3=代入不等式得到关于a 的不等式,求解即可.【详解】根据题意,x 3=是不等式的一个解,∴将x 3=代入不等式,得:6a 20--<,解得:4a >,则a 可取的最小整数为5,故选:D.【点睛】此题考查不等式的解的定义,解一元一次不等式,正确理解不等式的解的定义将x=3代入得到关于a 的不等式是解题的关键.5.若a b <,则下列各式中不一定成立的是( )A .11a b -<-B .33a b <C .a b ->-D .ac bc < D 解析:D【分析】根据不等式的性质进行解答.【详解】A 、在不等式的两边同时减去1,不等式仍成立,即11a b -<-,故本选项不符合题意.B 、在不等式的两边同时乘以3,不等式仍成立,即33a b <,故本选项不符合题意.C 、在不等式的两边同时乘以-1,不等号方向改变,即a b ->-,故本选项不符合题意.D 、当0c ≤时,不等式ac bc <不一定成立,故本选项符合题意.故选:D .【点睛】本题考查了不等式的性质,做这类题时应注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .11B解析:B【分析】 先解方程组得83273x a a y a ⎧=⎪⎪-⎨-⎪=⎪-⎩,根据x 、y 为正整数可求得a ,再解不等式组,根据不等式组无解可得a 的取值范围,据此可求得a 值.【详解】解:解二元一次方程组931ax y x y -=⎧⎨-=⎩,得:83273x a a y a ⎧=⎪⎪-⎨-⎪=⎪-⎩, ∵方程组的解均为正整数,∴a=4、5、7、11, 解不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩,得:81x x a ≥⎧⎨<+⎩, ∵不等式组无解,∴a+1≤8,即a≤7,∴满足题意的a 值为4或5或7,故答案为:B .【点睛】本题考查二元一次方程的解法、一元一次不等式组的解法,熟练掌握它们的解法,会用不等式组无解求参数范围,会利用正约数求满足方程组的整数解是解答的关键.7.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a - D 解析:D【分析】由已知可得a<-1或a<-2,由此可以判断每个选项是正确还是错误.【详解】解:由绝对值的意义及已知条件可知|a|>1,∴A 错误;∵a<-1,∴a+1<0,∴B 错误;∵a<-2有可能成立,此时|a|>2,|a|-1>1,∴C 错误;由a<-1可知-a>1,因此101a <-<,∴D 正确. 故选D .【点睛】本题考查有理数的应用,熟练掌握有理数在数轴上的表示、绝对值、倒数及不等式的性质是解题关键.8.若m n <,则下列各式中正确的是( )A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > C 解析:C【分析】根据不等式的基本性质依次分析各项即可得到结果.【详解】∵m <n∴m+3<n+3,故A 选项错误;m-3<n-3,故B 选项错误;-3m >-3n ,故C 选项正确; 33m n <,故D 选项错误; 故选C.【点睛】本题考查了不等式的基本性质,解答本题的关键是熟练掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤ D解析:D【分析】 根据“操作恰好进行两次就停止了”可得第一次运行的结果小于等于190,第二次运行的结果大于190,由此建立不等式组,再解不等式组即可得.【详解】由题意得:()321903322190x x -≤⎧⎪⎨-->⎪⎩①②, 解不等式①得:64x ≤,解不等式②得:22x >,则不等式组的解集为2264x <≤,故选:D .【点睛】本题考查了一元一次不等式组的应用,根据程序运行的次数,正确建立不等式组是解题关键.10.若01x <<,则下列选项正确的是( )A .21x x x <<B .21x x x <<C .21x x x <<D .21x x x<< C 解析:C【分析】利用不等式的基本性质,分别求得x 、x 2及1x 的取值范围,然后比较,即可做出选择. 【详解】解:∵0<x <1,∴0<x 2<x (不等式两边同时乘以同一个大于0的数x ,不等号方向不变);0<1<1x(不等式两边同时除以同一个大于0的数x ,不等号方向不变); ∴x 2<x <1x. 故选:C .【点睛】 考查了有理数大小比较,解答此题的关键是熟知不等式的基本性质:基本性质1:不等式两边同时加或减去同一个数或式子,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于0的数或式子,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于0的数或式子,不等号方向改变.二、填空题11.不等式组63024x x x -⎧⎨<+⎩的解集是__.【分析】分别解两个不等式得到和x <4然后根据同大取大同小取小大于小的小于大的取中间小于小的大于大的无解确定不等式组的解集【详解】解:解不等式得:解不等式得:则不等式组的解集为故答案为【点睛】本题考查解析:2x【分析】分别解两个不等式得到2x 和x <4,然后根据同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解确定不等式组的解集.【详解】解:解不等式630x -,得:2x ,解不等式24x x <+,得:4x <,则不等式组的解集为2x ,故答案为2x .【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集. 12.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______.-<<4【分析】先解方程组用含a 的式子表示方程组的解根据方程组的解是正数列出关于a 的不等式组再求解【详解】解:①+②得:①-②得:所以原方程组的解为:∵方程组的解为正∴>0且>0解得:-<<4故填:解析:-54<a <4 【分析】先解方程组用含a 的式子表示方程组的解,根据方程组的解是正数,列出关于a 的不等式组,再求解.【详解】解:3951x y a x y a +=+⎧⎨-=+⎩①②, ①+②得:2810x a =+,45x a =+,①-②得:228y a =-+,4y a =-+,所以,原方程组的解为:454x a y a =+⎧⎨=-+⎩, ∵ 方程组的解为正,∴45a +>0且4a -+>0, 解得:-54<a <4, 故填:-54<a <4. 【点睛】本题考查了方程组的解法,以及一元一次不等式组的解法,解此类问题要先用字母a 表示方程组的解,再根据题意,列不等式组,最后求解.13.若不等式2(x+3)>1的最小整数解是方程2x-ax=3的解,则a 的值为__________________.5【解析】解不等式2(x+3)>1得x >-则最小整数解是-2把x=-2代入方程得-4+2a=3解得:a=35点睛:本题考查了不等式的解法和方程的解的定义正确解不等式求出解集是解答本题的关键解不等式应解析:5【解析】解不等式2(x+3)>1得x >-52,则最小整数解是-2,把x=-2代入方程得-4+2a=3,解得:a=3.5.点睛:本题考查了不等式的解法和方程的解的定义,正确解不等式求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.己知不等式组1x x a≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______.a≥1【分析】已知不等式组的解集为再根据不等式组解集的口诀:同大取大得到a 的范围【详解】解:∵一元一次不等式组的解集为∴a≥1故答案为:a≥1【点睛】本题考查了一元一次不等式组解集的求法将不等式组解解析:a≥1【分析】已知不等式组的解集为1x ≤,再根据不等式组解集的口诀:同大取大,得到a 的范围.【详解】解:∵一元一次不等式组1x x a ≤⎧⎨≤⎩的解集为1x ≤, ∴a≥1,故答案为:a≥1.【点睛】本题考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a 的范围.15.已知关于x 的不等式组010x a x -≥⎧⎨->⎩的整数解共有3个,则a 的取值范围是________.【分析】表示出不等式组的解集由不等式组整数解有3个确定出a 的范围即可【详解】不等式组整理得:即由不等式组整数解有3个得到故答案为:【点睛】本题考查了一元一次不等式组的整数解熟练掌握运算法则是解本题的解析:32a -<≤【分析】表示出不等式组的解集,由不等式组整数解有3个,确定出a 的范围即可.【详解】不等式组整理得:1x a x ≥⎧⎨<⎩,即1a x ≤<, 由不等式组整数解有3个,得到32a -<≤-,故答案为:32a -<≤-.【点睛】本题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.16.由ac bc >得到a b <的条件是:c ______0(填“>”“<”或“=”).【分析】根据不等式的性质两边同时除以c (c<0)即可得到【详解】根据不等式的性质:由得到的条件是:c<0故答案为:<【点睛】此题考查不等式的性质:不等式的性质1:不等式两边加减同一个数(或式子)不等解析:<【分析】根据不等式的性质,两边同时除以c (c<0)即可得到.【详解】根据不等式的性质:由ac bc >得到a b <的条件是:c<0,故答案为:<.【点睛】此题考查不等式的性质:不等式的性质1:不等式两边加减同一个数(或式子),不等号的方向不变;不等式的性质2:不等式两边乘(或除)同一个正数,不等号的方向不变;不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变.17.若关于x 、y 的二元一次方程组23242x y a x y a+=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.【分析】直接把两个方程相加得到然后结合即可求出a 的取值范围【详解】解:直接把两个方程相加得:∴∵∴∴故答案为:【点睛】本题考查了解二元一次方程组以及解一元一次不等式解题的关键是掌握运算法则正确得到解析:4a. 【分析】直接把两个方程相加,得到337x y a +=+,然后结合1x y +<,即可求出a 的取值范围.【详解】解:23242x y a x y a +=-⎧⎨+=+⎩, 直接把两个方程相加,得:337x y a +=+, ∴73a x y ++=, ∵1x y +<, ∴713a +<, ∴4a .故答案为:4a.【点睛】 本题考查了解二元一次方程组,以及解一元一次不等式,解题的关键是掌握运算法则,正确得到73a x y ++=. 18.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.−5【分析】设被污染的数为a 表示出不等式的解集根据已知解集确定出a 的值即可【详解】解:设被污染的数为a 不等式为1−3x <a 解得:x >由已知解集为x >2得到=2解得:a =−5故答案为:−5【点睛】此题 解析:−5【分析】设被污染的数为a ,表示出不等式的解集,根据已知解集确定出a 的值即可.【详解】解:设被污染的数为a ,不等式为1−3x <a .解得:x >1-3a , 由已知解集为x >2,得到1-3a =2, 解得:a =−5,故答案为:−5【点睛】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.19.不等式组213122x x ->⎧⎪⎨-≤⎪⎩的解集是__________.【分析】先求出不等式组中每一个不等式的解集再求出它们的公共部分【详解】解:解①得:x >2解②得:x≥-4所以不等式组的解集是:x >2故答案为:x >2【点睛】本题考查的是一元一次不等式组的解解此类题目解析:2x >【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【详解】 解:21312?2x x ->⎧⎪⎨-≤⎪⎩①② 解①得:x >2,解②得:x≥-4.所以,不等式组的解集是:x >2.故答案为:x >2.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.20.不等式组210360x x ->⎧⎨-<⎩的解集为_______.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <,则不等式组的解集为12 2x<<,故答案为:12 2x<<.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.三、解答题21.筹建中的迪荡中学需720套单人课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组.每组每天可生产12张:生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.解析:(1)120套;(2)60人生产桌子,24人生产椅子【分析】(1)用720套单人课桌椅÷6=每天要生产单人课桌椅的套数可得答案;(2)找到关键描述语:①生产桌子的5人一组.每组每天可生产12张,②生产椅子的4人一组,每组每天可生产24把,③至少提前1天完成这项生产任务,进而找到所求的量的关系,列出不等式组求解.【详解】解:(1)∵720÷6=120(套),∴光明厂平均每天要生产120套单人课桌椅.(2)设x人生产桌子,则(84﹣x)人生产椅子,由题意可得:1257205842457204xx⎧⨯⨯≥⎪⎪⎨-⎪⨯⨯≥⎪⎩,解得:60≤x≤60,故x=60,∴84-x=24,∴60人生产桌子,24人生产椅子.【点睛】此题主要考查了一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.22.解不等式组()41713843x xxx⎧+≤+⎪⎨--<⎪⎩,并把它的解集在数轴上表示出来.解析:-3≤x<2,数轴表示见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:()41713843x xxx⎧+≤+⎪⎨--<⎪⎩①②解不等式①,得:x≥-3,解不等式②,得:x<2,则不等式组的解集为-3≤x<2,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.某商店有A商品和B商品,已知A商品的单价比B商品单价多12元,若购买400件B商品与购买100件A商品所用钱数相等.(1)求A,B两种商品的单价分别是多少元.(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4,如果需要购买A,B两种商品的总件数不少于32,且该商店购买的A,B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?说明理由.解析:(1)A种商品的单价为16元,B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B 商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.【分析】(1)设B种商品的单价为x元,A种商品的单价为(x-12)元,根据等量关系:购买400件A商品与购买100件B商品所用钱数相等,列出方程求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.【详解】设B 种商品的单价为x 元,则A 种商品的单价为(x +12)元,由题意得:400100(12)x x =+ ,解得x =4,则x +12=16(元),答:A 种商品的单价为16元、B 种商品的单价为4元.设购买A 商品的件数为m 件,则购买B 商品的件数为(2m ﹣4)件,由题意得:2432164(24)296m m m m +-≥⎧⎨+-≤⎩ , 解得:12≤m ≤13,∵m 是整数,∴m =12或13,故有如下两种方案:方案(1):m =12,2m ﹣4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m =13,2m ﹣4=22 即购买A 商品的件数为13件,则购买B 商品的件数为22件.【点睛】本题考点是一元一次方程及一元一次不等式组的应用,注意找到正确的等量关系是解题的重点.24.(1)解方程组:35427x y x y -=⎧⎨+=⎩; (2)解不等式组:()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩. 解析:(1)31x y =⎧⎨=⎩;(2)无. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)35427x y x y -=⎧⎨+=⎩①②, 由①5+⨯②得:310435x x +=+,解得3x =,将3x =代入②得:67y +=,解得1y =,则方程组的解为31x y =⎧⎨=⎩; (2)()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩①②,解不等式①得:5x ≤-,解不等式②得:2x >-,则不等式组无解.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.25.定义一种新运算“a b ⊗”的含义为:当a b ≥时,a b a b ⊗=+;当a b <时,a b a b ⊗=-.例如:32325⊗=+=,()()22224-⊗=--=-.(1)填空:()21-⊗=________;(2)如果()()3x 732x 2-⊗-=,求x 的值.解析:(1)-3;(2)x 6=.【分析】(1)根据新定义列式计算即可;(2)根据新定义分两种情况列方程求解即可.【详解】解:()121-<,∴()21213-⊗=--=-故答案为:3-()2①当3x 732x -≥-时,即x≥2()()3x 732x 2-⊗-=即3x 732x 2-+-=x 6=.②当3x 732x -<-时,即x<2()()3x 732x 2-⊗-=即()3x 732x 2---=125x =(不合题意,舍去) x 6.∴=【点睛】本题主要考察了新定义的计算,解一元一次方程以及有理数的混合运算,解题的关键是熟练掌握解一元一次方程的一般步骤和有理数的混合运算法则.26.解不等式,并把解表示在数轴上. 417366x x +≥- 解析:3x ≤,见解析【分析】先去分母,然后移项、合并同类项,系数化为1,即可得到答案.【详解】解:去分母,得2417x x ≥+-移项,得4271x x -≤-合并同类项,得26x ≤系数化为1,得3x ≤;把解表示在数轴上如图:【点睛】本题考查了解一元一次不等式,解题的关键是掌握解不等式的方法进行解题.27.解下列一元一次不等式组:211132x x x x >-⎧⎪-⎨-<⎪⎩并把解集表示在数轴上. 解析:x>-1,数轴表示见解析.【分析】根据不等式的性质分别求出两个不等式的解集即可求出不等式组的解集,表示在数轴上即可.【详解】解:211132x x x x >-⎧⎪-⎨-<⎪⎩ 解21x x >-得:x>-1,解1132x x --<得: x>-3, ∴原不等式组的解集为x>-1,表示在数轴上如图:【点睛】此题考查一元一次不等式组的解及数轴表示,难度一般.28.解下列不等式(组)(1)221 43x x+-≥(2)273125x xx+>-⎧⎪-⎨≥⎪⎩解析:(1)x≤2;(2)2≤x<8;【分析】(1)不等式两边同时乘以12,化简计算即可.(2)分别求解两个不等式的取值,再把取值范围合并.【详解】(1)解:不等式两边同乘以12得:3(x+2)≥4(2x-1);去括号得:3x+6≥8x-4;移项合并同类项得:-5x≥-10;系数化为1得:x≤2;(2)解:解不等式1得:x<8;解不等式2得:x≥2;∴2≤x<8;【点睛】本题考察了不等式以及不等式组的简单运算,属于解不等式(组)的基础运算,注意细心即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册不等式测试及答案
一、 选择题(4′×8=32′)
1.若,a a -则a 必为( )
A 、负整数 B、 正整数 C、负数 D、正数
2.不等式组⎩
⎨⎧+-0201 x x 的解集是( ) A、12 x - B、1 x C、x 2- D、无解
3.下列说法,错误的是( )
A、33- x 的解集是1- x B、-10是102- x 的解
C、2 x 的整数解有无数多个 D、2 x 的负整数解只有
有限多个
4.不等式组2130
x x ≤⎧⎨+≥⎩的解在数轴上可以表示为( )
A
C
5.不等式组⎩⎨⎧--≥-3
1201 x x 的整数解是( )
A、-1,0 B、-1,1 C、0,1 D、无解
6.若a <b <0,则下列答案中,正确的是( )
A、a <b B B 、a >b C、2a <2b D 、a 3>b 2
7.关于x 的方程a x 4125=+的解都是负数,则a 的取值范围( )
A、a >3 B、a <3- C、a <3 D、a >-3
8.设“○”“△”“□”表示三种不同的物体,现用天平称了两
次,情况如图所示,那么“○”“△”“□”质量从大到小的
顺序排列为( )
A、□○△ B、 □△○ C、 △○□ D 、△
□○
二、 填空(3×9=27)
9.当x 时,代数式52+x 的值不大于零
10.若x <1,则22+-x 0(用“>”“=”或“”号填空)
11.不等式x 27->1,的正整数解是
12. 不等式x ->10-a 的解集为x <3,则a
13.若a >b >c ,则不等式组⎪⎩⎪⎨⎧c x b x a
x 的解集是 14.若不等式组⎩⎨⎧--3
212 b x a x 的解集是-1<x <1,则)1)(1(++b a 的值为
15.有解集2<x <3的不等式组是 (写出一
个即可)
16.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0 其
中蛋白质的含量为 _____ g
17.若不等式组⎩⎨⎧3
x a x 的解集为x >3,则a 的取值范围是
三、 解答题(6′×2+7′×2+8′+7′=41′)
18.解不等式①1)1(22 ---x x ; ②3
41221x x +≤-- 并分别把它们的解集在数轴上表示出来
19.解不等式组 ①⎪⎩⎪⎨⎧--≤--x x
x x 14214
)23(
②⎪⎩⎪⎨⎧-≥--+3
56634
)
1(513x x x x
20.关于y x ,的方程组⎩⎨⎧-=-+=+1
31m y x m y x 的解满足x >y
求m 的最小整数值
21.一本英语书共98页,张力读了一周(7天),而李永不到
一周就已读完,李永平均每天比张力多读3页,张力平均每天读多少页?(答案取整数)
附加题(10)
22.某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为
600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?
答案: 一、1C 2A 3D 4A 5C 6B 7C 8B 二、9. 2
5-≤x 10.> 11. 1,2; 12.7 ; 13. 无解c<x<b 14.-2 15⎩⎨⎧3
2 x x 16. 大
于180, 17. ≤ 3 三、18.①1110,2≥-x x 19 . ①23
1 x ≤- ②3
924
x 20. 1 21. 12或13 22.甲50人,乙 100人。

相关文档
最新文档