2018-2019学年四川省凉山州九年级上期末数学测试卷(含答案)
2018-2019学年九年级(上)期末数学试卷5套及答案解析
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分) 2018.11.61.某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.正方体D.球2.关于的一元二次方程的一个根是,则的值为()A. B. C. D.3.已知为矩形的对角线,则图中与一定不相等的是()A. B.C. D.4.一个三角形三遍的长分别为,,,另一个与它相似的三角形的最长边是,则该三角形的最短边是()A. B. C. D.5.下列各点不在反比例函数上的是()A. B. C. D.6.如图,在的正方形网格中,连接两格点,,线段与网格线的交点为点,则为()A. B. C. D.7.小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是()A.①②B.?①③C.③④D.‚②④8.如图所示电路,任意闭合两个开关,能使灯亮起来的概率是()A. B. C. D.9.如图,是三个反比例函数,,在轴上方的图象,由此观察得到、、的大小关系为()A. B.C. D.10.如图,矩形的周长是,以,为边向外作正方形和正方形,若正方形和的面积之和为,那么矩形的面积是()A. B. C. D.二、填空题(每小题4分,共20分)11.方程的二次项系数是________.12.如图所示,此时的影子是在________下(太阳光或灯光)的影子,理由是________.13.在平面直角坐标系中,直线与反比例函数的图象的一个交点,则的值为________.14.小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字,,每天每次从每组中抽出一张,两张牌的数字之积为的概率为________.15.如图,在平行四边形中,交于交于,,,则的长为________.三、解答题(满分50分)16.如图,已知,利用尺规作出一个新三角形,使新三角形与对应线段比为(不写作法,保留作图痕迹).17.一只不透明的袋子中装有个质地,大小均相同的小球,这些小球分别标有,,,,甲,乙两人每次同时从袋中各随机取出个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:解答下列问题:如果实验继续进行下去,根据上表提供数据,出现和为的频率将稳定在它的概率附近,估计出现和为的概率是.如果摸出这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表或画树状图的方法说明理由.18.如图所示,某小区计划在一块长米,宽米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径是多少?(精确到 . )19.已知,如图,,,.请你添加一个条件,使相似于,你添加的条件是________;若,,在的条件下,求的长度.20.如图,已知平行四边形中,对角线,交于点,是延长线上的点,且是等边三角形.(1)求证:四边形是菱形;(2)若,求证:四边形是正方形.21.如图,在平面直角坐标系中,一次函数与轴轴分别交于点,与反比例函数在第一象限交于点.写出点,,的坐标.过轴上的点作平行于轴的直线分别与直线和反比例函数交于点,求的面积.22.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.已知:如图,四边形是“等对角四边形”,,,.则________度,________度.在探究“等对角四边形”性质时:小红画了一个“等对角四边形 ”(如图),其中,,此时她发现成立.请你证明此结论;已知:在“等对角四边形 ”中,,,,.求对角线的长.答案1. 【答案】A【解析】根据常见几何体的三视图确定即可得.【解答】解:、长方体的主视图和左视图均为矩形,符合题意;、圆锥的主视图和左视图均为等腰三角形,不符合题意;、正方体的主视图和左视图均为正方形,不符合题意;、球的主视图和左视图均为圆,不符合题意;故选:.2. 【答案】B【解析】根据一元二次方程的解的定义把代入方法得到关于的一次方程,然后解一次方程即可.【解答】解:把代入方程得,解得.故选.3. 【答案】D【解析】根据矩形的性质,逐一进行判断即可求解.【解答】解:、对顶角相等,一定相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、不确定,可能相等,也可能不相等,故不符合题意;、一定不相等,因为,,故符合题意.故选:.4. 【答案】B【解析】首先设与它相似的三角形的最短边的长为,然后根据相似三角形的对应边成比例,即可得方程,解此方程即可求得答案.【解答】解:设与它相似的三角形的最短边的长为,∵一个三角形三边的长分别为,,,另一个与它相似的三角形的最长边是,∴,解得:.故选.5. 【答案】C【解析】分别把各点坐标代入反比例函数的解析式进行检验即可.【解答】解:、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意;、∵ 时,,∴此点不在反比例函数的图象上,故本选项符合题意;、∵ 时,,∴此点在反比例函数的图象上,故本选项不符合题意.故选.6. 【答案】C【解析】构建如图所示的图形,利用平行线分线段成比例得到.【解答】解:如图,∵ ,∴.故选.7. 【答案】B【解析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有①③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带①③两块碎玻璃,就可以确定平行四边形的大小.故选.8. 【答案】C【解析】先根据题意画出树状图,得出共有种情况,再根据能使灯亮起来的情况有种,即可得出能使灯亮起来的概率.【解答】解:根据题意画树状图如下:∵共有种情况,能使灯亮起来的情况有种,∴能使灯亮起来的概率是,故选:.9. 【答案】C【解析】根据反比例函数图象上点的坐标特点可得,进而可分析、、的大小关系.【解答】解:读图可知:三个反比例函数的图象在第二象限;故;,在第一象限;且,的图象距原点较远,故有:;综合可得:.故选:.10. 【答案】B【解析】设,,根据题意列出方程,,利用完全平方公式即可求出的值.【解答】解:设,,∵正方形和的面积之和为∴ ,∵矩形的周长是∴ ,∵ ,∴ ,∴ ,∴矩形的面积为:故选11. 【答案】【解析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程的二次项系数是,故答案为:.12. 【答案】太阳光,通过作图发现相应的直线是平行关系【解析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.13. 【答案】【解析】将代入中求出值,进而即可得出点的坐标,由点的坐标利用反比例函数图象上点的坐标特征即可求出值,此题得解.【解答】解:当时,,∴点的坐标为.∵点在反比例函数的图象上,∴ .故答案为:.14. 【答案】【解析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树形图得:由树状图可知共有种可能,两张牌的和为的有种,所以概率,故答案为:.15. 【答案】【解析】由于,所以,又因为,所以,所以,从而可求出的长度.【解答】解:∵ ,∴ ,∵ ,∴ ,∴∴,,∴故答案为:16. 【答案】解:如图,即为所求作三角形.【解析】平面内任取一点,作射线、、,再射线上分别截取、、,顺次连接、、即可得.【解答】解:如图,即为所求作三角形.17. 【答案】; 假设,则(和为),所以,的值不能为.【解析】利用频率估计概率结合表格中数据得出答案即可;; 假设,根据题意先列出树状图,得出和为的概率,再与进行比较,即可得出答案.【解答】解:根据随着实验的次数不断增加,出现“和为 ”的频率是,故出现“和为 ”的概率是;; 假设,则(和为),所以,的值不能为.18. 【答案】每个扇形的半径大约是 . .【解析】根据个扇形的面积是长方形荒地面积的一半即可得出关于的一元二次方程,解之即可得出结论.【解答】解:根据题意得:,解得: . , . (舍去).19. 【答案】; ∵ ,,,∴,即,解得.【解析】根据相似三角形的判定定理即可得出结论;; 根据相似三角形的性质即可得出结论.【解答】解: ∵ ,,∴ ,∴可以添加的条件是.; ∵ ,,,∴,即,解得.20. 【答案】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.【解析】(1)根据对角线互相垂直的平行四边形是菱形.由题意易得,∴ ,∴ ,∴四边形是菱形;; (2)根据有一个角是的菱形是正方形.由题意易得,∵四边形是菱形,∴ ,∴四边形是正方形.【解答】证明:(1)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ (三线合一),即,∴四边形是菱形(对角线互相垂直的平行四边形是菱形).; (2)∵四边形是平行四边形,∴ .又∵ 是等边三角形,∴ 平分(三线合一),∴,又∵∴ ,∴ (三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形是菱形,∴ ,∴平行四边形是正方形.21. 【答案】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.【解析】分别将、代入中求出与之对应的、的值,由此即可得出点、的坐标,再联立两函数解析式成方程组,解之取其正值即可得出点的坐标;; 将分别代入一次函数和反比例函数解析式中求出值,由此即可得出点、的坐标,进而即可得出的长度,由点、的坐标即可得出线段的长度,再利用三角形的面积公式即可求出的面积.【解答】解:当时,,∴点的坐标为;当时,,∴点的坐标为;联立两函数解析式成方程组,,解得:或,∴点的坐标为.; 当时,,∴点的坐标为;当时,,∴点的坐标为.∴,,∴.22. 【答案】,【解析】过点于点,交于点点作于,则即的最小再根据,分可知是等腰角三角形,由锐角角函数的定义即可出的长.【解答】解:过点作于,于点,点作于,则即为的最值,∵,,平分,等腰角三角形,故的最小值为.。
四川省凉山彝族自治州九年级上册数学期末考试试卷
四川省凉山彝族自治州九年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共19题;共38分)1. (2分) (2019八下·衡水期中) 下列各式中,最简二次根式是()A .B .C .D .2. (2分)在根式①,②,③,④中,最简二次根式是()A . ①②B . ②④C . ①③D . ①④3. (2分)不等式组的解集在数轴上表示为()A .B .C .D .4. (2分) (2017八下·林甸期末) 已知关于x的分式方程 + =1的解为负数,则k的取值范围是()A . k<且k≠0B . k≤ 且k≠0C . k≥﹣且k≠0D . k>﹣且k≠05. (2分)用配方法把代数式x2-4x+5变形,所得结果是()A . (x-2)2+1B . (x-2)2-9C . (x+2)2-1D . (x+2)2-56. (2分)若x1 , x2是一元二次方程x2-8x+15=0的两个根,则x1+x2的值是()A . 7B . 8C . -8D . 157. (2分) (2017七下·临沭期末) 不等式组的解集在数轴上表示为()A .B .C .D .8. (2分) (2017九下·鄂州期中) 如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP= ,则弦BC的最大值为()A . 2B . 3C .D . 39. (2分) (2017九上·钦南开学考) 如图,由下列条件不能判定△ABC与△ADE相似的是()A . =B . ∠B=∠ADEC . =D . ∠C=∠AED10. (2分)小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是()A . 50cmB . 500cmC . 60 cmD . 600cm11. (2分)如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC边上点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A . (﹣a,b﹣2)B . (﹣a,b+2)C . (﹣a+2,﹣b)D . (﹣a+2,b+2)12. (2分)如图所示,图中共有相似三角形()A . 5对B . 4对C . 3对D . 2对13. (2分)(2017·浙江模拟) 在Rt 中,∠C= 90°,若则的值是()A .B .C .D .14. (2分) 2012年雁荡山风景区全年共接待国内外游客约为3 300 000人次,该数据用科学记数法表示为()A . 3.3×107B . 3.3×106C . 0.33×107D . 33×10515. (2分) (2015八下·绍兴期中) 下列计算中正确的是()A . =±13B . =1× =1C . = ﹣1D . = ﹣ =5﹣4=116. (2分)如图所示,菱形ABCD的周长为20 cm,DE⊥AB,垂足为E,sinA= ,则下列结论错误的是()A . DE=3 cmB . BE=1 cmC . 菱形的面积为15 cm2D . BD=217. (2分)(2017·奉贤模拟) 如果把一个锐角△ABC的三边的长都扩大为原来的3倍,那么锐角A的余切值()A . 扩大为原来的3被B . 缩小为原来的C . 没有变化D . 不能确定18. (2分)下列运算正确的是()A . ﹣=B . =2C . ﹣=D . =2﹣19. (2分)抛物线y=(x+1)2+2的对称轴为()A . 直线x=1B . 直线x=-1C . 直线x=2D . 直线x=-2二、填空题 (共5题;共5分)20. (1分) (2019八下·尚志期中) 若代数式有意义,则满足的条件为________.21. (1分) (2016八上·吴江期中) 甲、乙两同学解方程x2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和﹣10,则原方程为________.22. (1分)如图,数学兴趣小组测量校园内旗杆的高度,小华拿一支刻有厘米分划的小尺,站在距旗杆30米的地方,手臂向前伸直,小尺竖直,看到尺上约12个分划恰好遮住旗杆,已知臂长60cm,则旗杆高为________米.23. (1分) (2017七下·淮安期中) 已知a+b=﹣8,ab=12,则(a﹣b)2=________.24. (1分)(2016·黄陂模拟) 已知A,B的坐标分别为(2,0),(3,0),若二次函数y=x2+(a﹣1)x+1的图象与线段AB只有一个交点,则a的取值范围是________.三、解答题 (共8题;共85分)25. (5分)(2018·乌鲁木齐模拟) 计算:()﹣2+| ﹣2|﹣2cos30+ .26. (20分) (2019九上·无锡期中) 用适当的方法解下列方程:(1)(x-1)2﹣9=0;(2) 3(x+5)=(x+5)2;(3) x2+6x-55=0;(4) 2x(x+3)-1=0.27. (15分)(2018·咸宁) 定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2 ,求FH的长.28. (5分) (2018八上·阜宁期末) 已知求的值。
四川省凉山彝族自治州九年级上学期数学期末考试试卷
四川省凉山彝族自治州九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下面四个手机应用图标中,属于中心对称图形的是()A .B .C .D .2. (2分) (2018九上·巴南月考) 下列各点中,在反比例函数的图象上的是()A . (-2,4)B . (3,-4)C . (2,6)D . (-4,-3)3. (2分) (2019九上·辽源期末) 已知函数,则使y=k成立的x值恰好有三个,则k 的值为()A . 0B . 1C . 2D . 34. (2分) (2016九上·太原期末) 已知△ABC∽△ ,△ 的面积为6 ,周长为△ABC周长的一半,则△ABC的面积等于()A . 1.5B . 3C . 12D . 245. (2分)(2018·伊春) 如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A . π﹣6B . πC . π﹣3D . +π6. (2分)(2017·平南模拟) 下列说法中正确的是()A . 掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为B . “对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C . “同位角相等”这一事件是不可能事件D . “钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件二、填空题 (共8题;共8分)7. (1分) (2019九上·天河期末) 已知点P(x+2y,﹣3)和点Q(4,y)关于原点对称,则x+y=________.8. (1分)若方程ax2+bx+c=0(a≠0)满足9a﹣3b+c=0,则方程必有一根为________.9. (1分) (2017八下·常山月考) 若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为________.10. (1分)(2019·亳州模拟) 如图,菱形ABCD的三个顶点在二次函数y=ax2+2ax+2(a<0)的图象上,点A,B分别是该抛物线的顶点和抛物线与y轴的交点,则点D的坐标为________.11. (1分) (2016九上·越秀期末) 一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是________.12. (1分) (2019八下·温州月考) 如图,在直线l上摆放着三个等边三角形,△ABC,△HFG,△DCE,已知BC= CE,F,G分别是BC,CE的中点,FM∥AC,GN∥DC,设图中三个平行四边形的面积依次是S1 , S2 , S3;若S2=3,则S1+S3=________.13. (1分)(2018·眉山) 如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,A点坐标为(-10,0),对角线AC和OB相交于点D且AC·OB=160.若反比例函数y= (x<0)的图象经过点D,并与BC的延长线交于点E,则S△OCE∶S△OAB=________.14. (1分) (2020九下·镇江月考) 如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF,点F在矩形ABCD的内部,将BF延长交AD于点G.若 = ,则 =________.三、解答题 (共12题;共73分)15. (5分) (2018九上·安定期末) 解方程:(1) x2+3=3(x+3)(2) 4x(2x-1)=3(2x-1)16. (10分)(2017·徐州模拟) 如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.(1)弦长AB等于________(结果保留根号);(2)当∠D=20°时,求∠BOD的度数;(3)当AC的长度为多少时,以A、C、D为顶点的三角形与以B、C、0为顶点的三角形相似?请写出解答过程.17. (2分)(2020·许昌模拟) 有四张反面完全相同的纸牌,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是________.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.18. (2分) (2017九上·红山期末) 某市2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.19. (2分) (2015九上·宜昌期中) 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.20. (10分) (2016九上·丰台期末) 某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,如果每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球从发射出到第一次落在桌面的运行过程中,设乒乓球与端点A的水平距离为x(米),距桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:t(秒)00.160.20.40.60.640.8…x(米)00.40.51 1.5 1.62…y(米)0.250.3780.40.450.40.3780.25…(1)如果y是t的函数,①如图,在平面直角坐标系tOy中,描出了上表中y与t各对对应值为坐标的点.请你根据描出的点,画出该函数的图象;②当t为何值时,乒乓球达到最大高度?(2)如果y是关于x的二次函数,那么乒乓球第一次落在桌面时,与端点A的水平距离是多少?21. (2分)(2017·临高模拟) 已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+ .(1)当n=1时,求点A的坐标;(2)若OP=AP,求k的值;(3)设n是小于20的整数,且k≠ ,求OP2的最小值.22. (10分)(2017·鹤壁模拟) 如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M 的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)23. (15分)(2017·都匀模拟) 抛物线y= x2+bx+c经过点A(﹣4,0)、B(2,0)两点,与y轴交于点C,顶点为D,对称轴与x轴交于点H,过点H的直线m交抛物线于P、Q两点,其中点P位于第二象限,点Q在y 轴的右侧.(1)求D点坐标;(2)若∠PBA= ∠OBC,求点P的坐标;(3)设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.24. (2分)(2017·个旧模拟) 如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.(1)求证:FD是⊙O的一条切线;(2)若AB=10,AC=8,求DF的长.25. (11分) (2019九上·东港月考) 如图,在平面直角坐标系中,点在反比例函数的图象上,,轴于点C.(1)求反比例函数的表达式;(2)求的面积;(3)若将绕点B按逆时针方向旋转得到点O、A的对应点分别为、,点是否在反比例函数的图象上?若在请直接写出该点坐标,若不在请说明理由.26. (2分) (2017九上·浙江月考) 如图.已知曲线是由顶点为T的二次函数的图象旋转45度得到,直线AB:交曲线于C,D两点.(1)线段AT长为________,(2)在y轴上有一点P,且PC+PD 为最小,则点P的坐标为________参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共8题;共8分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共12题;共73分)15-1、15-2、16-1、16-2、16-3、17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
凉山彝族自治州九年级上学期期末数学试卷
凉山彝族自治州九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)有5张形状、大小、质地等均完全相同的卡片,正面分别印有等边三角形、平行四边形、正方形、菱形、圆,背面也完全相同.现将这5张卡片洗匀后正面向下放在桌上,从中随机抽出一张,抽出的卡片正面图案既是中心对称图形,又是轴对称图形的概率是()A .B .C .D .2. (2分)(2019·通辽) 现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直;其中真命题的个数有()A . 1个B . 2个C . 3个D . 4个3. (2分)(2013·遵义) 如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是()A .B .C .D .4. (2分) (2018九上·罗湖期末) 下列命题中,属于假命题的是()A . 有一个锐角相等的两个直角三角形一定相似B . 对角线相等的菱形是正方形C . 抛物线y=y2-20x+17的开口向上D . 在一次抛掷图钉的试验中,若钉尖朝上的频率为3/5,则钉尖朝上的概率也为3/55. (2分) (2017九上·和平期末) 将抛物线y=x2﹣2x+2先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A . (﹣2,3)B . (﹣1,4)C . (3,4)D . (4,3)6. (2分) (2017九上·和平期末) 一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是()A .B .C .D .7. (2分) (2017九上·和平期末) 若一个正六边形的周长为24,则该正六边形的边心距为()A . 2B . 4C . 3D . 128. (2分) (2017九上·和平期末) 如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B的对应点D的坐标为()A . (3,3)B . (1,4)C . (3,1)D . (4,1)9. (2分) (2017九上·和平期末) 如图,△ABC内接于⊙O,AD是∠BAC的平分线,交BC于点M,交⊙O于点D.则图中相似三角形共有()A . 2对B . 4对C . 6对D . 8对10. (2分) (2017九上·和平期末) 如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为,CD=4,则弦AC的长为()A . 2B . 3C . 4D . 211. (2分) (2017九上·和平期末) 如图,点A1、A2、B1、B2、C1、C2分别为△ABC的边BC、CA、AB的三等分点,若△ABC的周长为I,则六边形A1A2B1B2C1C2的周长为()A . 2IB . IC . ID . I12. (2分) (2017九上·和平期末) 如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A . ﹣3<P<﹣1B . ﹣6<P<0C . ﹣3<P<0D . ﹣6<P<﹣3二、填空题: (共6题;共8分)13. (2分)在函数y=中,自变量x的取值范围是________ ;函数y=过点(1,2),则k=________ .14. (1分)(2018·松滋模拟) 如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y 轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD 相交于点M.若经过点M的反比例函数(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE= ,则BN的长为________.a15. (1分)(2020·北京模拟) 在平面直角坐标系中,将点绕原点顺时针旋转90°,所得到的对应点的坐标为________.16. (1分) (2017九上·和平期末) 一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球个数比白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是,则从袋中摸出一个球是白球的概率是________.17. (1分) (2017九上·和平期末) 如图,点D、E、F分别在正三角形ABC的三边上,且△DEF也是正三角形,若△ABC的边长为a,△DEF的边长为b.则△AEF的内切圆半径为________.18. (2分) (2017九上·和平期末) 已知△ABC,△EFG均是边长为4的等边三角形,点D是边BC、EF的中点.(Ⅰ)如图①,这两个等边三角形的高为________;(Ⅱ)如图②,直线AG,FC相交于点M,当△EFG绕点D旋转时,线段BM长的最小值是________.三、解答题: (共7题;共79分)19. (10分)(2019·南关模拟) 某地区由于龙卷风出现毁坏性灾害,一自愿者协会紧急筹集资金,计划购买甲、乙两种救灾物品送往该地区.已知甲种物品每件的价格比乙种物品每件的价格高元,用元购买甲种物品的件数与用元购买乙种物品的件数相同.(1)求甲、乙两种救灾物品每件的价格.(2)经调查,该地区所需乙种物品的件数是甲种物品件数的倍,自愿者协会按此比例购买件物品,需筹集资金多少元?20. (7分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,设小正方形的边长为x,请仔细观察图形回答下列问题.(1)用含a、b的代数式表示x,则x=________.(2)用含a、b的代数式表示大正方形的边长________.(请将结果化为最简)(3)利用前两问的结论求出图②的大正方形中未被小正方形覆盖部分的面积.(用a、b的代数式表示)21. (7分)(2016·枣庄) Pn表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么Pn与n的关系式是:Pn= •(n2﹣an+b)(其中a,b是常数,n≥4)(1)通过画图,可得:四边形时,P4=________ ;五边形时,P5=________(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.22. (15分)(2020·绵阳模拟) 如图,直径为10的⊙O经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x2+kx+48=0的两根.(1)求线段OA、OB的长;(2)已知点C在劣弧OA上,连结BC交OA于D,当OC2=CD·CB时,求C点的坐标;(3)在⊙O上是否存在点P,使S△POD=S△ABD .若存在,求出点P的坐标;若不存在,请说明理由.23. (10分)(2020·济宁) 我们把方程(x- m)2+(y-n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,-2)、半径长为3的圆的标准方程是(x- 1)2+(y+2)2=9.在平面直角坐标系中,圆C与轴交于点A.B.且点B的坐标为(8.0),与y轴相切于点D(0, 4),过点A,B,D的抛物线的顶点为E.(1)求圆C的标准方程;(2)试判断直线AE与圆C的位置关系,并说明理由.24. (15分)(2018·深圳模拟) 已知,如图,点M在x轴上,以点M为圆心,2.5长为半径的圆交y轴于A、B两点,交x轴于C(x1 , 0)、D(x2 , 0)两点,(x1<x2),x1、x2是方程x(2x+1)=(x+2)2的两根.(1)求点C、D及点M的坐标;(2)若直线y=kx+b切⊙M于点A,交x轴于P,求PA的长;(3)⊙M上是否存在这样的点Q,使点Q、A、C三点构成的三角形与△AOC相似?若存在,请求出点的坐标,并求出过A、C、Q三点的抛物线的解析式;若不存在,请说明理由.25. (15分)(2011·金华) 在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.(1)当n=1时,如果a=﹣1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;②直接写出a关于n的关系式.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共6题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共7题;共79分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
初中数学 四川省凉山州九年级数学上学期期末统一检测考试题考试卷及答案
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:将一元二次方程5x2-1=4x化成一般形式后,二次项系数和一次项系数分别为()A.5,-1 B.5,4 C.5,-4 D.5x2,-4x试题2:抛物线y=2(x+m)2+n(m,n是常数)的顶点坐标是()A.(m,n) B.(-m,n) C.(m,-n)D.(-m,-n)试题3:下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个试题4:两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积为()A.无法求出 B.8 C.8πD.16π试题5:同时投掷两枚普通的正方体骰子,所得两个点数之和大于9的概率是()评卷人得分A.B.C.D.试题6:若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等实数根,则k的取值范围是()A.k> B.k≥C.k>且k≠1 D.k≥且k≠1试题7:当ab>0时,y=ax2与y=ax+b的图像大致是()A B C D试题8:⊙O的内接正三角形和外切正方形的边长之比是()A.:2 B.1:1 C.1:D.:试题9:若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或-试题10:下列事件中必然发生的是()A.抛两枚均匀的硬币,硬币落地后,都是正面朝上;B.掷一枚质地均匀的骰子,朝上一枚的点数是3C.通常情况下,抛出的篮球会下落 D.阴天就一定会下雨试题11:如图的方格纸中,左边A图形到右边B图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称,再以AB为对称轴作轴对称C.绕AB的中心旋转180度,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格试题12:若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是(C)A.x2+3x-2=0 B.x2+3x+2=0 C.x2-3x+2=0 D.x2-2x+3=0试题13:二次函数y=ax2+bx+c(a≠0)的图像如图所示,对于下列结论:①a<0;②b<0;③c>0;④2a+b=0;⑤a-b+c<0,其中正确的个数是(A)A.4个B.3个C.2个D.1个试题14:某种型号的电脑,原售价为7200元/台,经过连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为____________试题15:飞机着陆后滑行的距离y(单位:m)关于滑行的时间x(单位:s)的函数解析式是y=-1.2x2+48x,则飞机着陆后滑行________m 后才能停下来试题16:圆锥的母线长为5cm,底面半径长3cm,侧面展开扇形的圆心角为__________试题17:如图,四边形ABCD中,∠BAD=∠C=900,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD=________试题18:在平面直角坐标系中,O为原点,⊙O的半径为7,直线y=mx-3m+4交⊙O于A、B两点,则线段AB的最小值为______________试题19:x2-2x=1试题20:3x(x-2)=2(2-x)试题21:如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1,2,3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数位各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转)(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2-3x+2=0的解的概率试题22:某超市在销售中发现:“熊出没”童装平均每天可售出20套,每套盈利40元,为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。
四川省凉山彝族自治州九年级上学期数学期末考试试卷(五四学制)
四川省凉山彝族自治州九年级上学期数学期末考试试卷(五四学制)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·剑河期中) 有理数a、b在数轴上的位置如图所示,则a+b的值A . 大于0B . 小于0C . 小于D . 大于2. (2分)下列各题去括号所得结果正确的是()A . x2﹣(x﹣y+2z)=x2﹣x+y+2zB . x﹣[﹣y+(﹣3x+1)]=x+y+3x﹣1C . 3x﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1D . (x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣23. (2分)下列图形中,是中心对称图形,但不是轴对称图形的是()A . 正方形B . 矩形C . 菱形D . 平行四边形4. (2分)如图是由三个小方体叠成的一个立体图形,那么它的俯视图是()A .B .C .D .5. (2分)如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()A . AB>CE>CDB . AB=CE>CDC . AB>CD>CED . AB=CD=CE6. (2分)(2018·平房模拟) 将抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线解析式是()A .B .C .D .7. (2分) (2018九上·渝中期末) 若数a使关于x的二次函数y=x2+(a﹣1)x+b ,当x<﹣1时,y随x 的增大而减小;且使关于y的分式方程=2有非负数解,则所以满足条件的整数a的是()A . ﹣2B . 1C . 0D . 38. (2分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于点D,若AB=6,则AE的值是()A . 3B . 2C . 3D . 29. (2分)(2017·濮阳模拟) 如图,直线l⊥x轴于点P,且与反比例函数y1= (x>0)及y2= (x >0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2的值为()A . 2B . 3C . 4D . ﹣410. (2分)(2017·洛阳模拟) 如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG= ,则△CEF的周长为()A . 8B . 9.5C . 10D . 11.5二、填空题 (共9题;共9分)11. (1分) (2020七上·合川期末) 每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为________.12. (1分)(2019·北部湾) 若二次根式有意义.则x的取值范围是________.13. (1分)(﹣2)2014+(﹣2)2015=________.14. (1分)不等式组﹣1+a<2x﹣1<b的解集为<x<,则a﹣b=________15. (1分)(2018·镇平模拟) 计算(﹣2 )÷(﹣)的结果为________.16. (1分) (2020九上·鞍山期末) 抛物线y=(x﹣3)2﹣2的顶点坐标是________.17. (1分) (2019七上·大庆期末) 如图,在4×4的正方形网格中,已将四个小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是________.18. (1分)已知Rt△ABC的两直角边AC=5 cm,BC=12 cm,则以BC为轴旋转所得的圆锥的侧面积为________cm2 ,这个圆锥的侧面展开图的弧长为________cm,面积为________cm2.19. (1分)(2019·江北模拟) 如图,△ABC为⊙O的内接正三角形,P为弧BC上一点,PA交BC于D,已知PB=3,PC=6,则PD=________.三、解答题 (共7题;共54分)20. (10分) (2016九上·崇仁期中) 已知,如图,以矩形ABCD的一边CD为边向外作等边△PCD,请你用无刻度的直尺作出线段AB的垂直平分线(保留作图痕迹)21. (5分) (2017八上·阳谷期末) 先化简,再求值: (m+2- )× ,其中m=4.22. (2分) (2019九上·海门期末) 某校开展了为期一周的“敬老爱亲”社会活动,为了解情况,学生会随机调查了部分学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B:1≤x <1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)学生会随机调查了________名学生;(2)补全频数分布直方图;(3)若全校有900名学生,估计该校在这次活动中做家务的时间不少于2.5小时的学生有多少人?23. (10分) (2019八下·内江期中) 如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE(1)求证:CE=AD(2)若D为AB的中点,则∠A的度数满足什么条件时,四边形BECD是正方形?请说明理由.24. (10分) (2019七下·江门期末) 菜矿泉水厂在山脚下筑有水池蓄水,山泉水不停地流入水池,水池底部有大小两个排水口,(1)当蓄水到吨时,需要截住泉水清理水池。
四川省凉山彝族自治州九年级上学期期末数学试卷
四川省凉山彝族自治州九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016九上·恩施月考) 方程x2﹣9x=0的根是()A . x=9B . x=0C . x1=9,x2=0D . x1=3, x2=2. (2分)如图所示,△ABC中,DE∥BC,若则下列结论中错误的是()A .B .C .D .3. (2分) (2019九上·通州期末) 若一个正多边形的一个内角是,则这个正多边形的中心角为A .B .C .D .4. (2分)在Rt△ABC中,∠C=90°,BC=4,sinA= ,则AB的长为()A .B . 6C . 12D . 85. (2分)根据下列表格中的对应值,判断关于x的一元二次方程ax2+bx+c=0(a,b,c为常数,a≠0)的一个根x1的范围正确的是()x 3.23 3.24 3.25 3.26ax2+bx+c﹣0.06﹣0.020.030.09A . ﹣0.02<x1<0.03B . 3.24<x1<3.25C . ﹣0.02≤x1≤0.03D . 3.24≤x1≤3.256. (2分)在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是()A .B .C .D .7. (2分)抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是()A . b2﹣4ac<0B . abc<0C .D . a﹣b+c<08. (2分)(2017·龙华模拟) 一个几何体由若干大小相同的小立方块搭成,图分别是从它的正面、上面看到的形状图,则搭成该几何体的小立方块至少需要()A . 5 块B . 6 块C . 7 块D . 8 块9. (2分) (2019九上·桂林期末) 如图,矩形ABC0的两边OC,OA分别位于x轴,y轴上,点B的坐标为(-,5),D是AB边上的一点,将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,则过点E的反比例函数解析式是()A .B .C .D .10. (2分)如图,小明同学用自制的直角三角形纸板EFG测量树的高度AB,他调整自己的位置,设法使斜边EG保持水平,并且边EF所在的直线经过点A.已知纸板的两条直角边EF=60cm,FG=30cm,测得小刚与树的水平距离BD=8m,边EG离地面的高度DE=1.6m,则树的高度AB等于()A . 5mB . 5.5mC . 5.6mD . 5.8m11. (2分)(2017·蓝田模拟) 如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则点C的坐标为()A . (2,2)B . (3,1)C . (3,2)D . (4,2)12. (2分)(2020·如皋模拟) 如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y= (k <0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A . ﹣4tanαB . ﹣2sinαC . ﹣4cosαD . ﹣2tan二、填空题 (共4题;共4分)13. (1分)某种产品共有10件,其中有1件是次品,现从中任意抽取1件,恰好抽到次品的概率是________ .14. (1分)直角三角形的正投影可能是________.15. (1分)若抛物线y=x2+2x﹣a与x轴没有交点,则a的取值范围是________.16. (1分) (2018九下·扬州模拟) 如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,E、F分别为AB、AC 上的点,沿直线EF将∠B折叠,使点B恰好落在BC上的D处,当△ADE恰好为直角三角形时,BE的长为________ .三、解答题 (共7题;共70分)17. (5分)(2018·肇庆模拟) 计算:18. (10分) (2018九上·华安期末) 有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别,(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?19. (10分)如图,在一次函数y=ax+b的图象与反比例函数y= 的图象相交于A(﹣4,﹣2),B(m,4),与y轴相交于点C.(1)求反比例函数与一次函数的表达式;(2)求△AOB的面积.20. (10分)如图,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s的速度向点D移动.问:(1) P、Q两点从开始出发多长时间时,四边形PBCQ的面积是33cm2?(2) P、Q两点从开始出发多长时间时,点P与点Q之间的距离是10cm?21. (10分)(2015·义乌) 如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,.22. (10分)(2017·邵阳模拟) 如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:△EFD为等腰三角形;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.23. (15分) (2019九上·长春期末) 方格纸中每个小正方形的边长都是单位1,△OA B在平面直角坐标系中的位置如图所示,解答问题:(1)请按要求对△OAB作变换:以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△OA′B′.(2)写出点A′的坐标;(3)求△OA′B'的面积.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
四川凉山州2019年初三上年末统一检测数学试题及解析
四川凉山州2019年初三上年末统一检测数学试题及解析〔考试时刻90分钟,总分值100分〕【一】选择题〔每题3分,共39分〕1、将一元二次方程5x 2-1=4x 化成一般形式后,二次项系数和一次项系数分别为〔C 〕A 、5,-1B 、5,4C 、5,-4D 、5x 2,-4x2、抛物线y =2(x +m )2+n 〔m ,n 是常数〕旳顶点坐标是〔B 〕A 、〔m ,n 〕B 、〔-m ,n 〕C 、〔m ,-n 〕D 、〔-m ,-n 〕3、以下图形中,既是轴对称图形又是中心对称图形旳有〔B 〕A 、1个B 、2个C 、3个D 、4个4、两个同心圆中大圆旳弦AB 与小圆相切于点C ,AB =8,那么形成旳圆环旳面积为〔D 〕A 、无法求出B 、8C 、8πD 、16π5、同时投掷两枚一般旳正方体骰子,所得两个点数之和大于9旳概率是〔A 〕A 、16B 、19C 、112D 、11366、假设关于x 旳一元二次方程(k -1)x 2+2x -2=0有两个不相等实数根,那么k 旳取值范围是〔C 〕A 、k >12B 、k ≥12C 、k >12 且k ≠1D 、k ≥12且k ≠1 7、当ab >0时,y =ax 2与y =ax +b 旳图像大致是〔D 〕ABCD8、⊙O 旳内接正三角形和外切正方形旳边长之比是〔A 〕A 、 3 :2B 、1:1C 、1: 2D 、 2 : 39、假设函数22(2)2(2)x x y x x ⎧+≤=⎨>⎩,那么当函数值y =8时,自变量x 旳值是〔D 〕A 、± 6B 、4C 、± 6 或4D 、4或- 610、以下事件中必定发生旳是〔C 〕A 、抛两枚均匀旳硬币,硬币落地后,差不多上正面朝上;B 、掷一枚质地均匀旳骰子,朝上一枚旳点数是3C 、通常情况下,抛出旳篮球会下落D 、阴天就一定会下雨11、如图旳方格纸中,左边A 图形到右边B 图形旳变换是〔D 〕A 、向右平移7格B 、以AB 旳垂直平分线为对称轴作轴对称,再以AB 为对称轴作轴对称C 、绕AB 旳中心旋转180度,再以AB 为对称轴作轴对称D 、以AB 为对称轴作轴对称,再向右平移7格(第11题)(第13题)(第17题)12、假设关于x旳一元二次方程旳两个根为x1=1,x2=2,那么那个方程是〔C〕A、x2+3x-2=0B、x2+3x+2=0C、x2-3x+2=0D、x2-2x+3=013、二次函数y=ax2+bx+c〔a≠0〕旳图像如下图,关于以下结论:①a<0;②b<0;③c>0;④2a+b=0;⑤a-b+c<0,其中正确旳个数是〔A〕A、4个B、3个C、2个D、1个【二】填空题〔每题3分,共15分〕14、某种型号旳电脑,原售价为7200元/台,通过连续两次降价后,现售价为3528元/台,那么平均每次降价旳百分率为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏15、飞机着陆后滑行旳距离y〔单位:m〕关于滑行旳时刻x〔单位:s〕旳函数【解析】式是y=-1.2x2+48x,那么飞机着陆后滑行﹏﹏﹏﹏﹏﹏﹏﹏m后才能停下来16、圆锥旳母线长为5cm,底面半径长3cm,侧面展开扇形旳圆心角为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏17、如图,四边形ABCD中,∠BAD=∠C=900,AB=AD,AE⊥BC于E,假设线段AE=5,那么S四边形ABCD=﹏﹏﹏﹏﹏﹏﹏﹏18、在平面直角坐标系中,O为原点,⊙O旳半径为7,直线y=mx-3m+4交⊙O于A、B两点,那么线段AB旳最小值为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏【三】解答题〔共46分〕19、〔6分〕解方程〔1〕x2-2x=1〔2〕3x(x-2)=2(2-x)20、〔6分〕如图,有一个能够自由转动旳转盘被平均分成3个扇形,分别标有1,2,3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内旳数位各自所得旳数,一次游戏结束得到一组数〔假设指针指在分界线时重转〕〔1〕请你用树状图或列表旳方法表示出每次游戏可能出现旳所有结果;〔2〕求每次游戏结束得到旳一组数恰好是方程x2-3x+2=0旳解旳概率21、〔6分〕某超市在销售中发觉:“熊出没”童装平均每天可售出20套,每套盈利40元,为了迎接元旦,商场决定采取适当旳降价措施,扩大销售量,增加盈利,尽快减少库存。
凉山彝族自治州九年级上学期数学期末考试试卷
凉山彝族自治州九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共12分)1. (1分)(2013·温州) 已知点P(1,﹣3)在反比例函数y= (k≠0)的图象上,则k的值是()A . 3B . ﹣3C .D . ﹣2. (1分)(2018·潮州模拟) 下列说法错误的是()A . 抛物线y=﹣x2+x的开口向下B . 两点之间线段最短C . 角平分线上的点到角两边的距离相等D . 一次函数y=﹣x+1的函数值随自变量的增大而增大3. (1分) (2019九上·鄞州期末) 圆O的半径为5,若直线与该圆相离,则圆心O到该直线的距离可能是()A . 2.5B .C . 5D . 64. (1分) (2019九上·鄞州期末) 由抛物线y=x2平移得到抛物线y=(x+2)2 ,下列平移方法可行的是()A . 向上平移2个单位长度B . 向下平移2个单位长度C . 向左平移2个单位长度D . 向右平移2个单位长度5. (1分) (2019九上·鄞州期末) 一个公园有A,B,C三个入口和D,E二个出口小明进入公园游玩,从“A 口进D口出”的概率为()A .B .D .6. (1分) (2019九上·鄞州期末) 在Rt△ABC ,∠C=90°,AB=6.△ABC的内切圆半径为1,则△ABC的周长为()A . 13B . 14C . 15D . 167. (1分) (2019九上·鄞州期末) 点A(-3,y1),B(0,y2),C(3,y3)是二次函数y=-(x+2)2+m图象上的两点,则y1,y2,y3的大小关系是()A . y1<y2<y3B . y1=y3<y2C . y3<y2<y1D . y1<y3<y28. (1分) (2019九上·鄞州期末) 如图,△ABC内接于半径为5的⊙O,点B在⊙O上,cosB= ,则下列量中,值会发生变化的量是()A . ∠B的度数B . BC的长C . AC的长D . 的长9. (1分) (2019九上·鄞州期末) 点G是△ABC的重心,过点G画MN∥BC分别交AB;,AC于点MN,则△AMN 与△ABC面积之比是()B .C .D .10. (1分) (2019九上·鄞州期末) 如图,半径为3的⊙A的ED与□ABCD的边BC相切于点C,交AB于点E,ED的长为()A .B .C .D .11. (1分) (2019九上·鄞州期末) 如图,将抛物线y=-x2+x+6图象中,轴上方的部分沿x轴翻折到x轴下方·图象的其余部分不变,得到个新图象.则新图象与直线y=-6的交点个数是()A . 1B . 2C . 3D . 412. (1分) (2019九上·鄞州期末) 如图,矩形ABCD∽矩形FAHG,能求出图中阴影部分面积的条件是()A . 矩形ABCD和矩形HDEG的面积之差B . 矩形ABCD和矩形AHGF的面积之差C . 矩形ABCD和矩形HDEG的面积之和D . 矩形ABCD和矩形AHGF的面积之和二、填空题 (共6题;共6分)13. (1分) (2019八下·辽阳月考) 如图,中,,,BC=,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t <12),连接DE,当△BDE是直角三角形时,t的值为________14. (1分) (2016八上·常州期中) 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CD=2,AB=6.设AC=x,BC=y,则代数式(x+y)2﹣3xy+2的值是________.15. (1分)(2019·港南模拟) 如图所示,已知:点,点,点,在内依次作等边三角形,使一边在轴上,另一个顶点在边上,作出的等边三角形分别是第个,第个,第个,,则第个等边三角形的边长等于 ________.16. (1分) (2019九上·鄞州期末) 若二次函数y=ax2+8x+(a-3)的图象最高点的纵坐标为3,则a的值是________.17. (1分) (2019九上·鄞州期末) 木工师傅可以用角尺测量并计算出国的半径.如图,用角尺的较短边紧靠圆0于点A,并使较长边与圆O相切于点C,记角尺的直角顶点为B,量得AB=18cm,BC=24cm,则圆O的半径是________cm18. (1分) (2019九上·鄞州期末) Rt△ABC中,AB=8,BC=6,将它绕着斜边AC中点O逆时针旋转一定角度后得到△A’B’C’,恰好使A’B’∥AC,同时A'B’与AB、BC分别交于点E、F,则EF的长为 ________ .三、解答题 (共8题;共18分)19. (1分)(2020·兰州模拟) 计算:(﹣1)2019+ ﹣()﹣2+ sin45°.20. (1分) (2019九上·鄞州期末) 一个不透明的布袋里装有2个白球和2个红球,它们除颜色外其余都相同.(1)从中任意摸出1个球,则摸到白球的概率是________ 。
四川省凉山州2019届九年级上期末统一检测数学试题及答案
四川省凉山州2019届九年级上期末统一检测数学试题及答案——学年初三年级上期数学试卷(期末考试)(考试时间90分钟,满分100分)一、选择题(每题3分,共39分)1、将一元二次方程5x 2-1=4x 化成一般形式后,二次项系数和一次项系数分别为( C )A .5,-1B .5,4C .5,-4D .5x 2,-4x2、抛物线y =2(x +m )2+n (m ,n 是常数)的顶点坐标是( B )A .(m ,n )B .(-m ,n )C .(m ,-n )D .(-m ,-n )3、下列图形中,既是轴对称图形又是中心对称图形的有( B )A .1个B .2个C .3个D .4个4、两个同心圆中大圆的弦AB 与小圆相切于点C ,AB =8,则形成的圆环的面积为( D )A .无法求出B .8C .8πD .16π5、同时投掷两枚普通的正方体骰子,所得两个点数之和大于9的概率是( A )A .16B .19C .112D .11366、若关于x 的一元二次方程(k -1)x 2+2x -2=0有两个不相等实数根,则k 的取值范围是( C )A .k >12B .k ≥12C .k >12 且k ≠1D .k ≥12且k ≠1 7、当ab >0时,y =ax 2与y =ax +b 的图像大致是( D )A B C D8、⊙O 的内接正三角形和外切正方形的边长之比是( A )A . 3 :2B .1:1C .1: 2D . 2 : 39、若函数22(2)2(2)x xyx x⎧+≤=⎨>⎩,则当函数值y=8时,自变量x的值是(D)A.±6 B.4 C.±6 或4 D.4或- 610、下列事件中必然发生的是(C)A.抛两枚均匀的硬币,硬币落地后,都是正面朝上;B.掷一枚质地均匀的骰子,朝上一枚的点数是3C.通常情况下,抛出的篮球会下落 D.阴天就一定会下雨11、如图的方格纸中,左边A图形到右边B图形的变换是(D)A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称,再以AB为对称轴作轴对称C.绕AB的中心旋转180度,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格(第11题) (第13题) (第17题)12、若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是(C)A.x2+3x-2=0 B.x2+3x+2=0 C.x2-3x+2=0 D.x2-2x+3=013、二次函数y=ax2+bx+c(a≠0)的图像如图所示,对于下列结论:①a<0;②b<0;③c>0;④2a+b=0;⑤a-b+c<0,其中正确的个数是(A)A.4个 B.3个 C.2个 D.1个二、填空题(每题3分,共15分)14、某种型号的电脑,原售价为7200元/台,经过连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为____________15、飞机着陆后滑行的距离y(单位:m)关于滑行的时间x(单位:s)的函数解析式是y=-1.2x2+48x,则飞机着陆后滑行________m后才能停下来16、圆锥的母线长为5cm,底面半径长3cm,侧面展开扇形的圆心角为__________17、如图,四边形ABCD中,∠BAD=∠C=900,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD=________18、在平面直角坐标系中,O为原点,⊙O的半径为7,直线y=mx-3m+4交⊙O于A、B 两点,则线段AB的最小值为______________三、解答题(共46分)19、(6分)解方程(1)x2-2x=1 (2)3x(x-2)=2(2-x)20、(6分)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1,2,3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数位各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转)(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2-3x+2=0的解的概率21、(6分)某超市在销售中发现:“熊出没”童装平均每天可售出20套,每套盈利40元,为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。
2018-2019学年九年级(上)期末数学试卷(有答案和解析)
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。
凉山彝族自治州九年级上学期数学期末考试试卷
凉山彝族自治州九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共12分)1. (1分)方程 x2 = 3x的根是()A . x=3B . x= -3C . 0或3D . 无解2. (1分)在下列的四个几何体中,其主视图与俯视图相同的是()A . 圆柱B . 圆锥C . 三棱柱D . 球3. (1分)如图,点A、B是双曲线y = 上的点,分别经过A、B两点向x轴、y轴作垂线段,若S矩形OCDE=1,则图中两阴影部分的面积和为是()A . 2B . 3C . 3.5D . 44. (1分) (2017七下·南昌期中) 如图,AB∥CD∥EF,则等于180°的式子是()A . ∠1+∠2+∠3B . ∠1+∠2﹣∠3C . ∠1﹣∠2+∠3D . ∠2+∠3﹣∠15. (1分)等腰三角形顶角是84°,则一腰上的高与底边所成的角的度数是()A . 42°B . 60°C . 36°D . 46°6. (1分)下列命题中,是真命题的是()A . 三点确定一个圆B . 有一个角是直角的四边形是矩形C . 菱形的对角线互相平分且相等D . 相似三角形的对应角相等、对应边成比例7. (1分)(2020·拉萨模拟) 将抛物线y=x2﹣2向左平移3个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为()A . y=(x+3)2+3B . y=(x﹣3)2+1C . y=(x+2)2+1D . y=(x+3)2+18. (1分)(2018·罗平模拟) 今年“十一”长假某湿地公园迎来旅游高峰,第一天的游客人数是1.2万人,第三天的游客人数为2.3万人,假设每天游客增加的百分率相同且设为x,则根据题意可列方程为()A . 2.3 (1+x)2=1.2B . 1.2(1+x)2=2.3C . 1.2(1﹣x)2=2.3D . 1.2+1.2(1+x)+1.2(1+x)2=2.39. (1分)(2019·长春模拟) 如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行.张强扛着箱子(人与箱子的总高度约为2.2m)乘电梯刚好安全通过,请你根据图中数据回答,两层楼之间的高约为()A .B .C . 11mD .10. (1分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A . k>B . k≥C . k>且k≠1D . k≥且k≠111. (1分)若,则下列函数:①,②,③,④中,的值随的值增大而增大的函数共有()A . 1个B . 2个C . 3个D . 4个12. (1分) (2019九下·义乌期中) 如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)若关于x的方程x2+(m+1)x+m=0有一个解为3,则m的值是________14. (1分)如果3x=5y,那么 =________.15. (1分)(2020·杭州模拟) 如图,正方形ABCD中,AB=3,点E为对角线AC上一点,EF⊥DE交AB于F,若四边形AFED的面积为4,则四边形AFED的周长为________.16. (1分) (2019九上·江北期末) 如图,在平面直角坐标系中,,,经过两点的圆交轴于点(在上方),则四边形面积的最小值为________.三、解答题 (共7题;共14分)17. (1分)计算:18. (1分)解方程:(1) x2+2x=0(2)(x+1)2﹣144=0(3) 3(x﹣2)2=x(x﹣2)(4) x2+5x﹣1=0.19. (2分)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.20. (2分)(2020·连山模拟) 如图,在教室前面墙壁处安装了一个摄像头,当恰好观测到后面墙壁与底面交接处点时,摄像头俯角约为,受安装支架限制,摄像头观测的俯角最大约为,已知摄像头安装点高度约为米,摄像头与安装的墙壁之间距离忽略不计,(1)求教室的长(教室前后墙壁之间的距离的值);(2)若第一排桌子前边缘与前面墙壁的距离为米,桌子的高度为米,那么第一排桌子是否在监控范围内?如果不在,应该怎样移动? ( ,精确到米)21. (2分)(2019·武昌模拟) 为满足市场需求,某超市购进一种水果,每箱进价是40元.超市规定每箱售价不得少于45元,根据以往经验发现:当售价定为每箱45元时,每天可以卖出700箱.每箱售价每提高1元,每天要少卖出20箱.(1)求出每天的销量y(箱)与每箱售价x(元)之间的函数关系式,并直接写出x的范围;(2)当每箱售价定为多少元时,每天的销售利润w(元)最大?最大利润是多少?(3)为稳定物价,有关部分规定:每箱售价不得高于70元.如果超市想要每天获得的利润不低于5120元,请直接写出售价x的范围.22. (3分)(2020·沈河模拟) 如图,在平面直角坐标系中,矩形OABC边OA,OC分别在x轴,y的正半轴上,且OA=8,OC=6,连接AC,点D为AC中点,点E从点C出发以每秒1个单位长度运动到点O停止,设运动时间为t秒(0<t<6),连接DE,作DF⊥DE交OA于点F,连接EF.(1)当t的值为________时,四边形DEOF是矩形;(2)用含t的代数式表示线段OF的长度,并说明理由;(3)当△OEF面积为时,请直接写出直线DE的解析式.23. (3分)如图,二次函数的图象交x轴于两点,交y轴于点D,点B 的坐标为,顶点C的坐标为.(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使中BD边上的高为,若存在求出点Q的坐标;若不存在请说明理由.参考答案一、选择题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共14分)17-1、18-1、18-2、18-3、18-4、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、。
四川省凉山彝族自治州九年级上学期期末数学试卷
四川省凉山彝族自治州九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)一个袋子中装有10个球,其中有6个黑球和4个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到黑球的概率为A .B .C .D .2. (2分)关于x的一元二次方程x2﹣4x+2m=0没有实数根,则实数m的取值范围是()A . m<2B . m>﹣2C . m>2D . m<﹣23. (2分)若m,n是方程2x2﹣4x﹣7=0的两个根,则2m2﹣3m+n的值为()A . 9B . 8C . 7D . 54. (2分)(2017·宁城模拟) 某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A . 100(1+x)B . 100(1+x)2C . 100(1+x2)D . 100(1+2x)5. (2分)下列语句中,不正确的个数()①三点确定一个圆②平分弦的直径垂直于弦③相等的圆心角所对的弧相等④相等弧所对的弦相等.A . 1B . 2C . 3D . 46. (2分)下表是满足二次函数y=ax2+bx+c的五组数据,x1是方程ax2+bx+c=0的一个解,则下列选项中正确的是()x 1.6 1.8 2.0 2.2 2.4y﹣0.80﹣0.54﹣0.200.220.72A . 1.6<x1<1.8B . 1.8<x1<2.0C . 2.0<x1<2.2D . 2.2<x1<2.47. (2分)如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则OM长的最小值为()A . 5B . 4C . 3D . 28. (2分)如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在()A . 射线OA上B . 射线OB上C . 射线OD上D . 射线OF上二、填空题 (共10题;共13分)9. (1分)已知一元二次方程x2﹣3x﹣4=0的两根是m,n,则m2+n2=________.10. (1分) (2016九上·温州期末) 抛物线y=x2﹣4x﹣1的对称轴为________.11. (1分) (2020九上·温州期末) 如图,是用卡钳测量容器内径的示意图.量得卡钳上A,D两端点的距离为4cm,,则容器的内径BC的长为________cm。
四川省凉山彝族自治州九年级上学期数学期末考试试卷
四川省凉山彝族自治州九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)给出的六个关系式:①x(y+1)②③④⑤⑥;其中y是x的反比例函数是()A . ①②③④⑥B . ③⑤⑥C . ①②④D . ④⑥2. (2分)在同一时刻的阳光下,小华的影子比小东的影子长,那么在同一路灯下,他们的影子为()A . 小华比小东长B . 小华比小东短C . 小华与小东一样长D . 无法判断谁的影子长3. (2分)已知一次函数y=2x+2与x轴y轴分别交于A、B两点,另一直线y=kx+3交x轴正半轴于E、交y 轴于F点,如△AOB与E、F、O三点组成的三角形相似,那么k的值为()A . -0.5B . -2C . ﹣0.5或﹣2D . 以上都不对4. (2分) (2020九上·高平期末) 已知A4纸的宽度为21cm,如图对折后所得的两个矩形都和原来的矩形相似,则A4纸的高度约为()A .B .C .D . 无法确定5. (2分)经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是()A .B .C .D .6. (2分)(2019·河南模拟) 如图,点P在平面直角坐标系中按图中箭头所示的方向运动,每次运动一个单位,△A3A4A5和△A8A9A10都是等边三角形.第一次从(0,1)运动到点A1(0,2),第二次接着运动到点A2(1,2),第三次运动到点A3(1,1),…,经过2019次运动,动点P所在位置A2019的坐标是()A . (807,)B . (,2﹣)C . (,)D . (807,2﹣)7. (2分)(2018·大连) 如图,一次函数y=k1x+b的图象与反比例函数y= 的图象相交于A(2,3),B (6,1)两点,当k1x+b<时,x的取值范围为()A . x<2B . 2<x<6C . x>6D . 0<x<2或x>68. (2分) (2019九上·武汉月考) 如图,在中,为上一点,连接、,且、交于点,,则 (A .B .C .D .9. (2分) (2017九上·抚宁期末) 已知反比例函数y= ,当x>0时,y随x的增大而增大,则关于x 的方程ax2﹣2x+b=0的根的情况是()A . 有两个正根B . 有两个负根C . 有一个正根一个负根D . 没有实数根10. (2分) (2018九上·杭州期中) 已知两点A(-5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0 , y0)是该抛物线的顶点,若y1>y2≥y0 ,则x0的取值范围是()A . x0>-5B . x0>-1C . -5<x0<-1D . -2<x0<3二、填空题。
2018-2019学年九年级(上)期末数学试卷(含解析)
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,=×2×5=5.∴S△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A,B的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C,D的坐标,进而可得出0<m<4,由点P的横坐标为m可得出点P,E的坐标,进而可得出PE=﹣m2+m+2,再利用二次函数的性质即可解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P,C,D的坐标可求出点Q的坐标,此题得解.【解答】解:(1)将A(﹣1,0),B(5,0)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵直线y=﹣x+3与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,3),点D的坐标为(4,0),∴0<m<4.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+4m+5),点E的坐标为(m,﹣m+3),∴PE=﹣m2+4m+5﹣(﹣m+3)=﹣m2+m+2=﹣(m﹣)2+.∵﹣1<0,0<<4,∴当m=时,PE最长.(3)由(2)可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。
2019凉山州数学初三数学度末考试试卷附解析.doc
2019凉山州数学初三数学度末考试试卷附解析时间:120分钟总分值150分【一】选择题〔每题5分,共50分〕 1、函数y=-x 2-3旳图象顶点是【】A 、()0,3B 、39,24-⎛⎫⎪⎝⎭C 、()0,3-D 、()1,3--2、二次函数旳图像可以由二次函数以下平移正确旳选项是【】A 、先向左平移2个单位,再向上平移1个单位B 、先向左平移2个单位,再向下平移1个单位C 、先向右平移2个单位,再向上平移1个单位D 、先向右平移2个单位,再向下平移1个单位第3题3、二次函数2y ax bx c =++旳图象如下图,有以下结论:①0a b c ++<; ②;③;④;⑤其中正确旳结论是【】A 、①②B 、①③④C 、①②③⑤D 、①②③④⑤4、如下图,抛物线旳对称轴是直线〔3,0〕,那么旳值为【】第4题A 、0B 、-1C 、1D 、2 5、反比例函数y =旳图象,在每个象限内,y 旳值随x 值旳增大而增大,那么k 可以为【】A 、0B 、1C 、2D 、3第3题第4题第8题 第6题 第6题6、如图,两个反比例函数和在第一象限内旳图象依次是C 1和C 2,设点P 在C 1上,轴于点C ,交C 2于点A ,轴于点D ,交C 2于点B ,那么四边形PAOB 旳面积为【】A 、2B 、3C 、4D 、5第8题7、假设,相似比为2,且旳面积为12,那么旳面积为【】A 、3B 、6C 、24D 、488、如下图,给出以下条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC ABCD BC =; ④、其中单独能够判定旳个数为【】A 、1B 、2C 、3D 、49、根据下表中旳二次函数旳自变量x 与函数y 旳对应值,可判断二C 、有两个交点,且它们均在y 轴同侧D 、无交点10、二次函数2y ax bx c =++旳图象如下图所示,那么一次函数24y bx b ac =+-与反比例函数a b c y x ++=在同一坐标系内旳图象大致为【】二、填空题〔每题5分,共25分〕11、如图,P 是∠α旳边OA 上一点,且点P 旳坐标为〔3,4〕,那么sin α=、 12.假设△ABC ∽△A ’B ’C ’,且,△ABC 旳周长为12cm ,那么△A ’B ’C ’旳周长为cm.13、将量角器按如下图旳方式放置在三角形纸板上,使点C 在半圆上、点A 、B 旳读数分别为86°、14、长为45°角,作业时调整为60°角〔如下图〕,15.AC =1,点D 、E 在直线BC=y .如果 ∠BAC =Y 与X 之间旳函数关系式为、16、〔此题10分〕求值:1sin 60452︒+2SIN30°-TAN60°-TAN45°17.〔此题12分〕正比例函数与反比例函数旳图象交于A 、B 两点,点A 旳坐标为〔2,1〕、〔1〕求正比例函数、反比例函数旳表达式; 〔2〕求点B 旳坐标、18、〔此题12分〕如图,在某建筑物AC 上,挂着一宣传条幅BC ,站在点F 处,测得条幅顶端B 旳仰角为300,往条幅方向前行20米到达点E 处,测得条幅顶端B 旳仰角为600,求宣传条幅BC 旳长、 1.732≈,结果精确到0、1米〕19、〔本小题总分值13分〕如图,一次函数Y =KX +B 旳图象与反比例函数x my =图象交于A 〔-2,1〕、B 〔1,N 〕两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年四川省凉山州九年级(上)期末测试数学试卷一、选择题(每题3分,共39分)1.(3分)将一元二次方程5x2﹣1=4x化成一般形式后,二次项系数和一次项系数分别为()A.5,﹣1 B.5,4 C.5,﹣4 D.5x2,﹣4x2.(3分)抛物线y=2(x+m)2+n(m,n是常数)的顶点坐标是()A.(m,n)B.(﹣m,n)C.(m,﹣n)D.(﹣m,﹣n)3.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个4.(3分)两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积为()A.无法求出B.8 C.8πD.16π5.(3分)同时投掷两枚普通的正方体骰子,所得两个点数之和大于9的概率是()A.B.C.D.6.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠17.(3分)当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C.D.8.(3分)⊙O的内接正三角形和外切正方形的边长之比是()A.:2 B.1:1 C.1:D.:9.(3分)若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣10.(3分)下列事件中必然发生的是()A.抛两枚均匀的硬币,硬币落地后,都是正面朝上B.掷一枚质地均匀的骰子,朝上一面的点数是3C.通常情况下,抛出的篮球会下落D.阴天就一定会下雨11.(3分)如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格12.(3分)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是()A.x2+3x﹣2=0 B.x2+3x+2=0 C.x2﹣3x+2=0 D.x2﹣2x+3=013.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④2a+b=0;⑤a﹣b+c<0,其中正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(每题3分,共15分)14.(3分)某种品牌的电脑,原价是7200元/台,经过连续两次降价后,现价是3528元/台,平均每次降价的百分率为.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行的时间x(单位:s)的函数解析式是y=﹣1.2x2+48x,则飞机着陆后滑行m后才能停下来.16.(3分)圆锥的母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是度.17.(3分)如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD=.18.(3分)在平面直角坐标系中,O为原点,⊙O的半径为7,直线y=mx﹣3m+4交⊙O于A、B两点,则线段AB的最小值为.三、解答题(共46分)19.(6分)解方程:=1﹣.20.(6分)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.21.(6分)某商店在销售中发现:“米奇”牌童装平均每天可售出20件,每件赢利40元.为了迎“六一”儿童节,商场决定适当地降价,以扩大销售量,增加盈利,减少库存.经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?22.(7分)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)23.(6分)已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a为,且两条直角边的长b和c恰好是这个方程的两个根时,求△ABC的周长.24.(6分)如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC (1)求证:MN是该圆的切线(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.25.(9分)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.2018-2019学年四川省凉山州九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共39分)1.(3分)将一元二次方程5x2﹣1=4x化成一般形式后,二次项系数和一次项系数分别为()A.5,﹣1 B.5,4 C.5,﹣4 D.5x2,﹣4x【解答】解:方程整理得:5x2﹣4x﹣1=0,则二次项系数和一次项系数分别为5,﹣4.故选C.2.(3分)抛物线y=2(x+m)2+n(m,n是常数)的顶点坐标是()A.(m,n)B.(﹣m,n)C.(m,﹣n)D.(﹣m,﹣n)【解答】解:因为抛物线y=2(x+m)2+n是顶点式,根据顶点式的坐标特点,它的顶点坐标是(﹣m,n).故选B.3.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图是轴对称图形,是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个,故选:B.4.(3分)两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积为()A.无法求出B.8 C.8πD.16π【解答】解:如图所示,∵弦AB与小圆相切,∴OC⊥AB,∴C为AB的中点,∴AC=BC=AB=4,在Rt△AOC中,根据勾股定理得:OA2﹣OC2=AC2=16,则形成圆环的面积为πOA2﹣πOC2=π(OA2﹣OC2)=16π,故选D.5.(3分)同时投掷两枚普通的正方体骰子,所得两个点数之和大于9的概率是()A.B.C.D.【解答】解:同时投掷两枚普通的正方体骰子,一共有36种结果,其中两个点数之和大于9的结果有4+6,5+5,5+6,6+4,6+5,6+6共6种,所以所得两个点数之和>9的概率是.故选A.6.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠1【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,∴,解得:k>且k≠1.故选C.7.(3分)当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C.D.【解答】解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选D.8.(3分)⊙O的内接正三角形和外切正方形的边长之比是()A.:2 B.1:1 C.1:D.:【解答】解:如图所示:连接CO,过点O,作OE⊥CD于点E,四边形AMNB是正方形,⊙O切AB于点C,△CFD是⊙O的内接正三角形,设圆的外切正方形的边长为a,则CO=BC=,∠COE=30°,∴CE=•cos30°=,∴这个圆的内接正三角形的边长为:2EC=,∴:a=:2.故选:A.9.(3分)若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣【解答】解:把y=8代入函数,先代入上边的方程得x=,∵x≤2,x=不合题意舍去,故x=﹣;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或﹣.故选:D.10.(3分)下列事件中必然发生的是()A.抛两枚均匀的硬币,硬币落地后,都是正面朝上B.掷一枚质地均匀的骰子,朝上一面的点数是3C.通常情况下,抛出的篮球会下落D.阴天就一定会下雨【解答】解:A、B.D都可能发生,也可能不发生,是随机事件,不符合题意;C、一定会发生,是必然事件,符合题意.故选C.11.(3分)如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格【解答】解:观察可得:要使左边图形变化到右边图形,首先以AB为对称轴作轴对称,再向右平移7格.故选D.12.(3分)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是()A.x2+3x﹣2=0 B.x2+3x+2=0 C.x2﹣3x+2=0 D.x2﹣2x+3=0【解答】解:∵x1=1,x2=2,∴x1+x2=3,x1x2=2,∴以x1,x2为根的一元二次方程可为x2﹣3x+2=0.故选C.13.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④2a+b=0;⑤a﹣b+c<0,其中正确的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:如图,①抛物线开口方向向下,则a<0.故①正确;②∵对称轴x=﹣=1,∴b=﹣2a>0,即b>0.故②错误;③∵抛物线与y轴交于正半轴,∴c>0.故③正确;④∵对称轴x=﹣=1,∴b+2a=0.故④正确;⑤根据图示知,当x=﹣1时,y<0,即a﹣b+c<0.故⑤正确.综上所述,正确的说法是①③④⑤,共有4个.故选A.二、填空题(每题3分,共15分)14.(3分)某种品牌的电脑,原价是7200元/台,经过连续两次降价后,现价是3528元/台,平均每次降价的百分率为30%.【解答】解:设平均每次降价的百分率为x,由题意,得7200(1﹣x)2=3528,解得:x1=1.7(舍去),x2=0.3.故答案为:30%.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行的时间x(单位:s)的函数解析式是y=﹣1.2x2+48x,则飞机着陆后滑行480m后才能停下来.【解答】解:∵﹣1.2<0,∴当x=﹣=20时,y取得最大值,此时,=480(m).故答案为480.16.(3分)圆锥的母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是216度.【解答】解:∵圆锥的底面半径长3cm,∴圆锥的底面周长为6πcm,设扇形的圆心角为n°,∴=6π,解得n=216°.17.(3分)如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD=25.【解答】解:过A点作AF⊥CD交CD的延长线于F点,如图,∵AE⊥BC,AF⊥CF,∴∠AEC=∠CFA=90°,而∠C=90°,∴四边形AECF为矩形,∴∠2+∠3=90°,又∵∠BAD=90°,∴∠1=∠2,在△ABE和△ADF中∴△ABE≌△ADF,=S△ADF,∴AE=AF=5,S△ABE∴四边形AECF是边长为5的正方形,=S正方形AECF=52=25.∴S四边形ABCD故答案为25.18.(3分)在平面直角坐标系中,O为原点,⊙O的半径为7,直线y=mx﹣3m+4交⊙O于A、B两点,则线段AB的最小值为4.【解答】解:∵直线y=mx﹣3m+4必过点D(3,4),∴最短的弦AB是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴OD=5,∵⊙O的半径为7,∴C(7,0),∴OA=OC=7,∴AD===2∴AB的长的最小值为4,故答案为:4.三、解答题(共46分)19.(6分)解方程:=1﹣.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.20.(6分)如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2﹣3x+2=0的解的概率.【解答】解:(1)列表如下:1,2),(2,1)共2种,则P是方程解=.21.(6分)某商店在销售中发现:“米奇”牌童装平均每天可售出20件,每件赢利40元.为了迎“六一”儿童节,商场决定适当地降价,以扩大销售量,增加盈利,减少库存.经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?【解答】解:设每件童装应降价x元,根据题意列方程得,(40﹣x)(20+2x)=1200,解得x1=20,x2=10∵增加盈利,减少库存,∴x=10(舍去),答:每件童装降价20元.22.(7分)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)【解答】解:(1)如图所示:A1的坐标为:(﹣3,6);(2)如图所示:∵BO==,∴==π.23.(6分)已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a为,且两条直角边的长b和c恰好是这个方程的两个根时,求△ABC的周长.【解答】(1)证明:△=[﹣(2k+1)]2﹣4(4k﹣3)=4k2﹣12k+13=(2k﹣3)2+4.∵(2k﹣3)2≥0,∴(2k﹣3)2+4>0,即△>0,∴无论k取什么实数值,该方程总有两个不相等的实数根;(2)解:∵b、c是方程x2﹣(2k+1)x+4k﹣3=0的两个根,∴b+c=2k+1,bc=4k﹣3.∵a2=b2+c2,a=,∴k2﹣k﹣6=0,∴k1=3,k2=﹣2.∵b、c均为正数,∴4k﹣3>0,∴k=3,此时原方程为x2﹣7x+9=0,∴b+c=7,∴△ABC的周长为7+.24.(6分)如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC(1)求证:MN是该圆的切线(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG.【解答】证明:(1)∵AB为直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,而∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即∠MAB=90°,∴MN是半圆的切线;(2)如图∵AB为直径,∴∠ACB=90°,而DE⊥AB,∴∠DEB=90°,∴∠1+∠5=90°,∠3+∠4=90°,∵D是弧AC的中点,即弧CD=弧DA,∴∠3=∠5,∴∠1=∠4,而∠2=∠4,∴∠1=∠2,∴FD=FG.25.(9分)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.【解答】解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入二次函数y=x2﹣2mx+m2﹣1,得出:m2﹣1=0,解得:m=±1,∴二次函数的解析式为:y=x2﹣2x或y=x2+2x;(2)∵m=2,∴二次函数y=x2﹣2mx+m2﹣1得:y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点为:D(2,﹣1),当x=0时,y=3,∴C点坐标为:(0,3),∴C(0,3)、D(2,﹣1);(3)当P、C、D共线时PC+PD最短,过点D作DE⊥y轴于点E,∵PO∥DE,∴=,∴=,解得:PO=,∴PC+PD最短时,P点的坐标为:P(,0).。