北京市2017届高三数学(文)综合练习1 Word版含答案

合集下载

2016届高三上学期第一次月考数学(文)试题Word版含答案

2016届高三上学期第一次月考数学(文)试题Word版含答案

2016届高三上学期第一次月考数学(文)试题Word版含答案2016届高三上学期第一次月考数学文试卷考试时间120分钟,满分150分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1]D .(0,1)2.已知集合A ={1,2},B ={1,a ,b },则“a =2”是“A ?B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .﹁p 或q B .p 且q C .﹁p 且﹁qD .﹁p 或﹁q4.设函数f (x )=x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15B .3C.23D.1395.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)6.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .27. 如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是( ) A .a ≥8 B .a ≤8 C .a ≥4D .a ≥-48. 函数f (x )=a x -2+1(a >0且a ≠1)的图像必经过点( ) A .(0,1) B .(1,1) C .(2,0)D .(2,2)9. 函数f (x )=lg(|x |-1)的大致图像是( )10. 函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)11. 设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2B .eC.ln22D .ln212. 函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( ).A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<1}<="" p="">二、填空题:本大题共4小题,每题5分.13. 已知函数y =f (x )及其导函数y =f ′(x )的图像如图所示,则曲线y =f (x )在点P 处的切线方程是__________.14. 若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________. 15. 函数y =12x 2-ln x 的单调递减区间为________.16. 若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(10分) 化简:(1)3131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(12分)已知函数f (x )=1a -1(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间. 21.(12分)已知函数f (x )=x 3+x -16. (1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; 22.(12分)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图像有三个不同的交点,求m 的取值范围.2016届高三上学期第一次月考数学答题卡一、选择题(共12小题,每小题5分,共60分,每小题有一个正确答案)13、 14、15、 16、三、解答题17.(10分) 化简:(1)131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(10分)已知函数f (x )=1a -1x(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;21.(13分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.22.(13分)已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图像有三个不同的交点,求m的取值范围.2016届高三上学期第一次月考数学文试卷参考答案1.B2.A3.D4.D5.D6.A7.A8.D9.B10.B11.B12.A13. x -y -2=0 14. {x |-32<1}<="" p="">15. (0,1] 16. (512,34]17. 解 (1)原式=121311113233211212633311233().a b a b abab ab a b+-++----==(2)原式=(-278)23-+(1500)12--105-2+1=(-827)23+50012-10(5+2)+1=49+105-105-20+1=-1679. 18. (1)证明设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数. (2)解∵f (x )在[12,2]上的值域是[12,2],又f (x )在[12,2]上单调递增,∴f (12)=12,f (2)=2.易得a =25.19. 解(1)∵f (x )是周期为2的奇函数,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0,f (-1)=0. (2)由题意知,f (0)=0. 当x ∈(-1,0)时,-x ∈(0,1).由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1, 1]上,f (x )=2x4x +1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.20.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,∵x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)∵函数f (x )的图像开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=?x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0, 6],单调递减区间是[-6,0].21.解 (1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1.∴f ′(x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)法一设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26.) 法二设直线l 的方程为y =kx ,切点为(x 0,y 0),则k=y0-0x0-0=x30+x0-16x0又∵k=f′(x0)=3x20+1,∴x30+x0-16x0=3x2+1,解之得x0=-2,∴y0=(-2) 3+(-2)-16=-26,k=3×(-2)2+1=13.∴直线l的方程为y=13x,切点坐标为(-2,-26).22.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,< p="">∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a=1.∴f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图像有三个不同的交点,结合如图所示f(x)的图像可知:实数m的取值范围是(-3,1).</x<a,<>。

2017高考全国1卷理科数学试题及答案解析[精校解析版]

2017高考全国1卷理科数学试题及答案解析[精校解析版]

WORD 格式整理2016 年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置 . 用 2B 铅笔将答题卡上试卷类型 A 后的方框涂黑 .2、选择题的作答: 每小题选出答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑 . 写在试题卷、草稿纸和答题卡上的非答题区域内均无效 .3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内 . 写在试题卷、草稿纸和答题卡上的非答题区域均无效 .4、选考题的作答: 先把所选题目的题号在答题卡上指定的位置用 2B 铅笔涂黑 . 答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效 .5、 考试结束后,请将本试题卷和答题卡一并上交 .第 Ⅰ 卷一 . 选择题:本大题共 12 小题 ,每小题 5 分 ,在每小题给出的四个选项中,只有一项是符合题目要求 的 .1.设集合 A x x 2 4x 3 0 , x 2x 3 0 ,则 A B( A )3, 3 ( B ) 3, 3 ( C ) 1, 3 ( D ) 3,3 2 2 2 2设i ) x 1 yi ,其中 x, y 是实数,则 x yi 2. (1 ( A ) 1( B ) 2(C )3 (D) 23.已知等差数列 a n 前 9 项的和为 27,a 108 ,则 a 100( A ) 100 ( B ) 99 (C ) 98 ( D ) 974.某公司的班车在7:00,8:00,8:30 发车,小明在7:50 至8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是( A )1( B)1(C)2( D)33234x2y21 表示双曲线,且该双曲线两焦点间的距离为4,则 n 的取值范围是5.已知方程n 3m2m2n专业技术参考资料WORD 格式整理( A )1,3 ( B) 1, 3 ( C) 0,3( D )0, 36.如图 ,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 .若该几何体的体积是28,则它的表面积是3( A )17 ( B)18( C)20( D)287.函数 y 2x2e x在2,2 的图像大致为y y( A )1( B)12 O 2 x 2 O2xy y1 1( C)2O 2 x(D) 2 O 2 x8.若 a b 10, c 1,则( A )a cbc ( B)ab c ba c( C ) alog b cb log ac ( D) logac9.执行右面的程序框图 ,如果输入的 x 0, y 1,n1 ,则输出 x,y 的值满足( A ) y 2x ( B) y 3x ( C) y 4x ( D) y 5x10.以抛物线 C 的顶点为圆心的圆交 C 于 A、B 两点,交 C 的准线于D 、E 两点 .已知 |AB|= 4 2 ,|DE|= 2 5 ,则 C 的焦点到准线的距离为n=n+ 1(A)2 (B)4 (C)6 (D)8 11.平面过正方体ABCD顶点 A I平面ABCD=m, I 平面 ABB1A1=n,则 m、n所成角的正弦值为3 2(A) (B)2 2log b c开始输入x,y,nn-1x=x+ 2,y=nyx2+y2≥36?否是输出x,y结束专业技术参考资料WORD 格式整理12.已知函数 f (x)sin( x+ )(0,), x 为 f (x) 的零点 , x 为 y f ( x) 图像2 4 4的对称轴,且 f (x) 在5单调,则的最大值为18,36( A ) 11 ( B)9(C) 7( D)5二、填空题:本大题共3 小题 ,每小题 5 分13.设向量 a=(m,1), b=(1,2) ,且|a+b|2=|a|2+|b|2,则 m= .14. (2 xx)5的展开式中, x3的系数是.(用数字填写答案)15.设等比数列a n满足 a1+a3=10, a2+a4=5,则 a1a2 ⋯an的最大值为.16.某高科技企业生产产品A 和产品 B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料 1kg,用 5 个工时;生产一件产品B 需要甲材料 0.5kg,乙材料 0.3kg ,用 3 个工时.生产一件产品 A 的利润为2100 元,生产一件产品B 的利润为 900 元.该企业现有甲材料150kg,乙材料 90kg,则在不超过600 个工时的条件下,生产产品 A、产品 B 的利润之和的最大值为元.三.解答题:解答应写出文字说明 ,证明过程或演算步骤 .17.(本小题满分为 12 分)ABC 的内角A,B,C的对边分别为a b c2cos C (a cos B+b cos A)c.,,,已知( I)求 C;( II )若 c 7 ,ABC 的面积为 3 3,求ABC 的周长.218.(本小题满分为12 分)如图,在以A,B,C,D,E, F 为顶点的五面体中,面ABEF 为正方形, AF =2FD ,AFD 90 ,且二面角 D -AF -E 与二面角 C-BE-F 都是 60 .( I)证明:平面ABEF 平面 EFDC ;D C( II )求二面角E-BC- A 的余弦值.F专业技术参考资料WORD 格式整理19.(本小题满分12 分)某公司计划购买 2 台机器 ,该种机器使用三年后即被淘汰.机器有一易损零件 ,在购进机器时,可以额外购买这种零件作为备件,每个 200 元 .在机器使用期间 ,如果备件不足再购买 ,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数40200 8 9 10 11 更换的易损零件数以这 100 台机器更换的易损零件数的频率代替 1 台机器更换的易损零件数发生的概率,记 X 表示 2台机器三年内共需更换的易损零件数, n 表示购买 2 台机器的同时购买的易损零件数.( I)求 X 的分布列;( II )若要求 P( X n) 0.5 ,确定 n 的最小值;( III )以购买易损零件所需费用的期望值为决策依据,在 n 19 与 n 20 之中选其一 ,应选用哪个?20.(本小题满分12 分)设圆x2y22x 15 0 的圆心为 A,直线 l 过点 B ( 1,0)且与 x 轴不重合, l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交A D 于点 E.( I)证明EA EB 为定值,并写出点 E 的轨迹方程;( II )设点 E 的轨迹为曲线C1,直线 l 交 C1于 M ,N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P,Q两点,求四边形MPNQ 面积的取值范围 .21.(本小题满分 12 分)已知函数 f x x 2 e x2有两个零点 .a x 1(I ) 求a的取值范围;(II)设12是fx 的两个零点 ,证明:x1x2 2 .x ,x专业技术参考资料WORD 格式整理请考生在22、 23、 24 题中任选一题作答 ,如果多做 ,则按所做的第一题计分.22.(本小题满分 10 分)选修 4-1:几何证明选讲如图,△ OAB 是等腰三角形,∠ AOB=120°.以 O 为圆心, 1OA 为半径作圆 . 2(I) 证明:直线 AB 与⊙ O 相切;(II) 点 C ,D 在⊙ O 上,且 A , B , C , D 四点共圆,证明: AB ∥ CD. DCOA B23.(本小题满分 10 分)选修 4— 4:坐标系与参数方程在直角坐标系 x y 中,曲线 C 1 的参数方程为 x a cost ( t 为参数, a > 0).y 1 a sin t 在以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线C 2: ρ= 4 cos . ( I )说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程;( II )直线 C 3 的极坐标方程为 0 ,其中 0 满足 tan 0 =2 ,若曲线 C1 与 C2 的公共点都在 C3 上,求 a .24.(本小题满分 10 分)选修 4— 5:不等式选讲已知函数 fx x 1 2x 3 .( I )画出 y f x 的图像;( II )求不等式 f x 1 的解集.专业技术参考资料WORD 格式整理2016 年高考全国1 卷理科数学参考答案 题号 1 2 3 45 6 7 8 9 10 11 12 答案D BCBAADCCBA B1. A x x 2 4x 3 0 x 1 x 3 , B x 2 x 3 0 x x 3 .2 故 A Bx 3x 3 . 2故选D .2. 由 1 i x 1 yi 可知: x xi 1 yi ,故 x 1 ,解得: x 1 . x y y 1 所以,xyi x 2y 22 .故选 B .3. 由等差数列性质可知: S 99 a 1 a992a 5 9a 5 27 ,故a 5 3 ,2 2而 a 10 8 ,因此公差 d a10 a 51 10 5∴a100 a10 90d 98 .故选C .4. 如图所示,画出时间轴:7:30 7:40 7:50 8:008:10 8:20 8:30ACDB小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或 DB时,才能保证他等车的时间不超过10 分钟根据几何概型,所求概率 P 10 10 1 .40 2 故选 B.专业技术参考资料WORD 格式整理5. x2y21 表示双曲线,则m2n 3m2n 0m2n 3m2n∴m2 n 3m2由双曲线性质知:c2m2n 3m2n 4m2,其中 c 是半焦距∴焦距 2c 2 2 m 4 ,解得 m 1∴1 n 3故选 A.6.原立体图如图所示:是一个球被切掉左上角的1 后的三视图8表面积是7 的球面面积和三个扇形面积之和8S= 7 4 22 +3 1 22 =178 4故选A.7. f 2 8 e 2822.8 0 ,排除Af 2 8 e28 2.721 ,排除 Bx 0 时, fx 2x2e x f x 4x e x,当 x 0, 1时, f x 1 4 e004 4因此f x 在 0, 1 单调递减,排除 C4 故选D.8. 对 A :由于 0 c 1 ,∴函数 y x c在 R 上单调递增,因此 a b 1 a c b c, A 错误对 B :由于 1 c 1 0 ,∴函数 yx c1在 1, 上单调递减,∴ a b 1 a c 1bc 1 ba cab c , B 错误专业技术参考资料WORD 格式整理对 C :要比较 a log b c 和 blog a c ,只需比较 a ln c和 b ln c ,只需比较 ln c 和 ln c,只需 b lnbln b ln abln b aln a 和 a ln a构造函数 fx x ln xx 1 ,则 f ' x ln x 1 1 0 , f x 在1, 上单调递增,因此 f a f b 0a ln ab ln b 0 1 1a ln ab ln b又由 0 c 1 得 ln c0 ,∴ ln ca ln a对 D : 要比较 log a c 和 log b c ,只需比较ln c blog a c a log b c , C 正确b ln b lnc 和 ln cln a ln b而函数 y ln x 在 1, 上单调递增,故 a b 1 ln a 1 1ln b 0 ln b ln a又由 0 c 1 得 ln c0 ,∴ ln c ln c log a c log b c , D 错误 ln a ln b故选 C .9. 如下表:循环节运 n 1 判断是否x x ny n n n 1 x y y行次数2 2 2 36 输出 x y 运行前 0 1 / / 1 第一次 0 1 否 否 2 第二次 1 2 否 否3 2第三次36是是2输出x 3,y 6,满足y 4x 2故选 C.10.以开口向右的抛物线为例来解答,其他开口同理设抛物线为y22px p 0,设圆的方程为 x2y2r2,题目条件翻译如图:设 A x0 ,2 2 ,D p,, 5 2专业技术参考资料WORD 格式整理点 Ax 0 ,2 2 在抛物线 y 2 2 px 上,∴ 8 2 px 0 ⋯⋯ ① p p 2 , 5 在圆x 2 2 2 r 2⋯⋯ ② 点 D y r 上,∴ 52 2点 A x 0 ,22 2 2 2 2 8 r 2在圆 x y r 上,∴x0 ⋯⋯ ③ 联立①②③解得: p 4 ,焦点到准线的距离为p 4 . 故选B .D Cα B A11. 如图所示:∵ ∥平面 CB1D1 ,∴若设平面 CB1 D1 平面 ABCD m1 ,C 1D 1则 m 1∥ mA 1 B1又∵平面 ABCD ∥平面 A 1 B 1C 1 D 1 ,结合平面 B 1D 1C 平面 A 1 B 1 C 1D 1 B 1 D 1∴B 1D 1∥m 1 ,故 B 1D 1∥m 同理可得: CD 1∥n故 m 、 n 的所成角的大小与 B1D1 、 CD1 所成角的大小相等,即 CD1B1 的大小.而 B 1C B 1 D 1 CD 1 (均为面对交线) ,因此CD 1 B 1 ,即 sin CD 1B 1 3 . 3 2故选A .12. 由题意知:π + k 1 π4π +k2π+ π4 2则 2 k 1,其中 k Zf (x)在π, 5π单调, 518 π T ,1218 36 3612 2接下来用排除法若11, πsin 11xππ 3π3π 5π递减,不满,此时 f( x) , f (x) 在, 递增,在,364 4 18 44 44足 f ( x) 在π 5π单调18,36专业技术参考资料WORD 格式整理若πsin 9 xπ,满足f ( x)在π 5π单调递减9, ,此时 f( x)4 18,4 36故选 B.13.-2 14.10 15 . 64 16 . 21600013. 由已知得: a b m 1, 32 2 2232m2121222,解得m∴ a b a b m 1 2 .14.设展开式的第k 1 项为Tk1,k0,1,2,3,4,5∴ Tk 1k5k k k5k 5 kC5 2 x xC5 2 x2.k C54 255 4当 53 时,k4 ,即T5 4 x210x3 2故答案为10.15. 由于a n 是等比数列,设a na1q n 1,其中 a1是首项, q是公比.2 a18∴ a1 a310 a1 a1q 3 10,解得: 1 .a2a4 5a1q a1q5 q2 1n 4 32 ...n4故 a n,∴a1a2 ... a n1 12 2 21nn72121n 7 2 4922421当 n 3 或 4 时,n 7 49 取到最小值 6 ,此12 2 4取到最大值 26.1n 7 2 49224所以 a1 a2 ... an 的最大值为64.16.设生产 A 产品 x 件, B 产品 y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为专业技术参考资料WORD 格式整理目标函数 z 2100 x 900 y作出可行域为图中的四边形,包括边界,顶点为(60,100) (0,200) (0,0)(90,0)在 (60,100) 处取得最大值,z 2100 60 900 100 216000 17. 解:⑴2cosC a cosB bcosA c 由正弦定理得:2cosC sin A cosB sin BcosA sinC 2cosC sin A B sinC∵A B C , A 、B 、C 0,ππ ∴sin A B sinC 0∴ 2cos C 1 , cosC 12∵ C 0 ,π∴ C π 3⑵ 由余弦定理得: c 2 a 2 b 22ab cosC 7 a 2 b 22ab 12 a b 2 3ab 7S 1 ab sinC 3 ab 3 32 42∴ab 6∴ a b 218 7a b 5∴ △ ABC 周长为 a b c 5 7专业技术参考资料WORD 格式整理18.解: (1) ∵ ABEF 为正方形∴ A F E F ∵AFD 90∴AF DF∵ DF EF =F∴AF 面 EFDCAF 面 ABEF∴平面 ABEF 平面 EFDC⑵ 由⑴知DFE CEF 60∵AB ∥ EFAB 平面 EFDCEF 平面 EFDC∴AB ∥平面 ABCDAB 平面 ABCD∵面 ABCD 面 EFDC CD∴AB ∥ CD∴CD ∥ EF∴四边形 EFDC 为等腰梯形以 E 为原点,如图建立坐标系,设FD aE 0 ,0,0 B 0,2a ,0 C a,0 ,3 a A 2a , 2a ,2 2EB 0 ,2a ,0 ,BC a, 2a ,3 a ,AB2a ,0 ,0 2 2设面 BEC 法向量为 m x, y,z .2a y10m EB 0 ,即ax1 2ay1 3 az1x1 3 , y10,z1 1m BC 0202 m3 ,0 , 1设面 ABC 法向量为 n x2,y2,z2n BC=a 3.即 2 x22ay22 az20x2 0 , y23,z2 4n AB 02ax20专业技术参考资料WORD 格式整理n0 ,3 ,4设二面角 E BC A 的大小为 .cosm n 4 2 19m n 3 1 3 16 19∴二面角E BC A 的余弦值为2 191919 解:⑴每台机器更换的易损零件数为8, 9, 10,11记事件A i 为第一台机器3 年内换掉 i 7个零件i 1,2,3,4记事件B i 为第二台机器3 年内换掉 i 7个零件i 1,2,3,4由题知P A1P A3P A4P B1P B3P B40.2, PA2P B20.4设 2 台机器共需更换的易损零件数的随机变量为X ,则 X 的可能的取值为16, 17,18,19, 20,21, 22PX 16 P A1PB1 0.2 0.2 0.04PX 17 P A1 PB2P A2 PB1 0.2 0.40.4 0.2 0.16PX 18 P A1 PB3P A2 PB2 P A3 P B1 0.2 0.2 0.2 0.2 0.4 0.4 0.24PX 19 P A1PB4PA2 P B3PA3 P B2P A4 PB1 0.2 0.2 0.20.2 0.40.20.2 0.4 0.24PX 20 P A2PB4P A3 P B3P A4 P B20.4 0.2 0.2 0.4 0.2 0.2 0.2P x 21 P A3 P B4P A4 P B30.2 0.2 0.2 0.2 0.08 P x 22 P A4P B40.2 0.2 0.04X 16 17 18 19 20 21 22P 0.04 0.160.240.24 0.2 0.0 80.04⑵ 要令, 0.04 0.16 0.24 0.5 ,0.04 0.16 0.24 0.24 ≥ 0.5P x ≤ n ≥0.5则 n 的最小值为 19⑶ 购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用当 n 19时,费用的期望为 19 200 500 0.2 1000 0.08 1500 0.04 当 n 20 时,费用的期望为 20 200 500 0.08 1000 0.04 4080 所以应选用 n19 20. (1) 圆 A 整理为 x 2 y 2 16 , A 坐标 1,0 ,如图,1BE ∥AC ,则 ∠C ∠ EBD ,由 AC A D ,则∠ D ∠C ,∠ EBD ∠D ,E D 则 EBA E EB AE ED A D 4 4 2 2 所以 E 的轨迹为一个椭圆,方程为 x y 1 , ( y 0 );4 3 D 404043 2 C 1 A x2B 2 4 E 1 234专业技术参考资料WORD 格式整理⑵C1 : x2y2my1,41 ;设l : x3因为 PQ⊥ l ,设PQ : y m x 1 ,联立 l与椭圆 C1x my 1x2y2得 3m24 y26my 9 0 ;4 31则| MN | 1 m2 | y M y N | 1m236m236 3m2 4 12 m23m2 4 3m2圆心 A 到 PQ 距离 d | m1 1| | 2m| ,1 m2 1 m2所以 | PQ | 2| AQ |2 d 2 2 16 4m22 4 3m2 4 ,1 m 1 m2S MP NQ 1 1 12 m2 14 3m2 4 24 m2124 | MN | |PQ |3m2 1 m23m22 2 4 4 321. (Ⅰ) f '(x) ( x 1)e x2a( x 1) (x 1)(e x2a) .( i)设a 0 ,则 f(x) (x 2)e x, f (x) 只有一个零点.( ii)设a 0 ,则当x (,1)时, f'(x)0 ;当x (1,) 时, f'(x)上单调递减,在 (1, ) 上单调递增.又 f(1) e , f (2) a ,取 b 满足 b 0 且 b ln a,则a (b 2) a(b 3 2f (b) 1)2a(b2b) 0,2故 f (x) 存在两个零点.( iii)设 a 0 ,由 f '(x) 0 得 x若 ae,则ln( 2a)1 ,故当x2P 4321NA x4 2 B 2 41QM 2341;4112,8 312m 10 .所以 f ( x) 在 ( ,1)在 (1, ) 上单调递增.又专业技术参考资料WORD 格式整理当x 1f (x) 0,所以f( x)不存在两个零点.时,若 a e1 ,故当x (1,ln( 2a)) 时, f '(x)0 ;当 x(ln( 2a), ) 时,,则ln( 2a)2f '(x) 0 .因此f (x) 在 (1,ln( 2a)) 单调递减,在(ln( 2a),) 单调递增.又当x 1时,f (x) 0,所以 f ( x) 不存在两个零点.综上, a 的取值范围为(0, ) .()不妨设x1x2,由(Ⅰ)知x1 (,1) ,x2(1,) ,2 x2 (,1) , f ( x) 在(,1)上单调递减,所以x1x22 等价于 f( x1 ) f (2x2 ) ,即 f(2 x2 ) 0 .由于 f(2 x2 ) x2e2x2a( x2 1)2,而 f(x2 )( x22)e x2a( x21)20,所以f (2 x2 ) x2e2 x2( x22)e x2 .设 g( x) xe2x ( x 2)e x,则 g(x) ( x 1)(e2 x e x ) .所以当x 1 时, g(x) 0 ,而 g (1)0 ,故当x1时, g( x) 0.从而 g(x2 ) f (2 x2 ) 0 ,故x1x2 2 .22.⑴设圆的半径为 r ,作 OK AB 于 K ∵OA OB , AOB 120∴OK AB , A 30 ,OK OAsin30OAr2∴ AB 与⊙O 相切⑵方法一:假设 CD 与 AB不平行 CD 与AB 交于 F2FK FC FD ①∵ A 、B 、C 、D 四点共圆∴ FC FD FA FB FK AK FK BK ∵ AK BK专业技术参考资料WORD 格式整理∴ FC FD FK AK FK AK FK 2 AK 2②由①②可知矛盾∴AB ∥ CD方法二:因为 A, B, C, D四点共圆,不妨设圆心为T ,因为O A OB ,TA TB,O,T为 AB 的中垂线上,所以同理OC OD ,TCTD ,所以 OT 为 CD 的中垂线,所以AB∥CD .xacost( t均为参数)23.⑴ 1 a sinty∴x2y2a2①1∴ C1为以0,1 为圆心, a 为半径的圆.方程为x2y2 2 y 1 a20∵x 2y 22,y sin ∴2 2 sin1a20即为C1的极坐标方程⑵ C2:4cos两边同乘得2 4 cos 2x2y2, cos xx2y24x 即 x224②y2C3:化为普通方程为y 2 x由题意:C1和 C2 的公共方程所在直线即为 C3①—②得: 4 x2y 1 a20 ,即为 C3∴ 1 a20 ∴ a 124.⑴如图所示:x 4 ,x ≤1⑵ f x 3x 2 , 1 x 324 x,x ≥32f x 1当 x ≤ 1 , x 4 1 ,解得 x 5 或 x 3 ∴ x ≤ 1专业技术参考资料WORD 格式整理当 1 x 32 1,解得x 11 , 3x 或 x2 3∴ 1 x 1x3 或12 3当 x ≥3, 4 x 1 ,解得 x 5 或 x 32∴3≤x 3或x 52综上, x 1或1 x 3 或 x 5 3∴ f x 1 ,解集为,11 3 5,每项建议案实施完毕,实施部门应根据结果写出总结报告,实事求是的说明产生的经济,3效益或者其他积极效果,呈报总经办。

(人教版B版2017课标)高中数学必修第一册 第二章综合测试卷(附答案)03

(人教版B版2017课标)高中数学必修第一册 第二章综合测试卷(附答案)03

第二章综合测试一、单选题(本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.二次三项式22x bx c ++分解因式为2(3)(1)x x -+,则,b c 的值分别为( ) A .3,1 B .62--, C .64--, D .4,6--2.不等式(1)0x -的解集是( ) A .{|1}x x >B .{|1}x x ≥C .{|12}x x x =-≥或 D .{| 2 1}x x x -=≤或3.已知a b c 、、是ABC △的三条边,且满足22a bc b ac +=+,则ABC △一定是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形4.已知13a b -+<<且24a b -<<,则23a b +的取值范围是( )A .1317,22⎛⎫- ⎪⎝⎭B .711,22⎛⎫- ⎪⎝⎭C .713,22⎛⎫- ⎪⎝⎭D . 913,22⎛⎫- ⎪⎝⎭5.已知01b a <+<,若关于x 的不等式22()()x b ax ->的解集中的整数恰有3个,则( ) A .10a -<<B .01a <<C .13a <<D .36a <<6.在R 上定义运算:(1)x y x y ⊗=-,若x ∃∈R 使得()()1x a x a -⊗+>成立,则实数a 的取值范围是( ) A .13,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭UB .13,22⎛⎫- ⎪⎝⎭ C .31,22⎛⎫- ⎪⎝⎭D .31,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U7.某车间分批生产某种产品,每批的生产准备费用为800元若每批生产x 件,则平均仓储时间为8x天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A .60件 B .80件 C .100件 D .120件8.若两个正实数,x y 满足141x y +=,且不等式234yx m m +-<有解,则实数m 的取值范围是( ) A .(1,4)-B .(,1)(4,)-∞-+∞UC .(4,1)-D .(,0)(3,)-∞+∞U9.已知不等式20x bx c ++>的解集为|21{}x x x >或< ,则不等式210cx bx ++≤的解集为( ) A .1,12⎛⎫⎪⎝⎭B .1,(1,)2⎛⎫-∞+∞ ⎪⎝⎭UC .1,[1,)2⎛⎤-∞+∞ ⎥⎝⎦UD .1,12⎡⎤⎢⎥⎣⎦二、多选题(本大题共3小题,每小题5分,共15分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分) 10.下列不等式推理正确的是( ) A .若x y z >>,则xy yz >B .若110a b<<,则2ab b >C .若,a b c d >>,则ac bd >D .若22a x a y >,则x y >E .若0a b >>,0c >,则a c b c --> 11.已知a b a <<,则( )A 11a b> B .1ab <C .1a b> D .22a b > E .2a ab >12.若正实数,a b 满足1a b +=,则下列说法正确的是( )A .14ab ≥B C .114a b+≥ D .2212a b +≥三、填空题(本大题共4小题,每小题5分,共20分。

2017年高三数学(理)最新模拟调研试题精选分项汇编 专题06 数列(第01期) 含解析

2017年高三数学(理)最新模拟调研试题精选分项汇编 专题06 数列(第01期) 含解析

一.基础题组1。

【湖南省长沙市长郡中学2017届高三摸底考试数学(理)试题】已知等差数列{}na 的前n 项和nS 满足350,5SS ==,数列21211{}n n a a -+的前2016项的和为 。

【答案】20164031-考点:等差数列的通项公式,裂项相消法求和.2. 【江西省新余市第一中学2017届高三上学期调研考试(一)(开学考试)】已知等比数列{}na 中,262,8a a ==,则345a a a =( )A .64±B .64C .32D .16 【答案】B 【解析】试题分析:由等比数列的性质可知226416a a a ⋅==,而246,,a a a 同号,故44a =,所以3345464a a a a ==. 考点:等比数列的性质.3。

【江西省新余市第一中学2017届高三上学期调研考试(一)(开学考试)】 数列{}na 满足()121112n n an N a a *+=+=∈,记212n n n b a =,则数列{}nb 的前n 项和nS = .【答案】2332nn +-【解析】 试题分析:11n a +=得221112n n a a +-=,且2111a =,所以数列21n a ⎧⎫⎨⎬⎩⎭构成以1为首项,2为公差的等差数列,所以211(1)221nn n a =+-⨯=-,从而得到2121n a n =-,则212nnn b-=, 所以21321222nn n S-=+++,231113232122222nn n n n S +--=++++, 两式相减,得2111111121222222n n n n S -+-=++++-1111121323122222n n n n n -++-+=+--=- 所以2332nnn S+=-. 考点:错位相减法求和.【名师点睛】利用错位相减法求数列的前n 项和时,应注意两边乘公比后,对应项的幂指数会发生变化,为避免出错,应将相同幂指数的项对齐,这样有一个式子前面空出一项,另外一个式子后面就会多了一项,两式相减,除第一项和最后一项外,剩下的1n -项是一个等比数列.4。

(大师特稿)北京市2017年高考压轴题:数学(文)试题含答案

(大师特稿)北京市2017年高考压轴题:数学(文)试题含答案

2017北京市高考压轴卷文科数学第一部分(选择题共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设常数a∈R,集合A={}0)a ()1(≥--x x x ,B={}1-≥a x x .若A∪B=R,则a 的取值范围为()(A )(-∞,2)(B )(-∞,2](C )(2,+∞)(D )[2,+∞)2.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞3.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是A .π12B .π6C .π3D .5π64.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A .()p ⌝∨()q ⌝B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q5.函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是(A)1-(B)22-(C)22(D)06.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有()A .3个B .4个C .5个D .6个7.执行如图所示的程序框图,输出的S 值为()A .1B .23C .1321D .6109878.下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列;其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p 第Ⅱ卷(非选择题共110分)二、填空题(共6个小题,每题5分,共30分)9.方程x 31139x =+-的实数解为.10.学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别是75、80,则这次考试该年级学生平均分数为.11.设a +b =2,b >0,则1||2||a a b+的最小值为.12.已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点,且双曲线的离心率为2,则该双曲线的方程为.13.在四边形CD AB 中,()C 2,4A = ,()D 2,1B =- ,则该四边形的面积为_______14.设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为。

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A 版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( )A .AB =B .A B ⊆C .B A ⊆D .A B =∅∩2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x 的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )A .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()01x f x +=定义域为M ,则M =R ð( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x -->成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭, D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( )A .()01,B .(]01,C .()()1001-,∪, D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( )A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ð;(2)若()U A B B =∩ð,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年. (1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C .2.【答案】B【解析】Q 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,. 3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩Q ,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x Q 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1ð.故选C . 8.【答案】C【解析】Q 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x Q 是奇函数,()()11f f -=-. 又()g x Q 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-=Q ,.① ()()()()114114f g f g +-=∴+=Q ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤.11.【答案】B【解析】(){}2min 26f x x x x x =--Q ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B . 12.【答案】D【解析】()4y f x =+Q 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56Q <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D . 二、13.【答案】3-【解析】{}24A t =-Q ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意.14.【答案】()()2131x x -+≥【解析】由题设1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥. 15.【答案】[]19,【解析】Q函数y =的定义域为R ,()()2221101a x a x a ∴-+-++≥恒成立. 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f =Q ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称. 又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭Q ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x =Q ≤≤,{}|13U A xx x ∴=<或>ð,(){}|34U A B x x ∴=∩<<ð.(2)若()U A B B =∩ð,则U B A ⊆ð. ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -=Q ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x Q 在[]22-,上是单调函数, 222k -∴--≤或222k--≥,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=-Q ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x Q 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-.(2)由(1)知()f x 的对称轴为52x =, 当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,>(3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( ) A .()lg lg lg xy x y =+B .222m n m n ++=C .222m n m n +⋅=D .2ln 2ln x x =2.若函数()12122m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( ) A .y x x =B .x y e =C .1y x=-D .2log y x =4.函数()ln 3y x =- )A .[)23,B .[)2+∞,C .()3-∞,D .()23,5.下列各函数中,值域为()0∞,+的是( ) A .22xy -= B.y C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是( )ABCD7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( ) A .c b a <<B .c a b <<C .a b c <<D .a c b <<8.已知()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-∞,B .138⎛⎤-∞ ⎥⎝⎦,C .()02,D .1328⎡⎫⎪⎢⎣⎭, 9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( ) A .12ln 22- B .12ln 22+ C .22ln2-D .22ln2+10.已知函数()()()x xf x x e ae x -=+∈R ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( ) A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( ) A .0a b << B .0a b << C .0b a <<D .a b =12.已知函数()221222log x mx m x m f x x x m ⎧-++⎪=⎨⎪⎩,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭,C .114⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -⎛⎫⎪⎝⎭>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+∞,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算⊗:当m n ≥时,m n m ⊗=;当m n <时,m n n ⊗=.设函数()()()2221log 2xx f x x ⎡⎤⊗-⊗⋅⎣⎦,则函数()f x 在()02,上的值域为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)计算下列各式的值: (1)7015log 243210.06470.250.58--⎛⎫--++⨯ ⎪⎝⎭;(2)()2235lg5lg2lg5lg20log 25log 4log 9+⨯++⨯⨯.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -⋅+≤,函数()2log 2xf x =⋅. (1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x ∈-,时,()y f x =的最大值与最小值之和为52. (1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x ∈,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ∈R ,()10.x D x x ⎧=⎨⎩,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212xx D x x f x D x x ⎧-⎪=⎨⎪⎩+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x ⎛⎫=⋅- ⎪-⎝⎭>,且≠. (1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x ∈-∞,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C . 2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-. 3.【答案】A【解析】2200x x y x x x x ⎧⎪==⎨-⎪⎩,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R上的增函数,无奇偶性;1y x=-为奇函数且在()0-∞,和()0+∞,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+∞,上为增函数,无奇偶性.故选A . 4.【答案】A【解析】函数()ln 3y x =-x 满足条件30240x x -⎧⎨-⎩>,≥,解得32x x ⎧⎨⎩<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A . 5.【答案】A【解析】对于A,222xxy -⎛== ⎝⎭的值域为()0+∞,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y (]0-∞,,所以021x <≤,所以0121x -≤<,所以y 的值域是[)01,;对于C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是34⎡⎫+∞⎪⎢⎣⎭,;对于D ,因为()()1001x ∈-∞+∞+,∪,,所以113x y +=的值域是()()011+∞,∪,. 6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+∞,上的单调性相同,可排除B ,D .再由关系式()()330f g ⋅<可排除A ,故选C . 7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======∴Q <,<<,><<.故选C . 8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则()2201122,2a a -⎧⎪⎨⎛⎫--⨯⎪⎪⎝⎭⎩<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e ∴-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-⋅+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x xx e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ⎧-++⎪=≤⎨⎪⎩,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,∴要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-∞,【解析】由题可得,321144x --⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ⎧-⎪⎨⎪-⎩≤,>,即68.a a -⎧⎨-⎩≤,>故(]86a ∈--,. 15.【答案】1124⎛⎫ ⎪⎝⎭,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,2122A x ⎛== ⎝⎭.点()2B B x ,在函数12y x =的图像上,所以122B x =,4B x =.点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ==⎝⎭.又因为12D A x x ==,14D C y y ==,所以点D 的坐标为1124⎛⎫ ⎪⎝⎭,. 16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x ⊗=;当22x <,即1x <时,222x ⊗=.当2log 1x ≤,即02x <≤时,21log 1x ⊗=;当21log x <,即2x >时,221log log x x ⊗=. ()()2220122122log 2 2.x x x x xx f x x x x ⎧⎪⎪∴=-⎨⎪-⋅⎪⎩,<<,,≤≤,,> ∴①当01x <<时,()2x f x =是增函数,()12f x ∴<<; ②当12x ≤<,()221122224xxx f x ⎛⎫=-=-- ⎪⎝⎭,1222 4.x x ∴Q ≤<,≤<()221111242424f x ⎛⎫⎛⎫∴---- ⎪ ⎪⎝⎭⎝⎭≤<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,. 三、17.【答案】解(1)70515log 244321510.06470.250.51224822--⎛⎫⎛⎫--++⨯=-++⨯= ⎪ ⎪⎝⎭⎝⎭.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+⨯++⨯⨯=++++⨯⨯11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f ∴=.Q 当0x <时,0x ->,()23x xf x --∴-=-. 又Q 函数()f x 是奇函数,()()f x f x ∴-=-,()23x xf x -∴=+. 综上所述,()2030020.3xx x x f x x xx -⎧-⎪⎪==⎨⎪⎪+⎩,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x ∴在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<. ()f x Q 是奇函数,()()2222f t t f k t ∴--<.又()f x Q 是减函数,2222t t k t ∴-->, 即2320t t k -->对任意t ∈R 恒成立,4120k ∴∆=+<,解得13k -<,即实数k 的取值范围为13⎛⎫-∞- ⎪⎝⎭,. 19.【答案】解(1)由9123270x x -⋅+≤,得()23123270xx -⋅+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x>0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224x f x x x x x x ⎛⎫=⋅=--=-+=-- ⎪⎝⎭.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =; 当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x ∴的最大值与最小值之和为152a a -+=,2a ∴=或12a =. (2)1a Q >,2a ∴=.()2222x x h x m m =+-⋅,即()()2222xx h x m m =-⋅+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =. []01x ∈Q ,,[]12t ∴∈,,∴当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+; 当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+⎧⎪=-+⎨⎪-+⎩,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==; 当x 为无理数时,则为x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22xx x f x x ⎧⎪=⎨⎪⎩,为有理数,,为无理数.即当x ∈R 时,()2x f x =.故()f x 的值域为()0+∞,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t af t a a a -∴=--. ()()()21x x af x a a x a -∴=-∈-R .()()()()2211x x x x a af x a a a a f x a a ---=-=--=---Q ,()f x ∴为奇函数.当1a >时,xy a =为增函数,xy a -=-为增函数,且2201a a ->,()f x ∴为增函数.当01a <<时,x y a =为减函数,xy a -=-为减函数,且2201a a -<,()f x ∴为增函数.()f x ∴在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x ∴=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-∞,上恒为负数,只需()240f -≤,即()22241a a a a ---≤. 422141a a a a-∴⋅-≤,214a a ∴+≤,2410a a ∴-+≤,22a ∴≤.又1a Q ≠,a ∴的取值范围为)(21,2⎡⎣.第三章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某同学用二分法求方程338=0x x +-在()12x ∈,内近似解的过程中,设()=338x f x x +-,且计算()10f <,()20f >,()1.50f >,则该同学在第二次应计算的函数值为( ) A .()0.5fB .()1.125fC .()1.25fD .()1.75f2.函数()22=log f x x x +的零点所在的区间为( )A .1142⎛⎫ ⎪⎝⎭,B .112⎛⎫ ⎪⎝⎭,C .(D .)3.有一组实验数据如表所示:下列所给函数模型较适合的是( ) A .()=log 1a y x a >B .()=1y ax b a +>C .()2=0y ax b a +>D .()=log 1a y x b a +>4.根据表中的数据,可以判定方程x 的一个根所在的区间为( )A .()10-,B .()01,C .()12,D .()23,5.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .108元B .105元C .106元D .118元6.有一个盛水的容器,由悬在它上空的一根水管匀速向容器内注水,直至把容器注满.在注水过程中,时刻t 与水面高度y 的函数关系如图所示,图中PQ 为一线段,则与之对应的容器的形状是图中的( )AB CD7.已知()()()=2f x x a x b ---,并且α,β是函数()f x 的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a b αβ<<<B .a b αβ<<<C .a b αβ<<<D .a b αβ<<<8.函数()2230=2ln 0x x x f x x x ⎧+-⎨-+⎩,≤,,>的零点个数为( )A .0B .1C .2D .39.已知函数()231=24log f x x x x-+++,若()113x ∈,,()23x ∈+∞,,则( ) A.()10f x >,()20f x < B.()10f x <,()20f x > C.()10f x <,()20f x <D.()10f x >,()20f x >10.如图所示,ABC △为等腰直角三角形,直线l 与AB 相交且l AB ⊥,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则()=y f x 的图像大致为四个选项中的( )AB CD11.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()0100x x <<人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15 B .16 C .17 D .18 12.已知函数()2=e x xf x --(e 为自然对数的底数),则方程()21=0f x -的实数根的个数为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.用二分法求图像连续不断的函数()f x 在区间[]15,上的近似解,验证()()150f f ⋅<,给定精确度=0.01ε,取区间()15,的中点115==32x +,计算得()()110f f x ⋅<,()()150f x f ⋅>,则此时零点0x ∈________.(填区间)14.已知函数()2=log 2x f x x m +-有唯一的零点,若它的零点在区间()12,内,则实数m 的取值范围是________.15.已知关于x 的方程210=x a -有两个不同的实根1x ,2x ,且21=2x x ,则实数=a ________. 16.某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费.另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按()52log 1A +万元进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型.(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元?18.(本小题满分12分)已知函数()=211f x x x --+. (1)请在所给的平面直角坐标系中画出函数()f x 的图像.(2)根据函数()f x 的图像回答下列问题:(回答下述3个小题都只需直接写出结果,不需给出演算步骤)①求函数()f x 的单调区间;②求函数()f x 的值域;③求关于x 的方程()=2f x 在区间[]02,上解的个数.19.(本小题满分12分)已知函数()=e 1x f x -,()3=1exg x +.(1)求函数()g x 的值域;(2)求满足方程()()=0f x g x -的x 的值.20.(本小题满分12分)《污水综合排放标准》规定:污水排放企业进排污口的污水pH 值正常范围为[)69,.某化工企业对本单位污水出水口的pH 值进行全天24小时检测,根据统计资料发现pH 值的大小y 与检测时间点x 之间的函数图像如图所示,AB ,CD 为两条直线段,曲线BC 为函数y b 图像的一部分,其中()08A ,,()46B ,,()2010C ,,()248D ,.(1)请写出pH 值的大小y 与检测时间点x 之间的函数解析式;(2)试求该化工企业在一天内排放pH 值超标污水的时长.21.(本小题满分12分)已知函数()2=283f x x x m -++为R 上的连续函数.(1)若=4m -,试判断()=0f x 在()11-,上是否有根存在.若没有,请说明理由;若有,请在精确度为0.2(即根所在区间长度小于0.2)的条件下,用二分法求出使这个根0x 存在的区间.(2)若函数()f x 在区间[]11-,上存在零点,求实数m 的取值范围.22.(本小题满分12分)已知函数()()2=log 421x x f x a a +⋅++,x ∈R . (1)若=1a ,求方程()=3f x 的解集;(2)若方程()=f x x 有两个不同的实数根,求实数a 的取值范围.第三章综合测试答案解析一、 1.【答案】C【解析】()10f Q <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】Q 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>,21113=log =02424f ⎛⎫+- ⎪⎝⎭<,()1102ff ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭,. 3.【答案】C【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C . 4.【答案】C【解析】设()()=2xf x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A . 6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B . 7.【答案】C【解析】αQ ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b -Q <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .8.【答案】C【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C . 9.【答案】A【解析】()()23=15log f x x x --+-Q 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C . 11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t -+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=ex xf x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解;在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,. 14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<. 15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a . 16.【答案】9【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x . 三、17.【答案】(1)由题意得()50.16010=1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,>(2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-; 当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,; 函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,. ③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x≥,所以101e x⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,. (2)由()()=0f x g x -,得3e 2=0ex x--.当0x ≤时,方程无解; 当0x >时,3e 2=0ex x--,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x+-.因为e 0x >,所以e =3x ,即=ln3x . 故满足方程()()=0f x g x -的x 的值为ln3.20.【答案】(1)()08A Q ,,()46B ,,∴线段AB 的方程是()1=8042y x x -+≤≤.将()46B ,,()2010C ,的坐标代入y b ,得b b ⎧⎪⎨⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C Q ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤.综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪⎪-+⎪⎩,≤≤,,≤≤,,≤≤(2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标, 时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时.因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --. 可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>,∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭>, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285<,符合要求.故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,.(2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x xf x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x xa a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<<故实数a 的取值范围为(13--,.第四章综合测试一、单项选择题1.式子 )ABC .D .2.函数()lg 3f x x x =+-的零点所在区间为( ) A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( ) A .12aa b -+ B .12aa b-+ C .12aa b++ D .12aa b++ 4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c a b <<D .a cb <<5.函数1()(0,1)x f x a a a a=-≠>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ⎧-≤=⎨->⎩,a R ∈,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞-B .(,1]-∞-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-∞上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+∞D .[2,)+∞8.已知函数()|lg |f x x =。

高考数学一轮总复习专题2.6对数及对数函数练习(含解析)文(2021年整理)

高考数学一轮总复习专题2.6对数及对数函数练习(含解析)文(2021年整理)

专题2.6 对数及对数函数真题回放1. 【2017高考天津文第6题】已知奇函数在上是增函数.若,则的大小关系为 (A )(B )(C )(D ) 【答案】【考点】1。

指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,,再比较比较大小。

2.【2017高考全国卷文第9题】已知函数,则 A . 在(0,2)单调递增B .在(0,2)单调递减C .y =的图像关于直线x =1对称D .y =的图像关于点(1,0)对称【答案】C 【解析】试题分析:由题意知,,所以的图象关于直线对称,C 正确,D 错误;又(),在上单调递增,在上单调递减,A ,B 错误,故选C .【考点】函数性质【名师点睛】如果函数,,满足,恒有 ()f x R0.8221(l o g ),(l o g 4.1),(2)5a f b f cf =-==,,abca b c <<b a c <<c b a <<c a b <<C()2l o g5a f =0.822l o g 5,l o g 4.1,2()l nl n (2)fx x x =+-()f x ()f x ()f x ()f x (2)l n (2)l n()fx x x f x -=-+=()f x 1x =112(1)'()2(2)x f x x x x x -=-=--02x <<(0,1)[1,2)()f x x D ∀∈x D ∀∈()()fa x fb x +=-,那么函数的图象有对称轴;如果函数,,满足,恒有,那么函数的图象有对称中心.3。

【2017高考全国卷文第8题】函数的单调递增区间是 A 。

B. C 。

D.【答案】D4。

【2015高考上海卷文第8题】 方程的解为 。

【答案】2【解析】依题意,所以, 令,所以,解得或, 当时,,所以,而,所以不合题意,舍去; 当时,,所以,,,所以满足条件,所以是原方程的解. 【考点定位】对数方程。

高考数学考前刷题大卷练1 集合与常用逻辑用语(文)(含解析)-人教版高三全册数学试题

高考数学考前刷题大卷练1 集合与常用逻辑用语(文)(含解析)-人教版高三全册数学试题

大卷练1 集合与常用逻辑用语一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·全国卷Ⅰ]已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2} 答案:A解析:A ∩B ={0,2}∩{-2,-1,0,1,2}={0,2}.故选A.2.[2019·某某肃南月考]已知集合P ={2,3,4,5,6},Q ={3,5,7}.若M =P ∩Q ,则M 的子集个数为( )A .5B .4C .3D .2 答案:B解析:因为P ∩Q ={3,5},所以集合M 的子集个数为4.故选B.3.[2017·全国卷Ⅰ文,1]已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎨⎧⎭⎬⎫xx <32B .A ∩B =∅C .A ∪B =⎩⎨⎧⎭⎬⎫xx <32 D .A ∪B =R 答案:A解析:由题意知A ={x |x <2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32.由图易知A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32,A ∪B ={x |x <2},故选A.4.[2019·某某一检]已知集合M 是函数y =11-2x的定义域,集合N 是函数y =x 2-4的值域,则M ∩N =( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤12 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-4≤x <12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪x <12且y ≥-4D .∅ 答案:B解析:由题意得M =⎝ ⎛⎭⎪⎫-∞,12,N =[-4,+∞),所以M ∩N =⎣⎢⎡⎭⎪⎫-4,12. 5.[2019·某某某某模拟]已知集合A ={0,1,2},若A ∩∁Z B =∅(Z 是整数集合),则集合B 可以为( )A .{x |x =2a ,a ∈A }B .{x |x =2a,a ∈A } C .{x |x =a -1,a ∈N } D .{x |x =a 2,a ∈N } 答案:C解析:由题意知,集合A ={0,1,2},可知{x |x =2a ,a ∈A }={0,2,4},此时A ∩∁Z B ={1}≠∅,A 不满足题意;{x |x =2a,a ∈A }={1,2,4},则A ∩∁Z B ={0}≠∅,B 不满足题意;{x |x =a -1,a ∈N }={-1,0,1,2,3,…},则A ∩∁Z B =∅,C 满足题意;{x |x =a 2,a ∈N }={0,1,4,9,16,…},则A ∩∁Z B ={2}≠∅,D 不满足题意.故选C.6.[2019·某某某某联考]设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∩N =MB .M ∪(∁R N )=MC .N ∪(∁R M )=RD .M ∩N =N 答案:D解析:由题意可得N =(0,2),M =(-∞,4),N ⊆M .故选D.7.已知集合A ={4,a },B ={x ∈Z |x 2-5x +4≥0},若A ∩(∁Z B )≠∅,则实数a 的值为( ) A .2 B .3 C .2或6 D .2或3 答案:D解析:因为B ={x ∈Z |x 2-5x +4≥0},所以∁Z B ={x ∈Z |x 2-5x +4<0}={x ∈Z |1<x <4}={2,3}.若A ∩(∁Z B )≠∅,则a =2或a =3,故选D.8.[2019·某某市高三第二次教学质量检测]命题p :∀a ≥0,关于x 的方程x 2+ax +1=0有实数解,则綈p 为( )A .∃a <0,关于x 的方程x 2+ax +1=0有实数解 B .∃a <0,关于x 的方程x 2+ax +1=0没有实数解 C .∃a ≥0,关于x 的方程x 2+ax +1=0没有实数解 D .∃a ≥0,关于x 的方程x 2+ax +1=0有实数解 答案:C解析:根据全称命题的否定可知,綈p 为∃a ≥0,关于x 的方程x 2+ax +1=0没有实数解,故选C.9.[2019·某某五校联考]已知命题p :“a >b ”是“2a>2b”的充要条件;q :∃x 0∈R ,|x 0+1|≤x 0,则( )A .(綈p )∨q 为真命题B .p ∨q 为真命题C .p ∧q 为真命题D .p ∧(綈q )为假命题 答案:B解析:由函数y =2x是R 上的增函数,知命题p 是真命题.对于命题q ,当x +1≥0,即x ≥-1时,|x +1|=x +1>x ;当x +1<0,即x <-1时,|x +1|=-x -1,由-x -1≤x ,得x ≥-12,无解,因此命题q 是假命题.所以(綈p )∨q 为假命题,A 错误;p ∨q 为真命题,B 正确;p ∧q 为假命题,C 错误;p ∧(綈q )为真命题,D 错误.选择B.10.[2019·东北师大附中、某某师大附中、某某省实验中学联考]对于实数x ,y ,若p :x +y ≠4,q :x ≠3或y ≠1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A解析:由于命题“若x =3且y =1,则x +y =4”为真命题,可知该命题的逆否命题也为真命题,即p ⇒q .由x ≠3或y ≠1,但x =2,y =2时有x +y =4,即qD p .故p 是q 的充分不必要条件.故选A.11.[2019·某某某某第一次调研]设有下面四个命题:p 1:∃n ∈N ,n 2>2n ;p 2:x ∈R ,“x >1”是“x >2”的充分不必要条件;p 3:命题“若x =y ,则sin x =sin y ”的逆否命题是“若sin x ≠sin y ,则x ≠y ”; p 4:若“p ∨q ”是真命题,则p 一定是真命题.其中为真命题的是( ) A .p 1,p 2 B .p 2,p 3 C .p 2,p 4 D .p 1,p 3 答案:D解析:∵n =3时,32>23,∴∃n ∈N ,n 2>2n,∴p 1为真命题,可排除B ,C 选项.∵(2,+∞)⊂(1,+∞),∴x >2能推出x >1,x >1不能推出x >2,x >1是x >2的必要不充分条件,∴p 2是假命题,排除A.故选D.12.[2019·某某某某长安区质量检测大联考]已知命题p :∀x ∈R ,不等式ax 2+22x +1<0解集为空集,命题q :f (x )=(2a -5)x在R 上满足f ′(x )<0,若命题p ∧(綈q )是真命题,则实数a 的取值X 围是( )A.⎣⎢⎡⎦⎥⎤52,3 B .[3,+∞) C .[2,3] D.⎣⎢⎡⎦⎥⎤2,52∪[3,+∞) 答案:D解析:由题意命题p :∀x ∈R ,不等式ax 2+22x +1<0解集为空集,a =0时,不满足题意.当a ≠0时,必须满足:⎩⎨⎧a >0,Δ=222-4a ≤0,解得a ≥2.命题q :f (x )=(2a -5)x在R 上满足f ′(x )<0,可得函数f (x )在R 上单调递减,∴0<2a -5<1,解得52<a <3.∵命题p ∧(綈q )是真命题,∴p 为真命题,q 为假命题.∴⎩⎪⎨⎪⎧a ≥2,a ≤52或a ≥3,解得2≤a ≤52或a ≥3,则实数a 的取值X 围是[3,+∞)∪⎣⎢⎡⎦⎥⎤2,52.故选D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.若⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,则a 2 018+b 2 018的值为________.答案:1解析:因为⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },所以⎩⎪⎨⎪⎧b a =0,a 2=1,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去),故a2 018+b2 018=1.14.某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中既爱好体育又爱好音乐的有________人.答案:26解析:设只爱好音乐的人数为x ,两者都爱好的人数为y ,只爱好体育的人数为z ,作Venn 图如图所示,则x +y +z =55-4=51,x +y =34,y +z =43,故y =(34+43)-51=26.故答案为26.15.[2019·某某玉山一中月考]已知命题p :关于x 的方程x 2-mx -2=0在[0,1]上有解;命题q :f (x )=log 2x 2-2mx +12在[1,+∞)上单调递增.若“綈p ”为真命题,“p ∨q ”为真命题,则实数m 的取值X 围为______.答案:⎝⎛⎭⎪⎫-1,34 解析:对于命题p :令g (x )=x 2-mx -2,则g (0)=-2,∴g (1)=-m -1≥0,解得m ≤-1,故命题p :m ≤-1.∴綈p :m >-1.对于命题q :⎩⎪⎨⎪⎧m ≤1,1-2m +12>0,解得m <34.又由题意可得p 假q 真,∴-1<m <34,即实数m 的取值X 围为⎝⎛⎭⎪⎫-1,34.16.[2019·某某闽侯二中模拟]设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值X 围是________.答案:⎣⎢⎡⎦⎥⎤0,12 解析:由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)·x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎢⎡⎦⎥⎤12,1[a ,a +1].∴a ≤12且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值X 围是⎣⎢⎡⎦⎥⎤0,12.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }. (1)若A ∩B =[0,3],某某数m 的值; (2)若A ⊆∁R B ,某某数m 的取值X 围. 解析:由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B , ∴m -2>3或m +2<-1,即m >5或m <-3. 所以实数M 的取值X 围是{m |m >5,或m <-3}. 18.(本小题满分12分)设集合A ={x |132≤2-x ≤4},B ={x |x 2-3mx +2m 2-m -1<0}.(1)当x ∈Z 时,求A 的非空真子集的个数; (2)若B ⊆A ,求m 的取值X 围.解析:化简集合A ={x |-2≤x ≤5},集合B 可写为B ={x |(x -m +1)(x -2m -1)<0}. (1) x ∈Z ,∴A ={-2,-1,0,1,2,3,4,5},即A 中含有8个元素,∴A 的非空真子集数为28-2=254(个).(2)当B =∅即m =-2时,B ⊆A . 当B ≠∅即m ≠-2时.(ⅰ)当m <-2 时,B =(2m +1,m -1),要B ⊆A ,只要⎩⎪⎨⎪⎧2m +1≥-2,m -1≤5⇒-32≤m ≤6,所以m 的值不存在;(ⅱ)当m >-2 时,B =(m -1,2m +1),要B ⊆A ,只要⎩⎪⎨⎪⎧m -1≥-2,2m +1≤5⇒-1≤m ≤2.综上可知m 的取值X 围是:{m |m =-2或-1≤m ≤2}. 19.(本小题满分12分)[2019·某某某某第一中学第二次检测]若集合A ={(x ,y )|x 2+mx -y +2=0,x ∈R },B ={(x ,y )|x -y +1=0,0≤x ≤2},当A ∩B ≠∅时,某某数m 的取值X 围.解析:∵集合A ={(x ,y )|x 2+mx -y +2=0,x ∈R }={(x ,y )|y =x 2+mx +2,x ∈R },B ={(x ,y )|x -y +1=0,0≤x ≤2}={(x ,y )|y =x +1,0≤x ≤2},∴A ∩B ≠∅等价于方程组⎩⎪⎨⎪⎧y =x 2+mx +2,y =x +1在x ∈[0,2]上有解,即x 2+mx +2=x +1在[0,2]上有解,即x 2+(m -1)x +1=0在[0,2]上有解,显然,x =0不是该方程的解,从而问题等价于-(m -1)=x +1x在(0,2]上有解.又∵当x ∈(0,2]时,1x +x ≥2当且仅当1x=x ,即x =1时取“=”,∴-(m -1)≥2,∴m ≤-1,即m ∈(-∞,-1].20.(本小题满分12分)[2019·某某陵县一中月考]已知命题p :x 1和x 2是方程x 2-mx -2=0的两个实根,不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立;命题q :不等式ax 2+2x -1>0有解.若命题p 是真命题,命题q 是假命题,某某数a 的取值X 围.解析:因为x 1,x 2是方程x 2-mx -2=0的两个实根,所以⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=-2,所以|x 1-x 2|=x 1+x 22-4x 1x 2=m 2+8.所以当m ∈[-1,1]时,|x 1-x 2|max =3.由不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立,得a 2-5a -3≥3,解得a ≥6或a ≤-1,所以命题p 为真命题时,a ≥6或a ≤-1. 命题q :不等式ax 2+2x -1>0有解, ①a >0时,显然有解; ②当a =0时,2x -1>0有解;③当a <0时,因为ax 2+2x -1>0有解,所以Δ=4+4a >0,解得-1<a <0. 所以命题q 为真命题时,a >-1. 又因为命题q 是假命题,所以a ≤-1.所以命题p 是真命题且命题q 是假命题时,实数a 的取值X 围为(-∞,-1]. 21.(本小题满分12分)[2019·某某某某模拟]命题p :实数a 满足a 2+a -6≥0,命题q :函数y =ax 2-ax +1的定义域为R ,若命题p ∧q 为假,p ∨q 为真,某某数a 的取值X 围.解析:当命题p 为真时,即a 2+a -6≥0,解得a ≥2或a ≤-3; 当命题q 为真时,可得ax 2-ax +1≥0对任意x ∈R 恒成立, 若a =0,则满足题意;若a ≠0,则有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,解得0<a ≤4,∴0≤a ≤4.∵p ∧q 为假,p ∨q 为真,∴“p 真q 假”或“p 假q 真”,①当p 真q 假时,则⎩⎪⎨⎪⎧a ≥2或a ≤-3,a >4或a <0,∴a >4或a ≤-3;②当p 假q 真时,则⎩⎪⎨⎪⎧-3<a <2,0≤a ≤4,∴0≤a <2.∴实数a 的取值X 围是(-∞,-3]∪[0,2)∪(4,+∞). 22.(本小题满分12分)[2019·某某潍坊联考]已知m ∈R ,设p :∀x ∈[-1,1],x 2-2x -4m 2+8m -2≥0成立;q :∃x ∈[1,2],log 12(x 2-mx +1)<-1成立.如果“p ∨q ”为真,“p ∧q ”为假,某某数m的取值X 围.解析:若p 为真,则对∀x ∈[-1,1],4m 2-8m ≤x 2-2x -2恒成立. 设f (x )=x 2-2x -2,配方得f (x )=(x -1)2-3, ∴f (x )在[-1,1]上的最小值为-3,∴4m 2-8m ≤-3,解得12≤m ≤32,∴p 为真时,12≤m ≤32.若q 为真,则∃x ∈[1,2],x 2-mx +1>2成立,即m <x 2-1x成立.设g (x )=x 2-1x =x -1x ,则g (x )在[1,2]上是增函数,∴g (x )的最大值为g (2)=32,∴m <32,∴q 为真时,m <32.∵“p ∨q ”为真,“p ∧q ”为假,∴p 与q 一真一假. 当p 真q 假时,⎩⎪⎨⎪⎧ 12≤m ≤32,m ≥32,∴m =32;当p 假q 真时,⎩⎪⎨⎪⎧m <12或m >32,m <32,∴m <12.综上所述,实数m 的取值X 围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <12或m =32。

2013届高三上学期期末学习质量检测 数学(文) Word版含答案

2013届高三上学期期末学习质量检测 数学(文) Word版含答案

2012-2013学年度第一学期期末学习质量检测数学(文)试题说明:1.本试卷分第Ⅰ卷和第Ⅱ卷。

满分1 50分。

答题时间1 20分钟a2.请将第Ⅰ卷题目的答案选出后用2B 铅笔涂在答题卡对应题目的代号上:第Ⅱ卷用黑色签字笔将正确答案写在答题纸对应的位置上,答在试卷上作废。

第Ⅰ卷(选择题,共60分)一、选择题(每题5分,共12小题)1.sin45°.cos15°+cos225°.sin15°的值为( )A .B .-12C .12D 2.集合{A x =∥|4,},{|}x B x x a ≤=< ,则A B ⊆是a>5的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.若PQ 是圆x 2+ y 2 =9的弦,PQ 的中点是(1,2)则直线PQ 的方程是 ( ) A . x+2y -3=0 B . x+2y -5=0 C . 2x -y+4=0 D . 2x -y=0 4.设{}n a 是等差数列;a 6 =2且S 5 =30,则{}n a 的前8项和S 8=( ) A . 3 1 B . 32C . 33D . 345.抛物线y 2=-12x 的准线与双曲线等22193x y -=的两条 淅近线所围成的三角形面积等于( )A .B .C .2D .6.如图,该程序运行后输出结果为( )A . 14B . 16C . 18D . 647.某射手在一次训练中五次射击的成绩分别为9.4、9.4、9.4、9.6、9.7,则该射手成绩的方差是 ( ) A . 0.127 B . 0.016 C . 0.08 D . 0.216 8.将函数y=cos()3x π-的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移6π个单位,所得函数图象的二条对称轴为.( )A .9x π=B .8x π=C .2x π=D .x π=9.已知m 、n 是两条不同的直线,,,αβγ,是三个不同的平面,则下列命题正确的是( )A .若,,αγαβ⊥⊥则γ∥βB .若m ∥n ,,,m n αβ⊂⊂则α∥βC .若m ∥n ,m ∥α,则以n ∥αD .若,,n n αβα⊥⊥∥β10.函数y=f (x )的图象如右图所示,则函数y=121()og f x 的图象大致是( )11.若等边△ABC 的边长为M 满足11,33CM CB AC MA =+ 则·MB等于( )A .B . -C .2D . 一212.设函数22(0)()(0)x f x x bx c x ->⎧=⎨++≤⎩,若(4)(0),(2)0f f f -=-=则关于x 的不等式())1f x ≤的解集为( )A .(),3][1,)-∞--+∞B .[-3,-1]C .[3,1](0,)--+∞D .[3,]-+∞第II 卷(共90分)二、填空题(本大题共4小题。

北京市海淀区2017届高三一模数学(理)试题【含答案】

北京市海淀区2017届高三一模数学(理)试题【含答案】

北京海淀区高三年级2016-2017学年度第一次综合练习数学试卷(理科)2017.3一、选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合(){}10A x x x =+≤,集合{}0B x x =>,则A B =( )A .{}1x x ≥-B .{}1x >-C .{}0x x ≥D .{}0x x >2.已知复数()()z i a bi a b R =+∈,),则“z 为纯虚数”的充分必要条件为( ) A .220a b +≠B .0ab =C .00a b =≠,D .00a b ≠=,3.执行如图所示的程序框图,输出的x 值为( ) A .0B .3C .6D .84.设a b R ∈,若a b >,则( ) A .11a b> B .22a b> C .lg lg a b >D .sin sin a b >5.已知1a xdx =⎰,12b x dx =⎰,0c =⎰,则a b c 、、的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .c a b <<6.已知曲线2:2x C y a ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),()()1010A B -,、,,若曲线C 上存在点P 满足0AP BP ⋅=,则实数a 的取值范围为( )A.22⎡-⎢⎣⎦,B .[]11-,C.⎡⎣D .[]22-,7.甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为( ) A .12B .40C .60D .808.某折叠餐桌的使用步骤如图所示,有如图检查项目:项目①:折叠状态下(如图1),检查四条桌腿长相等;项目②:打开过程中(如图2),检查''''OM ON O M O N ===; 项目③:打开过程中(如图2),检查''''OK OL O K O L ===; 项目④:打开后(如图3),检查123490∠=∠=∠=∠=; 项目⑤:打开后(如图3),检查''''AB A B C D CD ===.在检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行的是”( ) A .①②③ B .②③④C .②④⑤D .③④⑤二、填空题(每题5分,满分30分,将答案填在答题纸上)9.若等比数列{}n a 满足24548a a a a ==,,则公比q =________,前n 项和n S =________. 10.已知()()122020F F -,、,,满足122PF PF -=的动点P 的轨迹方程为________. 11.在ABC ∆中,cos c a B =.①A =________;②若1sin 3C =,则()cos B π+=________. 12.若非零向量a ,b 满足()0a a b ⋅+=,2a b =,则向量a ,b 夹角的大小为________.13.已知函数()210cos 0x x f x x x π⎧-≥=⎨<⎩,,,若关于x 的方程()0f x a +=在()0+∞,内有唯一实根,则实数a 的最小值是________.14.已知实数u v x y ,,,满足221u v +=,102202x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则z ux vy =+的最大值是________.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分13分)已知3π是函数()22cos sin 21f x x a x =++的一个零点. (Ⅰ)求实数a 的值;(Ⅱ)求()f x 的单调递增区间.据报道,巴基斯坦由中方投资运营的瓜达尔港目前已通航.这是一个可以停靠8~10万吨油轮的深水港,通过这一港口,中国船只能够更快到达中东和波斯湾地区,这相当于给中国平添了一条大动脉!在打造中巴经济走廊协议(简称协议)中,能源投资约340亿美元,公路投资约59亿美元,铁路投资约38亿美元,高架铁路投资约16亿美元,瓜达尔港投资约6.6亿美元,光纤通讯投资约为0.4亿美元.有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):(Ⅰ)根据协议提供信息,用数据说明本次协议投资重点;(Ⅱ)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率;(Ⅲ)将(Ⅱ)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设X为瓜达尔未来12个月的月货物吞吐量超过55百万吨的个数,写出X的数学期望(不需要计算过程).如图,由直三棱柱111ABC A B C -和四棱锥11D BB C C -构成的几何体中,90BAC ∠=,1AB =,12BC BB ==,1C D CD ==1CC D ⊥平面11ACC A .(Ⅰ)求证:1AC DC ⊥;(Ⅱ)若M 为1DC 的中点,求证://AM 平面1DBB ;(Ⅲ)在线段BC 上是否存在点P ,使直线DP 与平面1BB D 所成的角为3π?若存在,求BPBC 的值,若不存在,说明理由.已知函数()()()2241ln 1f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由; (Ⅱ)若()0f x ≤在区间[]01,上恒成立,求a 的取值范围.已知椭圆22:12x G y +=,与x 轴不重合的直线l 经过左焦点1F ,且与椭圆G 相交于A B 、两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C D 、两点.(Ⅰ)若直线l 的斜率为1,求直线OM 的斜率; (Ⅱ)是否存在直线l ,使得2AM CM DM =⋅成立?若存在,求出直线l 的方程;若不存在,请说明理由.已知含有n 个元素的正整数集{}()12123n n A a a a a a a n =<<<≥,,,,具有性质P :对任意不大于()S A (其中()12n S A a a a =+++)的正整数k ,存在数集A 的一个子集,使得该子集所有元素的和等于k .(Ⅰ)写出12a a ,的值;(Ⅱ)证明:“12n a a a ,,,成等差数列”的充要条件是“()()12n n S A +=”; (Ⅲ)若()2017S A =,求当n 取最小值时n a 的最大值.2017年北京市海淀区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x(x+1)≤0},集合B={x|x>0},则A∪B=()A.{x|x≥﹣1} B.{x|x>﹣1} C.{x|x≥0} D.{x|x>0}【解答】解:∵集合A={x|x(x+1)≤0}={x|﹣1≤x≤0},集合B={x|x>0},∴A∪B={x|x≥﹣1}.故选:A.2.(5分)已知复数z=i(a+bi)(a,b∈R),则“z为纯虚数”的充分必要条件为()A.a2+b2≠0 B.ab=0 C.a=0,b≠0 D.a≠0,b=0【解答】解:复数z=i(a+bi)=ai﹣b(a,b∈R),则“z为纯虚数”的充分必要条件为﹣b=0,a≠0.故选:D.3.(5分)执行如图所示的程序框图,输出的x值为()A.0 B.3 C.6 D.8【解答】解:x=0,y=9,≠,x=1,y=8,≠,x=2,y=6,=4≠,x=3,y=3,3=,输出x=3,故选:B.4.(5分)设a,b∈R,若a>b,则()A.<B.2a>2b C.lga>lgb D.sina>sinb【解答】解:a,b∈R,a>b,当a>0,b<0时,A不成立,根据指数函数的单调性可知,B正确,根据对数函数的定义,可知真数必需大于零,故C不成立,由于正弦函数具有周期性和再某个区间上为单调函数,故不能比较,故D不成立,故选:B.5.(5分)已知a=xdx,b=x2dx,c=dx,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.c<a<b【解答】解:a=xdx=|=,b=x2dx=|=,c=dx=|=,则b<a<c,故选:C6.(5分)已知曲线C:(t为参数),A(﹣1,0),B(1,0),若曲线C上存在点P满足•=0,则实数a的取值范围为()A.,B.[﹣1,1] C.,D.[﹣2,2]【解答】解:∵A(﹣1,0),B(1,0),若曲线C上存在点P满足•=0,∴P的轨迹方程是x2+y2=1.曲线C:(t为参数),普通方程为x﹣y+a=0,由题意,圆心到直线的距离d=≤1,∴,故选C.7.(5分)甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为()A.12 B.40 C.60 D.80【解答】解:根据题意,分2种情况讨论:①、甲和乙都排在丙的左侧,将甲乙安排在丙的左侧,考虑甲乙之间的顺序,有2种情况,排好后有4个空位,在4个空位中选一个安排丁,有4种情况,排好后有5个空位,在5个空位中选一个安排戊,有5种情况,则甲和乙都排在丙的左侧的情况有2×4×5=40种,②、甲和乙都排在丙的右侧,同理有40种不同的排法;故甲和乙都排在丙的同一侧的排法种数为40+40=80种;故选:D.8.(5分)某折叠餐桌的使用步骤如图所示,有如图检查项目:项目①:折叠状态下(如图1),检查四条桌腿长相等;项目②:打开过程中(如图2),检查OM=ON=O'M'=O'N';项目③:打开过程中(如图2),检查OK=OL=O'K'=O'L';项目④:打开后(如图3),检查∠1=∠2=∠3=∠4=90°;项目⑤:打开后(如图3),检查AB=A'B'=C'D'=CD.在检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行的是”()A.①②③B.②③④C.②④⑤D.③④⑤【解答】解:项目①:折叠状态下(如图1),四条桌腿长相等时,桌面与地面不一定平行;项目②:打开过程中(如图2),若OM=ON=O'M'=O'N',可以得到线线平行,从而得到面面平行;项目③:打开过程中(如图2),检查OK=OL=O'K'=O'L',可以得到线线平行,从而得到面面平行;项目④:打开后(如图3),检查∠1=∠2=∠3=∠4=90°,可以得到线线平行,从而得到面面平行项目⑤:打开后(如图3),检查AB=A'B'=C'D'=CD.桌面与地面不一定平行;故选:B.二、填空题(每题5分,满分30分,将答案填在答题纸上)9.(5分)若等比数列{a n}满足a2a4=a5,a4=8,则公比q=2,前n项和S n=2n﹣1.【解答】解:∵等比数列{a n}满足a2a4=a5,a4=8,∴,解得a1=1,q=2,∴前n项和S n==2n﹣1.故答案为:2,2n﹣1.10.(5分)已知F1(﹣2,0),F2(2,0),满足||PF1|﹣|PF2||=2的动点P的轨迹方程为.【解答】解:根据题意,F1(﹣2,0),F2(2,0),则|F1F2|=4,动点P满足||PF1|﹣|PF2||=2,即2<4,则P的轨迹是以F1、F2为焦点的双曲线,其中c=2,2a=2,即a=1,则b2=c2﹣a2=3,双曲线的方程为:;故答案为:.11.(5分)在△ABC中,c=acosB.①A=90°;②若sinC=,则cos(π+B)=﹣.【解答】解:①∵c=acosB.∴cosB==,整理可得:a2=b2+c2,∴A=90°;②∵sinC=,A=90°,∴B=90°﹣C,∴cos(π+B)=﹣cosB=﹣sinC=﹣故答案为:90°,.12.(5分)若非零向量,满足•(+)=0,2||=||,则向量,夹角的大小为120°.【解答】解:设向量,的夹角为θ,则θ∈[0°,180°];又•(+)=0,2||=||,∴+•=0,即+||×2||cosθ=0,解得cosθ=﹣,∴θ=120°,即向量,夹角为120°.故答案为:120°.13.(5分)已知函数f(x)=,,<若关于x的方程f(x+a)=0在(0,+∞)内有唯一实根,则实数a的最小值是﹣.【解答】解:作出f(x)的函数图象如图所示:∵f(x+a)在(0,+∞)上有唯一实根,∴f(x)在(a,+∞)上有唯一实根,∴﹣≤a<1.故答案为.14.(5分)已知实数u,v,x,y满足u2+v2=1,,则z=ux+vy的最大值是2.【解答】解:约束条件的可行域如图三角形区域:A(2,1),B(2,﹣1),C(0,1),u2+v2=1 设u=sinθ,v=cosθ,目标函数经过A时,z=2sinθ+2cosθ=2sin().目标函数经过B时,z=2sinθ﹣cosθ=(θ+β)(其中tanβ=).目标函数经过C时,z=sinθ≤1.所以目标函数的最大值为:2.故答案为:.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知是函数f(x)=2cos2x+asin2x+1的一个零点.(Ⅰ)求实数a的值;(Ⅱ)求f(x)的单调递增区间.【解答】解:(Ⅰ)由题意可知,即,即,解得.(Ⅱ)由(Ⅰ)可得==,函数y=sinx的递增区间为,,k∈Z.由<<,k∈Z,得<<,k∈Z,所以,f(x)的单调递增区间为,,k∈Z.16.(13分)据报道,巴基斯坦由中方投资运营的瓜达尔港目前已通航.这是一个可以停靠8~10万吨油轮的深水港,通过这一港口,中国船只能够更快到达中东和波斯湾地区,这相当于给中国平添了一条大动脉!在打造中巴经济走廊协议(简称协议)中,能源投资约340亿美元,公路投资约59亿美元,铁路投资约38亿美元,高架铁路投资约16亿美元,瓜达尔港投资约6.6亿美元,光纤通讯投资约为0.4亿美元.有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):(Ⅰ)根据协议提供信息,用数据说明本次协议投资重点;(Ⅱ)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率;(Ⅲ)将(Ⅱ)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设X为瓜达尔未来12个月的月货物吞吐量超过55百万吨的个数,写出X的数学期望(不需要计算过程).【解答】解:(Ⅰ)本次协议的投资重点为能源,因为能源投资为340亿,占总投资460亿的50%以上,所占比重大.(Ⅱ)设事件A:从12个月中任选一个月,该月超过55百万吨.根据提供的数据信息,可以得到天津、上海两港口的月吞吐量之和分别是:56,49,58,54,54,57,59,58,58,56,54,56,其中超过55百万吨的月份有8个,所以,.(Ⅲ)X的数学期望EX=8.17.(13分)如图,由直三棱柱ABC﹣A1B1C1和四棱锥D﹣BB1C1C构成的几何体中,∠BAC=90°,AB=1,BC=BB1=2,C1D=CD=,平面CC1D⊥平面ACC1A1.(Ⅰ)求证:AC⊥DC1;(Ⅱ)若M为DC1的中点,求证:AM∥平面DBB1;(Ⅲ)在线段BC上是否存在点P,使直线DP与平面BB1D所成的角为?若存在,求的值,若不存在,说明理由.【解答】解:(Ⅰ)证明:在直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,故AC⊥CC1,由平面CC1D⊥平面ACC1A1,且平面CC1D∩平面ACC1A1=CC1,所以AC⊥平面CC1D,又C1D⊂平面CC1D,所以AC⊥DC1.(Ⅱ)证明:在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,所以AA1⊥AB,AA1⊥AC,又∠BAC=90°,所以,如图建立空间直角坐标系A﹣xyz,依据已知条件可得A(0,0,0),,,,,,,B(0,0,1),B1(2,0,1),,,,所以,,,,,,设平面DBB1的法向量为,,,由即令y=1,则,x=0,于是,,,因为M为DC1中点,所以,,,所以,,,由,,,,,可得,所以AM与平面DBB1所成角为0,即AM∥平面DBB1.(Ⅲ)解:由(Ⅱ)可知平面BB1D的法向量为,,.设,λ∈[0,1],则,,,,,.若直线DP与平面DBB1成角为,则<,>,解得,,故不存在这样的点.18.(13分)已知函数f(x)=x2﹣2ax+4(a﹣1)ln(x+1),其中实数a<3.(Ⅰ)判断x=1是否为函数f(x)的极值点,并说明理由;(Ⅱ)若f(x)≤0在区间[0,1]上恒成立,求a的取值范围.【解答】解:(Ⅰ)由f(x)=x2﹣2ax+4(a﹣1)ln(x+1)可得函数f(x)定义域为(﹣1,+∞),=,令g(x)=x2+(1﹣a)x+(a﹣2),经验证g(1)=0,因为a<3,所以g(x)=0的判别式△=(1﹣a)2﹣4(a﹣2)=a2﹣6a+9=(a﹣3)2>0,由二次函数性质可得,1是函数g(x)的异号零点,所以1是f'(x)的异号零点,所以x=1是函数f(x)的极值点.(Ⅱ)已知f(0)=0,因为,又因为a<3,所以a﹣2<1,所以当a≤2时,在区间[0,1]上f'(x)<0,所以函数f(x)单调递减,所以有f(x)≤0恒成立;当2<a<3时,在区间[0,a﹣2]上f'(x)>0,所以函数f(x)单调递增,所以f(a﹣2)>f(0)=0,所以不等式不能恒成立;所以a≤2时,有f(x)≤0在区间[0,1]恒成立.19.(14分)已知椭圆G:+y2=1,与x轴不重合的直线l经过左焦点F1,且与椭圆G相交于A,B两点,弦AB的中点为M,直线OM与椭圆G相交于C,D两点.(1)若直线l的斜率为1,求直线OM的斜率;(2)是否存在直线l,使得|AM|2=|CM|•|DM|成立?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(1)由已知可知F1(﹣1,0),又直线l的斜率为1,所以直线l的方程为y=x+1,设A(x1,y1),B(x2,y2),由解得或,所以AB中点,,于是直线OM的斜率为.(2)假设存在直线l,使得|AM|2=|CM|•|DM|成立.当直线l的斜率不存在时,AB的中点M(﹣1,0),所以,,矛盾;故直线的斜率存在,可设直线l的方程为y=k(x+1)(k≠0),联立椭圆G的方程,得(2k2+1)x2+4k2x+2(k2﹣1)=0,设A(x1,y1),B(x2,y2),则,,于是,点M的坐标为,,.直线CD的方程为,联立椭圆G的方程,得,设C(x0,y0),则,由题知,|AB|2=4|CM|•|DM|=4(|CO|+|OM|)(|CO|﹣|OM|)=4(|CO|2﹣|OM|2),即,化简,得,故,所以直线l的方程为,.20.(14分)已知含有n个元素的正整数集A={a1,a2,…,a n}(a1<a2<…<a n,n≥3)具有性质P:对任意不大于S(A)(其中S(A)=a1+a2+…+a n)的正整数k,存在数集A的一个子集,使得该子集所有元素的和等于k.(Ⅰ)写出a1,a2的值;(Ⅱ)证明:“a1,a2,…,a n成等差数列”的充要条件是“S(A)=”;(Ⅲ)若S(A)=2017,求当n取最小值时a n的最大值.【解答】解:(Ⅰ)由集合A={a1,a2,…,a n},}(a1<a2<…<a n,n≥3),由a n为正整数,则a1=1,a2=2.(Ⅱ)先证必要性:因为a1=1,a2=2,又a1,a2,…,a n成等差数列,故a n=n,所以;再证充分性:因为a1<a2<…<a n,a1,a2,…,a n为正整数数列,故有a1=1,a2=2,a3≥3,a4≥4,…,a n≥n,所以,又,故a m=m(m=1,2,…,n),故a1,a2,…,a n为等差数列.(Ⅲ)先证明(m=1,2,…,n).假设存在>,且p为最小的正整数.依题意p≥3,则a1+a2+…+a p﹣1≤1+2+…+2p﹣2=2p﹣1﹣1,又因为a1<a2<…<a n,故当k∈(2p﹣1﹣1,a p)时,k不能等于集合A的任何一个子集所有元素的和.故假设不成立,即(m=1,2,…,n)成立.因此,即2n≥2018,所以n≥11.因为S=2017,则a1+a2+…+a n﹣1=2017﹣a n,若2017﹣a n<a n﹣1时,则当k∈(2017﹣a n,a n)时,集合A中不可能存在若干不同元素的和为k,故2017﹣a n≥a n﹣1,即a n≤1009.此时可构造集合A={1,2,4,8,16,32,64,128,256,497,1009}.因为当k∈{2,2+1}时,k可以等于集合{1,2}中若干个元素的和;故当k∈{22,22+1,22+2,22+3}时,k可以等于集合{1,2,22}中若干不同元素的和;…故当k∈{28,28+1,28+2,…,28+255}时,k可以等于集合{1,2,…,28}中若干不同元素的和;故当k∈{497+3,497+4,…,497+511}时,k可以等于集合{1,2,…,28,497}中若干不同元素的和;故当k∈{1009,1009+1,1009+2,…,1009+1008}时,k可以等于集合{1,2,…,28,497,1009}中若干不同元素的和,所以集合A={1,2,4,8,16,32,64,128,256,497,1009}满足题设,所以当n取最小值11时,a n的最大值为1009.。

2016-2017学年高中数学北师大版选修1-2学案:1.2.1 条件概率与独立事件 Word版含解析

2016-2017学年高中数学北师大版选修1-2学案:1.2.1 条件概率与独立事件 Word版含解析

§2 独立性检验2.1 条件概率与独立事件1.了解条件概率的概念及计算.(重点)2.理解相互独立事件的意义及相互独立事件同时发生的概率乘法公式.(重点)3.掌握利用概率的知识分析解决实际问题的方法.(难点)[基础·初探]教材整理1 条件概率阅读教材P 17~P 18部分,完成下列问题.1.概念已知事件B 发生的条件下,A 发生的概率,称为B 发生时A 发生的条件概率,记为P (A |B ).2.公式当P (B )>0时,P (A |B )=.P (AB )P (B)从1,2,3,4,5中任取两个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A . B . 1814C . D .2512【解析】 从1,2,3,4,5中任取两个数共有10种取法,事件A 包含(1,3),(1,5),(3,5),(2,4)共4个基本事件,事件B 包含(2,4)一个基本事件,故P (A )=,P (AB )=.所以P (B |A )==.410110P (AB )P (A )14【答案】 B教材整理2 相互独立事件阅读教材P 19“练习”以上部分,完成下列问题.1.定义对两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A ,B 相互独立.2.性质如果A ,B 相互独立,则A 与,与B ,与也相互独立.B A A B 3.如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为( )A .B .1625C .D .21556【解析】 记“从甲袋中任取一球为白球”为事件A ,“从乙袋中任取一球为白球”为事件B ,则事件A ,B 是相互独立事件,故P (AB )=P (A )P (B )=×=.242616【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_________________________________________解惑:___________________________________________________疑问2:___________________________________________________解惑:___________________________________________________疑问3:___________________________________________________解惑:___________________________________________________[小组合作型],条件概率 一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球”为A ,事件“第二次抽到黑球”为B .(1)分别求事件A ,B ,AB 发生的概率;(2)求P (B |A ).【精彩点拨】 解答本题可先求P (A ),P (B ),P (AB ),再用公式P (B |A )=求概率.P (AB )P (A )【自主解答】 由古典概型的概率公式可知:(1)P (A )=,25P (B )===,2×1+3×25×482025P (AB )==.2×15×4110(2)P (B |A )===.P (AB )P (A )1102514用定义法求条件概率P (B |A )的步骤是:(1)分析题意,弄清概率模型;(2)计算P (A ),P (AB );(3)代入公式求P (B |A )=.P (AB )P (A)[再练一题]1.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是( )A . B .1423C .D .1213【解析】 一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).记事件A 为“其中一个是女孩”,事件B 为“另一个是女孩”,则A ={(男,女),(女,男),(女,女)},B ={(男,女),(女,男),(女,女)},AB ={(女,女)}.于是可知P (A )=,P (AB )=.问题是求在事件A 发生的情况下,事件B 发3414生的概率,即求P (B |A ),由条件概率公式,得P (B |A )==.143413【答案】 D,事件独立性的判断 判断下列各对事件是否是相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.【精彩点拨】 利用相互独立事件的定义判断.【自主解答】 (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为,若这一事件58发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为;47若前一事件没有发生,则后一事件发生的概率为,可见,前一事件是否发生,57对后一事件发生的概率有影响,所以二者不是相互独立事件.判断两事件是否具有独立性的三种方法:(1)定义法:直接判定两个事件发生是否相互影响.(2)公式法:检验P (AB )=P (A )P (B )是否成立.(3)条件概率法:当P (A )>0时,可用P (B |A )=P (B )判断.[再练一题]2.(1)甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ( )A .相互独立但不互斥B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥(2)掷一枚正方体骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是( )A .互斥但不相互独立B .相互独立但不互斥C .互斥且相互独立D .既不相互独立也不互斥【解析】 (1)对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A 与B 相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A 与B 可能同时发生,所以事件A 与B 不是互斥事件.(2)事件A ={2,4,6},事件B ={3,6},事件AB ={6},基本事件空间Ω={1,2,3,4,5,6}.所以P (A )==,P (B )==,P (AB )==×,即P (AB )=P (A )P (B ),因36122613161213此,事件A 与B 相互独立.当“出现6点”时,事件A ,B 同时发生,所以A ,B 不是互斥事件.【答案】 (1)A (2)B[探究共研型],相互独立事件同时发生的概率探究1 甲、乙同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5,求:甲、乙都未击中的概率.【提示】 记A =“甲击中”,B =“乙击中”,C =“甲、乙都没有击中”.由题意,甲击中与否并不影响乙,由此可认为A 与B 是相互独立的,则,A 也是相互独立的,则B P (C )=P ( )=P ()·P ()=(1-0.6)×(1-0.5)=0.2.A B A B 探究2 上述问题中如何求敌机被击中的概率?【提示】 记D =“敌机被击中”,则P(D)=1-P()=1-0.2=0.8.A B 某商场推出两次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率:【导学号:67720003】(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.明确已知事件的概率及其关系【精彩点拨】 →把待求事件的概率表示成已知事件的概率选择公式计算求值→【自主解答】 设“第一次抽奖抽到某一指定号码”为事件A,“第二次抽奖抽到某一指定号码”为事件B,则“两次抽奖都抽到某一指定号码”就是事件AB.(1)由于两次抽奖结果互不影响,因此事件A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率为P(AB)=P(A)P(B)=0.05×0.05=0.002 5.B A(2)“两次抽奖恰有一次抽到某一指定号码”可以用(A)+(B)表示.由于事件A与B互斥,根据概率的加法公式和相互独立事件的定义可得,所求事B A件的概率为B A B AP(A)+P(B)=P(A)P()+P()P(B)=0.05×(1-0.05)+(1-0.05)×0.05=0.095.即恰有一次抽到某一指定号码的概率为0.095.B(3)法一 “两次抽奖至少有一次抽到某一指定号码”可以用(AB)+(A)+(A B AB)表示.由于事件AB,A和B两两互斥,根据概率的加法公式和相互独立事件的定义可得,所求事件的概率为P (AB )+P (A )+P (B )=0.002 5+0.095=0.097 5.B A 法二 1-P ( )=1-(1-0.05)2=0.097 5.A B 即至少有一次抽到某一指定号码的概率为0.097 5.求P (AB )时注意事件A ,B 是否相互独立,求P (A +B )时同样应注意事件A ,B 是否互斥,对于“至多”、“至少”型问题的解法有两种思路:(1)分类讨论;(2)求对立事件,利用P ()=1-P (A )来运算.A [再练一题]3.甲、乙两人独立地破译密码的概率分别为、.求:1314(1)两个人都破译出密码的概率;(2)两个人都破译不出密码的概率;(3)恰有一人破译出密码的概率;(4)至多一人破译出密码的概率;(5)至少一人破译出密码的概率.【解】 记事件A 为“甲独立地破译出密码”,事件B 为“乙独立地破译出密码”.(1)两个人都破译出密码的概率为P (AB )=P (A )P (B )=×=.1314112(2)两个人都破译不出密码的概率为P ( )=P ()P ()A B A B =[1-P (A )][1-P (B )]==.(1-13)(1-14)12(3)恰有一人破译出密码分为两类:甲破译出乙破译不出;乙破译出甲破译不出,即A +B ,B A ∴P (A +B )=P (A )+P (B )B A B A =P (A )P ()+P ()P (B )B A =×+×=.13(1-14)(1-13)14512(4)至多一人破译出密码的对立事件是两人都破译出密码,∴1-P (AB )=1-=.1121112(5)至少一人破译出密码的对立事件为两人都没有破译出密码,∴1-P ( )AB=1-=.1212[构建·体系]1.已知P (B |A )=,P (A )=,则P (AB )等于( )1325A . B . 56910C . D .215115【解析】 由P (B |A )=,得P (AB )P (AB )P (A )=P (B |A )·P (A )=×=.1325215【答案】 C2.一件产品要经过两道独立的加工程序,第一道工序的次品率为a ,第二道工序的次品率为b ,则产品的正品率为( )A .1-a -bB .1-abC .(1-a )(1-b )D .1-(1-a )(1-b )【解析】 ∵2道工序相互独立,∴产品的正品率为(1-a )(1-b ).【答案】 C3.把一枚硬币投掷两次,事件A ={第一次出现正面},B ={第二次出现正面},则P (B |A )等于________.【解析】 P (AB )=,P (A )=,∴P (B |A )==.1412141212【答案】 124.在同一时间内,两个气象台预报天气准确的概率分别为,,两个气象91045台预报准确的概率互不影响,则在同一时间内,至少有一个气象台预报准确的概率为________.【解析】 P =1-=.(1-910)(1-45)4950【答案】 49505.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别是为,,,求汽车在这三处因遇红灯而停车一次的概率.131223【解】 设汽车分别在甲、乙、丙三处通行为事件A ,B ,C ,则P (A )=,P (B )=,P (C )=.131223停车一次即为事件BC +A C +AB ,A B C 故概率为P =××+××+××=.(1-13)122313(1-12)231312(1-23)718我还有这些不足:(1) ___________________________________(2)___________________________________我的课下提升方案:(1) ___________________________________(2) ___________________________________学业分层测评(二) (建议用时:45分钟)[学业达标]一、选择题1.两人打靶,甲击中的概率为0.8,乙击中的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是( )A .0.56B .0.48C .0.75D .0.6【解析】 设甲击中为事件A ,乙击中为事件B .∵A ,B 相互独立,则P (AB )=P (A )·P (B )=0.8×0.7=0.56.【答案】 A2.下列说法正确的是( )A .P (B |A )<P (AB )B .P (B |A )=是可能的P (B )P (A )C .0<P (B |A )<1D .P (A |A )=0【解析】 由条件概率公式P (B |A )=及0<P (A )≤1知P (B |A )≥P (AB ),P (AB )P (A )故A 选项错误;当事件A 包含事件B 时,有P (AB )=P (B ),此时P (B |A )=,故B 选项正确,由于0≤P (B |A )≤1,P (A |A )=1,故C ,D 选项错P (B )P (A )误.故选B .【答案】 B3.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是( )A .B .110210C .D .810910【解析】 某人第一次失败,第二次成功的概率为P ==,所以9×110×9110选A .【答案】 A4.一袋中装有5只白球和3只黄球,在有放回地摸球中,用A 1表示第一次摸得白球,A 2表示第二次摸得白球,则事件A 1与是( )A 2A .相互独立事件B .不相互独立事件C .互斥事件D .对立事件【解析】 由题意可得表示“第二次摸到的不是白球”,即表示“第A 2A 2二次摸到的是黄球”,由于采用有放回地摸球,故每次是否摸到黄球或白球互不影响,故事件A 1与是相互独立事件.A 2【答案】 A2.如图1­2­1,A ,B ,C 表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么系统的可靠性是( )图1­2­1A .0.504B .0.994C .0.496D .0.06【解析】 系统可靠即A ,B ,C 3种开关至少有一个能正常工作,则P =1-[1-P (A )][1-P (B )][1-P (C )]=1-(1-0.9)(1-0.8)(1-0.7)=1-0.1×0.2×0.3=0.994.【答案】 B 二、填空题6.将两枚均匀的骰子各掷一次,已知点数不同,则有一个是6点的概率为________.【解析】 设掷两枚骰子点数不同记为事件A ,有一个是6点记为事件B .则P (B |A )==.2×53013【答案】 137.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________.【解析】 设A =“两个闹钟至少有一个准时响”,∴P (A )=1-P ()=1-(1-0.80)×(1-0.90)A=1-0.2×0.1=0.98.【答案】 0.988.如图1­2­2,四边形EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”.则: 【导学号:67720004】图1­2­2(1)P (A )=________;(2)P (B |A )=________.【解析】 正方形的面积为2,圆的面积为π.(1)∵A 表示事件“豆子落在正方形EFGH 内”,∴P (A )=.2π(2)∵B 表示事件“豆子落在扇形OHE (阴影部分)内”,∴P (AB )=,12π∴P (B |A )==.P (AB )P (A )14【答案】 (1) (2)2π14三、解答题9.有红色、蓝色两颗骰子,设事件A 为“抛红骰子所得点数为偶数”,设事件B 为“抛蓝骰子所得点数大于4”,求在事件A 发生的条件下,事件B 发生的概率.【解】 画示意图如图所示,横轴表示抛红骰子所得点数,纵轴表示抛蓝骰子所得点数.∴P (A )==,183612P (A ∩B )==,63616∴P (B |A )===.P (A ∩B )P (A )161213则在事件A 发生的条件下,事件B 发生的概率为.1310.集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取,乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.【解】 将甲抽到数字a ,乙抽到数字b ,记作(a ,b ),则所有可能的抽取结果为:(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),共30个.其中甲抽到奇数的情形有15个,在这15个数中,乙抽到的数比甲抽到的数大的有9个,所以所求概率P ==.91535[能力提升]1.从甲口袋内摸出1个白球的概率是,从乙口袋内摸出1个白球的概率13是,从两个口袋内各摸出1个球,那么等于( )1256A .2个球都是白球的概率B .2个球都不是白球的概率C .2个球不都是白球的概率D .2个球中恰有1个是白球的概率【解析】 记从甲口袋内摸出1个白球为事件A ,从乙口袋内摸出1个白球为事件B ,则A ,B 是独立事件,于是P (AB )=P (A )P (B )=×=,它表示从131216甲、乙口袋中摸出来的都是白球,故为2个球不都是白球的概率.56【答案】 C2.如图1­2­3,已知电路中4个开关闭合的概率都是且互相独立,灯亮的12概率为( )图1­2­3A . B .31634C .D .131614【解析】 因为灯不亮的概率为××1212(1-12×12)=,所以灯亮的概率为1-=.3163161316【答案】 C3.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽1张,已知第1次抽到A ,则第2次也抽到A 的概率为________.【解析】 设第1次抽到A 为事件M ,第2次也抽到A 为事件N ,则MN 表示两次都抽到A ,P (M )==,452113P (MN )==,4×352×51113×17P (N |M )==.P (MN )P (M )117【答案】 1174.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为,,,且455623三个项目是否成功互相独立.(1)求恰有两个项目成功的概率;(2)求至少有一个项目成功的概率.【解】 (1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为××=,4556(1-23)29只有农产品加工和水果种植两个项目成功的概率为××=,45(1-56)23445只有绿色蔬菜种植和水果种植两个项目成功的概率为××=,(1-45)562319∴恰有两个项目成功的概率为++=.29445191945(2)三个项目全部失败的概率为××=,(1-45)(1-56)(1-23)190∴至少有一个项目成功的概率为1-=.1908990。

(新课标)2017届高考数学总复习 课后作业(四十四)文 新人教A版

(新课标)2017届高考数学总复习 课后作业(四十四)文 新人教A版

【创新方案】(新课标)2017届高考数学总复习 课后作业(四十四)文 新人教A 版[全盘巩固]一、选择题1.若方程(2m 2+m -3)x + (m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32 B .m ≠0C .m ≠0且m ≠1D .m ≠12.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33 B. 3 C .- 3 D .-333.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1 D .-2或14.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0 D .ab <0,bc <05.两直线x m -yn =a 与x n -y m=a (其中a 为不为零的常数)的图象可能是( )A B C D二、填空题6.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为________.7.过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________________. 8.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 三、解答题9.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.10.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.[冲击名校]1.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)2.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .83.若ab >0,且A (a,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 4.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为________.5.已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________. 6.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.答 案 [全盘巩固]一、选择题1.解析:选D 由⎩⎪⎨⎪⎧2m 2+m -3=0,m 2-m =0,解得m =1,故m ≠1时方程表示一条直线.2.解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.3.解析:选D 由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a .∴a +2a=a +2,解得a =-2或a =1. 4.解析:选A 由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-a b x -c b .易知-a b <0且-c b>0,故ab >0,bc <0.5.解析:选B 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =m nx -ma ,由此可知两条直线的斜率同号.二、填空题6.解析:设P (x P,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P (-5,1),所以k =-13.答案:-137.解析:(1)当直线过原点时,直线方程为y =-53x ;(2)当直线不过原点时,设直线方程为x a +y-a =1,即x -y =a .代入点(-3,5),得a =-8. 即直线方程为x -y +8=0. 答案:y =-53x 或x -y +8=08.解析:当a =-1时,直线l 的倾斜角为90°,符合要求;当a ≠-1时,直线l 的斜率为-aa +1,只要-a a +1>1或-a a +1<0即可,解得-1<a <-12或a <-1或a >0. 综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞).答案:⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞)三、解答题9.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k-3,3k+4,由已知,得(3k +4)⎝ ⎛⎭⎪⎫4k+3=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0. 10.解:由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.[冲击名校]1.解析:选D 因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).2.解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b=1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.3.解析:根据A (a,0),B (0,b )确定直线的方程为x a +y b=1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本(均值)不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16.答案:164.解析:直线PQ 的斜率为-3,则直线PQ 的倾斜角为120°,所求直线的倾斜角为60°,tan 60°= 3.答案: 35.解析:直线AB 的方程为x 3+y4=1,设P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3. 即当P 点坐标为⎝ ⎛⎭⎪⎫32,2时,xy 取最大值3. 答案:36.解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值. ∴b 的取值范围是[-2,2]. 答案:[-2,2]。

2017年高考文科数学试题及答案-全国卷1(word版.)

2017年高考文科数学试题及答案-全国卷1(word版.)

2017年高考文科数学试题及答案-全国卷1(word版.)D(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,90∠=,且四棱锥P-ABCD的体积为APD8,求该四棱锥的侧面积.319.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78ii x x i =--=-∑,其中ix 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)ix i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小). (2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)iix y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.20.(12分)设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.21.(12分)已知函数()f x =e x (e x ﹣a )﹣a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.(二)选考题:共10分。

高三数学(文)一轮复习课时跟踪训练:第二章函数的概念与基本初等函数课时跟踪训练7含解析

高三数学(文)一轮复习课时跟踪训练:第二章函数的概念与基本初等函数课时跟踪训练7含解析

课时跟踪训练(七)[基础巩固]一、选择题1.(2017·石家庄质检)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )A .y =1xB .y =|x |-1C .y =lg xD .y =⎝ ⎛⎭⎪⎫12|x |[答案] B2.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎪⎫-52等于( )A .-12B .-14 C.14D.12[解析] ∵f (x )是周期为2的奇函数,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2 =f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12 =-2×12×⎝ ⎛⎭⎪⎫1-12=-12. [答案] A3.已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3[解析] 解法一:根据题意作出y =f (x )的简图,由图知,选B.解法二:当x ∈[-b ,-a ]时,-x ∈[a ,b ], 由题意得f (b )≤f (-x )≤f (a ),即-3≤-f (x )≤4,∴-4≤f (x )≤3,即在区间[-b ,-a ]上f (x )min =-4,f (x )max =3,故选B.[答案] B4.(2017·绵阳诊断)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 [解析] ∵f (x )是偶函数,∴f (x )=f (|x |),∴f (|2x -1|)<f ⎝ ⎛⎭⎪⎫13,再根据f (x )的单调性,得|2x -1|<13,解得13<x <23,故选A.[答案] A5.(2017·陕西省高三一检)奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (8)=( )A .-1B .0C .1D .-2[解析] 由奇函数f (x )的定义域为R ,可得f (0)=0,由f (x +2)为偶函数,可得f (-x +2)=f (x +2),故f (x +4)=f [(x +2)+2]=f [-(x +2)+2]=f (-x )=-f (x ),则f (x +8)=f [(x +4)+4]=-f (x +4)=-f [-f (x )]=f (x ),即函数f (x )的周期为8,所以f (8)=f (0)=0,选B.[答案] B6.(2016·山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎪⎫x +12=f ⎝⎛⎭⎪⎫x -12,则f (6)=( )A .-2B .-1C .0D .2[解析] 由题意得,当x >12时,f (x +1)=f ⎝ ⎛⎭⎪⎫x +12+12=f ⎝ ⎛⎭⎪⎫x +12-12=f (x ),所以当x >12时,f (x )的周期为1,所以f (6)=f (1).又f (1)=-f (-1)=-[(-1)3-1]=2,所以f (6)=2,故选D. [答案] D 二、填空题7.(2017·全国卷Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.[解析] 依题意得,f (-2)=2×(-2)3+(-2)2=-12,由函数f (x )是奇函数,得f (2)=-f (-2)=12.[答案] 128.(2018·唐山一中测试)已知函数f (x )=ax 5-bx +|x |-1,若f (-2)=2,则f (2)=________.[解析] 因为f (-2)=2,所以-32a +2b +2-1=2,则32a -2b =-1,即f (2)=32a -2b +2-1=0.[答案] 09.(2017·甘肃省张掖市高三一诊)已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2017)的值为________.[解析] ∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2,∴f (x +1)+2≤f (x +3)≤f (x )+3,∴f (x +1)≤f (x )+1.又f (x +1)+1≥f (x +2)≥f (x )+2,∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,利用迭加法,得f (2017)=2018.[答案] 2018 三、解答题10.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0, x =0,x 2+mx , x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.[解] (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].[能力提升]11.(2017·广东省惠州市高三三调)已知定义在R 上的函数y =f (x )满足条件f ⎝ ⎛⎭⎪⎫x +32=-f (x ),且函数y =f ⎝ ⎛⎭⎪⎫x -34为奇函数,给出以下四个命题:①函数f (x )是周期函数;②函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中真命题的序号为( ) A .①③④ B .①②③ C .①②④D .②③④[解析] f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32=-f ⎝ ⎛⎭⎪⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数f ⎝⎛⎭⎪⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝⎛⎭⎪⎫-34,0对称,②正确;因为f (x )的图象关于点⎝⎛⎭⎪⎫-34,0对称,-34=-x +⎝ ⎛⎭⎪⎫-32+x 2,所以f (-x )=-f ⎝⎛⎭⎪⎫-32+x ,又f ⎝⎛⎭⎪⎫-32+x =-f ⎝⎛⎭⎪⎫-32+x +32=-f (x ),所以f (-x )=f (x ),③正确;f (x )是周期函数,在R 上不可能是单调函数,④错误.故真命题的序号为①②③.选B.[答案] B12.(2017·湖北省七市(州)高三联考)函数y =f (x )为R 上的偶函数,函数y =g (x )为R 上的奇函数,f (x )=g (x +2),f (0)=-4,则g (x )可以是( )A .4tan πx8 B .-4sin πx2 C .4sin πx4D .-4sin πx4[解析] ∵f (x )=g (x +2),f (0)=-4,∴g (2)=-4.而4tan 2π8=4tan π4=4,-4sin 2π2=-4sin π=0,4sin 2π4=4sin π2=4,-4sin 2π4=-4,∴y =g (x )可以是g (x )=-4sin πx4,经检验,选项D 符合题干条件.故选D.[答案] D13.(2017·江西调研)已知函数f (x )是偶函数,且当x >0时,f (x )=x 3+x +1,则当x <0时,f (x )的解析式为________.[解析] 设x <0,则-x >0,因为当x >0时,f (x )=x 3+x +1,所以f (-x )=-x 3-x +1.又函数f (x )是偶函数,所以f (x )=-x 3-x +1.[答案] f (x )=-x 3-x +114.(2017·云南省高三统一检测)已知函数f (x )=⎩⎪⎨⎪⎧3x 2+ln (1+x 2+x ),x ≥0,3x 2+ln (1+x 2-x ),x <0,若f (x -1)<f (2x +1),则x 的取值范围为________.[解析] 若x >0,则-x <0,f (-x )=3(-x )2+ln(1+(-x )2+x )=3x 2+ln(1+x 2+x )=f (x ),同理可得,x <0时,f (-x )=f (x ),且x =0时,f (0)=f (0),所以f (x )是偶函数.因为当x >0时,函数f (x )单调递增,所以不等式f (x -1)<f (2x +1)等价于|x -1|<|2x +1|,整理得x (x +2)>0,解得x >0或x <-2.[答案] (-∞,-2)∪(0,+∞)15.(2018·日照检测)设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ).当-1≤x ≤0时,f (x )=-x .(1)判定f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式. [解] (1)∵f (1+x )=f (1-x ),∴f (-x )=f (2+x ). 又f (x +2)=f (x ),∴f (-x )=f (x ),∴f (x )是偶函数. (2)当x ∈[0,1]时,-x ∈[-1,0],则f (x )=f (-x )=x ; 进而当x ∈[1,2]时,x -2∈[-1,0], f (x )=f (x -2)=-(x -2)=-x +2. 故所求为f (x )=⎩⎪⎨⎪⎧-x ,x ∈[-1,0),x ,x ∈[0,1),-x +2,x ∈[1,2].16.函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)用定义证明f (x )在(-1,1)上是增函数; (3)解不等式f (t -1)+f (t )<0.[解](1)依题意得⎩⎨⎧f (0)=0,f ⎝ ⎛⎭⎪⎫12=25,即⎩⎪⎨⎪⎧b1+02=0,a 2+b1+14=25⇒⎩⎪⎨⎪⎧a =1,b =0.∴f (x )=x 1+x 2. (2)证明:任取-1<x 1<x 2<1, f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵-1<x 1<x 2<1,∴x 1-x 2<0,1+x 21>0,1+x 22>0.又-1<x 1x 2<1,∴1-x 1x 2>0, ∴f (x 1)-f (x 2)<0,∴f (x )在(-1,1)上是增函数. (3)f (t -1)<-f (t )=f (-t ). ∵f (x )在(-1,1)上是增函数, ∴-1<t -1<-t <1,解得0<t <12.[延伸拓展](2017·昆明市高三质检)定义“函数y =f (x )是D 上的a 级类周期函数”如下:函数y =f (x ),x ∈D ,对于给定的非零常数a ,总存在非零常数T ,使得定义域D 内的任意实数x 都有af (x )=f (x +T )恒成立,此时T 为f (x )的周期.若y =f (x )是[1,+∞)上的a 级类周期函数,且T =1,当x ∈[1,2)时,f (x )=2x +1,且y =f (x )是[1,+∞)上的单调递增函数,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫56,+∞ B .[2,+∞) C.⎣⎢⎡⎭⎪⎫53,+∞ D .[10,+∞)[解析] 因为x ∈[1,2)时,f (x )=2x +1,所以当x ∈[2,3)时,f (x )=af (x -1)=a (2x -1),当x ∈[n ,n +1)时,f (x )=af (x -1)=a 2f (x -2)=…=a n -1f (x -n +1)=a n -1·(2x -2n +3),即x ∈[n ,n +1)时,f (x )=a n -1·(2x -2n +3),n ∈N *,同理可得,x ∈[n -1,n )时,f (x )=a n -2(2x -2n +5),n ∈N *.因为f (x )在[1,+∞)上单调递增,所以a >0且a n -1·(2n-2n +3)≥an -2(2n -2n +5),解得a ≥53,故选C.[答案] C合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。

北京市海淀区2015届高三上学期期末练习数学(文)试题 Word版含答案

北京市海淀区2015届高三上学期期末练习数学(文)试题 Word版含答案

海淀区高三年级第一学期期末练习数 学(文科) 2015.1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知全集{|0}U x x =∈>R ,集合{|2}A x x =∈≥R ,则U C A =( ) (A ){|2}x x ∈<R (B ){|02}x x ∈<<R (C ){|2}x x ∈≤R(D ){|02}x x ∈<≤R(2)如图所示,在复平面内,点A 对应的复数为z ,则z =( )A1-2Oy x(A )12i -(B )12i +(C )2i --(D )2i -+(3)已知直线1:(2)10l ax a y +++=,2:20l ax y -+=. 若1l ∥2l ,则实数a 的值是( ) (A )0或3-(B )2或1-(C )0(D )3-(4)当向量(1,1)==-a c ,(1,0)=b 时,执行如图所示的程序框图,输出的i 值为( )(A )5(B )4(C )3(D )2(5)为了解某年级女生五十米短跑情况,从该年级中随机抽取8名女生进行五十跑测试,她们的测试成绩(单位:秒)的茎叶图(以整数部分为茎,7 8 8 6 1 8 9 1 5 7 8小数部分为叶)如图所示.由此可估计该年级女生五十米跑成绩及格(及格成绩为9.4秒)的概率为( ) (A )0.375(B )0.625(C )0.5(D )0.125(6)已知函数22()log ()log ()()f x x a x a a =++-∈R . 命题:p a ∃∈R ,函数()f x 是偶函数;命题:q a ∀∈R ,函数()f x 在定义域内是增函数. 那么下列命题为真命题的是( )(A )q ⌝(B )p q ∧(C )()p q ⌝∧(D )()p q ∧⌝(7)某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:31()(10)10V t H t =-(H 为常数),其图象如图所示. 记此堆雪从融化开始到结束的平均融化速度为3(m /h)v . 那么瞬时融化速度等于3(m /h)v 的时刻是图中的( )t 4t 3t 2100t 1tOV(A )1t(B )2t(C )3t(D )4t(8)在正方体1111ABCD A B C D -中,点E 为底面ABCD 上的动点. 若三棱锥1B D EC -的表面积最大,则E 点位于( )(A )点A 处(B )线段AD 的中点处 (C )线段AB 的中点处 (D )点D 处二、填空题共6小题,每小题5分,共30分。

高三数学问题:1.3-含参数的常用逻辑用语问题(含答案)

高三数学问题:1.3-含参数的常用逻辑用语问题(含答案)

2017届高三数学跨越一本线问题三 含参数的常用逻辑用语问题通过多年的高考试卷看,求参数的取值范围问题一直是高考考查的重点和热点,同时也是一个难点.考生有时会感到难度较大,与简易逻辑问题有关的参数问题,需要正确理解充分条件和必要条件的定义,弄懂逻辑联接词的含义以及全称量词、特称量词包含的数学理论,本文从各方面多角度地阐述与简易逻辑有关的问题,以飨读者.一、与充分条件、必要条件有关的参数问题充分条件和必要条件的理解,可以翻译成“若p 则”命题的真假,或者集合与集合之间的包含关系,尤其转化为集合间的关系后,利用集合知识处理.【例1】【2017湖南省郴州市上学期第一次质量监测】设集合2{|21,03}A y y x x x ==-+≤≤,集合2{|(21)(1)0}B x x m x m m =--+-≤.已知命题:p x A ∈,命题:q x B ∈,且命题p 是命题的必要不充分条件,求实数m 的取值范围.【分析】先化简给定集合,再利用p 是的必要不充分条件⇔⊂B A ≠解题 【解析】由已知得{|04}A y y =≤≤,{|1}B x m x m =-≤≤. ∵p 是的必要不充分条件,∴A B ⊂≠.则有104m m -≥⎧⎨≤⎩.∴14m -≤≤,故m 的取值范围为[1,4].【点评】充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.【小试牛刀】设p :114≤-x ;:2(21)(1)0x a x a a -+++≤.若p ⌝是q ⌝的必要而不充分条件,求实数的取值范围. 【答案】⎥⎦⎤⎢⎣⎡-0,21. 【解析】由114≤-x 得,1141≤-≤-x , 故210≤≤x 由2(21)(1)0x a x a a -+++≤()()10x a x a ⇔--+≤⎡⎤⎣⎦1a x a ⇔≤≤+若p ⌝是q ⌝的必要而不充分条件,∴p 是q 的必要而不充分条件,即[]1,21,0+⊂⎥⎦⎤⎢⎣⎡a a ⎪⎩⎪⎨⎧≥+≤⇒2110a a 021≤≤-⇒a ,故所求的取值范围是⎥⎦⎤⎢⎣⎡-0,21. 二、与逻辑联接词有关的参数问题逻辑联接词“或”“且”“非”与集合运算的并集、交集、补集有关,由逻辑联接词组成的复合命题的真假与组成它的简单命题真假有关,其中往往会涉及参数的取值范围问题.根据命题真假求参数的方法步骤(1)先根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)然后再求出每个命题是真命题时参数的取值范围;(3)最后根据每个命题的真假情况,求出参数的取值范围.【例2】【2017宁夏育才中学月考】已知命题函数321()3f x mx x x =++在区间(1,2)上单调递增;命题:q 函数C 的图象上任意一点处的切线斜率恒大于1,若“()p q ∨⌝”为真命题,“()p q ⌝∨”也为真命题,求实数m 的取值范围.【分析】先确定p 真值相同.再根据p ,同真时或同假确定实数m 的取值范围.【点评】含逻辑联结词的命题的真假要转化为简单命题的真假,解题时要首先考虑简单命题为真时参数的范围.然后再根据复合命题的真假列不等式(组)求参数范围【小试牛刀】已知命题:p 方程2222220x y mx m m +-+-=表示圆;命题q :双曲线2215y x m-=的离心率(1,2)e ∈,若命题“p q ∧”为假命题,“p q ∨”为真命题,求实数m 的取值范围.【答案】215m ≤<【解析】若命题p 为真命题 ,则2240D E F +->,即22(2)4(22)0m m m --->整理得220m m -<,解得02m <<.若命题为真命题,则25(1,4)5me +=∈,解得015m << 因为命题p q ∧为假命题,p q ∨为真命题,所以p q 、中一真一假,若p 真假,则m ∈∅ ; 若p 假真,则215m ≤<,所以实数m 的取值范围为215m ≤<.三、与全称命题、特称命题真假有关的参数问题全称命题和特称命题从逻辑结构而言,是含义相反的两种命题,利用正难则反的思想互相转化,达到解题的目的.【例3】若命题“0,R ∃∈x 使得2002+50++<x mx m ”为假命题,则实数m 的取值范围是( )(A )[10,6]- (B )(6,2]- (C )[2,10]- (D )(2,10)-【分析】命题“0,R ∃∈x 使得2002+50++<x mx m ”的否定是真命题,故将本题转化为恒成立问题求解.【解析】由命题“0,R ∃∈x 使得2002+50++<x mx m ”为假命题,则命题“x R ∀∈使得22+50x mx m ++≥”为真命题.所以24(25)0,210m m m =-+≤∴-≤≤ .故选(C ). 【点评】已知命题为假命题,则其否定是真命题,故将该题转化为恒成立问题处理.【小试牛刀】【2017山东潍坊2017届高三上学期期中联考】已知m R ∈,设[]: 1 1p x ∀∈-,,2224820x x m m --+-≥成立;[]: 1 2q x ∃∈,,()212log 11x mx -+<-成立,如果“p q ∨”为真,“p q ∧”为假,求m 的取值范围. 【答案】12m <或32m =. 【解析】若p 为真:对[]1 1x ∀∈-,,224822m m x x -≤--恒成立,设()222f x x x =--,配方得()()213f x x =--,∴()f x 在[]1 1-,上的最小值为3-,∴2483m m -≤-,解得1322m ≤≤,∴p 为真时:1322m ≤≤;若为真:[]1 2x ∃≤,,212x mx -+>成立,∴21x m x -<成立.设()211x g x x x x-==-,易知()g x 在[]1 2,上是增函数,∴()g x 的最大值为()322g =,∴32m <,∴为真时,32m <, ∵p q ∨”为真,“p q ∧”为假,∴p 与一真一假,当p 真假时132232m m ⎧≤≤⎪⎪⎨⎪≥⎪⎩,∴32m =,当p 假真时132232m m m ⎧<>⎪⎪⎨⎪<⎪⎩或,∴12m <,综上所述,m 的取值范围是12m <或32m =.四、与全称量词、特称量词有关的参数问题全称量词“∀”表示对于任意一个,指的是在指定范围内的恒成立问题,而特称量词“”表示存在一个,指的是在指定范围内的有解问题,上述两个问题都利用参变分离法求参数取值范围.【例3】已知命题p :“0],2,1[2≥-∈∀a x x ”,命题:“022,2=-++∈∃a ax x R x ”. 若命题“p 且”是真命题,则实数的取值范围为( ) A .2-≤a 或1=a B .2-≤a 或21≤≤a C .1≥a D .12≤≤-a【分析】若命题“p 且”是真命题,则命题,p q 都是真命题,首先将命题,p q 对应的参数范围求出来,求交集即可.【点评】命题p 是恒成立问题,命题是有解问题.【小试牛刀】已知2:(0,),1p x x mx ∀∈+∞+≥-恒成立,:q 方程222128x y m m +=+表示焦点在轴上的椭圆,若命题“p 且”为假,求实数m 的取值范围. 【答案】(,4]-∞.【解析】由题意:若p 为真,则有1()m x x ≥-+对(0,)x ∈+∞恒成立.12(1x x x+≥= 取“=”)2m ∴≥-若为真,则有2280m m >+>,即42m -<<-或4m >,由p 且为假,则p 、中至少一个为假.若p 、均为真,则4m >,∴p 且为假,实数m 的取值范围是(,4]-∞【迁移运用】1.【2017四川双流中学高三模拟】已知命题p ⌝:存在()2,1∈x 使得0>-a e x,若p 是真命题,则实数a 的取值范围为( )A .()e ,∞-B .(]e ,∞-C .()+∞,2e D .[)+∞,2e 【答案】D【解析】若存在)2,1(∈x ,使得0>-a e x ,则2max ()x a e e <=,若p 为真命题,则p ⌝为假命题,实数a 的取值范围为),[2+∞e .故本题正确答案为D . 2.【2017河南南阳一中高三上学期月考】已知“x k >”是“,则的取值范围是( )A .[2,)+∞B .[1,)+∞C .(2,)+∞D .(,1]-∞- 【答案】A 可得1x <-或2x >,因为“x k >”是“条件,所以“x k >”是“1x <-或2x >”的真子集,所以2k ≥,故选A.3.【2017使得0122<+-x x λ成立”是假命题,则实数λ的取值范围为( )A .3=λ【答案】A4.函数12)(2+-=ax x x f 在(]2,∞-上是单调递减函数的必要不充分条件是( )A .2≥aB .6=aC .3≥aD .0≥a 【答案】D .【解析】函数12)(2+-=ax x x f 在(]2,∞-上是单调递减函数则2≥a ;选项A 是充要条件;选项B 、C 是充分不必要条件;故选D .5.命题“对任意实数x [1,2]∈,关于的不等式20x a -≤恒成立”为真命题的一个必要不充分条件是( )A .4a ≥B .4a ≤C .3a ≥D .3a ≤ 【答案】C【解析】即由“对任意实数x [1,2]∈,关于的不等式20x a -≤恒成立”可推出选项,但由选项推不出“对任意实数x [1,2]∈,关于的不等式20x a -≤恒成立”.因为x [1,2]∈,所以2[1,4]x ∈,20x a -≤恒成立,即2x a ≤, 因此4a ≥;反之亦然.故选C .6.已知2()(ln )f x x x a a =-+,则下列结论中错误的是( ) A .0,0,()0a x f x ∃>∀>≥ B .000,0,()0a x f x ∃>∃>≤. C .0,0,()0a x f x ∀>∀>≥ D .000,0,()0a x f x ∃>∃>≥ 【答案】C .7.【2017广东郴州高三第二次教学质量监测】若命题:p “020223x x R a a ∃∈-≤-,”是假命题,则实数的取值范围是________. 【答案】[1,2]【解析】“020223x x R a a ∃∈-≤-,”是假命题等价于2223x x R a a ∀∈->-,,即223a a -≥-,解之得12a ≤≤,即实数的取值范围是[1,2].8.已知关于的不等式()(2)0---≤x a x a 的解集为A ,集合{|22}=-≤≤B x x .若“x A ∈”是“x B ∈”的充分不必要条件,则实数的取值范围是__________.. 【答案】-2,0].【解析】由“x A ∈”是“x B ∈”的充分不必要条件,可知A B,因此a≥-2且a +2≤2 解得a∈-2,0]9.已知命题:p R x ∈∃,0122≤++ax ax .若命题⌝p 是真命题,则实数的取值范围是 .【答案】)1,0[【解析】若命题⌝p 是假命题,即对于012,2>++∈∀ax ax R x ,当0=a 时,显然成立,当0≠a 时,则100<<⇒⎩⎨⎧<∆>a a ,综上)1,0[∈a .10.由命题“x∈R,x 2+2x +m≤0”是假命题,求得实数m 的取值范围是(a,+∞),则实数a =. 【答案】1.【解析】由题意得命题“∀x∈ R,x 2+2x +m>0”是真命题,所以Δ=4-4m<0,即m>1,故实数m 的取值范围是(1,+∞),从而实数a 的值为1.11.【2015学年江苏省涟水中学高三12月月考数学试卷】已知命题:“2(1,4),0x x ax a ∃∈-+<”为真命题,则实数的取值范围是. 【答案】a>4.【解析】2(1,4),0x x ax a ∃∈-+<⇔当(1,4)x ∈时,20x ax a -+<有解⇔(1,4)x ∃∈,使得21x a x >-,设2(x)1x f x =-,则222(x 1)(x)0(1)x x f x --'==-解得x=0,2,当(1,2)x ∈(x)0,(x)f f '<单调递减,当(2,4)x ∈(x)0,(x)f f '>单调递赠,所以2(x)1x f x =-的最小值为(2)4f =,所以a>4.12.【2015届江苏省如东高中高三上学期第8周周练理科数学试卷】若不等式102x m x m-+<-成立的一个充分非必要条件是1132x <<,则实数m 的取值范围是. 【答案】3441≤≤m . 【解析】因为不等式的102x m x m -+<-成立的充分非必要条件是1132x <<,所以111||0322x m x x x x m -+⎧⎫⎧⎫<<⊂<⎨⎬⎨⎬-⎩⎭⎩⎭,当12m m -<即1m >-时,不等式的102x m x m -+<-解集为{|12}x m x m -<<, 由11|{|12}32x x x m x m ⎧⎫<<⊂-<<⎨⎬⎩⎭得:1131221m m m ⎧-≤⎪⎪⎪≥⎨⎪>-⎪⎪⎩,解之得:3441≤≤m ,当12m m -=即1m =-时,不等式102x m x m-+<-解集为∅;当12m m ->即1m <-时,不等式102x m x m-+<-解集为{|21}x m x m <<-由11|{|21}}32x x x m x m ⎧⎫<<⊂<<-⎨⎬⎩⎭得:1231121m m m ⎧≤⎪⎪⎪-≥⎨⎪<-⎪⎪⎩,此时m 无解,所以m 的取值范围为3441≤≤m . 13.设命题p :实数满足22430x ax a -+<,其中0a >;命题:实数满足2560x x -+≤. (1)若1a =,且p q ∧为真,求实数的取值范围; (2)若p 是成立的必要不充分条件,求实数的取值范围. 【答案】(1) [)2,3(2)()1,214.已知命题P :在R 上定义运算⊗:.)1(y x y x -=⊗不等式1)1(<-⊗x a x 对任意实数恒成立;命题Q :若不等式2162≥+++x ax x 对任意的*N x ∈恒成立.若P Q ∧为假命题,P Q ∨为真命题,求实数的取值范围. 【答案】123>-<<-∴a a 或.【解析】由题意知,x a x x a x )1)(1()1(--=-⊗若命题P 为真,01)1()1(2>+---x a x a 对任意实数恒成立,∴①当01=-a 即1=a 时,01>恒成立,1=∴a ;②当01≠-a 时,⎩⎨⎧<---=∆>-0)1(4)1(012a a a ,13<<-∴a , 综合①②得,13≤<-a若命题Q 为真,0>x ,01>+∴x ,则有)1(2)6(2+≥++x ax x 对任意的*N x ∈恒成立 , 即2)4(++-≥x x a 对任意的*N x ∈恒成立,令2)4()(++-=xx x f ,只需max )(x f a ≥, 224242)(-=+-=+⋅-≤xx x f ,当且仅当)(4*N x x x ∈=即2=x 时取“=”,2-≥∴aP Q ∧为假命题,P Q ∨为真命题,Q P ,∴中必有一个真命题,一个假命题,(1)若P 为真Q 为假,则⎩⎨⎧-<≤<-213a a ,23-<<-a ,(2)若P 为假Q 为真,则⎩⎨⎧-≥>-≤213a a a 或,1>∴a ,综上:123>-<<-∴a a 或.15.设命题p :实数满足22430x ax a -+<,其中0a >,命题:实数满足2260,280.x x x x ⎧--≤⎪⎨+->⎪⎩.(1)若1,a =且p q ∧为真,求实数的取值范围; (2)若p ⌝是⌝的充分不必要条件,求实数的取值范围. 【答案】(1) (2,3) (2) (]1,2【解析】(1)当1a =时,{}:13p x x <<,{}:23q x x <≤, 又p q ∧为真,所以p 真且真, 由1323x x <<⎧⎨<≤⎩,得23x <<所以实数的取值范围为(2,3)(2) 因为p ⌝是⌝的充分不必要条件, 所以是p 的充分不必要条件, 又{}:3p x a x a <<,{}:23q x x <≤,所以0233a a a >⎧⎪≤⎨⎪>⎩,解得12a <≤所以实数的取值范围为(]1,216.【2016湖北省襄阳市四校高三上学期期中联考】设:p 实数满足:03422<+-a ax x (0>a ),:q 实数满足:121-⎪⎭⎫⎝⎛=m x ,()2,1∈m()I 若41=a ,且q p ∧为真,求实数的取值范围; ()II 是p 的充分不必要条件,求实数的取值范围.【答案】(Ⅰ)⎭⎬⎫⎩⎨⎧<<4321x x;(Ⅱ)11[,]32.()II 是p 的充分不必要条件,记⎭⎬⎫⎩⎨⎧<<=121x x A ,{}0,3><<=a a x a x B则A 是B 的真子集 ⎪⎩⎪⎨⎧>=∴1321a a 或⎪⎩⎪⎨⎧≥<1321a a … 得2131≤≤a ,即的取值范围为1132⎡⎤⎢⎥⎣⎦,… 17. 【2017河北省冀州中学上学期第二次阶段考试】设命题:p 实数满足22430x ax a -+<,0a ≠;命题:q 实数满足302x x-≥-. (Ⅰ)若1a =,p q ∧为真命题,求的取值范围;(Ⅱ)若p ⌝是q ⌝的充分不必要条件,求实数的取值范围.18.已知命题p :“方程230x ax a -++=有解”,q:“11042x xa +->∞在[1,+)上恒成立”,若p 或q 为真命题,p 且q 为假命题,求实数的取值范围.【答案】206a a -<≤≥或【解析】:26p a a ≤-≥或.令21,2xt t t a =+> 02t <≤ ,:0q a ∴≤.∵pq 一真一假,∴260a a a ≤-≥⎧⎨>⎩或 或260a a -<<⎧⎨≤⎩ 得:206a a -<≤≥或19.命题p 实数满足03422<+a ax -x (其中0a >),命题实数满足⎪⎩⎪⎨⎧>+≤02321x-x x- (1)若1a =,且p q ∧为真,求实数的取值范围;(2)若p ⌝是⌝的充分不必要条件,求实数的取值范围.【答案】(1)()2,3.;(2)(1,2].【解析】由:03422<+a ax -x (其中0a >),解得3a x a <<, 记(,3)A a a = 由⎪⎩⎪⎨⎧>+≤02321x-x x-,得132,3或x x x -≤≤⎧⎨><-⎩,即23x <≤,记(]2,3B =. (1)若1a =,且p q ∧为真,则(1,3)A =,(]2,3B =,又p q ∧为真,则1323x x <<⎧⎨<≤⎩,所以23x <<,因此实数的取值范围是()2,3.(2)∵p ⌝是q ⌝的充分不必要条件,∴p 是的必要不充分条件,即B A ≠⊂,(]2,3(,3)a a ≠⊂,则只需3302a a >⎧⎨<≤⎩,解得12a <≤,故实数a 的取值范围是(1,2].20.【2017届山东潍坊市高三上学期期中联考】已知m R ∈,设[]: 1 1p x ∀∈-,,2224820x x m m --+-≥成立;[]: 1 2q x ∃∈,,,如果“p q ∨”为真,“p q ∧”为假,求m 的取值范围. 【解析】若p 为真:对[]1 1x ∀∈-,,224822m m x x -≤--恒成立, 设()222f x x x =--,配方得()()213f x x =--, ∴()f x 在[]1 1-,上的最小值为3-,∴2483m m -≤-,∴p 为真时: 若为真:[]1 2x ∃≤,,212x mx -+>成立,易知()g x 在[]1 2,上是增函数,∴()g x 的最大值为∴为真时∵p q ∨”为真,“p q ∧”为假,∴p 与一真一假,当p 真假时当p 假真时综上所述,m 的取值范围是21.【2017届山东潍坊市高三上学期期中联考】已知m R ∈,设[]: 1 1p x ∀∈-,,2224820x x m m --+-≥成立;[]: 1 2q x ∃∈,,,如果“p q ∨”为真,“p q ∧”为假,求m 的取值范围. 【解析】若p 为真:对[]1 1x ∀∈-,,224822m m x x -≤--恒成立, 设()222f x x x =--,配方得()()213f x x =--, ∴()f x 在[]1 1-,上的最小值为3-,∴2483m m -≤-,∴p 为真时: 若为真:[]1 2x ∃≤,,212x mx -+>成立,易知()g x 在[]1 2,上是增函数,∴()g x 的最大值为∴为真时∵p q ∨”为真,“p q ∧”为假,∴p 与一真一假,当p 真假时当p 假真时综上所述,m 的取值范围是。

北京市高三一模考试数学文试题真题(word版含答案)

北京市高三一模考试数学文试题真题(word版含答案)

北京市海淀区高三一模数学(文科)第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|13A x x =<<,集合{}2|4B x x =>,则集合A B 等于( ) A .{}|23x x << B .{}|1x x > C .{}|12x x << D .{}|2x x >2.圆心为(0,1)且与直线2y =相切的圆的方程为( )A .22(1)1x y -+=B .22(1)1x y ++=C .22(1)1x y +-=D .22(1)1x y ++= 3.执行如图所示的程序框图,输出的x 的值为( )A .4B .3C .2D .14.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为( )ABC. D .36.在ABC ∆上,点D 满足2AD AB AC =-,则( )A .点D 不在直线BC 上B .点D 在BC 的延长线上 C .点D 在线段BC 上 D .点D 在CB 的延长线上7.若函数cos ,,()1,x x a f x x a x ≤⎧⎪=⎨>⎪⎩的值域为[]1,1-,则实数a 的取值范围是( ) A .[1,)+∞ B .(,1]-∞- C .(0,1] D .(1,0)-8.如图,在公路MN 两侧分别有1A ,2A ,…,7A 七个工厂,各工厂与公路MN (图中粗线)之间有小公路连接.现在需要在公路MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( )①车站的位置设在C 点好于B 点;②车站的位置设在B 点与C 点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A .①B .②C .①③D .②③第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数(1)2z a i =+-为纯虚数,则实数a = .10.已知等比数列{}n a 中,245a a a =,48a =,则公比q = ,其前4项和4S = .11.若抛物线22y px =的准线经过双曲线2213y x -=的左焦点,则实数p = . 12.若x ,y 满足240,20,1,x y x y x +-=⎧⎪-≤⎨⎪≥⎩则y x 的最大值是 . 13.已知函数()sin f x x ω=(0ω>),若函数()y f x a =+(0a >)的部分图象如图所示,则ω= ,a 的最小值是 .14.阅读下列材料,回答后面问题:在2014年12月30日13CCTV 播出的“新闻直播间”节目中,主持人说:“……加入此次亚航失联航班8501QZ 被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为 ,你的理由是 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{}n a 满足126a a +=,2310a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列{}1n n a a ++的前n 项和.16.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a ,b 两种“共享单车”(以下简称a 型车,b 型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a 型车,3人租到b 型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a 型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a 型车的用户中,在第4个月有60%的用户仍租a 型车.若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用a ,b 两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.17.在ABC ∆中,2A B =.(Ⅰ)求证:2cos a b B =;(Ⅱ)若2b =,4c =,求B 的值.18.在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,2PA AB ==,E ,F 分别是PB ,PD 的中点.(Ⅰ)求证://PB 平面FAC ;(Ⅱ)求三棱锥P EAD -的体积;(Ⅲ)求证:平面EAD ⊥平面FAC .19.已知椭圆C :22221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设点(4,0)Q ,若点P 在直线4x =上,直线BP 与椭圆交于另一点M .判断是否存在点P ,使得四边形APQM 为梯形?若存在,求出点P 的坐标;若不存在,说明理由.20.已知函数2()x f x e x ax =-+,曲线()y f x =在点(0,(0))f 处的切线与x 轴平行.(Ⅰ)求a 的值;(Ⅱ)若()21x g x e x =--,求函数()g x 的最小值;(Ⅲ)求证:存在0c <,当x c >时,()0f x > .高三年级第二学期期中练习数学(文科)答案一、选择题1-5:ACCCB 6-8:DAC二、填空题9.2 10.2,15 11.4 12.32 13.2,12π 14.选①,数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;选②,数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;不选②,数据②两个数据虽表面不是同一类数据,但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x ,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.三、解答题15.解:(Ⅰ)设数列{}n a 的公差为d ,因为126a a +=,2310a a +=,所以314a a -=,所以24d =,2d =.又116a a d ++=,所以12a =,所以1(1)2n a a n d n =+-=.(Ⅱ)记1n n n b a a +=+,所以22(1)42n b n n n =++=+,又14(1)2424n n b b n n +-=++--=,所以{}n b 是首项为6,公差为4的等差数列,其前n 项和21()(642)2422n n n b b n n S n n +++===+. 16.解:(Ⅰ)依题意租到a 型车的4人为1A ,2A ,3A ,4A ;租到b 型车的3人为1B ,2B ,3B ; 设事件A 为“7人中抽到2人,至少有一人租到a 型车”, 则事件A 为“7人中抽到2人都租到b 型车”.如表格所示:从7人中抽出2人共有21种情况,事件A 发生共有3种情况,所以事件A 概率36()1()1217P A P A =-=-=.(Ⅱ)依题意,市场4月份租用a 型车的比例为50%60%50%50%55%+=,租用b 型车的比例为50%40%50%50%45%+=,所以市场4月租用a ,b 型车的用户比例为55%1145%9=. 17.解:(Ⅰ)因为2A B =, 所以由正弦定理sin sin a b A B =,得sin sin 2a a A B=, 得2sin cos sin a b B B B =,所以2cos a b B =. (Ⅱ)由余弦定理,2222cos a b c bc A =+-,因为2b =,4c =,2A B =,所以216cos 41616cos 2B B =+-, 所以23cos 4B =, 因为2A B B B π+=+<,所以3B π<,所以cos B =,所以6B π=. 18.(Ⅰ)证明:连接BD ,与AC 交于点O ,连接OF ,在PBD ∆中,O ,F 分别是BD ,PD 的中点,所以//OF PB ,又因为OF ⊂平面FAC ,PB ⊄平面FAC ,所以//PB 平面FAC .(Ⅱ)解:因为PA ⊥平面ABCD ,所以PA 为棱锥P ABD -的高. 因为2PA AB ==,底面ABCD 是正方形, 所以13P ABD ABD V S PA -∆=⨯⨯114222323=⨯⨯⨯⨯=, 因为E 为PB 中点,所以PAE ABE S S ∆∆=, 所以1223P EAD P ABD V V --=⨯=. (Ⅲ)证明:因为AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,在等腰直角PAB ∆中,AE PB ⊥,又AE AD A =,AE ⊂平面EAD ,AD ⊂平面EAD ,所以PB ⊥平面EAD ,又//OF PB ,所以OF ⊥平面EAD ,又OF ⊂平面FAC ,所以平面EAD ⊥平面FAC .19.解:(Ⅰ)由||4AB =,得2a =. 又因为12c e a ==,所以1c =,所以2223b a c =-=, 所以椭圆C 的方程为22143x y +=. (Ⅱ)假设存在点P ,使得四边形APQM 为梯形.由题意知,显然AM ,PQ 不平行,所以//AP MQ , 所以||||||||BQ BM AB BP =,所以||1||2BM BP =. 设点11(,)M x y ,(4,)P t ,过点M 作MH AB ⊥于H ,则有||||1||||2BH BM BQ BP ==, 所以||1BH =,所以(1,0)H ,所以11x =, 代入椭圆方程,求得132y =±, 所以(4,3)P ±.20.解:(Ⅰ)'()2x f x e x a =-+,由已知可得'(0)0f =,所以10a +=,得1a =-.(Ⅱ)'()2x g x e =-,令'()0g x =,得ln 2x =,所以x ,'()g x ,()g x 的变化情况如表所示:所以()g x 的最小值为ln 2(ln 2)2ln 2112ln 2g e =--=-.(Ⅲ)证明:显然()'()g x f x =,且(0)0g =,由(Ⅱ)知,()g x 在(,ln 2)-∞上单调递减,在(ln 2,)+∞上单调递增. 又(ln 2)0g <,2(2)50g e =->,由零点存在性定理,存在唯一实数0(ln 2,)x ∈+∞,满足0()0g x =, 即00210x e x --=,0021x e x =+,综上,()'()g x f x =存在两个零点,分别为0,0x .所以0x <时,()0g x >,即'()0f x >,()f x 在(,0)-∞上单调递增; 00x x <<时,()0g x <,即'()0f x <,()f x 在0(0,)x 上单调递减; 0x x >时,()0g x >,即'()0f x >,()f x 在0(,)x +∞上单调递增, 所以(0)f 是极大值,0()f x 是极小值,0222200000000015()211()24x f x e x x x x x x x x =--=+--=-++=--+, 因为(1)30g e =-<,323()402g e =->, 所以03(1,)2x ∈,所以0()0f x >,因此0x ≥时,()0f x >.因为(0)1f =且()f x 在(,0)-∞上单调递增,所以一定存在0c <满足()0f c >,所以存在0c <,当x c >时,()0f x >.。

(人教版A版2017课标)高中数学必修第一册 第一章综合测试01-含答案

(人教版A版2017课标)高中数学必修第一册 第一章综合测试01-含答案

第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a②存在一个实数x ,使为正整数;③存在一个实数y ,使为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( )A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,) 6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0AB x x ≥B .{}=12AB ,C .{}R =01A B (),D .{}R =|1A B x x ()≥7.甲:“1a >”是乙:“a ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U MN ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则UUA B BA ()()等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆()(),A C A B ⊇()(),则下列命题中,正确的个数是( )①U U A C A B ⊆()();②U UU UA C AB ⊇()();③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B ();(2)求U A B ().19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=Ax x ∅>,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R (1)当=2a 时,求A B 和R A B ();(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D 【解析】{}=0469B ,,,,B ∴的子集的个数为42=16.3.【答案】D【解析】对于①,当=4a为正整数;对于②,当=1x时,为正整数;对于③,当=1y时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B 【解析】{=|=0AB x x 或}1x ≥,A 错误;{}=12AB ,,B 正确;{}{}R =|1=0A B x x B ()<,C 错误;{}R =|0A B x x ()≠,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>1011a a ⇒⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a a ⎧⇔⎨⎩>,>>,,1a ∴>,故选B . 8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2b x a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D 【解析】{}=|1UB x x ->,{}=|0UAB x x ∴>.{}=|0UA x x ≤,{}=|1UBA x x ∴-≤.{=|0UUAB BA x x ∴()()>或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇()(),U U A C AB ∴⊆()(),∴①为真命题.AC A B ⊆()(),U U A C AB ∴⊇()(),即U UU UA C AB ⊇()(),∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件.16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1UA x x -<或1x ≥,{=|12U AB x x ∴()≤≤.(6分) (2){}=|01AB x x <<,{=|0U AB x x ∴()≤或}1x ≥.(12分)19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++- 200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R=|1A x x <或}7x >,{}R =|21A B x x -()≤<.(6分) (2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)难忘的一天今天,太阳照着大地,就像闪闪发光的金子一样,到处都是暖洋洋的,我的心里也是暖洋洋的。

北京市朝阳区2017届高三第一次(3月)综合练习语文试题 WORD版含答案

北京市朝阳区2017届高三第一次(3月)综合练习语文试题 WORD版含答案

北京市朝阳区高三年级第一次综合练习语文学科参考答案及评分标准2017.3一、(本大题共7小题,共23分)1.(3分)B2.(3分)B3.(3分)高铁提升了节能减排的成效4.(2分)A5.(3分)C6.(3分)D7.(6分)答案要点:(每点2分)中国高铁全面掌握高铁核心技术,为世界奉献出一大批技术创新成果;中国高铁拥有世界先进的集成技术、施工技术、装备制造技术和运营管理技术;中国高铁标准经受了中国复杂多变的自然环境的检验,正逐渐超越“欧标”与“日标”(以高铁、核能为代表的中国高端制造业正在迅速扩展世界市场)。

二、(本大题共6小题,共22分)8.(3分)B(显:表面)9.(3分)D(见:助词,表被动;A以:介词,用;连词,因;B而:连词,表转折;连词,表顺接;C因:连词,表承接;介词,依据、凭借)10.(3分)D(正确的理解是:所以被君主宠爱时,才智就显得恰当而更受亲近)11.(5分)①(2分)这家富人认为儿子很聪明,却对邻居老人起了疑心②(3分)游说进言的人能不触动君主的逆鳞,就差不多(成功)了12.(2分)关其思和邻人之父13.(6分)(概括启示、观点3分,评价3分)【相关启示、观点】:郑武公伐胡:进言者要考虑自己的地位和处境,不要触及听者所刻意隐匿之事。

智子疑邻:进言者要考虑自己的身份,要注意自己和听者关系的远近。

弥子瑕失宠:进言者要注意听者的主观爱憎,以及这种爱憎的前后变化。

三、(本大题共4小题,共20分)14.(3分)C(“批评……”有误)15.(3分)C(“巴山夜雨涨秋池”属于实写)16.(6分)相同点:两词都表达了贬谪境遇中苏轼的豪迈旷达的情怀。

(2分)不同点:《念》词借古抒怀,借周瑜卓越不凡、青年功成来反衬自己壮怀难酬、老大未成的忧愤与失意。

《水》词借景抒情,借白头渔翁搏击风浪的壮伟之举,来表达自己虽身处逆境却泰然处之、正气浩然的精神。

(4分,每点2分)17.(8分)①木欣欣以向荣②泉涓涓而始流③潦水尽而寒潭清④烟光凝而暮山紫⑤且放白鹿青崖间⑥须行即骑访名山⑦无边落木萧萧下⑧不尽长江滚滚来四、(本大题共5小题,共23分)18.(2分)A(拙劣zhuō liè)19.(3分)D(A归因有误;B“是作者傲视他人的资本”理解有误;C感情理解有误)20.(4分)【评分参考】选词准确,结合语句分析,表达效果解说准确清晰。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市2017届高三综合练习文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,全卷满分150分,考试时间为120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共8个小题,每小题5分,共40分;在每个小题给出的四个选项中,有且只有一个是符合题目要求的) 1.(宣武·文·题1)设集合{|4},sin 40A x x m ==︒≤,则下列关系中正确的是( ) A .m A ⊂ B .m A ⊄ C .{}m A ∈ D .{}m A ∉ 【解析】 D ;正确的表示法,m A ∈,{}m A Þ,{}m A ∉.2.(宣武·文·题2)设平面向量(1,2),(2,)y ==-a b ,若a b ∥,则|3|+a b 等于( ) A .5B .6C .17D .26【解析】 A ;a b ∥,则2(2)104y y ⨯--⋅=⇒=-,从而3(1,2)+=a b . 3.(宣武·文·题3)下列函数中,既是奇函数又是区间(0,)+∞上的增函数的是( ) A .12t x =B .1y x -=C .3y x =D .2x y =【解析】 C ;AD 不是奇函数,B 在(0,)+∞上是减函数. 4.(宣武·文·题4)设i 是虚数单位,则复数(1i)2i z =+⋅所对应的点落在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【解析】 B ;22i z =-+5.(宣武·文·题5)若{}n a 为等差数列,n S 是其前n 项和,且1122π3S =,则6tan a 的值为( ) A .3 B .3-C .3±D .33-【解析】 B ;由1112105762a a a a a a a +=+==+= ,可得11611S a =,∴62π3a =. 6.(宣武·文·题6)设函数32()log x f x a x+=-在区间(1,2)内有零点,则实数a 的取值范围是( ) A .3(1,log 2)-- B .3(0,log 2)C .3(log 2,1)D .3(1,log 4)【解析】 C ;32()log 1f x a x ⎛⎫=+- ⎪⎝⎭在(1,2)上是减函数,由题设有(1)0,(2)0f f ><,得解.7.(宣武·文·题7)在ABC △中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC △的面积,若2221c o s c o s s i n ,()4a B b A c C S b c a +==+-,则B ∠=( )A .90︒B .60︒C .45︒D .30︒【解析】 C ;由余弦定理可知cos cos a B b A c +=,于是sin 1C =,π2C =. 从而22222111()()244S ab b c a b b ==+-=+,解得a b =,因此45B ∠=︒.8.(宣武·文·题8)设圆C 的圆心在双曲线2221(0)2x y a a -=>的右焦点且与此双曲线的渐近线相切,若圆C 被直线:30l x y -=截得的弦长等于2,则a 的值为( ) A .2 B .3C .2D .3【解析】 A ;圆C 的圆心2(2,0)C a +,双曲线的渐近线方程为20x ay ±=,C 到渐近线的距离为222222a d a +==+,故圆C 方程222(2)2x a y -++=.由l 被圆C 截得的弦长是2及圆C 的半径为2可知,圆心C 到直线l 的距离为1,即221213a a +=⇒=+.第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6个小题,每小题5分,共30分) 9.(宣武·文·题9)把容量是100的样本分成8组,从第1组到第4组的频数分别是15,17,11,13,第5组到第7组的频率之和是0.32,那么第8组的频率是 .【解析】0.12; 1517111310.320.12100100100100-----=. 10.(宣武·文·题10)命题“任意常数列都是等比数列”的否定形式是 . 【解析】 存在一个常数列不是等比数列;全称命题的否定是存在性命题.11.(宣武·文·题11)若将下面的展开图恢复成正方体,则ABC ∠的度数为 .11题图CB A【解析】60︒; 恢复的图形如图,ABC △是正三角形,60ABC ∠=︒.CBA12.(宣武·文·题12)执行如图程序框图,输出S 的值等于 .12题图否是输出Si <=4i=i + 1S =S + AA=A + iA=0,S=0,i=1结束开始【解析】20; 运算顺序如下1,1,23,4,36,10,410,20,54A S i A S i A S i A S i ===→===→===→===>,输出S ,故20S =.13.(宣武·文·题13)设,x y ∈R ,且满足20x y -+=,则22x y +的最小值为 ;若,x y 又满足4y x >-,则yx的取值范围是 . 【解析】 2,(1,3);22222(2)2(1)22x y x x x +=++=++≥,当1x y =-=-时取等号;画出204x y y x -+=⎧⎨>-⎩的可行域,为射线SP (如图),要求的就是SP 上的点与原点连线的斜率,易算出(1,3)S ,斜率的范围为(1,3).yx Ox-y+2=0x+y=4PS14.(宣武·文·题14) 有下列命题:①0x =是函数3y x =的极值点;②三次函数32()f x ax bx cx d =+++有极值点的充要条件是230b ac ->; ③奇函数32()(1)48(2)f x mx m x m x n =+-+-+在区间(4,4)-上是单调减函数. 其中假命题的序号是 . 【解析】 ①;3y x =在R 上单调增,没有极值点,①错;2()32f x ax bx c '=++,()f x 有极值点的充要条件是()0f x '=有两个不相等的实根,24120b ac ∆=->,也即230b ac ->,②正确; ()f x 是奇函数,则(0)00f n =⇒=,由()()f x f x -=-,可得2(1)0m x -=,因此1m =,所以3()48f x x x =-.当(4,4)x ∈-时,2()3483(4)(4)0f x x x x '=-=+-<,故()f x 在(4,4)x ∈-上是单调减函数.三、解答题(本大题共6个小题,共80分;解答应写出文字说明,证明过程或演算步骤) 15.(宣武·文·题15)已知函数22()2sin cos sin cos ()2222x x x xf x a a =+-∈R⑴当1a =时,求函数()f x 的最小正周期及图象的对称轴方程式;⑵当2a =时,在()0f x =的条件下,求cos21sin 2xx +的值.【解析】 ⑴π()sin cos 2sin 4f x x x x ⎛⎫=-=- ⎪⎝⎭最小正周期为2π,由πππ42x k -=+,得3ππ()4x k k =+∈Z⑵当2,()0a f x ==时,解得1tan 2x =,222cos 2cos sin cos sin 1tan 11sin 2(cos sin )cos sin 1tan 3x x x x x x x x x x x x ---====++++.16.(宣武·文·题16)如图,在四棱锥P A B C D -中,PA ⊥平面A B C D ,底面ABCD 为直角梯形,90ABC BAD ∠=∠=︒,AD BC >,,E F 分别为棱,AB PC 的中点. ⑴求证:PE BC ⊥;⑵求证:EF ∥平面PAD .FE DCBA P【解析】 ⑴∵PA ⊥平面ABCD ,BC ⊂平面ABCD∴PA BC ⊥ ∵90ABC ∠=︒ ∴BC AB ⊥∴BC ⊥平面PAB 又E 是AB 中点, ∴PE ⊂平面PAB ∴BC PE ⊥.⑵证明:取CD 中点G ,连结FG ,EG ,GFE DCBA P∵F 为PC 中点,∴FG PD ∥.∵FG ⊄平面PAD ,PD ⊂平面PAD ,∴FG ∥平面PAD ; 同理,EG ∥平面PAD .∵FG EC G = ,∴平面EFG ∥平面PAD . ∴EF ∥平面PAD .17.(宣武·文·题17)某校高三年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查.设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.同意 不同意 合计 教师 1 女生 4 男生2⑴请完成此统计表;⑵试估计高三年级学生“同意”的人数;⑶从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率. 【解析】 ⑴由分层抽样可知,男生、女生和教师被抽取的人数分别为5,6,2,被调查人答卷情况统计表:同意 不同意 合计 教师 1 1 2 女生 2 4 6 男生325⑵23126105426310565⨯+⨯=+=(人)⑶设“同意”的两名学生编号为1,2,“不同意”的四名学生分别编号为3,4,5,6,选出两人则有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15种方法; 其中(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),8种满足题意,则恰有一人“同意”一人“不同意”的概率为815.18.(宣武·文·题18) 已知函数3221()(1)(,)3f x x ax a x b a b =-+-+∈R⑴若1x =为()f x 的极值点,求a 的值;⑵若()y f x =的图象在点(1,(1))f 处的切线方程为30x y +-=,求()f x 在区间[2,4]-上的最大值;⑶当0a ≠时,若()f x 在区间(1,1)-上不单调,求a 的取值范围. 【解析】 ⑴22()21f x x ax a '=-+-∵1x =是()f x 的极值点,∴(1)0f '=,即220a a -=,解得0a =或2.⑵∵(1,(1))f 在30x y +-=上.∴(1)2f =∵(1,2)在()y f x =上,∴21213a ab =-+-+又(1)1f '=-,∴21211a a -+-=-∴2210a a -+=,解得81,3a b ==∴22218(),()233f x x x f x x x '=-+=-由()0f x '=可知0x =和2x =是()f x 的极值点.∵84(0),(2),(2)4,(4)833f f f f ==-=-=∴()f x 在区间[2,4]-上的最大值为8.⑶因为函数()f x 在区间(1,1)-不单调,所以函数()f x '在(1,1)-上存在零点. 而()0f x '=的两根为1a -,1a +,区间长为2, ∴在区间(1,1)-上不可能有2个零点. 所以(1)(1)0f f ''-<,即2(2)(2)0a a a +-<. ∵20a >,∴(2)(2)0,22a a a +-<-<<. 又∵0a ≠,∴(2,0)(0,2)a ∈- .19.(宣武·文·题19)已知椭圆的中心在原点O ,焦点在x 轴上,点(23,0)A -是其左顶点,点C 在椭圆上且0,||||AC CO AC CO ⋅== .⑴求椭圆的方程;⑵若平行于CO 的直线l 和椭圆交于,M N 两个不同点,求CMN △面积的最大值,并求此时直线l 的方程.【解析】 ⑴设椭圆的标准方程为22221(0)x y a b a b+=>>,∵左顶点(23,0),,||||A AC CO AC CO -⊥=. ∴212a =,(3,3)C -又∵C 在椭圆上, ∴233112b+=,24b = ∴椭圆的标准方程为221124x y +=.⑵设1122(,),(,)M x y N x y∵CO 的斜率为1-,∴设直线l 的方程为y x m =-+,代入221124x y +=,得22463120x mx m -+-=.22122123644(312)0323124m m m x x m x x ⎧⎪∆=-⋅->⎪⎪+=⎨⎪⎪-⋅=⎪⎩ ∴2212123||2()42124m MN x x x x =+-=-又C 到直线l 的距离|33|||22m m d -+-==,∴CMN △的面积2213||(16)24S MN d m m =⋅⋅=⋅-223162342m m +-⋅=≤, 当且仅当2216m m =-时取等号,此时22m =±满足题中条件,∴直线l 的方程为220x y +±=.20.(宣武·文·题20)数列{}n a 的前n 项和为n S ,若13a =,点1(,)n n S S +在直线*11()n y x n n n+=++∈N 上. ⑴求证:数列n S n ⎧⎫⎨⎬⎩⎭是等差数列;⑵若数列{}n b 满足2n a n n b a =⋅,求数列{}n b 的前n 项和n T ; ⑶设232n n n T C +=,求证:122027nC C C +++> . 【解析】 ⑴∵点1(,)n n S S +在直线11n y x n n+=++*()n ∈N 上, ∴111n n n S S n n++=++. 两边同除以1n +,得111n n S Sn n+-=+,于是n S n ⎧⎫⎨⎬⎩⎭是以3为首项,1为公差的等差数列.⑵由⑴可知,3(1)12n Sn n n=+-⨯=+,即2*2()n S n n n =+∈N ,∴当1n =时,13a =,当2n ≥时,121n n n a S S n -=-=+,经检验,当1n =时也成立,∴*21()n a n n =+∈N . 于是212(21)2n a n n n b a n +=⋅=+⋅.∵3521211213252(21)2(21)2n n n n n T b b b b n n -+-=++++=⋅+⋅++-⋅++⋅ , ∴5212123432(23)2(21)2(21)2n n n n T n n n -++=⋅++-⋅+-⋅++⋅ , 相减,解得:232182399n n T n +⎛⎫=+⋅- ⎪⎝⎭.⑶∵232111()23994nn n n T n C +==+-⋅,∴12111442(1)111329914nn n n C C C n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥+⎣⎦+++=⋅+⋅-⋅-234111()927274n n n +=-+⋅2341712092792727n n +>--=≥.。

相关文档
最新文档