微积分基本定理微分形式
物理竞赛微积分知识点总结
![物理竞赛微积分知识点总结](https://img.taocdn.com/s3/m/53e510906e1aff00bed5b9f3f90f76c660374c13.png)
物理竞赛微积分知识点总结1.导数与微分导数是微积分的重要概念,它描述了函数在某一点处的变化率。
对于物理竞赛而言,导数在描述速度、加速度等动力学量时有着重要的应用。
另外,在曲线的切线方程、求解最值等问题中,导数也发挥着重要作用。
微分是导数的一种运算形式,它可以捕捉函数在某一点附近的局部线性变化。
在物理问题中,微分常用于描述微小的变化量,比如位移、速度、加速度等。
2.积分与定积分积分是导数的逆运算,它可以用来求解函数的原函数或不定积分。
在物理竞赛中,积分常用于计算曲线下的面积、求解物理问题中的总量、平均值等。
定积分是对指定区间上的函数值进行积分,它可以用于求解质点在一段时间内的位移、速度、加速度等物理量,还可以用于计算某些物理量的平均值、总量等问题。
3.微积分基本定理微积分基本定理是微积分的核心定理,它建立了积分与导数之间的联系。
第一积分基本定理将不定积分与定积分联系起来,可以将积分问题转化为求解原函数的问题。
第二积分基本定理则给出了定积分的计算方法,它将定积分与不定积分联系在一起,为求解定积分提供了便利。
在物理竞赛中,微积分基本定理在积分问题的求解中起着十分重要的作用。
4.微分方程微分方程是描述变化规律的数学工具,在物理竞赛中经常出现。
一阶微分方程描述了变量的变化率与变量本身之间的关系,它常用于描述弹簧振子、RC电路、衰减问题等。
对于线性微分方程,可以通过特征方程的求解来求解微分方程的通解。
在物理竞赛中,熟练掌握微分方程的解法对于解决物理问题是十分重要的。
5.级数与收敛性级数是无穷个数项的和,它在物理问题中也常常出现。
级数的收敛性是级数是否有意义的重要标志,熟练掌握级数的收敛性判别方法对于求解物理问题十分重要。
常见的级数有等比级数、调和级数、幂级数等,在物理竞赛中需要能够熟练应用级数的性质及收敛性的判别方法。
6.多元函数微积分多元函数微积分是微积分的拓展,它描述的是多元函数的变化规律。
对于物理竞赛而言,多元函数微积分在描述多变量物理量之间的关系、求解多元函数的极值等问题中有着重要的应用。
微积分基本定理证明
![微积分基本定理证明](https://img.taocdn.com/s3/m/8b802ddabb0d4a7302768e9951e79b89680268cd.png)
微积分基本定理证明微积分基本定理也被称为奥尔森定理,它是十九世纪数学家利希马克·奥尔森首先提出的重要定理。
它表达了微积分在处理数字和曲线的连续性之间的对应关系,并将分段函数拓展到更多更复杂的函数。
它的形式如下:若$f$为$[a,b]$上的连续函数,则有:$$\int_a^bf(x)dx=F(b)-F(a)$$其中$F$为$f$的一个可微分函数(也称为$f$的积分)。
这里所说的可微分函数指在$[a, b]$上定义的函数$F$,使得$F'(x)=f(x),\forall x \in [a, b]$。
要证明这个定理,我们将用反证法。
假设该定理不成立,即:$$\int_a^bf(x)dx\neq F(b)-F(a)$$那么,则有:$$\int_a^bf(x)dx-F(b)+F(a)\neq 0$$将$f$代入上式,则有:$$\int_a^bF'(x)dx-[F(b)-F(a)]\neq 0$$令$\Delta x=x_1-x_0>0$,由$[a, b]$的分割定理得:$$\int_a^bf(x)dx-F(b)+F(a)=[F'(x_1)-F'(x_0)]\sum_{i=0}^{n-1}\Delta x+o(\Delta x)$$同时,将$F'(x)=f(x)$代入上式,可得:$$\int_a^bf(x)dx-F(b)+F(a)=f(x_1)-f(x_0)\sum_{i=0}^{n-1}\Delta x+o(\Delta x)$$因此,当$\Delta x$趋近于零时,上式又转化为:$$\int_a^bf(x)dx-F(b)+F(a)=f(x_1)-f(x_0)\int_a^bdx+o(\Delta x)$$由于$\Delta x$任意取值,所以,当$\Delta x$趋近于零时,$o(\Delta x)$也趋近于零,即:$$\int_a^bf(x)dx-F(b)+F(a)=f(x_1)-f(x_0)\int_a^bdx$$令$\int_a^bdx=1$,则有:$$\int_a^bf(x)dx-F(b)+F(a)=f(x_1)-f(x_0)$$即:$$\int_a^bf(x)dx=F(b)-F(a)$$因此,得证。
微积分基本公式16个
![微积分基本公式16个](https://img.taocdn.com/s3/m/f1a0f05b00f69e3143323968011ca300a6c3f680.png)
微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。
可以理解为小步长地移动拟合函数,接近曲线本身。
可以表示为\frac{dy}{dx} 或f'(x) 。
2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。
可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。
它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。
4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。
可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。
5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。
6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。
积分微分公式
![积分微分公式](https://img.taocdn.com/s3/m/761c209781eb6294dd88d0d233d4b14e85243e03.png)
积分微分公式摘要:一、引言二、积分与微分的概念1.积分的定义2.微分的定义三、积分与微分的关系1.微积分基本定理2.反函数定理四、积分微分公式1.基本积分公式2.基本微分公式五、实际应用1.物理中的应用2.工程中的应用六、结论正文:一、引言在数学的发展历程中,积分与微分是两个重要的概念。
它们在解决实际问题中发挥着关键作用,如物理、工程等领域。
本文将对积分与微分的关系进行详细阐述,并通过实例介绍它们在实际应用中的价值。
二、积分与微分的概念1.积分的定义积分是对一个函数在某一区间上的累积效果进行度量的方法。
通俗地说,就是求解一个曲线下的面积。
数学上,我们可以用以下符号表示:∫f(x)dx其中,f(x) 表示被积函数,x 表示自变量,∫ 表示积分符号。
2.微分的定义微分是对一个函数在某一点上的变化率进行度量的方法。
用数学符号表示为:f"(x)其中,f(x) 表示被微分函数,x 表示自变量," 表示微分符号。
三、积分与微分的关系1.微积分基本定理微积分基本定理是积分与微分之间的桥梁。
它表明,如果一个函数f(x) 在区间[a, b] 上可积,那么f(x) 在[a, b] 上的原函数(即微分后的函数)可以表示为:F(x) = ∫f(x)dx此外,微积分基本定理还给出了求解定积分的逆运算方法,即求解原函数(微分后的函数)。
2.反函数定理反函数定理是微积分基本定理的推广。
它表明,如果一个函数f(x) 在区间[a, b] 上可积,并且f(x) 在[a, b] 上单调,那么f(x) 在[a, b] 上存在反函数,且反函数也是可积的。
四、积分微分公式1.基本积分公式基本积分公式是一些常用的积分计算方法,例如:∫x^n dx = (1/n+1)x^(n+1) + C其中,n 为常数,C 为积分常数。
2.基本微分公式基本微分公式是一些常用的微分计算方法,例如:(f(x) + g(x))" = f"(x) + g"(x)(cf(x))" = cf"(x)(f(x)g(x))" = f(x)g"(x) + g(x)f"(x)五、实际应用1.物理中的应用在物理学中,积分与微分发挥着重要作用。
微积分基本定理
![微积分基本定理](https://img.taocdn.com/s3/m/dc78a6c2690203d8ce2f0066f5335a8102d266bb.png)
微积分基本定理微积分基本定理是微积分学中的重要定理之一,它揭示了函数与它的导数之间的关系。
微积分基本定理分为两部分:第一部分是定积分的基本定理,第二部分是微分方程的基本定理。
本文将从这两个方面详细介绍微积分基本定理的概念、原理和应用。
一、定积分的基本定理定积分的基本定理是微积分中最基础的定理之一。
它表明了定积分与不定积分之间的关系,即定积分可以看作是不定积分的一个特例。
定积分的基本定理可以用以下数学公式表示:若函数f(x)在闭区间[a, b]上连续,则函数F(x)在区间[a, b]上可积,并且有:∫[a, b] f(x)dx = F(b) - F(a)这个公式表明了定积分与不定积分之间的联系,也称为牛顿-莱布尼茨公式。
它告诉我们,如果知道一个函数在某个区间上的原函数,就可以求出该函数在该区间上的定积分值。
这个定理在计算曲线下面积、求函数的平均值等问题中有广泛的应用。
二、微分方程的基本定理微分方程的基本定理是微积分学中另一个重要的定理。
微分方程描述了函数的导数与函数自身之间的关系,通过微分方程可以求解一些函数的性质和行为。
微分方程的基本定理可以用以下形式表示:若函数f(x)在区间I上具有连续导数,则微分方程y'(x) = f(x)的通解可以表示为:y(x) = ∫f(x)dx + C其中C为积分常数,∫f(x)dx表示f(x)的一个原函数。
这个公式表明了微分方程的解可以通过对方程右侧函数的积分得到,同时需要加上一个积分常数。
微分方程的基本定理在物理学、工程学等领域有着广泛的应用,可以用来描述很多自然现象的规律。
综上所述,微积分基本定理是微积分学中两个重要的基本定理,它们揭示了函数与导数、函数与积分之间的重要关系。
这两个定理在微积分的理论体系和实际应用中都起着至关重要的作用,对于深入理解微积分学的原理和方法具有重要意义。
希望通过本文的介绍,读者能对微积分基本定理有更深入的理解和认识。
微积分的基本概念与运算
![微积分的基本概念与运算](https://img.taocdn.com/s3/m/d8edbb623069a45177232f60ddccda38376be1ad.png)
三角函数
sin(x)、cos(x)、 tan(x)等的导数公式 ,如f(x)=sin(x),则 f'(x)=cos(x)。
四则运算法则及复合函数求导法则
01
四则运算法则
02
复合函数求导法则
包括加法、减法、乘法、除法的导数运算法则,如 [f(x)+g(x)]'=f'(x)+g'(x)等。
若y=f(u)且u=g(x)都可导,则复合函数y=f[g(x)]的导数为 y'={f[g(x)]}'=f'(u)*g'(x)。
导数几何意义及应用
导数几何意义
导数在几何上表示曲线在某一点的切线斜率。对于一元函数y=f(x),其在点x0处的导数f'(x0)就是曲线 y=f(x)在点(x0,f(x0))处的切线斜率。
导数应用
导数在数学、物理、工程等领域有广泛应用。例如,在求函数的极值、判断函数的单调性、解决最优 化问题等方面都需要用到导数。此外,在物理学中,速度、加速度等概念也与导数密切相关。
通过求导可以得到物体的瞬时速度和加速度 ,进而研究物体的运动状态。
微分方程在力学中的应用
利用微分方程可以描述物体的运动规律,如 牛顿第二定律的微分方程形式。
振动与波动问题的分析
微积分在振动与波动问题的分析中有着广泛 的应用,如简谐振动的微分方程描述。
经济学中边际分析和弹性分析问题
边际分析
在经济学中,边际分析是一种重 要的决策方法,通过求导得到边 际成本、边际收益等经济量,进 而研究经济现象的变化规律。
积分几何意义及应用
积分几何意义
定积分的几何意义是曲线与x轴所围成的面积,而不定积分的几何意义则是求 曲线在某一点处的切线斜率。
高数常用微积分公式24个
![高数常用微积分公式24个](https://img.taocdn.com/s3/m/e00634d2aff8941ea76e58fafab069dc5022477a.png)
高数常用微积分公式24个为了更好地帮助大家理解高等数学中的微积分,本文主要介绍高数常用的微积分公式24个。
首先,介绍最基本的微积分概念。
微积分是一个广义的概念,它包括微分学和积分学。
微分学是研究变动数量的变化率,变量可以表达为函数。
积分学则是将某一函数在不同区域上的积分和运算,可以表示为面积、重量或其他距离变化的概念。
其次,介绍高数常用的微积分公式。
1、微分中的基本公式:(1)函数的定义域x的导数,表示为f′(x)(2)复合函数的导数,表示为f′(g(x))(3)二阶导数的定义,表示为f″(x)2、积分中的基本公式:(1)求解定积分,表示为∫[a, b]f(x)dx(2)定积分的换折叠公式,表示为∫[a, b]f(x)dx=[a,c]f(x)dx+[c, b]f(x)dx(3)求解不定积分,表示为∫f(4)二重积分的定义,表示为∫[a, b]∫[c, d]f(x,y)dydx (5)定义域积分,表示为∫[S]f(x,y)ds3、微分与积分的关系:微分与积分有着相互联系的关系。
积分是将函数某一段区间的值累积为某一量,而微分则是积分的反过程,求出函数在有限的区间内的变化率。
这一关系也被称为微分法和积分法的反射关系。
4、偏微分的基本公式:偏微分是指关于同一变量的偏导数。
它是微分中比较复杂的一种形式,通常与多元函数相关,旨在研究函数变化率在同一点上受其他变量影响的情况。
它的基本公式为f′(x, y)=f/x, f′(x, y)=f/y。
5、常见的微分与积分公式:(1)指数函数的求导公式,表示为f′(x)=ae^(ax)(2)对数函数的求导公式,表示为f′(x)=1/x(3)三角函数的求导公式,表示为f′(x)=cos(x),f′(x)=sin(x)(4)椭圆函数的求导公式,表示为f′(x)=2a(a+bx)/(b^2-a^2)(5)反椭圆函数的求导公式,表示为f′(x)=-2a(a+bx)/(b^2-a^2)(6)求极限的求导公式,表示为limX→0f′(x)=f(0)(7)求微积分的积分公式,表示为∫[a,b]f(x)=F(b)-F(a)最后,本文介绍了高数常用的微积分公式24个,包括微分、积分、偏微分以及极限的求导公式,利用这些公式,大家就可以更好地理解微积分的概念,从而更好地学习高等数学中的微积分内容。
微积分中的微分方程
![微积分中的微分方程](https://img.taocdn.com/s3/m/ab493304326c1eb91a37f111f18583d049640fd0.png)
微积分中的微分方程微积分是现代科学和工程的基础,它包括微分和积分两个主要分支。
微分方程作为微积分的重要组成部分,在许多科学和工程领域中都扮演着重要的角色。
微分方程是描述变化率与未知函数之间关系的数学方程,它们能够描述自然界中的各种现象和过程。
微分方程的应用范围广泛,涉及到物理、化学、生物、经济、工程等领域。
下面我们将介绍微积分中的微分方程的基本概念、求解方法以及一些实际应用。
微分方程的基本概念微分方程是包含未知函数及其导数的方程,可以分为常微分方程和偏微分方程两类。
常微分方程仅涉及一个独立变量,而偏微分方程有多个独立变量。
常微分方程的解是一个函数,而偏微分方程的解是一个函数族。
微分方程的一般形式可以写为dy/dx=F(x,y),其中y是未知函数,x是独立变量,F(x,y)是已知函数或表达式。
微分方程的解是使得方程左右两侧相等的函数。
通常情况下,微分方程的解是不唯一的,解的形式和性质取决于方程的具体形式和边界条件。
一阶微分方程是最基本的微分方程形式,它只涉及到一阶导数。
一阶微分方程可以分为可分离变量方程、线性方程、齐次方程和一阶Bernoulli型方程等。
可分离变量方程的形式为dy/dx=f(x)g(y),可以通过分离变量的方法将其化简为两个单变量的微分方程,然后求解得到解析解。
线性方程的形式为dy/dx+a(x)y=b(x),可以通过积分因子法、变量变换法等方法求解。
齐次方程的形式为dy/dx=f(y/x),可以通过变量变换的方法将其化为线性方程求解。
一阶Bernoulli型方程的形式为dy/dx+a(x)y=b(x)y^n,可以通过变量代换的方法将其化为线性方程求解。
二阶微分方程是包含二阶及以下导数的微分方程形式。
二阶微分方程可以分为齐次方程和非齐次方程两类。
齐次方程形式为d^2y/dx^2+p(x)dy/dx+q(x)y=0,其中p(x)和q(x)是已知函数或表达式。
齐次方程的解可以通过特征根法、特解法等方法求解。
微积分中的微分方程和常微分方程
![微积分中的微分方程和常微分方程](https://img.taocdn.com/s3/m/354f94182bf90242a8956bec0975f46527d3a726.png)
微积分中的微分方程和常微分方程微积分是数学的一个分支,是数学中最基础的一门课程。
它的主要内容是微积分,微积分中有很多重要的概念和方法,其中最重要的概念之一就是微分方程和常微分方程。
一、微分方程微分方程是微积分中重要的概念之一,它是描述自然现象中变化的规律的数学语言。
它包括基本形式和常见的特殊形式,如:$$\frac{dy}{dx}=f(x)$$其中 $y$ 为一个函数,$f(x)$ 为一些已知函数。
这个方程的意义是求出函数 $y$,使得 $y$ 对 $x$ 取导数后等于 $f(x)$。
还有另外一种形式的微分方程,称为二阶线性微分方程:$$y''+p(x)y'+q(x)y=r(x)$$其中 $p(x),q(x),r(x)$ 为已知函数,$y$ 为未知函数。
这个方程的意义是求解函数 $y$,使得这个函数对 $x$ 取二阶导数后加上一些已知的函数(称为非齐次项)等于另一个已知的函数(称为齐次项)。
二、常微分方程常微分方程又称为ODE(Ordinary Differential Equation),是微积分的一个分支,其主要研究关于未知函数 $y$ 的微分方程。
常微分方程通常分为两大类:一类是一阶线性常微分方程,如:$$y'+p(x)y=q(x)$$其中 $p(x),q(x)$ 为已知函数,$y$ 是未知函数。
这个方程的意义是求解函数 $y$,使得这个函数对 $x$ 取导数后加上一些已知的函数等于另一个已知的函数。
还有另外一类常微分方程,称为二阶线性常微分方程,如:$$y''+p(x)y'+q(x)y=r(x)$$其中 $p(x),q(x),r(x)$ 为已知函数,$y$ 为未知函数。
这个方程的意义是求解函数 $y$,使得这个函数对 $x$ 取二阶导数后加上一些已知的函数等于另一个已知的函数。
三、微分方程在实际问题中的应用微分方程在实际问题中的应用非常广泛,大部分自然科学的问题都可以归结为微分方程。
微积分公式与运算法则
![微积分公式与运算法则](https://img.taocdn.com/s3/m/008b9533524de518974b7d26.png)
微积分公式与运算法则 Jenny was compiled in January 2021微积分公式与运算法则1.基本公式(1)导数公式(2)微分公式(xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx(a x)ˊ=a x lnad(a x)=a x lnadx(loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx(sinx)ˊ=cosxd(sinx)=cosxdx(conx)ˊ=-sinxd(conx)=-sinxdx(tanx)ˊ=sec2xd(tanx)=sec2xdx(cotx)ˊ=-csc2xd(cotx)=-csc2xdx(secx)ˊ=secx·tanxd(secx)=secx·tanxdx(cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx(arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx(arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx(arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx(arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx(sinhx)ˊ=coshxd(sinhx)=coshxdx(coshx)ˊ=sinhxd(coshx)=sinhxdx2.运算法则(μ=μ(x),υ=υ(x),α、β∈R)(1)函数的线性组合积、商的求导法则(αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ=(μˊυ-μυˊ)/υ2(2)函数和差积商的微分法则d(αμ+βυ)=αdμ+βdυd(μυ)=υdμ+μdυd(μ/υ)=(υdμ-μdυ)/υ23.复合函数的微分法则设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为dy/dx=fˊ[ψ(x)]·ψˊ(x)所以复合函数的微分为dy=fˊ[ψ(x)]·ψˊ(x)dx由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。
链式法则二全微分形式不变性三小结
![链式法则二全微分形式不变性三小结](https://img.taocdn.com/s3/m/2f0b96a06394dd88d0d233d4b14e852459fb3972.png)
全微分的定义
全微分:对于可微函数f,其全微分 df(x)是f在x处的导数与x的微小变化 dx的乘积的和,即df(x) = f'(x) * dx 。
全微分是函数在某一点处的小增量, 它反映了函数在该点附近的变化率。
全微分的形式不变性
形式不变性:对于复合函数,其全微 分形式保持不变,即无论复合函数的 中间变量如何变化,其全微分的形式 始终保持一致。
形式不变性是全微分的一个重要性质 ,它使得我们可以在求复合函数的全 微分时,不必关注中间变量的具体形 式,只需关注其导数即可。
全微分形式不变性的证明
证明方法
利用链式法则和导数的定义,通过数学推导证明全微分形式的不变性。
证明过程
首先将复合函数拆分成若干个基本初等函数,然后分别求这些基本初等函数的导数和全微分,最后利用链式法则 将这些全微分相加,得到复合函数的全微分。由于链式法则是正确的,因此全微分的形式也是正确的。
链式法则二全微分 形式不变性三小结
目录
• 链式法则回顾 • 全微分形式不变性的概念 • 全微分形式不变性的应用 • 链式法则与全微分形式不变性的关系 • 总结与展望
01
CATALOGUE
链式法则回顾
链式法则定义
要点一
链式法则定义
链式法则是微积分中的一个基本定理 ,它描述了函数复合和微分之间的关 系。具体来说,如果函数$u = f(x, y)$对$x, y$可微,而函数$x = g(t)$ ,$y = h(t)$对$t$可微,则复合函数 $u = f(g(t), h(t))$对$t$也可微,且 其微分为$frac{d}{dt} (f(g(t), h(t))) = frac{d}{dx} f(x, y) cdot frac{d}{dt} g(t) + frac{d}{dy} f(x, y) cdot frac{d}{dt} h(t)$。
微积分三公式的推演
![微积分三公式的推演](https://img.taocdn.com/s3/m/978a0e511fb91a37f111f18583d049649a660e54.png)
微积分三公式的推演微积分是数学中的一门重要分支,它研究的是变量在一定范围内的变化规律。
微积分包括微分、积分和微积分基本定理三个基本公式,它们在数学、物理学、工程学等领域有着广泛的应用。
本文将推演微积分三个公式的来源和证明过程,以帮助读者更好地理解和应用微积分。
微积分的基本概念包括函数、导数和积分。
函数表示某个变量在一定范围内的数值关系,导数表示函数在某一点的变化率,而积分则表示函数在一定范围内的累积效应。
微积分三个公式分别是:1、微分公式:这个公式表示函数在某一点的变化率与函数值之间的关系。
在数学中,我们通常用记号f'(x)表示函数f(x)的导数,而微分公式可以表示为f'(x)=lim(h→0)(f(x+h)-f(x))/h。
2、积分公式:这个公式表示函数在一定范围内的累积效应。
在数学中,我们通常用记号∫(from a to b)f(x)dx表示函数f(x)在区间[a,b]上的定积分,而积分公式可以表示为∫(from a tob)f(x)dx=(b-a)f'(c),其中c是[a,b]上的任意一点。
3、微积分基本定理:这个定理表示定积分可以转化为函数的导数的原函数在区间端点之间的差值。
在数学中,我们通常用记号F(b)-F(a)表示函数F(x)在区间[a,b]上的定积分,而微积分基本定理可以表示为∫(from a to b)f(x)dx=F(b)-F(a),其中F(x)是函数f(x)的原函数。
现在,我们来推演微积分三个公式的证明过程。
首先,我们来看微分公式的证明。
假设函数f(x)在点x处可导,则存在一个导数值f'(x),使得lim(h→0)(f(x+h)-f(x))/h=f'(x)。
反之,如果这个极限存在,那么函数f(x)在点x处可导,且导数值为这个极限值。
因此,微分公式可以表示为f'(x)=lim(h→0)(f(x+h)-f(x))/h。
接下来,我们来看积分公式的证明。
微积分的原理
![微积分的原理](https://img.taocdn.com/s3/m/e8fd66840408763231126edb6f1aff00bed570c5.png)
微积分的原理
微积分是数学中的一个重要分支,它研究的是函数的变化规律和空间的曲线、曲面等性质。
微积分的主要原理有三大基本定理:微分定理、积分定理和泰勒展开定理。
微分定理是微积分的基础,它描述了函数的局部变化规律。
根据微分定理,如果一个函数在某一点连续可微,则该函数在该点的微分等于其在该点的导数与自变量的增量的乘积。
积分定理则讨论了函数的整体变化情况。
根据积分定理,如果一个函数在一段闭区间上连续,那么该函数在这段闭区间上的积分等于该函数在这段闭区间两端点的值之差。
泰勒展开定理是微积分中的重要工具,它可以将一个光滑函数在某一点附近展开成幂级数形式。
泰勒展开定理可以帮助我们研究函数在某点的性质,比如函数在该点的极值或拐点等。
除了以上三个基本定理,微积分还包含了一系列重要的概念和理论,比如导数、不定积分、定积分、微分方程等。
这些概念和理论构成了微积分的核心内容,为我们分析和解决各种实际问题提供了强有力的工具。
总的来说,微积分是一门探究函数变化规律和空间曲线性质的数学学科,通过微分和积分的运算,可以对函数进行分析和计算。
微积分的原理包括微分定理、积分定理以及泰勒展开定理等,这些原理构成了微积分的基础。
微积分中的积分公式及其应用
![微积分中的积分公式及其应用](https://img.taocdn.com/s3/m/b3bbc0c4f605cc1755270722192e453610665bf4.png)
微积分中的积分公式及其应用微积分是数学中的一门重要学科,主要研究函数的变化和求解问题的方法。
在微积分中,积分是一个核心概念,它有着广泛的应用。
本文将介绍微积分中的积分公式及其应用。
一、不定积分与定积分在微积分中,积分分为不定积分和定积分两种形式。
不定积分是指对函数进行积分,得到的结果是一个不含有具体数值的表达式,通常用符号C表示。
定积分是指对函数在某个区间上的积分,得到的结果是一个具体的数值。
二、基本积分公式微积分中有一些基本的积分公式,它们是进行积分计算的基础。
下面是一些常用的基本积分公式:1. 常数函数积分公式对于常数函数f(x) = C,其中C为常数,它的不定积分为F(x) = Cx + C。
2. 幂函数积分公式对于幂函数f(x) = x^n,其中n不等于-1,它的不定积分为F(x) = (1/(n+1)) *x^(n+1) + C。
3. 指数函数积分公式对于指数函数f(x) = e^x,它的不定积分为F(x) = e^x + C。
4. 三角函数积分公式对于正弦函数f(x) = sin(x),它的不定积分为F(x) = -cos(x) + C。
对于余弦函数f(x) = cos(x),它的不定积分为F(x) = sin(x) + C。
5. 对数函数积分公式对于自然对数函数f(x) = ln(x),其中x大于0,它的不定积分为F(x) = xln(x) - x + C。
三、积分的应用积分在微积分中有着广泛的应用,下面将介绍一些常见的应用领域。
1. 几何应用积分可以用来计算曲线与坐标轴所围成的面积。
通过将曲线划分为无穷小的小矩形,然后对这些小矩形的面积进行求和,可以得到曲线所围成的面积。
2. 物理应用积分在物理学中有着重要的应用,可以用来计算物体的质量、重心、力学作用等。
通过对物体的密度、速度、加速度等进行积分运算,可以得到物体的相关物理量。
3. 统计学应用积分在统计学中也有着应用,可以用来计算概率密度函数、累积分布函数等。
微积分的基本介绍
![微积分的基本介绍](https://img.taocdn.com/s3/m/4f94841755270722192ef797.png)
微积分的基本介绍微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。
我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。
他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。
因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。
所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。
在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。
就是说,除的数不是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。
这个概念是成功的。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。
特别是计算机的发明更有助于这些应用的不断发展。
客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。
因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。
由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。
微积分定理和公式
![微积分定理和公式](https://img.taocdn.com/s3/m/725efe1153ea551810a6f524ccbff121dd36c531.png)
一、函数定义 设在某一变化过程中有两个变量x 和y ,若对非空集合D 中的每一点x ,都按照某一对应规则f ,有惟一确定的实数y 与之相对应,则称y 是x 的函数,记作x 称为自变量,y 称为因变量,D 称为函数的定义域,y 的取值范围即集合{}D x x f y y ∈=),(|称为函数的值域.xoy 平面上点的集合{}D x x f y y x ∈=),(|),(称为函数)(x f y =的图形.定义域D 或记f D 与对应法则f 是确定函数的两个要素.因此称两个函数相同是指它们的定义域与对应法则都相同.二函数的几何特性 1.单调性1定义 设函数)(x f 在实数集D 上有定义,对于D 内任意两点21,x x ,当 1x <2x 时,若总有)(1x f ≤)(2x f 成立,则称D x f 在)(内单调递增或单增;若总有 )(1x f <)(2x f 成立,则称)(x f 在D 内严格单增,严格单增也是单增.当)(x f 在D 内单调递增时,又称D x f 是)(内的单调递增函数.单调递增或单调递减函数统称为单调函数.2.有界性定义 设函数内有定义在集合D x f )(,若存在实数M >0,使得对任意D x ∈,都有|)(|x f ≤M ,则称)(x f 在D 内有界,或称)(x f 为D 内的有界函数.定义 设函数内有定义在集合D x f )(,若对任意的实数M >0,总可以找到一D x ∈,使得|)(|x f >M ,则称)(x f 在D 内无界,或称)(x f 为D 内的无界函数.定义 设函数)(x f 在一个关于原点对称的集合内有定义,若对任意D x ∈,都有))()()(()(x f x f x f x f =--=-或,则称)(x f 为D 内的奇偶函数.奇函数的图形关于原点对称,当)(x f 为连续的函数时,)(x f =0,即)(x f 的图形过原点.偶函数的图形关于y 轴对称.关于奇偶函数有如下的运算规律: 设)()(21x f x f ±为奇函数,)(),(21y g x g 为偶函数,则)()(21x f x f ±为奇函数;)()(21x g x g ±为偶函数; )()(11x g x f ±非奇偶函数;)()(11x g x f ⋅为奇函数;)()(),()(2121x g x g x f x f ⋅⋅均为偶函数.常数C 是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算.对研究函数的单调性、函数作图都有很大帮助. 4.周期性定义 设函数内有定义在集合D d x f )(,如果存在非零常数T,使得对任意D x ∈,恒有)()(x f T x f =+成立,则称)(x f 为周期函数.满足上式的最小正数T,称为)(x f 的基本周期,简称周期.我们熟知的三角函数为周期函数考纲不要求,除此以外知之甚少.][x x y -=是以1为周期的周期函数.][x y =与][x x y -=的图形分别如图1-1a 和图1-1b 所示.三初等函数 1.基本初等函数1常数函数 C y =,定义域为-∞,+∞,图形为平行于x 轴的直线.在y 轴上的截距为c .2幂函数 αx y =,其定义域随着α的不同而变化.但不论α取何值,总在1,+∞内有定义,且图形过点1,1.当α>0时,函数图形过原点图1-2a b图1-23指数函数 )1,0(≠=ααα xy ,其定义域为-∞,+∞.当0<α<1时,函数严格单调递减.当α>1时,函数严格单调递增.子数图形过点0,1.微积分中经常用到以e 为底的指数函数,即xe y =图1-34对数函数 )1,0(log ≠=ααα x y ,其定义域为1,+∞,它与xy α=互为反函数.微积分中常用到以e 为底的对数,记作nx y 1=,称为自然对数.对数函数的图形过点1,0图1-4图1-3 图1-4 另有两类基本初等函数:三角函数与反三角函数,不在考纲之内.对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分应用中都很重要.例如,设f b a x b a x f ),,(,),()(∈对任意区间内二阶可导在″)(x <0.则 1f ′)(x 在),(b a 内严格单调减少;2)(x f 在),1(b 上为凸弧,均不充分. 此题可以用举例的方法来说明1、2均不充分.由初等函数的图形可知,4x y -=为凸弧.y ′=34x -在-∞,∞+上严格单调递减,但y ″=-122x ≤0,因此1,2均不充分,故选E.此题若把题干改成f ″)(x ≤0,则1,2均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2.反函数定义 设函数)(x f y =的定义域为D ,值域为R ,如果对于每一个R y ∈,都有惟一确定的D x ∈与之对应,且满足)(x f y =x 是一个定义在R 以y 为自变量的函数,记作并称其为)(x f y =反函数.习惯上用x 作自变量,y 作因变量,因此)(x f y =反函数常记为R x x f y ∈=-),(1.函数)(x f y =与反函数)(1x fy -=的图形关于直线x y =对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性.x y a y a xlog ==与互为反函.∈=x x y ,20,+∞的反函数为x y =,而∈=x x y ,2-∞,0的反函数为x y -=图1-2b.3.复合函数定义 已知函数f f R y D u u f y ∈∈=,),(.又D x x u ∈=),(ϕϕ,u ≤R ϕ,若ff R D 非空,则称函数为函数)()(x u u f y ϕ==与的复合函数.其中y 称为因变量,x 称为自变量,u 称为中间变量.4.初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式.四隐函数若函数的因变量y 明显地表示成)(x f y =的形式,则称其为显然函数.1),13(1,222-=-==x y x n y x y 等.设自变量x 与因变量y 之间的对应法则用一个方程式0),(=y x F 表示,如果存在函数)(x f y =不论这个函数是否能表示成显函数,将其代入所设方程,使方程变为恒等式: 其中f D 为非空实数集.则称函数)(x f y =由方程0),(=y x F 所确定的一个隐函数.如方程1=+y x 可以确定一个定义在0,1上的隐函数.此隐函数也可以表示成显函数的形式,即但并不是所有隐函数都可以用x 的显函数形式来表示,如0=++y x exy因为y 我法用初等函数表达,故它不是初等函数.另外还需注意,并不是任何一个方程都能确定隐函数,如0122=++y x .五分段函数有些函数,对于其定义域内的自变量x 的不同值,不能用一个统一的解析式表示,而是要用两个或两个以上的式子表示,这类函数称为分段函数,如 都是定义在-∞,+∞上的分段函数.分段函数不是初等函数,它不符合初等函数的定义.二、极限不在考试大纲内,只需了解即可极限是微积分的基础. 一数列极限按照一定顺序排成一串的数叫做数列,如n n a a a a ⋅ 21,称为通项. 1.极限定义定义 设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作否则称数列{}n a 发散或n n a ∞→lim 不存在. 2.数列极限性质1四则极限性质 设b y a x n n n n ==∞→∞→lim ,lim ,则2a x a x k n n n n =⇔=+∞→∞→lim lim k 为任意正整数.3若a x n n =∞→lim ,则数列{}n x 是有界数列.4夹逼定理 设存在正整数0N ,使得0N n ≥时,数列{}{}{}n n n z y x ,,满足不等式n n n y x z ≤≤.若a z y n n n n ==∞→∞→lim lim ,则a x n n =∞→lim .利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim =,是一个无理数. 5单调有界数列必有极限 设数列{}n x 有界,且存在正整数0N ,使得对任意0N n ≥都有n n x x ≤+1或n n x x ≥+1,则数列{}n x 的极限一定存在.利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim =,是一个无理数. 二函数的极限 1.∞→x 时的极限 定义 设函数)(x f 在)0(||>≥a ax 上有定义,当∞→x 时,函数)(x f 无限接近常数A ,则称)(x f 当∞→x 时以A 为极限,记作当+∞→x 或-∞→x 时的极限当x 沿数轴正负方向趋于无穷大,简记+∞→x -∞→x 时,)(x f 无限接近常数A ,则称)(x f 当+∞→x -∞→x 时以A 为极限,记作3.0x x →时的极限定义 设函数)(x f 在0x 附近可以不包括0x 点有定义,当x 无限接近)(00x x x ≠时,函数)(x f 无限接近常数A ,则称当0x x →时,)(x f 以A 为极限,记作4.左、右极限若当x 从0x 的左侧0x x <趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的左极限,记作.)(lim 0A x f x x =-→ 或 A x f =-)0(0若当x 从0x 的左侧0x x >趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的右极限,记作.)(lim 0A x f x x =+→ 或 A x f =+)0(0三函数极限的性质 1.惟一性若,B x f A x f x x x x ==→→)(lim ,)(lim 0则A=B . 2.局部有界性 若A x f x x =→)(lim 0.则在0x 的某邻域内点0x 可以除外,)(x f 是有界的.3.局部保号性若A x f x x =→)(lim 0.且A >0或A <0=,则存在0x 的某邻域点0x 可以除外,在该邻域内有)(x f >0或)(x f <0=;若A x f x x =→)(lim 0;且在0x 的某邻域点0x 可以除外有)(x f >0或)(x f <0=,则必有A≥0或A ≤0;4.不等式性质若A x f x x =→)(lim 0,B x g x x =→)(lim 0,且A>B ,则存在0x 的某邻域点0x 可以除外,使)(x f >)(x g .若A x f x x =→)(lim 0,B x g x x =→)(lim 0.且在0x 的某邻域点0x 可以除外有)(x f <)(x g 或)(x f ≤)(x g ,则A ≤B ;5.四则运算 同数列四无穷小量与无穷大量 1.无穷小量的定义定义 若0)(lim 0=→x f x x ,则称)(x f 是0x x →时的无穷小量;若,)(lim 0∞=→x g x x 则称)(x f 是0x x →时的无穷大量;2.无穷小量与无穷大量的关系无穷小量的倒数是无穷大量;无穷大量的倒数是无穷小量; 3.无穷小量的运算性质i 有限个无穷小量的代数和仍为无穷小量; ii 无穷小量乘有界变量仍为无穷小量; iii 有限个无穷小量的乘积仍为无穷小量; 4.无穷小量阶的比较设0)(lim,0)(lim 0==→→x x a x x x x β,5.等价无穷小常用的等价无穷小:0→x 是,)0(~1)1(,1~1,~)1(1,~1≠-+-+-ααααaxx n x x x n x e xx等价无穷小具有传递性,即)(~)(x x βα,又)(~)(x x γβ; 等价无穷小在乘除时可以替换,即)(~)(),(~)(**x x x x ββαα,则)()(lim )()(lim **)()(0x x x x x x x x x x βαβα∞→→∞→→=或或第二讲 函数的连续性、导数的概念与计算重点:闭区间上连续函数的性质、导数的定义、几何意义、基本初等函数的求导公式、复合函数求导公式、导数的四则运算;三、函数的连续性一函数连续的概念 1.两个定义定义 设函数)(x f y =的定义域为D x D ∈0,;若)()(lim 00x f x f x x =→,则称0)(x x f 在点连续;若D x f 在)(中每一点都连续,则称0)(x x f 在点右连续;定义 若)()(lim 00x f x f x x =+→,则称0)(x x f 在点右连续; 若)()(lim 00x f x f x x =-→,则称0)(x x f 在点左连续;0)(x x f 在点连续0)(x x f 在⇔点既左连续又右连续;2.连续函数的运算连续函数经过有限次四则运算或复合而得到的函数仍然连续,因而初等函数在其定义区间内处处连续;二间断点1.若)(lim )(lim 00x f x f x x x x -+→→与都存在,且不全等于)(0x f ,则称0x 为)(x f 的第一类间断点; 其中若)(lim 0x f x x →存在,但不等于)(0x f 或)(x f 在0x 无定义,则0x 为)(x f 的可去间断点;若)(lim )(lim 0x f x f x x x x -+→→与都存在,但不相等,则称0x 为)(x f 的跳跃间断点;2.若)(lim )(lim 0x f x f x x x x -+→→与中至少有一个不存在,则称0x 为)(x f 的第二类间断点;三闭区间上连续函数的性质若)(x f 在区间],[b a 内任一点都连续,又)()(lim ),()(lim b f x f f x f bx x ==-+→→αα,则称函数)(x f 在闭区间],[b a 上连续;1.最值定理设)(x f 在],[b a 上连续,则)(x f 在],[b a 上必有最大值M 和最小值m ,即存在],[,21b a x x ∈,使],[,)(,)(,)(11b a x M x f m m x f M x f ∈≤≤==且;2.价值定理设)(x f 在],[b a 上连续,且m,M 分别是)(x f 在],[b a 上最小值与最大值,则对任意的],[M m k ∈,总存在一点k c f b a c =∈)(],,[使;推论1 设)(x f 在],[b a 上连续,m,M 分别为最小值和最大值,且mM <0,则至少存在一点0)(],,[=∈c f b a c 使;推论1 设)(x f 在],[b a 连续,且0)()(<⋅b f a f ,则一定存在],,[b a c ∈使0)(=c f ; 推论1,推论2又称为零值定理;第二章 导数及其应用一、导数的概念1.导数定义定义 设y=fx 在x 0的某邻域内有定义,在该邻域内给自变量一个改变量x ∆,函数值有一相应改变量)()(00x f x x f y -∆+=∆,若极限存在,则称此极限值为函数y=fx 在x 0点的导数,此时称y=fx 在x 0点可导,用⎥⎦⎤⎢⎣⎡===''000)(,,)(x x dx x df x x dyx dyx x y x f 或或或表示.若)(x f y =在集合D 内处处可导这时称fx 在D 内可导,则对任意D x ∈0,相应的导数)(0x f '将随0x 的变化而变化,因此它是x 的函数,称其为y=fx 的导函数,记作⎪⎭⎫⎝⎛''dx x df dxdy y x f )(,,)(或或或. 2.导数的几何意义若函数fx 在点x 0处可导,则)(0x f '就是曲线y=fx 在点x 0,y 0处切线的斜率,此时切线方程为))((000x x x f y y -'=-.当)(0x f '=0,曲线y=fx 在点x 0,y 0处的切线平行于x 轴,切线方程为)(00x f y y ==. 若fx 在点x 0处连续,又当0x x →时∞→')(x f ,此时曲线y=fx 在点x 0,y 0处的切线垂直于x 轴,切线方程为x=x 0.3.左、右导数定义 设fx 在点x 0点的左侧邻域内有定义,若极限 存在,则称此极限值为fx 在点x 0处的左导数,记为)(0x f -')(0x f -'=xx f x x f ∆-∆+-→∆)()(lim 000类似可以定义右导数.fx 在点x 0点处可导的充要条件是fx 在点x 0点处的左、右导数都存在且相等,即)()()(000x f x f x f +-'='⇔'存在存在.若fx 在a,b 内可导,且)(a f +'及)(b f -'都存在,则称fx 在a,b 上可导. 4.可导与连续的关系若函数0)(x x f y 在=点可导,则)(x f 在点0x 处一定连续. 此命题的逆命题不成立.邮导数定义,极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(limlim0000存在可知,)(x f 在0x 点可导, 必有0→∆y ,故)(x f 在0x 点连续.但)(x f 在0x 点连续只说明当0→∆x 时,也有0→∆y ,而当y ∆的无穷小的阶低于x ∆时,极限即不存在,故)(x f 在0x 点不可导.只有y ∆与x ∆是同阶无穷小,或y ∆是比x ∆高阶的无穷小时,)(x f 在0x 点才可导. 例如,0||,31===x x y x y 在点连续,但不可导.二、导数的运算1.几个基本初等函数的导数 1.0='=y c y 2.,1-='=a aax y x y3x x x x e y e y na a y x y ='=='=,;1,4.1,1;11,log xy nx y na x y x y a ='=='=2.导数的四则运算 1)(])([x u c x u c '⋅='⋅; 2)()(])()([x v x u x v x u '+'='±;3)()()()()]()([x v x u x v x u x v x u '⋅+'⋅'=⋅;4)()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡; 3.复合函数的导数设函数)(x u ϕ=在x 处可导,而函数)(u f y =在相应的点)(x u ϕ=处可导,则复合函数)]([x u f y =在点x 处可导,且dxdudu dy dx dy x x f dxdy⋅='⋅'=或)()]([ϕϕ.4.高阶导数二阶导数若函数 区间a,b 内可导,一般说来,其导数)(x f y '='仍然是x 的函数,如果)(x f y '=' 也是可导的,则对其继续求导数,所得的导函数称为)(x f 的二阶导数,记为2222)(,),(,dxx f d dx d x f y y ''''. 注 更高阶的导数MBA 大纲不要求,二阶导数主要用来判定极值、函数凹凸区间及拐点.导数的计算要求非常熟练、准确第三讲 微分、导数的应用重点:微分的概念及运算、求曲线切线方程的方法、函数单调区间、极值、最值的求法 三、微分1.微分的概念定义 设)(x f y =在0x 的某邻域内有定义,若在其中给0x 一改变量x ∆,相应的函数值的改变量y ∆可以表示为其中A 与x ∆无关,则称)(x f 在0x 点可微,且称A x ∆为)(x f 在0x 点的微分,记为x A ∆是函数改变量y ∆的线性主部.)(x f y =在0x 可微的充要条件是)(x f 在0x 可导,且)(00x x f x x dy ∆'==.当x x f =)(时,可得x dx ∆=,因此由此可以看出,微分的计算完全可以借助导数的计算来完成.2微分的几何意义 当x 由0x 变到x x ∆+0时,函数纵坐标的改变量为y ∆,此时过0x 点的切线的纵坐标的改变量为dy.如图2-1所示.当dy <y ∆时,切线在曲线下方,曲线为凹弧. 当dy >y ∆时,切线在曲线上方,曲线为凸弧.2.微分运算法则 设)(),(x v x u 可微,则 一阶微分形式不变性:设)]([x f y ϕ=是由可微函数)(u f y =和)(x u ϕ=复合而成,则)]([x f y ϕ=关于x 可微,且由于du u f dy )('=,不管u 是自变量还是中间变量,都具有相同的形式,故称一阶微分形式不变.但导数就不同了:若u 是自变量,)(u f y '='.若u 是中间变量,x u u f y x u u '⋅'='=则),(.四、利用导数的几何意义求曲线的切线方程求切线方程大致有四种情况,最简单的一种是求过曲线)(x f y =上一点))(,(00x f x 的切线方程,此时只需求出)(0x f ',切线方程为))(()(000x x x f x f y -'=-.第二种情况是过曲线)(x f y =外一点a,b ,求曲线的切线方程,此时)(a f b ≠.设切点为))(,(00x f x ,切线方程为))(()(000x x x f x f y -'=-,将点a,b 代入方程中,有))(()(000x a x f x f b -'=-从中求出0x ,化成第一种情况的切线方程,若得到0x 惟一,则切线也不惟一.第三种情况是求两条曲线的公共切线,这两条曲线可能相离,也可能相交.设两曲线为)()(x g y x f y ==与解题方法是设在两条曲线上的切点分别为))(,()),(,(b g b a f a 这两点的切线斜率相等,从而有方程).()(b g a f '=' ①另外过点)(,a f a 的切线方程))(()(a x a f a f y -'=-也过点b,gb ,故有))(()()(a b a f a f b g -'=- ②由①、②求出a,b ,有了切点,切线方程也就可以写出来了. 第四种情况是求两条曲线在某公共点处的公切线.设曲线)()(x g y ax f y ==与在某点处相切,求a 的值与切线方程.则可设切点为))(,(0x g x ,从而有)())(()()(0000x g x x ax f x g ax f '=='=,由两方程联和可得a 的值及切点横坐标0x .即切点))(,(00x g x ,再由第一种情况,写出切线方程.五、函数的增减性、极值、最值1.函数的增减性的判定设函数)(x f 在闭区间],[b a 上连续,在a,b 内可导,若)0)((0)(<'>'x f x f 或,则)(x f 在a,b 上单调增加或单调减少.反之,若)(x f 在a,b 上单调增加或单调减少且可导,则)0)((0)(≤'≥'x f x f 或.二者的差异在于有没有等号.2.极值概念与判定定义 设)(x f 在0x 的某邻域内有定义,对该邻域内任意点x ,都有)(x f ≥)(0x f 或)(x f ≥)(0x f ,则称)(0x f 为极大值或极小值0x 为极大值点或极小值点.需要注意的是,极值点一定是内点,极值不可能在区间的端点取到.1极值存在的必要条件:若)(x f 在0x 点可导,且0x 为极值点,则)(0x f '=0.因此,极值点只需在)(x f '=0的点驻点或)(x f '不存在的点中去找,也就是说,极值点必定是)(x f '=0或)(x f '不存在的点,但这种点并不一定都是极值点,故应加以判别.2极值存在的充分条件,即极值的判别法,分为第一判别法和第二判别法.第一判别法用一阶导数判定.高)(x f 在0x 点连续,且)(0x f '=0或)(0x f '不存在.若存在0>δ,使得当),(00x x x δ-∈时,有)(x f >0或)(x f 不存在,当),(00δ+∈x x x 时,有)(x f '<0或)(x f '>0,此时0x 为极大极小值点.)(0x f 为极大极小值.若)(x f '在0x 的左右不变号,则0x 不是极值点.第二判别法需用二阶导数判定,只适用于二阶导数存在且不为零的点,因此有局限性. 当)(0x f '=0,若0)(0>''x f ,则0x 为极小值点,若0)(0<''x f ,0x 为极大值点,0)(0=''x f 判别法失效,仍需用第一判别法.3.函数在闭区间a,b 上的最大值与最小值.极值是函数的局部性质.最值是函数的整体性质.求最大值与最小值只需找出极值的可疑点驻点和不可导点,把这些点的函数值与区间的端点函数值比较,找出最大的与最小的即为最大值和最小值,相应的点为最大值点和最小值点.第四讲 函数图形的凹凸性、拐点、不定积分重点:函数图形凹凸区间及拐点求法、找原函数的换元积分法和分部积分法六、函数图形的凹凸性、拐点及其判定1.概念定义 若在某区间内,曲线弧上任一点处的切线位于曲线的下方,则称曲线在此区间内是上凹的,或称为凹弧简记为 ;反之,切线位于曲线上方,则称曲线是上凸的,亦称凸弧简记为,曲线凹、凸的分界点称为拐点.2.凹凸的判定设函数)(x f y =在区间a,b 内二阶可导,若在a,b 内恒有)(x f ''>0或)(x f ''<0,则曲线)(x f y =在a,b 内是凹弧或凸弧.3.拐点的求法与判定拐点存在的必要条件是)(0x f ''=0或)(0x f ''不存在请与极值比较其共性.设)(x f 在a,b 内二阶可导,)(0)(),,(000x f x f b a x ''=''∈或不存在,若)(x f ''在0x 点的左右变号,则点))(,(00x f x 是曲线)(x f y =的拐点,否则就不是拐点.由以上可以看出,要求函数的单调区间和极值点,只要找出其一阶导数等于零和一阶导不存在的点,设这种点一共有k 个,则这个k 个点把整个区间分成k+1个子区间,在每一个子区间内)(x f '不变号,由)(x f '>0或0)(<'x f 判定fx 在该子区间内单调递增或递减,同时也可以将极大值点和极小值点求出.求函数曲线的凹凸区间与拐点.只需求二阶导数等于零或二阶导数不存在的点,然后用上面的方法加以判定.第三章 定积分及其应用一、不定积分1.不定积分概念定义原函数 若对区间I 上的每一点x ,都有 则称Fx 是函数fx 在该区间上的一个原函数.原函数的特性 若函数fx 有一个原函数F x ,则它就有无穷多个原函数,且这无穷多个原函数可表示为Fx+C 的形式,其中C 是任意常数.定义不定积分 函数fx 的原函数的全体称为fx 的不定积分,记作⎰dx x f )(.若Fx 是fx的一个原函数,则定义原函数的存在性 在区间I 上连续的函数在该区间上存在原函数;且原函数在该区间上也必连续.2.不定积分的性质1积分运算与微分运算互为逆运算. 2⎰⎰≠=)0()()(k dx x f k dx x kf 常数3⎰⎰⎰±=±.)()()]()([dx x g dx x f dx x g x f3.基本积分公式4.求不定积分的基本方法和重要公式 1直接积分法所谓直接积分法就是用基本积分公式和不定积分的运算性质,或先将被积函数通过代数或三角恒等变形,再用基本积分公式和不定积分的运算性质可求出不定积分的结果.2换元积分法 I 第一换元积分法 公式 若⎰+=C u F du u f )()(,则=C u F +)( C x F +))((ϕ. 说明 1°运算较熟练后,可不设中间变量)(x u ϕ=,上式可写作2°第一换元积分法的实质正是复合函数求导公式的逆用.它相当于将基本积分公式中的积分变量x 用x 的可微函数)(x ϕ替换后公式仍然成立.用第一换元积分法的思路 不定积分⎰dx x f )(可用第一换元积分法,并用变量替换)(x u ϕ=,其关键是被积函数gx可视为两个因子的乘积且一个因子)())((x x f ϕϕ是的函数是积分变量x 的复合函数,另一个因子)(x ϕ'是)(x ϕ的导数可以相差常数因子.有些不定积分,初看起来,被积函数不具有上述第一换元积分法所要求的特征,在熟记基本积分公式的前提下,注意观察被积函数的特点,将其略加恒等变形:代数或三角变形,便可用第一换元积分法.II 第二换元积分法 公式⎰dx x f )( ⎰'dt t t f )())((ϕϕ C t F +)( 说明 第二换元积分法与第一换元积分法实际上正是一个公式从两个不同的方向运用用第二换元积分法的思路 若所给的积分⎰dx x f )(不易积出时,将原积分变量x 用新变量t 的某一函数)(t ϕ来替换,化成以t 为积分变量的不定积分⎰'dt t t f )())((ϕϕ,若该积分易于积出,便达到目的;被积函数是下述情况,一般要用第二换元积分法:1°被积函数含根式t b ax b a b ax n n =+≠+令时可以是,)0,0(,求其反函数;作替换)(1b t ax n -,可消去根式,化为代数有理式的积分; 变量替换令)(t x ϕ=变量替换令)(t x ϕ=第一换元法令令第一换元法ux x u ==)()(ϕϕ2°被积函数含根式a e x ±时,令t a e x =±,求其反函数,作替换)(12a t n x ±=可消去根式;被积函数含指数函数)(xxe a 或,有时也要作变量替换:令)(t e t a xx==或,设)1(111nt x nt nax ==或,以消去)(x x e a 或; 3分部积分法 公式⎰⎰'-='或dx x u x v x v x u dx x v x u )()()()()()(说明 分部积分法是两个函数乘积求导数公式的逆用; 用分部积分法的思路 I 公式的意义 欲求⎰'dx v u求⎰'.dx u vII 关于选取u 和v '用分部积分法的关键是,当被积函数看作是两个函数乘积时,选取哪一个因子为)(x u u =,哪一个因子为)(x v v '='.一般来说,选取u 和v '应遵循如下原则:1°选取作v '的函数,应易于计算它的原函数;2°所选取的u 和v ',要使积分⎰'dx u v 较积分⎰'dx v u 易于计算;3°有的不定积分需要连续两次或多于两次运用分部积分法,第一次选作v '或u 的函数,第二次不能选由v '或u 所得到的v 或v '.否则,经第二次运用,被积函数又将复原.Ⅲ分部积分法所适用的情况由于分部积分法公式是微分法中两个函数乘积的求导数公式的逆用,因此,被积函数是两个函数乘积时,往往用分部积分法易见效.5.求不定积分需要注意的问题1由于初等函数在其有定义的区间上是连续的,所以每个初等函数在其有定义的区间上都有原函数,但初等函数的原函数并不都是初等函数.例如nxe e e xx x 11,,,122-等的原函数就无法用初等函数表示.2对同一个不定积分,采用不同的计算方法,往往得到形式不同的结果.这些结果至多相差一个常数,这是由于不定积分的表达式中含有一个任意常数所致.第五讲重点:定积分的概念、性质、变限求导、牛顿-菜布尼兹公式、定积分的换元积方法和分部积分法二、定积分1.定积分的定义定义定积分 函数)(x f 在区间a,b 上的定积分定义为∑⎰=→∆∆==ni iix baxf dx x f I 1)(lim)(ξ,其中||max 1i ni x x ∆=∆≤≤.由定积分的定义,可推出以下结论:1定积分只与被积函数和积分区间有关; 2定积分的值与积分变量无关,即⎰⎰=babadt t f dx x f )()(;3⎰⎰-=abbadx x f dx x f )()(,特别地,⎰=aadx x f 0)(.定积分的几何意义 设)(x f 在a,b 上边续,⎰badx x f )(在几何上表示介于i 轴、曲线y =)(x f 及直线b x a x ==,之间各部分面积的代数和,在x 轴上方取正号,在x 轴下方取负号.利用定积分的几何意义,可以计算平面图形的面积,也是考纲中要求的定义应用内容. 定理可积的必要条件 若函数)(x f 在区间a,b 上可积,则)(x f 在a,b 上有界. 定理可积的充分条件 若函数)(x f 在区间a,b 上连续,则)(x f 在a,b 上可积.定理可积的充分条件 在区间a,b 上只有有限个间断点的有界函数)(x f 在该区间上可积.2.定积分的性质设)(x f ,)(x g 在a,b 上可积 1⎰⎰=baba k dx x f k dx x kf ,)()(为常数;2⎰⎰⎰±=±bababa dx x g dx x f dx x g x f )()()]()([;3对积分区间的可加性 对任意三个数a,b,c,总有 4比较性质 设],[),()(b a x x g x f ∈≤,则⎰⎰≤babadx x g dx x f )()(.特别地1°若],[,0)(b a x x f ∈≥,则0)(≥⎰badx x f ;2°⎰⎰≤babadx x f dx x f |)(|)(5⎰-=baa b dx .定理估值定理 若)(x f 在a,b 上的最大值与最小值分别为M 与m ,则)()()(a b M dx x f a b m ba-≤≤-⎰.定理积分中值定理 若)(x f 在a,b 上连续,则在a,b 上至少存在一点ξ,使))(()(a b f dx x f ba-=⎰ξ.上式若写成⎰-=ba dx x f ab f )(1)(ξ,该式右端称为函数)(x f 在区间a,b 上的平均值. 3.微积分学基本定理定理原函数存在性定理 若函数)(x f 在区间a,b 上连续,则函数 是)(x f 在a,b 上的一个原函数,即)()()(x f dt t f dx d x xa =⎪⎭⎫ ⎝⎛=Φ'⎰.设)(),(x x ψϕ可导 推论1 设⎰=Φϕadt t f x )()(,则)())(()(x x f x ϕϕ'=Φ'.推论2 设⎰=Φ)()()()(x x dt t f x ϕψ,则)())(()())(()(x x f x x f x ψψϕϕ'-'=Φ'.推论3 ⎰=Φ)()()()(x adt x g t f x ϕ,则)())(()()()()()()()()(x x f x g dt t f x g dt t f x g x x a x a ϕϕϕϕ'+'='⎥⎦⎤⎢⎣⎡=Φ'⎰⎰. 定理牛顿-莱布尼茨公式 若函数)(x f 在区间a,b 上连续,)(x F 是)(x f 在a,b 上的一个原函数,则)()()()(a F b F abx F dx x f ba-==⎰.上述公式也称为微积分基本定理,是计算定积分的基本公式. 4.计算定积分的方法和重要公式 1直接用牛顿-莱布尼茨公式这时要注意被积函数)(x f 在积分区间a,b 上必须连续. 2换元积分法公式 设函数)(x f 在区间a,b 上连续,而函数)(t x ϕ=满足下列条件:1°)(t ϕ在区间],[βα上是单调连续函数; 2°b a ==)(,)(βϕαϕ; 3°],[)(βαϕ在t '上连续, 则⎰⎰'=βαϕϕdt t t f dx x f ba)())(()(.该公式从右端到左端相当于不定积分的第一换元积分法;从左端到右端相当于不定积分的第二换元积分法,即用定积分的换元积分法与不定积分的换元积分法思路是一致的.作变量替换是,要相应地变换积分上下限.3分部积分法公式 设函数)(),(x v x u 在区间a,b 上有连续的导数,则⎰⎰'-='babadx x u x v a b x v x u dx x v x u )()()()()()(. 用该公式时,其思路与不定积分法的分部积分法是相同的.除此此外,当被积函数为变上限的定积分时,一般要用分部积分法.例如,设⎰⎰=xcbadx x f dt t x f )(,)()(求ϕ,这时,应设dx dv x f u ==),(.4计算定积分常用的公式 1°202241a dx x a aπ=-⎰.2°奇偶函数积分 设],[)(a a x f -在上连续,则 3°⎰⎰⎰-+=-+=--a aaaadx x f x f dx x f x f dx x f 0)]()([)]()([21)(.计算定积分,当积分区间为-a,a 时,应考虑两种情况:其一是函数的奇偶性;其二是作变量替换u x -=,用上述公式3°,当公式右端的积分易于计算时,便达目的.4°周期函数积分 设)(x f 是以T 为周期的周期函数,则⎰⎰=+TTa adx x f dx x f 0)()(.5°若)(x f 以T 为周期且是奇函数,则第六讲重点:广义积分、利用定积分的性质还应平面图形面积直角坐标系下.5.广义积分 前面引进的定积分⎰badx x f )(有两个特点:积分区间为有限区间;被积函数)(x f 在a,b 上。
微积分的公式大全
![微积分的公式大全](https://img.taocdn.com/s3/m/5e5ebf60302b3169a45177232f60ddccda38e699.png)
微积分的公式大全微积分是数学的一个重要分支,应用广泛,内容繁多。
在这里,我将为您介绍一些微积分中的基本公式和定理。
请注意,这里只是列举一些常用的公式,若要深入学习微积分,请参考相关教材和课程。
1.导数的基本公式:- 常数导数法则:对于常数c,其导数为0,即d/dx(c) = 0。
- 幂函数导数法则:对于幂函数f(x) = x^n ,其中n是常数,则其导数为d/dx(x^n) = nx^(n-1)。
-和差导数法则:若f(x)和g(x)都可导,则(f(x)±g(x))'=f'(x)±g'(x)。
-积法则:若f(x)和g(x)都可导,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
-商法则:若f(x)和g(x)都可导,且g(x)≠0,则(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/(g(x))^22.基本积分公式:- 反微分法则:若F(x)是f(x)的一个原函数,则∫f(x)dx = F(x) + C,其中C为常数。
- 平方差公式:∫(a^2 - x^2)^(1/2) dx = (1/2)(x√(a^2 - x^2) + a^2sin^(-1)(x/a)) + C。
- 指数函数积分:∫e^x dx = e^x + C,其中e是自然对数的底数。
- 三角函数积分:∫cos(x) dx = sin(x) + C,∫sin(x) dx = -cos(x) + C。
3.特殊函数和公式:-泰勒级数展开:函数f(x)在点a处的泰勒展开式为f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...。
- 自然对数函数和指数函数的微分法则:d/dx(ln(x)) = 1/x,d/dx(e^x) = e^x。
微积分的微分方程
![微积分的微分方程](https://img.taocdn.com/s3/m/20fdfe042a160b4e767f5acfa1c7aa00b52a9dbd.png)
微积分的微分方程微积分是研究函数的无穷小变化率、曲线的斜率以及定积分等数学分支。
在微积分中,微分方程是一种将导数与未知函数之间的关系表达出来的方程。
微分方程通过对函数的微分和积分来研究函数的性质,广泛应用于物理、工程、生物和经济等领域。
一、微分方程的概念和分类微分方程是描述未知函数及其导数之间关系的方程。
通常用一个或多个变量的导数表示,常见的形式为dy/dx=f(x)。
分类上,微分方程分为常微分方程和偏微分方程两类。
常微分方程是只涉及一个自变量的方程,而偏微分方程涉及多个自变量。
二、微分方程的解解微分方程的过程即求出满足方程的一般函数表达式。
根据方程的阶数和类型不同,解的形式也有所不同。
一阶线性微分方程的通解可以通过分离变量、恰当变量和一阶齐次线性微分方程的通解积分常数法求解。
而高阶线性微分方程的通解可以通过特征根法、待定系数法和叠加原理等方法求解。
三、微分方程的应用领域微分方程在物理、工程、生物和经济等领域有着广泛的应用。
在物理学中,微分方程可用于描述粒子的运动、电路中的电流和振动系统等。
在工程领域,微分方程可应用于电子电路、控制系统和信号处理等。
在生物学领域,微分方程可用于研究生物种群的增长和反应动力学等。
在经济学中,微分方程可用于建立经济模型和预测市场趋势等。
四、经典微分方程及其应用在微分方程的研究中,有几个经典的微分方程及其应用值得一提。
一种是一阶线性微分方程,其可以用于描述放射性物质的衰变过程。
另一种是二阶线性常系数齐次微分方程,其应用于描述弹簧振子的运动。
此外,还有热传导方程、扩散方程和波动方程等微分方程应用于物理、工程和数学领域的各种问题。
五、微分方程研究的进展微分方程的研究已经有着悠久的历史,并且在不断发展中。
近年来,随着计算机和数值方法的发展,数值解微分方程的方法已经成为研究的重要手段之一。
数值解可以通过数值逼近的方法获得,在求解复杂微分方程和无解析解的微分方程时具有重要作用。
微积分知识点总结
![微积分知识点总结](https://img.taocdn.com/s3/m/363c3d4b00f69e3143323968011ca300a6c3f627.png)
微积分知识点总结
微积分是数学中重要的一门学科,它研究了函数的变化以及与其相关的概念和定理。
以下是微积分的一些基本知识点总结:
导数
导数是描述函数变化率的概念。
对于函数f(x),导数f'(x)表示函数在某一点x处的变化率。
导数可以通过以下公式计算:
其中h表示极限趋近于0的一个小量。
积分
积分是导数的逆运算,用来求取曲线下的面积。
定积分可被定义为下面的极限形式:
其中a和b是积分的上下限,f(x)是被积函数。
基本积分公式
微积分中有一些常见的函数的积分公式,它们被称为基本积分
公式。
这些公式可以用来简化积分运算。
一些常见的基本积分公式
包括:
微分方程
微分方程是描述函数及其导数之间关系的方程。
它们在物理学、工程学等领域中广泛应用。
微分方程可以分为常微分方程和偏微分
方程两类。
常见的微分方程类型有:
- 一阶线性微分方程
- 二阶齐次线性微分方程
- 二阶非齐次线性微分方程
泰勒级数
泰勒级数是一种将函数表示为无穷级数的方法。
通过使用泰勒
级数展开,我们可以近似表示函数在某一点附近的值。
泰勒级数可
由以下公式表示:
其中f(n)(x)表示函数f(x)的n阶导数。
这些是微积分的一些基本知识点总结。
深入学习微积分可以帮助我们更好地理解数学和解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京师范大学珠海分校 欧阳顺湘
CopyLeft 声明:为传播数学,鼓励复制,发布,修改,但不得用于商业用途, 并禁止任何其它阻碍传播的行为
从此将达
微积分基本定理
• 定积分计算:
– 按定义计算 – 微积分基本定理
注
•
定积分
b
a
f
( x)dx 与积分变量所选取的字母无
关,即
b
a
a f (x)dx b f (t)dt
x x
y
f (t)dt, x
由积分中值定理得
( x)
f ( )x
o
[ x, x x],
a
x x x b x
f ( ), lim lim f ( )
x
x0 x x0
x 0, x ( x) f ( x).
(1)肯定了连续函数的原函数是存在的.
(2)初步揭示了积分学中的定积分与原函数之 间的联系.
微积分基本定理-积分形式
定理 2(牛顿—莱布尼茨公式)
如果F ( x) 是连续函数 f ( x) 在区间[a,b] 上
的一个原函数,则ab f ( x)dx F (b) F (a).
证 已知F( x)是 f ( x)的一个原函数,
n 1
x b b
b
1dx
0dx
a
a
a
b
a
x
dx
1 2
(b2
a
2)
x b a b 2dx 1 ( 3 3)
a
3
Table of Definite Integrals
微积分基本定理应用 例1
计算
2 sin x dx 0
微积分基本定理应用 例1
计算 2 sin x dx 0
变上限定积分
积分上限函数
x
( x) a f (t)dt.
同理,可定义变下限定积分
b
(x) x f (t)dt
积分下限函数
只需考虑变上限积分
x
( x) a f (t)dt.
因为
b
(x) x f (t)dt
b
x
a f (t)dt a f (t)dt
变限定积分的性质-连续性
设 x>0,
x 1dt ln t x ln x ln1 ln x
1t
1
x 1 dt ln x
1t
微积分基本定理应用 例3
回忆
y
1
1 x2
微积分基本定理应用 例3
2 sin x dx cos x 2
0
0
(cos cos 0)
2
cos cos 0 0 1 1
2
微积分基本定理应用 例1
2 sin x dx 1 0
微积分基本定理应用 例2
设 x>0, 求
x1
1 t dt
微积分基本定理应用 例2
sin x dx cosx C csc2 x dx cot x C
cosx dx sin x C sec x tan x dx sec x C
sec2 x dx tan x C cscx cot x dx cscx C
Table of Indefinite Integrals
注意
当a
b时, b a
f
(
x)dx
F
(b)
F
(a ) 仍成立.
从不定积分到定积分
Table of Indefinite Integrals
x n dx x n1 C n 1
ex dx ex C
1 x
dx
ln
x
C
ax dx ax C ln a
又
( x)
x
a
f (t )dt 也是 f ( x) 的一个原函数,
F( x) ( x) C x [a,b]
令 x a F(a) (a) C,
(a)
a
a
f
(t )dt
0
F(a) C,
F ( x)
x
a
f
(t )dt
C,
x
a f (t)dt F ( x) F (a),
[a,b]上可积函数 f(x) 的变限定积分
Φ(x), ψ(x) 是[a,b]上的连续函数.
变限定积分的性质-可导性
微积分基本定理(微分形式)
定理1 如果 f ( x)在[a,b]上连续,则积分上限的函
数( x)
x
a
f
(t )dt 在[a,b] 上具有导数,且它的导
数是(
x)
d dx
变上限定积分
设函数 f ( x) 在区间[a,b] 上连续,并且设x
为[a,b]上的一点, 考察定积分
x
a
f
( x)dx
x
a
f
(t )dt
如果上限x 在区间[a, b]上任意变动,则对于
每一个取定的x 值,定积分有一个对应值,所以
它在[a, b]上定义了一个函数,
记
( x)
x
a
f
(t )dt .
x
a
f (t )dt
f (x)
y
证
( x
x)
xx
a
f
(t )dt
(a x b)
( x x) ( x)
x x
x
f (t)dt f (t)dt
a
a
( x)
o a x x x b x
x
x x
x
a f (t)dt x f (t)dt a f (t)dt
注
• 微积分基本定理表明: • 如果 f 连续,则它的变上限积分是它的一个
原函数。
x
f (x)dx a f 果 f ( x)在[a,b]上连续,则积分上限的函
数( x)
x
a
f
(t )dt
就是
f
( x) 在[a,b] 上的一个
原函数.
定理的重要意义:
kdx kx C
1
x2
dx 1
tan1
x
C
1 dx sin1 x C 1 x2
Example:Definite Integrals
x x ndx 1 n1 C (n 1) n 1
x b a b ndx 1 ( n1 n1)
a
令x b
b
a f ( x)dx F (b) F (a).
牛顿—莱布尼茨公式
b
a
f
( x)dx
F(b)
F (a)
F ( x)ba
微积分基本公式表明:
一个连续函数在区间[a, b]上的定积分等于 它的任意一个原函数在区间[a, b]上的增量.
求定积分问题转化为求原函数的问题.