2010年吉林省中考数学试卷解析

合集下载

吉林中考数学试题含答案及解析

吉林中考数学试题含答案及解析

2018年吉林省中考数学试卷一、选择题共6小题;每小题2分;满分12分1.2.00分计算﹣1×﹣2的结果是A.2 B.1 C.﹣2 D.﹣32.2.00分如图是由4个相同的小正方体组成的立体图形;它的主视图是A.B.C.D.3.2.00分下列计算结果为a6的是A.a2 a3B.a12÷a2C.a23D.﹣a234.2.00分如图;将木条a;b与c钉在一起;∠1=70°;∠2=50°;要使木条a与b平行;木条a旋转的度数至少是A.10° B.20° C.50° D.70°5.2.00分如图;将△ABC折叠;使点A与BC边中点D重合;折痕为MN;若AB=9;BC=6;则△DNB的周长为A.12 B.13 C.14 D.156.2.00分我国古代数学着作孙子算经中有“鸡兔同笼”问题:“今有鸡兔同笼;上有三十五头;下有九十四足;问鸡兔各几何.”设鸡x只;兔y只;可列方程组为A.B.C.D.二、填空题共8小题;每小题3分;满分24分7.3.00分计算:= .8.3.00分买单价3元的圆珠笔m支;应付元.9.3.00分若a+b=4;ab=1;则a2b+ab2= .10.3.00分若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根;则m的值为.11.3.00分如图;在平面直角坐标系中;A4;0;B0;3;以点A为圆心;AB长为半径画弧;交x轴的负半轴于点C;则点C坐标为.12.3.00分如图是测量河宽的示意图;AE与BC相交于点D;∠B=∠C=90°;测得BD=120m;DC=60m;EC=50m;求得河宽AB= m.13.3.00分如图;A;B;C;D是⊙O上的四个点;=;若∠AOB=58°;则∠BDC= 度.14.3.00分我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”;记作k;若k=;则该等腰三角形的顶角为度.三、解答题共12小题;满分84分15.5.00分某同学化简aa+2b﹣a+ba﹣b出现了错误;解答过程如下:原式=a2+2ab﹣a2﹣b2第一步=a2+2ab﹣a2﹣b2第二步=2ab﹣b2第三步1该同学解答过程从第步开始出错;错误原因是;2写出此题正确的解答过程.16.5.00分如图;在正方形ABCD中;点E;F分别在BC;CD上;且BE=CF;求证:△ABE≌△BCF.17.5.00分一个不透明的口袋中有三个小球;上面分别标有字母A;B;C;除所标字母不同外;其它完全相同;从中随机摸出一个小球;记下字母后放回并搅匀;再随机摸出一个小球;用画树状图或列表的方法;求该同学两次摸出的小球所标字母相同的概率.18.5.00分在平面直角坐标系中;反比例函数y=k≠0图象与一次函数y=x+2图象的一个交点为P;且点P的横坐标为1;求该反比例函数的解析式.19.7.00分如图是学习分式方程应用时;老师板书的问题和两名同学所列的方程.根据以上信息;解答下列问题.1冰冰同学所列方程中的x表示;庆庆同学所列方程中的y表示;2两个方程中任选一个;并写出它的等量关系;3解2中你所选择的方程;并回答老师提出的问题.20.7.00分如图是由边长为1的小正方形组成的8×4网格;每个小正方形的顶点叫做格点;点A;B;C;D均在格点上;在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.1请用圆规画出点D→D1→D2→D经过的路径;2所画图形是对称图形;3求所画图形的周长结果保留π.21.7.00分数学活动小组的同学为测量旗杆高度;先制定了如下测量方案;使用工具是测角仪和皮尺;请帮助组长林平完成方案内容;用含a;b;α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平课题测量学校旗杆的高度活动目的运用所学数学知识及方法解决实际问题方案示意图测量步骤1用测得∠ADE=α;2用测得BC=a米;CD=b米.计算过程22.7.00分为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况;质检员进行了抽样调查;过程如下;请补全表一、表二中的空白;并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋;测得实际质量单位:g如下:甲:400;400;408;406;410;409;400;393;394;395乙:403;404;396;399;402;402;405;397;402;398整理数据:表一质量g 频数393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411种类甲30013乙0150分析数据:表二种类平均数中位数众数方差甲401.540036.85乙400.84028.56得出结论:包装机分装情况比较好的是填甲或乙;说明你的理由.23.8.00分小玲和弟弟小东分别从家和图书馆同时出发;沿同一条路相向而行;小玲开始跑步中途改为步行;到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家;两人离家的路程ym与各自离开出发地的时间xmin之间的函数图象如图所示1家与图书馆之间的路程为m;小玲步行的速度为m/min;2求小东离家的路程y关于x的函数解析式;并写出自变量的取值范围;3求两人相遇的时间.24.8.00分如图①;在△ABC中;AB=AC;过AB上一点D作DE∥AC交BC于点E;以E为顶点;ED为一边;作∠DEF=∠A;另一边EF交AC于点F.1求证:四边形ADEF为平行四边形;2当点D为AB中点时; ADEF的形状为;3延长图①中的DE到点G;使EG=DE;连接AE;AG;FG;得到图②;若AD=AG;判断四边形AEGF的形状;并说明理由.25.10.00分如图;在矩形ABCD中;AB=2cm;∠ADB=30°.P;Q两点分别从A;B同时出发;点P沿折线AB﹣BC运动;在AB上的速度是2cm/s;在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动;过点P作PN⊥AD;垂足为点N.连接PQ;以PQ;PN为邻边作 PQMN.设运动的时间为xs; PQMN与矩形ABCD 重叠部分的图形面积为ycm21当PQ⊥AB时;x= ;2求y关于x的函数解析式;并写出x的取值范围;3直线AM将矩形ABCD的面积分成1:3两部分时;直接写出x的值.26.10.00分如图;在平面直角坐标系中;抛物线y=ax2+2ax﹣3aa<0与x轴相交于A;B两点;与y轴相交于点C;顶点为D;直线DC与x轴相交于点E.1当a=﹣1时;抛物线顶点D的坐标为;OE= ;2OE的长是否与a值有关;说明你的理由;3设∠DEO=β;45°≤β≤60°;求a的取值范围;4以DE为斜边;在直线DE的左下方作等腰直角三角形PDE.设Pm;n;直接写出n 关于m的函数解析式及自变量m的取值范围.2018年吉林省中考数学试卷参考答案与试题解析一、选择题共6小题;每小题2分;满分12分1.2.00分计算﹣1×﹣2的结果是A.2 B.1 C.﹣2 D.﹣3分析根据“两数相乘;同号得正”即可求出结论.解答解:﹣1×﹣2=2.故选:A.点评本题考查了有理数的乘法;牢记“两数相乘;同号得正;异号得负;并把绝对值相乘”是解题的关键.2.2.00分如图是由4个相同的小正方体组成的立体图形;它的主视图是A.B.C.D.分析找到从正面看所得到的图形即可;注意所有的看到的棱都应表现在主视图中.解答解:从正面看易得第一层有3个正方形;第二层最右边有一个正方形.故选:B.点评本题考查了三视图的知识;主视图是从物体的正面看得到的视图.3.2.00分下列计算结果为a6的是A.a2 a3B.a12÷a2C.a23D.﹣a23分析分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.解答解:A、a2 a3=a5;此选项不符合题意;B、a12÷a2=a10;此选项不符合题意;C、a23=a6;此选项符合题意;D、﹣a23=﹣a6;此选项不符合题意;故选:C.点评本题主要考查幂的运算;解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.4.2.00分如图;将木条a;b与c钉在一起;∠1=70°;∠2=50°;要使木条a与b平行;木条a旋转的度数至少是A.10° B.20° C.50° D.70°分析根据同位角相等两直线平行;求出旋转后∠2的同位角的度数;然后用∠1减去即可得到木条a旋转的度数.解答解:如图.∵∠AOC=∠2=50°时;OA∥b;∴要使木条a与b平行;木条a旋转的度数至少是70°﹣50°=20°.故选:B.点评本题考查了旋转的性质;平行线的判定;根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.5.2.00分如图;将△ABC折叠;使点A与BC边中点D重合;折痕为MN;若AB=9;BC=6;则△DNB的周长为A.12 B.13 C.14 D.15分析由D为BC中点知BD=3;再由折叠性质得ND=NA;从而根据△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD可得答案.解答解:∵D为BC的中点;且BC=6;∴BD=BC=3;由折叠性质知NA=ND;则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=3+9=12;故选:A.点评本题主要考查翻折变换;解题的关键是掌握翻折变换的性质:折叠是一种对称变换;它属于轴对称;折叠前后图形的形状和大小不变;位置变化;对应边和对应角相等.6.2.00分我国古代数学着作孙子算经中有“鸡兔同笼”问题:“今有鸡兔同笼;上有三十五头;下有九十四足;问鸡兔各几何.”设鸡x只;兔y只;可列方程组为A.B.C.D.分析根据题意可以列出相应的方程组;从而可以解答本题.解答解:由题意可得;;故选:D.点评本题考查由实际问题抽象出二元一次方程组;解答本题的关键是明确题意;列出相应的方程组.二、填空题共8小题;每小题3分;满分24分7.3.00分计算:= 4 .分析根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根;即为这个数的算术平方根;由此即可求出结果.解答解:∵42=16;∴=4;故答案为4.点评此题主要考查了算术平方根的定义;算术平方根的概念易与平方根的概念混淆而导致错误.8.3.00分买单价3元的圆珠笔m支;应付3m 元.分析根据总价=单价×数量列出代数式.解答解:依题意得:3m.故答案是:3m.点评本题考查列代数式;解答本题的关键是明确题意;列出相应的代数式.9.3.00分若a+b=4;ab=1;则a2b+ab2= 4 .分析直接利用提取公因式法分解因式;再把已知代入求出答案.解答解:∵a+b=4;ab=1;∴a2b+ab2=aba+b=1×4=4.故答案为:4.点评此题主要考查了提取公因式法分解因式;正确找出公因式是解题关键.10.3.00分若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根;则m的值为﹣1 .分析由于关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根;可知其判别式为0;据此列出关于m的不等式;解答即可.解答解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根;∴△=b2﹣4ac=0;即:22﹣4﹣m=0;解得:m=﹣1;故选答案为﹣1.点评本题考查了根的判别式;解题的关键是了解根的判别式如何决定一元二次方程根的情况.11.3.00分如图;在平面直角坐标系中;A4;0;B0;3;以点A为圆心;AB长为半径画弧;交x轴的负半轴于点C;则点C坐标为﹣1;0 .分析求出OA、OB;根据勾股定理求出AB;即可得出AC;求出OC长即可.解答解:∵点A;B的坐标分别为4;0;0;3;∴OA=4;OB=3;在Rt△AOB中;由勾股定理得:AB==5;∴AC=AB=5;∴OC=5﹣4=1;∴点C的坐标为﹣1;0;故答案为:﹣1;0;点评本题考查了勾股定理和坐标与图形性质的应用;解此题的关键是求出OC的长;注意:在直角三角形中;两直角边的平方和等于斜边的平方.12.3.00分如图是测量河宽的示意图;AE与BC相交于点D;∠B=∠C=90°;测得BD=120m;DC=60m;EC=50m;求得河宽AB= 100 m.分析由两角对应相等可得△BAD∽△CED;利用对应边成比例可得两岸间的大致距离AB.解答解:∵∠ADB=∠EDC;∠ABC=∠ECD=90°;∴△ABD∽△ECD;∴;;解得:AB=米.故答案为:100.点评此题主要考查了相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.13.3.00分如图;A;B;C;D是⊙O上的四个点;=;若∠AOB=58°;则∠BDC= 29 度.分析根据∠BDC=∠BOC求解即可;解答解:连接OC.∵=;∴∠AOB=∠BOC=58°;∴∠BDC=∠BOC=29°;故答案为29.点评本题考查圆周角定理;圆心角、弧、弦之间的关系等知识;解题的关键是熟练掌握基本知识;属于中考常考题型.14.3.00分我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”;记作k;若k=;则该等腰三角形的顶角为36 度.分析根据等腰三角形的性质得出∠B=∠C;根据三角形内角和定理和已知得出5∠A=180°;求出即可.解答解:∵△ABC中;AB=AC;∴∠B=∠C;∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”;记作k;若k=;∴∠A:∠B=1:2;即5∠A=180°;∴∠A=36°;故答案为:36.点评本题考查了三角形内角和定理和等腰三角形的性质;能根据等腰三角形性质、三角形内角和定理和已知得出5∠A=180°是解此题的关键.三、解答题共12小题;满分84分15.5.00分某同学化简aa+2b﹣a+ba﹣b出现了错误;解答过程如下:原式=a2+2ab﹣a2﹣b2第一步=a2+2ab﹣a2﹣b2第二步=2ab﹣b2第三步1该同学解答过程从第二步开始出错;错误原因是去括号时没有变号;2写出此题正确的解答过程.分析先计算乘法;然后计算减法.解答解:1该同学解答过程从第二步开始出错;错误原因是去括号时没有变号;故答案是:二;去括号时没有变号;2原式=a2+2ab﹣a2﹣b2=a2+2ab﹣a2+b2=2ab+b2.点评考查了平方差公式和实数的运算;去括号规律:①a+b+c=a+b+c;括号前是“+”号;去括号时连同它前面的“+”号一起去掉;括号内各项不变号;②a﹣b ﹣c=a﹣b+c;括号前是“﹣”号;去括号时连同它前面的“﹣”号一起去掉;括号内各项都要变号.16.5.00分如图;在正方形ABCD中;点E;F分别在BC;CD上;且BE=CF;求证:△ABE≌△BCF.分析根据正方形的性质;利用SAS即可证明;解答证明:∵四边形ABCD是正方形;∴AB=BC;∠ABE=∠BCF=90°;在△ABE和△BCF中;;∴△ABE≌△BCF.点评本题考查正方形的性质全等三角形的判定等知识;解题的关键是熟练掌握基本知识;属于中考常考题型.17.5.00分一个不透明的口袋中有三个小球;上面分别标有字母A;B;C;除所标字母不同外;其它完全相同;从中随机摸出一个小球;记下字母后放回并搅匀;再随机摸出一个小球;用画树状图或列表的方法;求该同学两次摸出的小球所标字母相同的概率.分析列表得出所有等可能的情况数;再找出两次摸出的小球所标字母相同的情况数;即可求出其概率.解答解:列表得:A B CA A;A B;A C;AB A;B B;B C;BC A;C B;C C;C由列表可知可能出现的结果共9种;其中两次摸出的小球所标字母相同的情况数有3种;所以该同学两次摸出的小球所标字母相同的概率==.点评此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果;适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18.5.00分在平面直角坐标系中;反比例函数y=k≠0图象与一次函数y=x+2图象的一个交点为P;且点P的横坐标为1;求该反比例函数的解析式.分析先求出P点的坐标;再把P点的坐标代入反比例函数的解析式;即可求出答案.解答解:∵把x=1代入y=x+2得:y=3;即P点的坐标是1;3;把P点的坐标代入y=得:k=3;即反比例函数的解析式是y=.点评本题考查了用待定系数法求反比例函数的解析式和函数图象上点的坐标特征;能求出P点的坐标是解此题的关键.19.7.00分如图是学习分式方程应用时;老师板书的问题和两名同学所列的方程.根据以上信息;解答下列问题.1冰冰同学所列方程中的x表示甲队每天修路的长度;庆庆同学所列方程中的y表示甲队修路400米所需时间;2两个方程中任选一个;并写出它的等量关系;3解2中你所选择的方程;并回答老师提出的问题.分析1根据两人的方程思路;可得出:x表示甲队每天修路的长度;y表示甲队修路400米所需时间;2根据题意;可找出:冰冰甲队修路400米所用时间=乙队修路600米所用时间;庆庆乙队每天修路的长度﹣甲队每天修路的长度=20米;3选择两个方程中的一个;解之即可得出结论.解答解:1∵冰冰是根据时间相等列出的分式方程;∴x表示甲队每天修路的长度;∵庆庆是根据乙队每天比甲队多修20米列出的分式方程;∴y表示甲队修路400米所需时间.故答案为:甲队每天修路的长度;甲队修路400米所需时间.2冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米选择一个即可.3选冰冰的方程:=;去分母;得:400x+8000=600x;移项;x的系数化为1;得:x=40;检验:当x=40时;x、x+20均不为零;∴x=40.答:甲队每天修路的长度为40米.选庆庆的方程:﹣=20;去分母;得:600﹣400=20y;将y的系数化为1;得:y=10;经验:当y=10时;分母y不为0;∴y=10;∴=40.答:甲队每天修路的长度为40米.点评本题考查了分式方程的应用;找准等量关系;正确列出分式方程是解题的关键.20.7.00分如图是由边长为1的小正方形组成的8×4网格;每个小正方形的顶点叫做格点;点A;B;C;D均在格点上;在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.1请用圆规画出点D→D1→D2→D经过的路径;2所画图形是轴对称对称图形;3求所画图形的周长结果保留π.分析1利用旋转变换的性质画出图象即可;2根据轴对称图形的定义即可判断;3利用弧长公式计算即可;解答解:1点D→D1→D2→D经过的路径如图所示:2观察图象可知图象是轴对称图形;故答案为轴对称.3周长=4×=8π.点评本题考查作图﹣旋转变换;弧长公式、轴对称图形等知识;解题的关键是理解题意;正确画出图形;属于中考常考题型.21.7.00分数学活动小组的同学为测量旗杆高度;先制定了如下测量方案;使用工具是测角仪和皮尺;请帮助组长林平完成方案内容;用含a;b;α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平课题测量学校旗杆的高度活动目的运用所学数学知识及方法解决实际问题方案示意图测量步骤1用测角仪测得∠ADE=α;2用皮尺测得BC=a米;CD=b米.计算过程分析在Rt△ADE中;求出AE;再利用AB=AE+BE计算即可;解答解:1用测角仪测得∠ADE=α;2用皮尺测得BC=a米;CD=b米.3计算过程:∵四边形BCDE是矩形;∴DE=BC=a;BE=CD=b;在Rt△ADE中;AE=ED tanα=a tanα;∴AB=AE+EB=a tanα+b.点评本题考查解直角三角形的应用﹣仰角俯角问题;解题的关键是学会添加常用辅助线;构造直角三角形解决问题.22.7.00分为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况;质检员进行了抽样调查;过程如下;请补全表一、表二中的空白;并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋;测得实际质量单位:g如下:甲:400;400;408;406;410;409;400;393;394;395乙:403;404;396;399;402;402;405;397;402;398整理数据:表一质量g 频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲30 3 013乙0 3 15 1 0分析数据:表二种类平均数中位数众数方差甲401.5400 40036.85乙400.8402402 8.56得出结论:包装机分装情况比较好的是乙填甲或乙;说明你的理由.分析整理数据:由题干中的数据结合表中范围确定个数即可得;分析数据:根据众数和中位数的定义求解可得;得出结论:根据方差的意义;方差小分装质量较为稳定即可得.解答解:整理数据:表一质量g 频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲303013乙031510分析数据:将甲组数据重新排列为:393、394、395、400、400、400、406、408、409、410;∴甲组数据的中位数为400;乙组数据中402出现次数最多;有3次;∴乙组数据的众数为402;表二种类平均数中位数众数方差甲401.540040036.85乙400.84024028.56得出结论:表二知;乙包装机分装的奶粉质量的方差小;分装质量比较稳定;所以包装机分装情况比较好的是乙.故答案为:乙.点评本题考查了众数、中位数以及方差;掌握众数、中位数以及方差的定义及数据的整理是解题的关键.23.8.00分小玲和弟弟小东分别从家和图书馆同时出发;沿同一条路相向而行;小玲开始跑步中途改为步行;到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家;两人离家的路程ym与各自离开出发地的时间xmin之间的函数图象如图所示1家与图书馆之间的路程为4000 m;小玲步行的速度为200 m/min;2求小东离家的路程y关于x的函数解析式;并写出自变量的取值范围;3求两人相遇的时间.分析1认真分析图象得到路程与速度数据;2采用方程思想列出小东离家路程y与时间x之间的函数关系式;3两人相遇实际上是函数图象求交点.解答解:1结合题意和图象可知;线段CD为小玲路程与时间函数图象;折现O﹣A ﹣B为为小东路程与时间图象则家与图书馆之间路程为4000m;小玲步行速度为2000÷10=200m/s故答案为:4000;2002∵小东从离家4000m处以300m/min的速度返回家;则xmin时;∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤3由图象可知;两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.点评本题是一次函数实际应用问题;考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.24.8.00分如图①;在△ABC中;AB=AC;过AB上一点D作DE∥AC交BC于点E;以E为顶点;ED为一边;作∠DEF=∠A;另一边EF交AC于点F.1求证:四边形ADEF为平行四边形;2当点D为AB中点时; ADEF的形状为菱形;3延长图①中的DE到点G;使EG=DE;连接AE;AG;FG;得到图②;若AD=AG;判断四边形AEGF的形状;并说明理由.分析1根据平行线的性质得到∠BDE=∠A;根据题意得到∠DEF=∠BDE;根据平行线的判定定理得到AD∥EF;根据平行四边形的判定定理证明;2根据三角形中位线定理得到DE=AC;得到AD=DE;根据菱形的判定定理证明;3根据等腰三角形的性质得到AE⊥EG;根据有一个角是直角的平行四边形是矩形证明.解答1证明:∵DE∥AC;∴∠BDE=∠A;∵∠DEF=∠A;∴∠DEF=∠BDE;∴AD∥EF;又∵DE∥AC;∴四边形ADEF为平行四边形;2解: ADEF的形状为菱形;理由如下:∵点D为AB中点;∴AD=AB;∵DE∥AC;点D为AB中点;∴DE=AC;∵AB=AC;∴AD=DE;∴平行四边形ADEF为菱形;故答案为:菱形;3四边形AEGF是矩形;理由如下:由1得;四边形ADEF为平行四边形;∴AF∥DE;AF=DE;∵EG=DE;∴AF∥DE;AF=GE;∴四边形AEGF是平行四边形;∵AD=AG;EG=DE;∴AE⊥EG;∴四边形AEGF是矩形.点评本题考查的是平行四边形、矩形、菱形的判定;掌握它们的判定定理是解题的关键.25.10.00分如图;在矩形ABCD中;AB=2cm;∠ADB=30°.P;Q两点分别从A;B同时出发;点P沿折线AB﹣BC运动;在AB上的速度是2cm/s;在BC上的速度是2cm/s;点Q在BD上以2cm/s的速度向终点D运动;过点P作PN⊥AD;垂足为点N.连接PQ;以PQ;PN为邻边作 PQMN.设运动的时间为xs; PQMN与矩形ABCD 重叠部分的图形面积为ycm21当PQ⊥AB时;x= s ;2求y关于x的函数解析式;并写出x的取值范围;3直线AM将矩形ABCD的面积分成1:3两部分时;直接写出x的值.分析1当PQ⊥AB时;BQ=2PB;由此构建方程即可解决问题;2分三种情形分别求解即可解决问题;3分两种情形分别求解即可解决问题;解答解:1当PQ⊥AB时;BQ=2PB;∴2x=22﹣2x;∴x=s.故答案为s.2①如图1中;当0<x≤时;重叠部分是四边形PQMN.y=2x×x=2x2.②如图②中;当<x≤1时;重叠部分是四边形PQEN.y=2﹣x+2tx×x=x2+x③如图3中;当1<x<2时;重叠部分是四边形PNEQ.y=2﹣x+2×x﹣2x﹣1=x2﹣3x+4;综上所述;y=.3①如图4中;当直线AM经过BC中点E时;满足条件.则有:tan∠EAB=tan∠QPB;∴=;解得x=.②如图5中;当直线AM经过CD的中点E时;满足条件.此时tan∠DEA=tan∠QPB;∴=;解得x=;综上所述;当x=s或时;直线AM将矩形ABCD的面积分成1:3两部分.点评本题考查四边形综合题、矩形的性质平行四边形的性质、锐角三角函数、解直角三角形等知识;解题的关键是学会用分类讨论的思想思考问题;学会用方程的思想解决问题;属于中考压轴题.26.10.00分如图;在平面直角坐标系中;抛物线y=ax2+2ax﹣3aa<0与x轴相交于A;B两点;与y轴相交于点C;顶点为D;直线DC与x轴相交于点E.1当a=﹣1时;抛物线顶点D的坐标为﹣1;4 ;OE= 3 ;2OE的长是否与a值有关;说明你的理由;3设∠DEO=β;45°≤β≤60°;求a的取值范围;4以DE为斜边;在直线DE的左下方作等腰直角三角形PDE.设Pm;n;直接写出n 关于m的函数解析式及自变量m的取值范围.分析1求出直线CD的解析式即可解决问题;2利用参数a;求出直线CD的解析式求出点E坐标即可判断;3求出落在特殊情形下的a的值即可判断;4如图;作PM⊥对称轴于M;PN⊥AB于N.两条全等三角形的性质即可解决问题;解答解:1当a=﹣1时;抛物线的解析式为y=﹣x2﹣2x+3;∴顶点D﹣1;4;C0;3;∴直线CD的解析式为y=﹣x+3;∴E3;0;∴OE=3;故答案为﹣1;4;3.2结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a;∴C0;﹣3a;D﹣1;﹣4a;∴直线CD的解析式为y=ax﹣3a;当y=0时;x=3;∴E3;0;∴OE=3;∴OE的长与a值无关.3当β=45°时;OC=OE=3;∴﹣3a=3;∴a=﹣1;当β=60°时;在Rt△OCE中;OC=OE=3;∴﹣3a=3;∴a=﹣;∴45°≤β≤60°;a的取值范围为﹣≤a≤﹣1.4如图;作PM⊥对称轴于M;PN⊥AB于N.∵PD=PE;∠PMD=∠PNE=90°;∠DPE=∠MPN=90°;∴∠DPM=∠EPN;∴△DPM≌△EPN;∴PM=PN;PM=EN;∵D﹣1;﹣4a;E3;0;∴EN=4+n=3﹣m;∴n=﹣m﹣1;当顶点D在x轴上时;P1;﹣2;此时m的值1;∵抛物线的顶点在第二象限;∴m<1.∴n=﹣m﹣1m<1.点评本题考查二次函数综合题、一次函数的应用、等腰直角三角形的性质、全等三角形的判定和性质、解直角三角形等知识;解题的关键是灵活运用所学知识解决问题;学会利用参数解决问题;学会添加常用辅助线;构造全等三角形解决问题;属于中考压轴题.。

历年吉林省中考数学试卷(持续更新中)

历年吉林省中考数学试卷(持续更新中)

历年吉林省中考数学试卷(持续更新中)2012年吉林省中考数学试卷(试卷答案及解析下期见)一、选择题(每小题2分,共12分)1.(2分)在四个数0,﹣2,﹣1,2中,最小的数是()A.0 B.﹣2 C.﹣1 D.22.(2分)如图,有5个完全相同的小正方体组合成一个立方体图形,它的俯视图是()3.(2分)下列计算正确的是()A.3a﹣a=2 B.a2+2a2=3a2C.a2·a3=a6 D.(a+b)2=a2+b24.(2分)如图,在△ABC中,∠A=80°,∠B=40°.D、E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()A.40° B.60° C.80° D.120°5.(2分)如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.﹣6 B.﹣3 C.3 D.66.(2分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需的时间与原计划生产450台机器所需时间相同.设原计划每天生产x台机器,则可列方程为()二、填空题(每小题3分,共24分)7.(3分)计算:﹣= .8.(3分)不等式2x﹣1>x的解集为.9.(3分)若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1= .10.(3分)若甲,乙两个芭蕾舞团参加演出的女演员人数相同,平均身高相同,身高的方差分别为=1.5,=2.5,则芭蕾舞团参加演出的女演员身高更整齐(填:“甲”或“乙”).11.(3分)如图,A,B,C是⊙O上的三点,∠CAO=25°,∠BCO=35°,则∠AOB=度.12.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD= .13.(3分)如图,AB是⊙O的直径,BC为⊙O的切线,∠ACB=40°,点P在边BC上,则∠PAB的度数可能为(写出一个符合条件的度数即可)14.(3分)如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是.三、解答题(每小题5分,共20分)16.(5分)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm,演员踩在高跷上时,头顶距离地面的高度为224cm.设演员的身高为xcm,高跷的长度为ycm,求x,y的值.17.(5分)如图,有一游戏棋盘和一个质地均匀的正四面体骰子(各面依次标有1,2,3,4四个数字).游戏规则是游戏者每掷一次骰子,棋子按着地一面所示的数字前进相应的格数.例如:若棋子位于A处,游戏者所掷骰子着地一面所示数字为3,则棋子由A处前进3个方格到达B处.请用画树形图法(或列表法)求掷骰子两次后,棋子恰好由A处前进6个方格到达C处的概率.18.(5分)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是、(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.四、解答题(每小题7分,共28分)19.(7分)在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为(1,2),请你在给出的坐标系中画出△ABC.设AB与y轴的交点为D,则= ;(2)若点A的坐标为(a,b)(ab≠0),则△ABC的形状为.20.(7分)如图,沿AC方向开山修一条公路,为了加快施工速度,要在小山的另一边寻找点E同时施工.从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE在同一平面内.(1)施工点E离D多远正好能使成A,C,E一条直线(结果保留整数);(2)在(1)的条件下,若BC=80m,求公路段CE的长(结果保留整数).(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)21.(7分)为宣传节约用水,小明随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的众数、平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.22.(7分)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.五、解答题(每小题8分,共16分)23.(8分)如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠,点O恰好落在上点D处,折痕交OA于点C,求整个阴影部分的周长和面积.24.(8分)如图1,A,B,C为三个超市,在A通往C的道路(粗实线部分)上有一D点,D与B有道路(细实线部分)相通.A 与D,D与C,D与B之间的路程分别为25km,10km,5km.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每天从H出发,单独为A送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H,设H到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)用含的代数式填空:当0≤x≤25时,货车从H到A往返1次的路程为2xkm,货车从H到B往返1次的路程为km,货车从H到C往返2次的路程为km,这辆货车每天行驶的路程y= .当25<x≤35时,这辆货车每天行驶的路程y= ;(2)请在图2中画出y与x(0≤x≤35)的函数图象;(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?六、解答题(每小题10分,共20分)25.(10分)如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2.(1)当t= s时,点P与点Q重合;(2)当t= s时,点D在QF上;(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.26.(10分)问题情境如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF.特例探究填空:当m=1,n=2时,yE= ,yF= ;当m=3,n=5时,yE= ,yF= .归纳证明对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.拓展应用(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;(2)连接EF,AE.当S四边形OFEB=3S△OFE时,直接写m与n的大小关系及四边形OFEA的形状.。

2010年长春市中考数学试题及标准答案

2010年长春市中考数学试题及标准答案

2010年长春市初中毕业生学业考试数学试题一、选择题(每小题3分,共24分)1.错误!的相反数为( ) A .15B.-错误! C.5 D.-5 2.下列几何体中,主视图为右图是( )3.不等式2x-1≤5的解集在数轴上表示为( )4.今年6月11日,我省九个地区的最高气温与最低气温如图所示,则这九个地区该天的最高气温的众数为( ) A .27°C B .29°C C .30°C D.31°C5.端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元.设王老师买荷包x 个,五彩绳y个,根据题意,下面列出的方程组正确的是( )A.错误!B.错误! C.错误! D.错误! 6.如图,在△AB C中,∠C=90º,∠B =40º,A D是角平分线,则∠AD C=( ) A.25º B .50º C .65º D.70º7.如图,锐角△ABC 的顶点A、B 、C 均在⊙O 上,∠OAC =20º,则∠B =( ) A.40º B.60º C.70º D .80º 8.如图,平面直角坐标系中,OB 在x 轴上,∠AB O=90º,点A 的坐标为(1,2).将△AOB 绕点A 逆时针旋转90º,点O 的对应点C 恰好落在双曲线y =\F( k ,x )(x >0)上,则k =( )A.2 B .3 C.4 D.6二、填空题(每小题3分,共18分)9.因式分解:a-a 2= .OBAD Cyx第8题图BACD第6题图A .B .C .D . A . B . C . D .0 0 0 3 3 2 2 BACO第7题图白城31-19°C松原 31-19°C 长春 31-19°C吉林31-17°C 延边 29-15°C 白山27-14°C四平 31-19°C 通化29-17°C 辽源30-17°C10.写一个比错误!小的正整数,这个整数是 (写出一个即可).11.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a 元,则该班学生共捐款 元(用含有a的代数式表示).12.如图,双曲线y1=错误!(k1>0)与直线y 2=k 2x +b (k 2>0)的一个交点的横坐标为2,那么当x =3时,y 1 y 2(填“>”、“=”或“<”).13.如图,⊙P 与x轴切于点O,点P 的坐标为(0,1),点A 在⊙P上,并且在第一象限,∠APO =120º.⊙P 沿x 轴正方向滚动,当点A 第一次落在x轴上时,点A 的横坐标 为 (结果保留 ).14.如图,抛物线y =ax 2+c (a <0)交x 轴于点G 、F ,交y 轴于点D ,在x 轴上方的抛物线上有两点B 、E,它们关于y 轴对称,点G 、B在y轴左侧.BA ⊥OG 于点A,BC ⊥O D于点C .四边形O AB C与四边形OD EF 的面积分别为6和10,则△A BG 与△BCD 的面积之和为 .三、解答题(每小题5分,共20分)15.先化简,再求值:(x +1)2-2x +1,其中x =2.16.一个不透明的口袋中装有红、黄、白小球各1个,小球除颜色外其余均相同.从口袋中随机摸出一个小球,记下颜色放回,再随机摸出一个小球.请你用画树形图(或列表)的方法,求出两次摸出的小球颜色相同的概率.17.第16届亚运会将在广州举行.小李预定了两种价格的亚运会门票,其中甲种门票共花费280元,乙种门票共花费300元,甲种门票比乙种门票多2张,乙种门票价格是甲种门票价格的1.5倍,求甲种门票的价格.第14题图。

吉林省长春市中考数学试卷及答案(Word解析版)

吉林省长春市中考数学试卷及答案(Word解析版)

吉林省长春市中考数学试卷一、选择题(每小题3分,共24分)1.(3分)(•长春)的绝对值等于()A.B.4C.D.﹣4考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣的绝对值等于,即|﹣|=.故选A.点评:本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(•长春)如图是由四个相同的小长方体组成的立体图形,这个立体图形的正视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个长方形,位于左边,第二层有2个长方形.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)(•长春)我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为()A.14×106B.1.4×107C.1.4×108D.0.14×108考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14 000 000有8位,所以可以确定n=8﹣1=7.解答:解:14 000 000=1.4×107.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(•长春)不等式2x<﹣4的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式分析:首先解不等式求得不等式的解集,根据数轴上点的表示法即可判断.解答:解:解不等式得:x<﹣2.故选D.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(•长春)如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D 在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为()A.30°B.45°C.60°D.75°考点:平行线的性质;直角三角形的性质.分析:首先根据垂直定义可得∠ADE=90°,再根据∠FDE=30°,可得∠ADF=60°,然后根据两直线平行同位角相等可得∠B的大小.解答:解:∵DE⊥AB,∴∠ADE=90°,∵∠FDE=30°,∴∠ADF=90°﹣30°=60°,∵BC∥DF,∴∠B=∠ADF=60°,故选:C.点评:此题主要考查了平行线的性质,关键是掌握两直线平行同位角相等.6.(3分)(•长春)如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC 弧上,则∠ADB的大小为()A.46°B.53°C.56°D.71°考点:圆周角定理.分析:根据三角形内角和定理求出∠ACB,根据圆周角定理得出∠C,求出即可.解答:解:∵∠ABC=71°,∠CAB=53°,∴∠ACB=180°﹣∠ABC﹣∠BAC=56°,∵弧AB对的圆周角是∠ADB和∠ACB,∴∠ADB=∠ACB=56°,故选C.点评:本题考查了圆周角定理和三角形内角和定理的应用,关键是求出∠ACB的度数和得出∠ACB=∠ADB.7.(3分)(•长春)如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A.B.C.2D.3考点:相似三角形的判定与性质.专题:探究型.分析:先根据题意判断出△ABD∽△BDC,再根据相似三角形的对应边成比例即可得出CD的长.解答:解:∵∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,∴△ABD∽△BDC,∴=,即=,解得CD=.故选B.点评:本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.8.(3分)(•长春)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x 轴向右平移后得到△O′A′B′,点A的对应点在直线y=x上一点,则点B与其对应点B′间的距离为()A.B.3C.4D.5考点:一次函数图象上点的坐标特征;坐标与图形变化-平移分析:根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.解答:解:如图,连接AA′、BB′.∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是3.又∵点A的对应点在直线y=x上一点,∴3=x,解得x=4.∴点A′的坐标是(4,3),∴AA′=4.∴根据平移的性质知BB′=AA′=4.故选C.点评:本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.根据平移的性质得到BB′=AA′是解题的关键.二、填空题(每小题3分,共18分)9.(3分)(•长春)计算:a2•5a=5a3.考点:单项式乘单项式专题:计算题.分析:利用单项式乘单项式法则计算即可得到结果.解答:解:原式=5a3.故答案为:5a3.点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.10.(3分)(•长春)吉林广播电视塔“五一”假期第一天接待游客m人,第二天接待游客n人,则这2天平均每天接待游客人(用含m、n的代数式表示).考点:列代数式分析:用两天接待的游客总人数除以天数,即可得解.解答:解:2天平均每天接待游客.故答案为:.点评:本题考查了列代数式,比较简单,熟练掌握平均数的求法是解题的关键.11.(3分)(•长春)如图,MN是⊙O的弦,正方形OABC的顶点B、C在MN上,且点B是CM的中点.若正方形OABC的边长为7,则MN的长为28.考点:垂径定理;正方形的性质.分析:根据正方形性质得出BC=7,∠OCB=90°,根据垂径定理得出CM=2BC,推出MN=4BC,代入求出即可.解答:解:∵四边形OABC是正方形,∴BC=7,∠OCB=90°,∴OC⊥MN,∴由垂径定理得:MN=2CM,∵点B是CM的中点,∴CM=2BC,∴MN=4BC=4×7=28,故答案为:28.点评:本题考查了垂径定理和正方形性质的应用,关键是推出MN=4BC.12.(3分)(•长春)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC 的大小为65度.考点:全等三角形的判定与性质.分析:根据作法可得AB=CD,BC=AD,然后利用“边边边”证明△ABC和△CDA全等,再根据全等三角形对应角相等解答.解答:解:∵以点A为圆心,以BC长为半径作弧;以顶点C为圆心,以AB长为半径作弧,两弧交于点D,∴AB=CD,BC=AD,在△ABC和△CDA中,,∴△ABC≌△CDA,∴∠ADC=∠B=65°.故答案为:65.点评:本题考查了全等三角形的判定与性质,根据作法得到全等三角形相等的边是解题的关键.13.(3分)(•长春)如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k 的值为.考点:正多边形和圆;反比例函数图象上点的坐标特征.分析:连接OB,过B作BM⊥OA于M,得出等边三角形AOB,求出OB,根据锐角三角函数求出BM和OM,即可得出B的坐标,代入即可求出答案.解答:解:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=6,∴BM=OB•sin∠BOA=6×sin60°=3,OM=OB•COS60°=3,即B的坐标是(3,3),∵B在反比例函数位于第一象限的图象上,∴k=3×3=9,故答案为:9.点评:本题考查了正多边形性质,锐角三角函数,反比例函数的性质,等边三角形的性质和判定的应用,关键是求出B的坐标.14.(3分)(•长春)如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线y=于点B、C,则BC的长值为6.考点:二次函数图象上点的坐标特征.分析:先由y轴上点的横坐标为0求出A点坐标为(0,3),再将y=3代入y=,求出x的值,得出B、C两点的坐标,进而求出BC的长度.解答:解:∵抛物线y=ax2+3与y轴交于点A,∴A点坐标为(0,3).当y=3时,=3,解得x=±3,∴B点坐标为(﹣3,3),C点坐标为(3,3),∴BC=3﹣(﹣3)=6.故答案为6.点评:本题考查了二次函数图象上点的坐标特征,两函数交点坐标的求法,平行于x轴上的两点之间的距离,比较简单.三、解答题(本大题共10小题,共78分)15.(6分)(•长春)先化简,再求值:,其中x=.考点:分式的化简求值专题:计算题.分析:将的分子因式分解,然后约分;再将(x﹣2)2展开,合并同类项后再代入求值即可.解答:解:原式==4x+x2﹣4x+4=x2+4.当x=时,原式==11.点评:本题考查了分式的化简求值,熟悉因式分解及约分、通分是解题的关键.16.(6分)(•长春)甲、乙两人各有一个不透明的口袋,甲的口袋中装有1个白球和2个红球,乙的口袋中装有2个白球和1个红球,这些球除颜色外其他都相同.甲、乙两人分别从各自口袋中随机摸出1个球,用画树状图(或列表)的方法,求两人摸出的球颜色相同的概率.考点:列表法与树状图法专题:计算题.分析:列表得出所有等可能的情况数,找出两人摸出的求颜色相同的情况数,即可求出所求的概率.解答:解:列表如下:甲乙结果白红红白(白,白)(红,白)(红,白)白(白,白)(红,白)(红,白)红(白,红)(红,红)(红,红)所有等可能的情况有9种,其中颜色相同的情况有4种,则P(两人摸出的球颜色相同)=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)(•长春)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.考点:分式方程的应用.分析:首先设第一组有x人,则第二组人数是1.5x人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数﹣第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方即可.解答:解:设第一组有x人.根据题意,得=,解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.18.(7分)(•长春)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.考点:平行四边形的性质专题:证明题.分析:根据平行四边形的对边平行且相等可得AD=EF,AD∥EF,再根据两直线平行,同位角相等可得∠ACB=∠FEB,根据等边对等角求出∠ACB=∠B,从而得到∠FEB=∠B,然后根据等角对等边证明即可.解答:证明:∵四边形ADEF为平行四边形,∴AD=EF,AD∥EF,∴∠ACB=∠FEB,∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF.点评:本题考查了平行四边形对边平行且相等的性质,平行线的性质,等角对等边的性质,熟练掌握各性质是解题的关键.19.(7分)(•长春)如图,岸边的点A处距水面的高度AB为2.17米,桥墩顶部点C距水面的高度CD为23.17米.从点A处测得桥墩顶部点C的仰角为26°,求岸边的点A与桥墩顶部点C之间的距离.(结果精确到0.1米)(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)考点:解直角三角形的应用-仰角俯角问题分析:在Rt△CAE中,利用CD、DE的长和已知的角的度数,利用正弦函数可求得AC的长.解答:解:由题意知,DE=AB=2.17,∴CE=CD﹣DE=12.17﹣2.17=10.在Rt△CAE中,∠CAE=26°,sin∠CAE=,∴AC===≈22.7(米).答:岸边的点A与桥墩顶部点C之间的距离约为22.7米.点评:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.20.(7分)(•长春)某校学生会为了解学生在学校食堂就餐剩饭情况,随机对上周在食堂就餐的n名学生进行了调查,先调查是否剩饭的情况,然后再对其中剩饭的每名学生的剩饭次数进行调查.根据调查结果绘制成如下统计图.(1)求这n名学生中剩饭学生的人数及n的值.(2)求这n名学生中剩饭2次以上的学生占这n名学生人数的百分比.(3)按上述统计结果,估计上周在学校食堂就餐的1 200名学生中剩饭2次以上的人数.考点:条形统计图;用样本估计总体;扇形统计图专题:计算题.分析:(1)由条形统计图中的数据相加即可求出n名学生中剩饭的学生人数,除以剩饭学生所占的百分比即可求出学生的总数,即为n的值;(2)根据条形统计图得到剩饭2次以上的人数,除以n的值,即可求出结果;(3)根据(2)中求出的百分比,乘以1200即可得到结果.解答:解:(1)根据题意得:这n名学生中剩饭学生的人数为58+41+6=105(人),n的值为105÷70%=150,则这n名学生中剩饭的学生有105人,n的值为150;(2)根据题意得:6÷150×100%=4%,则剩饭2次以上的学生占这n名学生人数的4%;(3)根据题意得:1200×4%=48(人).则估计上周在学校食堂就餐的1200名学生中剩饭2次以上的约有48人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(8分)(•长春)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.考点:一次函数的应用分析:(1)先求出乙队铺设路面的工作效率,计算出乙队完成需要的时间求出E的坐标,再由待定系数法就可以求出结论.(2)由(1)的结论求出甲队完成的时间,把时间代入乙的解析式就可以求出结论.解答:(1)设线段BC所在直线对应的函数关系式为y=k1x+b1.∵图象经过(3,0)、(5,50),∴∴线段BC所在直线对应的函数关系式为y=25x﹣75.设线段DE所在直线对应的函数关系式为y=k2x+b2.∵乙队按停工前的工作效率为:50÷(5﹣3)=25,∴乙队剩下的需要的时间为:(160﹣50)÷25=,∴E(,160),∴,解得:∴线段DE所在直线对应的函数关系式为y=25x﹣112.5.(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5.答:当甲队清理完路面时,乙队铺设完的路面长为87.5米.点评:本题考查了待定系数法求一次函数的解析式的运用,工作总量=工作效率×工作时间的运用,解答时求出函数的解析式是关键.22.(9分)(•长春)探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为152.考点:全等三角形的判定与性质;正方形的判定与性质.分析:探究:过点A作AF⊥CB,交CB的延长线于点F,先判定四边形AFCE为矩形,根据矩形的四个角都是直角可得∠FAE=90°,然后利用同角的余角相等求出∠FAB=∠EAD,再利用“角角边”证明△AFB和△AED全等,根据全等三角形对应边相等可得AE=AF,从而得到四边形AFCE是正方形,然后根据正方形的面积公式列计算即可得解;应用:过点A作AF⊥CD交CD的延长线于F,连接AC,根据同角的补角相等可得∠ABC=∠ADF,然后利用“角角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AF=AE,再根据S四边形ABCD=S△ABC+S△ACD列式计算即可得解.解答:探究:如图①,过点A作AF⊥CB,交CB的延长线于点F,∵AE⊥CD,∠BCD=90°,∴四边形AFCE为矩形,∴∠FAE=90°,∴∠FAB+∠BAE=90°,∵∠EAD+∠BAE=90°,∴∠FAB=∠EAD,∵在△AFB和△AED中,,∴△AFB≌△AED(AAS),∴AF=AE,∴四边形AFCE为正方形,∴S四边形ABCD=S正方形AFCE=AE2=102=100;应用:如图,过点A作AF⊥CD交CD的延长线于F,连接AC,则∠ADF+∠ADC=180°,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADF,∵在△ABE和△ADF中,,∴△ABE≌△ADF(AAS),∴AF=AE=19,∴S四边形ABCD=S△ABC+S△ACD=BC•AE+CD•AF=×10×19+×6×19=95+57=152.故答案为:152.点评:本题考查了全等三角形的判定与性质,正方形的判定与性质,(1)作辅助线构造出全等三角形是解题的关键;(2)作辅助线构造出全等三角形并把四边形分成两个三角形是解题的关键.23.(10分)(•长春)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.(1)求这条抛物线所对应的函数关系式.(2)求点C在这条抛物线上时m的值.(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.①当点D在这条抛物线的对称轴上时,求点D的坐标.②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(,))考点:二次函数综合题分析:(1)将A(﹣1,0)、B(4,0)两点的坐标代入y=ax2+bx﹣2,运用待定系数法即可求出抛物线的解析式;(2)先根据等腰直角三角形的性质求出点C的坐标为(m,2),再将C的坐标代入y=x2﹣x﹣2,即可求出m的值;(3)①先由旋转的性质得出点D的坐标为(m,﹣2),再根据二次函数的性质求出抛物线y=x2﹣x﹣2的对称轴为直线x=,然后根据点D在直线x=上,即可求出点D的坐标;②以DN为直角边作等腰直角三角形DNE时,分别以D、N为直角顶点,在DN的两侧分别作出等腰直角三角形DNE,E点的位置分四种情况讨论.针对每一种情况,都可以先根据等腰直角三角形的性质求出点E的坐标,然后根据点E在直线x=上,列出关于m的方程,解方程即可求出m的值.解答:解:(1)∵抛物线经过点A(﹣1,0)、B(4,0),∴解得∴抛物线所对应的函数关系式为y=x2﹣x﹣2;(2)∵△CMN是等腰直角三角形CMN,∠CMN=90°,∴CM=MN=2,∴点C的坐标为(m,2),∵点C(m,2)在抛物线上,∴m2﹣m﹣2=2,解得m1=,m2=.∴点C在这条抛物线上时,m的值为或;(3)①∵将线段CN绕点N逆时针旋转90°后,得到对应线段DN,∴∠CND=90°,DN=CN=CM=MN,∴CD=CN=2CM=2MN,∴DM=CM=MN,∠DMN=90°,∴点D的坐标为(m,﹣2).又∵抛物线y=x2﹣x﹣2的对称轴为直线x=,点D在这条抛物线的对称轴上,∴点D的坐标为(,﹣2);②如图,以DN为直角边作等腰直角三角形DNE,E点的位置有四种情况:如果E点在E1的位置时,∵点D的坐标为(m,﹣2),MN=ME1=2,点N的坐标为(m+2,0),∴点E1的(m﹣2,0),∵点E1在抛物线y=x2﹣x﹣2的对称轴x=上,∴m﹣2=,解得m=;如果E点在E2的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E2的(m+2,﹣4),∵点E2在抛物线y=x2﹣x﹣2的对称轴x=上,∴m+2=,解得m=﹣;如果E点在E3的位置时,∵点D的坐标为(m,﹣2),∴点E3的(m,2),∵点E3在抛物线y=x2﹣x﹣2的对称轴x=上,∴m=;如果E点在E4的位置时,∵点D的坐标为(m,﹣2),点N的坐标为(m+2,0),∴点E4的(m+4,﹣2),∵点E4在抛物线y=x2﹣x﹣2的对称轴x=上,∴m+4=,解得m=﹣;综上可知,当点E在这条抛物线的对称轴上时,所有符合条件的m的值为m=﹣或m=﹣或m=或m=.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求抛物线的解析式,二次函数的性质,等腰直角三角形的性质,旋转的性质等知识,综合性较强,难度适中.其中(3)②要注意分析题意分情况讨论E点可能的位置,这是解题的关键.24.(12分)(•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A ﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.考点:四边形综合题.分析:(1)分情况讨论,当点P沿A﹣D运动时,当点P沿D﹣A运动时分别可以表示出AP的值;(2)分类讨论,当0<t<1时,当1<t<时,根据三角形的面积公式分别求出S 与t的函数关系式;(3)分情况讨论,当0<t<1时,当1<t<时,当<t<时,利用三角形的面积相等建立方程求出其解即可;(4)分情况讨论当P在A﹣D之间或D﹣A之间时,如图⑥,根据轴对称的性质可以知道四边形QCOC′为菱形,根据其性质建立方程求出其解,当P在D﹣A之间如图⑦,根据菱形的性质建立方程求出其解即可.解答:解:(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8.当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t.(2分)(2)当点P与点A重合时,BP=AB,t=1.当点P与点D重合时,AP=AD,8t﹣8=50,t=.当0<t<1时,如图①.作过点Q作QE⊥AB于点E.S△ABQ==,∴QE===.∴S=﹣30t2+30t.当1<t≤时,如图②.S==,∴S=48t﹣48;(3)当点P与点R重合时,AP=BQ,8t﹣8=5t,t=.当0<t≤1时,如图③.∵S△BPM=S△BQM,∴PM=QM.∵AB∥QR,∴∠PBM=∠QRM,∠BPM=∠MQR,在△BPM和△RQM中,∴△BPM≌△RQM.∴BP=RQ,∵RQ=AB,∴BP=AB∴13t=13,解得:t=1当1<t≤时,如图④.∵BR平分阴影部分面积,∴P与点R重合.∴t=.当<t≤时,如图⑤.∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(4)如图⑥,当P在A﹣D之间或D﹣A之间时,C′D′在BC上方且C′D′∥BC 时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50﹣5t=50﹣8(t﹣1)+13,或50﹣5t=8(t﹣1)﹣50+13,解得:t=7或t=.当P在A﹣D之间或D﹣A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50﹣5t+13=8(t﹣1)﹣50,解得:t=.∴当t=7,t=,t=时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.点评:本题考查了平行四边形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,分类讨论的数学思想的运用,轴对称的性质的运用,三角形的面积公式的运用,解答时灵活运用动点问题的解答方法确定分界点是解答本题的关键和难点.。

2010年吉林省长春市中考数学试题-推荐下载

2010年吉林省长春市中考数学试题-推荐下载

k=( )
A.2
B.3
二、填空题(每小题 3 分,共 18 分)
9.因式分解:a-a2=
10.写一个比 5小的正整数,这个整数是
C.4

11.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共 3200 元,其中 5 名
教师人均捐款 a 元,则该班学生共捐款
k1
12.如图,双曲线 y1= x (k1>0)与直线 y2=k2x+b(k2>0)的一个交点的横坐标为 2,那么
A,BC⊥OD 于点 C.四边形 OABC 与四边形 ODEF 的面积分别为 6 和 10,则△ABG
与△BCD 的面积之和为
三、解答题(每小题 5 分,共 20 分)
15.先化简,再求值:(x+1)2-2x+1,其中 x= 2.

16.一个不透明的口袋中装有红、黄、白小球各 1 个,小球除颜色外其余均相同.从口袋 中随机摸出一个小球,记下颜色放回,再随机摸出一个小球.请你用画树形图(或列表)的 方法,求出两次摸出的小球颜色相同的概率.
第 14 题图
F
x
17.第 16 届亚运会将在广州举行.小李预定了两种价格的亚运会门票,其中甲种门票共花 费 280 元,乙种门票共花费 300 元,甲种门票比乙种门票多 2 张,乙种门票价格是甲 种门票价格的 1.5 倍,求甲种门票的价格.
18.如图,将一个两边带有刻度的直尺放在半圆形纸片上,使其一边经过圆心 O,另一边 所在直线与半圆交于点 D、E,量出半径 OC=5cm,弦 DE=8cm,求直尺的宽.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2010年吉林省长春市中考数学试卷

2010年吉林省长春市中考数学试卷

2010年吉林省长春市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)的相反数是()A.5B.C.﹣D.﹣52.(3分)下列物体中,主视图为图①的是()A.B.C.D.3.(3分)不等式2x﹣1≤5的解集在数轴上表示为()A.B.C.D.4.(3分)今年6月11日,我省九个地区的最高气温与最低气温如图所示,则这九个地区该天最高气温的众数为()A.27°C B.29°C C.30°C D.31°C5.(3分)端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元.设王老师购买荷包x个,五彩绳y个,根据题意,下面列出的方程组正确的是()A.B.C.D.6.(3分)如图,△ABC中,∠C=90°,∠B=40°.AD是角平分线,则∠ADC的度数为()A.25°B.50°C.65°D.70°7.(3分)如图,锐角△ABC的顶点A,B,C均在⊙O上,∠OAC=20°,则∠B 的度数为()A.40°B.60°C.70°D.80°8.(3分)如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为()A.2B.3C.4D.6二、填空题(共6小题,每小题3分,满分18分)9.(3分)因式分解:a﹣a2=.10.(3分)写一个比小的正整数,这个正整数是.(写出一个即可).11.(3分)为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a元,则该班学生共捐款元.(用含有a的代数式表示).12.(3分)如图,双曲线y1=(k1>0)与直线y2=k2x+b(k2>0)的一个交点的横坐标为2.当x=3时,y1y2.(填“>”“<”“=”).13.(3分)如图,⊙P与x轴切于点O,点P的坐标为(0,1).点A在⊙P上,且位于第一象限,∠APO=120°.⊙P沿x轴正方向滚动,当点A第一次落在x 轴上时,点A的横坐标为.(结果保留π)14.(3分)如图,抛物线y=ax2+c(a<0)交x轴于点G,F,交y轴于点D,在x轴上方的抛物线上有两点B,E,它们关于y轴对称,点G,B在y轴左侧,BA⊥OG于点A,BC⊥OD于点C,四边形OABC与四边形ODEF的面积分别为6和10,则△ABG与△BCD的面积之和为.三、解答题(共12小题,满分78分)15.(5分)先化简,再求值:(x+1)2﹣2x+1,其中x=.16.(5分)一个不透明的口袋中装有红,黄,白小球各1个,小球除颜色外其余均相同,从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球,请你用画树形图(或列表)的方法.求出两次摸出小球的颜色相同的概率.17.(5分)第16届亚运会将在中国广州举行,小李预定了两种价格的亚运会门票,其中甲种门票共花费280元,乙种门票共花费300元,甲种门票比乙种门票多2张,乙种门票价格是甲种门票价格的1.5倍,求甲种门票的价格?18.(5分)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.19.(6分)(1)在图1中,以线段m为一边画菱形,要求菱形的顶点均在格点上;(2)在图2中,平移a,b,c中的两条线段,使它们与线段n构成以n为一边的等腰直角三角形.(画一个即可)20.(6分)如图,望远镜调节好后,摆放在水瓶地面上.观测者用望远镜观测物体时,眼睛(在A点)到水平地面的距离AD=91cm,沿AB方向观测物体的仰角a=33°.望远镜前端(B点)与眼睛(A点)之间的距离AB=153cm,求点B到水平地面的距离BC的长(精确到0.1cm).[参考数据:sin33°=0.54,cos33°=0.84,tan33°=0.65].21.(6分)如图,四边形ABCD与四边形DEFG都是矩形,顶点F在BA的延长线上,边DG与AF交于点H,AD=4,DH=5,EF=6,求FG的长.22.(6分)小明参加卖报纸的社会实践活动,他调查了一个报亭某天A,B,C 三种报纸的销售量.并把调查结果绘制成如下条形统计图.(1)求该天A,C报纸的销售量各占这三种报纸销售量之和的百分比;(2)请绘制该天A,B,C三种报纸销售量的扇形统计图;(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份?23.(7分)如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE,CD为邻边做▱CDFE,过点C作CG∥AB交EF于点G,连接BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.24.(7分)如图,梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x<30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F 处,DF交BC于点G.(1)用含有x的代数式表示BF的长.(2)设四边形DEBG的面积为S,求S与x的函数关系式.(3)当x为何值时,S有最大值,并求出这个最大值.[参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(﹣,)].25.(10分)如图1,A,B,C三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A容器阀门,以4升/分的速度向B容器内注水5分钟,然后关闭,接着打开B容器阀门,以10升/分的速度向C容器内注水5分钟,然后关闭.设A,B,C三个容器内的水量分别为y a,y b,y c(单位:升),时间为t(单位:分).开始时,B容器内有水50升,y a y c与t的函数图象如图2所示,请在0≤t≤10的范围内解答下列问题:(1)求t=3时,y b的值.(2)求y b与t的函数关系式,并在图2中画出其函数图象.(3)求y a:y b:y c=2:3:4时t的值.26.(10分)如图1,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高,抛物线y=ax2+2x与直线y=x 交于点O,C,点C的横坐标为6,点P在x轴的正半轴上,过点P作PE∥y 轴.交射线OA于点E.设点P的横坐标为m,以A,B,D,E为顶点的四边形的面积为S.(1)求OA所在直线的解析式.(2)求a的值.(3)当m≠3时,求S与m的函数关系式.(4)如图2,设直线PE交射线OC于点R,交抛物线于点Q,以RQ为一边,在RQ的右侧作矩形RQMN,其中RN=.直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m的取值范围.2010年吉林省长春市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)的相反数是()A.5B.C.﹣D.﹣5【解答】解:根据概念,(﹣)+()=0,则﹣的相反数是.故选:B.2.(3分)下列物体中,主视图为图①的是()A.B.C.D.【解答】解:A、主视图是等腰梯形,不符合题意;B、主视图为矩形,符合题意;C、主视图是等腰梯形,不符合题意;D、主视图是等腰三角形,不符合题意.故选:B.3.(3分)不等式2x﹣1≤5的解集在数轴上表示为()A.B.C.D.【解答】解:解不等式得:x≤3,所以在数轴上表示为故选:A.4.(3分)今年6月11日,我省九个地区的最高气温与最低气温如图所示,则这九个地区该天最高气温的众数为()A.27°C B.29°C C.30°C D.31°C【解答】解:数据为31℃,31℃,30℃,31℃,29℃,27℃,29℃,31℃,30℃,其中数据31℃出现4次,次数最多,所以众数是31℃.故选:D.5.(3分)端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元.设王老师购买荷包x个,五彩绳y个,根据题意,下面列出的方程组正确的是()A.B.C.D.【解答】解:设王老师购买荷包x个,五彩绳y个,根据题意,得方程组.故选:B.6.(3分)如图,△ABC中,∠C=90°,∠B=40°.AD是角平分线,则∠ADC的度数为()A.25°B.50°C.65°D.70°【解答】解:∵∠C=90°,∠B=40°,∴∠BAC=90°﹣40°=50°,∵AD是角平分线,∴∠BAD=∠BAC=25°,∴∠ADC=∠B+∠BAD=40°+25°=65°.故选:C.7.(3分)如图,锐角△ABC的顶点A,B,C均在⊙O上,∠OAC=20°,则∠B 的度数为()A.40°B.60°C.70°D.80°【解答】解:∵OA=OC,∠OAC=20°,∴∠OCA=∠OAC=20°.∴∠AOC=140°.∴∠B=∠AOC=70°.故选:C.8.(3分)如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为()A.2B.3C.4D.6【解答】解:易得OB=1,AB=2,∴AD=2,∴点D的坐标为(3,2),∴点C的坐标为(3,1),∴k=3×1=3.故选:B.二、填空题(共6小题,每小题3分,满分18分)9.(3分)因式分解:a﹣a2=a(1﹣a).【解答】解:原式=a(1﹣a).10.(3分)写一个比小的正整数,这个正整数是1.(写出一个即可).【解答】解:∵2<<3,∴比小的正整数有2,1.故答案为:1.11.(3分)为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a元,则该班学生共捐款(3200﹣5a)元.(用含有a的代数式表示).【解答】解:学生捐款数为:(3200﹣5a)元.12.(3分)如图,双曲线y1=(k1>0)与直线y2=k2x+b(k2>0)的一个交点的横坐标为2.当x=3时,y1<y2.(填“>”“<”“=”).【解答】解:由函数图象可知,当x>2时,函数y1=(k1>0)的图象在直线y2=k2x+b的下方,故当x=3时,y1<y2.故答案为:<.13.(3分)如图,⊙P与x轴切于点O,点P的坐标为(0,1).点A在⊙P上,且位于第一象限,∠APO=120°.⊙P沿x轴正方向滚动,当点A第一次落在x轴上时,点A 的横坐标为 .(结果保留π)【解答】解:弧OA= .14.(3分)如图,抛物线y=ax 2+c (a <0)交x 轴于点G ,F ,交y 轴于点D ,在x 轴上方的抛物线上有两点B ,E ,它们关于y 轴对称,点G ,B 在y 轴左侧,BA ⊥OG 于点A ,BC ⊥OD 于点C ,四边形OABC 与四边形ODEF 的面积分别为6和10,则△ABG 与△BCD 的面积之和为 4 .【解答】解:由于抛物线的对称轴是y 轴,根据抛物线的对称性知:S 四边形ODEF =S 四边形ODBG =10;∴S △ABG +S △BCD =S 四边形ODBG ﹣S 四边形OABC =10﹣6=4.三、解答题(共12小题,满分78分)15.(5分)先化简,再求值:(x +1)2﹣2x +1,其中x= .【解答】解:原式=x 2+2x +1﹣2x +1=x 2+2;当 时,原式 .16.(5分)一个不透明的口袋中装有红,黄,白小球各1个,小球除颜色外其余均相同,从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球,请你用画树形图(或列表)的方法.求出两次摸出小球的颜色相同的概率.【解答】解:共9种情况,两次摸出小球的颜色相同的情况有3种情况,所以概率是.17.(5分)第16届亚运会将在中国广州举行,小李预定了两种价格的亚运会门票,其中甲种门票共花费280元,乙种门票共花费300元,甲种门票比乙种门票多2张,乙种门票价格是甲种门票价格的1.5倍,求甲种门票的价格?【解答】解:设甲种门票的价格为x元,根据题意,得,解得x=40.经检验,x=40是原方程的解,且符合题意,答:甲种门票的价格为40元.18.(5分)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.【解答】解:过点O作OM⊥DE于点M,连接OD.∴DM=.∵DE=8(cm)∴DM=4(cm)在Rt△ODM中,∵OD=OC=5(cm),∴OM===3(cm)∴直尺的宽度为3cm.19.(6分)(1)在图1中,以线段m为一边画菱形,要求菱形的顶点均在格点上;(2)在图2中,平移a,b,c中的两条线段,使它们与线段n构成以n为一边的等腰直角三角形.(画一个即可)【解答】(1)以下答案供参考:;(2).20.(6分)如图,望远镜调节好后,摆放在水瓶地面上.观测者用望远镜观测物体时,眼睛(在A点)到水平地面的距离AD=91cm,沿AB方向观测物体的仰角a=33°.望远镜前端(B点)与眼睛(A点)之间的距离AB=153cm,求点B到水平地面的距离BC的长(精确到0.1cm).[参考数据:sin33°=0.54,cos33°=0.84,tan33°=0.65].【解答】解:过点A作AE⊥BC于点E.在Rt△ABE中,sina=.∵AB=153,a=33°,∴BE=AB•sin33°=153×0.54=82.62.∴BC=BE+EC=BE+AD=82.62+91=173.62≈173.6(cm).答:点B到水平地面的距离BC的长约为173.6cm.21.(6分)如图,四边形ABCD与四边形DEFG都是矩形,顶点F在BA的延长线上,边DG与AF交于点H,AD=4,DH=5,EF=6,求FG的长.【解答】解:∵四边形ABCD和四边形DEFG为矩形,∴∠DAF=∠DAB=90°,∠G=90°,DG=EF;∵EF=6,DH=5,∴GH=DG﹣DH=EF﹣DH=6﹣5=1.在Rt△ADH中,AD=4.∴AH===3;∵∠G=∠DAH=90°,∠FHG=∠DHA,∴△FGH∽△DAH,∴.∴.22.(6分)小明参加卖报纸的社会实践活动,他调查了一个报亭某天A,B,C 三种报纸的销售量.并把调查结果绘制成如下条形统计图.(1)求该天A,C报纸的销售量各占这三种报纸销售量之和的百分比;(2)请绘制该天A,B,C三种报纸销售量的扇形统计图;(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份?【解答】解:(1),,∴该天A,C报纸的销售量各占这三种报纸销售量之和的20%和30%;(2)A,B,C三种报纸销售量的扇形统计图如图所示:(3)100×20%=20(份),100×50%=50(份),100×30%=30(份),∴小明应购进A种报纸20份,B种报纸50份,C种报纸30份.23.(7分)如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE,CD为邻边做▱CDFE,过点C作CG∥AB交EF于点G,连接BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.【解答】(1)解:∠ACB=∠GCD.理由如下:∵AB=AC,∴∠ABC=∠ACB∵CG∥AB,∴∠ABC=∠GCD,∴∠ACB=∠GCD.(2)证明:∵四边形CDFE是平行四边形,∴EF∥CD.∴∠ACB=∠GEC,∠EGC=∠GCD.∵∠ACB=∠GCD,∴∠GEC=∠EGC,∴EC=GC,∵∠GCD=∠ACB,∴∠GCB=∠ECD.在△BCG和△DCE中∴△BCG≌△DCE.24.(7分)如图,梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x<30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F 处,DF交BC于点G.(1)用含有x的代数式表示BF的长.(2)设四边形DEBG的面积为S,求S与x的函数关系式.(3)当x为何值时,S有最大值,并求出这个最大值.[参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(﹣,)].【解答】解:(1)由题意,得EF=AE=DE=BC=x,AB=30,∴BF=2x﹣30.(2)∵∠F=∠A=45°,∠CBF=∠ABC=90°,∴∠BGF=∠F=45°.∴BG=BF=2x﹣30,∴S===.(3)S=.∵<,15<20<30,∴当x=20时,S有最大值,最大值为15025.(10分)如图1,A,B,C三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A容器阀门,以4升/分的速度向B容器内注水5分钟,然后关闭,接着打开B容器阀门,以10升/分的速度向C容器内注水5分钟,然后关闭.设A,B,C三个容器内的水量分别为y a,y b,y c(单位:升),时间为t(单位:分).开始时,B容器内有水50升,y a y c与t的函数图象如图2所示,请在0≤t≤10的范围内解答下列问题:(1)求t=3时,y b的值.(2)求y b与t的函数关系式,并在图2中画出其函数图象.(3)求y a:y b:y c=2:3:4时t的值.【解答】解:(1)当t=3时,A向B容器内注水3分钟,y b=50+4t=50+4×3=62;(2)分两段求解,当0≤t≤5,y b=50+4t;当5<t≤10,yb=50+4×5﹣10(t﹣5)=120﹣10t,∴y b与t的函数关系式<,再作出函数图象如下图所示:(3)由图象可以看出,y a:y b:y c=2:3:4,若0≤t≤5,取t=5,则y c=70,y b==50+4t,y a=35<40则不符合y a图象;若5<t≤10,取t=10,则y a=40,y b=120﹣10t,y c=10t+20,对照图象,符合函数图象,解得:t=6.26.(10分)如图1,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高,抛物线y=ax2+2x与直线y=x 交于点O,C,点C的横坐标为6,点P在x轴的正半轴上,过点P作PE∥y 轴.交射线OA于点E.设点P的横坐标为m,以A,B,D,E为顶点的四边形的面积为S.(1)求OA所在直线的解析式.(2)求a的值.(3)当m≠3时,求S与m的函数关系式.(4)如图2,设直线PE交射线OC于点R,交抛物线于点Q,以RQ为一边,在RQ的右侧作矩形RQMN,其中RN=.直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m的取值范围.【解答】解:(1)设直线OA的解析式为y=kx,则有:3k=3,k=1;∴直线OA的解析式为y=x;(2)当x=6时,y=x=3,∴C(6,3);将C(6,3)代入抛物线的解析式中,得:36a+12=3,a=﹣;即a的值为﹣;(3)根据题意,D(3,0),B(6,0).∵点P的横坐标为m,PE∥y轴交OA于点E,∴E(m,m).当0<m<3时,如图1,S=S△OAB﹣S△OED=.当m>3时,如图2,S=S△OBE﹣S△ODA==3m﹣;(4)m=或或<.提示:如图3、RQ=RN时,m=3﹣;如图4、AD所在的直线为矩形RQMN的对称轴时,m=;如图5、RQ与AD重合时,重叠部分为等腰直角三角形,m=3;如图6、当点R落在AB上时,m=4,所以3≤m<4.。

吉林省中考数学试卷(解析版).docx

吉林省中考数学试卷(解析版).docx

2017年吉林省中考数学试卷一、单项选择题(每小题2分,共12分) 1. 计算(-1)$的正确结果是( )A. 1B. 2C. - 1D. -22. 如图是一个正六棱柱的茶叶盒,其俯视图为()-; --- •> R 丄 u丄 AC-10 12 ・1 0 1 2 c5. 如图,在AABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D, 连接AD.若ZB=40°, ZC=36°,则ZDAC 的度数是()A. 70°B. 44°C. 34°D. 24° 6.如图,直线1是的切线,A 为切点,B 为直线1上一点,连接OB 交(DO 于点C.若AB=12, 0A=5,则BC 的长为(3. 下列计算正确的是(A. a 2+a 3=a 5B. a 2,a 3=a 6C. 4. 不等式x+132的解集在数轴上表示正确的是()A. -10 12)oA. 5B. 6C. 7D. 8二、填空题(每小题3分,共24分)7.2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为_______ •8.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克____ 元(用含x的代数式表示).9.分解因式:a2+4a+4= ______ .10.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a〃b的根据11.如图,在矩形ABCD中,AB=5, AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB'C'D'.若点B的对应点B,落在边CD上,则B'C的长为•12.如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m, BD=14m,则旗杆AB的高为m.13.如图,分别以正五边形ABCDE的顶点A, D为圆心,以AB长为半径画祝, CE-若AB=1,则阴影部分图形的周长为 ________ (结果保留兀)•B C14.我们规定:当k, b为常数,kHO, bHO, kHb时,一次函数y=kx+b与y=bx+k 互为交换函数.例如:y=4x+3的交换函数为y=3x+4. 一次函数y=kx+2与它的交换函数图象的交点横坐标为_________ .三、解答题(每小题5分,共20分)15.某学生化简分式丄r+#-出现了错误,解答过程如下:x+1 x -1X -1(1)_____________________ 该学生解答过程是从第_________________ 步开始出错的,其错误原因是______ ; (2)请写出此题正确的解答过程.16.被誉为“最美高铁”的长春至璋春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.17.在一个不透明的盒子中装有三张卡片,分别标有数字1, 2, 3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.18.如图,点E、F 在BC 上,BE=FC, AB=DC, ZB=ZC.求证:ZA=ZD.D四、解答题(每小题7分,共28分)19.某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表: 月份 销售额 人员 第1月 第2月 第3月 第4月 第5月 甲 7.2 9.6 9.6 7.8 9.3 乙 5.8 9.7 9.8 5.8 9.9 丙46.28.59.99.9(1)根据上表中的数据,将下表补充完整: 统计值 数值 人员平均数(万元) 中位数(万元)众数(万元)甲9.39.6 乙 8.25.8丙7.7 8.5(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明 理由.20.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边 三角形的顶点称为格点.线段AB 的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上. 21.如图,一枚运载火箭从距雷达站C处5km的地面0处发射,当火箭到达点A, B时,在雷达站C处测得点A, B的仰角分别为34。

2007-2010长春数学中考试题及答案1

2007-2010长春数学中考试题及答案1

吉林省长春市2007年初中毕业生学业考试数学试题本试题卷包括七道大题,共26小题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试题卷和答题卡一并交回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题卷上答题无效.一.选择题(每小题3分,共24分) 01.-6的相反数是( ).A 、-6B 、6C 、61-D 、6102.方程组⎩⎨⎧-=-=+1y 3x 24y 3x 的解是( ).A 、⎩⎨⎧-=-=1y 1xB 、⎩⎨⎧==1y 1xC 、⎩⎨⎧=-=2y 2xD 、⎩⎨⎧-=-=1y 2x03.某地区五月份连续6天的最高气温依次是:28、25、28、26、26、29(单位:°C),则这组数据的中位数是( ). A 、26°C B 、26.5°C C 、27°C D 、28°C04.如图,小手盖住的点的坐标可能为( ).A 、(5,2)B 、(-6,3)C 、(-4,-6)D 、(3,-4)05.如图,已知线段AB =8cm ,⊙P 与⊙Q 的半径均为1cm .点P 、Q 分别从A 、B 出发,在线段AB 上按箭头所示方向运动.当P 、Q 两点未相遇前,在下列选项中,⊙P 与⊙Q 不可能...出现的位置关系是( ). A 、外离 B 、外切 C 、相交 D 、内含06.一根单线从钮扣的4个孔中穿过(每个孔只穿过一次),其正面情形如图所示,下面4个图形中可能是其背面情形的是( ). 07.小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x 根火腿肠,则关于x 的不等式表示正确的是( ). A 、3×4+2x <24 B 、3×4+2x ≤24 C 、3x +2×4≤24 D 、3x +2×4≥24 08.如图,△AOB 中,∠B =30°,将△AOB 绕点O 顺时针旋转52°得到△A ’OB ’,边A ’B ’与边OB 交于点C(A ’不在OB 上),则∠A ’CO 的度数为( ). A 、22° B 、52° C 、60° D 、82° 二.填空题(每小题3分,共18分) 09.计算:218+=_________.10.将下面四张背面都是空白的卡片混在一起,在看不到正面图案的情况下,从中随机选取一张,这张卡片上的图案恰好为2007年长春亚冬会吉祥物“鹿鹿”的概率是( ). 11.如图,下面的图案由三个叶片组成,绕点O 旋转120°后可以和自身重合.若每个..叶片Ox y(第04题图)P (第05题图) Q A B(第06题图)A B C D (第08题图)A B OA ’B ’的面积为4cm 2,∠AOB 为120°,则图中阴影部分的面积之和为_____________cm 2. 12.如图,过正方形ABCD 的顶点B 作直线l ,过A 、C 作l 的垂线,垂足分别为E 、F .若AE =1,CF =3,则AB 的长度为___________.13.在二次函数y =x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:x -2 -1 012 3 4 y72-1 -2m27则m 的值为__________.14.如图,∠1的正切值等于__________. 三.解答题(每小题5分,共20分)15.先化简,再求值:(x +2)(x -2)-x(x -1),其中x =-1.16.如图,在△ABC 中,AB =AC ,D 是BC 的中点,连接AD .DE ⊥AB ,DF ⊥AC ,E 、F是垂足.图中共有多少对全等三角形?请直接用“≌”符号把它们分别表示出来(不要求证明).17.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.18.将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2、3、4;乙袋中有2个球,分别标有数字2、4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画数形图法,求摸出的两个球上数字之和为5的概率; (2)摸出的两个球上数字之和为多少时的概率最(第11题图) A BO (第12题图) A l B CD E F (第10题图) 会 徽 鹿 鹿 会 徽 会徽 (第14题图)12 31 2 3 1O xy(第16题图) A B CD E F四.解答题(每小题6分,共12分)19.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,以△ABC 的一边为边画等腰三角形,使它的第三个顶点在△ABC 的其它边上.请在图①、图②、图③中分别画出一个符合条件的等腰三角形,且三个图形中的等腰三角形各不相同,并在图中表明所画等腰三角形的腰长(不要求尺规作图).20.小刚有一块含有30°角的直角三角板,他想测量其短直角边的长度,而手中另外只有一个量角器,于是他采用了如下的办法,并获得了相关数据:第一步,他先用三角板标有刻度的一边测出量角器的直径AB 的长度为9cm ;第二步,将三角板与量角器按如图所示的方式摆放,并量得∠BOC 为80°(O 为AB 的中点).请你根据小刚测得的数据,求出三角板的短直角边AC 的长.(参考数据:sin80°=0.98,cos80°=0.17,tan80°=5.67;sin40°=0.64,cos40°=0.77,tan40°=0.84,结果精确到0.1cm .)五.解答题(每小题6分,共12分)21.网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12~35岁的网瘾人群进行了抽样调查.下图是用来表示在调查的样本中不同年龄段的网瘾人数的,其中30~35岁的网瘾人数占样本总人数的20%. (1)被抽样调查的样本总人数为_________人; (2)请把统计图中缺失的数据、图形补充完整;(3)据报道,目前我国12~35岁网瘾人数约为200万人,那么其中12~17岁的网瘾人数约为多少人?A B C (第19题图)图① 图② 图③A B C ABC A (第20题图) BC O0 (第21题图)450 500 550 600650700750600 576 48012~17 18~23 24~2930~35年龄(岁)网瘾人数(人)22.在北方冬季,对某校一间坐满学生、门窗关闭的教室中CO 2的总量进行检测,部分数据如下:教室连续使用时间x (分)5 10 15 20 CO 2总量y(m 3)0.61.11.62.1经研究发现,该教室空气中CO 2总量y(m 3)是教室连续使用时间x (分)的一次函数. (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)根据有关资料推算,当该教室空气中CO 2总量达到6.7m 3时,学生将会稍感不适.请通过计算说明,该教室连续使用多长时间学生将会开始稍感不适?(3)如果该教室在连续使用45分钟时开门通风,在学生全部离开教室的情况下,5分钟可将教室空气中CO 2的总量减少到0.1m 3,求开门通风时教室空气中CO 2平均每分钟减少多少立方米?六.解答题(每小题7分,共14分)23.如图①,将一组对边平行的纸条沿EF 折叠,点A 、B 分别落在A ’、B ’处,线段FB ’与AD 交于点M .(1)试判断△MEF 的形状,并证明你的结论;(2)如图②,将纸条的另一部分CFMD 沿MN 折叠,点C 、D 分别落在C ’、D ’处,且使MD ’经过点F ,试判断四边形MNFE 的形状,并证明你的结论; (3)当∠BFE =_________度时,四边形MNFE 是菱形.24.如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过A 作x 轴的平行线,交函数x 2y -=( x <0)的图象于B ,交函数x 6y =( x >0)的图象于C ,过C 作y 轴的平行线交BO 的延长线于D .(1)如果点A 的坐标为(0,2),求线段AB 与线段CA 的长度之比;(2)如果点A 的坐标为(0,a),求线段AB 与线段CA 的长度之比;(3)在(2)的条件下,四边形AODC 的面积为________.A (第23题图②)BC E FD A ’ B ’ AB C EF D A ’ B ’ D ’ C ’ M M N (第23题图①) A B yO x C D (第24题图)x 6y =x2y -=七.解答题(每小题10分,共20分)25.如图①,在Rt △ABC 中,∠C =90°,边BC 的长为20cm ,边AC 的长为hcm ,在此三角形内有一个矩形CFED ,点D 、E 、F 分别在AC 、AB 、BC 上,设AD 的长为xcm ,矩形CFED 的面积为y(单位:cm 2).(1)当h 等于30时,求y 与x 的函数关系式(不要求写出自变量x 的取值范围); (2)在(1)的条件下,矩形CFED 的面积能否为180cm 2?请说明理由; (3)若y 与x 的函数图象如图②所示,求此时h 的值.(参考公式:二次函数y =ax 2+bx +c ,当a2b x -=时,y 最大(小)值=a 4b ac 42-.)26.如图,在平面直角坐标系中,直线b x 21y +-=(b >0)分别交x 轴、y 轴于A 、B 两点,以OA 、OB 为边作矩形OACB ,D 为BC 的中点.以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN ,点P 在第一象限,设矩形OACB 与△PMN 重叠部分的面积为S . (1)求点P 的坐标;(2)当b 值由小到大变化时,求S 与b 的函数关系式;(3)若在直线b x 21y +-=(b >0)上存在点Q ,使∠OQM 等于90°,请直接写出....b 的取值范围;(4)在b 值的变化过程中,若△PCD 为等腰三角形,请直接写出....所有符合条件的b 值.A (第25题图②)B C EF D(第25题图①)O 10 150x(cm)y(cm 2)A BC M NDPOy x(第26题图)2008年吉林省长春市中考数学试题一、选择题(每小题3分,共分39,每小题给出4个答案,其中只有一个正确,把所选答案的编号写在题目后面的括号内)1、如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是【 】A .内含B .相交C .相切D .外离2、化简(-3)2的结果是【 】A.3B.-3C.±3 D .93、如果2是方程02=-c x 的一个根,那么c 的值是 【 】A .4B .-4C .2D .-24、下列成语所描述的事件是必然发生的是 【 】A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖5、如图,AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为【 】 A 、10 B 、8 C 、6 D 、46、抛物线()223y x =++的顶点坐标是 【 】A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3) 7、观察下列银行标志,从图案看是中心对称图形的有( )个A 、1个B 、2个C 、3个D 、4个 8、二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是【 】A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且9、某校九年级(1)班50名学生中有20名团员,他们都积极报名参加学校开展的“文明劝导活动”。

DA吉林省中考真题

DA吉林省中考真题

吉林省2010年初中毕业生学业考试数学试卷参考答案及评分标准阅卷说明:1.评卷采分最小单位为1分,每步标出的是累计分.2.考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分. 一、填空题(每小题2分,共20分)1.2- 2.6.52410⨯ 3.5 4.5.2x > 6.17.492 8.大于或等于0并且小于或等于40的任意一个数皆可 9.25π310.42n +二、单项选择题(每小题3分,共18分)11.C 12.B 13.D 14.B 15.C 16.B 三、解答题(每小题5分,共20分)17.解:原式=2212111.(1)1x x x x x x x x x x --+-÷==--·(3分)当2x =时,原式=11.21=- (5分)评分说明:x 只要不取0和1,计算正确皆可得分.18.解:(1)② ①;(2分)(2)(5分)评分说明:(1)每填对一个得1分,填“V ”、“N ”不扣分. (2)作法1、作法2中不作虚线不扣分.19.解:设沙包落在A 区域得x 分,落在B 区域得y 分,(1分)根据题意,得3342232.x y x y +=⎧⎨+=⎩,(3分)解得97.x y =⎧⎨=⎩,(4分)第18题作法1 作法2 作法3393730.x y ∴+=+⨯=(5分)答:小敏的四次总分为30分. 20.解:(1)34; (3分)(2)1. (5分) 评分说明:(2)中填100%不扣分. 四、解答题(每小题6分,共12分)21.解:ADC ADF ADC CEB △≌△、△≌△、ADF CEB △≌(写出其中两对即可). (2分) 证法1:若选择ADC ADF △≌△,证明如下: AD 平分FAC CAD FAD ∠∴∠=∠,. (3分) 90AD CF ADC ADF ∴∠=∠= ⊥,°. (4分) 又AD AD = ,ADC ADF ∴≌. (6分) 证法2:若选择ADC CEB △≌△,证明如下: AD CE BE CE ⊥⊥ ,,90ADC CEB ∴∠=∠=°. (3分) 9090ACB ACD ECB ∠=∴∠+∠= ,°.又90ACD DAC DAC ECB ∠+∠=∴∠=∠ °,. (4分)又AC CB ADC CEB =∴ ,△≌△. (6分)评分说明:每正确写出一对全等三角形得1分. 22.解:(1)3 (2,1) 6; (3分) (2)如图,连接AC ,过点A 作AD BC ⊥于点D , 则2BC DC =. (4分) 由A (5,1)可得1AD =. 又2AC = ,∴在Rt ADC △中,DC =BC ∴=(6分)评分说明:(1)中每填对一个得1分.五、解答题(每小题7分,共14分) 23.解:(1)方案三;(2分)(2) (3分)(5分)第23题第22题(3)50030%150⨯=(名).(7分)答:七年级约有150名学生比较了解“低碳”知识. 评分说明:扇形图中每填对一个得1分.24.解:(1)在Rt DEF △中,90DEF DE BC ∠===°, 1.8,29F ∠=°.sin DE F DF =, 1.8 1.83.75 3.8sin sin 290.48DE DF F ∴===≈≈° (3分) (2)解法1:tan DE F EF = , 1.8 1.8 3.27.tan tan 290.55DE EF F ∴==≈≈° (5分)在Rt ABC △中,90ACB ∠=°.由45A ∠=°得 1.8.AC BC ==又0.5CE BD == ,1.80.5 3.27 5.6.AF AC CE EF ∴=++++≈≈(7分) 解法2:cos cos 29 3.750.87 3.26EF F EF DF DF=∴=⨯ ,·°≈≈. (5分)在Rt ABC △中,90ACB ∠=°.由45A ∠=°得 1.8.AC BC == 又0.5CE BD == ,1.80.5 3.26 5.6.AF AC CE EF ∴=++++≈≈ (7分)答:DF 长约为3.8m ,AF 约为5.6m.评分说明:(1)计算过程中不写“≈”不扣分. (2)求出 3.3EF ≈不扣分.(3)解法2中用 3.8DF =代入不扣分. 六、解答题(每小题8分,共16分) 25.(2)猜想:22BFD S b =△. (5分)证明:证法1:如图,BFD BCD BEF CEFD S S S S =+-△△△梯形 =2111()()222b a b a a b a ++-+ =212b . (8分) 证法2:如图,连接CF ,由正方形性质可知45DBC FCE ∠=∠=°,.BD CF ∴∥BFD ∴△与BCD △的BD 边上的高相等.212BFD BCD S S b ∴==△△.(8分)评分说明:(1)每填对一个得1分. (2)未写猜想但证明正确也可得满分. 26.解:(1)解法1:设火车行驶的速度为v 米/秒,根据题意,得 14120160.v =+解得20.v = (2分) 解法2:(120+160)÷14=20. (2分)答:火车行驶速度为20米/秒.FG DABC E第25题(2)①当06x <≤时,20y x =; (3分) ②当68x ≤≤时,120y =;(4分) ③解法1;当814x <≤时,120(20160)20280.y x x =--=-+ (6分) 解法2:当814x <≤时,1201602020280.y x x =+-=-+ (6分) 解法3:当84x <≤1时,20(14)20280.y x x =-=-+ (6分)(3) (8分)评分说明:(2)中自变量取值范围含或不含6、8均不扣分. 七、解答题(每小题10分,共20分)27.解:(1)设经过(10)(03)A B ,、,的直线AB 的解析式为3y kx =+。

2010吉林省中考数学试题及答案

2010吉林省中考数学试题及答案
5
龙门书局的初中北师大版的《三点一测》值得一看.欢迎大家评论.
6
龙门书局的初中北师大版的《三点一测》值得一看.欢迎大家评论.
7
龙门书局的初中北师大版的《三点一测》值得一看.欢迎大家评论.
8
龙门书局的初中北师大版的《三点一测》值得一看.欢迎大家评论.
9
龙门书局的初中北师大版的《三点一测》值得一看.欢迎大家评论.
龙门书局的初中北师大版的《三点一测》值得一看.欢迎大家评论.
1
龙门书局的初中北师大版的《三点一测》值得一看.欢迎大家评论.
2
龙门书局的初中北师大版的《三点一测》值得一看.欢迎大家评论.
3
龙门书局的初中北师大版的《三点一测》值得一看.欢迎大家测》值得一看.欢迎大家评论.
10
龙门书局的初中北师大版的《三点一测》值得一看.欢迎大家评论.
11
龙门书局的初中北师大版的《三点一测》值得一看.欢迎大家评论.
12
龙门书局的初中北师大版的《三点一测》值得一看.欢迎大家评论.
13
龙门书局的初中北师大版的《三点一测》值得一看.欢迎大家评论.
14

吉林省中考数学试卷及答案解析

吉林省中考数学试卷及答案解析

吉林省中考数学试卷及答案解析在吉林省中考中,数学试卷是考生们非常重视的一部分。

通过考试题目的分析和答案解析,考生可以更好地了解试卷的出题思路和解题技巧。

本文将对吉林省中考数学试卷及答案进行解析,帮助考生们更好地备考。

1. 选择题部分选择题部分是数学试卷中的起步,也是考验考生记忆和理解能力的一环。

在吉林省中考中,选择题的难度逐渐加深,从简单的计算题到较为复杂的应用题。

考生在做选择题时应注意以下几点:首先,仔细阅读题目。

这是解题的基本要求,在阅读题目时要注意问题的关键词和条件,确保理解正确。

其次,注意计算过程。

在进行题目计算时,要仔细检查每一步的计算,尤其是简单的加减乘除运算。

最后,多做选择题练习。

通过多做选择题练习,考生们可以熟悉试题类型和解题思路,提高解题速度和准确度。

2. 解答题部分解答题部分是数学试卷中的重点和难点。

在吉林省中考中,解答题的难度逐渐递增,考察考生的分析、推理和解决问题的能力。

在做解答题时,考生应注意以下几点:首先,明确问题。

在阅读题目时,要仔细理解问题的要求,明确所需求解的内容,避免在解题过程中偏离主题。

其次,建立数学模型。

对于涉及实际问题的解答题,考生需要把问题抽象为数学模型,并进行合理的假设和做出适当的推理,以便解决问题。

最后,解题思路清晰。

在解答题过程中,要注意思路的清晰和合理性,运用合适的数学方法和技巧解题。

同时,要注意解答过程的条理性,避免错漏。

3. 答案解析针对吉林省中考数学试卷的答案解析,我们将以具体的题目为例进行解析,以帮助考生们更好地理解试题的解题思路和方法。

(举例)例如,在一道关于比例的选择题中,题目要求计算两个长度比之间的关系。

解答过程如下:首先,明确题目要求,我们需要计算两个长度比之间的关系。

其次,设定未知数。

假设第一个长度为x,第二个长度为y。

然后,根据题目条件,写出方程。

根据题目给出的比例关系,我们可以写出方程:x:y = 2:3。

最后,解方程求解未知数。

2010年吉林省中考数学试卷

2010年吉林省中考数学试卷

2010年吉林省中考数学试卷一、填空题(共10小题,每小题2分,满分20分)1.(2分)如图,数轴上点A所表示的数是・--------------------->-7-10----1?2.(2分)在中国上海世博会园区中,中国馆的总占地面积为65200,盘,则这一数据用科学记数法表示为m.3.(2分)若单项式与-2x m y3是同类项,则m+n=.4.(2分)V27-V3=.5.(2分)不等式2x-3>1的解集是.156.(2分)方程一=--的解是工=________・x%+47.(2分)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm8.(2分)如图,A3是。

的直径,点C在00上,ZABC=50°,动点P在弦BC±,贝IJZB4B可能为度(写出一个符合条件的度数即可).9.(2分)如图,为拧紧一个螺母,将扳手顺时针旋转60°,扳手上一点A转至点A'处,若OA长为25cm,贝!J?L47长为cm(结果保留n).A25cm0代―二-----LI10.(2分)用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第〃个图案中正三角形的个数为(用含〃的代数式表示).第1个图案第2个图索第3个图案二、选择题(共6小题,每小题3分,满分18分)11.(3分)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是(+0.9-3.6B.&+2.5D.冷12.(3分)某鞋店销售一款新式女鞋,试销期间对该款不同尺码女鞋的销售量统计如下表:尺码/厘米2222.52323.52424.525销售量/双12311864该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是()A.平均数B.众数C.中位数D.方差13.(3分)如图,由五个完全相同的小正方体组合成一个立体图形,它的俯视图是()MA. B. c.R D.14.(3分)反比例函数y=§的图象如图所示,则k的值可能是()A.-1B.-C.1D.2215.(3分)如图,在△ABC中,ZC=90°,Q是AC±一点,DE±AB于点E,若AC=8,BC=6,DE=3,则AD的长为()B. 4C. 5D. 616. (3分)如图,在矩形ABCD 中,AB=12cm, BC=6cm,点E 、F 分别在A8、CD 上,将矩形ABCD 沿以 折叠,使点A 、。

吉林市近五年中考数学试卷及答案解析

吉林市近五年中考数学试卷及答案解析

吉林市近五年中考数学试卷及答案解析2017年吉林省吉林市中考数学试卷及答案解析学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.(2017年)计算(﹣1)2的正确结果是()A.1 B.2 C.﹣1 D.﹣22.(2017年)如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.3.(2017年)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2 4.(2017年)不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.5.(2017年)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°6.(2017年)如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5 B.6 C.7 D.8评卷人得分二、填空题7.(2017年)2016年我国资助各类家庭困难学生超过84000000人次.将84000000这个数用科学记数法表示为____.8.(2017年)苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克____元(用含x 的代数式表示).9.(2017年)分解因式:244m m++=___________.10.(2017年)我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是______.11.(2017年)如图,在矩形ABCD中,AB=5,AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB'C'D'.若点B的对应点B'落在边CD上,则B'C的长为______.12.(2017年)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为______m.13.(2017年)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画BE,CE.若AB=1,则阴影部分图形的周长为____(结果保留π).14.(2017年)我们规定:当k,b为常数,k≠0,b≠0,k≠b时,一次函数y=kx+b与y=bx+k 互为交换函数. 例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为_____________.评卷人得分三、解答题15.(2017年)某学生化简分式出现了错误,解答过程如下:原式=(第一步)=(第二步)=.(第三步)(1)该学生解答过程是从第步开始出错的,其错误原因是;(2)请写出此题正确的解答过程.16.(2017年)被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.17.(2017年)在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.18.(2013年湖北省武汉市中考数学试题(带解析))如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.19.(2017年)某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲7.2 9.6 9.6 7.8 9.3乙 5.8 9.7 9.8 5.8 9.9丙 4 6.2 8.5 9.9 9.9(1)根据上表中的数据,将下表补充完整:平均数(万元)中位数(万元)众数(万元)甲9.3 9.6乙8.2 5.8丙7.7 8.5(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.20.(2017年)图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.21.(2017年)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)22.(2017年)如图,在平面直角坐标系中,直线AB与函数y=kx(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=12OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.23.(2017年)如图l,BD是矩形ABCD的对角线,∠ABD=30 ,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB’,C'D,AD’,BC’,如图2.(1)求证:四边形AB'C'D是菱形:(2)四边形ABC'D'的周长为____:(3)将四边形ABC'D’沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出可能拼成的矩形的周长.24.(2017年)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.25.(2017年)如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ 中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.26.(2017年)《函数的图象与性质》拓展学习片段展示:(问题)如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a= .(操作)将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.(探究)在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x 的取值范围.(应用)P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.参考答案1.A【详解】试题解析:原式=1.故选A.考点:有理数的乘方.2.B【详解】解:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.3.C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.A【详解】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.5.C【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC 【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键. 6.D【详解】试题解析:由勾股定理,得OB==13,CB=OB﹣OC=13﹣5=8,故选D.考点:切线的性质.7.8.4×107【解析】试题解析:84 000 000=8.4×107考点:科学记数法—表示较大的数.8.0.8x【详解】试题解析:依题意得:该苹果现价是每千克80%x=0.8x.考点:列代数式.9.()22m+【分析】直接利用完全平方公式分解因式得出答案.【详解】m+,解:244++=()22m mm+.故答案为()22【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.10.同位角相等,两直线平行.【详解】解:如图所示:根据题意得出:∠1=∠2;∠1和∠2是同位角;∵∠1=∠2,∴a∥b(同位角相等,两直线平行);故答案为:同位角相等,两直线平行.11.1【详解】由旋转的性质得到AB=AB′=5,在直角△AB′D中,∠D=90°,AD=3,AB′=AB=5,所以B′D=222'-=-=4,253AB AD所以B′C=5﹣B′D=1.故答案是:1.12.9.【解析】试题解析:∵OD=4m,BD=14m,∴OB=OD+BD=18m,由题意可知∠ODC=∠OBA,且∠O为公共角,∴△OCD∽△OAB,∴,即,解得AB=9,即旗杆AB的高为9m.考点:相似三角形的应用.13.π+1.【解析】试题解析:∵五边形ABCDE 为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°, ∴==,∴C 阴影=++BC=π+1.考点:正多边形和圆.14.1【详解】由题意可得,22y kx y x k =+⎧⎨=+⎩, 解得,12x y k =⎧⎨=+⎩, 故答案为1.考点:两条直线相交或平行问题.15.(1)一、分式的基本性质用错;(2)过程见解析.【解析】试题分析:根据分式的运算法则即可求出答案.试题解析:(1)一、分式的基本性质用错;(2)原式= = =.考点:分式的加减法.16.隧道累计长度为126千米,桥梁累计长度为216千米.【分析】设隧道累计长度为xkm ,桥梁累计长度为yk ,根据隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km ,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】解:设隧道累计长度为xkm,桥梁累计长度为ykm,根据题意得:342 236x yx y+=⎧⎨=+⎩,解得:126216xy=⎧⎨=⎩.答:隧道累计长度为126km,桥梁累计长度为216km.【点睛】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.17.49.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.18.答案见解析【分析】由BE=CF可得BF=CE,再结合AB=DC,∠B=∠C可证得△ABF≌△DCE,问题得证.【详解】解∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE ,∴∠A =∠D .【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.19.(1)8.7,9.7,9.9;(2)甲,理由见解析.【解析】试题分析:(1)根据算术平均数、众数、中位数的定义解答;(2)根据平均数意义进行解答.试题解析:(1)=(7.2+9.6+9.6+7.8+9.3)=8.7(万元)把乙按照从小到大依次排列,可得5.8,5.8,9.7,9.8,9.9;中位数为9.7万元.丙中出现次数最多的数为9.9万元.(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.考点:众数;加权平均数;中位数.20.(1)见解析;(2)见解析.【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【详解】(1)如图①、②所示,△ABC 和△ABD 即为所求;(2)如图③所示,▱ABCD即为所求.【点睛】本题考查了等腰三角形的判定、等边三角形的性质、平行四边形的判定,正确分析网格特点是解题的关键.21.A,B两点间的距离约为1.7km.【分析】在Rt△AOC中,求出OA、OC,在Rt△BOC中求出OB,即可解决问题.【详解】解:由题意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵tan34°=OA OC,∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km,答:求A,B两点间的距离约为1.7km.考点:解直角三角形的应用﹣仰角俯角问题.22.(1) m=4,k=8,n=4;(2)△ABC的面积为4.【详解】试题分析:(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD 的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.试题解析:(1)∵点A的坐标为(m,2),AC平行于x轴,∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴CD•AC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=可得k=8,∵点B(2,n)在y=的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S△ABC=AC•BE=×4×2=4,即△ABC的面积为4.考点:反比例函数与一次函数的交点问题.23.(1)证明见解析;(2)43;(2)3+23或6+3【解析】试题分析:(1)有一组邻边相等的平行四边形是菱形,据此进行证明即可;(2)先判定四边形ABC'D'是菱形,再根据边长AB=AD=,即可得到四边形ABC'D′的周长为4;(3)根据两种不同的拼法,分别求得可能拼成的矩形周长试题解析:(1)∵BD是矩形ABCD的对角线,∠ABD=30°,∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵AB=AD=,∴四边形ABC'D′的周长为4,(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为6+或2+3.考点:菱形的判定与性质;矩形的性质;图形的剪拼;平移的性质.24.(1)10;(2)y=58x+52(12≤x≤28);(3)4 s.【分析】(1)直接利用一次函数图象结合水面高度的变化得出正方体的棱长;(2)直接利用待定系数法求出一次函数解析式,再利用函数图象得出自变量x的取值范围;(3)利用一次函数图象结合水面高度的变化得出t的值.【详解】(1)由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,所以正方体的棱长为10cm;故答案为10cm;(2)设线段AB对应的函数解析式为:y=kx+b,∵图象过A(12,0),B(28,20),∴120 2820k bk b+=⎧⎨+=⎩,解得:5852kb⎧=⎪⎪⎨⎪=⎪⎩,∴线段AB对应的解析式为:5582y x=+(12≤x≤28);(3)∵28﹣12=16(cm),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.25.(1)x;(2)x=;(3)见解析;(4)1<x<.【解析】试题分析:(1)由已知条件得到∠AQP=45°,求得PQ=AP=2x,由于D为PQ中点,于是得到DQ=x;(2)如图①,延长FE交AB于G,由题意得AP=2x,由于D为PQ中点,得到DQ=x,求得GP=2x,列方程于是得到结论;(3)如图②,当0<x≤时,根据正方形的面积公式得到y=x2;如图③,当<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=AB=2,根据正方形和三角形面积公式得到y=﹣x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,根据三角形的面积公式得到结论;(4)当Q与C重合时,E为BC的中点,得到x=1,当Q为BC的中点时,BQ=,得到x=,于是得到结论.试题解析:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,∴∠AQP=45°,∴PQ=AP=2x,∵D为PQ中点,∴DQ=x,(2)如图①,延长FE交AB于G,由题意得AP=2x,∵D为PQ中点,∴DQ=x,∴GP=2x,∴2x+x+2x=4,∴x=;(3)如图②,当0<x≤时,y=S正方形DEFQ=DQ2=x2,∴y=x2;如图③,当<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=AB=2,∵PQ=AP=2x,CK=2﹣2x,∴MQ=2CK=4﹣4x,FM=x﹣(4﹣4x)=5x﹣4,∴y=S﹣S△MNF=DQ2﹣FM2,正方形DEFQ∴y=x2﹣(5x﹣4)2=﹣x2+20x﹣8,∴y=﹣x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,∴DQ=2﹣x,∴y=S△DEQ=DQ2,∴y=(2﹣x)2,∴y=x2﹣2x+2;(4)当Q与C重合时,E为BC的中点,即2x=2,∴x=1,当Q为BC的中点时,BQ=,PB=1,∴AP=3,∴2x=3,∴x=,∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<.考点:四边形综合题.26.【问题】:a=;【操作】:y=;【探究】:当1<x<2或x>2+时,函数y随x增大而增大;【应用】:m=0或m=4或m≤2﹣或m≥2+.【解析】试题分析:【问题】:把(0,0)代入可求得a的值;【操作】:先写出沿x轴折叠后所得抛物线的解析式,根据图象可得对应取值的解析式;【探究】:令y=0,分别代入两个抛物线的解析式,分别求出四个点CDEF的坐标,根据图象呈上升趋势的部分,即y随x增大而增大,写出x的取值;【应用】:先求DE的长,根据三角形面积求高的取值h≥1;分三部分进行讨论:①当P在C的左侧或F的右侧部分时,设P[m,],根据h≥1,列不等式解出即可;②如图③,作对称轴由最大面积小于1可知:点P不可能在DE的上方;③P与O或A重合时,符合条件,m=0或m=4.试题解析:【问题】∵抛物线y=a(x﹣2)2﹣经过原点O,∴0=a(0﹣2)2﹣,a=;【操作】:如图①,抛物线:y=(x﹣2)2﹣,对称轴是:直线x=2,由对称性得:A(4,0),沿x轴折叠后所得抛物线为:y=﹣(x﹣2)2+如图②,图象G对应的函数解析式为:y=;【探究】:如图③,由题意得:当y=1时,(x﹣2)2﹣=0,解得:x1=2+,x2=2﹣,∴C(2﹣,1),F(2+,1),当y=1时,﹣(x﹣2)2+=0,解得:x1=3,x2=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<x<2或x>2+时,函数y随x增大而增大;【应用】:∵D(1,1),E(3,1),∴DE=3﹣1=2,∵S△PDE=DE•h≥1,∴h≥1;①当P在C的左侧或F的右侧部分时,设P[m,],∴h=(m﹣2)2﹣﹣1≥1,(m﹣2)2≥10,m﹣2≥或m﹣2≤﹣,m≥2+或m≤2﹣,②如图③,作对称轴交抛物线G于H,交直线CD于M,交x轴于N,∵H(2,),∴HM=﹣1=<1,∴当点P不可能在DE的上方;③∵MN=1,且O(0,0),a(4,0),∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤2﹣或m≥2+.考点:二次函数综合题.2018年吉林省吉林市中考数学试卷及答案解析学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.(2018年)计算(﹣1)×(﹣2)的结果是()A.2 B.1 C.﹣2 D.﹣3 2.(2018年)如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(2018年)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3 4.(2018年)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b 平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°5.(2018年)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为()A.12 B.13 C.14 D.15 6.(2018年)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.352294x yx y+=⎧⎨+=⎩B.354294x yx y+=⎧⎨+=⎩C.354494x yx y+=⎧⎨+=⎩D.352494x yx y+=⎧⎨+=⎩评卷人得分二、填空题7.(201816.8.(2018年)买单价3元的圆珠笔m支,应付______元.9.(2018年)若a+b=4,ab=1,则a2b+ab2=________.10.(2018年)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.11.(2018年)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为______.12.(2018年)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.13.(2018年)如图,A,B,C,D是⊙O上的四个点,AB=BC,若∠AOB=58°,则∠BDC=____度.14.(2018年)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=1,则该等腰三角形的顶角为______度.2评卷人得分三、解答题15.(2018年)某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第几步开始出错,错误原因是什么;(2)写出此题正确的解答过程.16.(2018年)如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.17.(2018年)一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(2018年)在平面直角坐标系中,反比例函数y=kx(k≠0)图象与一次函数y=x+2图象的一个交点为P,且点P的横坐标为1,求该反比例函数的解析式.19.(2018年)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示什么,庆庆同学所列方程中的y表示什么;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.20.(2018年)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是什么对称图形;(3)求所画图形的周长(结果保留π).21.(2018年)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平课题测量学校旗杆的高度活动目的运用所学数学知识及方法解决实际问题方案示意图测量步骤(1)用什么测得∠ADE=α;(2)用什么测得BC=a米,CD=b米.(3)计算过程22.(2018年)为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一质量(g)频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲 3 0 0 1 3乙0 1 5 0分析数据:表二种类平均数中位数众数方差甲401.5 400 36.85乙400.8 402 8.56得出结论:包装机分装情况比较好的是哪个包装机,说明你的理由.23.(2018年)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.24.(2018年)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,判断▱ADEF的形状;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.25.(2018年)如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是23cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x等于多少;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.26.(2018年)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.参考答案1.A【分析】根据“两数相乘,同号得正”即可求出结论.【详解】解:(﹣1)×(﹣2)=2.故选A.【点睛】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.2.B【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看易得第一层有3个正方形,第二层右上有1个正方形.故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图3.C【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【详解】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(-a2)3=-a6,此选项不符合题意.故选C.【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.4.B【分析】要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.5.A【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB 的周长.【详解】解:∵D是BC的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN,∴△DNB的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等6.D【分析】等量关系为:鸡的只数+兔的只数=35,2×鸡的只数+4×兔的只数=94,把相关数值代入即可得到所求的方程组.【详解】解:∵鸡有2只脚,兔有4只脚,∴可列方程组为:35 2494x yx y+=⎧⎨+=⎩,故选D.【点睛】本题考查了由实际问题抽象出二元一次方程组.如何列出二元一次方程组的关键点在于从题干中找出等量关系.7.4根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式.故答案为4.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8.3m【分析】根据单价×数量=总价列代数式即可.【详解】解:买单价3元的圆珠笔m支,应付3m元.故答案为3m.【点睛】本题考查了列代数式表示实际问题,解题的关键是掌握单价×数量=总价.9.4【分析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a2b+ab2=ab(a+b)=1×4=4.故答案为4.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.10.-1【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.11.(﹣1,0)【分析】根据勾股定理求出AB的长,由AB=AC即可求出C点坐标.【详解】解:∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=222243OA OB+=+=5∴AC=5,∴点C的横坐标为:4-5=-1,纵坐标为:0,∴点C的坐标为(-1,0).故答案为(-1,0).【点睛】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.12.100【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD ECABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.13.29【分析】由等弧所对的圆心角相等,可知∠BOC=∠AOB=58°,根据圆周角定理可知,∠BDC=12∠BOC求解即可;【详解】解:连接OC,∵AB=BC,∴∠AOB=∠BOC=58°,∴∠BDC=12∠BOC=29°,故答案为29.【点睛】本题考查圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.36【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【详解】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=12,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年吉林省中考数学试卷参考答案与试题解析一、填空题(共10小题,每小题2分,满分20分)1.(2分)(2010•吉林)如图,数轴上点A所表示的数是.【考点】:实数与数轴的关系M118.【难易度】:容易题【分析】:根据数轴有点A所表示的数是﹣2.【解答】:答案-2【点评】:此题考查了实数与数轴上的点的对应关系,熟知数轴上的点表示的是一个实数是解题的关键.2.(2分)(2010•吉林)在中国上海世博会园区中,中国馆的总占地面积为65200m2,则这一数据用科学记数法表示为m2.【考点】:科学记数法M11C.【难易度】:容易题.【分析】:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂。

【解答】:答案6.52×104m2.【点评】:此题主要考查了科学记数法.科学记数法是将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,解答的关键是要正确确定a的值以及n的值.3.(2分)(2010•吉林)若单项式3x2y n与﹣2x m y3是同类项,则m+n=5.【考点】:整式的概念M11M.【难易度】:容易题【分析】:由同类项的定义:所含字母相同,相同字母的指数也相同的两个(或多个)单项式叫做同类项,因为单项式3x2y n与﹣2x m y3是同类项,则m=2,n=3,所以m+n=5.【解答】:答案5.【点评】:此题考查了同类项的概念,熟知同类项的概念是解答此题的关键。

4.(2分)(2014•抚州)计算:﹣=.【考点】:二次根式的化简M11E.【难易度】:容易题.【分析】:将二次根式化为最简得,原式=3﹣,合并同类二次根式得3﹣=2.【解答】:答案为:2.【点评】:本题主要考查二次根式的化简,关键在于运算法则的应用,注意最后要把结果化为最简二次根式,即根号下的数不能再次开方.5.(2分)(2010•吉林)不等式2x﹣3>1的解集是.【考点】:一元一次不等式(组)的解及解集M12K.【难易度】:容易题【分析】:移项合并同类项得到2x>4,两边同时除以2得x>2,则不等式的解集是x>2.【解答】:答案x>2.【点评】:本题主要考查对不等式的性质,能熟练应用不等式解题,掌握和理解解一元一次不等式知识点和不等式的性质是解此题的关键.6.(2分)(2010•吉林)方程的解是x=.【考点】:解可化为一元一次方程的分式方程M12B.【难易度】:容易题.【分析】:由题目所给式子有,分式方程的最简公分母是x(x+4),方程两边同时乘以最简公分母,得x+4=5x,则x=1,又x(x+4)=1(1+4)=4≠0,故原分式方程的解为x=2【解答】:答案1.【点评】:此题考查了解分式方程,解分式方程一般是将分式方程转化整式方程进行求解,注意解分式方程一定要验根.7.(2分)(2011•枣庄)将一副三角尺如图所示叠放在一起,若AB=14cm,则阴影部分的面积是cm2.【考点】:解直角三角形M32E.【难易度】:容易题【分析】:由图知,∠B=30°,∠ACB=90°,因为AB=14cm,所以AC=7cm,∠ACB=∠AED=90°,则BC∥DE,又∠ADE=90°,所以△ACF是等腰直角三角形,因此AC=CF=7cm,故S△ACF=×7×7=(cm2)【解答】:答案为:.【点评】:本题考查了解直角三角形,由已知条件得出△ACF是等腰直角三角形是解答本题的关键.8.(2分)(2010•吉林)如图,AB是⊙O的直径,点C在⊙O上,∠ABC=50°,动点P在弦BC上,则∠PAB可能为度(写出一个符合条件的度数即可).【考点】:圆心角与圆周角M343;三角形内(外)角和M321.【难易度】:容易题.【分析】:连接AC,因为AB是⊙O的直径,由圆周角定理有∠ACB=90°,而∠ABC=50°,则∠CAB=90°﹣∠ABC=40°,又P在BC上运动,0°≤∠PAB≤40°,即只需要取一个满足范围的值即可,如20°【解答】:答案20°.【点评】:此题主要考查了圆周角定理的推论:半圆(或直径)所对的圆周角是直角,三角形的内角和,连接AC得出∠ACB=90°是解答此题的关键.9.(2分)(2010•吉林)如图,为拧紧一个螺母,将扳手顺时针旋转60°,扳手上一点A转至点A′处,若OA长为25cm,则长为cm(结果保留π).【考点】:圆的相关计算M34D.【难易度】:容易题【分析】:由题意,根据弧长公式计算有==.【解答】:答案.【点评】:本题主要考查了弧长公式,熟知弧长公式是解答本题的关键.10.(2分)(2010•吉林)用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为(用含n的代数式表示).【考点】:列代数式M11H.【难易度】:中等题.【分析】:由图可知,第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;由此有后一个图案中正三角形的个数都比前一个图案中正三角形的个数多4个.因此有第n个图案正三角形个数为2+(n ﹣1)×4+4=2+4n=4n+2【解答】:答案为:4n+2.【点评】:本题主要考查图形的变化规律,找出图形之间的变化规律是解答本题的关键.二、选择题(共6小题,每小题3分,满分18分)11.(3分)(2010•吉林)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是()A .B.C.D.【考点】:绝对值M113.【难易度】:容易题.【分析】:由题意可知绝对值最小的一个即为最接近标准的足球,而|﹣0.8|<|+0.9|<|+2.5|<|﹣3.6|.【解答】:答案C.【点评】:此题主要考查绝对值,明确题意以及能够正确比较绝对值的大小是解答本题的关键.12.(3分)(2010•吉林)某鞋店销售一款新式女鞋,试销期间对该款不同尺码女鞋的销售量统计如下表:尺码/厘米22 22.5 23 23.5 24 24.5 25销售量/双 1 2 3 11 8 6 4该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是()A .平均数B.众数C.中位数D.方差【考点】:中位数、众数M214.【难易度】:容易题.【分析】:由题意,想要了解哪种女鞋的销售量最大,即要知道哪种女鞋销售的最多,由众数是数据中出现次数最多的数,因此应关注这组数据中的众数【解答】:答案B.【点评】:此题主要考查了众数的概念,熟知统计相关计量的概念是解答此类题型的关键。

13.(3分)(2010•吉林)如图,由五个完全相同的小正方体组合成一个立体图形,它的俯视图是()A .B.C.D.【考点】:视图与投影M414.【难易度】:容易题【分析】:从上往下看几何体,得到图形即是俯视图,由题中所给的几何体从上往下看,易得是由3个正方形组成的图形.【解答】:解:从上面看可得一行正方形的个数为3,故选D.【点评】:本题考查了三视图的知识,俯视图是从上往下看几何体得到的视图,注意所有的看到的棱都应表现在主视图中.14.(3分)(2011•西宁)反比例函数的图象如图所示,则k的值可能是()A .﹣1 B.C.1 D.2【考点】:求反比例函数的关系式M153.【难易度】:容易题【分析】:由图知,反比例函数的图像在一、三象限,所以k>0,在第一象限的图像中可以看出,当图象上的点的横坐标为1时,纵坐标小于1,所以k<1【解答】:答案B.【点评】:此题主要考查了反比例函数的图像与其关系式,从图像上提取出需要的信息是解答此题的关键。

15.(3分)(2010•吉林)如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为()A .3 B.4 C.5 D.6【考点】:勾股定理的实际应用M32B;相似三角形性质与判定M32H.【难易度】:容易题【分析】:由题知,Rt△ABC中,因为∠C=90°,AC=8,BC=6,所以有AB===10,又∠AED=90°,点D在AC上,点E在AB上,因此△ADE∽△ABC,则,即,所以AD==5【解答】:答案C.【点评】:本题考查了勾股定理的运用以及相似三角形的性质,得出△ADE∽△ABC是解答本题的关键16.(3分)(2010•吉林)如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A′、D′处,则整个阴影部分图形的周长为()A .18cm B.36cm C.40cm D.72cm【考点】:图形的折叠、镶嵌M411.【难易度】:中等题.【分析】:延长A1E交CD于点G,因为矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,所以GE=EH,FH=GF,四边形EHD1A1≌四边形EGDA.而AD=A1D1,AE=A1E,DG=D1H,FH=FG,所以阴影部分的周长=矩形的周长=(12+6)×2=36cm.【解答】:答案B.【点评】:本题考查了图像翻折,熟知图形翻折后,对应图形全等,对应边相等是解答此题的关键.三、解答题(共12小题,满分82分)17.(5分)(2010•吉林)先简化.【考点】:分式的化简求值.【难易度】:容易题.【分析】:将式子通分化简后,再取一个使得分式有意义的数字代入计算即可.【解答】:解:原式=---3分当x=2时,原式=,---------5分【点评】:本题考查的是分式的化简求值,熟知分式化简的方法解答此题的关键.18.(5分)(2010•吉林)观察右面两个图形,解答下列问题:(1)其中是轴对称图形的为,是中心对称图形的为(填序号);(2)用尺规作图的方法画出其中轴对称图形的对称轴(要求:只保留作图痕迹,不写作法)【考点】:图形的对称M412.尺规作图M318【难易度】:容易题【分析】:(1)若一个图形关于某一条直线对称,则称这个图形为轴对称图形,若一个图形旋转180°后,与原图形大小相等,则称这个图形为中心对称图形(2)由(1)的判断,找出相应的点,作连线的垂直平分线即可.解答:解:(1)②,①;--------2分(2)-----5分【点评】:本题主要考查了轴对称图形和中心对称图形的定义及对称轴的画法,熟知定义以及画法是解答本题的关键19.(5分)(2010•吉林)在课间活动中,小英、小丽和小华在操场上画出A、B两个区域,一起玩投沙包游戏,沙包落在A区域所得分值与落在B区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示,请求出小华的四次总分.【考点】:二元一次方程组的应用M12G.【难易度】:容易题.【分析】:由图设沙包落在A区域得x分,落在B区域得y分,根据小英的总分34分,小丽的总分是32分,可列出方程组,解方程组得出沙包落在A区域所得分值与落在B区域所得分值,由小华四次投沙包落在A区域、B区域的情况计算小华的总分即可.【解答】:解:设沙包落在A区域得x分,落在B区域得y分,由题意,得-----2分解得------3分而小华四次投沙包有1次落在A区域、有3次落在B区域则小华的四次总分为x+3y=9+3×7=30分------5分答:小华的四次总分为30分.【点评】:此题考查了二元一次方程组的应用,理解题目的意思,根据题目所给的条件,找出等量关系列方程组是解答此题的关键。

相关文档
最新文档