高中物理易错题分析——动量、动量守恒定律
高三物理一轮复习易错题7动量守恒定律
精品基础教育教学资料,仅供参考,需要可下载使用!易错点07 动量守恒定律易错题【01】对动量守恒定义理解有误动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
[注1]2.表达式:m1v1+m2v2=m1v1′+m2v2′。
3.适用条件(1)理想守恒:不受外力或所受外力的合力为0。
(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。
[注2](3)某一方向守恒:如果系统在某一方向上所受外力的合力为0,则系统在该方向上动量守恒。
易错题【02】对爆炸、反冲运动分析有误碰撞、反冲、爆炸1.碰撞(1)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒。
(2)分类①弹性碰撞:碰撞后系统的总动能没有损失。
[注3]②非弹性碰撞:碰撞后系统的总动能有损失。
③完全非弹性碰撞:碰撞后合为一体,机械能损失最大。
2.爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。
[题型技法] 碰撞问题解题策略(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解。
(2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:v 1′=m 1-m 2m 1+m 2v 1 v 2′=2m 1m 1+m 2v 1 (3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度。
当m 1≫m 2,且v 2=0时,碰后质量大的速率不变,质量小的速率为2v 1。
当m 1≪m 2,且v 2=0时,碰后质量小的球原速率反弹。
易错题【03】对爆炸过程各个量分析有误爆炸现象的三个规律动量守恒 由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒动能增加 在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加位置不变爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动01 对动量守恒定律理解不到位1、关于系统动量守恒的条件,下列说法正确的是( )A .只要系统内存在摩擦力,系统动量就不可能守恒B.只要系统中有一个物体具有加速度,系统动量就不守恒C.只要系统所受的合外力为零,系统动量就守恒D.系统中所有物体的加速度为零时,系统的总动量不一定守恒【警示】本题容易出错的主要原因是对动量守恒定义理解有误。
高中物理动量守恒定律易错剖析及解析
高中物理动量守恒定律易错剖析及解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。
P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。
(新高考专用)2024届高考物理易错题真题分层训练——动量
(新高考专用)2024届高考物理易错题真题分层训练——动量易错点一:应用动量定理求解问题时出现错误3.动量定理的理解(1)动量定理反映了合力的冲量与动量变化量之间的因果关系,即合力的冲量是原因,物体的动量变化量是结果.(2)动量定理中的冲量是合力的冲量,而不是某一个力的冲量,它可以是合力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和.(3)动量定理的表达式是矢量式,等号包含了大小相等、方向相同两方面的含义.2 介质流模型冲力的计算流体类:液体流、气体流等,通常给出流体的密度研究对象微粒类:电子流、光子流、尘埃等,通常给出单位体积内的粒子数①建构“柱状”模型:沿流速的方向选取一段小柱体,其横截面积为小柱体的体积小柱体质量小柱体内粒子数②微元研究小柱体动量分析步骤③建立方程,应用动量定理研究易错点二:不理解动量守恒定律的条件也不会运用动量守恒定律列式求解问题.3.动量守恒定律适用条件(1)理想守恒:系统不受外力或所受外力的矢量和为零 .(2)近似守恒:系统内各物体间相互作用的内力远大于系统所受到的外力.(3)某方向守恒:系统在某个方向上所受外力之和为零时,系统在该方向上动量守恒.4.表达式(1),系统作用前的总动量等于作用后的总动量.(2),相互作用的两个物体动量的变化量等大反向.(3),系统总动量的变化量为零.易错点三:没有弄清碰撞的特点和规律而出现错误5.碰撞的概念及特点碰撞是物体间相互作用时间很短,物体间相互作用力很大,从而使系统内每个物体的动量在碰撞过程的极短时间内发生剧烈变化的过程,具有以下特点:(1) 碰撞过程时间特点:在碰撞现象中,相互作用的时间很短。
(2)相互作用力的特点:在相互作用过程中,相互作用力先是急剧增大,然后急剧减小,平均作用力很大。
(3)动量守恒条件的特点:由于碰撞过程中物体间的相互作用力(内力)很大(远大于外力如重力及摩擦力等)系统的内力远远大于外力,系统的总动量守恒。
高中物理动量守恒定律易错剖析
高中物理动量守恒定律易错剖析一、高考物理精讲专题动量守恒定律1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求:(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =014P E mgx =0(2043)v gx =+【解析】试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°=12mv 12 解得:103v gx =又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011322v v gx ==(2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P +12•2mv 22=0+2mg•x 0sin30° 解得:E P =2mg•x 0sin30°−12•2mv 22=mgx 0−34mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,物块A 恰能通过圆弧轨道的最高点C 点时,重力提供向心力,得:2c v mg m R=所以:0c v gR gx == C 点相对于O 点的高度: h=2x 0sin30°+R+Rcos30°=(43)+x 0…⑤ 物块从O 到C 的过程中机械能守恒,得:12mv o 2=mgh+12mv c 2…⑥ 联立④⑤⑥得:0(53)o v gx +=…⑦ 设A 与B 碰撞后共同的速度为v B ,碰撞前A 的速度为v A ,滑块从P 到B 的过程中机械能守恒,得:12mv 2+mg (3x 0sin30°)=12mv A 2…⑧ A 与B 碰撞的过程中动量守恒.得:mv A =2mv B …⑨ A 与B 碰撞结束后从B 到O 的过程中机械能守恒,得:12•2mv B 2+E P =12•2mv o 2+2mg•x 0sin30°…⑩ 由于A 与B 不粘连,到达O 点时,滑块B 开始受到弹簧的拉力,A 与B 分离. 联立⑦⑧⑨⑩解得:033v gx =考点:动量守恒定律;能量守恒定律【名师点睛】分析清楚物体运动过程、抓住碰撞时弹簧的压缩量与A 、B 到达P 点时弹簧的伸长量相等,弹簧势能相等是关键,应用机械能守恒定律、动量守恒定律即可正确解题.2.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
高考物理纠错笔记动量守恒定律含解析
动量定理定律一、动量定理应用的误区警示1.应用Δ求变力的冲量I p如果物体受到大小或方向改变的力的作用,则不能直接用I=Ft求变力的冲量,可以求出该力作用下物体动量的变化Δp,等效代换变力的冲量I。
2.应用Δ=Δp F t求动量的变化在曲线运动中,速度方向时刻在变化,求动量变化需要应用矢量运算方法,计算较复杂.若作用力为恒力,可求恒力冲量,等效代换动量的变化。
二、动量守恒定律成立条件的误区1.系统不受外力或系统所受外力的矢量和为零,则系统动量守恒。
2.系统所受合外力虽不为零,但系统的内力远大于外力,如碰撞、爆炸等现象中,系统的动量可近似看作守恒.3.系统所受合外力虽然不为零,如果在某一个方向上合外力为零,那么在该方向上动量守恒。
三、碰撞类问题的易错点1.忽视了动量守恒的条件,在系统所受合外力不为零的情况下仍用动量守恒求解;2.不理解动量守恒定律的矢量性,按代数和的方法求和动量;3.在动量守恒定律的表达式中,速度选取了不同的参考系;4.忽视了碰撞过程中的机械能损失.从同样高度静止落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D.掉在水泥地上的玻璃杯与地面接触时,相互作用力小,而掉在草地上的玻璃杯受地面的冲击力大【错因分析】本题较易出错的理解是掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小,认为打碎的原因是动量大。
【正确解析】从同样高度静止落下的玻璃杯,掉在水泥地上和掉在草地上速度相同,动量相同,故A错误;玻璃杯掉在水泥和掉在草地上初动量相同,末动量都为零,所以动量变化量相同;故B 错误;掉在水泥地上的玻璃杯与水泥作用时间短,动量变化量一定,动量改变快,掉在草地上的玻璃杯与草地作用时间长,动量变化量一定,动量改变慢,故C 正确;由动量定理()0F mg t mv -=-可得mv F mg t=-+ 掉在水泥地上的玻璃杯与地面接触时,相互作用力大,而掉在草地上的玻璃杯受地面的冲击力小,故D 错误。
新高考物理考试易错题易错点14动量动量定理附答案
易错点14 动量 动量定理易错总结1.动量和冲量(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv 。
是矢量,方向与v 的方向相同。
两个动量相同必须是大小相等,方向一致。
(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft 。
冲量也是矢量,它的方向由力的方向决定。
2.动量定理:物体所受合外力的冲量等于它的动量的变化。
表达式:Ft=p′-p 或Ft=mv′-mv(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向。
(2)公式中的F 是研究对象所受的包括重力在内的所有外力的合力。
(3)动量定理的研究对象可以是单个物体,也可以是物体系统。
对物体系统,只需分析系统受的外力,不必考虑系统内力。
系统内力的作用不改变整个系统的总动量。
(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力。
对于变力,动量定理中的力F 应当理解为变力在作用时间内的平均值。
解题方法一、动量1.动量p =mv ,是描述物体运动状态的物理量恒定的速率,是矢量,其方向与运动物体的速度方向相同.2.物体动量的变化Δp =p ′-p 是矢量,其方向与速度变化的方向相同,在合力为恒力的情况下,物体动量的变化的方向也与物体加速度的方向相同,即与物体所受合外力的方向相同.3.关于动量变化量的求解(1)若初、末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算.(2)若初、末动量不在同一直线上,运算时应遵循平行四边形定则.二、动量定理1.动量定理的推导如图1所示,一个质量为m 的物体(与水平面无摩擦)在水平恒力F 作用下,经过时间t ,速度从v 变为v ′.图1物体在这个过程中的加速度a =v ′-v t根据牛顿第二定律F =ma可得F =m v ′-v t整理得:Ft =m (v ′-v )=mv ′-mv即Ft =mv ′-mv =Δp .2.对动量定理的理解(1)动量定理反映了合外力的冲量是动量变化的原因.(2)动量定理的表达式Ft =mv ′-mv 是矢量式,运用动量定理解题时,要注意规定正方向.(3)公式中的F 是物体所受的合外力,若合外力是均匀变化的力,则F 应是合外力在作用时间内的平均值.3.动量定理的应用(1)定性分析有关现象.①物体的动量变化量一定时,力的作用时间越短,力就越大,反之力就越小.②作用力一定时,力的作用时间越长,动量变化量越大,反之动量变化量就越小.(2)应用动量定理定量计算的一般步骤. 选定研究对象,明确运动过程→进行受力分析,确定初、末状态→选取正方向,列动量定理方程求解【易错跟踪训练】易错类型1:逻辑推理不严密1.(2021·辽宁高三开学考试)从同样高度自由落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎。
动量守恒定律解题易错点评析
动量守恒定律解题易错点评析一、引言动量守恒定律是物理学中的一个基本定律,它揭示了物体间相互作用过程中动量的传递规律。
在学习动量守恒定律的过程中,许多同学容易出现一些错误,本文将对这些易错点进行点评析,以帮助同学们更好地理解和应用动量守恒定律。
二、动量守恒定律的概念及适用条件1.概念回顾动量守恒定律是指在一个封闭系统中,物体间的相互作用力使物体的动量发生变化,但整个系统的总动量保持不变。
用数学表达式表示为:Σp=0,其中p表示物体的动量。
2.适用条件概述动量守恒定律适用于以下情况:(1)系统内部物体之间的相互作用力满足一定的条件,例如弹性碰撞和非弹性碰撞;(2)系统受到的合外力为零,或合外力做功为零;(3)系统处于惯性参考系中。
三、动量守恒定律解题易错点分析1.对象选取错误在应用动量守恒定律时,首先要正确选取研究对象,即确定封闭系统。
有些同学在解题过程中,未正确划分系统,导致动量守恒定律的应用出现错误。
2.外力分析不全面在分析系统受到的外力时,有些同学可能未考虑所有相关力,导致动量守恒定律的应用出现偏差。
要全面分析外力,包括重力、弹力、摩擦力等。
3.动量守恒方程列写错误在列写动量守恒方程时,要正确区分物体间的相互作用力,并根据动量守恒定律的数学表达式进行列写。
有些同学在列方程时,可能出现漏项、错项等问题。
4.忽视矢量方向分析动量是矢量,既有大小,又有方向。
在应用动量守恒定律时,要充分考虑动量方向的变化。
有些同学在解题过程中,忽视了矢量方向分析,导致结果错误。
四、动量守恒定律应用实例解析1.实例一:弹性碰撞问题当两个物体发生弹性碰撞时,动量守恒定律和能量守恒定律同时成立。
例如,两个质量分别为m1、m2的物体,碰撞前速度分别为v1、v2,碰撞后速度分别为v1"、v2",则有:m1*v1 + m2*v2 = m1*v1" + m2*v2"2.实例二:非弹性碰撞问题在非弹性碰撞中,动量守恒定律仍然成立,但能量守恒定律不再严格成立。
新高考物理考试易错题易错点15动量守恒定理及其应用附答案
易错点15 动量守恒定理及其应用易错总结1.动量守恒定律的条件:系统所受的总冲量为零不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲的过程均可近似认为动量守恒)2,某一方向上动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的合力为零,则系统在这个方向上动量守恒。
必须注意区别总动量守恒与某一方向上动量守恒。
3,完全非弹性碰撞:两物体碰撞后获得共同速度,动能损失最多且全部通过形变转化为内能,但动量守恒。
4,弹性碰撞:动量守恒,碰撞前后系统总动能相等。
5.一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
6,人船模型—两个原来静止的物体(人和船)发生相互作用时,不受其他外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有2211v m v m (注意利用几何关系解决位移问题)。
(人船模型:人从右向左由船头走向船尾)7,能量与动量不能混为一谈,能量是标量,动量是矢量,且两者的公式、定义均不相同。
8.求变力冲量(1)若力与时间呈线性关系,可用于平均力求变力的冲量;(2)若给出了力随时间变化的图像如图,可用面积法求变力冲量。
9.在研究反冲问题时,注意速度的相对性:若物体间的相对速度已知,应转化为对地速度。
解题方法一、动量守恒定律1.动量守恒定律的推导如图所示,光滑水平桌面上质量分别为m1、m2的球A、B,沿着同一直线分别以v1和v2的速度同向运动,v2>v1.当B球追上A球时发生碰撞,碰撞后A、B两球的速度分别为v1′和v2′.设碰撞过程中两球受到的作用力分别为F1、F2,相互作用时间为t.根据动量定理:F1t=m1(v1′-v1),F2t=m2(v2′-v2).因为F1与F2是两球间的相互作用力,根据牛顿第三定律知,F1=-F2,则有:m1v1′-m1v1=-(m2v2′-m2v2)即m1v1+m2v2=m1v1′+m2v2′2.动量守恒定律的理解(1)动量守恒定律的成立条件①系统不受外力或所受合外力为零.②系统受外力作用,但内力远远大于合外力.此时动量近似守恒.③系统所受到的合外力不为零,但在某一方向上合外力为零(或某一方向上内力远远大于外力),则系统在该方向上动量守恒.(2)动量守恒定律的性质①矢量性:公式中的v1、v2、v1′和v2′都是矢量,只有它们在同一直线上,并先选定正方向,确定各速度的正、负(表示方向)后,才能用代数方法运算.②相对性:速度具有相对性,公式中的v1、v2、v1′和v2′应是相对同一参考系的速度,一般取相对地面的速度.③普适性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.二、动量守恒定律的应用1.动量守恒定律不同表现形式的表达式的含义:(1)p=p′:系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′:相互作用的两个物体组成的系统,作用前动量的矢量和等于作用后动量的矢量和.(3)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反.(4)Δp=0:系统总动量增量为零.2.应用动量守恒定律的解题步骤:【易错跟踪训练】易错类型1:不明白规律内涵、外延1.(2021·全国高三专题练习)下列关于碰撞的理解正确的是()A.碰撞是指相对运动的物体相遇时,在极短时间内它们的运动状态发生了显著变化的过程B.在碰撞现象中,一般内力都远大于外力,所以可以认为碰撞时系统的动能守恒C.如果碰撞过程中机械能守恒,这样的碰撞叫做非弹性碰撞D.微观粒子的相互作用由于不发生直接接触,所以不能称其为碰撞【答案】A【详解】AB.碰撞是十分普遍的现象,它是相对运动的物体相遇时在极短时间内运动状态发生显著变化的一种现象,一般内力远大于外力,系统动量守恒,A正确,B错误。
高中物理动量守恒定律易错剖析及解析
考点:本题考查了动能定理、动量守恒定律、能量守恒定律.
3.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块 b,小车质量 M=3kg,AO 部分粗糙且长 L=2m,动摩擦因数 μ=0.3,OB 部分光滑.另一小物块 a.放在车 的最左端,和车一起以 v0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为 零,但不与挡板粘连.已知车 OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限 度内.a、b 两物块视为质点质量均为 m=1kg,碰撞时间极短且不粘连,碰后一起向右运 动.(取 g=10m/s2)求:
⑥
解得:
⑦ 整理得:
⑧ 故可以得到发生 n 次碰撞后的速度:
⑨
而偏离方向为 450 的临界速度满足:
⑩
联立①⑨⑩代入数据解得,当 n=2 时,v2>v 临界 当 n=3 时,v3<v 临界 即发生 3 次碰撞后小球返回到最高点时与竖直方向的夹角将小于 45°. 考点:动量守恒定律;机械能守恒定律. 专题:压轴题. 分析:先根据机械能守恒定律求出小球返回最低点的速度,然后根据动量守恒定律和机械 能守恒定律求出碰撞后小球的速度,对速度表达式分析,求出碰撞 n 次后的速度表达式, 再根据机械能守恒定律求出碰撞 n 次后反弹的最大角度,结合题意讨论即可. 点评:本题关键求出第一次反弹后的速度和反弹后细线与悬挂点的连线与竖直方向的最大 角度,然后对结果表达式进行讨论,得到第 n 次反弹后的速度和最大角度,再结合题意求 解.
1 2
2mv02
1 (m 2
2m
m)v22
u(2mg)2(L
x)
解得 x v02 L 32g
对 P1、P2、P 系统从 P1、P2 碰撞结束到弹簧压缩量最大,用能量守恒定律
从一道易错题谈动量守恒定律理解
从一道易错题谈动量守恒定律的理解动量守恒定律是力学中的重要定律,在各类考试中都有大量的相关知识的考查,所以学习时一定要准确的掌握它的特性。
我们知道,动量守恒定律在应用时具有“四性”,即系统性、矢量性,瞬时性、同参考系性,但在利用动量守恒定律求解实际问题时,学生往往理解不到位,忽视了这几个方面,造成解题的错误。
那么,怎样在解题的过程中整体把握动量守恒定律的四性呢?下面通过一个例子来说明对动量守恒定律四性的理解。
例题:如图,质量为m的小车,以速度v0在光滑水平地面前进,上面站着一个质量为m的人,问:当人以相对车的速度u向后水平跳出后,车速度为多大?一、典型错解错解一:设人跳出后的瞬间车速为v,则其动量为mv,根据动量守恒定律有:(m+m)v0=mv解得:v=错解二:设人跳出后的车速为v,车的动量为mv,人的动量为m(u+v),根据动量守恒定律有:(m+m)v0=mv+m(u+v)解得:v=错解三:设车的前进方向为正方向,人在跳出车后,车的动量为mv,人的动量为-mu,根据动量守恒定律有:(m+m)v0=mv-mu解得:v=-错解四:设车的前进方向为正方向,则人跳出车后小车的动量mv,人的动量为-m(u-v0),根据动量守恒定律有:(m+m)v0=mv+m(u-v)解得:v=二、错解原因分析1.系统的选择不一致造成错解如错解一,原因是动量守恒的对象应为车和人构成的系统,而不是只有车,不能以系统的一部分(车)来代替整个系统(车和人)。
2.没有考虑矢量方向造成错解如错解二,错解是没有考虑到,人跳离车前后动量方向的变化,简单地采用了算术和,忽略了动量的矢量性。
3.没有注意同参考系造成错解如错解三,此解的错误在于参考系发生变化了。
人跳离前人与车的动量是相对地的。
人跳离车后车的动量(mv)也是相对地的,而人跳离车后人的动量(mu)却是相对于车而言的,没有考虑系统的同参考系性。
4.等式的左边或右边动量表达不同时造成错解如错解四:错误在于对速度的瞬时性的分析。
物理动量守恒定律易错剖析
物理动量守恒定律易错剖析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值.【答案】v 乙=6m/s. I =8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知 联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
【答案】(1)3m/s (2)0.1m【解析】试题分析:(1)除锁定后弹簧的弹性势能转化为系统动能,根据动量守恒和能量守恒列出等式得mv 1-Mv 2=022121122P E mv Mv =+ 代入数据解得:v 1=3m/s v 2=1m/s(2)根据动量守恒和各自位移关系得12x x m M t t =,x 1+x 2=L 代入数据联立解得:24L x ==0.1m 考点:动量守恒定律;能量守恒定律.3.如图,质量分别为、的两个小球A 、B 静止在地面上方,B 球距地面的高度h=0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t=0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知,重力加速度大小为,忽略空气阻力及碰撞中的动能损失.(i )B 球第一次到达地面时的速度;(ii )P 点距离地面的高度.【答案】4/B v m s =0.75p h m =【解析】试题分析:(i )B 球总地面上方静止释放后只有重力做功,根据动能定理有212B B B m gh m v = 可得B 球第一次到达地面时的速度24/B v gh m s =(ii )A 球下落过程,根据自由落体运动可得A 球的速度3/A v gt m s ==设B 球的速度为'B v , 则有碰撞过程动量守恒'''A A B B B B m v m v m v +=碰撞过程没有动能损失则有222111'''222A AB B B B m v m v m v += 解得'1/B v m s =,''2/B v m s =小球B 与地面碰撞后根据没有动能损失所以B 离开地面上抛时速度04/B v v m s ==所以P 点的高度220'0.752B p v v h m g-== 考点:动量守恒定律 能量守恒4.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩?【答案】(i )20 kg (ii )不能【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+ 系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右) 冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv =' 解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.5.(1)(6分)一质子束入射到静止靶核AI 2713上,产生如下核反应:p+AI 2713→x+n 式中p 代表质子,n 代表中子,x 代表核反应产生的新核。
高中物理动量守恒定律易错剖析及解析
高中物理动量守恒定律易错剖析及解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,质量分别为m1和m2的两个小球在光滑水平面上分别以速度v1、v2同向运动,并发生对心碰撞,碰后m2被右侧墙壁原速弹回,又与m1碰撞,再一次碰撞后两球都静止.求第一次碰后m1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m2速度的大小分别为和,由动量守恒定律得:(4分)两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得3.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.4.[物理─选修3-5] (1)天然放射性元素23994Pu 经过 次α衰变和 次β衰变,最后变成铅的同位素 。
高考物理动量守恒定律易错剖析
高考物理动量守恒定律易错剖析一、高考物理精讲专题动量守恒定律1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2m∆ 的压缩气体,每级总质量均为2M,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。
喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。
【答案】116.54m【解析】对模型甲: ()00M m v mv =-∆-∆甲21085=200.5629v h m m g =≈甲甲对模型乙第一级喷气: 10022m mM v v ∆∆⎛⎫=-- ⎪⎝⎭乙 解得: 130m v s=乙2s 末: ‘11=10m v v gt s-=乙乙22111'=402v v h m g-=乙乙乙对模型乙第一级喷气:‘120=)2222M M m m v v v ∆∆--乙乙( 解得: 2670=9mv s 乙 22222445=277.10281v h m m g =≈乙乙可得: 129440+=116.5481h h h h m m ∆=-≈乙乙甲。
2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以2v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v .所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.3.如图,质量分别为m 1=1.0kg 和m 2=2.0kg 的弹性小球a 、b ,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v 0=0.10m/s 沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t =5.0s 后,测得两球相距s =4.5m ,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.【答案】①0.7m/s, -0.2m/s ②0.27J 【解析】试题分析:①根据已知,由动量守恒定律得联立得②由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题4.如图所示,在光滑的水平面上放置一个质量为2m 的木板B ,B 的左端放置一个质量为m 的物块A ,已知A 、B 之间的动摩擦因数为μ,现有质量为m 的小球以水平速度0υ飞来与A 物块碰撞后立即粘住,在整个运动过程中物块A 始终未滑离木板B ,且物块A 和小球均可视为质点(重力加速度g).求:①物块A 相对B 静止后的速度大小; ②木板B 至少多长.【答案】①0.25v 0.②2016v L gμ=【解析】试题分析:(1)设小球和物体A 碰撞后二者的速度为v 1,三者相对静止后速度为v 2,规定向右为正方向,根据动量守恒得, mv 0=2mv 1,① (2分) 2mv 1=4mv 2② (2分)联立①②得,v 2=0.25v 0. (1分)(2)当A 在木板B 上滑动时,系统的动能转化为摩擦热,设木板B 的长度为L ,假设A 刚好滑到B 的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A 碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A 相对B 静止后的速度大小;对子弹和A 共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.5.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律6.牛顿的《自然哲学的数学原理》中记载,A、B两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B对A的速度,接近速度是指碰撞前A对B的速度.若上述过程是质量为2m的玻璃球A以速度v0碰撞质量为m 的静止玻璃球B,且为对心碰撞,求碰撞后A、B的速度大小.【答案】v0v0【解析】设A、B球碰撞后速度分别为v1和v2由动量守恒定律得2mv0=2mv1+mv2且由题意知=解得v1=v0,v2=v0视频7.冰球运动员甲的质量为80.0kg。
易错点16 动量守恒定律及其应用(解析版) -备战2023年高考物理考试易错题
易错点16 动量守恒定律及其应用例题1. (2021·浙江1月选考·12)在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪.爆炸物自发射塔竖直向上发射,上升到空中最高点时炸裂成质量之比为2∶1、初速度均沿水平方向的两个碎块.遥控器引爆瞬间开始计时,在5 s 末和6 s 末先后记录到从空气中传来的碎块撞击地面的响声.已知声音在空气中的传播速度为340 m/s ,重力加速度大小g 取10 m/s 2,忽略空气阻力.下列说法正确的是( )A .两碎块的位移大小之比为1∶2B .爆炸物的爆炸点离地面高度为80 mC .爆炸后的质量大的碎块的初速度为68 m/sD .爆炸后两碎块落地点之间的水平距离为340 m【答案】B【解析】设碎块落地的时间为t ,质量大的碎块水平初速度为v ,则由动量守恒定律知质量小的碎块水平初速度为2v ,爆炸后的碎块做平抛运动,下落的高度相同,则在空中运动的时间相同,由水平方向x =v 0t 知落地水平位移之比为1∶2,碎块位移s =x 2+y 2,可见两碎块的位移大小之比不是1∶2,故A 项错误;据题意知,v t =(5 s -t )×340 m/s ,又2v t =(6 s-t )×340 m/s ,联立解得t =4 s ,v =85 m/s ,故爆炸点离地面高度为h =12gt 2=80 m ,所以B 项正确,C 项错误;两碎块落地点的水平距离为Δx =3v t =1 020 m ,故D 项错误.【误选警示】误选A 的原因:水平位移和位移没有区分清楚。
误选CD 的原因:没有定量推导声音传播时间和传播距离和平抛水平位移的关系,从而求解落地时间、爆炸后两物块的速度、两物块的水平位移大小。
例题2. 在发射地球卫星时需要运载火箭多次点火,以提高最终的发射速度.某次地球近地卫星发射的过程中,火箭喷气发动机每次喷出质量为m =800 g 的气体,气体离开发动机时的对地速度v =1 000 m/s ,假设火箭(含燃料在内)的总质量为M =600 kg ,发动机每秒喷气20次,忽略地球引力的影响,则( )A .第三次气体喷出后火箭的速度大小约为4 m/sB .地球卫星要能成功发射,速度大小至少达到11.2 km/sC .要使火箭能成功发射至少要喷气500次D .要使火箭能成功发射至少要持续喷气17 s【答案】 A【解析】设喷出三次气体后火箭的速度为v3,以火箭和喷出的三次气体为研究对象,以竖直向上为正方向,由动量守恒定律得:(M-3m)v3-3m v=0,解得:v3≈4 m/s,故A正确;地球卫星要能成功发射,喷气n次后至少要达到第一宇宙速度,即:v n=7.9 km/s,故B错误;以火箭和喷出的n次气体为研究对象,以竖直向上为正方向,由动量守恒定律得:(M-nm)v n-nm v=0,代入数据解得:n≈666,故C错误;至少持续喷气时间为:t=n20=33.3 s,故D错误.【误选警示】误选B的原因:没有把第一宇宙速度和第二宇宙速度区分清楚。
高中物理动量守恒定律易错剖析及解析
高中物理动量守恒定律易错剖析及解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:4282t s +=2.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.3.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能. 【答案】22()(2)Mm aM m M m ++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A 正确;爱因斯坦通过光电效应现象,提出了光子说,B 正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D 错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E 错.(2)1以子弹与木块A 组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块 的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律4.冰球运动员甲的质量为80.0kg 。
动量守恒定律解题易错点评析
动量守恒定律是物理学中的重要基本定律,用于描述在没有外力作用下物体的运动情况。
在解题时,需要注意以下几个易错点:
1. 没有考虑到系统的边界:动量守恒定律只适用于封闭系统内部的物体运动,因此在应用该定律时要明确确定系统的边界。
2. 没有考虑到动量方向:物体在运动时具有动量,动量具有大小和方向,因此在使用动量守恒定律时需要明确物体的动量方向。
3. 忽略了外力作用:动量守恒定律只适用于没有外力作用的情况,如果存在外力作用,就不能简单地应用动量守恒定律。
此时,需要考虑外力的方向和大小,以及其对物体动量变化的影响。
4. 忽略了物体间的相互作用:在实际情况下,物体之间通常会有相互作用,如弹性碰撞、非弹性碰撞等。
这些相互作用会影响物体的动量变化,因此在解题时需要考虑这些相互作用的影响。
5. 混淆质量和速度的影响:物体的动量是质量和速度的乘积,因此在应用动量守恒定律时,需要考虑质量和速度对动量的影响。
有时候,由于混淆了质量和速度的影响,导致解题时出现错误。
综上所述,应用动量守恒定律解题时,需要注意确定系统边界、考虑
动量方向、考虑外力和物体间的相互作用、以及考虑质量和速度的影响。
只有在全面考虑这些因素的基础上,才能准确地应用动量守恒定律,解决物理学中的动量守恒问题。
高中物理必修三易错题汇编
高中物理必修三易错题汇编本文档汇编了高中物理必修三中容易出错的题型,旨在帮助学生更好地理解和掌握这些知识点。
一、力学部分1. 力的平衡问题问题描述:一个物体静止或匀速运动时,总受力是否为零?一个物体静止或匀速运动时,总受力是否为零?答案:是的。
根据牛顿第一定律,当物体静止或匀速运动时,总受力为零。
这意味着物体不会加速或减速,保持原有的状态。
是的。
根据牛顿第一定律,当物体静止或匀速运动时,总受力为零。
这意味着物体不会加速或减速,保持原有的状态。
2. 加速度和速度的关系问题描述:物体的速度和加速度是否成正比?物体的速度和加速度是否成正比?答案:不是的。
速度和加速度是不同的物理量。
速度表示物体在单位时间内移动的距离,而加速度表示物体在单位时间内速度的变化量。
不是的。
速度和加速度是不同的物理量。
速度表示物体在单位时间内移动的距离,而加速度表示物体在单位时间内速度的变化量。
3. 动量守恒定律问题描述:在碰撞事件中,动量是否会守恒?在碰撞事件中,动量是否会守恒?答案:是的。
根据动量守恒定律,碰撞事件中的总动量保持不变。
这意味着碰撞前后物体的总动量相等。
是的。
根据动量守恒定律,碰撞事件中的总动量保持不变。
这意味着碰撞前后物体的总动量相等。
二、光学部分1. 光的折射问题问题描述:光线从空气进入水中时,会发生什么现象?光线从空气进入水中时,会发生什么现象?答案:光线在从空气进入水中时会发生折射。
折射是光线由一种介质进入另一种介质时发生的偏折现象。
光线在从空气进入水中时会发生折射。
折射是光线由一种介质进入另一种介质时发生的偏折现象。
2. 凸透镜成像问题问题描述:凸透镜成像时,物体距离透镜远还是近时成像更清晰?凸透镜成像时,物体距离透镜远还是近时成像更清晰?答案:物体离凸透镜越远,成像越清晰。
这是因为远离透镜的物体成像更接近于透镜的焦点,所以成像更清晰。
物体离凸透镜越远,成像越清晰。
这是因为远离透镜的物体成像更接近于透镜的焦点,所以成像更清晰。
高中物理易错题分析——动量、动量守恒定律
中学物理易错题分析——动量、动量守恒定律[内容和方法]本单元内容包括动量、冲量、反冲等基本概念和动量定理、动量守恒定律等基本规律。
冲量是物体间相互作用一段时间的结果,动量是描述物体做机械运动时某一时刻的状态量,物体受到冲量作用的结果,将导致物体动量的变更。
冲量和动量都是矢量,它们的加、减运算都遵守矢量的平行四边形法则。
本单元中所涉及到的基本方法主要是一维的矢量运算方法,其中包括动量定理的应用和动量守定律的应用,由于力和动量均为矢量。
因此,在应用动理定理和动量守恒定律时要首先选取正方向,与规定的正方向一样的力或动量取正值,反之取负值而不能只关注力或动量数值的大小;另外,理论上讲,只有在系统所受合外力为零的状况下系统的动量才守恒,但对于某些详细的动量守恒定律应用过程中,若系统所受的外力远小于系统内部相互作用的内力,则也可视为系统的动量守恒,这是一种近似处理问题的方法。
[例题分析]在本单元学问应用的过程中,初学者常犯的错误主要表现在:只留意力或动量的数值大小,而忽视力和动量的方向性,造成应用动量定理和动量守恒定律一列方程就出错;对于动量守恒定律中各速度均为相对于地面的速度相识不清。
对题目中所给出的速度值不加分析,盲目地套入公式,这也是一些学生常犯的错误。
例1 、从同样高度落下的玻璃杯,掉在水泥地上简洁打碎,而掉在草地上不简洁打碎,其缘由是:[ ]A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B.掉在水泥地上的玻璃杯动量变更大,掉在草地上的玻璃杯动量变更小C.掉在水泥地上的玻璃杯动量变更快,掉在草地上的玻璃杯动量变更慢D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。
【错解分析】错解:选B。
认为水泥地较草地坚硬,所以给杯子的作用力大,由动量定理I=△P,即F·t =△P,认为F 大即△P,大,所以水泥地对杯子的作用力大,因此掉在水泥地上的动量变更量大,所以,简洁破裂。
高中物理专题复习 动量及动量守恒定律
高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。
由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。
在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。
全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。
⑵弹簧不是完全弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。
这种碰撞叫非弹性碰撞。
⑶弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。
这种碰撞叫完全非弹性碰撞。
可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。
在完全非弹性碰撞过程中,系统的动能损失最大,为:()()21212122121122121m m v m m v m m v m E k +='+-=∆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理易错题分析——动量、动量守恒定律[内容和方法]本单元内容包括动量、冲量、反冲等基本概念和动量定理、动量守恒定律等基本规律。
冲量是物体间相互作用一段时间的结果,动量是描述物体做机械运动时某一时刻的状态量,物体受到冲量作用的结果,将导致物体动量的变化。
冲量和动量都是矢量,它们的加、减运算都遵守矢量的平行四边形法则。
本单元中所涉及到的基本方法主要是一维的矢量运算方法,其中包括动量定理的应用和动量守定律的应用,由于力和动量均为矢量。
因此,在应用动理定理和动量守恒定律时要首先选取正方向,与规定的正方向一致的力或动量取正值,反之取负值而不能只关注力或动量数值的大小;另外,理论上讲,只有在系统所受合外力为零的情况下系统的动量才守恒,但对于某些具体的动量守恒定律应用过程中,若系统所受的外力远小于系统内部相互作用的内力,则也可视为系统的动量守恒,这是一种近似处理问题的方法。
[例题分析]在本单元知识应用的过程中,初学者常犯的错误主要表现在:只注意力或动量的数值大小,而忽视力和动量的方向性,造成应用动量定理和动量守恒定律一列方程就出错;对于动量守恒定律中各速度均为相对于地面的速度认识不清。
对题目中所给出的速度值不加分析,盲目地套入公式,这也是一些学生常犯的错误。
例1 、从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是:[ ]A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。
【错解分析】错解:选B。
认为水泥地较草地坚硬,所以给杯子的作用力大,由动量定理I=△P,即F·t =△P,认为F大即△P,大,所以水泥地对杯子的作用力大,因此掉在水泥地上的动量改变量大,所以,容易破碎。
【正确解答】设玻璃杯下落高度为h。
它们从h高度落地瞬间的量变化快,所以掉在水泥地上杯子受到的合力大,冲力也大,所以杯子所以掉在水泥地受到的合力大,地面给予杯子的冲击力也大,所以杯子易碎。
正确答案应选C,D。
【小结】判断这一类问题,应从作用力大小判断入手,再由动量大,而不能一开始就认定水泥地作用力大,正是这一点需要自己去分析、判断。
例2 、把质量为10kg的物体放在光滑的水平面上,如图5-1所示,在与水平方向成53°的N的力F作用下从静止开始运动,在2s内力F对物体的冲量为多少?物体获得的动量是多少?【错解分析】错解一:2s内力的冲量为设物体获得的动量为P2,由动量定理对冲量的定义理解不全面,对动量定理中的冲量理解不够。
错解一主要是对冲量的概念的理解,冲最定义应为“力与力作用时间的乘积”,只要题目中求力F的冲量,就不应再把此力分解。
这类解法把冲量定义与功的计算公式W=Fcosa·s 混淆了。
错解二主要是对动量定理中的冲量没有理解。
实际上动量定理的叙述应为“物体的动量改变与物体所受的合外力的冲量相等”而不是“与某一个力的冲量相等”,此时物体除了受外力F的冲量,还有重力及支持力的冲量。
所以解错了。
【正确解答】首先对物体进行受力分析:与水平方向成53°的拉力F,竖直向下的重力G、竖直向上的支持力N。
由冲量定义可知,力F的冲量为:I F = F·t = 10×2=10(N·s)因为在竖直方向上,力F的分量Fsin53°,重力G,支持力N的合力为零,合力的冲量也为零。
所以,物体所受的合外力的冲量就等干力F在水平方向上的分量,由动量定理得:Fcos53°·t = P2-0所以P2= Fcos53°·t =10×0.8×2(kg·m/s)P2=16kg·m/s【小结】对于物理规律、公式的记忆,要在理解的基础上记忆,要注意弄清公式中各物理量的含量及规律反映的物理本质,而不能机械地从形式上进行记忆。
另外,对于计算冲量和功的公式、动能定理和动量定理的公式,由于它们从形式上很相似,因此要特别注意弄清它们的区别。
例3、在距地面高为h,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m,当它们从抛出到落地时,比较它们的动量的增量△P,有[ ]A.平抛过程较大B.竖直上抛过程较大C.竖直下抛过程较大D.三者一样大【错解分析】错解一:根据机械能守恒定律,抛出时初速度大小相等,落地时末速度大小也相等,它们的初态动量P1= mv0。
是相等的,它们的末态动量P2= mv也是相等的,所以△P = P2-P1则一定相等。
选D。
错解二:从同一高度以相等的初速度抛出后落地,不论是平抛、竖直上抛或竖直下抛,因为动量增量相等所用时间也相同,所以冲量也相同,所以动量的改变量也相同,所以选D。
错解一主要是因为没有真正理解动量是矢量,动量的增量△P=P2=P1也是矢量的差值,矢量的加减法运算遵从矢量的平行四边形法则,而不能用求代数差代替。
平抛运动的初动量沿水平方向,末动量沿斜向下方;竖直上抛的初动量为竖直向上,末动量为竖直向下,而竖直下抛的初末动量均为竖直向下。
这样分析,动量的增量△P就不一样了。
方向,而动量是矢量,有方向。
从运动合成的角度可知,平抛运动可由一个水平匀速运动和一个竖直自由落体运动合成得来。
它下落的时间由为初速不为零,加速度为g的匀加速度直线运动。
竖直下抛落地时间t3<t1,所以第二种解法是错误的。
【正确解答】1.由动量变化图5-2中可知,△P2最大,即竖直上抛过程动量增量最大,所以应选B。
【小结】对于动量变化问题,一般要注意两点:(1)动量是矢量,用初、末状态的动量之差求动量变化,一定要注意用矢量的运算法则,即平行四边形法则。
(2)由于矢量的减法较为复杂,如本题解答中的第一种解法,因此对于初、末状态动量不在一条直线上的情况,通常采用动量定理,利用合外力的冲量计算动量变化。
如本题解答中的第二种解法,但要注意,利用动量定理求动量变化时,要求合外力一定为恒力。
例4、向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b两块.若质量较大的a块的速度方向仍沿原来的方向则[ ]A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a,b一定同时到达地面D.炸裂的过程中,a、b中受到的爆炸力的冲量大小一定相等【错解分析】错解一:因为在炸裂中分成两块的物体一个向前,另一个必向后,所以选A。
错解二:因为不知道a与b的速度谁大,所以不能确定是否同时到达地面,也不能确定水平距离谁的大,所以不选B,C。
错解三:在炸裂过程中,因为a的质量较大,所以a受的冲量较大,所以D不对。
错解一中的认识是一种凭感觉判断,而不是建立在全面分析的基础上。
事实是由于没有讲明a的速度大小。
所以,若要满足动量守恒,(m A+m B)v=m A v A+m B v B,v B的方向也可能与v A同向。
错解二是因为没有掌握力的独立原理和运动独立性原理。
把水平方向运动的快慢与竖直方向的运动混为一谈。
错解三的主要错误在于对于冲量的概念没有很好理解。
【正确解答】物体炸裂过程发生在物体沿水平方向运动时,由于物体沿水平方向不受外力,所以沿水平方向动量守恒,根据动量守恒定律有:(m A+m B)v = m A v A+m B v B当v A与原来速度v同向时,v B可能与v A反向,也可能与v A同向,第二种情况是由于v A 的大小没有确定,题目只讲的质量较大,但若v A很小,则m A v A还可能小于原动量(m A+m B)v。
这时,v B的方向会与v A方向一致,即与原来方向相同所以A不对。
a,b两块在水平飞行的同时,竖直方向做自由落体运动即做平抛运选项C 是正确的由于水平飞行距离x = v·t,a、b两块炸裂后的速度v A、v B不一定相等,而落地时间t 又相等,所以水平飞行距离无法比较大小,所以B不对。
根据牛顿第三定律,a,b所受爆炸力F A=-F B,力的作用时间相等,所以冲量I=F·t 的大小一定相等。
所以D是正确的。
此题的正确答案是:C,D。
【小结】对于物理问题的解答,首先要搞清问题的物理情景,抓住过程的特点(物体沿水平方向飞行时炸成两块,且a仍沿原来方向运动),进而结合过程特点(沿水平方向物体不受外力),运动相应的物理规律(沿水平方向动量守恒)进行分析、判断。
解答物理问题应该有根有据,切忌“想当然”地作出判断。
例5、一炮弹在水平飞行时,其动能为=800J,某时它炸裂成质量相等的两块,其中一块的动能为=625J,求另一块的动能【错解分析】错解:设炮弹的总质量为m,爆炸前后动量守恒,由动量守恒定律:P=P1+P2代入数据得:E k=225J。
主要是只考虑到爆炸后两块的速度同向,而没有考虑到方向相反的情况,因而漏掉一解。
实际上,动能为625J的一块的速度与炸裂前炮弹运动速度也可能相反。
【正确解答】以炮弹爆炸前的方向为正方向,并考虑到动能为625J的一块的速度可能为正.可能为负,由动量守恒定律:P=P1+P2解得:=225J或4225J。
正确答案是另一块的动能为225J或4225J。
【小结】从上面答案的结果看,炮弹炸裂后的总动能为(625+225)J=850J或(625+4225)J=4850J。
比炸裂前的总动能大,这是因为在爆炸过程中,化学能转化为机械能的缘故。
例6、如图5-3所示,一个质量为M的小车置于光滑水平面。
一端用轻杆AB固定在墙上,一个质量为m的木块C置于车上时的初速度为v0。
因摩擦经t秒木块停下,(设小车足够长),求木块C和小车各自受到的冲量。
【错解分析】错解:以木块C为研究对象,水平方向受到向右的摩擦力f,以v0)。
为正方向,由动量定理有:-ft = 0 = mv0所以I木= ft = mv0所以,木块C受的冲量大小为mv0,方向水平向右。
又因为小车受到的摩擦力水平向左,大小也是f(牛顿第三定律)。
所以小车受到的冲量I 车= ft = mv0,大小与木块受到的冲量相等方向相反,即水平向左。
主要是因为对动量定理中的冲量理解不深入,动量定理的内容是:物体所受合外力的冲量等于它的动量的变化量。
数学表达式为I合=P2-P1,等式左侧的冲量应指合外力的冲量。
在上述解答中,求木块C受到的冲量为mv0是正确的。
因为C受到的合外力就是f (重力mg 与支持力N互相平衡),但小车的冲量就错了。
因为小车共受5个力:重力Mg,压力N=mg,支持力N′[N′=(m+M)g],摩擦力f'和AB杆对小车的拉力T,且拉力T = f',所以小车所受合力为零,合力的冲量也为零。