初中数学课堂评价.17.反比例函数单元测试卷二

合集下载

反比例函数测试卷2

反比例函数测试卷2

反比例函数测试卷(二)一、选择题1. 对于反比例函数2y x=,下列说法正确的是( ) A .点()2,1-在它的图像上 B .它的图像经过原点C .它的图像在第一、三象限D .当0x >时,y 随x 的增大而增大 2. 设反比例函数)0(≠-=k xky 中,y 随x 的增大而增大,则一次函数k kx y -=的图象不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3. 若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )4. ()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( ) A .b c >B .b c <C .b c =D .无法判断5. 如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点, B C ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )A . 2S =B . 4S =C .24S <<D .4S >6. 若M(12-,1y )、N(14-,2y )、P(12,3y )三点都在函数ky x=(k>0123y 的大小关系是( )(A )132y y y >> (B )312y y y >> (C ) 213y y y >> (D )123y y y >> 7. 如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于B 点, 若AOB S ∆=5,则k 的值为( ) (A ) 10 (B ) 10- (C ) 5- (D )25-8. 若y 与-3x 成反比例,x 与z4成反比例,则y 是z 的( ) (A )正比例函数 (B )反比例函数 (C )一次函数 (D )不能确定 9. 在同一坐标平面内,如果直线x k y 1=与双曲线xk y 2=没有交点,那么1k 和2k 的关系是( )A 1k <0,2k >0B 1k >0,2k <0C 1k 、2k 同号D 1k 、2k 异号10. 已知1y +2y =y,其中1y 与1x成反比例,且比例系数为1k ,而2y 与2x 成正比例,且比例系数为2k ,若x=-1时,y=0,则1k ,2k 的关系是( )A.12k k + =0B.12k k =1C.12k k - =0D.12k k =-1 二、填空题1. 经过点A (1,2)的反比例函数解析式是_____ _____2.点(231)P m -,在反比例函数1y x=的图象上,则m = . 3. 如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是4. 已知反比例函数y =xa (a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,则一次函数y =-a x +a 的图象不经过...第 象限。

反比例函数全章测试卷

反比例函数全章测试卷

《反比例函数》单元测试题班级_____________姓名____________得分______________一、选择题(30分)1、若反比例函数22)12(--=mx m y 的图像在第二、四象限,则m 的值是( ) (A )-1或1 (B )小于21 的任意实数 (C ) -1 (D) 不能确定 2、在反比例函数1k y x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1- B .0 C .1 D .23、已知点(-1,y 1)、(2,y 2)、(π,y 3)在双曲线xk y 12+-=上,则下列关系式正确的是( )(A )y 1>y 2>y 3 (B )y 1>y 3>y 2 (C )y 2>y 1>y 3 (D )y 3>y 1>y 24、已知反比例函数y=2x,下列结论中,不正确...的是( )A .图象必经过点(1,2)B .y 随x 的增大而减少C .图象在第一、三象限内D .若x >1,则0<y <25、如图是三个反比例函数312,,k k k y y y x x x===,在x 轴 上方的图像,由此观察得到k l 、k 2、k 3的大小关系为( )(A ) k 1>k 2>k 3 (B ) k 3>k 1>k 2 (C ) k 2>k 3>k 1 (D ) k 3>k 2>k 16、反比例函数k y x=在第一象限的图象如图所示,则k 的值可能是( ) A .1 B .2 C .3 D .47、如图,直线l 和双曲线k y x=(0k >)交于A 、B 两点,P 是线段 AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD的面积为2S 、△POE 的面积为3S ,则有( ) A .123S S S << B .123S S S >> C . 123S S S =< D .123S S S =>8、如图,直线y=mx 与双曲线y=xk 交于A 、B 两点,过点A 作AM ⊥x 轴, 垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )A .2B 、m-2C 、mD 、49、已知甲、乙两地相s (千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a(升),那么从甲地到乙地汽车的总耗油量y(升)与汽车的行驶速度v(千米/时)的函数图象大致是()10.如图,已知关于x的函数y=k(x-1)和y=-kx(k≠0), 它们在同一坐标系内的图象大致是( )11、两位同学在描述同一反比例函数的图象时,甲同学说:“从这个反比例函数图象上任意一点向x轴、y轴作垂线,与两坐标轴所围成的矩形的面积为6.”乙同学说:“这个反比例函数图象与直线y=-x有两个交点.”你认为这两位同学所描述的反比例函数的表达式为.12、已知:点A(m,m)在反比例函数1yx=的图象上,点B与点A关于坐标轴对称,以AB为边作等边△ABC,则满足条件的点C有个.13、若反比例函数的表达式为3yx=,则当1x<-时,y的取值范围是14、反比例函数1kyx=与一次函数2y x b=-+的图象交于点(23)A,和点(2)B m,.若12y y>,则x的取值范围是______ ________.15、如图,正方形OABC的面积是4,点B在反比例函数(00)ky k xx=><,的图象上.若点R是该反比例函数图象上异于点B的任意一点,过点R分别作x轴、y轴的垂线,垂足为M、N,从矩形OMRN的面积中减去其与正方形OABC重合部分的面积,记剩余部分的面积为S.则当S=m(m为常数,且0<m<4)时,点R的坐标是_______________ (用含m的代数式表示)16、两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在k y x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点. 其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分).三、解答题17(10分)、已知y=y 1+y 2 ,y 1与x+1成正比例,y2与x+1成反比例,当x=0时,y=-5;当x=2时,y=-7. (1)求y与x的函数关系式; (2)当2y x =-时,求x的值。

北师大版九年级数学上册第六章反比例函数第2节反比例函数的图像和性质课堂练习

北师大版九年级数学上册第六章反比例函数第2节反比例函数的图像和性质课堂练习

第六章反比例函数第2节反比例函数的图像和性质课堂练习学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、单选题1.反比例函数y =1x(x <0)的图象位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.对于反比例函数3y x=,下列说法错误的是( ) A .图象经过点()1,3B .图象在第一、三象限C .0x >时,y 随x 的增大而增大D .x 0<时,y 随x 增大而减小3.若点A(x 1,y 1),B(x 2,y 2)在反比例函数3y -x=的图象上,且x 1<0<x 2.则( )A .12y 0y <<B .12y 0y >>C .12y 0y >>D .12y 0y <<4.反比例函数y =mx的图象如图所示,以下结论:①常数m >0;①在每个象限内,y 随x 的增大而增大;①若A (﹣1,h ),B (2,k )在图象上,则h <k ;①若P (x ,y )在图象上,则P '(﹣x ,﹣y )也一定在图象上.其中正确的是( )A .①①B .①①C .①①①D .①①①5.如图,P (x ,y )是反比例函数3y x=的图象在第一象限分支上的一个动点,P A ①x 轴于点A ,PB ①y 轴于点B ,随着自变量x 的逐渐增大,矩形OAPB 的面积( )A .保持不变B .逐渐增大C .逐渐减小D .无法确定6.已知正比例函数1y k x=和反比例函数2kyx=,在同一直角坐标系下的图象如图所示,其中符合120k k⋅>的是()A.①①B.①①C.①①D.①①7.若反比例函数()110ay a xx-=><,图象上有两个点()()1122,,x y x y,,设()1212()m x x y y=--,则y mx m=-不经过第()象限.A.一B.二C.三D.四8.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y3=x (x>0)和y6=x-(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则①ABC的面积为()A.3B.6C.9D.92评卷人得分二、填空题9.已知反比例函数6yx=,当x>3时,y的取值范围是_____.10.如图,直线y=kx与双曲线y=2x交于A,B两点,BC①y轴于点C,则△ABC的面积为_____.11.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=1x图象上的三个点,则y1、y2、y3的大小关系是_____.12.若点A(-2,a),B(1,b),C(4,c)都在反比例函数8yx=-的图象上,则a、b、c大小关系是________.13.若点A(﹣5,y1),B(1,y2),C(2,y3)在反比例函数21ayx+=(a为常数)的图象上,则y1,y2,y3的大小关系是_____.(用“<”连接)14.如图,点A是反比例函数y=kx图象上的一个动点,过点A作AB①x轴,AC①y 轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=________.15.如图,点A在双曲线y=kx的第一象限的那一支上,AB①y轴于点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若①ADE的面积为32,则k的值为______.评卷人得分三、解答题16.如图,()A4,3是反比例函数kyx=在第一象限图象上一点,连接OA,过A作AB//x轴,截取AB OA(B=在A右侧),连接OB,交反比例函数kyx=的图象于点P.(1)求反比例函数kyx=的表达式;(2)求点B的坐标及OB所在直线解析式;(3)求OAP的面积.17.如图,反比例函数kyx=与一次函数y x b=-+的图象交于点A(1,3)和点B.(1)求k的值和点B的坐标.(2)结合图象,直接写出当不等式kx bx<-+成立时x的取值范围.(3)若点C是反比例函数kyx=第三象限图象上的一个动点,当CA CB=时,求点C的坐标.18.如图,Rt AOB ∆的直角边OB 在x 轴的正半轴上,反比例函数(0)k y x x=>的图象经过斜边OA的中点D ,与直角边AB 相交于点C . ①若点(4,6)A ,求点C 的坐标: ①若9S OCD ∆=,求k 的值.19.如图,已知一次函数y =kx +b 的图象与反比例函数8y x=-的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2.求:(1)一次函数的解析式; (2)△AOB 的面积.20.已知:如图,∆ABC是等腰直角三角形,①B=90°,点B的坐标为(1,2).反比例函数kyx的图象经过点C,一次函数y=ax+b的图象经A,C两点.(1)求反比例函数和一次函数的关系式;(2)直接写出不等式组0<ax+b≤kx的解集.参考答案:1.C 【解析】 【分析】根据题目中的函数解析式和x 的取值范围,可以解答本题. 【详解】解:①反比例函数y =1x(x <0)中,k =1>0,①该函数图象在第三象限, 故选:C . 【点睛】本题考查反比例函数的图象,关键在于熟记反比例函数图象的性质. 2.C 【解析】 【分析】根据反比例函数的性质得出函数的增减性以及所在象限和经过的点的特点分别分析得出即可. 【详解】解:A ,因为133⨯=,所以图象经过点(1)3,,A 选项正确,故不选A ; B ,因为30k =>,图象在第一、三象限,B 选项正确,故不选B ;C ,因为30k =>,图象在第一、三象限,所以0x >时,y 随x 的增大而减小,C 选项错误,故选C ;D ,因为30k =>,图象在第一、三象限,所以0x <时,y 随x 的增大而减小,D 选项正确,故不选D . 故选:C . 【点睛】此题主要考查了反比例函数的性质,根据解析式确定函数的性质是解题的关键. 3.B 【解析】 【分析】根据题意和反比例函数的性质可以解答本题.①反比例函数3y -x=,①该函数图像在第二、四象限,在每个象限y 随x 的增大而增大, ①A(x 1,y 1),B(x 2,y 2)在反比例函数3y -x=的图象上,且x 1<0<x 2,①12y 0y >>, 故选B. 【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答. 4.D 【解析】 【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可. 【详解】解:①反比例函数的图象可知,m >0,故①正确;当反比例函数的图象位于一、三象限时,在每一象限内,y 随x 的增大而减小,故①错误; 将A (-1,h ),B (2,k )代入y =mx得到h=-m ,2k=m , ①m >0,①h <k ,故①正确; 将P (x ,y )代入y =m x 得到m=xy ,将P′(-x ,-y )代入y =mx得到m=xy , 若P (x ,y )在图象上,则P′(-x ,-y )也在图象上 故①正确, 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,熟练掌握反比例函数的图象和性质是解题的关键. 5.A【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S=12|k|,所以随着x 的逐渐增大,矩形OAPB 的面积将不变. 【详解】解:依题意有矩形OAPB 的面积=2×12|k|=3,所以随着x 的逐渐增大,矩形OAPB 的面积将不变. 故选:A . 【点睛】本题考查了反比例函数 y =kx中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,解题的关键是掌握图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 6.B 【解析】 【分析】根据正比例函数和反比例函数的图象逐一判断即可. 【详解】解: 观察图像①可得120,0k k >>,所以120k k >,①符合题意; 观察图像①可得120,0k k <>,所以120k k <,①不符合题意; 观察图像①可得120,0k k ><,所以120k k <,①不符合题意; 观察图像①可得120,0k k <<,所以120k k >,①符合题意; 综上,其中符合120k k ⋅>的是①①, 故答案为:B . 【点睛】本题考查的是正比例函数和反比例函数的图像,当k >0时,正比例函数和反比例函数经过一、三象限,当k <0时,正比例函数和反比例函数经过二、四象限. 7.C【分析】利用反比例函数的性质判断出m 的正负,再根据一次函数的性质即可判断. 【详解】 解:①()110a y a x x-=><,, ①a-1>0, ①()110a y a x x-=><,图象在三象限,且y 随x 的增大而减小, ①图象上有两个点(x 1,y 1),(x 2,y 2),x 1与y 1同负,x 2与y 2同负, ①m=(x 1-x 2)(y 1-y 2)<0,①y=mx-m 的图象经过一,二、四象限,不经过三象限, 故选:C . 【点睛】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.D 【解析】 【分析】设P (a ,0),由直线APB 与y 轴平行,得到A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x-=和y 3x =中,分别表示出A 和B 的纵坐标,进而由AP +BP 表示出AB ,三角形ABC 的面积12⨯=AB ×P 的横坐标,求出即可.【详解】解:设P (a ,0),a >0,则A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x =-中得:y 6a=-,故A (a ,6a -);将x=a代入反比例函数y3x=中得:y3a=,故B(a,3a),①AB=AP+BP639a a a+==,则S△ABC12=AB•xP19922aa=⨯⨯=,故选D.【点睛】本题主要考查反比例函数图象k的几何意义,解决本题的关键是要熟练掌握反比例函数k 的几何意义.9.0<y<2【解析】【分析】根据反比例函数的性质可以得到反比例函数y=6x,当x>3时,即可得到y的取值范围.【详解】①y=6x,6>0,①当x>0时,y随x的增大而减小,当x=3时,y=2,①当x>3时,y的取值范围是0<y<2,故答案为0<y<2【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.10.2【解析】【分析】根据直线y=kx与双曲线y=2x交于A,B两点,可得A、B关于原点对称,从而得到S△BOC=S△AOC,然后根据反比例函数的系数k的几何意义求出的S△BOC面积即可.【详解】①直线y=kx与双曲线y=2x交于A,B两点,①点A与点B关于原点对称,①S△BOC=S△AOC,而S△BOC=12×2=1,①S△ABC=2S△BOC=2.故答案为2.【点睛】反比例函数中比例系数k的几何意义是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.11.y2>y3>y1【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可.【详解】解:①1>0,反比例函数y=1x图象在一、三象限,并且在每一象限内y随x的增大而减小,因为-1<0,①A点在第三象限,①y1<0,①2>1>0,①B、C两点在第一象限,①y2>y3>0,①y2>y3>y1.故答案是:y2>y3>y1.【点睛】本题主要考查的是反比例函数图象上点的坐标特点,解决本题的关键是要熟练掌握反比例函数图象性质.12.a>c>b【解析】【分析】根据题意,分别求出a 、b 、c 的值,然后进行判断,即可得到答案.【详解】解:①点A 、B 、C 都在反比例函数8y x =-的图象上,则 当2x =-时,则842a =-=-; 当1x =时,则881b =-=-; 当4x =时,则824c =-=-; ①a c b >>;故答案为:a c b >>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.y 1<y 3<y 2.【解析】【分析】先计算出自变量为﹣5、1、2对应的函数值,从而得到y 1,y 2,y 3的大小关系. 【详解】当x =﹣5时,y 1=﹣15(a 2+1); 当x =1时,y 2=a 2+1;当x =2时,y 3=12(a 2+1), 所以y 1<y 3<y 2.故答案为:y 1<y 3<y 2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.-4【解析】【详解】试题分析:由于点A是反比例函数y=kx上一点,矩形ABOC的面积S=|k|=4,则k的值为-4.考点:反比例函数15.83【解析】【分析】如下图,连接CD,由AE=3EC,①ADE的面积为32,得到①CDE的面积为12,则①ADC 的面积为2,设A点坐标为(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S梯形OBAC=S△ABD+S△ADC+S△ODC即可得出ab的值进而得出结论.【详解】如下图,连CD①AE=3EC,①ADE的面积为32,①①CDE的面积为12,①①ADC的面积为2,设A点坐标为(a,b),则AB=a,OC=2AB=2a,①点D为OB的中点,①BD=OD=12b,①S梯形OBAC=S△ABD+S△ADC+S△ODC,①12(a+2a)×b=12a×12b+2+12×2a×12b,①ab=83,把A(a,b)代入双曲线y=kx得,k =ab =83. 故答案为:83. 【点睛】本题考查利用几何图形的面积求解反比例函数的解析式,解题关键是将几何图形的面积和点的坐标结合起来,然后利用待定系数法求得解析式.16.(1)12y x =(2)(9,3);13y x = (3)5 【解析】【分析】(1)直接代入A 点坐标课的k 的值,进而可得函数解析式;(2)过点A 作AC①x 轴于点C ,利用勾股定理计算出AO 的长,进而可得AB 长,然后可得B 点坐标.设OB 所在直线解析式为y=mx (m≠0)利用待定系数法可求出BO 的解析式;(3)首先联立两个函数解析式,求出P 点坐标,过点P 作PD①x 轴,延长DP 交AB 于点E ,连接AP ,再确定E 点坐标,最后求面积即可.【详解】解:()1将点()A 4,3代入()k y k 0x=≠, 得:12k =,则反比例函数解析式为:12y x =; () 2如图,过点A 作AC x ⊥轴于点C ,则OC 4=、AC 3=,22OA 435∴=+=,AB//x 轴,且AB OA 5==,∴点B的坐标为()9,3;设OB所在直线解析式为()y mx m0=≠,将点()B9,3代入得13=m,OB∴所在直线解析式为1y x3=;()3联立解析式:1y x312yx⎧=⎪⎪⎨⎪=⎪⎩,解得:x6,y2=⎧⎨=⎩可得点P坐标为()6,2,过点P作PD x⊥轴,延长DP交AB于点E,连接AP,则点E坐标为()6,3,AE2∴=,PE1=,PD2=,则OAP的面积()11126362215222=⨯+⨯-⨯⨯-⨯⨯=.【点睛】此题主要考查了待定系数法求反比例函数和正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.17.(1)3k=,B(3,1);(2)1x3<<或x0<;(3)C(33--,)【解析】【分析】(1)分别把()1,3A代入一次函数与反比例函数,可得,k b的值,联立两个解析式,解方程组可得B的坐标;(2)由k x<x b -+,则反比例函数值小于一次函数值,所以反比例函数的图像在一次函数的图像的下方,从而可得答案;(3)由,CA CB = 则C 在AB 的垂直平分线上,利用直线AB 与坐标轴构成的三角形是等腰直角三角形,证明AB 的垂直平分线经过原点,再求解垂直平分线的解析式,联立两个解析式解方程组即可得到答案.【详解】解:(1)把()1,3A 代入y x b =-+,13,b ∴-+=4,b ∴=所以:一次函数为:4,y x =-+把()1,3A 代入k y x=, 133,k ∴=⨯= 3,y x∴= 3,4y x y x ⎧=⎪∴⎨⎪=-+⎩ 34,x x∴=-+ 2430,x x ∴-+=121,3,x x ∴== 把11x =代入4,y x =-+13,y ∴=把23x =代入4,y x =-+21,y ∴=121213,,31x x y y ==⎧⎧∴⎨⎨==⎩⎩ 经检验:方程的解符合题意,()3,1.B ∴(2)由kx<x b-+,则反比例函数值小于一次函数值,所以反比例函数的图像在一次函数的图像的下方,结合图像可得:1x3<<或0x<.(3),CA CB=C∴在AB的垂直平分线上,记AB的中点为D,()()1,3,3,1,A B∴()2,2,D∴记AB与,x y轴的交点分别为,F EAB为4,y x=-+()()4,0,0,4,F E∴4,OE OF∴==OD∴为AB的垂直平分线,设OD为,y mx=把()2,2D代入:22,m=1,m∴=AB∴的垂直平分线为:,y x=,3y xyx=⎧⎪∴⎨=⎪⎩解得:121233,,33x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩ 经检验:方程的解符合题意,C 在第三象限,()3,3.C ∴--【点睛】本题考查的是利用待定系数法求解一次函数与反比例函数中的字母参数,同时考查利用图像判断一次函数值与反比例函数值的大小,还考查线段的垂直平分线的性质,函数的交点坐标问题,一元二次方程的解法,掌握以上知识是解题的关键.18.①(4,32);①k=12 【解析】【分析】①根据点D 是OA 的中点即可求出D 点坐标,再将D 的坐标代入解析式求出解析式,从而得到C 的坐标;①连接OC, 设A(a,b),先用代数式表示出三角形OAB,OBC,OCD 的面积,再根据条件列出方程求k 的值即可.【详解】解:①①D 是OA 的中点,点A 的坐标为(4,6),①D (42,62),即(2,3) ①k=2×3=6①解析式为6y x= ①A 的坐标为(4,6),AB①x 轴①把x=4代入6y x=得y=32 ①C 的坐标为(4,32) ①连接OC,设A(a,b),则D(2a , 2b ) 可得k=4ab ,ab=4k ①解析式为4ab y x= ①B(a,0),C(a, 4b ) ①11222OAB SOB AB ab k === 1122OBC S OB BC k =•= 11()22OCD OAC OAB OBC S S S S ∴==- ①11(2)922k k -= 解得:k=12【点睛】本题考查了一次函数的性质,要正确理解参数k 的几何意义,能用代数式表达三角形OCD 的面积是解题的关键.19.(1)y =-x +2;(2)6【解析】【分析】(1)把点A 的横坐标代入8y x=-,可得4y =,即可求出A 点的坐标,把B 点的纵坐标代入8y x=-,可得4x =,即可求出B 点的坐标,把A B 、两点的坐标代入一次函数的解析式即可求解;(2)首先求出直线AB 与x 轴的交点坐标M ,然后根据AOB AOM BOM S S S ∆∆∆=+进行求解即可;【详解】解:(1)把2A x =-代入8y x=-中,得4A y = ① 点()2,4A -把2B y =-代入8y x=-中,得4B x = ① 点()4,2B -把AB 、两点的坐标代入y kx b =+中,得 42,24.k b k b ⎧⎨-⎩=-+=+ 解得1,2.k b ⎧⎨⎩=-= ① 所求一次函数的解析式为2y x =-+(2)当0y =时,2x =, ①2y x =-+与x 轴的交点为()2,0M ,即2OM =①AOB AOM BOM S S S ∆∆∆=+ B A y OM y OM ⋅⋅⋅⋅2121+=11242222⨯⨯⨯⨯=+=6【点睛】本题主要考查反比例函数与一次函数的综合,熟练掌握一次函数的解析式求法以及图中的面积求法是求解本题的关键.20.(1)反比例函数关系式为y =6x,一次函数函数关系式为y =x-1;(2)1<x ≤3 【解析】【分析】①根据等腰三角形的性质求出A,C 点的坐标,即可求出反比例和一次函数关系式 ①观察图像即可找出x 的解集【详解】解:(1)①∆ABC 是等腰直角三角形且点B 的坐标为(1,2)①AB =BC =2①点C 的坐标为(3,2),点A 的坐标为(1,0)把点C 的坐标代入y =k x,解得k =6 ①反比例函数关系式为y =6x 把点C(3,2),点A(1,0)代入一次函数y=ax+b320a b a b +=⎧⎨+=⎩解得11a b =⎧⎨=-⎩①一次函数函数关系式为y =x-1(2)由函数图像及A ,C 两点坐标可得不等式组的解集为:1<x ≤3【点睛】本题解题的关键是根据等腰直角三角形的性质求出A,C 点的坐标,写x 的范围时可以先用笔画出符合要求的线段不易出错。

苏教版初中数学八年级下册《反比例函数》单元试卷及参考答案

苏教版初中数学八年级下册《反比例函数》单元试卷及参考答案

苏教版初中数学八年级下册《反比例函数》单元试卷(总分:100分 考试时间:90分钟)一、选择题(每题3分,共24分)1. 反比例函数21m y x--=(m 为常数)的图像在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2. 某物质的密度ρ(kg/m 3)关于其体积V (m 3)的函数图像如图所示,那么ρ与V 之间的函数表达式是 ( ) A. ρ=12V B. ρ=2V C. ρ=6VD. V ρ=3第2题 第4题 第5题 第7题 第8题3. 在同一平面直角坐标系中,正比例函数2y x =的图像与反比例函数42ky x-=的图像没有交点,则实数k 的取值范围在数轴上可表示为 ( ) A B C D4. 如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图像经过顶点B ,则k 的值为 ( ) A.一12 B.一27 C.一32 D.一36 5. 如图,A 是双曲线2y x=在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C的位置也随之变化.设点C 的坐标为(,)m n ,则m 、n 满足的表达式为 ( ) A.2n m =- B.2n m =- C.4n m =- D.4n m=- 6. 已知(,)P a b 是反比例函数1y x=图像上异于点(一1,-1)的一个动点,则 1111a b+++的值为 ( ) A. 2 B. 1 C. 32 D. 127. 如图,A 、B 是双曲线ky x=上的两点,过点A 作AC x ⊥轴,交OB 于点D ,垂足为C .若ADO ∆的面积为1,D 为OB 的中点,则k 的值为 ( )A.43B.83 C. 3 D. 48. 如图,在平面直角坐标系中,直线33y x =-+与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD ,点D 在双曲线(0)ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后,点C 恰好落在该双曲线上,则a 的值是 ( )A. 1B. 2C. 3D. 4 二、填空题(每题2分,共20分)9. 在ABC ∆的三个顶点(2,3)A -、(4,5)B --、(3,2)C -中,可能在反比例函数(ky k x=>0) 的图像上的是点 .10. 已知函数23k y x-=,当x <0时,y 随x 的增大减小,则k 的取值范围是 . 11. 已知直线2y x =与双曲线ky x=的一个交点是(2,)A m ,则点A 的坐标是 ,双曲线y = .12. 在对物体做功一定的情况下,力F (N)与此物体在力的方向上移动的距离s (m)之间成反比例函数关系,其图像如图所示,且点(5,1)P 在其图像上,则当力达到10 N 时,物体在力的方向上移动的距离是 m.第12题 第13题 第14题13. 如图,等边三角形AOB 的顶点A 的坐标为(-4,0),顶点B 在反比例函数(0)ky x x=<的图像上,则k = .14. 如图, A 是反比例函数图像上的一点,过点A 作ABCD ,使点B 、C 在x 轴上,点D 在y 轴上,若ABCD 的面积为8,则此反比例函数的表达式为 .15. 如图,一次函数y kx b =+的图像经过点(3,2)P ,与反比例函数2(0)y x x=>的图像交于点(,)Q m n .当一次函数y 的值随x 值的增大而增大时,m 的取值范围是 .第l5题 第17题 第18题16. 点1(1,)a y -、2(1,)a y +在反比例函数(ky k x=>0)的图像上,若12y y <,则a 的取值范围是 .17. 如图, A 是y 轴正半轴上的一点,过点A 作x 轴的平行线,交反比例函数4y x=-的图像于点B ,交反比例函数ky x =的图像于点C .若:3:2AB AC =,则k 的值是 . 18. 如图,直线26,3y x y x ==分别与双曲线ky x =在第一象限内交于点A 、B ,若8OAB S ∆=,则k = .三、解答题(共56分)19. (8分)我们学过反比例函数,例如,当矩形面积S 一定时,长a 是宽b 的反比例函数,其函数表达式可以写成Sa b=(S 为常数,0S ≠).请你仿照上例另举出一个在日常生活、生产或学习中具有反比例函数关系的实例,并写出它的函数表达式.20. (8分)(2015·甘孜改编)如图,一次函数5y x =-+的图像与反比例函数(0)ky k x=≠在第一象限内的图像交于(1,)A n 和(4,)B m 两点. (1)求反比例函数的表达式;(2)在第一象限内,当一次函数5y x =-+的值大于反比例函数(0)ky k x=≠的值时,写出自变量x 的取值范围.第20题21. (8分)如图,在方格纸中(小正方形的边长为1 ), 反比例函数ky x=的图像与直线的交点A 、B 均在格点上,根据所给的平面直角坐标系(O 是坐标原点).解答下面的问题:(1)分别写出点A 、B 的坐标后,把直线AB 向右平移5个单位长度。

初中数学(人教版)九年级下册单元检测卷及答案—反比例函数

初中数学(人教版)九年级下册单元检测卷及答案—反比例函数

初中数学(人教版)九年级下册单元检测卷及答案—反比例函数一、选择题(每小题3分,共30分)1.下列函数中,图象经过点(1,-1)的反比例函数解析式是( ) A .y =1x B .y =-1x C .y =2x D .y =-2x2.当三角形的面积S 为常数时,底边a 与底边上的高h 的函数关系的图象大致是( )3.在反比例函数y =k -3x 图象的任一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( ) A .k >3 B .k >0 C .k <3 D .k <04.点A 为双曲线y =kx (k ≠0)上一点,B 为x 轴上一点,且△AOB 为等边三角形,△AOB 的边长为2,则k 的值为( )A .2 3B .±2 3 C. 3 D .±35.在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx (k≠0)的图象大致是( )6.某汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如图所示.当它所受牵引力为1 200牛时,汽车的速度为( )A .180千米/时B .144千米/时C .50千米/时D .40千米/时7.如图,函数y 1=x -1和函数y 2=2x 的图象相交于点M (2,m ),N (-1,n ),若y 1>y 2,则x 的取值范围是( )A .x <-1或0<x <2B .x <-1或x >2C .-1<x <0或0<x <2D .-1<x <0或x >28.已知反比例函数y =kx (k <0)图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,则y 1-y 2的值是( )A .正数B .负数C .非负数D .不能确定9.如图,函数y =-x 与函数y =-4x 的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( ) A .2 B .4 C .6 D .8第6题图) ,第7题图) ,第9题图),第10题图)10.如图,正方形ABCD 的顶点B ,C 在x 轴的正半轴上,反比例函数y =kx (k ≠0)在第一象限的图象经过顶点A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,-2),则点F 的坐标是( )A .(54,0)B .(74,0)C .(94,0)D .(114,0)点拨:由题意可知AB =2,n =m +2,所以2m =(m +2)×23=k ,解得m =1,所以E (3,23),设EG 的解析式为y =kx +b ,把E (3,23),G (0,-2)代入y =kx +b ,解得⎩⎪⎨⎪⎧k =89b =-2,∴y =89x -2,令y =0,解得x =94,∴F (94,0)二、填空题(每小题3分,共24分)11.写出一个图象在第二、四象限的反比例函数解析式:____.12.已知反比例函数y =kx 的图象在第二、第四象限内,函数图象上有两点A (2,y 1),B (5,y 2),则y 1与y 2的大小关系为____.13.双曲线y=kx和一次函数y=ax+b的图象的两个交点分别为A(-1,-4),B(2,m),则a+2b=____.14.若点A(m,2)在反比例函数y=4x的图象上,则当函数值y≥-2时,自变量x的取值范围是____.15.直线y=ax(a>0)与双曲线y=3x交于A(x1,y1),B(x2,y2)两点.则4x1y2-3x2y1=____.16.点A在函数y=6x(x>0)的图象上,如果AH⊥x轴于点H,且AH∶OH=1∶2,那么点A的坐标为____.17.在平面直角坐标系xOy中,直线y=x向上平移1个单位长度得到直线l,直线l与反比例函数y=kx的图象的一个交点为A(a,2),则k的值等于____.18.如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=k1x和y=k2x的一支上,分别过点A,C作x轴的垂线,垂足分别为M和N,则有以下的结论:①AMCN=|k1||k2|;②阴影部分面积是12(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是____.(把所有正确的结论的序号都填上)三、解答题(共66分)19.(6分)已知y=y1+y2,其中y1与3x成反比例,y2与-x2成正比例,且当x=1时,y=5;当x=-1时,y=-2.求当x=3时,y的值.20.(8分)已知点P(2,2)在反比例函数y=kx(k≠0)的图象上.(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.21.(10分)超超家利用银行贷款购买了某山庄的一套100万元的住房,在交了首期付款后,每年需向银行付款y万元.预计x年后结清余款,y与x之间的函数关系如图,试根据图象所提供的信息回答下列问题:(1)确定y与x之间的函数表达式,并说明超超家交了多少万元首付款;(2)超超家若计划用10年时间结清余款,每年应向银行交付多少万元?(3)若打算每年付款不超过2万元,超超家至少要多少年才能结清余款?22.(10分)如图是反比例函数y=kx的图象,当-4≤x≤-1时,-4≤y≤-1.(1)求该反比例函数的表达式;(2)若点M,N分别在该反比例函数的两支图象上,请指出什么情况下线段MN最短(不需要证明),并注出线段MN长度的取值范围.23.(10分)如图是函数y=3x与函数y=6x在第一象限内的图象,点P是y=6x的图象上一动点,PA⊥x轴于点A,交y=3x的图象于点C,PB⊥y轴于点B,交y=3x的图象于点D.(1)求证:D是BP的中点;(2)求四边形ODPC的面积.24.(10分)如图,已知反比例函数y=k1x的图象与一次函数y=k2x+b的图象交于A,B两点,A点横坐标为1,B(-12,-2).(1)求反比例函数和一次函数的解析式;(2)在x轴上是否存在点P,使△AOP为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.(12分)如图,已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=kx(k>0,x>0)的图象上,点P(m,n)是函数y=kx(k>0,x>0)的图象上任一点,过点P分别作x轴、y轴的垂线,垂足分别为E,F,并设矩形OEPF和正方形OABC不重合部分的面积为S.(1)求点B的坐标和k的值;(2)当S=92时,求点P的坐标;(3)写出S关于m的函数表达式.参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.A 7.D 8.D 9.D10.C点拨:由题意可知AB =2,n =m +2,所以2m =(m +2)×23=k ,解得m =1,所以E (3,23),设EG 的解析式为y =kx +b ,把E (3,23),G (0,-2)代入y =kx +b ,解得⎩⎪⎨⎪⎧k =89b =-2,∴y =89x -2,令y =0,解得x =94,∴F (94,0)二、填空题11.y =-1x (答案不唯一) 12.y 1<y 2 13.-2 14.x≤-2或x >015.-3 16.(23,3) 17.2 18.①④ 三、解答题19.解:设y =k 13x +k 2(-x 2),求得y =72x +32x 2,当x =3时,y =443. 20.解:(1)-43;(2)43<y <4.21.解:(1)12×5=60(万元),100-60=40(万元),∴y =60x,超超家交了40万元的首付款.(2)把x =10代入y =60x得y =6,∴每年应向银行交付6万元.(3)∵y≤2,∴60x ≤2,∴2x ≥60,∴x ≥30,∴至少要30年才能结清余款.22.解:(1)反比例函数图象的两支曲线分别位于第一、三象限,∴当-4≤x ≤-1时,y 随着x 的增大而减小,又∵当-4≤x≤-1时,-4≤y ≤-1,∴当x =-4时,y =-1,由y =kx得k =4,∴该反比例函数的表达式为y =4x .(2)当点M ,N 都在直线y =x 上时,线段MN 的长度最短,当MN 的长度最短时,点M ,N 的坐标分别为(2,2),(-2,-2),利用勾股定理可得MN 的最短长度为42,故线段MN 长度的取值范围为MN≥4 2.23.(1)证明:∵点P 在函数y =6x 上,∴设P 点坐标为(6m ,m ),∵点D 在函数y =3x上,BP ∥x轴,∴设点D 坐标为(3m ,m ),由题意,得BD =3m ,BP =6m =2BD ,∴D 是BP 的中点.(2)解:S 四边形OAPB =6m ·m =6,设C 坐标为(x ,3x ),D 点坐标为(3y ,y ),S △OBD =12·y ·3y =32,S△OAC=12·x·3x =32,S 四边形OCPD =S 四边形PBOA -S △OBD -S △OAC =6-32-32=3. 24.解:(1)反比例函数为y =1x ,一次函数为y =2x -1.(2)存在,点P 的坐标是(1,0)或(2,0).25.解:(1)依题意,设B 点的坐标为(x B ,y B ),∴S 正方形OABC =x B ·y B =9.∴x B =y B =3,即点B 的坐标为(3,3).又∵x B y B =k ,∴k =9.(2)①∵P (m ,n )在y =9x上,当P 点位于B 点下方时,如图(1),∴S 矩形OEPF =mn =9,S 矩形OAGF=3n.由已知,得S =9-3n =92,∴n =32,m =6,即此时P 点的坐标为P 1(6,32).②当P 点位于B 点上方时,如图(2),同理可求得P 2(32,6).(3)①如图(1),当m≥3时,S 矩形OAGF =3n ,∵mn =9,∴n =9m,∴S =S 矩形OEP 1F -S 矩形OAGF=9-3n =9-27m .②如图(2),当0<m <3时,S 矩形OEGC =3m ,∴S =S 矩形OEP 2F -S 矩形OEGC =9-3m.。

【易错题】北师大版九年级数学上册第六章反比例函数单元测试卷学生用

【易错题】北师大版九年级数学上册第六章反比例函数单元测试卷学生用

【易错题解析】北师大版九年级数学上册第六章反比例函数一、单选题(共10题;共30分)1.下列函数中,反比例函数是( )A. B. C. D.2.点A(3,2)在反比例函数y=(x>0),则点B的坐标不可能的是()A. (2,3)B. (,)C. (,)D. (tan60°,)3.反比例函数y= 的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A. k<3B. k≤3C. k>3D. k≥34.如图,双曲线y= 的一个分支为()A. ①B. ②C. ③D. ④5.已知甲、乙两地相距(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度(km/h)的函数关系图像大致是()A. B.C. D.6.如图,矩形OABC上,点A、C分别在x、y轴上,点B在反比例y= 位于第二象限的图象上,矩形面积为6,则k的值是()A. 3B. 6C. ﹣6D. ﹣37.已知点A(x1,y1)、B(x2,y2)是反比例函数y=﹣图象上的两点,若x2<0<x1,则有()A. 0<y1<y2B. 0<y2<y1C. y2<0<y1D. y1<0<y28.如图,直线y=x+2与双曲线y=相交于点A,点A的纵坐标为3,k的值为().A. 1B. 2C. 3D. 49.函数y=x+m与在同一坐标系内的图象可以是()A. B.C. D.10.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB 上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的面积为()A. 2B. 4C. 6D. 12二、填空题(共10题;共30分)11.若点P(2,6)、点Q(-3,b)都是反比例函数y= (k≠0)图象上的点,则b=________.12.若函数的图象在其所在的每一象限内,函数值随自变量的增大而增大,则的取值范围是________13.A、B两地相距120千米,一辆汽车从A地去B地,则其速度v(千米/时)与行驶时间t(小时)之间的函数关系可表示为________;14.如图,根据图中提供的信息,可以写出正比例函数的关系式是________;反比例函数关系式是________.15.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为________.16.函数y=- 的图象的两个分支分布在________象限.17.如图,反比例函数y= 的图象经过矩形OABC的边AB的中点E,并与矩形的另一边BC交于点F,若S△BEF=1,则k=________18.如图,点A是反比例函数y= (x≠0)的图象上一点,AB⊥y轴于B,若△ABO的面积为4,则k的值为________.19.(2017•辽阳)如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y= (x<0)的图象经过点B和CD边中点E,则k的值为________.20.如图,点A在双曲线y= 上,点B在双曲线y= (k≠0)上,AB∥x轴,过点A作AD⊥x轴于D,连接OB,与AD相交于点C,若AC=2CD,则k的值为________.三、解答题(共7题;共60分)21.已知反比例函数y=的图象经过点(﹣1,﹣2).(1)求y与x的函数关系式;(2)若点(2,n)在这个图象上,求n的值22.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y1= (x<0)图象上一点,AO的延长线交函数y2= (x>0,k<0)的y2图象于点B,BC⊥x轴,若S△ABC= ,求函数y2.23.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.24.如图,在Rt△ABC中,∠C=90°,AC=2,BC=4,AC∥x轴,A、B两点在反比例函数y=(x>0)的图象上,延长CA交y轴于点D,AD=1.(1)求该反比例函数的解析式;(2)将△ABC绕点B顺时针旋转得到△EBF,使点C落在x轴上的点F处,点A的对应点为E,求旋转角的度数和点E的坐标.25.如图,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一象限内的图象分别交OA、AB于点C和点D,连结OD,若S△BOD=4,请回答下列问题:(1)求反比例函数解析式;(2)求C点坐标.26.如图,已知一次函数y= x﹣3与反比例函数的图象相交于点A(4,n),与轴相交于点B.(1)填空:n的值为________,k的值为________;(2)以AB为边作菱形ABCD,使点C在轴正半轴上,点D在第一象限,求点D的坐标;(3)考察反比函数的图象,当时,请直接写出自变量的取值范围.27.综合题(1)探究:如图1 ,直线l与坐标轴的正半轴分别交于A,B两点,与反比例函数,的图象交于C,D两点(点C在点D的左边),过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,CE与DF交于点G(a,b).①若,请用含n的代数式表示;②求证:;(2)应用:如图2,直线l与坐标轴的正半轴分别交于点A,B两点,与反比例函数,的图象交于点C,D两点(点C在点D的左边),已知,△OBD的面积为1,试用含m的代数式表示k.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】C9.【答案】B10.【答案】B二、填空题11.【答案】-412.【答案】m<-213.【答案】v =14.【答案】y=-2x;15.【答案】616.【答案】二、四17.【答案】-418.【答案】819.【答案】﹣420.【答案】9三、解答题21.【答案】解:(1)∵点(﹣1,﹣2)在反比例函数y=上,∴k=﹣1×(﹣2)=2,∴y与x的函数关系式为y=.(2)∵点(2,n)在这个图象上∴2n=2∴n=1.22.【答案】解:设A(m,)(m<0),直线AB的解析式为y=ax(k≠0),∵A(m,),∴ma= ,解得a= ,∴直线AB的解析式为y= x.∵AO的延长线交函数y= 的图象于点B,∴B(﹣mk,﹣),∵△ABC的面积等于,CB⊥x轴,∴×(﹣)×(﹣mk+|m|)= ,解得k1=﹣5(舍去),k2=3,∴y2=23.【答案】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y= (x>0)的图象上,∴.解得.∴反比例函数解析式:y= ,∴点B(2,4),(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∠∠′,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).∠∠′∴,解得:.∴一次函数的表达式为y= x+3.24.【答案】解:(1)∵AC∥x轴,AD=1,∴A(1,k),∵∠C=90°,AC=2,BC=4,∴B(3,k﹣4),∵点B在y=的图象上,∴3(k﹣4)=k,解得k=6,∴该反比例函数的解析式为y=;(2)作BM⊥x轴于M,EN⊥x轴于N,如图,∵△ABC绕点B顺时针旋转得到△EBF,∴BF=BC=4,EF=AC=2,∠BFE=∠BCA=90°,∠CBF等于旋转角,∵BC⊥x轴,A(1,6),∴BM=CM﹣BC=6﹣4=2,在Rt△BMF中,∵cos∠MBF===,∴∠MBF=60°,MF=BM=,∴∠CBF=180°﹣∠MBF=120°,∴旋转角为120°;∵∠BFM+∠MBF=90°,∠BFM+∠EFN=90°,∴∠MBF=∠EFN,∴Rt△BMF∽Rt△FNE,∴==,即==,∴FN=1,EN=,∴ON=OM+MF+FN=1++1=2+,∴E点坐标为(2+,).25.【答案】(1)解:∵∠ABO=90°,S△BOD=4,∴×k=4,解得k=8,∴反比例函数解析式为y= ;(2)解:∵∠ABO=90°,OB=4,AB=8,∴A点坐标为(4,8),设直线OA的解析式为y=kx,把A(4,8)代入得4k=8,解得k=2,∴直线OA的解析式为y=2x,解方程组,得或,∵C在第一象限,∴C点坐标为(2,4).26.【答案】(1)解:把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;;把点A(4,3)代入反比例函数y=,可得3=,解得k=12;(2)解:∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0);如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=BC=,∵AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,∠∠∠∠∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3;∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3)(3)解:当y=﹣2时,﹣2=,解得x=﹣6.故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0.27.【答案】(1)①∵CE⊥y轴,DF⊥x轴,∴∠AEC=∠DFB=90°,又∵∠ACE=∠DCG,∴△ACE∽△DCG∴;②证明:易证△ACE∽△DCG∽△DBF又∵G(a,b)∴C( ) ,D(a,)∴即△ACE与△DBF都和△DCG相似,且相似比都为∴△ACE≌△DBF∴AC=BD.(2)如图,过点D作DH⊥x轴于点H由(2)可得AC=BD∵∴∴又∵∴∴∴.。

湘教版九年级数学上册 第1章 反比例函数 单元测试卷(2024年秋)

湘教版九年级数学上册 第1章 反比例函数 单元测试卷(2024年秋)

湘教版九年级数学上册第1章反比例函数单元测试卷(2024年秋)一、选择题(每题3分,共30分)1.下列四个函数中,是反比例函数的是()A.y=x2B.y=2xC.y=3x-2D.y=x22.[2023·衡阳外国语学校模拟]反比例函数y=-7x的图象位于() A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限3.已知反比例函数y=kx(k≠0)的图象经过点(-2,4),那么该反比例函数的图象也一定经过点()A.(4,2)B.(1,8)C.(-1,8)D.(-1,-8)4.已知反比例函数y=4x,下列结论中不正确的是()A.图象必经过点(1,4)B.在第三象限内,y随x的增大而减小C.图象是轴对称图形,且对称轴是y轴D.图象是中心对称图形,且对称中心是坐标原点5.已知点A(x1,y1),B(x2,y2)都在反比例函数y=-1x的图象上,且x1<0<x2,则y1,y2的关系一定成立的是()A.y1>y2B.y1<y2C.y1+y2=0D.y1-y2=06.[2023·湘西州]如图,点A在函数y=2x (x>0)的图象上,点B在函数y=3x(x>0)的图象上,且AB∥x轴,BC⊥x轴于点C,则四边形ABCO的面积为() A.1B.2C.3D.47.[2023·呼和浩特]在同一直角坐标系中,函数y =-kx +k 与y =kx(k ≠0)的大致图象可能为()8.一个长方体物体的一顶点所在A ,B ,C 三个面的面积比是3∶2∶1,如果分别按A ,B ,C 面朝上将此物体放在水平地面上,地面所受的压力产生的压强分别为p A ,p B ,p p p A ∶p B ∶p C =()A .2∶3∶6B .6∶3∶2C .1∶2∶3D .3∶2∶19.如图,分别过反比例函数y =2x(x >0)的图象上任意两点A ,B 作x 轴的垂线,垂足分别为点C ,D ,连接OA ,OB ,设AC 与OB 的交点为E ,△AOE 与梯形ECDB 的面积分别为S 1,S 2,则S 1与S 2的大小关系是()A .S 1>S 2B .S 1<S 2C .S 1=S 2D .不能确定10.如图,在平面直角坐标系中,一次函数y =-4x +4的图象与x 轴、y 轴分别交于A ,B 两点.正方形ABCD 的顶点C ,D 在第一象限,顶点D 在反比例函数y =kx (k ≠0)的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是()A .3B .4C .5D .6二、填空题(每题3分,共24分)11.已知反比例函数y =-2x,在每个象限内,y 随x 的增大而________.12.已知反比例函数y=6-3kx(k>1且k≠2)的图象与一次函数y=-7x+b的图象共有两个交点,且两交点横坐标的乘积x1·x2>0,请写出一个满足条件的k值:________.13.若点A(a,b)在双曲线y=3x上,则代数式ab-8的值为________.14.[2022·锦州]如图,在平面直角坐标系中,△AOB的边OB在y轴上,边AB与x轴交于点D,且BD=AD,反比例函数y=kx (x>0)的图象经过点A,若S△OAB=1,则k的值为________.15.[2023·徐州]如图,点P在反比例函数y=kx(k>0)的图象上,PA⊥x轴于点A,PB⊥y轴于点B,PA=PB.一次函数y=x+1与PB交于点D,若D为PB的中点,则k的值为________.16.如图,点A,B在第一象限,且为反比例函数y=4x的图象上的两点,点A,B关于原点对称的点分别为点C,D,若点B的横坐标是点A的横坐标的4倍,则图中阴影部分的面积为________.17.[2024·重庆凤鸣山中学联考]如图,在平面直角坐标系中,菱形ABCD的顶点B,D在反比例函数y=kx(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(-1,2),菱形的边长为5,则k的值是________.18.[2023·衢州]如图,点A,B在x轴上,分别以OA,AB为边,在x轴上方作正方形OACD、正方形ABEF.反比例函数y=kx(k>0)的图象分别交边CD,BE于点P,Q.作PM⊥x轴于点M,QN⊥y轴于点N.若OA=2AB,Q为BE的中点,且阴影部分面积等于6,则k的值为________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.已知y与2x-3成反比例,且当x=2时,y=4,求y关于x的函数表达式.20.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气球的体积V(立方米)的反比例函数,其图象如图所示.(千帕是压强单位)(1)求这个函数的表达式.(2)当气球的体积为1.2立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于160千帕时,气球将爆炸,为了安全起见,求气球的体积应控制的范围.21.[2023·甘孜州]如图,在平面直角坐标系xOy中,一次函数y=4x与反比例函3数y=kx(k>0)的图象相交于A(3,m),B两点.(1)求反比例函数的表达式;(2)若点C为x轴正半轴上一点,且满足AC⊥BC,求点C的坐标.22.[2024·北师大株洲附属学校模拟]在平面直角坐标系xOy中,一次函数y=kx+b和反比例函数y=-6x的图象都经过点A(3,m),B(n,-3).(1)求n的值和一次函数的表达式;(2)不等式kx+b≥-6x的解集是____________.23.[2022·湘西州]如图,一次函数y=ax+1(a≠0)的图象与x轴交于点A,与反比例函数y=kx的图象在第一象限交于点B(1,3),过点B作BC⊥x轴于点C.(1)求一次函数和反比例函数的表达式;(2)求△ABC的面积.24.[2023·盘锦]如图,在平面直角坐标系中,A(1,0),B(0,3),反比例函数y=kx(k≠0)在第一象限的图象经过点C,BC=AC,∠ACB=90°,过点C作直线CE∥x轴,交y轴于点E.(1)求反比例函数的表达式;(2)若点D是x轴上一点(不与点A重合),∠DAC的平分线交直线CE于点F,请直接写出点F的坐标.答案一、1.B2.D 【点拨】对于反比例函数y =kx(k ≠0),当k >0时图象位于第一、三象限,当k <0时图象位于第二、四象限.因为-7<0,所以y =-7x的图象位于第二、四象限,故选D.3.C4.C 【点拨】反比例函数y =4x的图象是轴对称图形,对称轴是直线y =x 和y=-x .5.A 【点拨】∵在反比例函数y =-1x中,k =-1<0,∴图象位于第二、四象限.∵点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =-1x的图象上,且x 1<0<x 2,∴点B 在第四象限,点A 在第二象限,∴y 2<0<y 1,故选A.6.B 【点拨】如图,延长BA 交y 轴于点D .∵AB ∥x 轴,∴DA ⊥y 轴.又∵点A 在函数y =2x(x >0)的图象上,∴S △ADO =12×2=1.∵BC ⊥x 轴于点C ,DB ⊥y 轴,点B 在函数y =3x (x >0)的图象上,∴S 矩形OCBD =3.∴S 四边形ABCO =S 矩形OCBD -S △ADO =3-1=2,故选B.7.D 【点拨】①当k <0时,-k >0,一次函数y =-kx +k 的图象经过第一、三、四象限,反比例函数y=kx(k≠0)的图象位于第二、四象限;②当k>0时,-k<0,一次函数y=-kx+k的图象经过第一、二、四象限,反比例函数y=kx(k≠0)的图象位于第一、三象限.故选D.8.A【点拨】∵长方体物体的一顶点所在A,B,C三个面的面积比是3∶2∶1,∴长方体物体的A,B,C三个面朝上时对应的受力面积的比也为3∶2∶1.∵p=FS,F>0,且F一定,∴p A∶p B∶p C=13∶12∶11=2∶3∶6,故选A.9.C【点拨】∵点A,B均在反比例函数y=2x(x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,∴S△AOC=S△BOD=1.∴S△AOC-S△OCE=S△BOD-S△OCE,即S1=S2,故选C.10.A【点拨】如图,过点D作DE⊥x轴于点E,过点C作CF⊥y轴于点F.对于y=-4x+4,当x=0时,y=4;当y=0时,0=-4x+4,解得x=1.∴A(1,0),B(0,4),∴OA=1,OB=4.∵四边形ABCD是正方形,∴AB⊥AD,AB=AD=BC,∴∠ABO+∠BAO=∠DAE+∠BAO,∴∠ABO=∠DAE.∵AB=DA,∠BOA=∠AED=90°,∴△ABO≌△DAE(AAS),∴AE=BO=4,DE=OA=1,∴OE=OA+AE=5,∴D(5,1).∵顶点D在反比例函数y=kx(k≠0)的图象上,∴k=5×1=5,∴y=5 x .∵四边形ABCD 是正方形,∴AB ⊥BC ,∴∠ABO +∠CBF =∠BCF +∠CBF ,∴∠ABO =∠BCF .∵AB =BC ,∠BOA =∠CFB =90°,∴△ABO ≌△BCF (AAS),∴CF =BO =4,BF =OA =1,∴OF =BO +BF =5,∴C (4,5).∵C 向左移动n 个单位后为(4-n ,5),且在反比例函数图象上,∴5(4-n )=5,∴n =3,故选A.二、11.增大12.1.5(满足1<k <2都可以)【点拨】∵-7<0,∴一次函数y =-7x +b 的图象必定经过第二、四象限.∵x 1·x 2>0,∴反比例函数图象和一次函数图象的两个交点在同一象限,∴反比例函数y =6-3kx(k >1且k ≠2)的图象位于第一、三象限,∴6-3k >0,∴k <2.∵k >1,∴1<k <2,∴满足条件的k 值可以为1.5(满足1<k <2都可以).13.-5【点方法】将点A (a ,b )的坐标代入y =3x 中,可求得ab 的值为3,进而求得ab -8的值为-5.14.2【点拨】设A (a ,b ),如图,过点A 作x 轴的垂线与x 轴交于C ,则AC =b ,OC =a ,∠ACD =∠BOD =90°.∵AD =BD ,∠ADC =∠BDO ,∴△ADC ≌△BDO ,∴S △ADC =S △BDO ,∴S △OAB =S △AOD +S △BDO =S △AOD +S △ADC =S △OAC =1,∴12×OC ×AC =12ab =1,∴ab =2.∵A (a ,b )在y =kx(x >0)的图象上,∴k =ab =2.15.4【点拨】∵PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,PA =PB ,∴点P 的横纵坐标相同,∴可设点P 的坐标为(2m ,2m ).∵D为PB的中点,∴D(m,2m).∵D(m,2m)在直线y=x+1上,∴m+1=2m,∴m=1,∴P(2,2).∵点P在反比例函数y=kx(k>0)的图象上,∴k=2×2=4.16.15【点拨】如图,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,设点A的横坐标为a,则点B的横坐标为4a,∵点A,B在第一象限,且为反比例函数y=4x的图象上的两点,∴点AB的坐标为aAE=4a,BF=1a,∴S△AOB=S△AOE+S梯形AEFB-S△OBF=12×4a-a)-12×4=152.∵点A,B关于原点对称的点分别为点C,D,∴S△COD=S△AOB=152,∴阴影部分的面积为S△COD+S△AOB=152+152=15.17.8【点拨】∵四边形ABCD是菱形,∴AC⊥BD.∵点A(-1,2),∴OA=5.∵菱形的边长为5,∴AD=5,∴OD=52-5=2 5.∵对角线AC与BD相交于坐标原点O,A(-1,2),∴直线AC的表达式为y=-2x,∴直线BD的表达式为y=12x.设,12aa2=20,∴a=4或a=-4(舍去),∴D(4,2).∵D在反比例函数y=kx(k>0)的图象上,∴k =2×4=8.18.24【点拨】设OA =4a ,PM 与QN 的交点为H .∵OA =2AB ,∴AB =2a ,∴OB =AB +OA =6a .在正方形ABEF 中,AB =BE =2a ,∵Q 为BE 的中点,∴BQ =12AB =a ,∴Q (6a ,a ).∵Q 在反比例函数y =k x(k >0)的图象上,∴k =6a ×a =6a 2.∵四边形OACD 是正方形,∴AC =OA =4a ,∴C (4a ,4a ).∵P 在CD 上,∴P 的纵坐标为4a .∵P 在反比例函数y =k x (k >0)的图象上,∴P 的横坐标为x =k 4a ,∴4∵∠HMO =∠HNO =∠NOM =90°,∴四边形OMHN 是矩形.∵NO =k 4a ,MO =a ,∴S 矩形OMHN =NO ×MO =k 4a×a =6,∴k =24.三、19.【解】依题意可设y =k 2x -3(k ≠0),∵当x =2时,y =4,∴4=k 2×2-3,∴k =4,∴y 关于x 的函数表达式是y =42x -3.20.【解】(1)设这个函数的表达式为p =k V ,则48=k 2,解得k =96,∴这个函数的表达式为p =96V .(2)当V =1.2立方米时,p =961.2=80(千帕),∴气球内的气压是80千帕.(3)根据题意,当p ≤160千帕时,气球不爆炸,∴96V≤160,∴V ≥0.6立方米,故为了安全起见,气球的体积应控制的范围为V ≥0.6立方米.21.【解】(1)∵点A (3,m )在一次函数y =43x 的图象上,∴m =43×3=4,∴点A 的坐标为(3,4).∵反比例函数y =k x(k >0)的图象经过点A (3,4),∴k =3×4=12.∴反比例函数的表达式为y =12x.(2)如图,过点A 作y 轴的垂线,垂足为点H .∵A (3,4),∴AH =3,OH =4.由勾股定理,得OA =AH 2+OH 2=5,由图象的对称性,可知OB =OA .又∵AC ⊥BC ,∴△ACB 为直角三角形,∴OC =12AB =OA =5,∴点C 的坐标为(5,0).22.【解】(1)将点A (3,m ),B (n ,-3)的坐标分别代入y =-6x ,得m =-63,-3=-6n,解得m =-2,n =2,∴A (3,-2),B (2,-3),将A (3,-2),B (2,-3)的坐标分别代入y =kx +b ,-2=3k +b ,-3=2k +b ,k =1,b =-5.∴一次函数的表达式为y =x -5.(2)x ≥3或0<x ≤223.【解】(1)∵一次函数y =ax +1(a ≠0)的图象经过点B (1,3),∴a +1=3,∴a =2.∴一次函数的表达式为y =2x +1.∵反比例函数y =k x 的图象经过点B (1,3),∴k =1×3=3,∴反比例函数的表达式为y =3x .(2)在y =2x +1中,令y =0,则2x +1=0,∴x =-12.∴-12,0.∴OA =12.∵BC ⊥x 轴于点C ,B (1,3),∴OC =1,BC =3.∴AC =12+1=32.∴△ABC 的面积=12AC ·BC =94.24.【解】(1)如图①,作CG ⊥x 轴于点G ,则∠OGC =90°.∵CE ∥x 轴,∠AOB=90°,∴∠CEO =∠CEB =90°.∴四边形OECG 是矩形,∴∠ECG =90°.∵∠ACB =90°,∴∠BCE =∠ACG .又∵BC =AC ,∠BEC =∠AGC =90°,∴△BEC ≌△AGC (AAS ),∴CE =CG ,BE =AG ,∴矩形OECG 是正方形,∴OE =OG .∵A (1,0),B (0,3),∴OA =1,OB =3.设BE =AG =m ,则1+m =3-m ,解得m =1,∴OE =OG =2,∴点C 的坐标为(2,2),代入y =k x ,得k =2×2=4,∴反比例函数的表达式为y =4x.(2)(2+5,2)或(2-5,2)【点拨】Ⅰ.当点D 在点A 右侧时,如图①,∵OA =1,OB =3,∠AOB =90°,∴AB =12+32=10.∵BC =AC ,∠ACB =90°,∴AC =BC =22AB =5.∵CE ∥x 轴,∴∠CF A =∠FAD .∵AF 平分∠CAD ,∴∠CAF =∠DAF ,∴∠CAF =∠CF A ,∴CA =CF = 5.∵OE =EC =2,∴EF =2+5,∴点F 的坐标是(2+5,2).Ⅱ.当点D在点A左侧时,如图②,∵CE∥x轴,∴∠CF A=∠DAF.∵∠DAC的平分线交直线EC于点F,∴∠CAF=∠DAF,∴∠CAF=∠CF A,∴CF=AC= 5.∵C(2,2),∴点F的横坐标为2-5,∴F(2-5,2).综上,点F的坐标为(2+5,2)或(2-5,2).。

第17章 反比例函数 单元测试卷(A)3

第17章  反比例函数  单元测试卷(A)3

第17章 反比例函数 单元测试卷(A )一、选择题(每小题2分,共20分)1.下列各变量之间是反比例函数关系的是( ).A .存入银行的利息和本金B .在耕地面积一定的情况下,人均占有耕地面积与人口数C .汽车行驶的时间与速度D .电线的长度与其质量 2.函数x k y =的图象经过点(2,8),则下列各点不在xky =图像上的是( ). A .(4,4) B .(-4,-4) C .(8,2) D .(-2,8) 3.如果反比例函数xky =的图象经过点(-1,5),那么直线1y kx =+一定不经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.函数y kx =-与k y x=(k ≠0)的图象的交点的个数是( ). A. 2 B.1 C. 0 D.不确定5.若点(3,4)是反比例函数xm m y 122++=图象上一点,则此函数图象必经过点( ).A.(3,-4)B.(2,-6)C.(4,-3)D. (2,6) 6.已知不等式ax b +>0的解集为x >b a -,那么双曲线ay x=的图象上的点一定位于( ).A .第一象限B .第二象限C .第一、三象限D .第二、四象限 7.函数1y x=-的图象上有两点),(11y x A 、),(22y x B 且21x x <,那么下列结论正确的是( ).A.21y y <B.21y y >C.21y y =D.1y 与2y 之间的大小关系不能确定8.一条直线与双曲线x y 1=的交点是A (a ,4),B (-1,b ),则这条直线的解析式为( ) A .34-=x y B .341+=x y C .34+=x y D .34--=x y9.函数y =-kx +k 与y =xk-(k ≠0)在同一坐标系中的图象可能是( ).10.如图,点P 是x 轴上的一个动点,过点P 作 x 轴的垂线PQ 交双曲线xy 1=于点Q ,连结OQ ,当点P 沿x 轴正半方向运动时, Rt △QOP 面积( ).A .逐渐减小B .逐渐增大C .保持不变D .无法确定 二、填空题(每小题3分,共24分)11.一般地,函数 是反比例函数,其图象是 ,当k <0时,图象两支在 象限内. 12.反比例函数y =x2,当y =6时,x =_________. 13.近视眼镜的度数y (度)与焦距x (米)的函数关系式为100y x=,已知某同学近视眼镜镜片的焦距为0. 25米,则该同学配的镜片的度数是__________度.14.若函数的图象经过点(2,1),则函数的表达式可能是____________(写出一个即可). 15.已知函数y =x k 的图像过点(31,43),则函数的关系式是 ,当y =65时,x= .16.若函数y =4x 与y =x 1的图象有一个交点是(21,2),则另一个交点坐标是 _.17.点P 在反比例函数y =x6-的图像上,若点P 的纵坐标小于-1,则点P 的横坐标的取值范围是 . 18.直线y =-2x ─2与双曲线y =xk相交于点A ,与x 、y 轴交于点B 、C ,AD ⊥x 轴于点D ,如果ADB S △=COB S △, 那么k = . 三、解答题(共56分)19.有一个水池,池内原有水500升,现在以每分钟20升注入水,35分钟可注满水池. (1)水池的容积是多少?(2)若每分钟注入的水量达到Q 升,注满水池需要t 分钟,写出t 与Q 之间的关系式. (3)若要20分钟注满水池,每分钟的注水量应达到多少升?20.甲、乙两地相距12千米,一辆汽车从甲地开往乙地,若设汽车的平均速度为每小时x千米,到达乙地所用的时间为y 小时,(1)y 与x(221.在反比例函数y =42008k x-图像的每一条曲线上,y 随x 的增大而减小,求k 的取值范围.22.我们学过反比例函数,例如小明准备用20元钱去买单价为x 元/千克的水果,那么他能够购买的水果的重量y (千克)与x 之间就是反比例函数关系.函数解析式是xy 20=,其中x >0.请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数的量的实例,并写出它的函数关系式.你自己能完成吗?实例:_______________________________________________________________________ ___________________.函数关系式:____________________________.23.已知反比例函数xky =与一次函数b kx y +=的图象都经过点(-2,-1),求这两个函数解析式.24.面积一定的梯形,其上底长是下底长的21,设下底长x =10 cm 时,高y =6 cm (1)求y 与x 的函数关系式;(2)求当y =5 cm 时,下底长多少?25.若反比例函数xy 6=与一次函数4-=mx y 的图象都经过点A (a ,2) (1)求点A 的坐标;(2)求一次函数4-=mx y 的解析式.26.如图,已知一次函数b kx y +=的图象与反比例函数xy 8-=的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是2-,求: (1)一次函数的解折式; (2)△AOB 的面积.27.已知点A (-2,0)和点B (2,0),点P 在函数y =x1-的图像上,如果△PAB 的面积是6,求点P 的坐标.28.如图,反比例函数1k y x=图象在第一象限的分支上有一点C (1,3),过点C 的直线2y k x b =+〔k < 0〕与x 轴交于点A (a ,0).(1)求反比例函数的解析式;(2)求A 点横坐标a 和2k 之间的函数关系式;(3)当直线与反比例函数的图象在第一象限内的另一交点的横坐标为3时,求△COA 的面积.参考答案一、选择题1.B 2.D 3.C 4.C 5.D 6.C 7.D 8.C 9.A 10.C 二、填空题 11.(0)k y k x =≠、双曲线、第二和第四 12.13 13.400 14.2y x = 15.14y x=、 310 16.(12-,-2) 17.0<x <6 18.-4 三、解答题19.(1)1200升(2)1200t Q=(3)60升 20.(1)12y x =(x >0)(2)略21.k >502 22.京沪高速公路全长约为1262km ,汽车沿京沪高速公路从上海驶往北京,汽车完成全程所需的时间t (h )与行驶的平均速度v (km/h)是反比例函数关系,1262t v= 23.一次函数解析式23y x =+,反比例函数解析式2y x =24.(1)60y x= (2)下底长12cm . 25.(1)A 点坐标(3,2) (2)24y x =- 26.(1)一次函数解析式2y x =-+ (2)△AOB 的面积是6. 27.P 点坐标是(13,-3)或(-13,3) 28.(1)3y x = (2)a =225k k - (3)△COA 面积是6。

初中数学一对一辅导个性化学习探究诊断_第17章__反比例函数

初中数学一对一辅导个性化学习探究诊断_第17章__反比例函数

第十七章 反比例函数测试1 反比例函数的概念学习要求理解反比例函数的概念和意义 , 能根据问题的反比例关系确定函数解析式 .课堂学习检测一 、 填空题1 . 一般的 , 形如____________的函数称为反比例函数 , 其中x 是______ , y 是______ . 自变量x 的取值范围是______ .2 . 写出下列各题中所要求的两个相关量之间的函数关系式 , 并指出函数的类别 .(1)商场推出分期付款购电脑活动 , 每台电脑12000元 , 首付4000元 , 以后每月付y 元 , x 个月全部付清 , 则y 与x 的关系式为____________ , 是______函数 .(2)某种灯的使用寿命为1000小时 , 它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________ , 是______函数 .(3)设三角形的底边 、 对应高 、 面积分别为a 、 h 、 S .当a =10时 , S 与h 的关系式为____________ , 是____________函数 ; 当S =18时 , a 与h 的关系式为____________ , 是____________函数 . (4)某工人承包运输粮食的总数是w 吨 , 每天运x 吨 , 共运了y 天 , 则y 与x 的关系式为______ , 是______函数 .3 . 下列各函数①x k y = 、 ②x k y 12+= 、 ③x y 53= 、 ④14+=x y 、 ⑤x y 21-= 、⑥31-=x y 、 ⑦24xy =和⑧y =3x -1中 , 是y 关于x 的反比例函数的有 : ____________(填序号) . 4 . 若函数11-=m xy (m 是常数)是反比例函数 , 则m =____________ , 解析式为____________ .5 . 近视眼镜的度数y (度)与镜片焦距x (m)成反比例 , 已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________ . 二 、 选择题 6 . 已知函数xky = , 当x =1时 , y =-3 , 那么这个函数的解析式是( ) . (A)xy 3=(B)x y 3-= (C)x y 31= (D)xy 31-=7 . 已知y 与x 成反比例 , 当x =3时 , y =4 , 那么y =3时 , x 的值等于( ) .(A)4 (B)-4 (C)3 (D)-3 三 、 解答题8 . 已知y 与x 成反比例 , 当x =2时 , y =3 .(1)求y 与x 的函数关系式 ; (2)当y =-23时 , 求x 的值 . 综合 、 运用 、 诊断一 、 填空题9 . 若函数522)(--=k xk y (k 为常数)是反比例函数 , 则k 的值是______ , 解析式为_________________________ .10 . 已知y 是x 的反比例函数 , x 是z 的正比例函数 , 那么y 是z 的______函数 . 二 、 选择题11 . 某工厂现有材料100吨 , 若平均每天用去x 吨 , 这批原材料能用y 天 , 则y 与x 之间的函数关系式为( ) .(A)y =100x(B)xy 100=(C)xy 100100-= (D)y =100-x 12 . 下列数表中分别给出了变量y 与变量x 之间的对应关系 , 其中是反比例函数关系的是( ) .三 、 解答题13 . 已知圆柱的体积公式V =S ²h .(1)若圆柱体积V 一定 , 则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系 ; (2)如果S =3cm 2时 , h =16cm , 求 : ①h (cm)与S (cm 2)之间的函数关系式 ;②S =4cm 2时h 的值以及h =4cm 时S 的值 .拓展 、 探究 、 思考 14 . 已知y 与2x -3成反比例 , 且41=x 时 , y =-2 , 求y 与x 的函数关系式 . 15 . 已知函数y =y 1-y 2 , 且y 1为x 的反比例函数 , y 2为x 的正比例函数 , 且23-=x 和x =1时 , y 的值都是1 . 求y 关于x 的函数关系式 .测试2 反比例函数的图象和性质(一)学习要求能根据解析式画出反比例函数的图象 , 初步掌握反比例函数的图象和性质 .课堂学习检测一 、 填空题 1 . 反比例函数xky =(k 为常数 , k ≠0)的图象是______ ; 当k >0时 , 双曲线的两支分别位于______象限 , 在每个象限内y 值随x 值的增大而______ ; 当k <0时 , 双曲线的两支分别位于______象限 , 在每个象限内y 值随x 值的增大而______ .2 . 如果函数y =2x k +1的图象是双曲线 , 那么k =______ .3 . 已知正比例函数y =kx , y 随x 的增大而减小 , 那么反比例函数xky = , 当x <0时 , y 随x 的增大而______ .4 . 如果点(1 , -2)在双曲线xky =上 , 那么该双曲线在第______象限 . 5 . 如果反比例函数xk y 3-=的图象位于第二 、 四象限内 , 那么满足条件的正整数k 的值是____________ . 二 、 选择题 6 . 反比例函数xy 1-=的图象大致是图中的( ) .7 . 下列函数中 , 当x >0时 , y 随x 的增大而减小的是( ) .(A)y =x(B)xy 1=(C)xy 1-= (D)y =2x8 . 下列反比例函数图象一定在第一 、 三象限的是( ) .(A)x my =(B)xm y 1+=(C)xm y 12+=(D)xmy -=9 . 反比例函数y =221)(2--mx m , 当x >0时 , y 随x 的增大而增大 , 则m 的值是( ) .(A)±1(B)小于21的实数 (C)-1 (D)110 . 已知点A (x 1 , y 1) , B (x 2 , y 2)是反比例函数xky =(k >0)的图象上的两点 , 若x 1<0<x 2 , 则有( ) . (A)y 1<0<y 2 (B)y 2<0<y 1 (C)y 1<y 2<0(D)y 2<y 1<0三 、 解答题11 . 作出反比例函数xy 12=的图象 , 并根据图象解答下列问题 : (1)当x =4时 , 求y 的值 ; (2)当y =-2时 , 求x 的值 ; (3)当y >2时 , 求x 的范围 .综合 、 运用 、 诊断一 、 填空题12 . 已知直线y =kx +b 的图象经过第一 、 二 、 四象限 , 则函数xkby =的图象在第______象限 . 13 . 已知一次函数y =kx +b 与反比例函数xkb y -=3的图象交于点(-1 , -1) , 则此一次函数的解析式为____________ , 反比例函数的解析式为____________ . 二 、 选择题14 . 若反比例函数xky =, 当x >0时 , y 随x 的增大而增大 , 则k 的取值范围是( ) . (A)k <0(B)k >0(C)k ≤0(D)k ≥015 . 若点(-1 , y 1) , (2 , y 2) , (3 , y 3)都在反比例函数xy 5=的图象上 , 则( ) . (A)y 1<y 2<y 3 (B)y 2<y 1<y 3(C)y 3<y 2<y 1(D)y 1<y 3<y 216 . 对于函数xy 2-= , 下列结论中 , 错误..的是( ) . (A)当x >0时 , y 随x 的增大而增大(B)当x <0时 , y 随x 的增大而减小(C)x =1时的函数值小于x =-1时的函数值(D)在函数图象所在的每个象限内 , y 随x 的增大而增大 17 . 一次函数y =kx +b 与反比例函数xky =的图象如图所示 , 则下列说法正确的是( ) .(A)它们的函数值y 随着x 的增大而增大 (B)它们的函数值y 随着x 的增大而减小 (C)k <0(D)它们的自变量x 的取值为全体实数 三 、 解答题18 . 作出反比例函数xy 4-=的图象 , 结合图象回答 : (1)当x =2时 , y 的值 ;(2)当1<x ≤4时 , y 的取值范围 ; (3)当1≤y <4时 , x 的取值范围 .拓展 、 探究 、 思考 19 . 已知一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2 , 1) , B (1 , n )两点 .(1)求反比例函数的解析式和B 点的坐标 ;(2)在同一直角坐标系中画出这两个函数的图象的示意图 , 并观察图象回答 : 当x 为何值时 , 一次函数的值大于反比例函数的值 ?(3)直接写出将一次函数的图象向右平移1个单位长度后所得函数图象的解析式 .测试3 反比例函数的图象和性质(二)学习要求会用待定系数法确定反比例函数解析式 , 进一步理解反比例函数的图象和性质 .课堂学习检测一 、 填空题 1 . 若反比例函数xky =与一次函数y =3x +b 都经过点(1 , 4) , 则kb =______ .2 . 反比例函数xy 6-=的图象一定经过点(-2 , ______) . 3 . 若点A (7 , y 1) , B (5 , y 2)在双曲线xy 3-=上 , 则y 1 、 y 2中较小的是______ .4 . 函数y 1=x (x ≥0) , xy 42=(x >0)的图象如图所示 , 则结论 :①两函数图象的交点A 的坐标为(2 , 2) ; ②当x >2时 , y 2>y 1 ; ③当x =1时 , BC =3 ;④当x 逐渐增大时 , y 1随着x 的增大而增大 , y 2随着x 的增大而减小 . 其中正确结论的序号是____________ . 二 、 选择题5 . 当k <0时 , 反比例函数xky =和一次函数y =kx +2的图象大致是( ) .(A)(B)(C)(D)6 . 如图 , A 、 B 是函数xy 2=的图象上关于原点对称的任意两点 , BC ∥x 轴 , AC ∥y 轴 , △ABC 的面积记为S , 则( ) .(A)S =2 (B)S =4 (C)2<S <4(D)S >47 . 若反比例函数xy 2-=的图象经过点(a , -a ) , 则a 的值为( ) . (A)2 (B)2- (C)2± (D)±2三 、 解答题8 . 如图 , 反比例函数xky =的图象与直线y =x -2交于点A , 且A 点纵坐标为1 , 求该反比例函数的解析式 .综合 、 运用 、 诊断一 、 填空题9 . 已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过点A (-2 , 1) , 则m =______ , n =______ .10 . 直线y =2x 与双曲线xy 8=有一交点(2 , 4) , 则它们的另一交点为______ . 11 . 点A (2 , 1)在反比例函数xky =的图象上 , 当1<x <4时 , y 的取值范围是__________ .二 、 选择题12 . 已知y =(a -1)x a 是反比例函数 , 则它的图象在( ) .(A)第一 、 三象限 (B)第二 、 四象限 (C)第一 、 二象限 (D)第三 、 四象限 13 . 在反比例函xky -=1的图象的每一条曲线上 , y 都随x 的增大而增大 , 则k 的取值可以是( ) . (A)-1(B)0(C)1(D)214 . 如图 , 点P 在反比例函数xy 1=(x >0)的图象上 , 且横坐标为2 . 若将点P 先向右平移两个单位 , 再向上平移一个单位后得到点P ′ . 则在第一象限内 , 经过点P ′的反比例函数图象的解析式是( )(A))0(5>-=x x y(B))0(5>=x x y (C))0(5>-=x xy(D))0(6>=x xy15 . 如图 , 点A 、 B 是函数y =x 与xy 1=的图象的两个交点 , 作AC ⊥x 轴于C , 作BD ⊥x轴于D , 则四边形ACBD 的面积为( ) .(A)S >2 (B)1<S <2 (C)1(D)2三 、 解答题16 . 如图 , 已知一次函数y 1=x +m (m 为常数)的图象与反比例函数xky2(k 为常数 , k ≠0)的图象相交于点A (1 , 3) .(1)求这两个函数的解析式及其图象的另一交点B 的坐标 ; (2)观察图象 , 写出使函数值y 1≥y 2的自变量x 的取值范围 .拓展 、 探究 、 思考17 . 已知 : 如图 , 在平面直角坐标系xOy 中 , Rt △OCD 的一边OC 在x 轴上 , ∠C =90° ,点D 在第一象限 , OC =3 , DC =4 , 反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式 ;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B , 求过A 、 B 两点的直线的解析式 . 18 . 已知正比例函数和反比例函数的图象都经过点A (3 , 3) .(1)求正比例函数和反比例函数的解析式 ;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6 , m ) , 求m 的值和这个一次函数的解析式 ;(3)在(2)中的一次函数图象与x 轴 、 y 轴分别交于C 、 D , 求四边形OABC 的面积 .测试4 反比例函数的图象和性质(三)学习要求进一步理解和掌握反比例函数的图象和性质 ; 会解决与一次函数和反比例函数有关的问题 .课堂学习检测一 、 填空题1 . 正比例函数y =k 1x 与反比例函数x ky 2=交于A 、 B 两点 , 若A 点坐标是(1 , 2) , 则B 点坐标是______ . 2 . 观察函数xy 2-=的图象 , 当x =2时 , y =______ ; 当x <2时 , y 的取值范围是______ ; 当y ≥-1时 , x 的取值范围是______ .3 . 如果双曲线xky =经过点)2,2(- , 那么直线y =(k -1)x 一定经过点(2 , ______) . 4 . 在同一坐标系中 , 正比例函数y =-3x 与反比例函数)0(>=k xky 的图象有______个交点 .5 . 如果点(-t , -2t )在双曲线xky =上 , 那么k ______0 , 双曲线在第______象限 .二 、 选择题6 . 如图 , 点B 、 P 在函数)0(4>=x xy 的图象上 , 四边形COAB 是正方形 , 四边形FOEP 是长方形 , 下列说法不正确的是( ) .(A)长方形BCFG 和长方形GAEP 的面积相等 (B)点B 的坐标为(4 , 4) (C)xy 4=的图象关于过O 、 B 的直线对称 (D)长方形FOEP 和正方形COAB 面积相等 7 . 反比例函数xky =在第一象限的图象如图所示 , 则k 的值可能是( ) .(A)1(B)2(C)3(D)4三 、 解答题8 . 已知点A (m , 2) 、 B (2 , n )都在反比例函数xm y 3+=的图象上 . (1)求m 、 n 的值 ;(2)若直线y =mx -n 与x 轴交于点C , 求C 关于y 轴对称点C ′的坐标 .9 . 在平面直角坐标系xOy 中 , 直线y =x 向上平移1个单位长度得到直线l . 直线l 与反比例函数xky =的图象的一个交点为A (a , 2) , 求k 的值 . 综合 、 运用 、 诊断一 、 填空题10 . 如图 , P 是反比例函数图象上第二象限内的一点 , 且矩形PEOF 的面积为3 , 则反比例函数的解析式是______ .11 . 如图 , 在直角坐标系中 , 直线y =6-x 与函数)0(5>=x xy 的图象交于A , B , 设A (x 1 ,y 1) , 那么长为x 1 , 宽为y 1的矩形的面积和周长分别是______ .12 . 已知函数y =kx (k ≠0)与xy 4-=的图象交于A , B 两点 , 若过点A 作AC 垂直于y 轴 , 垂足为点C , 则△BOC 的面积为____________ .13 . 在同一直角坐标系中 , 若函数y =k 1x (k 1≠0)的图象与x ky 2=)0(2≠k 的图象没有公共点 , 则k 1k 2______0 . (填“>” 、 “<”或“=”) 二 、 选择题14 . 若m <-1 , 则函数①)0(>=x xmy , ②y =-mx +1 , ③y =mx , ④y =(m +1)x 中 , y 随x 增大而增大的是( ) . (A)①④ (B)②(C)①②(D)③④15 . 在同一坐标系中 , y =(m -1)x 与xmy -=的图象的大致位置不可能的是( ) .三 、 解答题16 . 如图 , A 、 B 两点在函数)0(>=x xmy 的图象上 .(1)求m 的值及直线AB 的解析式 ;(2)如果一个点的横 、 纵坐标均为整数 , 那么我们称这个点是格点 . 请直接写出图中阴影部分(不包括边界)所含格点的个数 .17 . 如图 , 等腰直角△POA 的直角顶点P 在反比例函数xy 4=)0(>x 的图象上 , A 点在x 轴正半轴上 , 求A 点坐标 .拓展 、 探究 、 思考18 . 如图 , 函数xy 5=在第一象限的图象上有一点C (1 , 5) , 过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a , 0) .(1)写出a 关于k 的函数关系式 ;(2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时 , 求△COA 的面积 . 19 . 如图 , 一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-3 , 1) 、 B (2 , n )两点 , 直线AB 分别交x 轴 、 y 轴于D 、 C 两点 .(1)求上述反比例函数和一次函数的解析式 ;(2)求CDAD的值 . 测试5 实际问题与反比例函数(一)学习要求能写出实际问题中的反比例函数关系式 , 并能结合图象加深对问题的理解 .课堂学习检测一 、 填空题1 . 一个水池装水12m 3 , 如果从水管中每小时流出x m 3的水 , 经过y h 可以把水放完 , 那么y与x 的函数关系式是______ , 自变量x 的取值范围是______ . 2 . 若梯形的下底长为x , 上底长为下底长的31, 高为y , 面积为60 , 则y 与x 的函数关系是______ (不考虑x 的取值范围) . 二 、 选择题 3 . 某一数学课外兴趣小组的同学每人制作一个面积为200 cm 2的矩形学具进行展示 . 设矩形的宽为x cm , 长为y cm , 那么这些同学所制作的矩形的长y (cm)与宽x (cm)之间的函数关系的图象大致是( ) .4 . 下列各问题中两个变量之间的关系 , 不是反比例函数的是( ) .(A)小明完成百米赛跑时 , 所用时间t (s)与他的平均速度v (m/s)之间的关系 (B)长方形的面积为24 , 它的长y 与宽x 之间的关系(C)压力为600N 时 , 压强p (Pa)与受力面积S (m 2)之间的关系(D)一个容积为25L 的容器中 , 所盛水的质量m (kg)与所盛水的体积V (L)之间的关系5 . 在温度不变的条件下 , 通过一次又一次地对汽缸顶部的活塞加压 , 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强 , 如下表 :则可以反映y 与x 之间的关系的式子是( ) . (A)y =3000x(B)y =6000x(C)xy 3000=(D)xy 6000=综合 、 运用 、 诊断一 、 填空题 6 . 甲 、 乙两地间的公路长为300km , 一辆汽车从甲地去乙地 , 汽车在途中的平均速度为v (km/h) ,到达时所用的时间为t (h) , 那么t 是v 的______函数 , v 关于t 的函数关系式为______ . 7 . 农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示) , 则需要塑料布y (m 2)与半径R (m)的函数关系式是(不考虑塑料埋在土里的部分)__________________ .二、选择题8 .一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20 ,若2≤x≤10 ,则y与x的函数图象是( ) .三、解答题9 .一个长方体的体积是100cm3,它的长是y(cm) ,宽是5cm ,高是x(cm) .(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.测试6 实际问题与反比例函数(二)学习要求根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题.课堂学习检测一、填空题1 .一定质量的氧气,密度ρ是体积V的反比例函数,当V=8m3时,ρ=1.5kg/m3,则ρ与V的函数关系式为______ .2 .由电学欧姆定律知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=20Ω时,电流强度I=0.25A .则(1)电压U=______V ;(2)I与R的函数关系式为______ ;(3)当R=12.5Ω时的电流强度I=______A ;(4)当I=0.5A时,电阻R=______Ω.3 .如图所示的是一蓄水池每小时的排水量V/m3²h-1与排完水池中的水所用的时间t(h)之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______m3;(2)此函数的解析式为____________ ;(3)若要在6h内排完水池中的水,那么每小时的排水量至少应该是______m3;(4)如果每小时的排水量是5m3,那么水池中的水需要______h排完.二、解答题4 .一定质量的二氧化碳,当它的体积V=4m3时,它的密度p=2.25kg/m3.(1)求V与ρ的函数关系式;(2)求当V=6m3时,二氧化碳的密度;(3)结合函数图象回答:当V≤6m3时,二氧化碳的密度有最大值还是最小值?最大(小)值是多少?综合、运用、诊断一、选择题5 .下列各选项中,两个变量之间是反比例函数关系的有( ) .(1)小张用10元钱去买铅笔,购买的铅笔数量y(支)与铅笔单价x(元/支)之间的关系(2)一个长方体的体积为50cm3,宽为2cm ,它的长y(cm)与高x(cm)之间的关系(3)某村有耕地1000亩,该村人均占有耕地面积y(亩/人)与该村人口数量n(人)之间的关系(4)一个圆柱体,体积为100cm3,它的高h(cm)与底面半径R(cm)之间的关系(A)1个(B)2个(C)3个(D)4个二、解答题6 .一个气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?7 .一个闭合电路中,当电压为6V时,回答下列问题:(1)写出电路中的电流强度I(A)与电阻R(Ω)之间的函数关系式;(2)画出该函数的图象;(3)如果一个用电器的电阻为5Ω,其最大允许通过的电流强度为1A ,那么把这个用电器接在这个闭合电路中,会不会被烧?试通过计算说明理由.拓展、探究、思考三、解答题8 .为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?9 .水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?参考答案第十七章 反比例函数测试1 反比例函数的概念1 . xky =(k 为常数 , k ≠0) , 自变量 , 函数 , 不等于0的一切实数 . 2 . (1)x y 8000= , 反比例 ;(2)xy 1000= , 反比例 ;(3)s =5h , 正比例 , ha 36= , 反比例 ;(4)xwy = , 反比例 .3 . ② 、 ③和⑧ .4 . 2 , x y 1= . 5 . )0(100>⋅=x xy 6 . B . 7 . A .8 . (1)xy 6= ; (2)x =-4 .9 . -2 , ⋅-=xy 410 . 反比例 . 11 . B . 12 . D .13 . (1)反比例 ; (2)①Sh 48= ; ②h =12(cm) , S =12(cm 2) .14 . ⋅-=325x y 15 . .23x xy -=测试2 反比例函数的图象和性质(一)1 . 双曲线 ; 第一 、 第三 , 减小 ; 第二 、 第四 , 增大 .2 . -2 .3 . 增大 .4 . 二 、 四 .5 . 1 , 2 .6 . D .7 . B .8 . C .9 . C . 10 . A . 11 .由图知 , (1)y =3 ;(2)x =-6 ; (3)0<x <6 .12 . 二 、 四象限 . 13 . y =2x +1 , ⋅=xy 1 14 . A . 15 . D 16 . B 17 . C18(1)y =-2 ;(2)-4<y ≤-1 ; (3)-4≤x <-1 . 19 . (1)xy 2-= , B (1 , -2) ; (2)图略x <-2或0<x <1时 ; (3)y =-x .测试3 反比例函数的图象和性质(二)1 . 4 .2 .3 . 3 . y 2 .4 . ①③④ .5 . B .6 . B .7 . C .8 . xy 3= . 9 . -3 ; -3 . 10 . (-2 , -4) . 11 . .221<<y . 12 . B . 13 . D. 14 . D . 15 . D . 16 . (1)xy 3=, y =x +2 ; B (-3 , -1) ; (2)-3≤x <0或x ≥1 . 17 . (1))0(3>=x x y ; (2).332+-=x y 18 . (1)x y x y 9,== ; (2)23=m ;;29-=x y(3)S 四边形OABC =1081.测试4 反比例函数的图象和性质(三)1 . (-1 , -2) .2 . -1 , y <-1或y >0 , x ≥2或x <0 .3 . .224--4 . 0 .5 . > ; 一 、 三 .6 . B .7 . C8 . (1)m =n =3 ; (2)C ′(-1 , 0) .9 . k =2 . 10 . ⋅-=xy 311 . 5 , 12 . 12 . 2 . 13 . < . 14 . C . 15 . A . 16 . (1)m =6 , y =-x +7 ; (2)3个 . 17 . A(4 , 0) . 18 . (1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ;(2)先求出一次函数解析式95095+-=x y , A (10 , 0) , 因此S △COA =25 . 19 . (1)2121,3--=-=x y x y ; (2).2=CD AD测试5 实际问题与反比例函数(一)1 . xy 12=; x >0 . 2 . ⋅=x y 903 . A .4 . D .5 . D .6 . 反比例 ; ⋅=tV 3007 . y =30πR +πR 2(R >0) . 8 . A .9 . (1))0(20>=x x y ; (2)图象略 ; (3)长cm.320.测试6 实际问题与反比例函数(二)1 . ).0(12>=V vρ 2 . (1)5 ; (2)R I 5= ; (3)0.4 ; (4)10 .3 . (1)48 ; (2))0(48>=t tV ; (3)8 ; (4)9.6 .4 . (1))0(9>=ρρV ; (2)ρ=1.5(kg/m 3) ; (3)ρ有最小值1.5(kg/m 3) .5 . C .6 . (1)V p 96= ; (2)96 kPa ; (3)体积不小于3m 3524 . 7 . (1))0(6>=R RI ; (2)图象略 ; (3)I =1.2A >1A , 电流强度超过最大限度 , 会被烧 . 8 . (1)x y 43=, 0≤x ≤12 ; y =x 108(x >12) ; (2)4小时 . 9 . (1)xy 12000= ; x 2=300 ; y 4=50 ; (2)20天第十七章 反比例函数全章测试一 、 填空题 1 . 反比例函数xm y 1+=的图象经过点(2 , 1) , 则m 的值是______ . 2 . 若反比例函数xk y 1+=与正比例函数y =2x 的图象没有交点 , 则k 的取值范围是____ __ ; 若反比例函数xky =与一次函数y =kx +2的图象有交点 , 则k 的取值范围是______ . 3 . 如图 , 过原点的直线l 与反比例函数xy 1-=的图象交于M , N 两点 , 根据图象猜想线段MN 的长的最小值是____________ .4 . 一个函数具有下列性质 :①它的图象经过点(-1 , 1) ; ②它的图象在第二 、 四象限内 ; ③在每个象限内 , 函数值y 随自变量x 的增大而增大 . 则这个函数的解析式可以为____________ .5 . 如图 , 已知点A 在反比例函数的图象上 , AB ⊥x 轴于点B , 点C (0 , 1) , 若△ABC 的面积是3 , 则反比例函数的解析式为____________ .6 . 已知反比例函数xky =(k 为常数 , k ≠0)的图象经过P (3 , 3) , 过点P 作PM ⊥x 轴于M , 若点Q 在反比例函数图象上 , 并且S △QOM =6 , 则Q 点坐标为______ . 二 、 选择题7 . 下列函数中 , 是反比例函数的是( ) .(A)32x y =(B 32xy =(C)xy 32=(D)xy -=32 8 . 如图 , 在直角坐标中 , 点A 是x 轴正半轴上的一个定点 , 点B 是双曲线xy 3=(x >0)上的一个动点 , 当点B 的横坐标逐渐增大时 , △OAB 的面积将会( ) .(A)逐渐增大 (B)不变(C)逐渐减小(D)先增大后减小9 . 如图 , 直线y =mx 与双曲线xky =交于A , B 两点 , 过点A 作AM ⊥x 轴 , 垂足为M , 连结BM , 若S △ABM =2 , 则k 的值是( ) .(A)2(B)m -2(C)m(D)410 . 若反比例函数xky =(k <0)的图象经过点(-2 , a ) , (-1 , b ) , (3 , c ) , 则a , b , c 的大小关系为( ) . (A)c >a >b (B)c >b >a (C)a >b >c(D)b >a >c11 . 已知k 1<0<k 2 , 则函数y =k 1x 和x ky 2=的图象大致是( ) .12 . 当x <0时 , 函数y =(k -1)x 与xky 32-=的y 都随x 的增大而增大 , 则k 满足( ) . (A)k >1 (B)1<k <2 (C)k >2 (D)k <1 13 . 某气球内充满了一定质量的气体 , 当温度不变时 , 气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数 , 其图象如图所示 . 当气球内的气压大于140kPa 时 , 气球将爆炸 . 为了安全起见 , 气体体积应( ) .(A)不大于3m 3524 (B)不小于3m 3524 (C)不大于3m 3724(D)不小于3m 372414 . 一次函数y =kx +b 和反比例函数axky =的图象如图所示 , 则有( ) .(A)k >0 , b >0 , a >0(B)k <0 , b >0 , a <0 (C)k <0 , b >0 , a >0(D)k <0 , b <0 , a >015 . 如图 , 双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E , 交AB 于点D . 若梯形ODBC 的面积为3 , 则双曲线的解析式为( ) .(A)x y 1= (B)x y 2=(C)xy 3=(D)xy 6=三 、 解答题 16 . 作出函数xy 12=的图象 , 并根据图象回答下列问题 : (1)当x =-2时 , 求y 的值 ;(2)当2<y <3时 , 求x 的取值范围 ; (3)当-3<x <2时 , 求y 的取值范围 . 17 . 已知图中的曲线是反比例函数xm y 5-=(m 为常数)图象的一支 .(1)这个反比例函数图象的另一支在第几象限 ? 常数m 的取值范围是什么 ?(2)若函数的图象与正比例函数y =2x 的图象在第一象限内交点为A , 过A 点作x 轴的垂线 , 垂足为B , 当△OAB 的面积为4时 , 求点A 的坐标及反比例函数的解析式 . 18 . 如图 , 直线y =kx +b 与反比例函数xky =(x <0)的图象交于点A , B , 与x 轴交于点C , 其中点A 的坐标为(-2 , 4) , 点B 的横坐标为-4 .(1)试确定反比例函数的关系式 ; (2)求△AOC 的面积 . 19 . 已知反比例函数xky =的图象经过点)21,4( , 若一次函数y =x +1的图象平移后经过该反比例函数图象上的点B (2 , m ) , 求平移后的一次函数图象与x 轴的交点坐标 .20 . 如图 , 已知A (-4 , n ) , B (2 , -4)是一次函数y =kx +b 的图象和反比例函数xm y =的图象的两个交点 .(1)求反比例函数和一次函数的解析式 ;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积 ;(3)求方程0=-+xm b kx 的解(请直接写出答案) ; (4)求不等式0<-+x m b kx 的解集(请直接写出答案) . 21 . 已知 : 如图 , 正比例函数y =ax 的图象与反比例函数xk y =的图象交于点A (3 , 2) .(1)试确定上述正比例函数和反比例函数的表达式 ;(2)根据图象回答 , 在第一象限内 , 当x 取何值时 , 反比例函数的值大于正比例函数的值 ;(3)M (m , n )是反比例函数图象上的一动点 , 其中0<m <3 , 过点M 作直线MB ∥x 轴 , 交y 轴于点B ; 过点A 作直线AC ∥y 轴交于点C , 交直线MB 于点D . 当四边形OADM 的面积为6时 , 请判断线段BM 与DM 的大小关系 , 并说明理由 .22 . 如图 , 已知点A , B 在双曲线)0(>=x xk y 上 , AC ⊥x 轴于点C , BD ⊥y 轴于点D , AC 与BD 交于点P , P 是AC 的中点 , 若△ABP 的面积为3 , 求k 的值 .参考答案第十七章 反比例函数全章测试1 . m =1 .2 . k <-1 ; k ≠0 .3 . .224 . ⋅-=x y 1 .5 . ⋅=x y6 6 . ).4,49()4,49(21--Q Q 7 . C . 8 . C . 9 . A . 10 . D . 11 . D . 12 . C . 13 . B . 14 . B . 15 . B . 16 . (1)y =-6 ; (2)4<x <6 ; (3)y <-4或y >6 . 17 . (1)第三象限 ; m >5 ; (2)A (2 , 4) ; ⋅=x y 818 . (1);8x y -= (2)S △AOC =12 . 19 . (1 , 0)20 . (1),8x y -= y =-x -2 ; (2)C (-2 , 0) , S △AOB =6 ;(3)x =-4或x =2 ; (4)-4<x <0或x >2 .21 . (1);6,32x y x y == (2)0<x <3 ;(3)∵S △OAC =S △BOM =3 , S 四边形OADM =6 ,∴S 矩形OCDB =12 ;∵OC =3 ,∴CD =4 :即n =4 ,⋅=∴23m即M 为BD 的中点 , BM =DM .22 . k =12。

反比例函数测试卷

反比例函数测试卷

x k 八年级数学下册第十七章《反比例函数》测试卷(时间45分钟,满分100分)班别 姓名 得分一、 细心填一填(每小题5分,共25分)1、你能写出一个y 是x 的反比例函数的关系式吗?如y=2、如果反比例函数y=xk 经过点(2,-3),则k= 3、如果反比例函数的图象经过点(1,-2),那么这个反比例函数的解析式为4、如果(a ,-2a )在双曲线y=xk 上,那么双曲线在第 象限内. 5、一个反比例函数的图象过点P (61,1)和Q (-61,m ),那么m= 二、精心选一选(每小题5分,共25分)6、若反比例函数y= 的图象经过点(-1,2),则这个函数的图象一定经过点( ) A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2) 7、若函数 是反比例函数,则m 等于( )A 、-2B 、2C 、-4D 、48、若点(-2,y 1),(1,y 2),(2,y 3)都在反比例函数y=-x1的图象上,则有( ) A 、y 1 >y 2 >y 3 B 、y 1 >y 2 >y 3 C 、y 1 >y 2 >y 3 D 、y 1 >y 2 >y 39、对正比例函数y=kx 和反比例函数y=xk (k >0),在同一坐标系中的图象可能是( )10、函数y=xk (k >0)在第一象限内的图象如右下图所示, P 为图象 上任一点,PQ ⊥x 轴于Q ,若△POQ 的面积为s ,则s 与k 的关系是( ) A 、s =2k B 、s =4k C 、s=k D 、s >kxm三、认真解一解(本大题共50分)1、已知变量y 与(x+2)成反比例,且当x=2时,y=-1,求y 和x 之间的函数关系式. (12分)2、你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度Y(m)是面条的粗细(横截面积)S(mm 2)的反比例函数,其图象如图所示, (1)写出Y 与S的函数关系式(2)当面条粗1.6mm 2时,面条有多长? (12分)3、已知正比例函数y=kx(k ≠0)和反比例函数y = (m ≠0)的图象都经过点(4,2) (1)求这两个函数的解析式(2)这两个函数图象还有其他交点吗?若有,请求出交点的坐标;若没有,请说明理由.4、如图,已知一次函数y=kx+b 的图象与反比例函数y= —x8的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是 —2,求:(1)一次函数的解析式 (2)△AOB 的面积。

初中数学 反比例函数测试题(含答案)

初中数学  反比例函数测试题(含答案)

反比例函数测试题一、填空: 1、如果函数122--=m xm y 是反比例函数,那么=m ____________.2、已知y 与x 成反比例,且当2-=x 时,3=y ,则y 与x 的函数关系是_________, 当3-=x 时,=y _____________。

3、若()2,2M 和()21,nb N --是反比例函数xk y =图象上的两点,则一次函数b kx y +=的图象经过_____________象限。

4、函数xy 32-=的图象在第_____象限,在每个象限内,图象从左向右_________. 5、弹簧挂上物体后会伸长,测得一弹簧的长度()cm y 与所挂物体的质量()kg x 有下面的关系。

那么弹簧总长()cm y 与所挂物体质量()kg x 之间的函数关系为_____________. 6、从A 市向B 市打长途电话,按时收费,3分钟收费2.4元,每加1分钟加收1元,按时间3≥t (时)分时电话费y (元)与t 之间的函数关系式为_________________. 7、某报报道了“养老保险执行标准”的消息,云龙中学数学课外活动小组根据消息中提供的数据给制出某市区企业职工养老保险个人月缴费y (元)随个人月工资x (元)变化的图象,请就图象回答下列问题: ⑴张总工程师五月份工资为3000元,这个月他个人应缴养老保险费______元。

⑵小王五月份工资为500元,这个月他应缴养老保险费________元。

⑶李师傅五月份个人缴养老保险费50元,则他五月份的工资为________元。

二、解答题:y(元)x(元)195.0238.992786557340BA8、杨嫂在再就业中心的扶持下,创办了报刊零售点,对经营的某种晚报,杨嫂提供了如下信息:①每份买进0.2元,每份卖出0.3元;②一个月内(以30天计),有20天每天可以卖出120份,其余10天每天只能卖出80份;③一个月内,每天从报社买进的报纸必须相同,当天卖不掉的报纸,以每份0.1元退回给报社。

最新人教版初中数学九年级数学下册第一单元《反比例函数》测试(含答案解析)(2)

最新人教版初中数学九年级数学下册第一单元《反比例函数》测试(含答案解析)(2)

一、选择题1.如图,过反比例函数()0ky x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .52.已知反比例函数13y x=-,下列结论中不正确的是( ) A .图象必经过点11,3⎛⎫- ⎪⎝⎭B .y 随x 的增大而增大C .图象在第二、四象限内D .若1x >,则103y -<< 3.已知点()11,x y 、()22,x y 、()33,x y 在双曲线5y x=上,当1230x x x <<<时,1y 、2y 、3y 的大小关系是( )A .123y y y <<B .312y y y <<C .132y y y <<D .231y y y <<4.函数y a x a =+与(0)ay a x=≠在同一直角坐标系中的图像可能是( ) A . B . C .D .5.如图,ABO 中,∠ABO =45°,顶点A 在反比例函数y =3x(x >0)的图象上,则OB 2﹣OA 2的值为( )A.3 B.4 C.5 D.66.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若(x﹣3)(mx﹣n)=0是倍根方程,则n=6m或3n=2m;④若点(m,n)在反比例函数y=2x的图象上,则关于x的方程mx2﹣3x+n=0是倍根方程.上述结论中正确的有()A.①②B.③④C.②③D.②④7.在同一直角坐标系中,反比例函数y=abx与一次函数y=ax+b的图象可能是()A.B.C.D.8.已知反比例函数y=21kx+的图上象有三个点(2,1y), (3, 2y),(1-, 3y),则1y,2y,3y的大小关系是()A.1y>2y>3y B.2y>1y>3y C.3y>1y>2y D.3y>2y>1y 9.如图,矩形OABC的顶点A、C分别在x轴、y轴上,顶点B在第一象限,AB=1.将线段OA绕点O按逆时针方向旋转600得到线段OP,连接AP,反比例函数y=kx过P、B两点,则k的值为()A .23B .233C .43D .4310.如图,直线y =x +2与y 轴交于点A ,与直线y =﹣3x +10交于点B ,P 是线段AB 的中点,已知反比例函数y =kx的图象经过点P ,则k 的值为( )A .1B .3C .6D .811.对于反比例函数5y x=-,下列说法中不正确的是( ) A .图象经过点(1,5)-B .当0x >时,y 的值随x 的值的增大而增大C .图像分布在第二、四象限D .若点11()A x y ,,22()B x y ,都在图像上,且12x x <,则12y y <. 12.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数ky x=(k <0)的图象上的两点,若x 1<0<x 2,则下列结论正确的是( ) A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<0二、填空题13.如图,反比例函数y =kx(x >0)经过A ,B 两点,过点A 作AC ⊥y 轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作轴BE ⊥x 于点E ,连接AD ,已知AC =2,BE =2,S 矩形BEOD =16,则S △ACD =_____.14.如图,平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接AE ,//AE y 轴,反比例函数()0ky x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.15.在直角坐标系中,已知A (0,4)、B (2,4),C 为x 轴正半轴上一点,且OB 平分∠ABC ,过B 的反比例函数y =kx交线段BC 于点D ,E 为OC 的中点,BE 与OD 交于点F ,若记△BDF 的面积为S 1,△OEF 的面积为S 2,则12S S =_____.16.如图,A 、B 两点在双曲线()30y x x=>,分别经过A 、B 两点向坐标轴作垂线段,已知1S =阴影,则12S S +=______.17.如图,已知双曲线()0ky x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.18.调查显示,某商场一款运动鞋的售价是销量的反比例函数(调查获得的部分数据如下表). 售价x (元/双) 200 240 250 400销售量y (双)30 252415价应定为_______元.19.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =kx(k ≠0)的图象经过其中两点,则m 的值为_____. 20.如图,反比例函数(0)ky x x=>经过,A B 两点,过点A 作AC y ⊥轴于点C ,过点B 作BD y ⊥轴于点D ,过点B 作轴BE x ⊥于点E ,连接AD ,已知 =2,=2AC BE ,=16BEOD S 矩形,则 ACD S =_____.三、解答题21.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为()0,3,点A 在x 轴的负半轴上,点M 、D 分别在OA 、AB 上,且2AD AM ==;一次函数y kx b =+的图象过点D 和M ,反比例函数my x=的图像经过点D ,与BC 交点为N .(1)求反比例函数和一次函数的表达式;(2)直接写出使一次函数值大于反比例函数值的x的取值范围;(3)若点P在y轴上,且使四边形OMDP的面积与四边形OMNC的面积相等,求点P 的坐标.22.已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b<mx的解集(直接写出答案).23.如图,已知一次函数y=x+b的图像与反比例函数kyx(x<0)的图像相交于点A(-1,2)和点B,点P在y轴上.(1)求b和k的值;(2)当PA+PB 的值最小时,点P 的坐标为______; (3)当x+b <kx时,请直接写出x 的取值范围. 24.如图,已知A (−4,2),B (n ,−4)是一次函数y kx b =+的图象与反比例函数my x=的图像的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求不等式0mkx b x+->的解集(请直接写出答案).25.如图,已知一次函数1332y x =-与反比例函数2ky x =的图象相交于点A (4,n )和M(m ,﹣6),与x 轴相交于点B . (1)求m ,n 的值;(2)观察图象,当y 2≥﹣6且y 2≠0时,自变量x 的取值范围为 ,若y 1﹣y 2<0时自变量x 的取值范围为 ;(3)若P 点为x 轴上一点, Q 点为平面直角坐标系中的一点,以点A 、B 、P 、Q 为顶点的四边形为菱形,求Q 点的坐标.26.如图在平面直角坐标系xOy 中,函数14(0)y x x=>的图象与一次函数2y kx k =-的图象的交点为(,2)A m . (1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若点P 是x 轴上一点,且满足PAB ∆的面积是6,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据点A 在反比例函数图象上结合反比例函数系数k 的几何意义,即可得出关于k 的含绝对值符号的一元一次方程,解方程求出k 值,再结合反比例函数在第一象限内有图象即可确定k 值. 【详解】解:∵点A 在反比例函数ky x=的图象上,且AB x ⊥轴于点B , ∴设点A 坐标为(,)x y ,即||k xy =,∵点A 在第一象限,x y ∴、都是正数,1122AOBSOB AB xy ∴=⋅=, 2AOBS=,4k xy ∴==.故选:C . 【点睛】本题考查了反比例函数的性质以及反比例函数系数k 的几何意义,解题的关键是找出关于k 的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k 的几何意义找出关于k 的含绝对值符号的一元一次方程是关键.2.B解析:B 【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k ,可以判断出A 的正误;根据反比例函数的性质:k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大可判断出B 、C 、D 的正误. 【详解】A 选项:将1x =-代入得13y =故过11,3⎛⎫-- ⎪⎝⎭,故A 正确;B 选项:103k =-<,故在每个象限内y 随x 的增大而增大,故B 错误; C 选项:103k =-<,故图象过二、四象限,故C 正确; D 选项:若1x >,则103y -<<,故D 正确. 故选:B . 【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y =kx(k≠0)的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.3.C解析:C 【分析】根据反比例函数图象的性质可得双曲线5y x=在一、三象限,且在每个象限内,y 随x 的增大而减小,即可求解. 【详解】 解:双曲线5y x=在一三象限,且在每个象限内,y 随x 的增大而减小, ∵1230x x x <<<, ∴132y y y <<, 故选:C . 【点睛】本题考查反比例函数图象与性质,掌握反比例函数图象与性质是解题的关键.4.B解析:B 【分析】分a >0与a <0两种情况,根据一次函数和反比例函数的图象与性质解答即可. 【详解】解:当a>0时,y=|a|x+a=ax+a的图象在第一、二、三象限,ayx=的图象在第一、三象限,此时选项B正确;当a<0时,y=|a|x+a=﹣ax+a的图象在第一、三、四象限,ayx=的图象在第二、四象限,此时没有正确选项;故选:B.【点睛】本题考查了一次函数与反比例函数的图象与性质,属于常考题型,熟练掌握上述知识是解题关键.5.D解析:D【分析】直接利用等腰直角三角形的性质结合勾股定理以及反比例函数图象上点的坐标特点得出答案.【详解】解:如图所示:过点A作AD⊥OB于点D,∵∠ABO=45°,∠ADB=90°,∴∠DAB=45°,∴设AD=x,则BD=x,∵顶点A在反比例函数y=3x(x>0)的图象上,∴DO•AD=3,则DO=3x,故BO=x+ 3x,OB2﹣OA2=(OD+BO)2﹣(OD2+AD2)=(x+ 3x)2﹣x2﹣29x=6.故答案为:D.【点睛】本题考查了反比例函数的性质以及勾股定理,正确应用勾股定理是解题的关键. 6.D解析:D【分析】】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x 2=2x 1,得到x 1•x 2=2x 12=2,得到当x 1=1时,x 2=2,当x 1=-1时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m ,n )在反比例函数y =2x 的图象上,得到mn=2,然后解方程mx 2-3x+n=0即可得到正确的结论;【详解】解:①∵方程x 2+2x-8=0的两个根是x 1=-4,x 2=2,则2×2≠-4,∴方程x 2+2x-8=0不是倍根方程,故①错误;②若关于x 的方程x 2+ax+2=0是倍根方程,则2x 1=x 2,∵x 1+x 2=-a ,x 1•x 2=2,∴2x 12=2,解得x 1=±1,∴x 2=±2,∴a=±3,故②正确;③解方程(x-3)(mx-n )=0得,123,n x x m ==, 若(x-3)(mx-n )=0是倍根方程,则6n m =或23n m ⨯=, ∴n=6m 或3m=2n ,故③错误;④∵点(m ,n )在反比例函数y =2x 的图象上, ∴mn=2,即2n m=, ∴关于x 的方程为2230mx x m -+=, 解方程得1212,x x m m==, ∴x 2=2x 1, ∴关于x 的方程mx 2-3x+n=0是倍根方程,故④正确;故选D .【点睛】本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.7.D解析:D【分析】先根据一次函数图象经过的象限得出a、b的正负,由此即可得出反比例函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】∵一次函数图象应该过第一、二、四象限,∴a<0,b>0,∴ab<0,∴反比例函数的图象经过二、四象限,故A选项错误,∵一次函数图象应该过第一、三、四象限,∴a>0,b<0,∴ab<0,∴反比例函数的图象经过二、四象限,故B选项错误;∵一次函数图象应该过第一、二、三象限,∴a>0,b>0,∴ab>0,∴反比例函数的图象经过一、三象限,故C选项错误;∵一次函数图象经过第二、三、四象限,∴a<0,b<0,∴ab>0,∴反比例函数的图象经经过一、三象限,故D选项正确;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.8.A解析:A【分析】先判断出k2+1是正数,再根据反比例函数图象的性质,比例系数k>0时,函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可选取答案.【详解】解:∵k2≥0,∴k2+1≥1,是正数,∴反比例函数y=21kx的图象位于第一三象限,且在每一个象限内y随x的增大而减小,∵(2,y1),(3,y2),(﹣1,y3)都在反比例函数图象上,∴0<y 2<y 1,y 3<0,∴y 1>y 2>y 3.故选:A .【点睛】本题考查了反比例函数图象的性质,对于反比例函数y =k x(k ≠0),(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内,本题先判断出比例系数k 2+1是正数是解题的关键.9.D解析:D【分析】本题先设A 点坐标(x ,0),则点B (x ,1),由等边三角性质可知P (12x,2 x )代入函数表达式即可求出结果.【详解】由题意设A 点坐标(x ,0),则点B (x ,1),将点B 代入函数式得k=x ,又由题意将线段OA 绕点O 按逆时针方向旋转60°得到线段OP ,∴OP=OA ,则△AOP 为等边三角形,∴由等边三角形性质设点P (12k),把点P=12kk , ∴k=2 k 12⨯k=2122k ⨯, ∵k 0≠,∴k=3,即选D . 【点睛】此题考查反比例函数,等边三角形性质,解题关键是找出点P 坐标,即运用等边三角形性质解题.10.B解析:B【分析】先求出直线y =x +2与坐标轴的交点A 坐标,再由两条直线解析式构成方程组,解方程组求得B 点坐标,进而求得中点P 的坐标,问题就迎刃而解了.【详解】解:直线y =x +2中,令x =0,得y =2,∴A (0,2),解2310y x y x =+⎧⎨=-+⎩得24x y =⎧⎨=⎩, ∴B (2,4),∵P 是线段AB 的中点,∴P (1,3),把(1,3)P 代入k y x=中,得3k =, 故选:B .【点睛】本题主要考查了两条直线的相交问题,反比例函数图象上点的坐标特征,待定系数法.本题的关键是求出P 点坐标. 11.D解析:D【分析】根据反比例函数的性质判断即可.【详解】解:A. 把(1,5)-代入反比例函数得,55-=-,本选项正确;B. 50-<,图象分别位于第二、四象限,函数在x<0上为增函数、在x>0上同为增函数,本选项正确;C. 50-<,因此图像分布在第二、四象限,本选项正确;D. 函数在x<0上为增函数、在x>0上同为增函数,若点11()A x y ,,22()B x y ,都在图像上,当120x x <<或120x x <<时,12y y <,本选项错误.故选:D .【点睛】本题考查的知识点是反比例函数的性质,牢记反比例函数图象的性质是解此题的关键. 12.B解析:B【分析】首先根据系数判定函数的图象在二、四象限,再根据x 1<0<x 2,可比较出y 1、y 2的大小,进而得到答案.【详解】 解:由反比例函数k y x=(k <0),可知函数的图象在二、四象限, ∵x 1<0<x 2,∴A (x 1,y 1)在第二象限,y 1>0,B (x 2,y 2)在第四象限,y 2<0,∴y 2<0<y 1,故选:B .【点睛】此题主要考查了反比例函数图象上的点的坐标特征,熟练掌握是解题的关键.二、填空题13.6【分析】利用反比例函数比例系数k 的几何意义得到S 矩形BEOD=|k|=16则求出k 得到反比例函数的解析式为y =再利用A 点的横坐标为2可计算出A 点的纵坐标为8从而得到CD=6然后根据三角形面积公式计解析:6【分析】利用反比例函数比例系数k 的几何意义得到S 矩形BEOD =|k|=16,则求出k 得到反比例函数的解析式为y =16x,再利用A 点的横坐标为2可计算出A 点的纵坐标为8,从而得到CD=6,然后根据三角形面积公式计算S △ACD .【详解】解:∵BE ⊥x 轴于E ,BD ⊥y 轴于D ,∴S 矩形BEOD =|k |=16,而0k >,∴k =16, ∴反比例函数的解析式为y =16x , ∵AC ⊥y 轴,AC =2,∴A 点的横坐标为2,当x =2时,y =16÷2=8,∴CD =OC ﹣OD =8﹣2=6,∴S △ACD =12×2×6=6. 故答案为6.【点睛】本题考查了反比例函数比例系数k 的几何意义:在反比例函数图象y =k x中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|. 14.【分析】根据矩形的性质已知条件可得均为等腰直角三角形进而根据点在坐标系中的位置设并过点作于再根据点与点之间的相对位置反比例函数的解析式用含表示出然后利用反比例函数的解析式得到关于的方程解方程即可得解 解析:15【分析】根据矩形的性质、已知条件可得ADE 、ABE △、BCE 均为等腰直角三角形,进而根据点在坐标系中的位置设(),0E x ,并过D 点作DHAE ⊥于H ,再根据点与点之间的相对位置、反比例函数的解析式用含x 、k 表示出,k A x x ⎛⎫ ⎪⎝⎭、7436,55x x F ++⎛⎫ ⎪⎝⎭,然后利用反比例函数的解析式得到关于k 的方程,解方程即可得解.【详解】∵AD AE =,90ADE ∠=︒∴ADE 为等腰直角三角形∴45DAE ∠=︒ ∴9045BAE DAE ∠=︒-∠=︒∴ABE △为等腰直角三角形∴45ABE ∠=︒∴45CBE ∠=︒∴BCE 为等腰直角三角形设(),0E x ,则,k A x x ⎛⎫ ⎪⎝⎭,过D 点作DH AE ⊥于H ,如图:∴()1112222DH AE BE x ===+ ∴()132222x DH OE x x ++=++= ∴322,22x x D ++⎛⎫ ⎪⎝⎭ ∵4AF FD =∴点F 的横坐标为32217422415x x x +++-⋅=+、纵坐标为2213622145x x x ++++⋅=+ ∴7436,55x x F ++⎛⎫ ⎪⎝⎭∵,k A x x⎛⎫ ⎪⎝⎭ ∴2k AE x x ==+ ∴()2k x x =+∴()7436255x x k x x ++=⋅=⋅+∴()()()7436252x x x x ++=+∴3x =或2x =-(不合题意舍去)∴()()233215k x x =+=⨯+=.【点睛】本题考查了反比例函数、矩形的性质、等腰直角三角形的判定和性质等,能够表示出点F 坐标是解题的关键.15.【分析】过点B 作BH ⊥OC 于H 构造出矩形利用矩形的性质进而求解出CDEF 的坐标最终分别计算出S1S2即可求出结果【详解】如图过点B 作BH ⊥OC 于H ∵A (04)B (24)∴OA =4AB =2AB ∥OC ∴ 解析:2360【分析】过点B 作BH ⊥OC 于H ,构造出矩形,利用矩形的性质,进而求解出C 、D 、E 、F 的坐标,最终分别计算出S 1,S 2,即可求出结果.【详解】如图,过点B 作BH ⊥OC 于H .∵A (0,4)、B (2,4),∴OA =4,AB =2,AB ∥OC ,∴∠ABO =∠BOC ,∵OB 平分∠ABC ,∴∠ABO =∠OBC ,∴∠BOC =∠OBC ,∴CB =OC ,设BC =OC =m ,∵BH ⊥OC ,AB ∥OC ,∴∠AOH =∠OHB =∠ABH =90°,∴四边形ABHO 是矩形,∴BH =OA =4,AB =OH =2,在Rt △BCH 中,则有m 2=42+(m ﹣2)2,∴m =5,∴C (5,0),∴直线B C 的解析式为42033=-+y x , ∵反比例函数k y x=经过点B (2,4), ∴k =8,由842033yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,解得24xy=⎧⎨=⎩或383xy=⎧⎪⎨=⎪⎩,∴D(3,83),∴直线OD的解析式为89y x=,∵OE=EC,∴E(52,0),∴直线BE的解析式为y=﹣8x+20,由82089y xy x=-+⎧⎪⎨=⎪⎩,解得942xy⎧=⎪⎨⎪=⎩,∴F(94,2),∴S1=2×1﹣12×1×43﹣12×1×14﹣12×34×23=2324,S2=12×52×2=52,∴122323245602SS==,故答案为:2360.【点睛】本题考查了反比例函数与一次函数的综合问题,能够熟练的做出辅助线,通过矩形的性质进行分析,是解决问题的关键.16.4【分析】根据反比例函数系数k的几何意义求出S1+S阴影和S2+S阴影求出答案【详解】解:∵AB两点在双曲线上∴S1+S阴影=3S2+S阴影=3∴S1+S2=6-2=4故答案为:4【点睛】本题考查的解析:4【分析】根据反比例函数系数k 的几何意义,求出S 1+S 阴影和S 2+S 阴影,求出答案.【详解】解:∵A 、B 两点在双曲线3y x=上, ∴S 1+S 阴影=3,S 2+S 阴影=3,∴S 1+S 2=6-2=4,故答案为:4.【点睛】本题考查的是反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|. 17.3【分析】设表示点B 坐标再根据四边形OEBF 的面积为3列出方程从而求出k 的值【详解】设则均在反比例函数图象上解得故答案为:3【点睛】本题的难点是根据点E 的坐标得到其他点的坐标准确掌握反比例函数k 值的 解析:3【分析】设(),E a b ,表示点B 坐标,再根据四边形OEBF 的面积为3,列出方程,从而求出k 的值.【详解】设(),E a b ,则k ab =,()2,B a b ,F E 、均在反比例函数图象上,2COE AOF k S S ∴==△△, COE AOF OABC OEBF S S S S =--△△矩形四边形,2OABC S OA AB ab ==矩形3222k k k ∴=--,解得3k =, 故答案为:3.【点睛】本题的难点是根据点E 的坐标得到其他点的坐标,准确掌握反比例函数k 值的几何意义是解决本题的关键.18.300【分析】先利用待定系数法求出再根据利润(售价进价)销量建立方程然后解方程即可得【详解】由题意设将代入得:解得则设要使该款运动鞋每天的销售利润达到元其售价应定为元则整理得:解得经检验是所列方程的 解析:300【分析】 先利用待定系数法求出6000y x=,再根据“利润=(售价-进价)⨯销量”建立方程,然后解方程即可得.【详解】 由题意,设k y x=, 将(200,30)代入得:30200k =,解得6000k =, 则6000y x=, 设要使该款运动鞋每天的销售利润达到2400元,其售价应定为a 元,则()60001802400a a-⋅=, 整理得:()51802a a -=,解得300a =,经检验,300a =是所列方程的解,故答案为:300.【点睛】本题考查了利用待定系数法求反比例函数的解析式、分式方程的应用,正确求出售价与销量之间的反比例函数关系式是解题关键.19.-1【分析】根据已知条件得到点在第二象限求得点一定在第三象限由于反比例函数的图象经过其中两点于是得到反比例函数的图象经过于是得到结论【详解】解:点分别在三个不同的象限点在第二象限点一定在第三象限在第 解析:-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.【详解】 解:点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限, ∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x=≠的图象经过其中两点, ∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -, 326m ∴⨯=-, 1m ∴=-,故答案为:1-.【点睛】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.20.【分析】过点A 作AH ⊥x 轴于点H 交BD 于点F 则四边形ACOH 和四边形ACDF 均为矩形根据S 矩形BEOD=16可得k 的值即可得到矩形ACOH 和矩形ACDF 的面积进而求出S △ACD 【详解】解:过点A 作A解析:6【分析】过点A 作AH ⊥x 轴于点H ,交BD 于点F ,则四边形ACOH 和四边形ACDF 均为矩形,根据S 矩形BEOD =16,可得k 的值,即可得到矩形ACOH 和矩形ACDF 的面积,进而求出S △ACD .【详解】解:过点A 作AH ⊥x 轴于点H ,交BD 于点F ,则四边形ACOH 和四边形ACDF 均为矩形∵S 矩形BEOD =16,反比例函数()0k y x x=>经过点B ∴k=16 ∵反比例函数()0k y x x=>经过点A ∴S 矩形ACOH =16∵AC=2∴OC=16÷2=8 ∴CD=OC-OD=OC-BE=8-2=6∴S 矩形ACDF =2×6=12∴S △ACD =12S 矩形ACDF =12×12=6. 故答案为6.【点睛】 本题主要考查了反比例函数系数k 的几何意义和性质. 通过矩形的面积求出k 的值是解本题的关键.三、解答题21.(1)反比例函数的解析式为6y x =-,一次函数的解析式为1y x =--;(2)x <-3或0<x <2;(3)703⎛⎫ ⎪⎝⎭,【分析】(1)由正方形OABC 的顶点C 坐标,确定出边长,及四个角为直角,根据2AD AM ==,求出AD 的长,确定出D 坐标,代入反比例解析式求出m 的值,再由2AD AM ==,确定出MO 的长,即M 坐标,将M 与D 坐标代入一次函数解析式求出k 与b 的值,即可确定出一次函数解析式;(2)联立方程组求得一次函数与反比例函数的交点坐标,然后结合函数图像确定使一次函数值大于反比例函数值的x 的取值范围;(3)设P (0,y ),根据四边形OMDP 的面积与四边形OMNC 的面积相等,列方程求出y 的值,确定出P 坐标即可.【详解】解:(1)∵正方形OABC 的顶点C (0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵2AD AM ==∴D (-3,2),M (-1,0)把D (-3,2)代入反比例函数m y x =中,23m =-,解得m=-6 把D (-3,2),M (-1,0)代入一次函数y kx b =+中320k b k b -+=⎧⎨-+=⎩,解得11k b =-⎧⎨=-⎩∴反比例函数的解析式为6y x=-,一次函数的解析式为1y x =-- (2)联立方程组61y x y x ⎧=-⎪⎨⎪=--⎩,解得1132x y =-⎧⎨=⎩,222-3x y =⎧⎨=⎩ ∴使一次函数值大于反比例函数值的x 的取值范围为x <-3或0<x <2(3)连接MN ,DP ,OD由题意可得N (-2,3) ∴119()(12)3222OMNC S OM NC OC =+=+⨯=四边形 1131231222OMD OPD OMDP S S S y y =+=⨯⨯+⨯=+△△四边形 由题意,391=22y +,解得7=3y ∴P 点坐标为703⎛⎫ ⎪⎝⎭,【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定一次函数、反比例函数解析式,坐标与图形性质,正方形的性质,以及三角形面积计算,熟练掌握待定系数法是解本题的关键.22.(1)反比例函数关系式:4y=x;一次函数关系式:y=2x+2;(2)2;(3)x<-2或0<x<1.【分析】(1)由B点在反比例函数y=mx图象上,可求出m,再由A,B点在一次函数图象上,由待定系数法求出函数解析式;(2)由(1)可得A,C两点的坐标,从而求出△AOC的面积;(3)由图象观察函数y=mx的图象在一次函数y=kx+b图象的上方,即可求出对应的x的范围.【详解】(1)∵B(1,4)在反比例函数y=mx的图象上,∴m=4,又∵A(n,−2)在反比例函数y=mx的图象上,∴n=−2,又∵A(−2,−2),B(1,4)是一次函数y=kx+b图象上的点,∴可得224k bk b-+=-⎧⎨+=⎩,解得k=2,b=2,∴反比例函数关系式为4yx=;一次函数关系式:y=2x+2;(2)如图,过点A作AE⊥CE,由(1)可得A(−2,−2),C(0,2),∴AE=2,CO=2, ∴1122222AOC S CO AE =⨯=⨯⨯=. (3)由图象知:当0<x<1和x<−2时函数 y=m x 的图象在一次函数y=kx+b 图象的上方, ∴不等式kx+b<m x的解集为:0<x<1或x<−2. 【点睛】 本题考查一次函数与反比例函数的综合运用,灵活运用一次函数和反比例函数的图象、性质及解析式是解题关键.23.(1)b=3,k=-2;(2)5()3P 0,;(3)x<-2或-1<x<0 【分析】(1)根据待定系数法即可求得;(2)联立两函数解析式成方程组,解方程组即可求出点A 、B 的坐标,再根据点A′与点A 关于y 轴对称,求出点A′的坐标,设出直线A′B 的解析式为y =mx +n ,结合点的坐标利用待定系数法即可求出直线A′B 的解析式,令直线A′B 解析式中x 为0,求出y 的值,即可得出结论;(3)根据两函数图象的上下关系结合点A 、B 的坐标,即可得出不等式的解集.【详解】解:(1)∵一次函数y =x +b 的图象与反比例函数k y x=(x <0)的图象交于点A (−1,2),把A (−1,2)代入两个解析式得:2=(−1)+b ,2=−k ,解得:b =3,k =−2;(2)作点A 关于y 轴的对称点A′,连接A′B 交y 轴于点P ,此时点P 即是所求,如图所示.联立一次函数解析式与反比例函数解析式成方程组:3 {2y xyx+-==,解得:2xy⎧⎨⎩=-=1或12xy⎧⎨⎩=-=,∴点A的坐标为(−1,2)、点B的坐标为(−2,1).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有2{21m nm n+-+==,解得:1353mn⎧⎪⎪⎨⎪⎪⎩==,∴直线A′B的解析式为y=13x+53.令x=0,则y=53,∴点P的坐标为(0,53);(2)观察函数图象,发现:当x<−2或−1<x<0时,一次函数图象在反比例函数图象下方,∴当x+b<kx时,x的取值范围为x<−2或−1<x<0.【点睛】本题考查了反比例函数与一次函数的交点问题、轴对称中的最短线路问题、利用待定系数法求函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(2)求出直线A′B 的解析式;(3)找出交点坐标.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.24.(1)8yx=-;2y x=--;(2)C(-2,0);6;(3)0<x<2或x<-4.【分析】(1)根据A(-4,2)在反比例函数myx=的图象上求出m的值,根据题意求出n的值,再运用待定系数法求出一次函数的解析式;(2)求出y=-x-2与x 轴的交点C 的坐标,根据△AOB 的面积=△AOC 的面积+△COB 的面积求出△AOB 的面积;(3)观察图象得到答案.【详解】(1)∵A (-4,2)在m y x =上, ∴m=-8.∴反比例函数的解析式为8y x =-. ∵B (n ,﹣4)在8y x=-上, ∴n=2. ∴B (2,-4). ∵y=kx+b 经过A (﹣4,2),B (2,﹣4),4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩ ∴一次函数的解析式为2y x =--.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=-2.∴点C (-2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =112224622⨯⨯+⨯⨯= (3)不等式0m kx b x +-<的解集为0<x <2或x <-4. 【点睛】本题考查的是一次函数与反比例函数的交点和待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.25.(1)m =-2,n=3 ;(2)x ≤﹣2或x >0;0<x <4或x <﹣2; (3)点Q 的坐标为(4,3)或(43)或(34,3)或(4,﹣3) 【分析】(1)把点A 、B 的坐标代入直线的解析式求解即可;(2)满足条件y 2≥﹣6且y 2≠0时的x 的取值范围即为反比例函数2k y x=在直线y =﹣6与x 轴之间的图象与第一象限内的图象对应的x 的范围,满足y 1﹣y 2<0时自变量x 的取值范围即为反比例函数比直线高的图象部分对应的x 的取值范围,据此解答即可;(3)先求出点B 的坐标,再分三种情况:①AB 、BP 为菱形的边,如图1;②AB 为菱形的对角线,如图2;③AB 为边、BP 为对角线,如图3;分别利用菱形的性质和勾股定理求解即可.【详解】解:(1)把点A (4,n )和M (m , ﹣6)代入一次函数1332y x =-, 得:34332n =⨯-=,3632m -=-, ∴2m =-,3n =;(2)对2k y x=,当y 2≥﹣6且y 2≠0时,自变量x 的取值范围为x ≤﹣2或x >0; 若y 1﹣y 2<0即y 1<y 2时自变量x 的取值范围为0<x <4或x <﹣2; (3)对1332y x =-,可得点B 的坐标为(2,0), ①若AB 、BP 为菱形的边,则()()22423013AB =-+-=,若点P 在点B 右侧,如图1,则BP=AQ=AB=13,所以点Q 的坐标为(413+,3);若点P 在点B 左侧,同理可得点Q 的坐标为(413-,3);②若AB 为菱形的对角线,如图2,设点Q 坐标为(n ,3),则BQ=AQ=4-n , 过点Q 作QF ⊥x 轴于点F ,则BF=2-n ,QF=3,在Rt △BQF 中,根据勾股定理,得()()222324n n +-=-,解得34n =, ∴点Q 的坐标为(34,3);③若AB 为边、BP 为对角线,如图3,由菱形的性质知:点Q 、A 关于x 轴对称,∴点Q 的坐标为(4,﹣3);综上,点Q 的坐标为(413,3)或(413+,3)或(34,3)或(4,﹣3). 【点睛】 本题主要考查了一次函数与反比例函数的图象与性质、菱形的性质以及勾股定理等知识,属于常考题型,熟练掌握相关知识、灵活应用数形结合的思想是解题的关键.26.(1)22y x =-;(2)(4,0),(2,0)-.【分析】(1)将点A 的坐标代入反比例函数解析式中即可求出m ,然后将点A 的坐标代入一次函数解析式中即可求出结论;(2)将三角形以x 轴为分界线,分为两个三角形,先求出点C 和点B 的坐标,再把两个三角形的面积相加即可求出CP 的长,从而求出结论.【详解】(1)根据题意,将点(,2)A m 代入4y x=, 得:42m=, 解得:2m =,即点(2,2)A , 将点(2,2)A 代入y kx k =-,得:22k k =-,解得:2k =,∴一次函数的解析式为22y x =-;(2)如图,。

反比例函数测试卷(二)

反比例函数测试卷(二)

第1页 共2页 第2页 共2页年级: 班级:____________ 姓名:_____________ 考号:__________密 封 线x平和正兴学校2013-2014学年上学期九年级数学《反比例函数》测试卷(二)考试时间长度:90 分钟 总分:100 分一、选择题1、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) A 、(-a ,-b ) B 、(a ,-b ) C 、 (-a ,b ) D 、(0,0)2、(2010内蒙呼和浩特)已知:点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数y=-x3图像上的三点,且x 1<0<x 2<x 3则y 1、y 2、y 3的大小关系是( ) A .y 1< y 2< y 3 B. y 2<y 3<y 1C. y 3<y 2<y 1D.无法确定3、已知函数1y x=的图象如图所示,当x≥-1时,y 的取值范围是() A.y <-1B.y≤-1C. y≤-1或y >0D. y <-1或y≥04、(2010吉林)反比例函数xky =的图象如图所示,则k 的值可能是( ) A .-1B .21C .1D .25、(2010湖北黄石)如图,反比例函数xk=y (k >0)与一次函数b x 21y +=的图象相交于两点A (1x ,1y ),B (2x ,2y ),线段AB 交y 轴与C ,当|1x -2x |=2 且AC = 2BC 时,k 、b 的值分别为( )A.k =21,b =2 B.k =94,b =1 C.k =13,b =13 D.k =6、(2010辽宁大连)如图2,反比例函数11ky x=和正比例函数22y k x =的图像都经过点(1,2)A -,若12y y >,则x 的取值范围是( ) A. 10x -<< B. 11x -<< C. 1x <-或01x << D. 10x -<<或1x >7、(2010 广西玉林、防城港)直线l 与双曲线C 在第一象限相交于A 、B 两点, 其图象信息如图4所示,则阴影部分(包括边界)横、纵坐标都是整数的点 (俗称格点)有( )A .4个B .5 个C .6个D .8个 8、(2010辽宁本溪)如图所示,已知菱形OABC ,点C 在x 经过点A ,菱形OABC 若反比例函数的图象经过点B 反比例函数表达式为( ) A .1y x= B .y =C .y =D .y =二、填空题9、(2010内蒙赤峰)已知反比例函数xy 2=,当-4≤x ≤-1时,y 的最大值是___________. 10、(2010广西河池)如图3,Rt △ABC 在第一象限,90BAC ∠=,AB=AC=2点A 在直线y x =上,其中点A 的横坐标为1,且AB ∥x 轴, AC ∥y 轴,若双曲线ky x=()0k ≠与△ABC 有交点,则k 的 取值范围是 .11、(2010吉林长春)双曲线111k y k 0x=(>)与直线222y (0)k b k =+>的一个交点的横坐标为2,当x =3时,1y 2y (填“>”“<”或“=”). 12、(2010 广西钦州市)反比例函数ky x=(k >0)的图象与经过原点的直线l 相交于A 、B 两点,已知A 点的坐标为(2,1),那么B 点的坐标为(2010陕西西安)已知),(),,(2211y x B y x A 都在反比例函数xy 6=的图象上。

反比例函数的图象与性质测试卷

反比例函数的图象与性质测试卷

《反比例函数》的图象与性质测试卷姓名 班级 考号一、填空题1.正比例函数y=k 1x(k 1≠0)和反比例函数y=2k x(k 2≠0)的一个交点为(m,n),则另一个交点为_________.2.已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2, 12),则8k 1+5k 2的值为________. 3.反比例函数y=k x的图象上有一点P(m,n),其坐标是t 的一元二次方程t 2-3t+ k=0的两根,且P,则该反比例函数的解析式为________.4.已知反比例函数y=kx(k ≠0)与一次函数y=-x+8 的图象有交点, 则k 的范围是______. 5.已知点P(1,a)在反比例函数y=k x(k ≠0)的图象上,其中a=m 2+2m+3(m 为实数), 则这个函数的图象在第______象限. 二、选择题6.如图,已知关于x 的函数y=k(x-1)和y=-kx(k ≠0), 它们在同一坐标系内的图象大致是7.反比例函数y=kx(k>0)在第一象限内的图象如图,点M 是图象上一点,MP 垂直x 轴于点P,如果△MOP 的面积为1,那么k 的值是 A.1; B.2; C.4; D. 128.如图,正比例函数y=kx(k>0)与反比例函数y=1x的图象相交于A,C 两点,过A 作x 轴的垂线交x 轴于B,连结BC,若△ABC 面积为s,则( ) A.s=1 B.s=2 C.s=3 D.s 的值不能确定 9.如图,若正比例函数y=k 1x(x>0)和反比例函数y=2k x(x<0),则它们的图象大致是( )10.如图,P(a,b)在反比例函y=kx(k ≠0)的图象上,且a,b 是方程t 2-t-12=0的两根,过P 作PA ⊥x 轴于A,则△PAO 的周长是( ) A.7 B.10 C.11 D.1211.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y=-1x的图象上的点,并且x 1<0<x 2<x 3,则下列各式中正确的是( )A.y 1<y 2<y 3B.y 2<y 3<y 1C.y 3<y 2<y 1D.y 1<y 3<y 212.当x>0时,两个函数值y 一个随x 的增大而增大另一个随x 的增大而减少的是( ) A.y=3x 与y=1x ; B.y=-3x 与y=-1x ; C.y=-2x+6与y=1x ; D.y=3x-15与y=-1x. 三、解答题:13.已知:正比例函数y=ax 图象上的点的横坐标和纵坐标互为相反数, 反比例函数y=kx的y 随x 的增大而减小,一次函数y=-k 2x-k+a+4经过点(-2,4).(1)求a 的值;(2) 求反比例函数和一次函数的解析式;(3)在直角坐标系中,画出一次函数的图象,利用图象求出当函数y 的值在-3≤y ≤4范围内时,相应x 值的范围.Oy x第10题AP14.已知变量y与x成反比例,并且当x=2时,y=-3.(1)求y与x的函数关系式;(2)求当y=2时x的值;(3)在直角坐标系内画出(1)小题中函数图象的草图.15.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A,B两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.16.如图,直线y=12x+2 分别交x,y 轴于点A,C,P 是该直线上第一象限内的一点,PB ⊥x 轴,B 为垂足,ABP S =9.(1)求点P 的坐标;(2)设点P 与点R 在同一个反比例函数的图象上,且点R 在直线PB 的右侧,作RT ⊥x 轴,T 为垂足,当△BRT 与△AOC 相似时,求点R 的坐标.17.如图,一次函数的图象与x 轴y 轴分别交于A,B 两点,与反比例的图象交于C, D 两点.如果A 点的坐标为(2,0),点C,D 分别在第一,第三象限,且OA=OB=AC=BD. 试求一次函数和反比例函数的解析式.O y x A CP B O y x ACDB答案:1.(-m,-n)2.93.y=2x- 4.k≤16且k≠0 5.一、三6.B7.B8.B9. D 10.D 11.B 12.AB13.(1)a=-1;(2)y=1x,y=-x+2;(3)-2≤x≤514.(1)y=6x- (2)x=-3;(3)略15.(1)y=2x-;y=-x-1;(2)当x<-2或0<x<1时,一次函数值大于反比例函数值.16.(1)P(2,3);(2)R⎭..。

初中数学鲁教版(五四制)九年级上册第一章 反比例函数1 反比例函数-章节测试习题(2)

初中数学鲁教版(五四制)九年级上册第一章 反比例函数1 反比例函数-章节测试习题(2)

章节测试题1.【答题】反比例函数y=的图象在第二、四象限,则n的取值范围为______,,为图象上两点,则______用“<”或“>”填空.【答案】n<1 <【分析】根据反比例函数的性质再结合反比例函数图象上点的坐标特征即可求解.【解答】因为反比例函数y=的图象在第二、四象限,所以n-1<0,所以n<1.又因为A(2,y1),B(3,y2)在第四象限,所以y1<y2.故答案为:n<1,<.2.【题文】反比例函数的图象经过A(-2,1)、B(1,m)、C(2,n)两点,试比较m、n大小.【答案】m<n【分析】将点A代入反比例函数解出k值,再将B、C的坐标分别代入已知反比例函数解析式,分别求得m、n的值,然后再来比较它们的大小即可【解答】反比例函数,它的图象经过A(-2,1),,k=-2,,将B,C两点代入反比例函数得,,,∴m<n.3.【答题】下列函数中是反比例函数的是()A. y=x﹣1B. y=C. y=D. =1【答案】C【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】A、y=x-1是一次函数,不符合题意;B、y=不是反比例函数,不符合题意;C、y=是反比例函数,符合题意;D、=1不是反比例函数,不符合题意;选C.4.【答题】已知函数是反比例函数,则m的值为()A. 2B. ﹣2C. 2或﹣2D. 任意实数【答案】B【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】解:∵函数是反比例函数,∴,解得:m=﹣2.选B.5.【答题】下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系【答案】C【分析】分别利用反比例函数、正比例函数以及二次函数关系分别分析得出答案.【解答】A、一个人的体重与他的年龄成正比例关系,错误;B、正方形的面积和它的边长是二次函数关系,故此选项错误;C、车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系,正确;D、水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成正比例关系,故此选项错误;选C.6.【答题】下列函数中,表示y是x的反比例函数的是()A. y=B. y=C. y=2xD. y=【答案】B【分析】根据反比例函数的定义判断各选项即可.【解答】根据反比例函数的定义,可判断出只有y=表示y是x的反比例函数.选B.7.【答题】下列函数中,y既不是x的正比例函数,也不是反比例函数的是()A. B. C. D.【答案】C【分析】根据正比例函数y=kx,反比例函数y=kx-1或y=,可得答案.【解答】A、是反比例函数,故A错误;B、是正比例函数,故B错误;C、既不是正比例函数也不是反比例函数,故C正确;D、是反比例函数,故D错误;选C.8.【答题】将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A. 2B.C.D. 6【答案】A【分析】分别计算出y1,y2,y3,y4,可得到每三个一循环,而2012=670…2,即可得到y2012=y2.【解答】y1=-=-,把x=+1=-代入y=-中得y2=-,把x=2+1=3代入反比例函数y=-中得y3=-,把x=-+1=代入反比例函数y=-得y4=,如此继续下去每三个一循环,2012=670…2,∴y2012=2.选A.9.【答题】下列关系中,两个量之间为反比例函数关系的是()A.正方形的面积S与边长a的关系B.正方形的周长l与边长a的关系C.矩形的长为a,宽为20,其面积S与a的关系D.矩形的面积为40,长a与宽b之间的关系【答案】D【分析】此题应根据反比例函数的定义进行判断.【解答】A、根据题意,得,所以正方形的面积S与边长a的关系是二次函数关系;故本选项错误;B、根据题意,得,所以正方形的周长l与边长a的关系是正比例函数关系;故本选项错误;C、根据题意,得,所以正方形的面积S与边长a的关系是正比例函数关系;故本选项错误;D、根据题意,得,所以正方形的面积S与边长a的关系是反比例函数关系;故本选项正确.选D.10.【答题】反比例函数中常数k为()A. ﹣3B. 2C.D.【答案】D【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是(k≠0).【解答】反比例函数中常数k为.选D.11.【答题】函数是y关于x的反比例函数,则m=______.【答案】3【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】由题意得,解得m=3.12.【答题】若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为______.【答案】2【分析】由于函数y=(m+2)x|m|﹣3是反比例函数,根据反比例函数的定义得到m+2≠0且|m|﹣3=﹣1,然后去绝对值和解不等式即可得到m的值.【解答】∵函数y=(m+2)x|m|﹣3是反比例函数,∴m+2≠0且|m|﹣3=﹣1,∴m=2.故答案为2.13.【答题】若函数是反比例函数,则m=______.【答案】±1【分析】根据反比例函数的定义先求出m的值,再根据系数不为0进行取舍.【解答】∵是反比例函数,∴m2-2=-1,∴m2=1,∴m=±1.故答案为±1.14.【答题】若反比例函数的图象在第二、四象限,m的值为______.【答案】-2【分析】由反比例函数的定义可知3-m2=-1,由反比例函数图象在第二、四象限可知m+1<0.【解答】∵是反比例函数,∴3-m2=-1.解得:m=±2.∵函数图象在第二、四象限,∴m+1<0,解得:m<-1.∴m=-2.故答案为:-2.15.【题文】列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.【答案】见解答【分析】(1)由平均数,得x=,即y=是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=,即t=是反比例函数.【解答】解:(1)由平均数,得x=,即y=是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=,即t=是反比例函数.16.【题文】函数是反比例函数,则m的值是多少?【答案】-2【分析】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的定义去判断.【解答】∵是反比例函数,∴3-m2=-1,m-2≠0,解得:m=-2.故m的值为-2.17.【题文】若反比例函数的图象经过第二、四象限,求函数的解析式.【答案】y=﹣【分析】根据反比例函数的定义,可以得到m2-24=1,而图象经过第二、四象限,则比例系数是负数,据此即可求解.【解答】根据题意得:解得:m=﹣5.则函数的解析式是:y=﹣.18.【题文】给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成比例.【答案】见解答【分析】根据反比例函数的定义及形式y=(k≠0)可判断各个命题的真假.【解答】解:(1)∵等腰三角形的面积一定,∴底边长和底边上的高的乘积为非零常数.∴命题(1)正确;(2)∵菱形的面积是它的对角线长的乘积的一半,∴当菱形的面积一定时,对角线长的乘积也一定.∴它们成反比例.故正确.(3)∵矩形的面积一定时,它的对角线长的乘积并不一定,∴两对角线长不成反比例,∴命题(3)为假命题;(4)∵直角三角形的面积为直角边乘积的一半,∴当它的面积一定时,其直角边长的乘积也一定.∴两直角边长成反比例,∴命题(4)正确.19.【答题】下列函数中,不是反比例函数的是()A. B. C. D.【答案】D【分析】本题考查了反比例函数的定义。

北师大版九年级数学上册《反比例函数》单元测试卷及答案解析

北师大版九年级数学上册《反比例函数》单元测试卷及答案解析

北师大版九年级数学上册《反比例函数》单元测试卷一、选择题1、已知与成反比例函数,且时,,则该函数表达式是()A.B.C.D.2、若反比例函数y=的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限3、反比例函数的图象经过点(-2,3),则k的值为().A.-3 B.3 C.-6 D.64、若点、、都在反比例函数上,则的大小关系是()A.B.C.D.5、如图,直线与轴交于点A,与双曲线交于点B,若,则的值是()A.4 B.3C.2 D.16、已知反比例函数y=(k>0)的图象经过点A(1,a),B(3,b),则a与b的关系正确的是( )A.a=b B.a=-b C.a<b D.a>b7、在同一直角坐标系中,函数y=与y=kx+k2的大致图象是( )A.A B.B C.C D.D8、如果反比例函数y=的图象经过点(-2,3),那么该函数的图象也经过点( ) A.(-2,-3) B.(3,2) C.(3,-2) D.(-3,-2)9、函数与的图象可能是图中的( )A.B.C.D.二、填空题10、已知反比例函数,则m=_______,函数的表达式是_______.11、已知与成反比例,当时,,则当时,_________.12、某厂有煤吨,求得这些煤能用的天数与每天用煤的吨数之间的函数关系为________________.13、若反比例函数y=-的图象经过点A(m,3),则m的值是________.14、如图,已知点P(4,2),过点P作PM⊥x轴于点M,PN⊥y轴于点N,双曲线=交PM于点A,交PN于点B.若四边形OAPB的面积为5,则=_____.15、已知点A(-2,y1),B(-1,y2)和C(3,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系为____________(用“<”连接).16、一次函数y=kx+1的图象经过点(1,2),反比例函数y=的图象经过点(m,),则m=________.17、如图,已知反比例函数的图象与一次函数的图象相交于、两点,并且点的纵坐标是,则点的坐标为__________.18、如图,反比例函数y=的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于____个面积单位.(第17题图)(第18题图)三、解答题19、已知函数y与x+1成反比例,且当x=﹣2时,y=﹣3.(1)求y与x的函数关系式;(2)当x=时,求y的值.20、如图,反比例函数y=的图象在第二象限内,点A是图象上的任意一点,AM⊥x轴于点M,O是原点.若S△AOM=3,求该反比例函数的解析式,并写出自变量的取值范围.21、如图,菱形OABC放置在第一象限内,顶点A在x轴上,若顶点B的坐标是(4,3),(1)请求出菱形边长OA的长度.(2)反比例函数经过点C,请求出的值.22、面积一定的梯形,其上底长是下底长的,设上底长为cm,高为cm,且当=5cm,=6cm,(1)求与的函数关系式;(2)求当=4cm时,下底长多少?23、如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出不等式kx+b﹣>0的解集;(3)求△AOB的面积;(4)若点P在x轴上、点Q在y轴上,且以P、Q、A、B为顶点的四边形是平行四边形,请直接写出点P、Q的坐标.参考答案1、C2、B3、C4、D5、D6、D7、CC9、A10、±1 或11、12、13、-214、315、y2<y1<y316、217、18、419、(1);(2)2.20、y=-(x<0).21、(1)(2)22、(1);(2)下底长15cm.23、(1)一次函数的解析式为y=﹣2x+6;(2)x的取值范围为1<x<2;(3)S△AOB= 3;(4)(1,0),(0,2)或(-1,0),(0,-2).【解析】1、设,把x=2,y=3代入得k=6,所以该函数表达式是.故选:C.2、试题分析:将(m,3m)代入y=得,3m=,k=3m2>0,因此反比例函数的图象在一,三象限.故选B.考点:反比例函数图象上点的坐标特征.3、分析:根据待定系数法,把点代入解析式即可求出k的值.详解:∵反比例函数的图象经过点(-2,3)∴k=-6.故选:C.点睛:此题主要考查了反比例函数解析式,关键是利用代入法由k=xy求出系数k的值.4、分析:先根据反比例函数中k=-2<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.详解:∵反比例函数中,k=−2<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大,∵−2<0,∴点A(−2,y1)位于第二象限,∴y1>0;∵3>1>0,∴B(1,y2)、C(3,y3)在第四象限,∵3>1,∴y2<y3<0,∴y2<y3<y1.故选D.点睛:本题考查了反比例函数的增减性,对于反比例函数,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.5、因为直线与轴交于点A,所以令y=0,可得:,解得, 则OA=2b,又因为,所以B点纵坐标是:,因为B点在,所以B点坐标为(-2b,),又因为B点在直线上,所以,解得,因为直线与轴交于正半轴,所以,所以,故选D.6、对于反比例函数(k≠0)而言,当k>0时,作为该函数图象的双曲线的两支应该在第一和第三象限内. 由点A与点B的横坐标可知,点A与点B应该在第一象限内.∵点A的坐标为(1,a),点B的坐标为(3,b),∴与点A对应的自变量x值为1,与点B对应的自变量x值为3,∵当k>0时,在第一象限内y随x的增大而减小,又∵1<3,即点A对应的x值小于点B对应的x值,∴点A对应的y值大于点B对应的y值,即a>b.故本题应选D.7、试题分析:当k<0时,函数y=在第二、四象限,k2>0,函数y=kx+k2过一、二、四象限。

反比例函数测试卷带答案

反比例函数测试卷带答案

反比例函数测试卷一、选择题(本大题共10个小题,每小题3分,共30分.每小题给出的四个选项中,只有一项符合题目要求)1. 下列函数中,y 是x 的反比例函数是( )A y= 11-x B x y 21= C 22x y = D 2=x y2.关于反比例函数4y x=的图象,下列说法正确的是( ) A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 3.函数2y x =与函数1y x-=在同一坐标系中的大致图像是( )4.某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( ) A. (-3,2) B. (3,2) C. (2,3) D. (6,1)5.若双曲线y=x k 12-的图象经过第二、四象限,则k 的取值范围是( )A.k >21 B. k <21 C. k =21D. 不存在 6.反比例函数ky x=的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A.y >1B.0<y <1C. y >2D.0< y <27. 矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图象表示大致为( )8. 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数xk y 12--=的图像上. 下列结论中正确的( ) A .321y y y >> B .231y y y >> C .213y y y >> D .132y y y >>9. 如图,正比例函数y 1=kx 和反比例函数y 2=2k x的图像交于A (-1,2)、(1,-2)两点,若y 1 <y 2,则x 的取值范围是( )A.x <-1或x >1B. x <-1或0<x <1C. -1<x <0或 0<x <1D. -1<x <0或x >110. 如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=-x+6于A 、B 两点,若反比例函数k y x=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( ) A .2≤k ≤9 B. 2≤k ≤8 C. 2≤k ≤5 D. 5≤k ≤8二、填空题(本大题共5个小题.每小题3分,共15分.把答案填在题中横线上) 11. 若反比例函数的图像过点P (-1,4),则它的函数关系是 .12.若函数xm y 2+=图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是 . 13.如图:点A 在双曲线ky x =上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=______.14. 如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD的面积为矩形,则它的面积为 .5. 如图,已知第一象限内的图象是反比例函数y=图象的一个分支,第二象限内的图象是反比例函数y=﹣图象的一个分支,在x 轴的上方有一条平行于x 轴的直线l 与它们分别交于点A 、B ,过点A 、B 作x 轴的垂线,垂足分别为C 、D .若四边形ABCD 的周长为8且AB <AC ,则点A 的坐标为 .13题 14题 15题三、解答题(本大题共 4 个小题.共55分.解答应写出文字说明、证明过程或演算步骤) 16. (10分)如图9,已知双曲线ky x和直线y=mx+n 交于点A 和B ,B 点的坐标是(2,-3),AC 垂直y 轴于点C ,AC=32; (1)求双曲线和直线的解析式;(2)求△AOB 的面积。

(必考题)初中数学九年级数学上册第六单元《反比例函数》测试卷(含答案解析)(2)

(必考题)初中数学九年级数学上册第六单元《反比例函数》测试卷(含答案解析)(2)

一、选择题1.如图,点A 、B 是双曲线3y x =上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=( )A .4B .3C .2D .1【答案】A【分析】 先根据反比例函数系数k 的几何意义得S 1+S 阴影及S 2+S 阴影的值,进而可得出S 1+S 2的值.【详解】解:∵点A 、B 是双曲线3y x=上的点, ∴S 1+S 阴影=S 2+S 阴影=3,∵S 阴影=1∴S 1=S 2=3-S 阴影=3-1=2,∴12224S S +=+=.故选A .【点睛】本题考查反比例函数系数k 的几何意义,是常考点,需要学生熟练掌握.2.如图,正比例函数y =kx 与反比例函数y =﹣8x相交于A ,C 两点,过点A 作x 轴的垂线交x 轴于B 点,连接BC ,则△ABC 的面积等于( )A .4B .8C .12D .16【答案】B【分析】设A 点坐标为(8,a a -),则C 点坐标为(8,a a-),利用坐标求面积即可. 【详解】 解:∵正比例函数y =kx 与反比例函数y =﹣8x相交于A ,C 两点, ∴A ,C 两点关于原点对称,设A 点坐标为(8,a a -),则C 点坐标为(8,a a -), S △ABC =18()82a a a-⨯--⨯=, 故选:B .【点睛】 本题考查了反比例函数k 的几何意义和对称性,解题关键是通过设坐标求三角形面积. 3.如图,边长为10的正方形ABCD 中,点E 在CB 延长线上,连接ED 交AB 于点,(28),F AF x x EC y =≤≤=.则在下面函数图象中,大致能反映y 与x 之闻函数关系的是( )A .B .C .D .【答案】C【分析】通过相似三角形EFB EDC 的对应边成比例列出比例式101010x y y-=-,从而得到y 与x 之间函数关系式,从而推知该函数图象.【详解】解:根据题意知,10BF x =-,10BE y =-,∵四边形ABCD 是正方形,//AD BC则EFBEDC , ∴BF BE DC EC=,即101010x y y -=- 所以100y x=()28x ≤≤,该函数图象是位于第一象限的双曲线的一部分. A 、D 的图象都是直线的一部分,B 的图象是抛物线的一部分,C 的图象是双曲线的一部分.【点睛】本题考查了动点问题的函数图象,熟悉相关性质是解题的关键.4.下列说法正确的是( )A .对角线垂直的平行四边形是矩形B .方程x 2+4x+16=0有两个相等的实数根C .抛物线y =﹣x 2+2x+3的顶点为(1,4)D .函数2y x =-,y 随x 的增大而增大 【答案】C【分析】根据矩形的判定方法、一元二次方程的解、二次函数的性质及反比例函数的性质分别判断后即可确定正确的选项.【详解】解:A 、对角线垂直的平行四边形是菱形,故原命题错误,不符合题意;B 、方程x 2+4x+16=0没有实数根,故说法错误,不符合题意;C 、抛物线y =﹣x 2+2x+3的顶点为(1,4),正确,符合题意;D 、函数y =﹣2x,在每一象限内y 随x 的增大而增大,错误,不符合题意, 故选:C .【点睛】本题考查了矩形的判定方法、一元二次方程的解、二次函数的性质及反比例函数的性质,属于基础题,解题的关键是了解有关的定义及性质,难度不大.5.如图,反比例函数y=k x(k 为常数,k≠0)的图象经过点A ,过点A 作AB ⊥x 轴,垂足为B .若△AOB 的面积为2,则k 的值为( )A .2B .-2C .4D .-4【答案】C【分析】 根据AB ⊥x 轴,垂足为B .若△AOB 的面积为2,得到22k=,解之即可得到答案.∵AB ⊥x 轴,垂足为B .若△AOB 的面积为2, ∴22k=,∴k=±4,∵反比例函数图象在第一象限,∴k=4,故选:C .【点睛】此题考查反比例函数比例系数k 的几何意义,掌握此类问题的解题方法是解题的关键.6.若点()()()123,1,,2,,3A x B x C x --在反比例函数21k y x+=的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .231x x x <<C .312x x x <<D .213x x x <<【答案】B【分析】不论k 取何值,2k +1恒为正数,图像分布在一、三象限,根据反比例函数图像性质求解即可.【详解】∵不论k 取何值,2k +1恒为正数, ∴反比例函数21k y x+=的图象分布在第一、第三象限, ∵点()()()123,1,,2,,3A x B x C x --在反比例函数21k y x+=的图象上, ∴1x >0,∴230x x <<,∴231x x x <<,故选B.【点睛】本题考查了反比例函数图像的性质,解答时,熟记性质是解题的关键.7.如图,在平面直角坐标系内,正方形OABC 的顶点A ,B 在第一象限内,且点A ,B 在反比例函数()k y k 0x=≠的图象上,点C 在第四象限内.其中,点A 的纵坐标为4,则k 的值为( )A .434B .454C .838D .858【答案】D【分析】 作AE ⊥x 轴于E ,BF ∥x 轴,交AE 于F ,根据图象上点的坐标特征得出A (4k ,4),证得△AOE ≌△BAF (AAS ),得出OE=AF ,AE=BF ,即可得到B(44k +,44k -),根据系数k 的几何意义得到k=4444k k ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭解得即可. 【详解】解:作AE ⊥x 轴于E ,BF//x 轴,交AE 于F ,∵∠OAE+∠BAF =90°=∠OAE+∠AOE ,∴∠BAF =∠AOE ,在△AOE 和△BAF 中, AOE BAF AEO BFA 90OA AB ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△AOE ≌△BAF (AAS ),∴OE =AF ,AE =BF ,∵点A ,B 在反比例函数y =k x (k≠0)的图象上,点A 的纵坐标为4, ∴A (4k ,4), ∴ B(44k +,44k -), ∴k =4444k k ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭, 解得k =﹣5∴k =58,故选择:D ..【点睛】本题考查了正方形的性质,全等三角形的性质与判定,反比例函数的图象与性质,关键是构造全等三角形.8.已知点()()121,,2,A y B y -在双曲线a y x =-上,则12,y y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .无法判断 【答案】D【分析】根据反比例函数的性质和图像上点的坐标特征即可判断.【详解】∵当-a <0时,双曲线在二,四象限,则点A 在第二象限,y 1>0,点B 在第四象限,y 2<0,∴y 1>y 2,∵∵当-a >0时,双曲线在一,三象限,则点A 在第三象限,y 1<0,点B 在第一象限,y 2>0,∴y 1<y 2,综上所述,无法判断12,y y 的大小关系.故选D .【点睛】本题主要考查反比例函数的图像和性质,熟练掌握反比例函数的比例系数的意义,是解题的关键.9.如图,双曲线k y x=经过点(2,4)A 与点(4,)B m ,则AOB 的面积为( )A.3 B.4 C.5 D.6【答案】D【分析】过A、B分别作x轴的垂线,垂足分别为C、D,把点A(2,4)代入双曲线kyx=确定k的值,再把点B(4,m)代入双曲线kyx=,确定点B的坐标,根据S△AOB=S△AOC+S梯形ABDC−S△BOD和三角形的面积公式与梯形的面积公式进行计算即可.【详解】过A、B分别作x轴的垂线,垂足分别为C、D,如图,∵双曲线kyx=经过点A(2,4),∴k=2×4=8,而点B(4,m)在8yx=上,∴4m=8,解得m=2,即B点坐标为(4,2),∴S△AOB=S△AOC+S梯形ABDC-S△BOD=12OC•AC+12×(AC+BD)×CD−12OD×BD=12×2×4+1 2×(4+2)×(4−2)−12×4×2=4+6-4=6.故选:D.【点睛】本题考查了点在图象上,点的横纵坐标满足图象的解析式;也考查了利用坐标表示线段的长以及利用规则的几何图形的面积的和差计算不规则的图形面积.10.如图,反比例函数(0)k y x x=>的图象经过矩形OABC 对角线的交点M ,分别与AB ,BC 交于点D ,E ,若四边形ODBE 的面积为6,则OAD △的面积为( )A .1B .2C .3D .4【答案】A【分析】 根据k 的几何意,用k 表示出COE 与OAD △的面积,据反比例函数过点M 用k 表示出矩形OABC 的面积,最后由四边形ODBE 的面积为6列关于k 的方程,可以求得k 的值,从而可以求得OAD △的面积,本题得以解决.【详解】解:设OA a =,OC b =,点M 矩形OABC 对角线的交点, ∴点,22a b M ⎛⎫ ⎪⎝⎭, 反比例函数(0)k y x x=>的图象经过点M 22b k a =,得4=ab k ,又四边形ODBE 的面积为6,COE 的面积与OAD △的面积都是2k , 6422k k ab k ∴++==, 解得,2k =,OAD ∴的面积是1,故选:A .【点睛】本题考查反比例函数系数k 的几何意义,属于中档题.其关键是运用k 的几何意义表示出相关图形面积.11.已知反比例函数6yx=-,下列说法中正确的是()A.该函数的图象分布在第一、三象限B.点()2,3在该函数图象上C.y随x的增大而增大D.该图象关于原点成中心对称【答案】D【分析】根据反比例函数的解析式得出函数的图象在第二、四象限,函数的图象在每个象限内,y 随x的增大而增大,再逐个判断即可.【详解】解:A.∵反比例函数6yx=-中-6<0,∴该函数的图象在第二、四象限,故本选项不符合题意;B.把(2,3)代入6yx=-得:左边=3,右边=-3,左边≠右边,所以点(2,3)不在该函数的图象上,故本选项不符合题意;C.∵反比例函数6yx=-中-6<0,∴函数的图象在每个象限内,y随x的增大而增大,故本选项不符合题意;D.反比例函数6yx=-的图象在第二、四象限,并且图象关于原点成中心对称,故本选项符合题意;故选:D.【点睛】本题考查了反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.12.函数kyx=与y kx k=-(k为常数且0k≠)在同一直角坐标系中的图象可能是()A.B.C .D .【答案】C【分析】分k >0和k <0两种情况,分别判断反比例函数()0k y k x=≠ 的图象所在象限及一次函数y kx k =-的图象经过的象限.再对照四个选项即可得出结论.【详解】当k >0时, -k <0,∴反比例函数k y x =的图象在第一、三象限,一次函数y kx k =-的图象经过第一、三、四象限;当k <0时, -k >0,∴反比例函数k y x=的图象在第二、四象限,一次函数y kx k =-的图象经过第二、三、四象限.故选:C .【点睛】本题考查了反比例函数的图象与性质以及一次函数图象与性质,熟练掌握两种函数的性质并分情况讨论是解题的关键.二、填空题13.如图,菱形OABC 的顶点O 在原点,A 点坐标为(4,0),反比例函数y=k x(k≠0)的图像经过AC 、BO 的交点D ,且与AB 边交于点E ,连接OE 交AD 于点F ,若F 恰为AD 中点,则k=______________;14.如图,在平面直角坐标系中,矩形ABCD 的顶点A 、D 分别在x 轴、y 轴上,对角线BD //x 轴,反比例函数y =k x (k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0)、D (0,4),则反比例函数的解析式为_____.15.如果反比例函数y =k x的图象经过点(2,3),那么直线y =kx 一定经过点(2,____). 16.如图,直线AB 交x 轴,y 轴于点A 、B ,交反比例函数()0k y x x =>于点C ,已知点B 是AC 的中点,若ABO 的面积是1,则k =______.17.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴的正半轴上,反比例函数(0)k y x x=>的图象经过对角线OB 的中点D和顶点C .若菱形OABC 的面积为63,则k =____18.分别以矩形OABC 的边OA ,OC 所在的直线为x 轴,y 轴建立平面直角坐标系,点B 的坐标是(4,2),将矩形OABC 折叠使点B 落在G(3,0)上,折痕为EF ,若反比例函数k y x =的图象恰好经过点E ,则k 的值为_______.19.反比例函数y =k x(x <0)的图象如图所示,下列关于该函数图象的四个结论:①k >0;②当x <0时,y 随x 的增大而增大;③该函数图象关于直线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有_____个.20.反比例函数()0k y k x=>在第一象限内的图象如图,点M 是图象上一点,MP 垂直x 轴于点P ,如果MOP ∆的面积为4,那么k 的值是__________.三、解答题21.如图,在平面直角坐标系中,点A ,B 是一次函数和反比例函数图象的两个交点,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,画出一个平行四边形,使点A ,B 都是该平行四边形的顶点; (2)在图②中,画出一个菱形,使点A 在该菱形一边所在的直线上.22.已知一次函数()0y kx n k =+≠与反比例函数m y (m 0)x=≠的图象交于点(,2)A a ,()1,3B .(1)求这两个函效的表达式;(2)直接写出关于x 的不等式m kx n x+≤的解; (3)若点1(2,)P h y -在一次函数y kx n =+的图象上,若点()22,Q h y -在反比例函数m y x=的图象上,12h <,请比较1y 与2y 的大小. 23.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x (x <0)的图象相交于点A (﹣1,2)、点B (﹣4,n ).(1)求此一次函数和反比例函数的表达式;(2)求△AOB 的面积;(3)若点H (﹣12,h )也在双曲线上,那么在y 轴上存在一点P ,使得|PB ﹣PH |的差最大,求出点P 的坐标.24.如图,直线y x b =+与双曲线()0k y k x=≠交于A 、B 两点,且点A 的坐标为()2,3.(1)求双曲线与直线的解析式;(2)求点B 的坐标;(3)若k x b x+>,直接写出x 的取值范围.25.已知一次函数223y x =+的图象分别与坐标轴相交于A 、B 两点(如图所示),与反比例函数()0k y x x=>的图象相交于C 点.(1)直接写出A 、B 两点的坐标;(2)作CD x ⊥轴,垂足为D ,如果OB 是ACD △的中位线,求反比例函数()0k y k x=>的关系式. (3)请根据图象直接写出在第一象限内,反比例函数值大于一次函数值时自变量x 的取值范围.26.李师傅驾驶出租车匀速地从南昌市送客到昌北国际机场,全程约30km ,设小汽车的行驶时间为t (单位:h ),行使速度为v (单位:km/h ),且全程速度限定为不超过100km/h .(1)求v 关于t 的函数关系式;(2)李师傅上午7点驾驶出租车从南昌市出发,在20分钟后将乘客送到了昌北国际机场,求小汽车行驶速度v .【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无二、填空题13.【分析】利用菱形的性质可知D 为OB 的中点设可分别表示F 和B 点从而可表示出直线OE 和直线AB 的解析式联立可求得a 的值即可表示D 点坐标在Rt △OAD 中利用勾股定理即可求得k 【详解】解:∵四边形OABC 为 解析:12825【分析】 利用菱形的性质可知D 为OB 的中点,设(,)kD a a ,可分别表示F 和B 点,从而可表示出直线OE 和直线AB 的解析式,联立可求得a 的值,即可表示D 点坐标,在Rt △OAD 中利用勾股定理即可求得k .【详解】解:∵四边形OABC 为菱形,∴AC ⊥OB ,2OB OD , 设(,)k D a a ,则2(2,)k B a a, ∵A (4,0),F 为AD 中点,∴4(,)22a k F a+, ∴直线OE 的解析式为:242(4)k aa k y x x a a +==+, 直线AB 的解析式为:2(4)(4)24(2)k a k y x x a a a =-=---, 联立得(4)(4)(2)k y x a a k y x a a ⎧=⎪+⎪⎨⎪=-⎪-⎩,解得2(4)323x a k y a ⎧=+⎪⎪⎨⎪=⎪⎩, ∴22((4),)33k E a a+, ∴223(4)3k k a a =+,解得165a =, ∴165(,)516k D , 在Rt △OAD 中,根据勾股定理222OD AD OA +=, 即2222165165()()(4)()16516516k k ++-+=,解得12825k =±, ∵题中反比例函数图象在第一象限, ∴12825k =, 故答案为:12825. 【点睛】本题考查反比例函数综合,菱形的性质.本题较难,在解题过程中需掌握中点坐标公式和两点之间距离公式.14.【分析】根据平行于x 轴的直线上任意两点纵坐标相同可设B (x4)利用矩形的性质得出E 为BD 中点∠DAB =90°根据线段中点坐标公式得出E (x4)由勾股定理得出AD2+AB2=BD2列出方程求出x 得到E 解析:20y x =【分析】根据平行于x 轴的直线上任意两点纵坐标相同,可设B (x ,4).利用矩形的性质得出E 为BD 中点,∠DAB =90°.根据线段中点坐标公式得出E (12x ,4).由勾股定理得出AD 2+AB 2=BD 2,列出方程求出x ,得到E 点坐标,即可求得反比例函数的解析式.【详解】解:∵BD ∥x 轴,D (0,4),∴B 、D 两点纵坐标相同,都为4,∴可设B (x ,4).∵矩形ABCD 的对角线的交点为E ,∴E 为BD 中点,∠DAB =90°.∴E (12x ,4). ∵∠DAB =90°,∴AD 2+AB 2=BD 2,∵A (2,0),D (0,4),B (x ,4),∴22+42+(x ﹣2)2+42=x 2,解得:x =10,∴E (5,4).∵反比例函数y =k x (k >0,x >0)的图象经过点E , ∴k =5×4=20,∴反比例函数的解析式为:y =20x 故答案为:y =20x. 【点睛】本题考查了矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E 点坐标是解题的关键. 15.【分析】将点()代入反比例函数中求得进而可求出直线解析式为将代入直线解析式即可求出其纵坐标【详解】反比例函数图像经过点()直线的解析式为:当时直线一定经过点()故答案为:【点睛】本意考查了反比例函数解析:【分析】将点(代入反比例函数k y x=中,求得k =y =,将2x =代入直线解析式,即可求出其纵坐标.【详解】反比例函数图像经过点(, ∴2=k ∴=∴直线y kx =的解析式为:y =,∴当2x =时,43y ,∴直线y kx =一定经过点(2,43),故答案为:43.【点睛】本意考查了反比例函数图像上点的坐标特征和性质,反比例函数()0k y k x=≠的图像上的点的横纵坐标乘积为常数k ,同时也考查了一次函数图像上点的坐标特征. 16.4【分析】通过作辅助线利用平行线等分线段定理得出OA=OD 进而得出CD=2OB 由△AOB 的面积是1表示出△COD 的面积进而求出k 的值【详解】解:过点C 作CD ⊥x 轴垂足为D 连接OC ∵OB ∥CDAB=B解析:4【分析】通过作辅助线,利用平行线等分线段定理,得出OA=OD ,进而得出CD=2OB ,由△AOB 的面积是1,表示出△COD 的面积,进而求出k 的值.【详解】解:过点C 作CD ⊥x 轴,垂足为D ,连接OC ,∵OB ∥CD ,AB=BC ,∴OA=OD ,CD=2OB ,∵S △AOB =1,∴OA•OB=2,∴S △OCD =12OD•CD=12OA×2OB=2=12|k|, ∴k=4,k=-4(舍去),故答案为:4.【点睛】本题考查一次函数、反比例函数图象上点的坐标特征,利用反比例函数k 的几何意义是解决问题的关键.17.【分析】根据题意可以设出点C 和点A 的坐标然后利用反比例函数的性质和菱形的性质即可求得k 的值本题得以解决【详解】解:设点A 的坐标为(a0)点C 的坐标为(c )则a•=点D 的坐标为()∴解得k =故答案为: 解析: 23【分析】根据题意,可以设出点C和点A的坐标,然后利用反比例函数的性质和菱形的性质即可求得k的值,本题得以解决.【详解】解:设点A的坐标为(a,0),点C的坐标为(c,kc),则a•k c=63,点D的坐标为(,22a c kc+),∴•6322kack ka cc⎧⎪⎪⎨=⎪+⎪⎩=解得,k=23,故答案为:23.【点睛】本题考查反比例函数系数k的几何意义、反比例函数的性质、菱形的性质、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想解答.18.3【分析】设CE的长为a利用折叠的性质得到EG=BE=4-aED=3-a在Rt△EGD中利用勾股定理可求得a的值得到点E的坐标即可求解【详解】过G 作GD⊥BC于D则点D(32)设CE的长为a根据折叠解析:3【分析】设CE的长为a,利用折叠的性质得到EG=BE=4-a,ED=3-a,在Rt△EGD中,利用勾股定理可求得a的值,得到点E的坐标,即可求解.【详解】过G作GD⊥BC于D,则点D(3,2),设CE的长为a,根据折叠的性质知:EG=BE=4-a,ED=3-a,在Rt△EGD中,222EG ED DG=+,∴()()2224a3a2-=-+,解得:32a=,∴点E 的坐标为(32,2), ∵反比例函数k y x =的图象恰好经过点E , ∴3232k xy ==⨯=, 故答案为:3.【点睛】本题考查了矩形的性质,折叠的性质,勾股定理的应用,反比例函数图象上点的特征,作出辅助线构造直角三角形是解题的关键.19.3【分析】观察反比例函数y =(x <0)的图象可得图象过第二象限可得k <0然后根据反比例函数的图象和性质即可进行判断【详解】观察反比例函数y =(x <0)的图象可知:图象过第二象限∴k <0所以①错误;因解析:3【分析】观察反比例函数y =k x(x <0)的图象可得,图象过第二象限,可得k <0,然后根据反比例函数的图象和性质即可进行判断.【详解】 观察反比例函数y =k x(x <0)的图象可知:图象过第二象限,∴k <0,所以①错误; 因为当x <0时,y 随x 的增大而增大,所以②正确;因为该函数图象关于直线y =﹣x 对称,所以③正确; 因为点(﹣2,3)在该反比例函数图象上,所以k =﹣6,则点(﹣1,6)也在该函数的图象上,所以④正确.所以其中正确结论的个数为3个.故答案为:3.【分析】本题考查了反比例函数的图象和性质,熟练掌握图象和性质是解题的关键.20.8【分析】利用反比例函数k 的几何意义得到|k|=4然后利用反比例函数的性质确定k 的值【详解】解:∵△MOP 的面积为4∴|k|=4∴|k|=8∵反比例函数图象的一支在第一象限∴k >0∴k=8故答案为:解析:8【分析】利用反比例函数k 的几何意义得到12|k |=4,然后利用反比例函数的性质确定k 的值. 【详解】解:∵△MOP 的面积为4,∴12|k |=4, ∴|k |=8,∵反比例函数图象的一支在第一象限,∴k >0,∴k =8,故答案为:8.【点睛】本题考查了比例系数k 的几何意义:在反比例函数y =k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了反比例函数的性质.三、解答题21.(1)见解析;(2)见解析.【分析】(1)根据平行四边形的性质对角线互相平分即可得出;(2)根据菱形的性质对角线垂直平分即可得出.【详解】解:(1)连接BO 并延长交反比例函数的第二象限的线于点1B ;连接AO 并延长交反比例函数的第二象限的线于点1A ;根据反比例函数图象性质,两条曲线关于原点中心对称,故1OB OB =,1OA OA =, 因为两条直线互相平分,故四边形11ABA B 为平行四边形;(2)如图,四边形CDEF 为菱形;【点睛】本题考查了反比例函数的图象性质及平行四边形的判定及性质、菱形的判定及性质,熟练掌握性质是解题的关键.22.(1)3y x =,25y x =-+;(2)01x <或32x ;(3)21y y > 【分析】(1)先把B 点坐标代入m y (m 0)x =≠求出m 得到反比例函数解析式,再通过反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)大致画出两函数图象,利用函数图象,写出反比例函数在一次函数上方(含交点)所对应的自变量的范围得到不等式m kx nx +的解集; (3)利用12h <得到322h ->,然后利用函数图象得到1y 与2y 的大小. 【详解】解:(1)把()1,3B 代入m y (m 0)x =≠得133m =⨯=, ∴反比例函数解析式为3y x =,把(,2)A a 代入3y x =得23a =,解得32a =,则3(2A ,2), 把3(2A ,2),()1,3B 代入y kxb =+得3223k b k b ⎧+=⎪⎨⎪+=⎩,解得25k b =-⎧⎨=⎩, ∴一次函数解析式为25y x =-+; (2)由图可知:不等式m kx nx +的解集为01x <或32x ; (3)12h <, 322h ∴->, 21y y ∴>.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.23.(1)y =12x +52, y =﹣2x ;(2)S △AOB =154;(3)P (0,92). 【分析】(1)把点A 的坐标代入反比例函数解析式求出m 的值,然后再把点B 的坐标代入反比例函数求出n 的值,从而求出点B 的坐标,再把A 、B 的坐标代入一次函数表达式,利用待定系数法即可求出一次函数的解析式;(2)求得直线AB 与x 轴的交点,然后根据三角形的面积公式即可求解;(3)根据题意,P 点是直线BH 与y 轴的交点;【详解】(1)∵点A(﹣1,2)在反比例函数图象上, ∴21k -=2, 解得k 2=﹣2, ∴反比例函数的解析式是y =﹣2x , ∵点B(﹣4,n)在反比例函数图象上,∴n =21=42-- , ∴点B 的坐标是(﹣4,12), ∵一次函数1y k x b =+的图象经过点A(﹣1,2)、点B(﹣4,12). ∴112142k b k b -+=⎧⎪⎨-+=⎪⎩解得11252k b ⎧=⎪⎪⎨⎪=⎪⎩ . ∴一次函数解析式是1522y x =+ ; (2)设直线AB 与x 轴的交点为C , 1522y x =+中,令y =0,则x =﹣5, ∴直线与x 轴的交点C 为(﹣5,0), ∴S △AOB =S △AOC ﹣S △BOC 11115=525=2224⨯⨯-⨯⨯ ; (3)∵点H(﹣12,h)也在双曲线上, ∴2=412h =--, ∴H(﹣12,4), ∵在y 轴上存在一点P ,使得|PB ﹣PH|最大,∴P 点是直线BH 与y 轴的交点,设直线BH 的解析式为y =kx+m ,∴142142k m k m ⎧-+=⎪⎪⎨⎪-+=⎪⎩ ,解得192k m =⎧⎪⎨=⎪⎩ , ∴直线BH 的解析式为y =x+92, 令x =0,则y =92, ∴P(0,92).【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,三角形面积,会利用待定系数法求一次函数解析式;运用两点之间线段最短解决最短路径问题是解题的关键;24.(1)6y x =,1y x =+;(2)(-3,-2);(3)30x -<<或2x >; 【分析】(1)把A 的坐标代入一次函数与反比例函数的解析式即可求出解析式;(2)把一次函数与反比例函数的解析式联立得出方程组,求出方程组的解即可; (3)根据A 、B 的坐标结合图象即可得出答案.【详解】解:(1)∵点A (2,3)在双曲线k y x =上,也在直线y x b =+上, ∴326k =⨯=,321b =-=;∴双曲线的解析式为6y x=, 直线的解析式为1y x =+; (2)∵点B 是直线1y x =+和双曲线6y x =的交点, ∴点B 的坐标是方程组16y x y x =+⎧⎪⎨=⎪⎩的一个解; ∴1123x y =⎧⎨=⎩,2232x y =-⎧⎨=-⎩; ∴点B 的坐标为(-3,-2);(3)由图象可知,若k x b x+>,则x 的范围是:-3<x <0或x >2. .【点睛】本题考查了一次函数与反比例函数的解析式,用待定系数法求出一次函数的解析式,函数与不等式等知识点的应用,主要考查学生的计算能力和观察图形的能力,用了数形结合思想.25.(1)()30A -,,()0,2B ;(2)()120y x x=>;(3)03x << 【分析】 (1)分别令一次函数解析式中y=0、x=0求出x 、y 的值,从而得出点A 、B 的坐标; (2)由A 、B 点的坐标结合中位线的性质,找出线段OD 、DC 的长度,从而找出点C 的坐标,再由点C 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的系数k ,从而得出结论;(3)观察函数图象,根据两函数图象的上下关系结合交点的坐标,即可得出结论.【详解】解:(1)令一次函数223y x =+中y=0,则23x+2=0, 解得:x=-3,∴点A 的坐标为(-3,0); 令一次函数223y x =+中x=0,则y=2, ∴点B 的坐标为(0,2); (2)∵OB 是ACD △的中位线,∴2224CD BO ==⨯=,3==OD OA ,∴C 点坐标()3,4,∴3412k =⨯=,∴反比例函数的关系式()120y x x=>. (3)由图象可知,当03x <<时,反比例函数值大于一次函数值.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数与一次函数的交点问题以及三角形中位线的性质,本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,根据反比例函数图象上点的坐标特征求出反比例系数k 是关键.26.(1)30v t =(0.3t ≥);(2)小汽车行驶速度v 是90km/h . 【分析】(1)根据距离=速度×时间即可得v 关于t 的函数表达式,根据全程速度限定为不超过100/km h 可确定t 的取值范围;(2)把13t =代入(1)中关系式,即可求出速度v 的值. 【详解】(1)∵全程约30km ,小汽车的行驶时间为t ,行驶速度为v ,∴vt=30,∵全程速度限定为不超过100/km h ,全程约30km ,∴0.3t ≥,∴v 关于t 的函数表达式为:)30.3(0v t t=≥. (2)∵需在20分钟后到达昌北国际机场,20分钟13=小时, 将13t =代入30v t =得90v =, ∴小汽车行驶速度v 是90km/h .【点睛】 此题考查反比例函数的实际运用,掌握路程、时间、速度三者之间的关系是解题关键.。

初中数学反比例函数的图象与性质解答题专项练习2(基础 附答案详解)

初中数学反比例函数的图象与性质解答题专项练习2(基础    附答案详解)

初中数学反比例函数的图象与性质解答题专项练习2(基础 附答案详解) 1.在同一平面直角坐标系中,一次函数1y ax b 与反比例函数2ky x=(k 为常数,且0k ≠)的图像交于A 、B 两点,它们的部分图像如图所示,BOD ∆的面积是6. (1)求一次函数1y ax b 与反比例函数2ky x=的表达式; (2)请直接写出不等式12y y >的解集.2.如图,等腰直角△POA 的直角顶点P 在反比例函数4y x=(x >0)的图象上,A 点在x 轴正半轴上,求A 点坐标.3.画出y =-2x的图象. 4.y 是x 的反比例函数,下表给出了x 与y 的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.5.画出反比例函数y =1x的图象. 6.下列关系式中的y 是x 的反比例函数吗?如果是,比例函数k 是多少? (1)y =; (2)y =;(3)y =-; (4)y =-3;(5)y =;(6)y =.7.已知变量y 与x 成反比例函数关系,并且当x =2时,y =﹣3. (1)求y 与x 之间的函数关系式;(2)求当y =2时,x 的值.8.如图,已知一次函数y 1=-x +a 的图象与x 轴,y 轴分别交于点D ,C ,与反比例函数y 2=kx的图象交于A ,B 两点,且点A 的坐标是(1,3),点B 的坐标是(3,m ).(1)求a ,k ,m 的值;(2)求C ,D 两点的坐标,并求△AOB 的面积;(3)利用图象直接写出,当x 在什么取值范围时,y 1>y 2?9.已知12y y y =+若1y 与2x 成正比例关系,2y 与x 成反比例关系,且当X=-1时,y=3.由x=1时,y=-5时,求y与x的函数关系式? 10.在反比例函数ky x=的图像的每一条曲线上,y 都随x 的增大而减小.在曲线上取一点A ,分别向x 轴、y 轴作垂线段,垂足分别为B 、C ,坐标原点为O ,若四边形ABOC 面积为6,求k 的值.11.证明:任意一个反比例函数图象y =kx关于y =±x 轴对称. 12.如图,一次函数y=mx+n (m≠0)与反比例函数y=(k≠0)的图象相交于A (﹣1,2),B (2,b )两点,与y 轴相交于点C (1)求一次函数与反比例函数的解析式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.13.如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2),AC⊥x轴于C,连结BC.(1)求反比例函数的表达式;(2)根据图象直接写出当mx>时,x的取值范围;(3)在平面内是否存在一点D,使四边形ABDC为平行四边形?若存在,请求出点D坐标;若不存在,请说明理由.14.举出生活中变量具有反比例函数关系的实例(1~2例).15.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=mx(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)根据图象直接写出当kx+b﹥mx时,x的取值范围.16.一次函数y=ax+b(a≠0)的图象与双曲线y=kx(k≠0)相交于A(m,2)和B(2,-1)两点,与x轴相交于点C,过点B作BD⊥x轴,垂足为D.(1)求一次函数的解析式.(2)根据图象直接写出不等式ax+b-kx>0的解集.(3)连接AD,求△ABD的面积.17.已知:如图,∆ABC是等腰直角三角形,∠B=90°,点B的坐标为(1,2).反比例函数kyx=的图象经过点C,一次函数y=ax+b的图象经A,C两点.(1)求反比例函数和一次函数的关系式;(2)直接写出不等式组0<ax+b≤kx的解集.18.如图,已知一次函数y= kx +b的图象交反比例函数myx=的图象于点A(2,-4)和点B(h,-2),交x轴于点C.(1)求这两个函数的解析式;(2)连接QA、OB.求△AOB的面积;(3)请直接写出不等式mkx bx+>的解集.19.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A(﹣2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.20.如图:反比例函数1ky x=的图象与一次函数2y x b =+的图象交于A 、B 两点,其中A 点坐标为()1,2.(1)求反比例函数与一次函数的表达式;(2)观察图象,直接写出当12y y <时,自变量x 的取值范围;(3)一次函数的图象与y 轴交于点C ,点P 是反比例函数图象上的一个动点,若6OCP S ∆=,求此时P 点的坐标.21.如图,一次函数1y kx b =+(0)k ≠的图象与反比例函数2my x=(0m ≠,0x <)的图象交于点(3,1)A -和点(1,3)C -,与y 轴交于点B .(1)求一次函数与反比例函数的解析式; (2)求AOB ∆的面积.22.直线y =kx +b 与反比例函数y =6x(x >0)的图象分别交于点A (m ,3)和点B (6,n ),与坐标轴分别交于点C 和点 D . (1)求直线AB 的解析式;(2)若点P 是x 轴上一动点,当S △ADP =32S △BOD 时,求点P 的坐标.23.正比例函数y =2x 与反比例函数y =mx的图象有一个交点的纵坐标为4,求关于x 的方程2x =mx的解. 24.如图,一次函数(0)y kx b k =+≠的图象与反比例函数my (m 0)x=≠的图象交于()()1151A t B t +--,,,两点.(1)求一次函数和反比例函数的解析式; (2)若()()c p n q ,,,是反比例函数my (m 0)x=≠图象上任意两点,且满足1c n =+,求q ppq-的值.参考答案1.(1)23y x=-,14y x =+;(2)31x -<<-或0x >. 【解析】 【分析】(1)先根据点B 的坐标求出反比例函数图的解析式;根据BOD ∆的面积求出点D 的坐标,再运用待定系数法即可求出求一次函数y 1=ax+b 的表达式;(2)先联立反比例函数和一次函数的解析式,得到方程组,求出A 、B 坐标,根据反比例函数的性质得2ky x=的图象在二、四象限,观察图象交点A 、B 两点的坐标可知,当y 1>y 2时,x 的取值范围. 【详解】解:(1)∵()13B -,在反比例函数图象上,∴()313k =⨯-=-, ∴反比例函数表达式为23y x=-. ∵BOD ∆的面积是6,即1362OD ⋅⋅=, ∴4OD =,()4,0D -,把()4,0D -,()1,3B -带入1y 得403a b a b -+=⎧⎨-+=⎩,解得14a b =⎧⎨=⎩,∴14y x =+;(2)由43y x y x =+⎧⎪⎨=-⎪⎩解得31x y =-⎧⎨=⎩ 或1{3x y =-= ∴A (-3,1) ,B (-1,3),2ky x=(k 为常数,且0k ≠)的图像的图象在二、四象限, 由图象交点A 、B 两点的坐标可知,当y 1>y 2时,31x -<<-或0x >. 故答案为(1)23y x=-,14y x =+;(2)31x -<<-或0x >.【点睛】本题考查反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,三角形的面积,体现了数形结合的思想.2.A点坐标为(4,0).【解析】【分析】过P点作x轴的垂线,由等腰直角的性质得到点P的横纵坐标相等,进一步得到A点坐标.【详解】解:如图:过P点作x轴的垂线,D点为垂足.∵△POA是等腰直角三角形,∴PD=OD=DA,又∵P点在反比例函数y=4x(x>0)的图象上,∴P点的坐标为(2,2),∴OA=4,∴A点坐标为(4,0).故答案为A点坐标为(4,0).【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形的有关性质,解题的关键是掌握等腰直角三角形斜边上的高平分斜边并且等于斜边的一半、反比例函数y=kx图象上的点的坐标特征是横纵坐标的乘积等于k.3.见解析。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《反比例函数》单元测试卷(二)
一、选择题(每小题2分,共20分)
1.下列函数中,y 与x 为反比例函数的是( ) (A )2)1(=-y x . (B )32+=x y . (C ) 21x
y =. (D )x y 31=.
2.函数x k y =
的图象经过点(-2,3),则下列各点中在x
k
y =图象上的是( ) (A )(3,2). (B )(3,-2). (C )(-2,-3). (D )(-2,-3).
3.正比例函数x y 32=
与反比例函数x
y 6
=的图象相交于A 、B 两点,其中点A 的坐标为(3,2),那么点B 的坐标为( )
(A )(-3,-2). (B )(-3,2). (C )(-2,-3). (D )(2,3).
4.如果点A (-1,1y )、B(1,2y )、C(2,3y )是反比例函数x
y 1
-=图象上的三个点,则下列结论正确的是( ).
(A )1y >2y >3y . (B )1y >3y >2y . (C )2y >1y >3y . (D )3y >1y >2y .
5.当k<0时,正比例函数kx y -=和反比例函数x
k
y =在同一坐标系内的图象为( )
(A )
(B )
6.
如上右图,A 为反比例函数x
k
y =图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( )
(A )6. (B )3 . (C )2
3. (D )不能确定.
7.如果矩形的面积为6cm2,那么它的长y cm与
宽x cm之间的函数关系用图象表示大致()
(A)(B)(C)(D)
8.在同一直角坐标平面内,如果直线x
k
y
1
=与双曲线
x
k
y2
=没有交点,那么
1
k和
2
k的关系一定是()
(A)
1
k<0,
2
k>0 .(B)
1
k>0,
2
k<0. (C)
1
k、
2
k同号. (D)
1
k、
2
k异号.
9.在同一坐标系中,函数x
k
y=和3
+
=kx
y的图像大致是()
10.如图,面积为2的ΔABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是()
(A)(B)(C)(D)
二、填空题(每小题2分,共20分)
11.u与t成反比,且当u=7时,
14
1
=
t,这个函数解析式为.
12.已知y与x成正比例,z与y成反比例,那么z与x的关系是:__________函数.
o
y y
o
y
o
y
o
13.函数x
y 3
-=的图像,在每一个象限内,y 随x 的增大而 .
14.如果点(4,3)在反比例函数)(,0≠=k x
k
y 图象上,要使点(m ,-3)也在这一函数图象上,则m = _______________.
15.反比例函数x
k
y =
与一次函数m kx y +=的图象有一个交点是(-2,1),则它们的另一个交点的坐标是 .
16.已知一次函数y=ax+b 的图象经过第一、二、三象限,则函数x
ab
y =的图象在第________象限.
17.已知反比例函数x
m y 2
3-=
,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大.
18.已知反比例函数x
k
y =
图象与直线x y 2=和1+=x y 的图象过同一点,则当 x >0时,这个反比例函数值y 随x 的增大而 (填增大或减小).
19.如图,面积为4的矩形OABC 的一个顶点B 在反比例函数
x
k
y =
的图象上,另三点在坐标轴上,则k = .
20.设有反比例函数y k x
=
+1
,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________.
三、解答题(共60分)
21.(15分)已知121,y y y y -=与x 成反比例,2y 与)2(-x 成正比例,并且当x =3时,y =5,当x =1时,y =-1;求y 与x 之间的函数关系式.
22.(15分)已知□ABCD 中,AB = 4,AD = 2,E 是AB 边上的一动点,设AE=x ,DE 延长线交CB 的延长线于F ,设CF =y ,求y 与x 之间的函数关系.
23.(15分)反比例函数y=x
k
的图象在第一象限的分支上有一点A (3,4),P 为x 轴正半轴上的一个动点,
(1)(5分)求反比例函数解析式;
(2)(10分)当P 在什么位置时,△OPA 为直角三角形,求出此时P 点的坐标.
24.(15分)如图,已知一次函数)0(≠+=k b kx y 的图象与反比例函数)0(8
≠-=m x
y 的图象交于A ,B 两点,且A 点的横坐标与B 点的纵坐标都是2-; (1) 求一次函数的解析式 (2) 求△AOB 的面积.
参考答案:
一、选择题
1. D ;提示:根据反比例函数的概念.
2. B ;提示:将各点坐标代入解析式.
3. A ;提示:根据反比例函数图象的中心对称性.
4. B ;提示:根据反比例函数图象比较.
5. C ;提示:根据正、反比例函数的图象的性质.
6. A ;提示:根据反比例函数图象的特点.
7. C ;提示:要与实际相符.
A
E
B
D
C
F
8. D ;提示:根据正、反比例函数图象的特征. 9. A ;提示:根据正、反比例函数图象的特征. 10. C ;提示:要与实际相符. 二、填空题 11.t
u 21
=
; 提示:根据反比例函数. 12.反比例;
提示:根据正、反比例函数的概念. 13.增大 ;
提示:根据反比例函数图象的性质. 14.-4;
提示:将(4,3)代入反比例函数解析式求出k 值,在将(m ,-3)代入求出m. 15.(
2
1
,-4) ; 提示:将(-2,1)代入x
k
y = 求出k 值,在代入y=kx+m 求出m 的值,将两个解析式组成方程组,求出结果. 16.一、三 ;
提示:根据一次函数和反比例函数图象的性质. 17.>
32,<3
2
; 提示:根据图象. 18.减小;
提示:根据反比例函数的性质. 19.-4;
提示:根据反比例函数图象的特征. 20.k<-1;
提示:结合图象得出结论. 三、解答题 21.设()2,2211-==
x k y x k y ,则()221--=x k x
k
y
将(3,5)和(1,-1)代入得: 21
3
5k k -=
211k k +=- 解得:4,321-==k k
∴y 与x 之间的函数关系式为()243
-+=
x x
y 22.由题意可知:FBE ∆与ADE ∆相似,则x
x
y -=
-422
化简得:8=xy x
y 8
=
∴y 与x 之间的函数关系为x y 8= 23.(1)反比例函数解析式为12
y x
=
(2)P 点坐标:(6,0),(5,0)(25
6
,0) 24.(1)一次函数的解析式为y=-x+6 (2)18ABC S ∆= 备注:
第1、2、7、10、11、14题通过求函数解析式、确定k 值等具体数学问题进一步认识和理解反比例函数的定义,并能够灵活的应用. 第3、4、5、6、8、9题通过不同角度和方式使学生进一步理解反比例函数的图像及其性质,使学生能够将数学知识应用到实际生活中.第12、15、16题考查一次函数和正比例函数的定义,让学生能够更好的理解和区分两者的联系和区别. 第21、22、23、24题考查反比例函数在实际生活中的应用. 本套题中,简单题为1、2、6、8、9、10、11、12、13、14、16、17题,中等难度题为3、4、5、7、10、15、18题,难题为20、21、22、23、24题,易中难的比例约为5:3:2.。

相关文档
最新文档