八年级数学二次根式易错题集锦

合集下载

八年级初二数学数学二次根式的专项培优易错试卷练习题含答案

八年级初二数学数学二次根式的专项培优易错试卷练习题含答案

一、选择题1.下列式子为最简二次根式的是( )A B C D 2.下列计算正确的是( )A 2=±B 3=-C .(25= D .(23=-3.下列计算正确的是( )A =B .2=C .1=D =4.下列计算正确的是( )A =B 3=C =D .21=5.已知:x ,y 1,求x 2﹣y 2的值( )A .1B .2C D .6.=a 、x 、y 是两两不同的实数,则22223x xy y x xy y+--+的值是( ) A .3 B .13C .2D .537.设1199++S 的最大整数[S]等于( ) A .98B .99C .100D .1018.2= ) A .3B .4C .5D .69.下列各式中,不正确的是( )A ><C > D 5=10.A .﹣3B .3C .﹣9D .9二、填空题11.设4 a,小数部分为 b.则1a b- = __________________________.12.使函数212y x x=+有意义的自变量x 的取值范围为_____________13.将2(3)(0)3a a a a-<-化简的结果是___________________.14.已知112a b +=,求535a ab b a ab b++=-+_____. 15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 16.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =+++,则S=________________ (用含有n 的代数式表示,其中n 为正整数).17.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.18.若2x ﹣3x 2﹣x=_____. 19.化简二次根式2a 1a +-_____. 20.28n n 为________.三、解答题21.(1111242-=112393-=113416-=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想. 【答案】(11142=52555-=115636-=;(22111n n n --=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,6,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n .n.故答案为5=25n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.22.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.23.先将2x -x 的值,代入后,求式子的值. 【答案】答案见解析. 【解析】 试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义. 试题解析:原式==== 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=224.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==25.)÷)(a ≠b ).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222226.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =. 【答案】(1)2)82-a,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可. 【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭.【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.27.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)a ===b ===22221111()223122222a b a b ab ⎛⎫+=+-=+-⨯⨯=-= ⎪ ⎪⎝⎭ 【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.28.2020(1)- 【答案】1 【分析】先计算乘方,再化简二次根式求解即可. 【详解】2020(1)-=1 =1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】AB|a|,可以化简,故不是最简二次根式;C==,可以化简,故不是最简二次根式;D2故选:A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.C解析:C【分析】直接利用二次根式的性质分别求解,即可得出答案.【详解】解:A,故A选项错误;B,故B选项错误;C选项:2=5,故C选项正确;D选项:2=3,故D选项错误,故选:C.【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.3.D解析:D 【分析】直接利用二次根式的加减运算法则计算得出答案. 【详解】解:AB 、无法计算,故此选项错误;C 、D ,正确. 故选:D . 【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.4.A解析:A 【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案. 【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误; 故应选:A 【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.5.D解析:D 【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可. 【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-== 故选:D . 【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.6.B解析:B 【分析】根据根号下的数要是非负数,得到a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x ,把y=-x 代入原式即可求出答案. 【详解】由于根号下的数要是非负数,∴a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0, a (x-a )≥0和x-a≥0可以得到a≥0, a (y-a )≥0和a-y≥0可以得到a≤0, 所以a 只能等于0,代入等式得,所以有x=-y , 即:y=-x ,由于x ,y ,a 是两两不同的实数, ∴x >0,y <0. 将x=-y 代入原式得: 原式=()()()()2222313x x x x x x x x +---=--+-. 故选B . 【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a 、x 、y 的值和代入求分式的值是解此题的关键.7.B解析:B 【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99. 【详解】∵==()211n n n n ++=+ =111+1n n-+, ∴=1111111+11122399100-++-+++- =199+1100-=100-1100,∴不大于S 的最大整数为99. 故选B. 【点睛】1111n n =+-+是解答本题的基础.8.C解析:C 【解析】2=,2222251510x x=-=--+=,5=.故选C.9.B解析:B 【解析】=-3,故A 正确;=4,故B 不正确;根据被开方数越大,结果越大,可知C 正确;5=,可知D 正确.故选B.10.B解析:B【分析】利用二次根式的性质进行化简即可.【详解】﹣3|=3.故选B.二、填空题11.【分析】根据实数的估算求出a,b ,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:.【点睛】此题主要考查无理解析:12- 【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=22==1故填:12-. 【点睛】 此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.12.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x 的取值范围为【点睛】 解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤ ①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 13..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.14.13【解析】【分析】由得a+b=2ab,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】由112a b+=得a+b=2ab,然后再变形535a ab ba ab b++-+,最后代入求解即可.【详解】a b ∴a+b=2ab∴()5353510ab3===132aba b aba ab b aba ab b a b ab ab+++++-++--故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 15.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.16.【分析】先根据题目中提供的三个式子,分别计算的值,用含n的式子表示其规律,再计算S的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题1n +【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 17.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.a=a+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.18.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为1 2【点睛】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.19.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==.故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为20.7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

(易错题精选)初中数学二次根式难题汇编附解析

(易错题精选)初中数学二次根式难题汇编附解析

(易错题精选)初中数学二次根式难题汇编附解析一、选择题1.如果一个三角形的三边长分别为12、k、72,则化简21236k k-+﹣|2k﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k【答案】D【解析】【分析】求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为12、k、72,∴72-12<k<12+72,∴3<k<4,21236k k-+-|2k-5|,=()26k--|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k,故选D.【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.2.下列计算正确的是()A.+=B.﹣=﹣1 C.×=6 D.÷=3【答案】D【解析】【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A、B与不能合并,所以A、B选项错误;C、原式= ×=,所以C选项错误;D、原式==3,所以D选项正确.故选:D.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.下列各式计算正确的是( )A 1082==-= B .()()236==-⨯-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式,所以A 选项错误;B 、原式,所以B 选项错误;C 、原式6,所以C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.当3x =-时,二次根m 等于( )AB .2CD 【答案】B【解析】解:把x =﹣3代入二次根式得,原式=,依题意得:=.故选B .5.若代数式1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】∵代数式1x -在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.6.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=-C .1)4=D .()422a a -=【答案】C【解析】【分析】 根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、1)514=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.7.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .8.5130.5a 22a b -22x y +中,是最简二次根式的有( )A .2个B .3个C .4个D .5个 【答案】A【解析】 5 133 0.5a 2a ,不是最简二次根式; 22a b -b ,不是最简二次根式;22x y +是最简二次根式.共有2个最简二次根式.故选A.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.9.下列计算错误的是( )A .2598a a a +=B .14772⨯=C .3223-=D .60523÷= 【答案】C【解析】【分析】 根据二次根式的运算法则逐项判断即可.【详解】解:A. 259538a a a a a +=+=,正确;B. 14727772⨯=⨯⨯=,正确;C. 32222-=,原式错误;D. 6051223÷==,正确;故选:C .【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.10.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D【答案】A【解析】【分析】先化简原式得45-5545【详解】原式=45-由于25<<3,∴1<45-<2.故选:A .【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.11.有意义的x 的取值范围( ) A .x >2B .x≥2C .x >3D .x≥2且x≠3 【答案】D【解析】试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数. 根据题意,得20{30x x -≥-≠解得,x≥2且x≠3. 考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件12.有意义,则x 的取值范围是( )A .1x >-B .0x ≥C .1x ≥-D .任意实数【答案】C【解析】【分析】a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】有意义,则10x +≥,故1x ≥-故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.13的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.14.计算201720192)2)的结果是( )A.B2 C.7 D.7- 【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩可求解.16.下列运算正确的是( )A .235a a a +=B .23241(2)()162a a a -÷=-C .1133a a-= D .2222)3441a a a ÷=-+【答案】D【解析】 试题分析:A .23a a +,无法计算,故此选项错误;B .()23262112824a a a a ⎛⎫⎛⎫-÷=-÷ ⎪ ⎪⎝⎭⎝⎭=432a -,故此选项错误; C .133a a -=,故此选项错误;D .()22223441a a a ÷=-+,正确.故选D .17.下列运算正确的是( )A =B 2÷=C .3=D .142=【答案】B【解析】【分析】根据二次根式的混合运算的相关知识即可解答.【详解】=,故错误;2÷=,正确;C. =D. 142故选B.【点睛】此题考查二次根式的性质与化简,解题关键在于掌握运算法则.18.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0得,3x +有意义的条件是+30≥x解得:-3≥x故选:D 【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.19.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】 2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.20.已知25523y x x =--,则2xy 的值为( ) A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由25523y x x =--,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .。

初中数学二次根式易错题汇编及答案

初中数学二次根式易错题汇编及答案

C、 2 1 2 2 2 ,错误;
2
2
D、 8 2 4 2 ,正确;
故选:D. 【点睛】
本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根
式的乘除运算法则.
17.使代数式 a a 有意义的 a 的取值范围为
A. a 0
B. a 0
C. a 0
D.不存在
B.2 和 3 不是同类二次根式,不能合并,故本选项错误;
C. 3 5 15 ,计算正确,故本选项正确;
D. 4 =1,原式计算错误,故本选项错误. 2
故选:C. 【点睛】 本题考查二次根式的加减法和乘除法,在进行此类运算时,掌握运算法则是解题的关键.
4.当 x 3 时,二次根 m 2x2 5x 7 式的值为 5 ,则 m 等于( )
2
B、 18 8 =3 2 -2 2 = 2 ,此选项正确; C、 6 15 2 3 3 5 ,此选项错误;
D、 3 3 27 ,此选项错误;
故选 B. 【点睛】 本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法 则及二次根式的性质.
2.二次根式 a 2 在实数范围内有意义,则 a 的取值范围是(
故选 A.
6.把 a 1 中根号外的因式移到根号内的结果是( ) a
A. a
【答案】A 【解析】 【分析】
B. a
C. a
D. a
由二次根式 a 1 知 a 是负数,根据平方根的定义将 a 移到根号内是 a2 ,再化简根号内 a
的因式即可. 【详解】
∵ 1 0 ,且 a 0 , a
∴a<0,
∴ a 1 >0, a
∴ a 1 = 1 (a)2 1 a2 = a ,

二次根式易错题汇编及答案解析

二次根式易错题汇编及答案解析
故选:C.
【点睛】
此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.
4.若代数式 在实数范围内有意义,则实数 的取值范围是( )
A. B. 且 C. D. 且
【答案】D
【解析】
【分析】
根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.
17.下列二次根式是最简二次根式的是()
A. B. C. D.
【答案】D
【解析】
【分析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、被开方数含分母,故A不符合题意;
B、被开方数含开的尽的因数,故B不符合题意;
C、被开方数是小数,故C不符合题意;
D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.
【详解】
A、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
B、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
C、 与 的被开方数相同,所以它们是同类二次根式;故本选项正确;
D、 是三次根式;故本选项错误.
故选:C.
【点睛】
本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
【详解】
解:A、 =2 ,故本选项错误;
B、 是最简根式,故本选项正确;
C、 = ,故本选项错误;
D、 = ,故本选项错误.
故选:B.
【点睛】
本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.
12.下列计算正确的是
A. B. C. D.

八年级初二数学数学二次根式的专项培优易错试卷练习题附解析

八年级初二数学数学二次根式的专项培优易错试卷练习题附解析

八年级初二数学数学二次根式的专项培优易错试卷练习题附解析一、选择题1.下列运算正确的是( ) A .732-= B .()255-=-C .1232÷=D .03812+=2.下列各式中,无意义的是( ) A .23-B .()333-C .()23-D .310-3.下列运算正确的是 ( ) A .3223÷= B .235+= C .233363⨯= D .18126-=4.下列算式:(1)257+=;(2)5x 2x 3x -=;(3)8+50=4257+=;(4)33a 27a 63a +=,其中正确的是( ) A .(1)和(3) B .(2)和(4)C .(3)和(4)D .(1)和(4)5.下列各式计算正确的是( )A .532-=B .1236⨯=C .3232+=D .222()-=-6.若a =3235++,b =2+610-,则a b 的值为( )A .12 B .14C .321+D .610+7.若化简1682+-x x -1x -的结果为5-2x ,则x 的取值范围是( ) A .为任意实数B .1≤x≤4C .x≥1D .x≤48.已知2225152x x ---=,则222515x x -+-的值为( ) A .3 B .4C .5D .69.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定 10.12的下列说法中错误的是( ) A 1212的算术平方根 B .3124<< C 12不能化简D 12是无理数11.给出下列化简①(2-2=222-=()2221214+=3④11142-=,其中正确的是( ) A .①②③④B .①②③C .①②D .③④12.已知,5x y +=-,3xy =则y x x y x y+的结果是( ) A .23B .23-C .32D .32-二、填空题13.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则2b c +=________.14.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.15.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行13 154 1732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 16.若2x ﹣3x 2﹣x=_____. 17.已知整数x ,y 满足20172019y x x =+--,则y =__________.18.11122323-=11113-23438⎛⎫= ⎪⎝⎭11114-345415⎛⎫=⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________.19.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____. 20.函数y 4x-中,自变量x 的取值范围是____________. 三、解答题21.先观察下列等式,再回答问题:=1+1=2;12=2 12;=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.【答案】(1=144+=144;(2=211n n n n++=,证明见解析. 【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,=414+=414;(2=n 211n n n++=”,再利用222112n n n n++=+()()开方即可证出结论成立.【详解】(1=1+1=2=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2,=212+=212=313+=313=414+=414= 211n n n n++=.证明:等式左边==n 211n n n++==右边.=n 211n n n++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律=n 211n n n++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==23.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,∵a b m n 、、、都为正整数, ∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.24.阅读下列材料,然后回答问题:其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==---.以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-.(1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1.【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.25.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:甲010*******乙2311021101请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差. 试题解析:(1)原式=4﹣3+2=6﹣3; (2)原式=﹣3﹣2+﹣3 =-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65; 乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点: 二次根式的混合运算;方差.26.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.27.先化简,再求值:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y,其中x y ==. 【答案】原式x yx-=-,把x y ==代入得,原式1=-. 【详解】试题分析:先将括号里面进行通分,再将能分解因式的分解因式,约分化简即可. 试题解析:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y ()()()222=x y x y x x xx x x y x y -⎛⎫---⋅ ⎪+-⎝⎭=y x x y x x y ---⋅+ x yx-=-把x y ==代入得:原式1==-+考点:分式的化简求值.28.计算:(1(2|a ﹣1|,其中1<a【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1 (2)∵1<a,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.29.计算:(1;(2+2)2+2). 【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案; (2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-(2)原式=3434++-=6+. 【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.30.计算:(1 ;(2)))213【答案】(1)2)1-. 【分析】(1)根据二次根式的混合运算法则可以算得答案. (2)结合整式的乘法公式和二次根式的运算法则计算. 【详解】(1)原式==(2)原式=212---=1-. 【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案. 【详解】解:A A 错误;B 5=,故B 错误;C 2==,故C 正确;D 01213=+=,故D 错误; 故选:C . 【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.2.A解析:A 【分析】直接利用二次根式有意义的条件、负整数指数幂的性质分析得出答案. 【详解】AB ,有意义,不合题意;CD 、33110=10-,有意义,不合题意; 故选A. 【点睛】此题主要考查了二次根式有意义的条件、负整数指数幂的性质,正确把握二次根式的定义是解题关键.3.A解析:A 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】A 、3=,故选项A 正确;B B 错误;C 、18=,故选项C 错误;D =D 错误; 故选:A . 【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.4.B解析:B 【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案. 【详解】(1(2),正确;(3)2=22=,错误;(4)==故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.5.B解析:B【分析】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据a=对D进行判断.【详解】解:A不能合并,所以A选项错误;B6=,正确,所以B选项正确;C、3不能合并,所以C选项错误;D22=--=(),所以D选项错误.故选:B.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的加减计算法则.6.B解析:B【解析】【分析】将a可化简为关于b的式子,从而得到a和b的关系,继而能得出ab的值.【详解】a=b44=.∴14ab=.故选:B.【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b的形式.7.B解析:B【解析】【分析】根据完全平方公式和2a=|a|,先把多项式化简为|x-4|-|1-x|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】-=|x-4|-|1-x|,解:原式=2()-1xx4-当x≤1时,此时1-x≥0,x-4<0,∴(4-x)-(1-x)=3,不符合题意,当1≤x≤4时,此时1-x≤0,x-4≤0,∴(4-x)-(x-1)=5-2x,符合题意,当x≥4时,此时x-4≥0,1-x<0,∴(x-4)-(x-1)=-3,不符合题意,∴x的取值范围为:1≤x≤4故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.8.C解析:C【解析】∵22---=,25152x x2222222222 ----+-=---=--+= (2515)(2515)(25)(15)251510 x x x x x x x x,∴22-+-=.x x25155故选C.9.B解析:B【解析】因=,所以a=0,b=1,c=1,即可得2a+999b+1001c=999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.10.C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A12的算术平方根,故该项正确;B、34<<,故该项正确;C=D=是无理数,故该项正确;故选:C.【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.11.C解析:C【分析】根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式====,故④错误,④原式2故选C.【点睛】本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.12.B解析:B【分析】由x+y=-5,xy=3可得到x<0,y<0,再利用二次根式的性质化简得到原式==-,然后把xy=3代入计算即可.【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴原式===-(x<0,y<0),当xy=3时,原式=-【点睛】此题考查二次根式的化简求值,解题关键在于先化简.二、填空题13.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123=== ∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.14.3b【分析】先判断a ,b 的取值范围,并分别判断a-b ,a+b 的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a+b <0,∴原式=|解析:3b【分析】先判断a ,b 的取值范围,并分别判断a-b ,a+b 的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b >0,a ﹣b <0,a +b <0,∴原式=|b |+|a ﹣b |﹣|a +b |=b ﹣(a ﹣b )+(a +b )=b ﹣a +b +a +b=3b ,故答案为:3b【点睛】a =和绝对值的性质是解题的关键.15.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.16.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为12【点睛】 本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型. 17.2018【解析】试题解析:,令,,显然,∴,∴,∵与奇偶数相同,∴,∴,∴.故答案为:2018.解析:2018【解析】 试题解析:y ===令a =b = 显然0a b >≥,∴224036a b -=,∴()()4036a b a b +-=,∵()a b +与()-a b 奇偶数相同,∴20182a b a b +=⎧⎨-=⎩, ∴10101008a b =⎧⎨=⎩, ∴2018y a b =+=.故答案为:2018.18.【解析】上述各式反映的规律是(n ⩾1的整数),得到第5个等式为: (n ⩾1的整数).故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.19.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a=﹣1时,a+b=﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.20.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

八年级数学下册第十六章二次根式易错题集锦(带答案)

八年级数学下册第十六章二次根式易错题集锦(带答案)

八年级数学下册第十六章二次根式易错题集锦单选题1、若x =√2+1,则代数式x 2−2x +2的值为( )A .7B .4C .3D .3−2√2答案:C分析:先将代数式x 2−2x +2变形为(x −1)2+1,再代入即可求解.解:x 2−2x +2=(x −1)2+1=(√2+1−1)2+1=3.故选:C小提示:本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.2、下列计算正确的是( )A .32=6B .(﹣25)3=﹣85C .(﹣2a 2)2=2a 4D .√3+2√3=3√3答案:D分析:由有理数的乘方运算可判断A ,B ,由积的乘方运算与幂的乘方运算可判断C ,由二次根式的加法运算可判断D ,从而可得答案.解:32=9,故A 不符合题意;(−25)3=−8125, 故B 不符合题意;(−2a 2)2=4a 4, 故C 不符合题意;√3+2√3=3√3, 故D 符合题意;故选D小提示:本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.3、下列各式是二次根式的是( )A .√3B .√−1C .√53D .√π−4答案:A分析:根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.解:A 、符合二次根式有意义条件,符合题意;B 、-1<0,所以√−1无意义,故B 选项不符合题意;C 、是三次根式,所以C 选项不符合题意;D 、π-4<0,所以√π−4无意义,故D 选项不符合题意.故选:A .小提示:本题考查二次根式的定义及有意义的条件:√a 是二次根式,必须有a≥0.4、估计(2√30−√24)⋅√16的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间答案:B分析:先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围. (2√30−√24)⋅√16=2√30×√16−√24×√16,=2√5−2,而2√5=√4×5=√20,4<√20<5,所以2<2√5−2<3,所以估计(2√30−√24)⋅√16的值应在2和3之间, 故选B.小提示:本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.5、对于无理数√3,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是( ).A .2√3−3√2B .√3+√3C .(√3)3D .0×√3答案:D分析:分别计算出各选项的结果再进行判断即可.A .2√3−3√2不能再计算了,是无理数,不符合题意;B .√3+√3=2√3,是无理数,不符合题意;C .(√3)3=3√3,是无理数,不符合题意;D .0×√3=0,是有理数,正确.故选:D .小提示:此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.6、在下列代数式中,不是二次根式的是( )A .√5B .√13C .√x 2+1D .2x 答案:D分析:直接利用二次根式的定义即可解答.解:A 、√5是二次根式,故此选项不合题意;B 、√13是二次根式,故此选项不合题意;C 、√x 2+1是二次根式,故此选项不合题意;D 、2x ,不是二次根式,故此选项符合题意.故答案为D .小提示:本题主要考查了二次根式的定义,一般形如√a (a ≥0)的代数式叫做二次根式,正确把握二次根式的定义是解答本题的关键.7、实数a ,b 在数轴上的位置如图所示,化简(√a)2+√b 2的结果是( ).A .−a +bB .−a −bC .a +bD .a −b答案:D分析:根据题意得出b <0<1<a ,进而化简求出即可.解:由数轴可得:b<0<1<a,则原式=a-b.故选:D.小提示:本题主要考查了二次根式的性质与化简,正确得出a,b的符号是解题关键.8、下列二次根式中,最简二次根式是()D.√a2A.−√2B.√12C.√15答案:A分析:根据最简二次根式的两个条件逐项判定即可.解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选:A.小提示:本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、√(−3)2化简后的结果是()A.√3B.3C.±√3D.±3答案:B试题分析:“√a”表示的是a的算术平方根,“±√a”表示的是a的平方根.√(−3)2=√9=3,故选B.10、从√2,−√3,−√2这三个实数中任选两数相乘,所有积中小于2的有()个.A.0B.1C.2D.3答案:C分析:根据题意分别求出这三个实数中任意两数的积,进而问题可求解.解:由题意得:−√3×√2=−√6,−√2×√2=−2,−√3×(−√2)=√6,∴所有积中小于2的有−√6,−2两个;故选C .小提示:本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键.填空题11、若a >√2a +1,化简|a +√2|−√(a +√2+1)2=_____.答案:1分析:先根据a >√2a +1,判断出a <−1−√2,据此可得a +√2<−1,a +√2+1<0,再依据绝对值性质和二次根式的性质化简可得.解:∵a >√2a +1,∴(1−√2)a >1,则a <1−√2,即a <−1−√2, ∴a +√2<−1,a +√2+1<0,原式=−a −√2+a +√2+1=1,所以答案是:1 .小提示:本题主要考查二次根式的应用,解题的关键是掌握二次根式的性质、绝对值的性质和解一元一次不等式的步骤.12、已知最简二次根式√2a +1a−b−1和√a +3是同类二次根式,则a b =______. 答案:12分析:根据同类二次根式定义:两个被开方数相同的最简二次根式是同类二次根,列出方程组{a −b −1=22a +1=a +3求解,得出a 、b 值,再代入计算即可. 银,根据题意,得{a −b −1=22a +1=a +3,解得:{a =2b =−1, ∴ab =2-1=12,所以答案是:12.小提示:本题考查同类二次根式概念,代数式求值,负整理指数幂的运算,解二元一次方程组,熟练掌握同类二次根式概念是解题的关键.13、计算√5×√15−√12的结果是_______.答案:3√3分析:根据二次根式的运算法则计算即可得出答案.原式=√5×15−2√3=5√3−2√3=3√3,故答案为3√3.小提示:本题考查的是二次根式,比较简单,需要熟练掌握二次根式的运算法则.14、已知a+2a =√20,那么a−2a的值为__________.答案:±2√3分析:根据已知条件求出a2+(2a )2的值,再由:(a−2a)2=a2+(2a)2−4,即可得出答案.解:∵a+2a=√20,得:a2+(2a )2=20−4=16,∴(a−2a )2=a2+(2a)2−4=16−4=12,∴a−2a=±2√3,所以答案是:±2√3.小提示:本题考查完全平方公式的变形运用,能利用已知条件求出a2+(2a )2,再将a−2a化为平方形式,再化回来是关键.15、已知等式√5−xx−3=√5−x√x−3成立,化简|x﹣6|+√(x−2)2的结果为 _____.答案:4分析:直接利用二次根式的除法运算法则得出x的取值范围,进而化简得出答案.解:∵等式√5−xx−3=√5−x√x−3成立,∴{5−x ≥0x −3>0, 解得:3<x ≤5,∴|x ﹣6|+√(x −2)2=6﹣x +x ﹣2=4.所以答案是:4.小提示:此题主要考查了二次根式的除法运算以及非负数的性质,正确得出x 的取值范围是解题关键. 解答题16、计算:(13)﹣1﹣√18×(﹣√3)﹣|√6﹣3|.答案:4√6分析:根据负整数幂运算公式,二次根式的运算,绝对值的运算进行化简运算即可.(13)−1﹣√18×(﹣√3)﹣|√6﹣3|=3+3√6+√6﹣3=4√6.小提示:本题主要考查了负整数指数幂、实数的运算,熟练掌握运算公式和法则是解题的关键.17、已知a =2+√5,b =2−√5,求代数式a 2b +ab 2的值.答案:-4分析:先将代数式因式分解,再代入求值.a 2b +ab 2=ab(a +b)=(2+√5)(2−√5)(2+√5+2−√5)=−1×4=−4.故代数式的值为−4.小提示:本题考查因式分解、二次根式的混合运算,解决本题的关键是熟练进行二次根式的计算.18、计算:(1)3(√2+√3)+2(√2−2√3)3−√2+(√3)2+|1−√2|(2)√8答案:(1)5√2-√3(2)4分析:(1)原式去括号,合并同类二次根式即可得到答案;(2)根据立方根、算术平方根,平方和绝对值的代数意义化简各项后再进行加减运算即可得到答案.(1)原式=3√2+3√3+2√2-4√3=5√2-√3(2)原式=2-√2+3+√2-1=2+3-1=4小提示:此题主要考查了实数的混合运算以及二次根式的加减法,熟练掌握运算法则是解答此题的关键.。

二次根式易错题汇编及答案

二次根式易错题汇编及答案

二次根式易错题汇编及答案一、选择题1.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a . 2.下列各式计算正确的是( )A 22221081081082-==-= B .()()()()4949236-⨯-=--=-⨯-= C 11111154949236+==+= D .9255116164==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式36,所以A 选项错误;B 、原式49⨯49,所以B 选项错误;C 、原式6,所以C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.下列计算中,正确的是( )A .=B 1b =(a >0,b >0)C =D .=【答案】B【解析】 【分析】a≥0,b≥0a≥0,b >0)进行计算即可. 【详解】A 、B 1b (a >0,b >0),故原题计算正确;C ,故原题计算错误;D 32故选:B .【点睛】 此题主要考查了二次根式的乘除法,关键是掌握计算法则.4.已知n是整数,则n的最小值是().A.3 B.5 C.15 D.25【答案】C【解析】【分析】【详解】解:135n=也是整数,∴n的最小正整数值是15,故选C.5.在下列算式中:=②=;==;=,其中正确的是()4A.①③B.②④C.③④D.①④【答案】B【解析】【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】①错误;=②正确;==,故③错误;==④正确;故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.6.已知n n的最小值是()A.3 B.5 C.15 D.45【答案】B【解析】【分析】由题意可知45n是一个完全平方数,从而可求得答案.【详解】=∵n∴n的最小值为5.故选:B.【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.7.下列计算结果正确的是()A3B±6CD.3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A、原式=|-3|=3,正确;B、原式=6,错误;C、原式不能合并,错误;D、原式不能合并,错误.故选A.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.8.)A.±3 B.-3 C.3 D.9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.9.下列各式中计算正确的是()A+=B.2+=C=D.2=2【答案】C【解析】【分析】结合选项,分别进行二次根式的乘法运算、加法运算、二次根式的化简、二次根式的除法运算,选出正确答案.【详解】解:不是同类二次根式,不能合并,故本选项错误;B.2==1,原式计算错误,故本选项错误.D.2故选:C.【点睛】本题考查二次根式的加减法和乘除法,在进行此类运算时,掌握运算法则是解题的关键.10.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.11.x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x+∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.12.如果一个三角形的三边长分别为12、k、7221236k k-+|2k﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k【答案】D【解析】【分析】求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为12、k、72,∴72-12<k<12+72,∴3<k<4,21236k k-+,=()26k--|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k,故选D.【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.13的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.14.一次函数y mx n =-+的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.15.a 的取值范围为() A .0a >B .0a <C .0a =D .不存在【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .16.下列计算或化简正确的是( )A.=BC 3=-D 3= 【答案】D【解析】解:A .不是同类二次根式,不能合并,故A 错误;B =,故B 错误;C 3=,故C 错误;D 3===,正确.故选D .17.下列各式中,运算正确的是( )A 2=-B 4=C =D .2=【答案】B【解析】【分析】=a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【详解】A 2=,故原题计算错误;B =,故原题计算正确;C =D 、2不能合并,故原题计算错误;故选B .【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.18.下列运算正确的是( )A =B =C 123=D 2=-【答案】B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A .≠A 错误;B .=,故B 正确;C .=C 错误;D .2=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.19.如果m 2+m =0,那么代数式(221m m ++1)31m m +÷的值是( )A B . C + 1 D + 2 【答案】A【解析】【分析】先进行分式化简,再把m 2+m =. 【详解】解:(221m m ++1)31m m +÷ 223211m m m m m +++=÷ 232(1)1m m m m +=⋅+ =m 2+m ,∵m 2+m =0,∴m 2+m =∴原式=故选:A .【点睛】 本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=-C .1)4=D .()422a a -=【答案】C【解析】【分析】 根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、1)514=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.。

(完整版)八年级数学二次根式易错题集锦

(完整版)八年级数学二次根式易错题集锦

a > o 时,式子 a 才是二次根式;若a <o ,则式子 \ a 就不能叫二次根式,即 A /a 无意义。

2 •易把 、a 2 与(\ a)2混淆。

3 •二次根式的乘除法混合运算的顺序,一般从左到右依次进行或先把除法统一成乘法后,再用乘法运算 法则计算。

4 •对同类二次根式的定义理解不透。

针对训练题:6.已知:xy 3,则x 、y y x 的值是 \ x \ y7.若.(x 1)2(x 2) (x 1) \ x 2则x 的取值范围是8.已知a b 3,ab 2,计算“ b的值.14.已知x易错题知识点 二次根式易错题1 •忽略二次根式有意义的条件,只有被开方数 5 •二次根式的混合运算顺序不正确。

1.若..X 1— 2 x (x y),则 x y = 2. .(b 3)3b ,则b 的取值范围是 3. (. a 1)2 1成立的条件是4.计算a 1的结果是 a I ab ------ 2的值为 (a b)29.已知实数 a,b 在数轴上的对应点分别为 A,B,且 A 在原点左侧,B 要原点右侧,如果a b ,则 a b Na10.已知a,b 分别为等腰三角形的两条边长 ,且a,b 满足b 4 ,3a 6 3.2 a ,求此三角形的周长?11.若代数式;m --有意义, Vmn 那么直角坐标系中点 P ( m , n )的位置在( )象限12. 当 1时,化简.(a 1)2 1 2a13.化简1).2). \ 4m 3n(m 0)=15.已知:实数 7 \ 3的整数部分为a,小数部分为b,求代数式ab 的值。

16..若 a,b 为实数,且 4a 2 b 2 4a 10b2619.如图所示的Rt △ ABC 中,/ B=90 ° ,点P 从点B 开始沿BA 边以1厘米/?秒的速度向点 A 移动;同时, 点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点 C 移动.问:几秒后△ PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)17. 已知 i' -~ 2 小 <x 3y x 9 0,求 的值。

(易错题精选)初中数学二次根式全集汇编附答案

(易错题精选)初中数学二次根式全集汇编附答案

(易错题精选)初中数学二次根式全集汇编附答案一、选择题1.如果,则a的取值范围是()A. B. C. D.【答案】B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B..考点:二次根式的性质.2.2(21)12a a-=-,则a的取值范围是()A.12a≥B.12a>C.12a≤D.无解【答案】C【解析】【分析】2(21)a-=|2a-1|,则|2a-1|=1-2a,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】2(21)a-=|2a-1|,∴|2a-1|=1-2a,∴2a-1≤0,∴12a≤.故选:C.【点睛】此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.3.把1a--( )A a-B.a C.a--D a 【答案】A【解析】【分析】由二次根式-a 是负数,根据平方根的定义将a 移到根号内是2a ,再化简根号内的因式即可.【详解】 ∵10a-≥,且0a ≠, ∴a<0,∴-,∴-= 故选:A. 【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.4.有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得 200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.5.下列运算正确的是( )A B .1)2=3-1 C D 5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:A.3+25≠,故本选项错误;B. (3-1)2=3-23+1=4-23,故本选项错误;C. 3×2=6,故本选项正确;D.2253-=25916-= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.6.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .7.433x x +-+在实数范围内有意义的整数x 有( ) A .5个B .3个C .4个D .2个【答案】C【解析】∵式子433x x +-+在实数范围内有意义 ∴30430x x +>⎧⎨-≥⎩ ,解得:433x -<≤, 又∵x 要取整数值,∴x 的值为:-2、-1、0、1.即符合条件的x 的值有4个.故选C.8.下列计算或运算中,正确的是()A .22a a =B .1882-=C .61523345÷=D .3327-=【答案】B【解析】【分析】 根据二次根性质和运算法则逐一判断即可得.【详解】A 、22a =2×2a 2a =,此选项错误; B 、188-=32-22=2,此选项正确;C 、6152335÷=,此选项错误;D 、3327-=-,此选项错误;故选B .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.9.下列计算正确的是( )A .+=B .﹣=﹣1C .×=6D .÷=3【答案】D【解析】【分析】根据二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】解:A 、B 与不能合并,所以A 、B 选项错误;C、原式= ×=,所以C选项错误;D、原式==3,所以D选项正确.故选:D.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.50·a的值是一个整数,则正整数a的最小值是()A.1 B.2 C.3 D.5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到52a,再根据条件确定正整数a的最小值即可.【详解】∵50·a=50a=52a是一个整数,∴正整数a是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.11.下列运算正确的是()A.B.C.(a﹣3)2=a2﹣9 D.(﹣2a2)3=﹣6a6【答案】B【解析】【分析】各式计算得到结果,即可做出判断.【详解】解:A、原式不能合并,不符合题意;B、原式=,符合题意;C、原式=a2﹣6a+9,不符合题意;D、原式=﹣8a6,不符合题意,故选:B.【点睛】考查了二次根式的加减法,幂的乘方与积的乘方,完全平方公式,以及分式的加减法,熟练掌握运算法则是解本题的关键.12.下列计算错误的是( )A .BCD 【答案】A【解析】【分析】【详解】选项A ,不是同类二次根式,不能够合并;选项B ,原式=2÷=选项C ,原式=选项D ,原式==. 故选A.13.下列计算或化简正确的是( )A .=BC 3=-D 3= 【答案】D【解析】解:A .不是同类二次根式,不能合并,故A 错误;B =,故B 错误;C 3=,故C 错误;D 3===,正确.故选D .14.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.15.下列各式成立的是( )A .2-= B -=3C .223⎛=- ⎝D 3【答案】D【解析】 分析:各项分别计算得到结果,即可做出判断.详解:A .原式B .原式不能合并,不符合题意;C .原式=23,不符合题意; D .原式=|﹣3|=3,符合题意.故选D .点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.16.下列各式中是二次根式的是( )A B C D x <0)【答案】C【解析】【分析】根据二次根式的定义逐一判断即可.【详解】A 3,不是二次根式;B 1<0,无意义;C 的根指数为2,且被开方数2>0,是二次根式;D 的被开方数x <0,无意义;故选:C .【点睛】a≥0)叫二次根式.17.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知一长方体婴儿游泳池的体积为300立方米、高为38米,则该长方体婴儿游泳池的底面积为()A.403平方米B.402平方米C.203平方米D.202平方米【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】解:根据题意,该长方体婴儿游泳池的底面积为300÷38=33008÷=800=202(平方米)故选:D.【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.18.下列运算正确的是()A.18126-=B.822÷=C.3223-=D.142 2=【答案】B【解析】【分析】根据二次根式的混合运算的相关知识即可解答.【详解】A. 181232-23-=,故错误;B. 822÷=,正确;C. 32222-=,故错误;D.1422≠,故错误;故选B.【点睛】此题考查二次根式的性质与化简,解题关键在于掌握运算法则.19.若x2+在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】x+2∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.-有意义,那么直角坐标系中 P(m,n)的位置在()20.mmnA.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.【详解】依题意的-m≥0,mn>0,解得m<0,n<0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.。

(易错题精选)初中数学二次根式易错题汇编

(易错题精选)初中数学二次根式易错题汇编

(易错题精选)初中数学二次根式易错题汇编一、选择题1.计算÷的结果是( )A B C .23 D .34【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:÷ 1(24=⨯÷=16=⨯=. 故选:A .【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.2.下列各式计算正确的是( )A 1082==-= B .()()236==-⨯-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式,所以A 选项错误;B、原式,所以B选项错误;C、原式6,所以C选项错误;D、原式54==-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.在下列算式中:=②=;4==;=,其中正确的是()A.①③B.②④C.③④D.①④【答案】B【解析】【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】①错误;=②正确;22==,故③错误;==④正确;故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.4.)A.±3 B.-3 C.3 D.9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键. 5.下列运算正确的是()A.B)2=2 CD==3﹣2=1【答案】B【解析】【分析】根据二次根式的性质和加减运算法则判断即可.【详解】根据二次根式的加减,可知A选项错误;根据二次根式的性质2=a(a≥02=2,所以B选项正确;(0)=0(=0)(0)a aa aa a⎧⎪=⎨⎪-⎩><﹣11|=11,所以C选项错误;DD选项错误.故选B.【点睛】此题主要考查了的二次根式的性质2=a(a≥0(0)=0(=0)(0)a aa aa a⎧⎪=⎨⎪-⎩><,正确利用性质和运算法则计算是解题关键.6.的结果是A.-2 B.2 C.-4 D.4【答案】B【解析】22=-=故选:B7.x 的取值范围是( )A .1x >-B .0x ≥C .1x ≥-D .任意实数【答案】C【解析】【分析】a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】有意义,则10x +≥,故1x ≥-故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.8.下列计算正确的是( )A 6=B =C .2=D 5=- 【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A ====C.=,此选项计算错误;5=,此选项计算错误;故选:B .【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.9.下列计算错误的是( )A =B =C .3=D =【答案】C【解析】【分析】根据二次根式的运算法则逐项判断即可.【详解】解:==,正确;==C. =D. ==故选:C .【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.10.下列计算正确的是( )A .3=B =C .1=D 2= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;BC 、2==D 2==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.11.下列各式中,属于同类二次根式的是( )A B . C . 3 D .【答案】C【解析】【分析】化简各选项后根据同类二次根式的定义判断.【详解】A 的被开方数不同,所以它们不是同类二次根式;故本选项错误;B 、C 、3的被开方数相同,所以它们是同类二次根式;故本选项正确;D故选:C .【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.12.已知1a b ==+,a b 的关系是( ) A .a b =B .1ab =-C .1a b =D .=-a b 【答案】D【解析】【分析】根据a 和b 的值去计算各式是否正确即可.【详解】A. 1a b -===B. 1ab =≠-,错误;C. 1ab =≠,错误;D. 10a b +++=,正确; 故答案为:D .【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.13.在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.14.下列二次根式是最简二次根式的是( )A B C D【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.15.当实数x 41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.16.如果m 2+m =0,那么代数式(221m m ++1)31m m +÷的值是( )AB .C + 1D + 2 【答案】A【解析】【分析】先进行分式化简,再把m 2+m =. 【详解】 解:(221m m ++1)31m m +÷ 223211m m m m m+++=÷ 232(1)1m m m m +=⋅+ =m 2+m ,∵m 2+m =0,∴m 2+m =∴原式=故选:A .【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.17.估计2值应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间 【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:2=∵91216<<<<∴34<<值应在3到4之间.∴估计2故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.18.若x+y=,x﹣y=3﹣的值为()A.B.1 C.6 D.3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=,x﹣y=3﹣,==1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.下列运算正确的是()A+=B)﹣1=2C 2 D±3【答案】B【解析】【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:AB、1-=C2=D3,故此选项错误;故选:B.【点睛】此题主要考查了二次根式的加减以及二次根式的性质,正确掌握二次根式的性质是解题关键.20.1=-,那么x的取值范围是()xA.x≥1B.x>1 C.x≤1D.x<16【答案】A【解析】【分析】根据等式的左边为算术平方根,结果为非负数,即x-1≥0求解即可.【详解】由于二次根式的结果为非负数可知:x-1≥0,解得,x≥1,故选A.【点睛】本题利用了二次根式的结果为非负数求x的取值范围.。

八年级数学下学期《二次根式》易错题集

八年级数学下学期《二次根式》易错题集

《二次根式》易错题集易错题知识点1.忽略二次根式有意义的条件,只有被开方数a≥0时,式子a才是二次根式;若a<0,则式子a就不能叫二次根式,即a无意义。

2.易把2a与2)(a混淆。

3.二次根式的乘除法混合运算的顺序,一般从左到右依次进行或先把除法统一成乘法后,再用乘法运算法则计算。

4.对同类二次根式的定义理解不透。

5.二次根式的混合运算顺序不正确。

典型例题选择题1.当a>0,b>0时,n是正整数,计算的值是()A.(b﹣a)B.(a n b3﹣a n+1b2)C.(b3﹣ab2)D.(a n b3+a n+1b2)考点:二次根式的性质与化简。

分析:把被开方数分为指数为偶次方的因式的积,再开平方,合并被开方数相同的二次根式.解答:解:原式=﹣=a n b3﹣a n+1b2=(a n b3﹣a n+1b2).故选B.点评:本题考查的是二次根式的化简.最简二次根式的条件:被开方数中不含开得尽方的因式或因数.2.当x取某一范围的实数时,代数式的值是一个常数,该常数是()A.29 B.16 C.13 D.3考点:二次根式的性质与化简。

分析:将被开方数中16﹣x和x﹣13的取值范围进行讨论.解答:解:=|16﹣x|+|x﹣13|,(1)当时,解得13<x<16,原式=16﹣x+x﹣13=3,为常数;(2)当时,解得x<13,原式=16﹣x+13﹣x=29﹣2x,不是常数;(3)当时,解得x>16;原式=x﹣16+x﹣13=2x﹣29,不是常数;(4)当时,无解.故选D点评:解答此题,要弄清二次根式的性质:=|a|,分类讨论的思想.3.当x<﹣1时,|x﹣﹣2|﹣2|x﹣1|的值为()A.2 B.4x﹣6 C.4﹣4x D.4x+4考点:二次根式的性质与化简。

分析:根据x<﹣1,可知2﹣x>0,x﹣1<0,利用开平方和绝对值的性质计算.解答:解:∵x<﹣1∴2﹣x>0,x﹣1<0∴|x﹣﹣2|﹣2|x﹣1|=|x﹣(2﹣x)﹣2|﹣2(1﹣x)=|2(x﹣2)|﹣2(1﹣x)=﹣2(x﹣2)﹣2(1﹣x)=2.故选A.点评:本题主要考查二次根式的化简方法与运用:a>0时,=a;a<0时,=﹣a;a=0时,=0;解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.4.化简|2a+3|+(a<﹣4)的结果是()A.﹣3a B.3a﹣C.a+D.﹣3a考点:二次根式的性质与化简;绝对值。

八年级初二数学数学二次根式的专项培优易错试卷练习题附解析

八年级初二数学数学二次根式的专项培优易错试卷练习题附解析

一、选择题1.下列计算正确的是( ) A .()222a b a b -=- B .()322x x 8x ÷=+ C .1a a a a÷⋅= D .()244-=-2.若2a <,化简()223a --=( )A .5a -B .5a -C .1a -D .1a --3.下列二次根式中是最简二次根式的为( ) A .12B .30C .8D .124.下列计算正确的是( ) A .235+=B .422-=C .8=42D .236⨯=5.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣16.下列各式计算正确的是( ) A .1222= B .362÷=C .2(3)3=D .222()-=-7.已知52a =+,52b =-,则227a b ++的值为( ) A .4B .5C .6D .78.下列式子中,为最简二次根式的是( ) A .12B .7C .4D .489.已知a 为实数,则代数式227122a a -+的最小值为( ) A .0 B .3C .33D .910.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .6二、填空题11.若0a >化成最简二次根式为________. 12.若mm 3﹣m 2﹣2017m +2015=_____.13.能力拓展:1A =2A =;3:A =;4A =________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A()3-14.化简并计算:...+=________.(结果中分母不含根式)15.化简二次根式_____.16.计算:2015·2016=________.17.已知1<x <2,171x x +=-_____.18_____.19.函数y 中,自变量x 的取值范围是____________.20.x 的取值范围是_____三、解答题21.2-+1【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.【详解】22-+=1)2(3+⨯=121.【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.若x,y为实数,且y12.求xyyx++2-xyyx+-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x≥0且4x﹣1≥0,解得x=14,此时y=12.即可代入求解.【详解】解:要使y有意义,必须140410xx-≥⎧⎨-≤⎩,即1414xx⎧≤⎪⎪⎨⎪≥⎪⎩∴x=14.当x=14时,y=12.又∵xyyx++2-xyyx+-2=-|∵x=14,y=12,∴xy<yx.∴+当x=14,y=12时,原式=.【点睛】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3==,24====进行分母有理化.(3)利用所需知识判断:若a=,2b=ab,的关系是.(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227 -==-(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.24.计算(1)2213113a a a aa a+--+-+-;(2)已知a、b+b=0.求a、b的值(3)已知abc=1,求111a b cab a bc b ac c++++++++的值【答案】(1)22223aa a----;(2)a=-3,b;(3)1.【分析】(1)先将式子进行变形得到()()113113a a a aa a+--+-+-,此时可以将其化简为1113a aa a⎛⎫⎛⎫--+⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a+6=0,b=0,从而可求出a、b;(3)根据abc=1先将所求代数式转化:11b ab abbc b abc ab a ab a==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.25.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式2222]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.26.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并. 【详解】. 【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.27.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22mm-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.28.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答. 【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .2.D解析:D 【分析】||a =,然后再根据a 的范围去掉绝对值后即可求解. 【详解】|2|=-a ,且2a <,∴|2|2=-=-+a a ,原式|2|3231=--=-+-=--a a a , 故选:D . 【点睛】||a =这个公式是解决本题的关键.3.B解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A =不是最简二次根式,本选项错误;BC =不是最简二次根式,本选项错误;D =故选:B . 【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.4.D解析:D 【分析】直接利用二次根式的混合运算法则分别判断得出答案. 【详解】解:AB 2=,故此选项不合题意;C ,故此选项不合题意;D =故选:D . 【点睛】本题考查二次根式的混合运算,正确掌握相关运算法则是解题关键.5.A解析:A 【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可 【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A . 【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小6.C解析:C 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】2,故选项A 错误;=B 错误;C. 23=,故选项C 正确;2=,故选项D 错误;故选C. 【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.7.B解析:B 【分析】根据二次根式的混合运算和完全平方公式进行计算,即可得到结果. 【详解】解:∵2a =,2b =, ∴227a b ++2252527 554547454 25= ∴227255a b故选:B .【点睛】本题主要考查了二次根式的混合运算和完全平方公式,熟悉相关运算法则是解题的关键 8.B解析:B【分析】根据最简二次根式的定义即可求出答案.【详解】A.1222=,故A 不是最简二次根式; B.7是最简二次根式,故B 正确;C.4=2,故C 不是最简二次根式;D.4843=,故D 不是最简二次根式;故选:B .【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.9.B解析:B【解析】根据题意,由227122a a -+=22(69)9a a -++=22(3)9a -+,可知当(a ﹣3)2=0,即a=3时,代数式227122a a -+的值最小,为9=3.故选B .10.D解析:D【解析】(4,2)表示第4排从左向右第2个数是:,(21,2)表示第21排从左向右第2个数,可以看出奇数排最中间的一个数都是1, 第21排是奇数排,最中间的也就是这排的第1个数是1,那么第2个就是:, •=6,故选D二、填空题11.【分析】先判断b 的符号,再根据二次根式的性质进行化简即可.【详解】解:∵∴∴所以答案是:【点睛】本题考查了二次根式的性质.解析: 【分析】先判断b 的符号,再根据二次根式的性质进行化简即可.【详解】 解:∵40,0a a b-≥> ∴0b < 2a b b b b=--所以答案是: 【点睛】a =.12.4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m ﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】mm ),∴m 3-m 2-2017m +2015=m 2(m ﹣1)﹣2017m +2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.13.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.14.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案. 【详解】解:原式===【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.15.【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知a==.故答案为.解析:【解析】根据二次根式的性质,可知a≠0,-(a+1)≥0,因此可知a≤-1,因此可知=故答案为16.【解析】原式=.故答案为.【解析】原式=20152015=17.-2【详解】∵x+=7,∴x-1+=6,∴(x-1)-2+=4,即 =4,又∵1<x <2,∴=-2,故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是 解析:-2【详解】∵x+11x -=7,∴x-1+11x -=6,∴(x-1)-2+11x -=4,即2=4, 又∵1<x <2,∴, 故答案为-2.【点睛】本题主要考查完全平方式的应用以及二次根式的运算,解题的关键是要根据所求的式子对已知的式子进行变形.18.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可.【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.19.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】,得4-x≥0且x-2≠0.解:由y=2x-解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

初中数学二次根式易错题汇编附答案

初中数学二次根式易错题汇编附答案

初中数学二次根式易错题汇编附答案一、选择题1.下列计算正确的是( )A .3=B =C .1=D 2= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;BC 、22=⨯=D 2==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.2.在下列算式中:=②=;③42==;=,其中正确的是( ) A .①③B .②④C .③④D .①④ 【答案】B【解析】【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】①错误;=②正确;222==,故③错误;==④正确;故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.3.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.4.下列计算结果正确的是( )A 3B ±6CD .3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A 、原式=|-3|=3,正确;B 、原式=6,错误;C 、原式不能合并,错误;D 、原式不能合并,错误.故选A .【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.5.如果•6(6)x x x x -=-,那么( ) A .0x ≥B .6x ≥C .06x ≤≤D .x 为一切实数 【答案】B【解析】∵()x ?x 6x x 6-=-,∴x ≥0,x-6≥0,∴x 6≥.故选B.6.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】根据二次根式的性质可得2a =|a|,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a =|a|.7.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可:∵由数轴可知,b>0>a,且 |a|>|b|,()a b a a b b+=-++=.故选C.考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.8.n的最大值为()A.12B.11C.8D.3【答案】C【解析】【分析】如果实数n取最大值,那么12-n22,从而得出结果.【详解】2时,n取最大值,则n=8,故选:C【点睛】本题考查二次根式的有关知识,解题的关键是理解”的含义.9.把(a b-根号外的因式移到根号内的结果为().A B C.D.【答案】C【解析】【分析】先判断出a-b的符号,然后解答即可.【详解】∵被开方数1b a≥-,分母0b a-≠,∴0b a->,∴0a b-<,∴原式(b a=--==故选C.【点睛】=|a|.也考查了二次根式的成立的条件以及二次根式的乘法.10.下列计算正确的是()A.1836-=÷=B.822C.2332-=D.2-=-(5)5【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A.1831836÷=÷=,此选项计算错误;B.822222-=-=,此选项计算正确;C.2333-=,此选项计算错误;D.2-=,此选项计算错误;(5)5故选:B.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.11.下列运算正确的是()A.B.C.(a﹣3)2=a2﹣9 D.(﹣2a2)3=﹣6a6【答案】B【解析】【分析】各式计算得到结果,即可做出判断.【详解】解:A、原式不能合并,不符合题意;B、原式=,符合题意;C、原式=a2﹣6a+9,不符合题意;D、原式=﹣8a6,不符合题意,故选:B.【点睛】考查了二次根式的加减法,幂的乘方与积的乘方,完全平方公式,以及分式的加减法,熟练掌握运算法则是解本题的关键.12.下列各式中,是最简二次根式的是( )A B C D【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A被开方数含分母,错误.(2)B满足条件,正确.(3) C被开方数含能开的尽方的因数或因式,错误.(4) D被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.13.下列计算错误的是( )A.BC D【答案】A【解析】【分析】【详解】选项A,不是同类二次根式,不能够合并;选项B,原式=2÷=选项C,原式=选项D,原式==.故选A.14.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为()A.B.C.D.【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】故选:D .【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.15.下列运算正确的是( )A .235a a a +=B .23241(2)()162a a a -÷=-C .1133a a-=D .2222)3441a a a ÷=-+ 【答案】D【解析】 试题分析:A .23a a +,无法计算,故此选项错误;B .()23262112824a a a a ⎛⎫⎛⎫-÷=-÷ ⎪ ⎪⎝⎭⎝⎭=432a -,故此选项错误; C .133a a-=,故此选项错误;D .()22223441a a a ÷=-+,正确.故选D .16.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3 【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.17.如果m 2+m 2-=0,那么代数式(221m m ++1)31m m +÷的值是( ) A .2B .22C .2+ 1D .2+ 2 【答案】A 【解析】【分析】先进行分式化简,再把m 2+m 2=代入即可. 【详解】解:(221m m ++1)31m m+÷ 223211m m m m m+++=÷ 232(1)1m m m m +=⋅+ =m 2+m ,∵m 2+m 2-=0,∴m 2+m 2=, ∴原式2=,故选:A .【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.18.下列根式中属最简二次根式的是( )A .21a +B .12C .8D .2 【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A 、无法化简;B 、原式=;C 、原式=2;D 、原式=. 考点:最简二次根式19.下列各式中,属于同类二次根式的是( )A xy 2xyB . 2x 2xC . 3a 1aD .a 3a【答案】C【解析】【分析】化简各选项后根据同类二次根式的定义判断.【详解】A、xy与2=xy y x的被开方数不同,所以它们不是同类二次根式;故本选项错误;B、2x与2x的被开方数不同,所以它们不是同类二次根式;故本选项错误;C、3a a与1=a的被开方数相同,所以它们是同类二次根式;故本选项正确;aD、3a是三次根式;故本选项错误.故选:C.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.20.如图,数轴上的点可近似表示(4630-)6÷的值是()A.点A B.点B C.点C D.点D【答案】A【解析】【分析】-55先化简原式得4545【详解】-原式=45<<3,由于25-<2.∴1<45故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.。

2020-2021学年八年级数学人教版下册第16章《二次根式》易错题(解析版)

2020-2021学年八年级数学人教版下册第16章《二次根式》易错题(解析版)

2020-2021学年八年级数学人教版下册第16章《二次根式》易错题学校:___________姓名:___________班级:___________考号:___________一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列运算正确的是()A=.(22=C+=2=-【答案】B【分析】利用二次根式的加减法对A、C进行判断;根据二次根式的性质对B、D进行判断.【详解】解:A A选项错误;B、(22=,所以B选项正确;C C选项错误;=-D选项错误.D、原式22故选:B.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.下列二次根式能与)A.B C D【答案】A【分析】能与【详解】解:.A =,被开方数与A 正确;B =,被开方数与B 错误;C =,被开方数与C 错误;D =,被开方数与D 错误. 故选择:A .【点睛】本题考查了同类二次根式,几个二次根式化成最简二次根式后被开方数相同,这几个二次根式叫同类二次根式,同类二次根式可以进行合并,熟练掌握同类二次根式的定义是解题的关键.3.若|2013|a a -=,则22013a -的值是( )A .2012B .2013C .2014D .无法确定【答案】C【分析】根据二次根式的被开方数是非负数、将其代入求值即可.【详解】解:∵a -2014≥0,∵a≥2014,-=a ,=2013,∵a -2014=20132,∵a -20132=2014.故选:C .【点睛】a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.已知||5a =7=b a =-,则a b +=( )A .2B .12C .2或12D .2-或12-【答案】C【分析】先根据绝对值性质和二次根式的性质得出a 、b 的值,再分别代入计算可得.【详解】解:∵|a|=57=,∵a=±5,b=±7,又b a =-,∵a -b≤0,即a≤b ,则a=-5,b=7或a=5,b=7,当a=-5,b=7时,a+b=-5+7=2;当a=5,b=7时,a+b=5+7=12;综上,a+b 的值为2或12,故选C .【点睛】本题主要考查二次根式的性质与化简,解题的关键是掌握绝对值性质和二次根式的性质.5.下列计算中正确的是( )A .1=B =C .5=±D 761=-= 【答案】B【分析】根据二次根式的性质和减法运算分别判断.【详解】解:A 、=,故错误,不符合;B 223)2332,故正确,符合;C 5=,故错误,不符合;D 13,故错误,不符合;故选B .【点睛】 本题考查了二次根式的性质,二次根式的减法运算,解题的关键是掌握运算法则. 6.当x在实数范围内有意义( ) A .1x >B .1≥xC .1x <D .1x ≤ 【答案】A【分析】根据分式的分母不等于0的条件及二次根式非负性解答.【详解】由题意得:x-1>0,解得x>1,故选:A.【点睛】此题考查未知数的取值范围的确定,掌握分式的分母不等于0的条件及二次根式非负性是解题的关键.7的结果估计在()A.10到11之间B.9到10之间C.8到9之间D.7到8之间【答案】D【分析】先根据二次根式的乘法计算得到原式为4+的范围,即可得出答案.【详解】===+,解:原式4∵34<<,∵748<+<,故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.8.如x为实数,在“1)□x”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x不可能是()A.1B1C.D.1【答案】C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】-=,故选项A不符合题意;解:A、1)1)0⨯=,故选项B不符合题意;B、1)1)2C1与C符合题意;+=,故选项D不符合题意.D、1)(10故选:C.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.9.已知m、n是正整数,则满足条件的有序数对(m,n)为()A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是【答案】C【分析】根据二次根式的性质分析即可得出答案.【详解】解:m 、n 是正整数, ∵m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20),故选:C .【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.10.当x =()20193419971994x x --的值为( ).A .1B .1-C .20022D .20012-【答案】B【解析】【分析】 由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.【详解】∵12x +=,()2211994x ∴-=,即24419930x x --=,()()32241997199444199344199311x x x x x x x ∴--=--+---=-. ∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化.二、填空题(本大题共7小题,每小题3分,共21分) 114132-⎛⎫-+-= ⎪⎝⎭__________________. 【答案】-13【分析】根据二次根式的运算、负指数幂及绝对值可直接进行求解.【详解】解:原式=16313+-=-;故答案为13-.【点睛】本题主要考查二次根式的运算及负指数幂,熟练掌握二次根式的加减运算及负指数幂是解题的关键.12.已知1,1a b ==,则ab =_____,a b b a+=_____. 【答案】1 6【分析】(1)运用平方差公式计算;(2)先通分,然后a 、b 的值代入计算.【详解】解:1,1a b ==,221)11ab ∴==-=,a b b a+ 22a b ab+= 2()2a b ab ab-+== 6=.故答案为1,6.【点睛】本题考查了二次根式、分式的化简求值,熟练掌握求解的方法是解题的关键.13.如果点A (x ,y 80y -=,则点A 在第_____象限.【答案】二【分析】根据非负性求出x 、y 的值,即可判断A 所在的象限.【详解】80y -=根据二次根式和绝对值的非负性可知x =﹣2,y=8.则A(﹣2,8),应在第二象限.故答案为:二.【点睛】本题考查非负性的应用,坐标点与象限的关系,关键在于利用非负性解出x ,y .14.下列各式:=;==a >0,b≥0);①=-,其中一定成立的是________(填序号). 【答案】∵∵∵【分析】根据二次根式的性质及运算法则逐项分析即可.【详解】∵00,a b ≥>≠,故不一定;=00,a b ≥>; ∵当00,a b >≥时,22231633333b b b a ab a a a aa ===,故一定成立; ∵3a 成立时,0a ≤3a a a a a ,故一定成立;故答案为:∵∵∵.【点睛】本题考查二次根式的性质以及乘除远算法则,熟练掌握基本性质计算法则是解题关键.15.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2-=※________.【答案】1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】解:2※=2=2-2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.16.数轴上有A ,B ,C 三点,相邻两个点之间的距离相等,其中点A 表示,点B 表示1,那么点C 表示的数是________.【答案】1--或12或2【分析】分点C 在点A 的左侧、点C 在点A 、B 的中间、点C 在点B 的右侧三种情况,再分别利用数轴的定义建立方程,解方程即可得.【详解】设点C 表示的数是x ,由题意,分以下三种情况:(1)当点C 在点A 的左侧时,则AC AB =,即1(x =-,解得1x =--(2)当点C 在点A 、B 的中间时,则AC BC =,即(1x x -=-,解得12x =; (3)当点C 在点B 的右侧时,则AB BC =,即1(1x -=-,解得2x =;综上,点C 表示的数是1--或2故答案为:1--12或2+. 【点睛】本题考查了实数与数轴、一元一次方程的应用,熟练掌握数轴的定义是解题关键.17.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.【答案】21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而【详解】∵10a b c ++=∵100a b c ---=∵2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∵2221)2)3)0++=∵123===∵111429a b c -=⎧⎪-=⎨⎪-=⎩∵2511a b c =⎧⎪=⎨⎪=⎩∵2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.三、解答题(本大题共6小题,共49分)18.计算:(1)101(3)|2|2π-⎛⎫--+- ⎪⎝⎭ (22【答案】(1)3;(2(1)根据负指数幂、零指数幂和绝对值的概念直接计算即可;(2)根据二次根式的运算进行计算即可.【详解】解:(1)101(3)|2|2π-⎛⎫--+- ⎪⎝⎭2123=-+=(2222=-【点睛】 本题考查了负指数幂、零指数幂的计算,二次根式的计算,熟练掌握运算法则是解题的关键.19.计算题:(1;(2;(3))()2331⨯-【答案】(1)(2)8;(3)【分析】(1)先利用二次根式的性质进行化简,再利用二次根式的乘除法运算法则计算即可; (2)先利用二次根式的性质进行化简,再利用二次根式的运算法则计算即可;(3)先利用完全平方公式和平方差公式进行计算,再利用二次根式的加减运算法则计算即可.【详解】(1====(2=102=-8=(3)23)(31)+---2(31)=+--22223211⎡⎤=---+⎣⎦9531=--+=.【点睛】本题主要考查二次根式的混合运算,解题的关键是正确化简二次根式,熟练掌握二次根式的运算法则.20.先化简,再求值:2241244x x x x x -⎛⎫-÷ ⎪--+⎝⎭,其中2x =-+【答案】22x -+, 【分析】首先计算括号里面分式的减法,然后再计算括号外分式的除法,化简后,再代入x 的值可得答案.【详解】 解:2241244x x x x x -⎛⎫-÷ ⎪--+⎝⎭22(2)22(2)(2)x x x x x x x --⎛⎫=-⨯ ⎪--+-⎝⎭ 2222x x x --=⨯-+ 22x =-+,当2x =-+== 【点睛】本题考查了分式的化简求值,二次根式的混合运算.分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式. 21.阅读下列简化过程:1===;==== ……解答下列问题:(1)请用n (n 为正整数)表示化简过程规律________;(2; (3)设a =,b =c =,比较a ,b ,c 的大小关系.【答案】(1==(2)1;(3)c b a >>【分析】(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a 、b 、c 分别化简,比较结果即可.【详解】(1== (2+1=1=1=.(3)a ==2b ==+2c ==, 22>,a b ∴>, 又53>b c ∴>,c b a ∴>>.【得解】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.22.已知x =y = (1)求222x xy y ++的值. (2【答案】(1)40;(2)6-【分析】(1)先将x 、y 进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x 、y 进行计算即可.【详解】 (1)310x ==,3y ==, x y ∴+=6-=x y ,22222()40x xy y x y ∴++=+==.(2)103x =,3y =,20x ∴->,10y+>,21(2)(1)x y x x y y -+=--+ 11x y=-=-=33=-.6【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质及分母有理化的方法、完全平方公式的变形等知识点.23.阅读下列材料,然后回答问题.①一样的式子,其实我们====还可以将其进一步化简:1以上这种化简的步骤叫做分母有理化.①学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a+b=2,ab =-3 ,求a2 + b2.我们可以把a+b和ab看成是一个整体,令x=a+b ,y = ab ,则 a 2+ b2= (a + b)2- 2ab = x2- 2y = 4+ 6=10.这样,我们不用求出a,b,就可以得到最后的结果....+(1b 2a2+ 1823ab + 2b2=(2)已知m 是正整数,a2019 .求m.(31=【答案】(1(2)2;(3)9【分析】(1)先将式子的每一项进行分母有理化,再计算即可; (2)先求出,a b ab +的值,再用换元法计算求解即可;(31=【详解】解:(1)原式12019+2222=+++12019122+++==(2)∵a,b∵2(21),1a b m ab +==+= ∵2a 2+ 1823ab + 2b 2 = 2019∵222()18232019a b ++=∵2298a b +=∵24(21)100m +=∵251m =±- ∵m 是正整数∵m=2.(31=得出21==20∵2281=+=≥≥=.9【点睛】本题考查的知识点是分母有理化以及利用换元思想求解,解此题的关键是读懂题意.理解分母有理化的方法以及利用换元方法解题的方法.试卷第21页,总21页。

八年级初二数学下学期二次根式单元 易错题难题测试题

八年级初二数学下学期二次根式单元 易错题难题测试题

八年级初二数学下学期二次根式单元 易错题难题测试题一、选择题1.下列计算正确的是( ) A .()25-=﹣5 B .4y =2y C .822aaa=D .235+=2.下列各式成立的是( ) A .2(3)3-=B .633-=C .222()33-=- D .2332-=3.下列运算正确的是( ) A .732-= B .()255-=-C .1232÷=D .03812+=4.下列计算正确的是( ) A .2+3=5B .8=42C .32﹣2=3D .23⋅=65.下列二次根式中,最简二次根式是( ) A . 1.5B .13C .10D .276.下列根式中,最简二次根式是( ) A .13B .0.3C .3D .87.化简1156+的结果为( ) A .1130 B .30330C .33030D .30118.若化简|1-x|-2816x x -+的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数 B .1≤x ≤4C .x ≥1D . x ≤49.下列计算不正确的是 ( )A .35525-=B .236⨯=C 774=D 363693=+==10.若|x 2﹣4x+4|23x y --x+y 的值为( ) A .3B .4C .6D .911.下列运算正确的是( ) A 235=B .(228-= C 112222=D .()21313-=-12.已知实数x 、y 满足222y x x =-+--,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定二、填空题13.已知()2117932x x x y ---+-=-,则2x ﹣18y 2=_____.14.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则2b c +=________.15.实数a 、b 满足22a -4a 436-12a a 10-b 4-b-2+++=+,则22a b +的最大值为_________.16.已知|a ﹣2007|+2008a -=a ,则a ﹣20072的值是_____. 17.把1a a-的根号外的因式移到根号内等于? 18.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.19.已知23x =243x x --的值为_______.20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积()()()S p p a p b p c =---ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.先阅读材料,再回答问题: 因为)21211=2121=+;因为(32321=,所以3232=+(43431=4343=+ (154=+ ,1n n=++ ; (2213210099⋅⋅⋅++++的值. 【答案】(1541n n +2)9 【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.22.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23.计算: 21)3)(3--【答案】3-23.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.【详解】解:原式=4-23-[32-(23)2]-626 3⨯=4-23-[32-(23)2]-4=4-23+3-4=3-23【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.24.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简:(一)53533 333⨯==⨯;(二)231)=31 31(31)(31)-=-++-(;(三)22(3)1(31)(31)=31 31313131-+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简5+3:①参照(二)式化简5+3=__________.②参照(三)式化简5+3=_____________(2)+315+37+599+97+【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①;②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==---.以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-.(1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1.【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.26.计算:27812)6【答案】3243【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可. 【详解】解:(27812)6=(332223)6=322)6=323 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.27.计算(118831)31)⨯; (2)1(123)622【答案】(122+;(2)2. 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算. 详解:(1)1883131+;=()322231- 22 ;(2)原式=(2233622⨯, =3362=3322⨯ =922=2点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.28.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.29.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值;(2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)12a ===,b ===22221111()223122222a b a b ab ⎛⎫+=+-=+-⨯⨯=-= ⎪ ⎪⎝⎭ 【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.30.计算:(1(2|a ﹣1|,其中1<a 【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二次根式的性质对A 、B 进行判断;利用分母有理化对C 进行判断;利用二次根式的加减法对D 进行判断. 【详解】解:A 、原式=5,所以A 选项错误;B 、原式=,所以B 选项错误;C=,所以C选项正确;D D选项错误.故选:C.【点睛】本题主要考查了二次根式的性质以及合并同类项法则,正确化简各式是解题的关键.2.A解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:A3=,故A正确;B-不能合并,故B错误;C、22(3=,故C错误;D、=D错误;故选:A.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.C解析:C【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案.【详解】解:A A错误;B5=,故B错误;C2==,故C正确;D01213=+=,故D错误;故选:C.【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.4.D解析:D【解析】解:A A错误;B==,所以B错误;C.=C错误;D==D正确.故选D.5.C解析:C【分析】化简得到结果,即可做出判断.【详解】解:A,不是最简二次根式;2B,不是最简二次根式;C是最简二次根式;D故选:C.【点睛】本题考查最简二次根式,熟练掌握二次根式的化简公式是解题关键.6.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.7.C解析:C【解析】故选C.点睛:此题主要考查了二次根式的化简,解题关键是利用分数的通分求和,然后把其分母有理化即可求解,比较简单,但是易出错,是常考题.8.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.9.D解析:D【解析】根据二次根式的加减法,合并同类二次根式,可知=故正确;=根据二次根式的性质和化简,=,故正确;根据二次根式的加减,不是同类二次根式,故不正确.故选D.10.A解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.11.B解析:B【分析】根据二次根式的性质及运算法则依次计算各项后即可解答.【详解】选项A A错误;选项B,(2428-=⨯=,选项B正确;选项C124==,选项C错误;选项D1,选项D错误.综上,符合题意的只有选项B.故选B.【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.12.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】∵实数x、y满足2y=,∴x=2,y=﹣2,∴yx=22-⨯=-4.故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.二、填空题13.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y﹣2,﹣x+7+x﹣9=3y﹣2,整理得:=3y,∴x﹣解析:22【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】一定有意义,∴x ≥11,|7﹣x =3y ﹣2,﹣x +7+x ﹣9=3y ﹣2,=3y ,∴x ﹣11=9y 2,则2x ﹣18y 2=2x ﹣2(x ﹣11)=22.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,属于提高题.14.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123===∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.15.【分析】首先化简,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出的最大值.【详解】解析:【分析】10-b 4-b-2=+,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出22a b +的最大值.【详解】10-b 4-b-2=+,1042b b =-+--, ∴261042a a b b -+-=-+--, ∴264210a a b b -+-+++-=,∵264a a -+-≥,426b b ++-≥,∴ 264a a -+-=,42=6b b ++-,∴2≤a≤6,-4≤b≤2,∴22a b +的最大值为()226452+-=,故答案为52.【点睛】本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.16.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007|+=a,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007=a,∴a≥2008,∴a﹣2007=a,=2007,两边同平方,得:a﹣2008=20072,∴a﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a的取值范围,从而化简绝对值并变形.17.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.18.﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a <0<b ,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a <0<b ,|a|<|b|,.故答案为-2a .【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题. 19.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.20.【分析】根据a ,b ,c 的值求得p =,然后将其代入三角形的面积S =求值即可.【详解】解:由a =4,b =5,c =7,得p ===8.所以三角形的面积S ===4.故答案为:4.【点睛】本题主解析:【分析】根据a ,b ,c 的值求得p =2a b c ++,然后将其代入三角形的面积S =【详解】解:由a =4,b =5,c =7,得p =2a b c ++=4572++=8.所以三角形的面积S .故答案为:.【点睛】本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

二次根式易错题汇编附答案解析

二次根式易错题汇编附答案解析

9;因此这三个选项都不是最简二次根式.所以只有 C 选项符合最简二次根式的要求.
【详解】
解: A 、 1 2 ,被开方数含有分母,不是最简二次根式; 22
B 、 0.3 30 ,被开方数含有小数,不是最简二次根式; 10
D 、 18 3 2 ,被开方数含有能开得尽方的因数,不是最简二次根式;
所以,这三个选项都不是最简二次根式.
A.3
B.5
C.15
【答案】B
D.45
【解析】 【分析】 由题意可知 45n 是一个完全平方数,从而可求得答案. 【详解】 解: 45n 95n 3 5n ,
∵n 是正整数, 45n 也是一个正整数,
∴n 的最小值为 5. 故选:B. 【点睛】 此题考查二次根式的定义,掌握二次根式的定义是解题的关键.
∴ x2 y2 (x y)(x y) (3 2 2)(3 2 2) =1.
故选:B. 【点睛】 本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差
公式进行解题.
12.式子 1 a 有意义,则实数 a 的取值范围是( ) a2
A.a≥-1
B.a≤1 且 a≠-2
a2 | a b | b2 a a b b
a (a b) b
a a b b 2a.
故选 A. 【点睛】 本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.
17.若 a b ,则化简二次根式 a3b 的正确结果是( )
A. a ab
B. a ab
C. a ab
=m2+m,
∵m2+m 2 0,
∴m2+m 2 ,
∴原式 2 ,
故选:A. 【点睛】

初二数学二次根式易错题总结

初二数学二次根式易错题总结

初二数学二次根式易错题总结1、当a>1时,化简的结果是_________2、把根号外的因式移入根号内的结果是_____________3、若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而增大,则一次函数的图像一定经过_____________________4、已知Rt△ABC的两条边长都是方程x2-6x+8=0的根,则Rt △ABC的第三边可能是5、已知关于x的一元二次方程(m﹣1)x2+x+1=0没有实数根,则m的取值范围是______.6、已知关于x的方程有两个不相等的实数根,则k的取值范围是7、若,则的结果是()(A)-2a-2 (B)2a+2 (C)4 (D)-48、化简的结果是()(A)(B)(C)(D)9、如果<0,那么化简的结果是()(A)-2(B)1(C)-1(D)210、把下列各式分母有理化:(1).(2).(3).(a≠b)(4).() (5).11、化简:(1).(1<x<4) (2).(x+y)(x<y<0) 12、已知:x=,求代数式3-的值13、已知=,求的值。

14、已知:,为实数,且。

求的值。

15、计算:(1)(2)(3)(4)(5)(6)(7)当a=时,求的值16、已知+=5,求的值17、已知-=2,求+的值18、已知关于x的一元二次方程x2+ 2(k-1)x+k2-1= 0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.19、在等腰△ABC中,三边分别为、、,其中,若关于的方程有两个相等的实数根,求△ABC的周长.20、关于的一元二次方程有两实数根.(1)求的取值范围;(2)若,求的值.1、益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?2、一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?3、一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?4、如图所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航.一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?5、如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,则道路的宽为________米.6、阅读材料:设一元二次方程(≠0)的两根为,,则两根与方程的系数之间有如下关系:+=-,·=.根据该材料完成下列填空:已知,是方程的两根,则(1)+= ,;(2)()()= .7、我市“利民快餐店”试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日纯收入.(日纯收入=每天的销售额﹣套餐成本﹣每天固定支出)(1)若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的纯收入不少于800元,则每份套餐的售价应不低于多少元?(2)该店既要吸引顾客,使每天销售量较大,又要有较高的日纯收入.按此要求,每份套餐的售价应定为多少元?此时日纯收入为多少元?8、某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。

(易错题精选)初中数学二次根式难题汇编附答案

(易错题精选)初中数学二次根式难题汇编附答案
【详解】
解:∵ |2a-1|,
∴|2a-1|=1-2a,
∴2a-1≤0,
∴ .
故选:C.
【点睛】
此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.
6.若式子 在实数范围内有意义,则x的取值范围是()
A.x≥ B.x> C.x≤ D.x<
【答案】B
【解析】
【分析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
B、 ,正确;
C、 ,故此选项错误;
D、 =3,故此选项错误;
故选:B.
【点睛】
此题主要考查了二次根式的加减以及二次根式的性质,正确掌握二次根式的性质是解题关键.
12.下列计算正确的是
A. B.
C. D.
【答案】B
【解析】
【分析】
根据二次根式的混合运算顺序和运算法则逐一计算可得.
【详解】
A. ,此选项计算错误;
【详解】
根据题意得: ,
解得:x≥0且x≠1.
故选:B.
【点睛】
此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.
8.如果 ,那么()
A. B. C. D.x为一切实数
【答案】B
【解析】
∵ ,
∴x≥0,x-6≥0,
∴ .
故选B.
9.下列各式中计算正确的是()
B. ,此选项计算正确;
C. ,此选项计算错误;
D. ,此选项计算错误;
故选:B.
【点睛】
本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.
13.式子 有意义,则实数a的取值范围是()

(易错题精选)初中数学二次根式知识点总复习含解析

(易错题精选)初中数学二次根式知识点总复习含解析

(易错题精选)初中数学二次根式知识点总复习含解析一、选择题1x 的取值范围是( )A .x≥5B .x>-5C .x≥-5D .x≤-5【答案】C【解析】【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】 Q有意义,∴x+5≥0,解得x≥-5.故答案选:C.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.2.当3x =-时,二次根m 等于( )AB .2CD 【答案】B【解析】解:把x =﹣3代入二次根式得,原式=,依题意得:2=.故选B .3.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.4.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.5.若x 、y 4y =,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C【解析】由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.6.若代数式y =有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠ 【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:010x x ≥⎧⎨-≠⎩ , 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.7.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得 200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.8.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9.(的结果在()之间.A.1和2 B.2和3 C.3和4 D.4和5【答案】B【解析】【分析】的范围,再求出答案即可.【详解】(==22∵45<∴223<<(的结果在2和3之间故选:B【点睛】本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.10.有意义,那么直角坐标系中 P(m,n)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.【详解】依题意的-m≥0,mn>0,解得m<0,n<0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.11.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】=解:2<<∵91216<<∴34<<值应在3到4之间.∴估计2故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.12的值是一个整数,则正整数a的最小值是()A.1 B.2 C.3 D.5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.13.一次函数y mx n =-+的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.14.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.15.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】 本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.16.下列二次根式中,属于最简二次根式的是( )A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】A. 12,根号内含有分数,故不是最简二次根式;B. 0.8,根号内含有小数,故不是最简二次根式;C. 5,是最简二次根式;D. 4=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.17.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A .2B .6C .236223+--D .23225+-【答案】D【解析】【分析】 将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积((222323=222233+=23225故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.18.当实数x 2x -41y x =+中y 的取值范围是( )A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】 根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥,419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.19.下列运算正确的是( )A .235a a a +=B .23241(2)()162a a a -÷=-C .1133a a-=D .2222(233)3441a a a a a -÷=-+ 【答案】D【解析】 试题分析:A .23a a +,无法计算,故此选项错误;B .()23262112824a a a a ⎛⎫⎛⎫-÷=-÷ ⎪ ⎪⎝⎭⎝⎭=432a -,故此选项错误; C .133a a-=,故此选项错误; D .()22222333441a aa a a -÷=-+,正确.故选D .20.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D【答案】A【解析】【分析】先化简原式得44【详解】原式=4由于23,∴1<42.故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式易错题
易错题知识点
1.忽略二次根式有意义的条件,只有被开方数a ≥0时,式子a 才是二次根式;若a
<0,则式子a 就不能叫二次根式,即a 无意义。

2.易把2a 与2)(a 混淆。

3.二次根式的乘除法混合运算的顺序,一般从左到右依次进行或先把除法统一成乘法后,再用乘法运算法则计算。

4.对同类二次根式的定义理解不透。

5.二次根式的混合运算顺序不正确。

针对训练题:
1.若2)(11y x x x +=-+-,则y x -=_____________。

2.b b -=-3)3(3
,则b 的取值范围是________________. 3.1)1(2-=-a a 成立的条件是________________________. 4.计算a a 1-的结果是_________. 5.当0,0<<b a 时,化简2)
(b a ab +的值为_________________. 6.已知:3=xy ,则y x y x y x
+的值是______________________. 7.若2)1()2()1(2++-=++x x x x 则x 的取值范围是________.
8.已知2,3=-=+ab b a ,计算b
a a
b +的值. 9.已知实数a,b 在数轴上的对应点分别为A,B,且A 在原点左侧,B 要原点右侧,如果b a >,则2a b a --=_________.
10.已知a,b 分别为等腰三角形的两条边长,且a,b 满足a a b -+-+=23634,求此三角形的周长?
11.若代数式mn m 1
+-有意义,那么直角坐标系中点P (m ,n )的位置在( )象限
12.当1-=a
a 时,化简a a 21)1(2--- 13.化简1)._______3=-a 2).)0(43<m n m =________.
14.已知61=+x x ,则_________1=-x
x .
15.已知:实数
37-的整数部分为a,小数部分为b,求代数式ab 的值。

16..若a,b 为实数,且026104422=++-+b a b a ,则=-ab 10_____
17. 已知()1
1039322++=+-+-y x x x y x ,求的值。

18.(1
) (2
(
231⎛++ ⎝
(3
)(
()2771+-- (4
)(
(
(
(2222
1111-
(
)5(
)6⎛÷ ⎝
(7
)22
- (8
19.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的
面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示) A C Q
P。

相关文档
最新文档