第六章 专题突破 动量和能量观点的综合应用

合集下载

动量和能量观点的综合应用

动量和能量观点的综合应用

3-5 动量和能量观点的综合应用【学习目标】1.进一步熟练应用动量守恒定律的解题方法。

2.综合应用动量和能量观点解决力学问题。

【重点难点】解决力学问题的三个基本观点1.力的观点:主要应用牛顿运动定律和运动学公式相结合,常涉及受力,加速或匀变速运动的问题.2.动量的观点:主要应用动量定理或动量守恒定律求解.常涉及物体的受力和时间问题,以及相互作用的物体系问题.3.能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及物体系内能量的转化问题时,常用能量的转化和守恒定律.【学习过程】一、爆炸类问题解决爆炸类问题时,要抓住以下三个特征:1.动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远大于受到的外力,所以在爆炸过程中,系统的动量守恒.2.动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,因此爆炸后系统的总动能增加.3.位置不变:爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后,物体仍然从爆炸的位置以新的动量开始运动.例1从某高度自由下落一个质量为M的物体,当物体下落h时,突然炸裂成两块,已知质量为m的一块碎片恰能沿竖直方向回到开始下落的位置,求:(1)刚炸裂时另一块碎片的速度;(2)爆炸过程中有多少化学能转化为弹片的动能?二、滑块滑板模型1.把滑块、滑板看作一个整体,摩擦力为内力,则在光滑水平面上滑块和滑板组成的系统动量守恒.2.由于摩擦生热,把机械能转化为内能,则系统机械能不守恒.应由能量守恒求解问题.3.注意滑块若不滑离木板,最后二者具有共同速度.例2如图所示,光滑水平面上一质量为M、长为L的木板右端紧靠竖直墙壁.质量为m的小滑块(可视为质点)以水平速度v0滑上木板的左端,滑到木板的右端时速度恰好为零.(1)求小滑块与木板间的摩擦力大小;(2)现小滑块以某一速度v滑上木板的左端,滑到木板的右端时与竖直墙壁发生弹性碰撞,然后的值.向左运动,刚好能够滑到木板左端而不从木板上落下,试求vv0三、子弹打木块模型1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,则系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,则二者最后有共同速度,机械能损失最多.例3 如图2所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(1)子弹射入后,木块在地面上前进的距离;(2)射入的过程中,系统损失的机械能.四、弹簧类模型1.对于弹簧类问题,在作用过程中,系统合外力为零,满足动量守恒.2.整个过程涉及到弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短时,弹簧连接的两物体速度相等,此时弹簧最短,具有最大弹性势能. 例4 如图所示,A 、B 、C 三个木块的质量均为m ,置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连.将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体.现A 以初速v 0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起.以后细线突然断开,弹簧伸展,从而使C 与A 、B 分离.已知C 离开弹簧后的速度恰为v0。

动力学、动量和能量观点的综合应用

动力学、动量和能量观点的综合应用

(2)2 J
(3)1 m
热点题型例析
第2课时
(18 分)两根足够长的固定的平行金属导轨位于同一水 平面内,两导轨间距为 l.导轨上面横放着两根导体棒 PQ 和 MN, 构成矩形回路,如图 4 所示.导体棒 PQ 的质量为 m、MN 的质量 为 2m,两者的电阻皆为 R,回路中其余部分的电阻可不计.在整个 导轨平面内都有竖直向上的匀强磁场,磁感应强度为 B.设两导体 棒均可沿导轨无摩擦地滑行.开始时,棒 MN 静止于距导轨右端 d 处,PQ 棒以大小为 v0 的初速度从导轨左端开始运动.忽略回路的 电流对磁场产生的影响.
第2课时
⑫ ⑬
滑块从挡板滑至左端需要的最小能量 Emin=2μMgL+EqL 解得 Ek<Emin
故滑块不会从左端滑出 (2 分) 1 由能量守恒得 (2M)v2+Eqs′=2μMgs 路+Eq(s 路-s′)⑭(2 分) 2 本 课 故 s 路=1 m. (1 分)
(1)0.2 m
时 栏 目 答案 开 关
第2课时Βιβλιοθήκη (1 分)因为 t0<t1,所以撤去外力 F 时,m、M 还未相对静止,此时 m 的速 (1 分) (1 分)
本 课 时 栏 目 开 关
(1 分) (1 分) (1 分) (1 分)
热点题型例析
第2课时
由能量守恒知此过程产生的热量为 1 2 1 2 1 Q2=2mv1 +2Mv2 -2(M+m)v共2=1.5 J 所以滑块 m 在长木板 M 上表面上滑动时所产生的热量
热点题型例析
第2课时
题型 1 动量和能量观点在力学中的应用
本 【例 1】 (18 分)如图 1 所示,固定在地面上的光滑的 1/4 圆弧面 课 与车 C 的上表面平滑相接,在圆弧面上有一个滑块 A,其质量为 时 栏 mA=2 kg,在半径为 R=1.25 m 的 1/4 圆弧面顶端由静止下滑, 目 开 车 C 的质量为 mC=6 kg,在车 C 的左端有一个质量 mB=2 kg 关

2025高考物理总复习力学三大观点的综合应用

2025高考物理总复习力学三大观点的综合应用

台最右端 N 点停下,随后滑下的 B 以 2v0 的速度与 A 发
图1
生正碰,碰撞时间极短,碰撞后 A、B 恰好落在桌面上圆盘内直径的两端。已知 A、
B 的质量分别为 m 和 2m,碰撞过程中损失的能量为碰撞前瞬间总动能的14。A 与
传送带间的动摩擦因数为 μ,重力加速度为 g,A、B 在滑至 N 点之前不发生碰撞,
答案 (1)8 N 5 N (2)8 m/s (3)0.2 m
解析 (1)当滑块处于静止时桌面对滑杆的支持力等于滑块和
滑杆的重力,即N1=(m+M)g=8 N 当滑块向上滑动时受到滑杆的摩擦力f=1 N,根据牛顿第三定
律可知滑块对滑杆的摩擦力f′=1 N,方向竖直向上,则此时桌
面对滑杆的支持力为N2=Mg-f′=5 N。
一起竖直向上运动。已知滑块的质量m=0.2 kg,滑杆的质量
M=0.6 kg,A、B间的距离l=1.2 m,重力加速度g取10 m/s2,
不计空气阻力。求:
图4
01 02 03 04
目录
提升素养能力
(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大
小N1和N2; (2)滑块碰撞前瞬间的速度大小v1; (3)滑杆向上运动的最大高度h。
该过程中弹簧对物体B冲量的大小。
答案 (1)mA 2gH mA+mB
(2)2t 2(mA+mB)gt+2mA 2gH
解析 (1)设A和B碰前瞬间的速度大小为v0,和B碰后瞬间的
速度大小为v,有 mAgH=21mAv20 v0= 2gH
01 02 03 04
目录
提升素养能力
由动量守恒定律有 mAv0=(mA+mB)v 解得 v=mmAA+2mgHB 。 (2)从碰后至返回到碰撞点的过程中,AB结合体做简谐运动。 根据简谐运动的对称性,可得运动时间t总=2t 回到碰撞点时速度大小为 vt=v=mmAA+2mgHB 方向竖直向上 取向上为正方向,由动量定理得I-(mA+mB)g·2t=(mA+mB)vt-[-(mA+mB)v] 解得 I=2(mA+mB)gt+2mA 2gH。

物理高考大一轮复习高考必考题突破讲座6动量和能量观点的综合应用课件

物理高考大一轮复习高考必考题突破讲座6动量和能量观点的综合应用课件
设碰撞前瞬间 A 车速度的大小为 vA,两车在碰撞过程 中动量守恒,有 mAvA=mAvA′+mBvB,⑥
联立③④⑤⑥式并利用题给数据得 vA=4.25 m/s.
答案 (1)3.0 m/s (2)4.25 m/s
2021/12/11
第二十四页,共四十二页。
2.(2019·天津武清区三中高三月考)如图所示,半径 R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端 点 B 和圆心 O 的连线与水平方向间的夹角 θ=37°,另一端 点 C 为轨道的最低点.C 点右侧的光滑水平面上紧挨 C 点静 止放置一木板,木板质量 M=1.0 kg,上表面与 C 点等高.质 量为 m=1.0 kg 的物块(可视为质点)从空中 A 点以某一速度 水平抛出,恰好从轨道的 B 端沿切线方向以 2 m/s 进入轨 道.已知物块与木板间的动摩擦因数 μ=0.2,取 g=10 m/s2. 求:
2021/12/11
第十五页,共四十二页。
(1)长木板 A 与桌面间的动摩擦因数及 B 与 A 间的动摩 擦因数;
(2)烧断细线之前弹簧的弹性势能; (3)最终物块 B 离长木板 A 左端的距离.
2021/12/11
第十六页,共四十二页。
解析 (1)设 A 与地面间的动摩擦因数为 μ,B 与 A 上表
2021/12/11
第十九页,共四十二页。
在 0.4 s 内 B 相对 A 向右运动的位移
x2=vt+12aB2t2-12vt=0.12 m, A 停止时 B 的速度 v′=v+aB2t=0.6 m/s, 然后 B 在 A 上面做匀减速运动直到停止,B 的加速度 aB3=-μ′g=-1 m/s2, B 相对 A 向右运动的位移 x3=-v2′aB32=0.18 m,所以最 终 B 离长木板 A 左端的距离 x=l-x1+x2+x3=3.05 m.

2025高考物理总复习动力学和能量观点的综合应用

2025高考物理总复习动力学和能量观点的综合应用
a4=
=2.5
A
m/s2
从共速 v1 到刚好到达顶端,所走的位移
1 2
x4=2
4
=
52
2×2.5
m=5 m
故整个过程物体 A 向上所走的位移
xA=x1+x2+x3+x4=(2.5+4+1.6+5) m=13.1 m
可知高度
H=xAsin 30°=6.55 m。
(2)从开始到物体 A 与传送带第一次共速所用时间
(3)由于运输物体A,电动机要多消耗多少电能?
答案 (1)6.55 m
12 650
(2)
3
J
15 500
(3)
3
J
解析 (1)刚开始由于物体A的速度小于传送带速度,传送带给物体A向上的
滑动摩擦力,以物体A为对象,根据牛顿第二定律可得
FT+μmAgcos 30°-mAgsin 30°=mAa1
以物体B为对象,根据牛顿第二定律可得
1 +2
2
s2=
t2-v1t2=
2
3
m
此过程产生的内能
Q2=μmAgcos
1 000
30°·
s 2= 3
J
物体 A 从速度 v2 减速到再次与传送带共速,所用时间
2 -1
t3=
3
=
7-5
7.5
4
s=15
s
此过程物体 A 与传送带的相对位移大小
1 +2
4
s3=
t3-v1t3=
2
15
m
此过程产生的内能
以物体B为对象,根据牛顿第二定律可得
mBg-FT'=mBa2

专题六 力学中三大观点的综合应用

专题六 力学中三大观点的综合应用

(1)最终A、B、C的共同速度为多大;
(2)求运动过程中A的最小速度; (3)整个过程中A与C及B与C因摩擦所 产生的热量之比为多大? 图3
解析
(1)由动量守恒定律有 mv0+2mv0=5mv1
3 得 v1= v0 5 (2)设经时间 t,A 与 C 恰好速度相等,此时 A 的速度最小. aA=-μg aC=μg
(3)滑块经过传送带作用后做平抛运动 1 2 h2= gt3 2 当两滑块速度相差最大时,它们的水平射程相差最大,当 m1≫m2 时,滑块 m1、m2 碰撞后的速度相差最大,经过传送带后速度相差 也最大 m1-m2 v1= v0=v0=5.0 m/s m1+m2 2m1 v2= v0=2v0=10.0 m/s m1+m2
即学即练1 如图2所示,一水平面上P点左侧光滑,右侧粗糙,
质量为m的劈A在水平面上静止,上表面光滑,A右端与 水平面平滑连接,质量为M的 物块B恰好放在水平面上P点,物块B与水平面间的动摩擦 因数为μ.一质量为m的小球C位于劈A的斜面上,距水平面
的高度为h.小球C从静止开始滑下,然后与B发生正碰(碰
撞时间极短,且无机械能损失).
图2
已知M=2m,求:
(1)小球C与劈A分离时,A的速度; (2)小球C的最后速度和物块B的运动时间.
解析 (1)设小球 C 与劈 A 分离时速度大小为 v0,此时劈 A 速度
大小为 vA 小球 C 运动到劈 A 最低点的过程中,规定向右为正方向,由水平 方向动量守恒、机械能守恒有 mv0-mvA=0 1 2 1 2 mgh= mv0+ mvA 2 2 得 v0= gh,vA= gh,之后 A 向左匀速运动
即学即练2 如图4所示,圆管构成的半圆形轨道竖直固定在水

动量和能量观点的综合应用

动量和能量观点的综合应用

和 B 分别静止在圆弧轨道的最高点和最低点.现将 A 无初速释放,A 与 B 碰撞后
结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径 R=0.2 m;A 和 B 的
质量相等; A 和 B 整体与桌面之间的动摩擦因数 μ=0.2.取重力加速度 g=10 m/s2. 求: (1)碰撞前瞬间 A 的速率 v; (2)碰撞后瞬间 A 和 B 整体的速率 v′; (3)A 和 B 整体在桌面上滑动的距离 l.
1、应用动量守恒定律 2、应用机械能守恒定 “滑块—弹 两滑块之间有 弹簧相连; 发生 律 簧”模型 3、速度相等时弹性势 正碰 能最大
二、常见的力学模型及其结论
模型名称 “完全非弹 模型描述 两球正碰后粘
1、应用动量守恒定律 3、应用能量守恒定律
模型特征
模型结论
性碰撞”模 在一起运动, 即 2、机械能损失最大 型 “子弹打木 块” 合二为一 子弹射入静止 在光滑的水平 面上的木块上;
变式 4.如图所示,一质量为 M 的平板车 B 放在光滑水平面上,在其右端放一质 量为 m 的小木块 A,m<M,A、B 间动摩擦因数为 μ.现给 A 和 B 以大小相等、方 求: (1)A、B 最后的速度大小和方向; (2)从地面上看,小木块向左运动到离出发点 最远处时,平板车向右运动的位移大小. (3)为了使 A 不滑出平板车 B,平板车长度至少是多少?
2、 “滑块—平板”模型 例 2. 质量为 m、M 的物块 A、B 置于光滑水平面上,物块 A、B 之间的动摩擦因素为 μ,物块 B 以初速度 V0 从物块 A 的最左端开始运动,物块 A 长度为 L 求: (1)两物块达到共同速度是多少? (2)经历多长时间达到共同速度? (3)从开始到两物块到达共同速度过程, A、B 的位移 S1 和 S2 ?(相对于地面) (4)B 在 A 上滑行的距离△S (相对位移) (5)产生的热量 Q (两种方法) (6)画出 V-t 图 (7)若 B 恰好不滑出 A 的右端,求 B 的初速度满足的条件。

专题6 力学三大观点的综合运用

专题6  力学三大观点的综合运用

高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题1 动量和能量的观点在力学中的应用例1 如图1所示,长为L 的平台固定在地面上,平台的上平面光滑,平台上放有小物体A 和B ,两者彼此接触.物体A 的上表面是半径为R (R ≪L )的光滑半圆形轨道,轨道顶端有一小物体C ,A 、B 、C 的质量均为m .现物体C 从静止状态沿轨道下滑,已知在运动过程中,A 、C 始终保持接触.试求:图1(1)物体A 和B 刚分离时,物体B 的速度;(2)物体A 和B 刚分离后,物体C 所能达到距台面的最大高度; (3)判断物体A 从平台左边还是右边落地并简要说明理由.解析 (1)设C 物体到达最低点的速度是v C ,A 、B 、C 组成的系统在水平方向动量守恒,系统内机械能守恒.m v A +m v B -m v C =0①mgR =12m v 2A +12m v 2B +12m v 2C②在C 物体到达最低点之前一直有:v A =v B③ 联立①②③解得:v B =133gR ,方向水平向右④(2)设C 能够到达轨道最大高度为h ,A 、C 此时的水平速度相等,设它们的共同速度为v ,对系统应用动量守恒和机械能守恒规律可得:m v B -2m v =0⑤ mgR =mgh +12m v 2B +12·2m v 2⑥ 联立⑤⑥式解得:h =34R⑦(3)因为A 与B 脱离接触后B 的速度向右,A 、C 的总动量是向左的,又R ≪L ,所以A 从平台的左边落地.答案 (1)133gR ,方向水平向右 (2)34R (3)A 从平台的左边落地1.如图2,半径R =0.8 m 的四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长为L =6 m 的水平面相切于D 点,质量M =1.0 kg 的小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0.5 kg 的静止物块B 相碰,碰后A 的速度变为v A =2.0 m /s ,仍向右运动.已知两物块与水平面间的动摩擦因数均为μ=0.1,若B 与E 处的竖直挡板相碰,没有机械能损失,取g =10 m/s 2.求:图2(1)滑块A 刚到达圆弧的最低点D 时对圆弧的压力; (2)滑块B 被碰后瞬间的速度; (3)讨论两滑块是否能发生第二次碰撞.答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析解析 (1)设小滑块运动到D 点的速度为v ,由机械能守恒定律有:MgR =12M v 2由牛顿第二定律有F N -Mg =M v2R联立解得小滑块在D 点所受支持力F N =30 N由牛顿第三定律有,小滑块在D 点时对圆弧的压力为30 N ,方向竖直向下. (2)设B 滑块被碰后的速度为v B ,由动量守恒定律: M v =M v A +m v B解得小滑块在D 点右侧碰后的速度v B =4 m/s(3)讨论:由于B 物块的速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大的路程,则对于A 物块 -μMgs A =0-12M v 2A 解得s A =2 m对于B 物块,由于B 与竖直挡板的碰撞无机械能损失,则-μmgs B =0-12m v 2B解得s B =8 m(即从E 点返回2 m)由于s A +s B =10 m<2×6 m =12 m ,故它们停止运动时仍相距2 m ,不能发生第二次碰撞.1.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题2 应用动力学观点、能量观点、动量观点解决综合问题例2 如图3所示,一倾斜的传送带倾角θ=37°,始终以v =12 m /s 的恒定速度顺时针转动,传送带两端点P 、Q 间的距离L =2 m ,紧靠Q 点右侧有一水平面长为x =2 m ,水平面右端与一光滑的半径R =1.6 m 的竖直半圆轨道相切于M 点,MN 为竖直的直径.现有一质量M =2.5 kg 的物块A 以v 0=10 m/s 的速度自P 点沿传送带下滑,A 与传送带间的动摩擦因数μ1=0.75,到Q 点后滑上水平面(不计拐弯处的能量损失),并与静止在水平面最左端的质量m =0.5 kg 的B 物块相碰,碰后A 、B 粘在一起,A 、B 与水平面的动摩擦因数相同均为μ2,忽略物块的大小.已知sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.求:图3(1)A 滑上传送带时的加速度a 和到达Q 点时的速度; (2)若AB 恰能通过半圆轨道的最高点N ,求μ2;(3)要使AB 能沿半圆轨道运动到N 点,且从N 点抛出后能落到传送带上,则μ2应满足什么条件?审题突破 (1)由牛顿第二定律求出加速度,由运动学公式求出A 的速度.(2)A 、B 碰撞过程动量守恒,由动量守恒定律可以求出碰后的速度;由牛顿第二定律求出AB 在最高点的速度,然后应用机械能守恒定律与动能定理求出动摩擦因数.(3)物块离开N 点后做平抛运动,应用平抛运动规律、机械能守恒定律与动能定理求出动摩擦因数的范围.解析 (1)A 刚滑上传送带时,由牛顿第二定律得: Mg sin θ+μ1Mg cos θ=Ma , 代入数据得:a =12 m/s 2,A 在传送带上运动,速度与传送带速度相等时,由匀变速运动的速度位移公式得:v 2-v 20=2 as代入数据得:s =116m <L =2 m ,A 没有到达Q 点前已经与传送带速度相等,到达Q 点的速度为:v =12 m/s ;(2)设AB 碰后的共同速度为v 1,以A 的初速度方向为正方向,A 、B 碰撞过程中,由动量守恒定律得: M v =(M +m )v 1,代入数据得:v 1=10 m/s ,AB 恰好滑到最高点N 时速度为v 3,在最高点,由牛顿第二定律得:(M +m )g =(M +m )v 23R设AB 在M 点速度为v 2,由机械能守恒定律得: 12(M +m )v 22=12(M +m )v 23+(M +m )g ·2R , 在水平面上由动能定理得: 12(M +m )v 21-12(M +m )v 22=μ2(M +m )gx , 代入数据得:μ2=0.5;(3)①若以v 3由N 点抛出,做平抛运动,在竖直方向上:2R =12gt 2,水平方向上:x 1=v 3t ,联立并代入数据得:x 1=3.2 m >x ,则要使AB 能沿半圆轨道运动到N 点,并能落在传动带上,则μ2≤0.5; ②若AB 恰能落在P 点,在竖直方向上:2R -L sin θ=12gt ′2,水平方向上:x +L cos θ=v 3′t ′,由机械能守恒定律得:12(M +m )v 2′2=12(M +m )v 3′2+(M +m )g ·2R ,在水平面上由动能定理得:12(M +m )v 21-12(M +m )v 2′2=μ2(M +m )gx , 联立并代入数据得:μ2=0.09, 综上所述,μ2应满足:0.09≤μ2≤0.5.答案 (1)12 m /s 2 12 m/s (2)0.5 (3)0.09≤μ2≤0.52.(2014·广东·35)如图4所示的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿光滑轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案 (1)3 m /s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1=2m v 2①解得:v 2=v 12=3 m/s碰撞过程中损失的动能为:ΔE =12m v 21-12×2m v 22②解得ΔE =9 J(2)P 滑动过程中,由牛顿第二定律知 ma =-μmg③ 可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L =v 2t +12at 2④由①③④式得v 1=6L -at 2t①若t =2 s 时通过B 点,解得:v 1=14 m/s ②若t =4 s 时通过B 点,解得:v 1=10 m/s 故v 1的取值范围为:10 m /s ≤v 1≤14 m/s设向左经过A 点的速度为v A ,由动能定理知 12×2m v 2A -12×2m v 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E =17 J.根据题中设及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果碰撞及涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练 训练6题组1 动量和能量的观点在力学中的应用1.如图1所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,0点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B相碰后立即一起沿斜面向下运动,并恰好回到0点(A 、B 均初为质点).试求:图1(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧的具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点?答案 (1)123gx 0 (2)14mgx 0 (3) (20+43)gx 0解析 (1)设A 与B 相碰前的速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得mg 3x 0sin 30°=12m v 21由动量守恒定律得m v 1=2m v 2解以上二式得v 2=123gx 0(2)设A 、B 相碰前弹簧所具有的弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12(2m )v 22=2mgx 0sin 30° 解得E p =14mgx 0(3)设物块A 与B 相碰前的速度为v 3,碰后A 、B 的共同速度为v 4 12m v 2+mg 3x 0sin 30°=12m v 23 m v 3=2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则 12(2m )v 24+E p =12(2m )v 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则 12m v 25=12m v 26+mg 2x 0sin 30°+mgR (1+sin 60°) 在最高点有mg =m v 26R联立以上各式解得v =(20+43)gx 0.2.如图2所示,质量为m 1的滑块(可视为质点)自光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点,A 、B 的高度差为h 1=1.25 m .传导轮半径很小,两个轮之间的距离为L =4.00 m .滑块与传送带间的动摩擦因数μ=0.20.右端的轮子上沿距离地面高度h 2=1.80 m ,g 取10 m/s 2.图2(1)若槽的底端没有滑块m 2,传送带静止不运转,求滑块m 1滑过C 点时的速度大小v ;(结果保留两位有效数字)(2)在m 1下滑前将质量为m 2的滑块(可视为质点)停放在槽的底端.m 1下滑后与m 2发生弹性碰撞,且碰撞后m 1速度方向不变,则m 1、m 2应该满足什么条件?(3)满足(2)的条件前提下,传送带顺时针运转,速度为v =5.0 m/s.求出滑块m 1、m 2落地点间的最大距离(结果可带根号).答案 (1)3.0 m/s (2)m 1>m 2 (3)(6215-3) m解析 (1)滑块m 1滑到B 点有m 1gh 1=12m 1v 20 解得v 0=5 m/s滑块m 1由B 滑到C 点有-μm 1gL =12m 1v 2-12m 1v 20 解得v =3.0 m/s.(2)滑块m 2停放在槽的底端,m 1下滑并与滑块m 2弹性碰撞,则有 m 1v 0=m 1v 1+m 2v 2 12m 1v 20=12m 1v 21+12m 2v 22 m 1速度方向不变即v 1=m 1-m 2m 1+m 2v 0>0则m 1>m 2.(3)滑块经过传送带作用后做平抛运动h 2=12gt 2当两滑块速度相差最大时,它们的水平射程相差最大,当m 1≫m 2时,滑块m 1、m 2碰撞后的速度相差最大,经过传送带后速度相差也最大v 1=m 1-m 2m 1+m 2v 0=1-m 2m 11+m 2m 1v 0≈v 0=5.0 m/sv 2=2m 1m 1+m 2v 0=21+m 2m 1v 0≈2v 0=10.0 m/s 滑块m 1与传送带同速度,没有摩擦,落地点射程为 x 1=v 1t =3.0 m滑块m 2与传送带发生摩擦,有-μm 2gL =12m 2v 2′2-12m 2v 22 解得v 2′=221 m/s落地点射程为x 2=v 2′t =6215mm 2、m 1的水平射程相差最大值为Δx =(6215-3) m.题组2 应用动力学观点、能量观点、动量观点解决综合问题3.如图3所示,质量为M =4 kg 的木板静置于足够大的水平地面上,木板与地面间的动摩擦因数μ=0.01,板上最左端停放着质量为m =1 kg 可视为质点的电动小车,车与木板右端的固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车的电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2)图3(1)试通过计算说明:车与挡板相碰前,木板相对地面是静止还是运动的? (2)求出小车与挡板碰撞前,车的速率v 1和板的速率v 2; (3)求出碰后木板在水平地面上滑动的距离s . 答案 (1)向左运动 (2)4.2 m /s 0.8 m/s (3)0.2 m解析 (1)假设木板不动,电动车在板上运动的加速度为a 0,由L =12a 0t 2得:a 0=2Lt 2=2.5 m/s 2此时木板使车向右运动的摩擦力:f =ma 0=2.5 N 木板受车向左的反作用力:f ′=f =2.5 N木板受地面向右最大静摩擦力:f 0=μ(M +m )g =0.5 N 由于f ′>f 0,所以木板不可能静止,将向左运动;(2)设车与木板碰前,车与木板的加速度分别为a 1和a 2,相互作用力为F ,由牛顿定律与运动学公式: 对小车:F =ma 1 v 1=a 1t对木板:F -μ(m +M )g =Ma 2 v 2=a 2t两者的位移的关系:v 12t +v 22t =L联立并代入数据解得:v 1=4.2 m /s ,v 2=0.8 m/s ;(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有m v 1-M v 2=(m +M )v对碰后滑行s 的过程,由动能定理得: -μ(M +m )gs =0-12(M +m )v 2联立并代入数据,解得:s =0.2 m.4.如图4所示,光滑的水平面AB (足够长)与半径为R =0.8 m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点的右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m /s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上.现固定乙,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为0.6,重力加速度g 取10 m/s 2,甲、乙两物体可看作质点.图4(1)求甲球离开弹簧时的速度;(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离;(3)甲、乙均不固定,烧断细线以后,求甲和乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.解析 (1)设甲离开弹簧时的速度大小为v 0,运动至D 点的过程中机械能守恒: 12m 1v 20=m 1g ·2R +12m 1v 2D 在最高点D ,由牛顿第二定律,有2m 1g =m 1v 2D R联立解得:v 0=4 3 m/s(2)甲固定,烧断细线后乙的速度大小为v 乙,由能量守恒得E p =12m 1v 20=12m 2v 2乙得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙速度为零时离A 端最远,最远距离为:s =v 2乙2a=12 m<20 m即乙在传送带上滑行的最远距离为12 m.(3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为v 1、v 2,甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2甲、乙弹簧组成的系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22 答案 (1)4 3 m/s (2)12 m (3)见解析 解得:v 1=2 3 m/s ,v 2=6 3 m/s 甲沿轨道上滑时,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0.6 m<0.8 m则甲上滑不到等圆心位置就会返回,返回AB 面上时速度大小仍然是v 1=2 3 m/s 乙滑上传送带,因v 2=6 3 m /s<12 m/s ,则乙先向右做匀减速运动,后向左匀加速. 由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为2 3 m/s ,方向向右,乙的速度为6 3 m/s ,方向向左。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由①②③式得弹簧所释放的势能为 Ep=13mv20 答案 13mv20
9
“子弹打木块”或“滑块—平板”模型
@《创新设计》
模型图示
模型特点
10
(1)当子弹和木块的速度相等时木块的速度最大,两者的相对位移也 最大。 (2)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘 积等于系统减少的机械能,当两者的速度相等时,系统机械能损失 最大。
12mAv20=12mBv2m+12mAv2A 解得 vm=2 m/s,向右。 答案 (1)6 J (2)2 m/s,向右
4
“滑块—弹簧”模型的解题思路 (1)应用系统的动量守恒。 (2)应用系统的机械能守恒。 (3)应用临界条件:两滑块同速时,弹簧的弹性势能最大。
@《创新设计》
5
@《创新设计》
14
@《创新设计》
2.如图6所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=1.5 m,现有质 量m2=0.2 kg且可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车, 最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数μ=0.5,取g= 10 m/s2,求
C.若A、B在空中飞行时的动量变化量分别为Δp1和Δp2,则有Δp1∶Δp2=1∶1 D.若A、B同时离开桌面,则从释放轻弹簧开始到两木块落地的这段时间内,A、B
两木块的水平位移大小之比为1∶3
6
@《创新设计》
解析 弹簧弹开木块过程中,两木块及弹簧组成的系统动量守恒,取水平向左为正方
向,由动量守恒定律得 mAvA-mBvB=0,则速度之比 vA∶vB=1∶3,根据动能定理 得:轻弹簧对 A、B 做功分别为 W1=12mAv2A,W2=12mBv2B,联立解得 W1∶W2=1∶3, 选项 A 错误;根据动量守恒定律得知,在与轻弹簧作用过程中,两木块的动量变化 量之和为零,即 mAΔvA+mBΔvB=0,可得,ΔvA+ΔvB≠0,选项 B 错误;A、B 离开 桌面后都做平抛运动,它们抛出点的高度相同,运动时间相等,设为 t,由动量定理 得 A、B 在空中飞行时的动量变化量分别为 Δp1=mAgt,Δp2=mBgt,所以 Δp1∶Δp2 =3∶1,选项 C 错误;平抛运动水平方向的分运动是匀速直线运动,由 x=v0t 知,t 相等,则 A、B 两木块的水平位移大小之比等于 vA∶vB=1∶3,选项 D 正确。 答案 D
2
@《创新设计》
【例1】 如图1所示,质量分别为1 kg、3 kg的滑块A、B位于光
滑水平面上,现使滑块A以4 m/s的速度向右运动,与左侧连有
轻弹簧的滑块B发生碰撞。求二者在发生碰撞的过程中。
图1
(1)弹簧的最大弹性势能;
(2)滑块B的最大速度。 解析 (1)当弹簧压缩最短时,弹簧的弹性势能最大,此时滑块A、B同速。系
图3
8
@《创新设计》
解析 设碰后A、B和C共同速度的大小为v,由动量守恒定律得3mv=mv0① 设C离开弹簧时,A、B的速度大小为v1,由动量守恒定律得3mv=2mv1+mv0②
设弹簧的弹性势能为 Ep,从细线断开到 C 与弹簧分开的过程中机械能守恒,有 12(3m)v2+Ep=12(2m)v21+12mv20③
M)v,得 v=Mm+v0m;动能的损失 ΔE=12mv20-12(M+m)v2,即 ΔE=2(MMm+vm02 ),
损失的机械能转化为内能。
13
@《创新设计》
(2)设子弹相对于木块的位移为 L,对 M、m 系统由能量守恒定律得 FL=12mv20 -12(M+m)v2,即 FL=2(MMm+vm20 ),得出 L=2F(MMm+v02m)。 答案 (1)2(MMm+vm02 ) (2)2F(MMm+v20m)
统动量守恒,以向右为正方向,
由动量守恒定律得 mAv0=(mA+mB)v 解得 v=mmA+Avm0 B=11× +43 m/s=1 m/s
3
@《创新设计》
弹簧的最大弹性势能即滑块 A、B 损失的动能 Epm=12mAv20-12(mA+mB)v2=6 J。 (2)当弹簧恢复原长时,滑块B获得最大速度,由动量守恒定律和能量守恒定律得 mAv0=mAvA+mBvm
1.如图2所示,放在光滑水平桌面上的A、B两小木块中
部夹一被压缩的轻弹簧,当轻弹簧被放开时,A、B两
小木块各自在桌面上滑行一段距离后,飞离桌面落在
地面上。若mA=3mB,则下列结果正确的是(1和W2,则有W1∶W2=1∶1
B.在与轻弹簧作用过程中,两木块的速度变化量之和为零
v′,则m2v0′=(m1+m2)v′
由功能关系有12m2v0′2=12(m1+m2)v′2+μm2gL
代入数据解得 v0′=5 m/s
故要使物体不从小车右端滑出,物块滑上小车左端的速度v0′不超过5 m/s。 答案 (1)0.24 s (2)5 m/s
16
本节内容结束
17
7
@《创新设计》
2.如图3所示,A、B、C三个木块的质量均为m,置于光滑的水平面上,B、C之间有一 轻质弹簧,弹簧的两端与木块接触可不固连,将弹簧压紧到不能再压缩时用细线把 B、C紧连,使弹簧不能伸展,以至于B、C可视为一个整体。现A以初速度v0沿B、C 的连线方向朝B运动,与B相碰并黏合在一起。以后细线突然断开,弹簧伸展,从而 使C与A、B分离。已知C离开弹簧后的速度恰为v0,求弹簧释放的势能。
@《创新设计》
专题突破 动量和能量观点的综合应用
1
“滑块—弹簧”模型
@《创新设计》
模型图示
模型特点
(1)若系统所受外力的矢量和为零,则系统动量守恒 (2)若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒 (3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动 能通常最小
(4)弹簧处于原长时,弹性势能为零,系统动能通常最大,但物体速度一 般不相等
图6 (1)物块在车面上滑行的时间t; (2)要使物块不从小车右端滑出,物块滑上小车左端的速度v0′不超过多少。
15
@《创新设计》
解析 (1)设物块与小车的共同速度为v,以水平向右的方向为正方向,根据动量守 恒定律有m2v0=(m1+m2)v 设物块与车面间的滑动摩擦力为Ff,对物块应用动量定理有-Fft=m2v-m2v0,又 解 Ff=得μtm=2μg(mm1+1vm0 2)g,代入数据得 t=0.24 s。 (2)要使物块恰好不从车面滑出,须物块到车面最右端时与小车有共同的速度,设其为
解得 L=2 m。 答案 (1)10 m/s (2)2 m
12
@《创新设计》
1.如图5所示,质量为M的木块静置于光滑的水平面
上,一质量为m、速度为v0的子弹水平射入木块且
未穿出。设木块对子弹的阻力恒为F,求:
图5
(1)射入过程中产生的内能为多少?
(2)木块至少为多长时子弹才不会穿出? 解析 (1)以 m 和 M 组成的系统为研究对象,据动量守恒定律可得 mv0=(m+
@《创新设计》
【例2】 (2019·山西太原模拟)如图4所示,一质量m1=0.45 kg的平顶小车静止在光滑 的水平轨道上。质量m2=0.5 kg的小物块(可视为质点)静止在车顶的右端。一质量为 m0=0.05 kg的子弹以水平速度v0=100 m/s射中小车左端并留在车中,最终小物块相 对地面以2 m/s的速度滑离小车。已知子弹与小车的作用时间极短,小物块与车顶面 的动摩擦因数μ=0.8,认为最大静摩擦力等于滑动摩擦力。取g=10 m/s2,求:
图4 (1)子弹相对小车静止时小车速度的大小; (2)小车的长度L。
11
@《创新设计》
解析 (1)子弹进入小车的过程中,子弹与小车组成的系统动量守恒,由动量守恒定律 得m0v0=(m0+m1)v1 解得v1=10 m/s。 (2)三物体组成的系统动量守恒,由动量守恒定律得 (m0+m1)v1=(m0+m1)v2+m2v3,解得v2=8 m/s 由能量守恒可得12(m0+m1)v21=μm2gL+12(m0+m1)v22+12m2v23
相关文档
最新文档