动量守恒超级经典题目含答案

合集下载

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)

动量-动量守恒定律专题练习(含答案)动量 动量守恒定律一、动量和冲量1、关于物体的动量和动能,下列说法中正确的是:A 、一物体的动量不变,其动能一定不变B 、一物体的动能不变,其动量一定不变C 、两物体的动量相等,其动能一定相等D 、两物体的动能相等,其动量一定相等2、两个具有相等动量的物体A 、B ,质量分别为m A 和m B ,且m A >m B ,比较它们的动能,则:A 、B 的动能较大 B 、A 的动能较大C 、动能相等 D 、不能确定3、恒力F 作用在质量为m 的物体上,如图所示,由于地面对物体的摩擦力较大,没有被拉动,则经时间t ,下列说法正确的是:A 、拉力F 对物体的冲量大小为零;B 、拉力F 对物体的冲量大小为Ft ;C 、拉力F 对物体的冲量大小是Ftcosθ;D 、合力对物体的冲量大小为零。

F4、如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。

以下说法正确的是 A 、a 比b 先到达S ,它们在S 点的动量不相等B 、a 与b 同时到达S ,它们在S 点的动量不相等C 、a 比b 先到达S ,它们在S 点的动量相等D 、b 比a 先到达S ,它们在S 点的动量不相等二、动量守恒定律1、一炮艇总质量为M ,以速度v 0匀速行驶,从船上以相对海岸的水平速度v 沿前进方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v /,若不计水的阻力,则下列各关系式中正确的是 。

A 、'0()Mv M m v mv =-+B 、'00()()MvM m v m v v =-++ C 、''0()()Mv M m v m v v =-++ D 、'0Mv Mv mv =+2、在高速公路上发生一起交通事故,一辆质量为1500kg 向南行驶的长途客车迎面撞上了一辆质量为3000kg 向北行驶的卡车,碰后两车接在一起,并向南O P S Q5、光滑的水平面上有两个小球M和N,它们沿同一直线相向运动,M球的速率为5m/s,N球的速率为2m/s,正碰后沿各自原来的反方向而远离,M球的速率变为2m/s,N球的速率变为3m/s,则M、N两球的质量之比为A、3∶1B、1∶3C、3∶5D、5∶76、如图所示,一个木箱原来静止在光滑水平面上,都具有一定的质量。

【物理】物理动量守恒定律题20套(带答案)

【物理】物理动量守恒定律题20套(带答案)

【物理】物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立.故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.3.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m 、厚度为2d 的钢板静止在水平光滑桌面上.质量为m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d 、质量均为m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv2-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13 () 26+v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2+×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解4.如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线、同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m 的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)【答案】04v【解析】【分析】在抛货物的过程中,乙船与货物组成的动量守恒,在接货物的过程中,甲船与货物组成的系统动量守恒,在甲接住货物后,甲船的速度小于等于乙船速度,则两船不会相撞,应用动量守恒定律可以解题.【详解】设抛出货物的速度为v,以向右为正方向,由动量守恒定律得:乙船与货物:12mv 0=11mv 1-mv ,甲船与货物:10m×2v 0-mv=11mv 2,两船不相撞的条件是:v 2≤v 1,解得:v≥4v 0,则最小速度为4v 0. 【点睛】本题关键是知道两船避免碰撞的临界条件是速度相等,应用动量守恒即可正确解题,解题时注意研究对象的选择以及正方向的选择.5.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =253gR v =6.如图所示,固定的光滑圆弧面与质量为6kg 的小车C 的上表面平滑相接,在圆弧面上有一个质量为2kg 的滑块A ,在小车C 的左端有一个质量为2kg 的滑块B ,滑块A 与B 均可看做质点.现使滑块A 从距小车的上表面高h =1.25m 处由静止下滑,与B 碰撞后瞬间粘合在一起共同运动,最终没有从小车C 上滑出.已知滑块A 、B 与小车C 的动摩擦因数均为μ=0.5,小车C 与水平地面的摩擦忽略不计,取g =10m/s 2. 求: (1)滑块A 与B 弹性碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度.【答案】(1) v =2.5m/s (2) L =0.375m 【解析】【试题分析】(1)根据机械能守恒求解块A 滑到圆弧末端时的速度大小,由动量守恒定律求解滑块A 与B 碰撞后瞬间的共同速度的大小;(2)根据系统的能量守恒求解小车C 上表面的最短长度.(1)设滑块A 滑到圆弧末端时的速度大小为1v ,由机械能守恒定律有:2A A 11m gh m v 2= 代入数据解得12gh 5m/s v ==.设A 、B 碰后瞬间的共同速度为2v ,滑块A 与B 碰撞瞬间与小车C 无关,滑块A 与B 组成的系统动量守恒, ()12A A B m v m m v =+ 代入数据解得2 2.5m/s v =.(2)设小车C 的最短长度为L ,滑块A 与B 最终没有从小车C 上滑出,三者最终速度相同设为3v ,根据动量守恒定律有:()()A B 2A B C 3m m v m m m v +=++ 根据能量守恒定律有:()()()222311gL=22A B A B A B C m m m m v m m m v μ++-++ 联立以上两代入数据解得0.375m L =【点睛】本题要求我们要熟练掌握机械能守恒、能量守恒和动量守恒的条件和公式,正确把握每个过程的物理规律是关键.7.两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态.在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图所示.C 与B 发生碰撞并立即结成一个整体D .在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连.过一段时间,突然解除锁定(锁定及解除锁定无机械能损失).已知A 、B 、C 三球的质量均为m .求: (1)弹簧长度刚被锁定后A 球的速度.(2)在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能.【答案】(1)013v (2)20136mv 【解析】(1)设C 球与B 球发生碰撞并立即结成一个整体D 时,D 的速度为v 1,由动量守恒有: mv 0=(m+m )v 1当弹簧压缩至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒有:2mv 1=5mv 2 由两式得A 的速度为:v 2=15v 0 (2)设弹簧长度被锁定后,贮存在弹簧中的势能为E p ,由能量守恒有:2212112522p mv mv E ⋅=⋅+ 撞击P 后,A 与D 的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转变成D 的动能,设D 的速度为v 3,则有:()23122p E m v =以后弹簧伸长,A 球离开档板P ,并获得速度,当弹簧再次恢复到原长时,A 的速度最大,由动量守恒定律及能量关系可知:345232mv mv mv =+ ;2245113222p E mv mv =⋅+⋅ 解得:4043520v v =(3)当A 、D 的速度相等时,弹簧压缩到最短时,此时D 球速度最小. 设此时的速度为v 6,由动量守恒定律得:2mv 3=5mv 6 设此使弹性势能为E P ′,由能量守恒定律得:()()222360111=252220P E m v m v mv '-=8.(20分)如下图所示,光滑水平面MN 左端挡板处有一弹射装置P ,右端N 与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ 的长度L=8m ,皮带轮逆时针转动带动传送带以v = 2m/s 的速度匀速转动。

动量守恒定理大题50题全解

动量守恒定理大题50题全解

1.(18分)如图(a)所示,“ ”型木块放在光滑水平地面上,木块水平表面AB 粗糙,光滑表面BC 且与水平面夹角为θ=37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C 点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图(b )所示.已知sin37°=0.6,cos37°=0.8,g 取10m/s 2.求: (1) 斜面BC 的长度; (2) 滑块的质量;(3) 运动过程中滑块克服摩擦力做的功.2. (11分)甲、乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度 ,水平向后方的乙船上抛一沙袋,其质量为m .设甲船和沙袋总质量为M ,乙船的质量也为M .问抛掷沙袋后,甲、乙两船的速度变化多少?3.(2011·新课标全国卷)如图,A 、B 、C 三个木块的质量均为m 。

置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连,将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体,现A 以初速v 沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C 与A ,B 分离,已知C 离开弹簧后的速度恰为v ,求弹簧释放的势能。

4.一质量为2m 的物体P 静止于光滑水平地面上,其截面如图所示。

图中ab 为粗糙的水平面,长度为L ;bc 为一光滑斜面,斜面和水平面通过与ab 和bc 均相切的长度可忽略的光滑圆弧连接。

现有一质量为m 的木块以大小为v0的水平初速度从a 点向左运动,在斜面上上升的最大高度为h ,返回后在到达a 点前与物体P 相对静止。

重力加速度为g 。

求:(1)木块在ab 段受到的摩擦力f ; (2)木块最后距a 点的距离s 。

动量守恒定律练习题及答案

动量守恒定律练习题及答案

一、选择题(每小题中至少有一个选项是正确的)1.在下列几种现象中,动量守恒的有( )A .原来静止在光滑水平面上的车,从水平方向跳上一个人,人车为一系统B .运动员将铅球从肩窝开始加速推出,以运动员和球为一系统C .从高空自由落下的重物落在静止于地面上的车厢中,以重物和车厢为一系统D .光滑水平面上放一斜面,斜面光滑,一个物体沿斜面滑下,以重物和斜面为一系统2.两物体组成的系统总动量守恒,这个系统中( )A .一个物体增加的速度等于另一个物体减少的速度B .一物体受的冲量与另一物体所受冲量相同C .两个物体的动量变化总是大小相等,方向相反D .系统总动量的变化为零3.砂子总质量为M 的小车,在光滑水平地面上匀速运动,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为 ( ) A .v 0 B .m M Mv -0 A .m M mv -0 A .M v m M 0)(-4.A 、B 两个相互作用的物体,在相互作用的过程中合外力为0,则下述说法中正确的是( )A .A 的动量变大,B 的动量一定变大 B .A 的动量变大,B 的动量一定变小C .A 与B 的动量变化相等D .A 与B 受到的冲量大小相等5.把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射子弹时,关于枪、子弹、车的下列说法正确的有( )A. 枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C .枪、弹、车组成的系统动量守恒D .若忽略不计弹和枪筒之间的摩擦,枪、车组成的系统动量守恒6.两球相向运动,发生正碰,碰撞后两球均静止,于是可以判定,在碰撞以前( )A .两球的质量相等B .两球的速度大小相同C .两球的动量大小相等D .以上都不能断定7.一只小船静止在水面上,一个人从小船的一端走到另一端,不计水的阻力,以下说法正确的是( )A .人在小船上行走,人对船的冲量比船对人的冲量小,所以人向前运动得快,小船后退得慢B .人在小船上行走时,人的质量比船的质量小,它们受到的冲量大小是一样的,所以人向前运动得快,船后退得慢C .当人停止走动时,因为小船惯性大,所以小船要继续后退D .当人停止走动时,因为总动量守恒,所以小船也停止后退8.如图所示,在光滑水平面上有一静止的小车,用线系一小球,将球拉开后放开,球放开时小车保持静止状态,当小球落下以后与固定在小车上的油泥沾在一起,则从此以后,关于小车的运动状态是 ( )A .静止不动B .向右运动C .向左运动D .无法判断*9.木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上,在b 上施加向左的水平力使弹簧压缩,如图所示,当撤去外力后,下列说法中正确的是( )A .a 尚未离开墙壁前,a 和b 系统的动量守恒B .a 尚未离开墙壁前,a 与b 系统的动量不守恒C .a 离开墙后,a 、b 系统动量守恒D .a 离开墙后,a 、b 系统动量不守恒*10.向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b 两块.若质量较大的a 块的速度方向仍沿原来的方向则 ( )A .b 的速度方向一定与原速度方向相反B .从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大C .a ,b 一定同时到达地面D .炸裂的过程中,a 、b 中受到的爆炸力的冲量大小一定相等二、填空题11.质量分别为m 1、m 2的两物体在光滑水平面上碰撞 , 碰撞前两物体的速度分别为V 1、V 2,当两物体发生碰撞后速度分别为V 1/ 、V 2/。

【物理】物理动量守恒定律题20套(带答案)及解析

【物理】物理动量守恒定律题20套(带答案)及解析

【物理】物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:4282t s +=2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。

动量守恒专题训练(含答案)

动量守恒专题训练(含答案)

动量守恒专题训练(含答案) 动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。

【例1】 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。

质量为m 的小球以速度v 1向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到的最大高度H 和物块的最终速度v。

2.子弹打木块类问题【例3】 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

3.反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。

这类问题相互作用过程中系统的动能增大,有其它能向动能转化。

可以把这类问题统称为反冲。

【例4】 质量为m 的人站在质量为M ,长为L 的静止小船的右端,小船的左端靠在岸边。

当他向左走到船的左端时,船左端离岸多远?【例5】 总质量为M 的火箭模型 从飞机上释放时的速度为v 0,速度方向水平。

火箭向后以相对于地面的速率u 喷出质量为m 的燃气后,火箭本身的速度变为多大?4.爆炸类问题【例6】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。

5.某一方向上的动量守恒【例7】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例8】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m 的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。

(完整word版)动量守恒专题训练(含答案)

(完整word版)动量守恒专题训练(含答案)

动量守恒专题训练(含答案)动■守恒定律成立的条件(1)系统不受外力或者所受外力之和为零:⑵系统受外力,但外力远小于內力,可以忽略不计:(3)系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

⑷全过程的某一阶段系统受的合外力为零.则该介段系统动量守恒。

【例1】质量为"的楔形物块上冇圆弧轨道,静止在水平面上。

质量为m 的小球以速度记 向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到 的最人高度H 和物块的最终速度2.子弹打木块类问题【例3】设质量为加的子弹以初速度⑷射向静止在光滑水平面上的质量为"的木块,并留 在木块中不再射出,子弹钻入木块深度为乩求木块对子弹的 平均阻力的大小和该过程中木块前进的距离。

3・反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再 相同而分开。

这类问题和互作用过程中系统的动能增大,有其它能向动能转化。

可以把这类问題统称为反冲。

【例4】质量为血的人站在质屋为",长为Z 的静止小船的 右端,小船的左端靠在岸边。

当他向左走到船的左端时,船左 端离岸多远?【例5】总质量为"的火箭模型从飞机上释放时的速度为速度方向水平。

火箭向后以 相对于地面的速率U 喷岀质量为m 的燃气后.火箭本身的速度变为至人?4.爆炸类问题1n 1 1 1 1t ------- $2------- ――4^-61—> • 51 -----------a【例6】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质堂300g仍按原方向飞行,其速度测得为50皿(,另一小块质量为200g,求它的速度的人小和方向。

5・某一方向上的动童守恒【例7】如图所示,M为一光滑水平横杆,杆上套一质量为〃的小圆环,环上系一长为厶质量不计的细绳,绳的另一端拴一质量为e的小球,现将绳拉U,且与初平行,由静止释放小球,则当线绳与戏8成〃角时,圆坏移动的距离是多少?6-物块与平板间的相对滑动【例8】如图所示• 一质量为"的平板车尸放在光滑水平面上,在其右端放一质量为加的小木块4间动摩擦因数为“,现给川和方以大小相等、方向相反的初速度iO,使方开始向左运动,〃开始向右运动,最后川不会滑离8,求:(1) A. F最后的速度大小和方向;(2) 从地面上看,小木块向左运动到离出发点垠远处时.平板车向右运动的位移人小。

高中物理动量守恒定律题20套(带答案)及解析

高中物理动量守恒定律题20套(带答案)及解析

高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A 、B 、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A 、B 在前,C 在后.此后C 向左加速,A 、B 的加速度沿杆向右,直到弹簧恢复原长,故A 、B 继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A 、B 的速度,C 的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数 ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A、B、C运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.4.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。

(物理)物理动量守恒定律题20套(带答案)及解析

(物理)物理动量守恒定律题20套(带答案)及解析

mv0=2mv1,① (2 分) 2mv1=4mv2② (2 分) 联立①②得,v2=0.25v0. (1 分) (2)当 A 在木板 B 上滑动时,系统的动能转化为摩擦热,设木板 B 的长度为 L,假设 A 刚
好滑到 B 的右端时共速,则由能量守恒得,
③ (2 分)
联立①②③得,L=
考点:动量守恒,能量守恒. 【名师点睛】小球与 A 碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒

解得滑块 a 与车相对静止时与 O 点距离:

考点:动量守恒定律、动能定理。 【名师点睛】本题考查了求速度、距离问题,分析清楚运动过程、应用动量守恒定律、动 能定理、能量守恒定律即可正确解题。
6.如图所示,在光滑的水平面上放置一个质量为 2m 的木板 B,B 的左端放置一个质量为
m 的物块 A,已知 A、B 之间的动摩擦因数为 ,现有质量为 m 的小球以水平速度0 飞来
【答案】(1) v1 4 m s , v2 0 ;(2) m2 3kg 。
【解析】
试题分析:(1)由
s—t
图象知:碰前,m1 的速度 v1
s t
16 - 0 4-0
4m
s
,m2 处于静止
状态,速度 v2 0
(2)由 s—t 图象知:碰后两物体由共同速度,即发生完全非弹性碰撞
碰后的共同速度 v s 24 16 1m s t 12 4
略不计,g 取 10 m/s2,求两种模型上升的最大高度之差。 【答案】116.54m
【解析】对模型甲: 0 M mv甲 mv0
h甲 =
v甲2 2g
1085 9
m
200.56m
对模型乙第一级喷气:
0

(完整版)动量守恒定律经典习题(带答案)

(完整版)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。

(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。

设小车足够长,求:(1)木块和小车相对静止时小车的速度。

(2)从木块滑上小车到它们处于相对静止所经历的时间。

(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。

例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。

游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。

为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。

若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1. 分析:以物体和车做为研究对象,受力情况如图所示。

在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。

因此地面给车的支持力远大于车与重物的重力之和。

系统所受合外力不为零,系统总动量不守恒。

但在水平方向系统不受外力作用,所以系统水平方向动量守恒。

以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v ⇒Mv 0=(M+m)v⇒s m v m N M v /454140=⨯+=+= 即为所求。

【物理】物理动量守恒定律题20套(带答案)

【物理】物理动量守恒定律题20套(带答案)

(1)P1、P2 刚碰完时的共同速度 v1; (2)此过程中弹簧的最大弹性势能 Ep. (3)通过计算判断最终 P 能否从 P1 上滑下,并求出 P 的最终速度 v2. 【答案】(1)v1=2m/s (2)EP=0.2J (3)v2=3m/s 【解析】
【分析】 【详解】
(1)P1、P2 碰撞过程,由动量守恒定律 mv0 2mv1
M 2
v乙‘ 1
=(
M 2
m 2 )v乙2
m 2 v0
解得:
v乙2 =
670 9
m
s
h乙 2
=
v乙2 2 2g
22445 m 81
277.10m
可得:
h
h乙1 +h乙2
h甲 =
9440 81
m
116.54m 。
2.两个质量分别为 mA 0.3kg 、 mB 0.1kg 的小滑块 A、B 和一根轻质短弹簧,弹簧的
【物理】物理动量守恒定律题 20 套(带答案)
一、高考物理精讲专题动量守恒定律
1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载 能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为 M=l kg,点火后全部压缩气体以 vo =570 m/s 的速度从底部喷口在
(1)A 与 B 在 O 点碰后瞬间各自的速度;
(2)两物块各自停止运动时的时间间隔.
【答案】(1)
,方向向左;
,方向向右.(2)1s
【解析】
试题分析:(1)设 A、B 在 O 点碰后的速度分别为 v1 和 v2,以向右为正方向
由动量守恒:
碰撞前后动能相等:

动量守恒超级经典题目含答案

动量守恒超级经典题目含答案

1、如图所示质量为M的天车静止在光滑水平轨道上,下面用长为L的细线悬挂着质量为m的沙箱,一颗质量为mv0的水平速度射入沙箱,并留在其中,在以后运动过程中(1)沙箱上升的最大高度。

(2)天车最大的速度。

2、如图2所示,质量为M的槽体放在光滑水平面上,内有半径为R的半圆形轨道,其左端紧靠一个固定在地面上的挡板.质量为m的小球从A点由静止释放,若槽内光滑,求小球上升的最大高度.3、带有光滑圆弧轨道的小车质量为M,圆弧轨道下端的切线水平,圆弧轨道足够长,静止在水平地面上有一质量为m的小球以水平初速度ν0滚上小车,如图13所示。

求:(1)小球沿圆形轨道上升的最大高度h;(2)小球又滚回来和M分离时两者的速度?4、如图所示,半径为R=1米的半圆槽质量M=4千克,置于光滑水平面上,其左边有固定的木块挡着。

今有质量m=1千克的小球自离槽口高h=4米处无初速度落下,与圆弧相切自C点进入槽内。

(g=10米/秒2)求:(1)当球到达A点即将与槽分离时槽的速度。

(2)此时小球的速度大小。

(3)槽的最大速度。

5、动摩擦因数为0.1的水平面上,放有距离9.5m的两个物体A和B,质量分别为m A=2kg,m B=1kg,如图所示,现给A一个冲量使A以10m/s的初速度向静止的B运动当A与B发生碰撞后,A仍沿原方向运动,且A从开始运动到停止共经历6s,求碰撞后B经多长时间停止运动?参考答案一、计算题1、解析:(1)子弹打入沙箱过程中动量守恒①摆动过程中,子弹、沙箱、天车系统水平方向动量守恒,机械能守恒。

沙箱到达最大高度时系统有相同的速度,设为v2,则有②③联系①②③可得(2)子弹和沙箱再摆回最低点时,天车速度最大,设此时天车速度为v3,沙箱速度为v4由动量守恒得④由系统机械能守恒得⑤联立④⑤求解得天车最大速度2、【试题分析】【解析】设小球由A滑到最低点B时的速度为v1,上升的最大高度为h.由机械能守恒定律①所以②小球在向上运动过程中,M和m组成的系统水平方向总动量守恒,设它们在最高点时水平方向的共同速度为v2.所以③整个过程中系统的机械能守恒④由②~④式得,小球上升的最大高度.3、4、2m/s,8m/s,4m/s5、方法一:A匀减速:-m A gL=m A v-m A v∴ v A1=t A1=A碰后减速 t A2=5(s) v A2=gt2=5m/s. A与B碰:m A v A1=m A v A2+m B v B2∴ 2×9=2×5+1×v B2∴v B2=8m/sB减速:t2=方法二:-m A gt A-m B gt B=0-m A v0∴-0.1×2×10×6-0.1×1×10×t B=0-2×10t B=8(s)。

动量守恒定律 典型例题及练习题

动量守恒定律 典型例题及练习题

动量典型例题及练习【例题1】两块高度相同的木块A 和B ,紧靠着放在光滑的水平面上,其质量分别为m A =2kg ,m B =0.9kg 。

它们的下底面光滑,但上表面粗糙。

另有一质量m =0.1kg的物体C(可视为质点)以v C =10m/s 的速度恰好水平地滑动A 的上表面,物体C 最后停在B 上,此时B 、C 的共同速度v =0.5m/s,求(1)C 刚离开A 时,木块C 的速度(2)木块A 最终的速度为多大?﹡练习1、如图,在光滑水平面上的两平板车的质量分别为M 1=2kg 和M 2=3kg ,在M 1光滑的表面上放有一质量为m =1kg 的滑块,与M 1一起以5m/s 的速度向右运动,M 2静止。

M 1 与M 2 相撞后以相同的速度一起运动,但没有连接。

m 最后滑上M 2,并因摩擦停在上M 2 ,求两车最终的速度。

﹡练习2、如图所示,在一光滑的水平面上有两块相同的木板B 和C 。

重物A (可以视为质点),位于B 的右端,A 的质量是2kg ,B 、C 的质量都是10kg 。

现A 和B 以2m/s 的速度滑向静止的C ,B 和C 发生正碰,碰后B 和C 粘在一起运动,A 在C 上滑行,A 与C 之间的摩擦因数μ=0.2。

已知A 滑到C 的右端而未掉下。

试问: C 至少多长A 不会掉下?【例题2】如图所示,在光滑水平面上有A 、B 两辆小车,水平面的左侧有一竖直墙,在小车B 上坐着一个小孩,小孩与B 车的总质量是A 车质量的10倍。

两车开始都处于静止状态,小孩把A车以相对于地面的速度v 推出,A 车与墙壁碰后仍以原速率返回,小孩接到A 车后,又把它以相对于地面的速度v 推出。

每次推出,A 车相对于地面的速度都是v ,方向向左。

则小孩把A 车推出几次后,A 车返回时小孩不能再接到A 车?﹡练习3、甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车的质量共为M =30kg ,乙和他的冰车的质量也是30kg 。

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.四个水球可以挡住一颗子弹!如图所示,是央视《国家地理》频道的实验示意图,直径相同(约30cm 左右)的4个装满水的薄皮气球水平固定排列,子弹射入水球中并沿水平线做匀变速直线运动,恰好能穿出第4个水球,气球薄皮对子弹的阻力忽略不计。

以下判断正确的是( )A .子弹在每个水球中的速度变化相同B .每个水球对子弹做的功不同C .每个水球对子弹的冲量相同D .子弹穿出第3个水球的瞬时速度与全程的平均速度相等 2.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 3.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。

已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。

下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落C .若032a v gL μ≤ab 一定不相碰D .若2b a μμ>,则a 可能从木板左端滑落4.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m5.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是( )A .人在船上走动过程中,人的动能是船的动能的8倍B .人在船上走动过程中,人的位移是船的位移的9倍C .人走动时,它相对水面的速度大于小船相对水面的速度D .人突然停止走动后,船由于惯性还会继续运动一小段时间6.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/sB .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s7.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a 自由下落到b ,再从b 开始以恒力制动竖直下落到c 停下.已知跳楼机和游客的总质量为m ,ab 高度差为2h ,bc 高度差为h ,重力加速度为g .则A .从a 到b 与从b 到c 的运动时间之比为2:1B .从a 到b ,跳楼机座椅对游客的作用力与游客的重力大小相等C .从a 到b ,跳楼机和游客总重力的冲量大小为m ghD .从b 到c ,跳楼机受到制动力的大小等于2mg8.如图所示,小车质量为M ,小车顶端为半径为R 的四分之一光滑圆弧,质量为m 的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度)( )A .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32mg C .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR m M M m + D .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR Mm M m + 9.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+ C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++ 10.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。

【物理】物理动量守恒定律题20套(带答案)含解析

【物理】物理动量守恒定律题20套(带答案)含解析

【物理】物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答4.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.5.如图所示,在光滑的水平面上放置一个质量为2m 的木板B ,B 的左端放置一个质量为m 的物块A ,已知A 、B 之间的动摩擦因数为μ,现有质量为m 的小球以水平速度0υ飞来与A 物块碰撞后立即粘住,在整个运动过程中物块A 始终未滑离木板B ,且物块A 和小球均可视为质点(重力加速度g).求:①物块A 相对B 静止后的速度大小; ②木板B 至少多长.【答案】①0.25v 0.②2016v L gμ=【解析】试题分析:(1)设小球和物体A 碰撞后二者的速度为v 1,三者相对静止后速度为v 2,规定向右为正方向,根据动量守恒得, mv 0=2mv 1,① (2分) 2mv 1=4mv 2② (2分)联立①②得,v 2=0.25v 0. (1分)(2)当A 在木板B 上滑动时,系统的动能转化为摩擦热,设木板B 的长度为L ,假设A 刚好滑到B 的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A 碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A 相对B 静止后的速度大小;对子弹和A 共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.6.一列火车总质量为M ,在平直轨道上以速度v 匀速行驶,突然最后一节质量为m 的车厢脱钩,假设火车所受的阻力与质量成正比,牵引力不变,当最后一节车厢刚好静止时,前面火车的速度大小为多少? 【答案】Mv/(M-m) 【解析】 【详解】因整车匀速运动,故整体合外力为零;脱钩后合外力仍为零,系统的动量守恒. 取列车原来速度方向为正方向.由动量守恒定律,可得()0Mv M m v m =-'+⨯ 解得,前面列车的速度为Mvv M m'=-;7.如图所示,在光滑水平面上有一个长为L 的木板B ,上表面粗糙,在其左端有一个光滑的14圆弧槽C 与长木板接触但不连接,圆弧槽的下端与木板的上表面相平,B 、C 静止在水平面上,现有滑块A 以初速度v 0从右端滑上B 并以02v滑离B ,恰好能到达C 的最高点.A 、B 、C 的质量均为m ,试求:(1)滑块与木板B 上表面间的动摩擦因数μ; (2)14圆弧槽C 的半径R 【答案】(1)20516v gL μ=;(2)2064v R g=【解析】由于水平面光滑,A 与B 、C 组成的系统动量守恒和能量守恒,有:mv 0=m (12v 0)+2mv 1 ① μmgL =12mv 02-12m (12v 0) 2-12×2mv 12 ②联立①②解得:μ=2516v gL.②当A 滑上C ,B 与C 分离,A 、C 间发生相互作用.A 到达最高点时两者的速度相等.A 、C 组成的系统水平方向动量守恒和系统机械能守恒: m (12v 0)+mv 1=(m +m )v 2 ③ 12m (12v 0)2+12mv 12=12(2m )v 22+mgR ④ 联立①③④解得:R =264v g点睛:该题考查动量守恒定律的应用,要求同学们能正确分析物体的运动情况,列出动量守恒以及能量转化的方程;注意使用动量守恒定律解题时要规定正方向.8.如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比m 1∶m 2=2,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .【答案】8R 【解析】 【分析】 【详解】两演员一起从从A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为m ,则212mgR mv =女演员刚好能回到高处,机械能依然守恒:222112m gR m v =女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:122112m m v m v m v +=-+()③根据题意:12:2m m = 有以上四式解得:222v gR =接下来男演员做平抛运动:由2142R gt =,得8 t g R 因而:28s v t R ==; 【点睛】两演员一起从从A 点摆到B 点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;本题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.9.如图所示,质量为m A =3kg 的小车A 以v 0=4m/s 的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为m B =1kg 的小球B (可看作质点),小球距离车面h =0.8m .某一时刻,小车与静止在光滑水平面上的质量为m C =1kg 的物块C 发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g =10m/s 2.求:(1)小车系统的最终速度大小v 共; (2)绳未断前小球与砂桶的水平距离L ; (3)整个过程中系统损失的机械能△E 机损. 【答案】(1)3.2m/s (2)0.4m (3)14.4J 【解析】试题分析:根据动量守恒求出系统最终速度;小球做平抛运动,根据平抛运动公式和运动学公式求出水平距离;由功能关系即可求出系统损失的机械能. (1)设系统最终速度为v 共,由水平方向动量守恒: (m A +m B ) v 0=(m A +m B +m C ) v 共 带入数据解得:v 共=3.2m/s(2)A 与C 的碰撞动量守恒:m A v 0=(m A +m C )v 1 解得:v 1=3m/s设小球下落时间为t ,则: 212h gt = 带入数据解得:t =0.4s 所以距离为:01()L v v =- 带入数据解得:L =0.4m(3)由能量守恒得:()()2201122B A B A B E m gh m m v m m m v ∆=++-++共损 带入数据解得:14.4E J ∆=损点睛:本题主要考查了动量守恒和能量守恒定律的应用,要注意正确选择研究对象,并分析系统是否满足动量守恒以及机械能守恒;然后才能列式求解.10.如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知,2,3A B C m m m m m m ===,求:(1)滑块A 与滑块B 碰撞结束瞬间的速度v ; (2)被压缩弹簧的最大弹性势能E Pmax ; (3)滑块C 落地点与桌面边缘的水平距离 s. 【答案】(1)111233v v gh ==(2)6mgh (323Hh 【解析】 【详解】解:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为1v ,由机械能守恒定律有:2112=A A m gh m v 解之得:12v gh =滑块A 与B 碰撞的过程,A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为v ,由动量守恒定律有:()1A A B m v m m v =+ 解之得:111233v v gh ==(2)滑块A 、B 发生碰撞后与滑块C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A 、B 、C 速度相等,设为速度2v 由动量守恒定律有: ()12A A B C m v m m m v =++ 由机械能守恒定律有: ()22max 21()2A A CB B P m v m m m m E v -++=+ 解得被压缩弹簧的最大弹性势能:max 16P E mgh =(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块A 、B 的速度为3v ,滑块C 的速度为4v ,分别由动量守恒定律和机械能守恒定律有:()()34A B A B C m m v m m v m v +=++()()22234111222A B A B C m m v m m v m v +=++ 解之得:30=v ,4123v gh =滑块C 从桌面边缘飞出后做平抛运动:4 s v t =212H gt =解之得滑块C 落地点与桌面边缘的水平距离:23s Hh =11.如图所示,在水平面上有一弹簧,其左端与墙壁相连,O 点为弹簧原长位置,O 点左侧水平面光滑,水平段OP 长L=1m ,P 点右侧一与水平方向成的足够长的传送带与水平面在P 点平滑连接,皮带轮逆时针转动速率为3m/s ,一质量为1kg 可视为质点的物块A 压缩弹簧(与弹簧不栓接),使弹簧获得弹性势能,物块与OP 段动摩擦因数,另一与A 完全相同的物块B 停在P 点,B 与传送带的动摩擦因数,传送带足够长,A 与B 的碰撞时间不计,碰后A .B 交换速度,重力加速度,现释放A ,求:(1)物块A .B 第一次碰撞前瞬间,A 的速度(2)从A .B 第一次碰撞后到第二次碰撞前,B 与传送带之间由于摩擦而产生的热量 (3)A .B 能够碰撞的总次数 【答案】(1)(2)(3)6次【解析】试题分析:(1)设物块质量为m ,A 与B 第一次碰前的速度为,则:解得:(2)设A.B 第一次碰撞后的速度分别为,则,碰后B 沿传送带向上匀减速运动直至速度为零,加速度大小设为, 则:,解得:运动的时间,位移此过程相对运动路程此后B反向加速,加速度仍为,与传送带共速后匀速运动直至与A再次碰撞,加速时间为位移为此过程相对运动路程全过程生热(3)B与A第二次碰撞,两者速度再次互换,此后A向左运动再返回与B碰撞,B沿传送带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再碰撞.则对A.B和弹簧组成的系统,从第二次碰撞后到不再碰撞:解得第二次碰撞后重复的过程数为n=2.25,所以碰撞总次数为N=2+2n=6.5=6次(取整数)考点:动能定理;匀变速直线运动的速度与时间的关系;牛顿第二定律【名师点睛】本题首先要理清物体的运动过程,其次要准确把握每个过程所遵守的物理规律,特别要掌握弹性碰撞过程,动量和机械能均守恒,两物体质量相等时交换速度12.如图所示,物块质量m=4kg,以速度v=2m/s水平滑上一静止的平板车上,平板车质量M=16kg,物块与平板车之间的动摩擦因数μ=0.2,其他摩擦不计(g=10m/s2),求:(1)物块相对平板车静止时,物块的速度;(2)物块在平板车上滑行的时间;(3)物块在平板车上滑行的距离,要使物块在平板车上不滑下,平板车至少多长?【答案】(1)0.4m/s(2)(3)【解析】解:物块滑下平板车后,在车对它的摩擦力作用下开始减速,车在物块对它的摩擦力作用下开始加速,当二者速度相等时,物块相对平板车静止,不再发生相对滑动。

高三物理动量守恒练习题及答案

高三物理动量守恒练习题及答案

高三物理动量守恒练习题及答案动量守恒是物理学中的重要概念,通过练习题的形式可以更好地理解和掌握动量守恒的原理和应用。

下面是一些高三物理动量守恒练习题及答案,供同学们参考和练习。

练习题1:一个质量为2kg的小球以4m/s的速度向右运动,与一个质量为3kg 的小球发生完全弹性碰撞后,原来静止的小球反弹出去。

求碰撞后两球的速度分别是多少?解答:根据动量守恒定律,碰撞前后系统的总动量不变。

设第一个小球的速度为V1,第二个小球的速度为V2,碰撞后两球的速度分别为V1'和V2'。

碰撞前的动量:m1 * V1 + m2 * V2 = 2kg * 4m/s + 3kg * 0m/s = 8kg·m/s碰撞后的动量:m1 * V1' + m2 * V2' = 2kg * (-4m/s) + 3kg * V2'根据动量守恒定律,两者相等:2kg * (-4m/s) + 3kg * V2' = 8kg·m/s解方程可得:V2' = -5.34m/s练习题2:一辆质量为1200kg的小车以20m/s的速度向东行驶,与一辆质量为800kg的小车发生完全弹性碰撞后,第一个小车的速度变为10m/s,请问第二个小车的速度是多少?解答:设第二个小车的速度为V2'。

碰撞前的动量:m1 * V1 + m2 * V2 = 1200kg * 20m/s + 800kg * 0m/s = 24000kg·m/s 碰撞后的动量:m1 * V1' + m2 * V2' = 1200kg * 10m/s + 800kg * V2'根据动量守恒定律,两者相等:1200kg * 10m/s + 800kg * V2' = 24000kg·m/s解方程可得:V2' = 15m/s练习题3:一个质量为0.1kg的小球以12m/s的速度向右运动,与一个质量为0.2kg的小球发生完全非弹性碰撞后,两球一起向右运动。

动量守恒及应用超级好题(含答案).

动量守恒及应用超级好题(含答案).

1、如图所示,在光滑水平长直轨道上有、两个绝缘体,它们之间有一根长为的轻质软线相连接,其中的质量为,的质量为,为带有电荷量为的正电荷,不带电,空间存在着方向水平向右的匀强电场,场强大小为。

开始用外力把与靠在一起并保持静止,某时刻撤去外力,开始向右运动,直到细线绷紧,当细线被绷紧时,两物体将有极短时间的相互作用,而后开始运动,且细线再次松弛。

已知开始运动时的速度等于线刚绷紧前瞬间的速度的。

设整个过程中,的电荷量都保持不变。

问(1)细线第一次绷紧前瞬间的速度多大?(2)从开始运动后到细线第二次被绷紧前的过程中,与是否会相碰?(3)如果能相碰,的位移和相碰前瞬间、的速度各是多少?如果不能相碰,和间的最短距离是多少?细线第二次被绷紧的瞬间的位移多大?2、用轻弹簧相连的质量均为m=2㎏的A、B两物体都以v=6m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量M = 4㎏的物体C静止在前方,如图所示。

B与C碰撞后二者粘在一起运动,在以后的运动中,求:(1)B与C碰撞后二者粘在一起的共同速度v1.(2)当弹簧的弹性势能最大时物体A的速度v2。

3、如图,水平地面上静止放置着物块B和C,相距=1.0 m.物块A以速度=10 m/s沿水平方向与B正碰.碰撞后A和B牢固地粘在一起向右运动,并再与C发生正碰,碰后瞬间C的速度=2.0 m/s.已知A和B的质量均为m,C 的质量为A质量的k倍,物块与地面的动摩擦因数=0.45.(设碰撞时间很短,g取10 m/)(1)计算与C碰撞前瞬间AB的速度;(2)根据AB与C的碰撞过程分析k的取值范围,并讨论与C碰撞后AB的可能运动方向.4、如图所示,光滑水平面左端有一弹性挡板,右端与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分的长度,传送带逆时钟匀速转动其速度.上放置两个质量都为的小物块、,开始时、静止,、间压缩一轻质弹簧,其弹性势能.现解除锁定,弹开、,并迅速移走弹簧.取.(1)求物块、被弹开时速度的大小.(2)要使小物块在传送带的端不掉下,则小物块与传送带间的动摩擦因数至少为多大?(3)若小物块与传送带间的动摩擦因数,当与发生第一次弹性碰撞后物块返回,在水平面上、相碰后粘接在一起,求碰后它们的速度大小及方向,并说明它们最终的运动情况.5、如图所示,轻弹簧的两端与质量均为2m的B、C两物块固定连接,静止在光滑水平面上,物块C紧靠挡板但不粘连.另一质量为m的小物块A以速度V0从右向左与B发生弹性正碰,碰撞时间极短可忽略不计.(所有过程都在弹簧弹性限度范围内)求:(1)A、B碰后瞬间各自的速度;(2)弹簧第一次压缩最短与第一次伸长最长时弹性势能之比.6、如图所示,在光滑水平面上放着一个质量M=0.3kg的木块(可视为质点),在木块正上方1m处有一个固定悬定点O,在悬点O和木块之间用一根长2m、不可伸长的轻绳连接.有一颗质量m=0.1kg的子弹以80m/s的速度水平射入木块并留在其中,之后木块绕O点在竖直平面内做圆周运动.求:(1)木块以多大速度脱离水平地面? (2)当木块到达最高点时对轻绳的拉力F为多少?7、22.(16分)一质量M=0.8kg的小物块,用长l=0.8m的细绳悬挂在天花板上,处于静止状态。

动量守恒专题训练含答案

动量守恒专题训练含答案

动量守恒专题训练(含答案)动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。

【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。

质量为向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到的最大高度H和物块的最终速度v。

2 •子弹打木块类问题【例3】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。

求木块对子弹的'平均阻力的大小和该过程中木块前进的距离。

―»IZD71 11777777^7?T .5^7777[―S]3 •反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。

这类问题相互作用过程中系统的动能增大,有其它能向动能转化。

可以把这类问题统称为反冲。

【例4】质量为m的人站在质量为M长为L的静止小船的右端,小船的左端靠在岸边。

当他向左走到船的左端时,船左端离岸多远?【例5】总质量为M的火箭模型从飞机上释放时的速度为v O,速度方向水平。

火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?4 •爆炸类问题【例6】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。

5.某一方向上的动量守恒【例7】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成0角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例8】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m 的小木块A, R K MA、B间动摩擦因数为□,现给A和B以大小相等、方向相反的初速度v O, 使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图所示质量为M的天车静止在光滑水平轨道上,下面用长为L的细线悬挂着质量为m的沙箱,一颗质量为
m
v0的水平速度射入沙箱,并留在其中,在以后运动过程中
(1)沙箱上升的最大高度。

(2)天车最大的速度。

2、如图2所示,质量为M的槽体放在光滑水平面上,内有半径为R的半圆形轨道,其左端紧靠一个固定在地面上的挡板.质量为m的小球从A点由静止释放,若槽内光滑,求小球上升的最大高度.
3、带有光滑圆弧轨道的小车质量为M,圆弧轨道下端的切线水平,圆弧轨道足够长,静止在水平地面上有一质
量为m的小球以水平初速度ν0滚上小车,如图13所示。

求:
(1)小球沿圆形轨道上升的最大高度h;
(2)小球又滚回来和M分离时两者的速度?
4、如图所示,半径为R=1米的半圆槽质量M=4千克,置于光滑水平面上,其左边有固定的木块挡着。

今有质
量m=1千克的小球自离槽口高h=4米处无初速度落下,与圆弧相切自C点进入槽内。

(g=10米/秒2)求:
(1)当球到达A点即将与槽分离时槽的速度。

(2)此时小球的速度大小。

(3)槽的最大速度。

5、动摩擦因数为0.1的水平面上,放有距离9.5m的两个物体A和B,质
量分别为m A=2kg,m B=1kg,如图所示,现给A一个冲量使A以10m/s的初速度向静止的B运动当A与B发生碰撞后,A仍沿原方向运动,且A从开始运动到停止共经历6s,求碰撞后B经多长时间停止运动?
参考答案
一、计算题
1、解析:(1)子弹打入沙箱过程中动量守恒①摆动过程中,子弹、沙箱、天车系统水平
方向动量守恒,机械能守恒。

沙箱到达最大高度时系统有相同的速度,设为v2,则有
②③联系①②③可
得(2)子弹和沙箱再摆回最低点时,天车速度最大,设此时天车速度为
v3,沙箱速度为v4由动量守恒得④由系统机械能守恒得
⑤联立④⑤求解得天车最大速度
2、
【试题分析】
【解析】设小球由A滑到最低点B时的速度为v1,上升的最大高度为h.由机械能守恒定律

所以②
小球在向上运动过程中,M和m组成的系统水平方向总动量守恒,设它们在最高点时水平方向的共同速度为v2.
所以③
整个过程中系统的机械能守恒

由②~④式得,小球上升的最大高度.
3、
4、2m/s,8m/s,4m/s
5、方法一:A匀减速:-m A gL=m A v-m A v
∴ v A1=
t A1=
A碰后减速 t A2=5(s) v A2=gt2=5m/s. A与B碰:m A v A1=m A v A2+m B v B2
∴ 2×9=2×5+1×v B2∴v B2=8m/s
B减速:t2=
方法二:-m A gt A-m B gt B=0-m A v0
∴-0.1×2×10×6-0.1×1×10×t B=0-2×10
t B=8(s)。

相关文档
最新文档