汽车车牌识别系统-车牌定位子系统的设计与实现大学毕业论文外文文献翻译及原文
车牌定位-本科毕业设计论文

交通图象检测与处理方法研究对于交通安全、交通管理与控制具有非常重要的理论意义和实用价值。
通过视频图象的检测与识别,可以实时检测交通违章现象、识别违章车辆的车牌号码,为公安交通管理部门提供强有力的执法证据。
因此,研究交通图象检测与处理方法对智能交通运输系统的发展具有重要的推动作用。
本系统着力对车牌的识别过程进行研究和实现。
主要能够对带有车牌的图片灰度化,二值化,中值滤波等处理,并能够截取车牌图片。
车牌定位是指将车牌区域从车辆图像中分割出来,是实现整个系统的关键环节。
而车牌定位主要包含两个关键技术问题:图像的预处理和车牌定位的算法。
本论文主要应用VC语言编程,对其车牌图像进行预处理,有效的解决一些导致识别、定位错误的问题。
关键词:车牌定位,二值化,预处理Traffic image processing method for testing and research, traffic safety management and control has important theoretical significance and practical value. Through video images of detection and recognition can real-time detection and identification of violate the traffic violations phenomenon plate number for public security traffic management department, provide strong evidence of law enforcement.The focus on the license plate identification system research and implementation process. Mainly with the license plate on the picture to gray level transformation, binarization, median filtering and other processing, and can intercept license plate image.License plate location is license plate recognition technology a vital part . License plate location refers to the license plate out from the vehicle image segmentation is the key to the entire system. The license plate location primarily consists of two key technologies: image preprocessing and license plate location algorithm. Main application VC language program, to the license plate identification, orientation, image analysis, processing. And some of the mistakes in recognition, positioning problem.Keywords:Plate Positioning,Binarization ,Pretreatment目录1 前言 (1)2 车牌定位系统概述 (2)2.1 车牌定位系统基础 (2)2.1.1 我国车辆与车牌现状 (2)2.1.2 车牌定位的研究意义 (2)2.1.3 国内外学者研究现状 (3)2.2 图像处理技术基础 (4)2.2.1 数字图像基本知识 (4)2.2.2 数字图像预处理 (4)2.2.3 数字图像问题剖析 (6)2.2.4 开发相关知识 (6)3 车牌定位于提取技术 (7)3.1 车牌定位与提取流程 (7)3.2 预处理过程 (8)3.2.1 图像的灰度化处理 (8)3.2.2 直方图均衡化 (9)3.2.3 图像的二值化 (11)3.2.4 中值滤波 (14)3.3 车牌区域定位与分割 (17)3.3.1 车牌特征 (17)3.3.2 车牌分割 (18)3.3.3 彩色分割 (20)3.3.4 基于投影的精确定位 (23)4 总结 (29)4.1 论文总结 (29)4.2 问题改进与展望 (30)4.3 心得体会 (31)致谢 (32)参考文献 (33)1 前言随着国民经济的飞速发展,交通状况日益恶化,这几乎成为所有大中城市的通病。
基于opencv的车牌识别系统设计与实现-毕业论文

---文档均为word文档,下载后可直接编辑使用亦可打印---摘要科技的进步以及人民自身的生活水平的不断提高,使得人们对于日常的出行需求变得不断增长。
汽车作为最常见的交通工具已经越来越成为人们最初的选择。
大量新的车辆在不断地投入到道路中使用,而以传统的人工方式对汽车车辆的管理也变得愈加困难。
因此,使用计算机来代替人来处理相对繁重的工作是必要的。
一个良好的交通管理系统是实现道路管理的基础。
想要对于汽车车辆进行管理,最有效的识别特征之一便是汽车的车牌,作为目前最常见的使用技术,车牌识别广泛应用在交叉路段、停车场、收费站等各种场合的监控与管理之中。
所以需要相应的技术来完成以上的需求。
本文以python为使用语言,OpenCV为主要工具,通过输入带有汽车车牌的图像,根据车牌所特有的一些特征,垂直投影法、SVM的方法来完成对于汽车车辆的车牌定位、车牌的字符分割以及字符识别功能。
最终将所识别到的车牌字符输出显示出来。
关键词:OpenCV;投影法;SVM;车牌识别AbstractThe advancement of science and technology and the continuous improvement of people's own living standards have made people's daily travel needs continue to grow. As the most common mode of transportation, cars have become the initial choice of people. A large number of new vehicles are constantly being put into use on the road, and the management of automobile vehicles by traditional manual methods has become increasingly difficult. Therefore, it is necessary to use a computer instead of a person to handle relatively heavy work. A good traffic management system is the foundation for road management.One of the most effective identification features for the management of automobile vehicles is the license plate of the car. As the most commonly used technology at present, license plate recognition is widely used in monitoring and management of various occasions such as intersections, parking lots, toll stations In. Therefore, corresponding technology is needed to complete the above requirements. This article uses python as the language and OpenCV as the main tool. By inputting an image with a car license plate, according to some characteristics unique to the license plate, vertical projection and SVM are used to complete the license plate positioning, character segmentation and characters of the car license plate. Recognition function. Finally, the recognized license plate characters are displayed.Keywords:OpenCV;SVM;projection method; License Plate Recognition1 绪论1.1选题背景与意义1.1.1选题背景随着人们的生活水平的不断提高以及对日常出行需求的不断增长,汽车成为越来越多人出行所选择的交通工具。
车牌识别外文文献翻译中英文

外文文献翻译(含:英文原文及中文译文)文献出处:Gao Q, Wang X, Xie G. License Plate Recognition Based On Prior Knowledge[C]// IEEE International Conference on Automation and Logistics. IEEE, 2007:2964-2968.英文原文License Plate Recognition Based On Prior KnowledgeQian Gao, Xinnian Wang and Gongfu XieAbstract - In this paper, a new algorithm based on improved BP (back propagation) neural network for Chinese vehicle license plate recognition (LPR) is described. The proposed approach provides a solution for the vehicle license plates (VLP) which were degraded severely. What it remarkably differs from the traditional methods is the application of prior knowledge of license plate to the procedure of location, segmentation and recognition. Color collocation is used to locate the license plate in the image. Dimensions of each character are constant, which is used to segment the character of VLPs. The Layout of the Chinese VLP is an important feature, which is used to construct a classifier for recognizing. The experimental results show that the improved algorithm is effective under the condition that the license plates were degraded severely.Index Terms - License plate recognition, prior knowledge, vehiclelicense plates, neural network.I. INTRODUCTIONV ehicle License-Plate (VLP) recognition is a very interesting but difficult problem. It is important in a number of applications such as weight-and-speed-limit, red traffic infringement, road surveys and park security [1]. VLP recognition system consists of the plate location, the characters segmentation, and the characters recognition. These tasks become more sophisticated when dealing with plate images taken in various inclined angles or under various lighting, weather condition and cleanliness of the plate. Because this problem is usually used in real-time systems, it requires not only accuracy but also fast processing. Most existing VLP recognition methods [2], [3], [4], [5] reduce the complexity and increase the recognition rate by using some specific features of local VLPs and establishing some constrains on the position, distance from the camera to vehicles, and the inclined angles. In addition, neural network was used to increase the recognition rate [6], [7] but the traditional recognition methods seldom consider the prior knowledge of the local VLPs. In this paper, we proposed a new improved learning method of BP algorithm based on specific features of Chinese VLPs. The proposed algorithm overcomes the low speed convergence of BP neural network [8] and remarkable increases the recognition rate especially under the condition that the license plate images were degrade severely.II. SPECIFIC FEA TURES OF CHINESE VLPSA. DimensionsAccording to the guideline for vehicle inspection [9], all license plates must be rectangular and have the dimensions and have all 7 characters written in a single line. Under practical environments, the distance from the camera to vehicles and the inclined angles are constant, so all characters of the license plate have a fixed width, and the distance between the medium axes of two adjoining characters is fixed and the ratio between width and height is nearly constant. Those features can be used to locate the plate and segment the individual character. B. Color collocation of the plateThere are four kinds of color collocation for the Chinese vehicle license plate .These color collocations are shown in table I.TABLE IMoreover, military vehicle and police wagon plates contain a red character which belongs to a specific character set. This feature can be used to improve the recognition rate.C. Layout of the Chinese VLPSThe criterion of the vehicle license plate defines the characters layout of Chinese license plate. All standard license plates contain Chinese characters, numbers and letters which are shown in Fig.1. The first one is a Chinese character which is an abbreviation of Chineseprovinces. The second one is a letter ranging from A to Z except the letter I. The third and fourth ones are letters or numbers. The fifth to seventh ones are numbers ranging from 0 to 9 only. However the first or the seventh ones may be red characters in special plates (as shown in Fig.1). After segmentation process the individual character is extracted. Taking advantage of the layout and color collocation prior knowledge, the individual character will enter one of the classes: abbreviations of Chinese provinces set, letters set, letters or numbers set, number set, special characters set.(a)Typical layout(b) Special characterFig.1 The layout of the Chinese license plateIII. THE PROPOSED ALGORITHMThis algorithm consists of four modules: VLP location, character segmentation, character classification and character recognition. The main steps of the flowchart of LPR system are shown in Fig. 2.Firstly the license plate is located in an input image and characters are segmented. Then every individual character image enters the classifier to decide which class it belongs to, and finally the BP network decides which character the character image represents.A. Preprocessing the license plate1) VLP LocationThis process sufficiently utilizes the color feature such as color collocation, color centers and distribution in the plate region, which are described in section II. These color features can be used to eliminate the disturbance o f the fake plate ’ s regions. The flowchart of the plate location is shown in Fig. 3.Fig.3 The flowchart of the plate location algorithmThe regions which structure and texture similar to the vehicle plate are extracted. The process is described as followed:Here, the Gaussian variance is set to be less than W/3 (W is the character stroke width), so 1P gets its maximum value M at the center of the stroke. After convolution, binarization is performed according to a threshold which equals T * M (T<0.5). Median filter is used to preserve the edge gradient and eliminate isolated noise of the binary image. An N * N rectangle median filter is set, and N represents the odd integer mostly close to W.Morphology closing operation can be used to extract the candidate region. The confidence degree of candidate region for being a license plate is verified according to the aspect ratio and areas. Here, the aspect ratio is set between 1.5 and 4 for the reason of inclination. The prior knowledge of color collocation is used to locate plate region exactly. The locating process of the license plate is shown in Fig. 4.2) Character segmentationThis part presents an algorithm for character segmentation based on prior knowledge, using character width, fixed number of characters, the ratio of height to width of a character, and so on. The flowchart of the character segmentation is shown in Fig. 5.Firstly, preprocess the license the plate image, such as uneven illumination correction, contrast enhancement, incline correction and edge enhancement operations; secondly, eliminating space mark which appears between the second character and the third character; thirdly, merging the segmented fragments of the characters. In China, all standard license plates contain only 7 characters (see Fig. 1). If the number of segmented characters is larger than seven, the merging process must be performed. Table II shows the merging process. Finally, extracting the individual character’ image based on the number and the width of the character. Fig. 6 shows the segmentation results. (a) The incline and broken plate image, (b) the incline and distort plate image, (c)the serious fade plate image, (d) the smut license plate image.where Nf is the number of character segments, MaxF is the number of the license plate, and i is the index of each character segment.The medium point of each segmented character is determined by:(3)where 1i Sis the initial coordinates for the character segment, and 2i S is thefinal coordinate for the character segment. The d istance between two consecutive medium points is calculated by:(4)Fig.6 The segmentation resultsB. Using specific prior knowledge for recognitionThe layout of the Chinese VLP is an important feature (as described in the section II), which can be used to construct a classifier for recognizing. The recognizing procedure adopted conjugate gradient descent fast learning method, which is an improved learning method of BP neural network[10]. Conjugate gradient descent, which employs a series of line searches in weight or parameter space. One picks the first descent direction and moves along that direction until the minimum in error is reached. The second descent direction is then computed: this direction the “ conjugate direction” is the one along which the gr adient does not change its direction will not “ spoil ” the contribution from the previous descent iterations. This algorithm adopted topology 625-35-N as shown in Fig. 7. The size of input value is 625 (25*25 ) and initial weights are with random values, desired output values have the same feature with the input values.As Fig. 7 shows, there is a three-layer network which contains working signal feed forward operation and reverse propagation of error processes. The target parameter is t and the length of network outputvectors is n. Sigmoid is the nonlinear transfer function, weights are initialized with random values, and changed in a direction that will reduce the errors.The algorithm was trained with 1000 images of different background and illumination most of which were degrade severely. After preprocessing process, the individual characters are stored. All characters used for training and testing have the same size (25*25 ).The integrated process for license plate recognition consists of the following steps:1) Feature extractingThe feature vectors from separated character images have direct effects on the recognition rate. Many methods can be used to extract feature of the image samples, e.g. statistics of data at vertical direction, edge and shape, framework and all pixels values. Based on extensive experiments, all pixels values method is used to construct feature vectors. Each character was reshaped into a column of 625 rows’ feature vector. These feature vectors are divided into two categories which can be used for training process and testing process.2) Training modelThe layout of the Chinese VLP is an important feature, which can be used to construct a classifier for training, so five categories are divided. The training process of numbers is shown in Fig. 8.As Fig. 8 shows, firstly the classifier decides the class of the inputfeature vector, and then the feature vector enters the neural network correspondingly. After the training process the optimum parameters of the net are stored for recognition. The training and testing process is summarized in Fig. 9.(a) Training process(b)Testing processFig.9 The recognition process3) Recognizing modelAfter training process there are five nets which were completely trained and the optimum parameters were stored. The untrained feature vectors are used to test the net, the performance of the recognition system is shown in Table III. The license plate recognition system is characterized by the recognition rate which is defined by equation (5).Recognition rate =(number of correctly read characters)/ (number of found characters) (5)IV. COMPARISON OF THE RECOGNITION RA TE WITH OTHER METHODSIn order to evaluate the proposed algorithm, two groups of experiments were conducted. One group is to compare the proposed method with the BP based recognition method [11]. The result is shown in table IV. The other group is to compare the proposed method with themethod based on SVM [12].The result is shown in table V. The same training and test data set are used. The comparison results show that the proposed method performs better than the BP neural network and SVM counterpart.V. CONCLUSIONIn this paper, we adopt a new improved learning method of BP algorithm based on specific features of Chinese VLPs. Color collocation and dimension are used in the preprocessing procedure, which makes location and segmentation more accurate. The Layout of the Chinese VLP is an important feature, which is used to construct a classifier for recognizing and makes the system performs well on scratch and inclined plate images. Experimental results show that the proposed method reduces the error rate and consumes less time. However, it still has a few errors when dealing with specially bad quality plates and characters similar to others. This often takes place among these characters (especially letter and number): 3—8 4—A 8—B D—0.In order to improve the incorrect recognizing problem we try to add template-based model [13] at the end of the neural network.中文译文基于先验知识的车牌识别Qian Gao, Xinnian Wang and Gongfu Xie摘要- 本文介绍了一种基于改进的BP(反向传播)神经网络的中国车牌识别(LPR)算法。
车牌照识别系统设计与实现毕业设计论文

车牌照识别系统设计与实现Design and Implementation of Car License Plate Recognition System毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。
对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。
作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。
有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。
学校可以公布论文(设计)的全部或部分内容。
保密的论文(设计)在解密后适用本规定。
作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。
4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。
图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它摘要汽车牌照自动识别系统是智能交通系统的重要组成部分,是高科技的公路交通监控管理系统的主要功能模块之一,汽车牌照识别技术的研究有重要的现实应用意义。
汽车牌照自动识别系统中英文对照外文翻译文献

汽车牌照自动识别系统中英文对照外文翻译文献(文档含英文原文和中文翻译)Automatic vehicle license plate recognition systemImage processing is not a one step process.We are able to distinguish between several steps which must be performed one after the other until we can extract the data of interest from the observed scene.In this way a hierarchical processing scheme is built up as sketched in Fig.The figure gives an overview of the different phases of image processing.Image processing begins with the capture of an image with a suitable,not necessarily optical,acquisition system.In a technical or scientific application,we may choose to select an appropriate imaging system.Furthermore,we can set up the illumination system,choose the best wavelength range,and select other options to capture the object feature of interest in the best way in an image.Once the image is sensed,it must be brought into a form that can be treated with digital computers.This process is called digitization.With the problems of traffic are more and more serious. Thus Intelligent Transport System (ITS) comes out. The subject of the automatic recognition of license plate is one of the most significant subjects that are improved from the connection of computer vision and pattern recognition. The image imputed to the computer is disposed and analyzed in order to localization the position and recognition the characters on the license plate express these characters in text string form The license plate recognition system (LPSR) has important application in ITS. In LPSR, the first step is for locating the license plate in the captured image which is very important for character recognition. The recognition correction rate of license plate is governed by accurate degree of license plate location. In this paper, several of methods in image manipulation are compared and analyzed, then come out the resolutions for localization of the car plate. The experiences show that the good result has been got with thesemethods. The methods based on edge map and frequency analysis is used in the process of the localization of the license plate, that is to say, extracting the characteristics of the license plate in the car images after being checked up for the edge, and then analyzing and processing until the probably area of license plate is extracted.The automated license plate location is a part of the image processing ,it’s also an important part in the intelligent traffic system.It is the key step in the Vehicle License Plate Recognition(LPR).A method for the recognition of images of different backgrounds and different illuminations is proposed in the paper.the upper and lower borders are determined through the gray variation regulation of the character distribution.The left and right borders are determined through the black-white variation of the pixels in every row.The first steps of digital processing may include a number of different operations and are known as image processing.If the sensor has nonlinear characteristics, these need to be corrected.Likewise,brightness and contrast of the image may require improvement.Commonly,too,coordinate transformations are needed to restore geometrical distortions introduced during image formation.Radiometric and geometric corrections are elementary pixel processing operations.It may be necessary to correct known disturbances in the image,for instance caused by a defocused optics,motion blur,errors in the sensor,or errors in the transmission of image signals.We also deal with reconstruction techniques which are required with many indirect imaging techniques such as tomography that deliver no direct image.A whole chain of processing steps is necessary to analyze and identify objects.First,adequate filtering procedures must be applied in order to distinguish the objects of interest from other objects and the background.Essentially,from an image(or several images),one or more feature images are extracted.The basic tools for this task are averaging and edgedetection and the analysis of simple neighborhoods and complex patterns known as texture in image processing.An important feature of an object is also its motion.Techniques to detect and determine motion are necessary.Then the object has to be separated from the background.This means that regions of constant features and discontinuities must be identified.This process leads to a label image.Now that we know the exact geometrical shape of the object,we can extract further information such as the mean gray value,the area,perimeter,and other parameters for the form of the object[3].These parameters can be used to classify objects.This is an important step in many applications of image processing,as the following examples show:In a satellite image showing an agricultural area,we would like to distinguish fields with different fruits and obtain parameters to estimate their ripeness or to detect damage by parasites.There are many medical applications where the essential problem is to detect pathologi-al changes.A classic example is the analysis of aberrations in chromosomes.Character recognition in printed and handwritten text is another example which has been studied since image processing began and still poses significant difficulties.You hopefully do more,namely try to understand the meaning of what you are reading.This is also the final step of image processing,where one aims to understand the observed scene.We perform this task more or less unconsciously whenever we use our visual system.We recognize people,we can easily distinguish between the image of a scientific lab and that of a living room,and we watch the traffic to cross a street safely.We all do this without knowing how the visual system works.For some times now,image processing and computer-graphics have been treated as two different areas.Knowledge in both areas has increased considerably and more complex problems can now be treated.Computer graphics is striving to achieve photorealistic computer-generated images of three-dimensional scenes,while image processing is trying to reconstruct one from an image actually taken with a camera.In thissense,image processing performs the inverse procedure to that of computer graphics.We start with knowledge of the shape and features of an object—at the bottom of Fig. and work upwards until we get a two-dimensional image.To handle image processing or computer graphics,we basically have to work from the same knowledge.We need to know the interaction between illumination and objects,how a three-dimensional scene is projected onto an image plane,etc.There are still quite a few differences between an image processing and a graphics workstation.But we can envisage that,when the similarities and interrelations between computergraphics and image processing are better understood and the proper hardware is developed,we will see some kind of general-purpose workstation in the future which can handle computer graphics as well as image processing tasks[5].The advent of multimedia,i. e. ,the integration of text,images,sound,and movies,will further accelerate the unification of computer graphics and image processing.In January 1980 Scientific American published a remarkable image called Plume2,the second of eight volcanic eruptions detected on the Jovian moon by the spacecraft Voyager 1 on 5 March 1979.The picture was a landmark image in interplanetary exploration—the first time an erupting volcano had been seen in space.It was also a triumph for image processing.Satellite imagery and images from interplanetary explorers have until fairly recently been the major users of image processing techniques,where a computer image is numerically manipulated to produce some desired effect-such as making a particular aspect or feature in the image more visible.Image processing has its roots in photo reconnaissance in the Second World War where processing operations were optical and interpretation operations were performed by humans who undertook such tasks as quantifying the effect of bombing raids.With the advent of satellite imagery in the late 1960s,much computer-based work began and the color composite satellite images,sometimesstartlingly beautiful, have become part of our visual culture and the perception of our planet.Like computer graphics,it was until recently confined to research laboratories which could afford the expensive image processing computers that could cope with the substantial processing overheads required to process large numbers of high-resolution images.With the advent of cheap powerful computers and image collection devices like digital cameras and scanners,we have seen a migration of image processing techniques into the public domain.Classical image processing techniques are routinely employed by graphic designers to manipulate photographic and generated imagery,either to correct defects,change color and so on or creatively to transform the entire look of an image by subjecting it to some operation such as edge enhancement.A recent mainstream application of image processing is the compression of images—either for transmission across the Internet or the compression of moving video images in video telephony and video conferencing.Video telephony is one of the current crossover areas that employ both computer graphics and classical image processing techniques to try to achieve very high compression rates.All this is part of an inexorable trend towards the digital representation of images.Indeed that most powerful image form of the twentieth century—the TV image—is also about to be taken into the digital domain.Image processing is characterized by a large number of algorithms that are specific solutions to specific problems.Some are mathematical or context-independent operations that are applied to each and every pixel.For example,we can use Fourier transforms to perform image filtering operations.Others are“algorithmic”—we may use a complicated recursive strategy to find those pixels that constitute the edges in an image.Image processing operations often form part of a computer vision system.The input image may be filtered to highlight or reveal edges prior to ashape detection usually known as low-level operations.In computer graphics filtering operations are used extensively to avoid abasing or sampling artifacts.翻译:汽车牌照自动识别系统图像处理不是一步就能完成的过程。
车牌识别系统的设计文献综述

车牌识别系统的设计文献综述(机电科学与工程系电气工程及其自动化)摘要:车牌的自动识别是计算机视觉、图像处理与模式识别技术在智能交通领域应用的重要研究课题之一, 是实现交通管理智能化的重要环节, 主要包括车牌识别、字符预处理和特征提取三个关键环节。
车牌识别包括车牌定位、灰度(或彩色)图像二值化、字符切分及字符识别等。
图像预处理包括图像灰度变换、图像增强、图像二值化、梯度锐化、噪声去除、倾斜度调整、车牌边框去除、字符分割、尺寸标准归一化、紧缩重排。
特征提取本文采用逐象素特征提取法来对支付进行识别。
理论上,本系统可以对中国大陆普通汽车车牌的字符进行识别。
关键词:车牌识别,图像预处理,特征提取前言近几年来,随着汽车数量猛增,交通运输系统越来越智能化,这时候行驶车辆的车牌实时识别尤其是交通运输研究的重要组成部分。
车牌识别系统是对公路上配置的摄像头拍摄的照片进行数字图像处理与分析,综合应用于大量的图像处理与分析,利用多种手段以提取车牌区域,进而达到对汽车牌照的精确定位并最终完成对汽车牌照的识别。
识别系统的用途很多,如高速公路电子收费站、公路流量控制、公路稽查、失窃车辆查询等需要车牌认证的场合都要应用车牌识别系统,尤其是高速公路收费系统中,实现不停收费技术可提高公路系统的运行效率,由此可见车牌识别系统具有不可替代的作用,因此对车牌识别技术的研究和应用系统的开发具有重要的现实意义。
正文2.1 模式识别概述模式识别在数字图像处理和分析中占有非常重要的地位,识别所得到的结果往往接近于甚至就是整个数字图像处理和分析的最终结果。
模式识别属于图像分析的范畴,它所得到的结果是一副由明确意义的数值或符号构成的图像或图形文件,而不再是一副具有随机分布性质的图像。
模式识别的目的是对图像中的物体进行分类,或者可以说找出图像中有哪些物体。
分类的依据是从原始图像中提取的不同物体的特征,包括光谱特征、空间纹理特征和时间特征等。
因此,模式识别包括特征提取和分类两方面的内容。
本科毕业论文车牌识别管理系统

摘要随着我国道路的迅猛发展,智能交通系统越来越成为现代交通道路管理的强烈需求。
而类区域性的车辆管理更是成为了需求的热点。
不论是小区还是高校,又或则是高速公路的收费站对于车辆管理的智能化都是有着迫切的期望。
本论文研究的主要内容是将高校作为类区域的典型,从高校的安保以及便捷管理出发,设计了一个基于图像识别的车辆管理系统网站。
从网站的功能划分,到网站的重点功能图像识别出发规划出了网站的雏形。
另外为了网站整体的实现,对网站的重点功能车牌识别中的车牌定位编写了一个专门的java程序对车牌识别进行了分析以及实现。
本文所探究的车牌识别,是基于图像识别的大体处理步骤的包括了车牌的定位、分隔、识别。
其中主要是研究车牌的定位,即从图像的灰度、强化边缘最后再到车牌定位。
其中车牌定位后的分割,以及识别,还有与数据库的比对本文并没有涉及。
程序实现结果表明,车牌定位成功效果比较理想,但是还有一些车牌难以定位。
期待根据这个设计做出的智能车辆管理系统。
关键词车辆管理系统图像识别高校安保目录1 前言 (1)1.1 设计背景与意义 (1)1.2 设计目标 (1)2系统开发环境 (2)2.1 系统配置 (2)2.2 图像识别技术简介 (3)2.3 车牌识别技术简介 (3)3 总体设计 (4)4 详细设计 (5)4.1系统功能模块设计 (5)4.2 图像识别功能设计以及实现 (6)4.2.1 灰度化 (6)4.2.2 灰度直方图 (8)4.2.3 图像均衡化 (9)4.2.4 边缘化 (11)4.2.5 找车牌 (13)4.2.6 二值化 (21)4.3 数据库设计 (24)4.4.1 数据库E-R图设计 (24)4.4.2 创建主要数据库 (26)5 运用读取jar包实现车牌号码识别 (27)6 总结与展望 (34)6.1 总结 (34)6.2 展望 (34)致谢 (36)1 前言1.1 设计背景与意义汽车工业产生一百多年来,一直都被当成是工业发达国家的经济指标,在国家的实际成长中发挥着非常重要的作用。
汽车牌照识别系统的车牌定位技术研究外文资料翻译(适用于毕业论文外文翻译+中英文对照)

建立一个自动车辆车牌识别系统车辆由于数量庞大的抽象,现代化的城市要建立有效的交通自动系统管理和调度.最有用的系统之一是车辆车牌识别系统,它能自动捕获车辆图像和阅读这些板块的号码在本文中,我们提出一个自动心室晚电位识别系统,ISeeCarRecognizer,阅读越南样颗粒在交通费的注册号码.我们的系统包括三个主要模块:心室晚电位检测,板数分割和车牌号码识别。
在心室晚电位检测模块,我们提出一个有效的边界线为基础Hough变换相结合的方法和轮廓算法.该方法优化速度和准确性处理图像取自不同职位。
然后,我们使用水平和垂直投影的车牌号码分开心室晚电位分段模块.最后,每个车牌号码将被OCR的识别模块实现了由隐马尔可夫模型。
该系统在两个形象评价实证套并证明其有效性是适用于实际交通收费系统。
该系统也可适用于轻微改变一些其他类型的病毒样颗粒。
一.导言车牌识别的问题是一个非常有趣,且困难的一个问题.这在许多交通管理系统中是非常有用的。
心室晚电位识别需要一些复杂的任务,如车牌的检测,分割和识别。
这些任务变得更加复杂时,处理各种倾斜角度拍摄的图像或含有噪音的图像。
由于此问题通常是在实时系统中使用,它不仅需要准确性,而且要效率.大多数心室晚电位识别应用通过建立减少一些复杂的约束的位置和距离相机车辆,倾斜角度。
通过这种方式,车牌识别系统的识别率已得到明显改善.在此外,我们可以更准确地获得通过一些具体的当地样颗粒的功能,如字符数,行数在一板,或板的背景颜色或的宽度比为一板高。
二.相关工作心室晚电位的自动识别问题在20世纪90年代开始就有研究。
第一种方法是基于特征的边界线。
首次输入图像处理,以丰富的边界线的一些信息如梯度算法过滤器,导致在一边缘图像.这张照片是二值化处理,然后用某些算法,如Hough 变换,检测线。
最终,2平行线视为板候选人[4] [5]。
另一种方法是基于形态学[2]。
这种方法侧重于一些板块图像性质如亮度,对称,角度等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)外文文献翻译文献、资料中文题目:汽车车牌识别系统-车牌定位子系统的设计与实现文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14汽车车牌识别系统---车牌定位子系统的设计与实现摘要汽车车牌识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一。
在车牌自动识别系统中,首先要将车牌从所获取的图像中分割出来实现车牌定位,这是进行车牌字符识别的重要步骤,定位的准确与否直接影响车牌识别率。
本次毕业设计首先对车牌识别系统的现状和已有的技术进行了深入的研究,在此基础上设计并开发了一个基于MATLAB的车牌定位系统,通过编写MATLAB文件,对各种车辆图像处理方法进行分析、比较,最终确定了车牌预处理、车牌粗定位和精定位的方法。
本次设计采取的是基于微分的边缘检测,先从经过边缘提取后的车辆图像中提取车牌特征,进行分析处理,从而初步定出车牌的区域,再利用车牌的先验知识和分布特征对车牌区域二值化图像进行处理,从而得到车牌的精确区域,并且取得了较好的定位结果。
关键词:图像采集,图像预处理,边缘检测,二值化,车牌定位ENGLISH SUBJECTABSTRACTThe subject of the automatic recognition of license plate is one of the most significant subjects that are improved from the connection of computer vision and pattern recognition. In LPSR, the first step is for locating the license plate in the captured image which is very important for character recognition. The recognition correction rate of license plate is governed by accurate degree of license plate location.Firstly, the paper gives a deep research on the status and technique of the plate license recognition system. On the basis of research, a solution of plate license recognition system is proposed through the software MATLAB,by the M-files several of methods in image manipulation are compared and analyzed. The methods based on edge map and das differential analysis is used in the process of the localization of the license plate, extracting the characteristics of the license plate in the car images after being checked up for the edge, and then analyzing and processing until the probably area of license plate is extracted,then come out the resolutions for localization of the car plate.KEY WORDS:imageacquisition,image preprocessing,edge detection,binarization,licence,license plate location前言 (1)第1章绪论 (2)§1.1 课题研究的背景 (2)§1.2 车牌的特征 (2)§1.3 国内外车辆牌照识别技术现状 (3)§1.4车牌识别技术的应用情况 (4)§1.5 车牌识别技术的发展趋势 (5)§1.6车牌定位的意义 (6)第2章 MATLAB简介 (7)§2.1 MATLAB发展历史 (7)§2.2 MATLAB的语言特点 (7)第3章图像预处理 (10)§3.1 灰度变换 (10)§3.2 图像增强 (11)§3. 3 图像边缘提取及二值化 (13)§3. 4 形态学滤波 (18)第4章车牌定位 (21)§4.1车牌定位的主要方法 (21)§4.1.1基于直线检测的方法 (22)§4.1.2 基于阈值化的方法 (22)§4.1.3 基于灰度边缘检测方法 (22)§4.1.4 基于彩色图像的车牌定位方法 (25)§4.2 车牌提取 (26)结论 (30)参考文献 (31)致谢 (33)随着交通问题的日益严重,智能交通系统应运而生。
从20世纪90年代起,我国也逐渐展开了智能交通系统的研究和开发,探讨在现有的交通运输网的基础上,提高运输效率,保障运输安全。
我国加强智能交通系统(ITS)的研究与开发势在必行,特别是考虑到我国的国情和我国经济的快速发展,社会信息化程度日益提高,交通管理智能化成为发展的趋势。
汽车牌照自动识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一。
车牌识别的目的是对摄像头获取的汽车图像进行预处理,确定车牌位置,提取车牌上的字符串,并对这些字符进行识别处理,用文本的形式显示出来。
车牌自动识别技术在智能交通系统中具有重要的应用价值。
在车牌自动识别系统中,首先要将车牌从所获取的图像中分割出来,这是进行车牌字符识别的重要步骤,定位准确与否直接影响车牌识别率。
本次设计主要对车牌的定位做了比较详细的研究。
汽车牌照自动识别系统作为一种交通信息的获取技术在交通车辆管理、园区车辆管理、停车场管理有着特别重要的应用价值,受到业内人士的普遍关注。
车牌自动识别的处理有三部分组成,其中车牌定位作为最关键的技术,成为重点研究的对象。
车牌定位的成功与否以及定位的准确程度将会直接决定后期能否进行车牌识别以及识别的准确度。
由于在现实中,汽车的车牌图像受到光照、背景、车型等外界干扰因素以及拍摄角度、远近等人为因素的影响,造成图像受光不均匀,车牌区域不明显,给车牌区域的提取带来了较大的困难。
车牌定位的方法有很多种,目前比较经典的定位方法大都在基于灰度图像的基础上。
本次毕业设计就针对灰度图像的定位进行了研究。
针对不同背景和光照条件下的车辆图像,提出了一种基于灰度图像灰度变化特征进行车牌定位的方法。
依据车牌中不同区域的灰度分布,车牌定位时可以首先将彩色车牌进行灰度化然后再进行车牌定位。
第1章绪论§1.1 课题研究的背景随着21世纪经济全球化的到来,高速度、高效率的生活节奏,使车辆普及成为必然的趋势,交通管理自动化越来越成为亟待解决的问题。
现代智能交通系统 (Intelligent Transportation System,ITS)中,车辆牌照识别(License Plate Recognition,LPR)技术是计算机视觉与模式识别技术在交通领域应用的重要研究课题之一,是实现交通管理能够智能化的重要环节,其任务是分析、处理汽车图像,自动识别汽车牌号。
LPR系统可以广泛应用于电子收费、出入控制、公路流量监控、失窃车辆查询和停车场车辆管理等需要车牌认证的场合;尤其在高速公路收费系统中,实现不停车收费提高公路系统的运行效率,LPR系统更具有不可替代的作用。
因而从事LPR技术的研究具有极其重要的现实意义和巨大的经济价值。
LPR系统中的两个关键子系统是车牌定位系统和车牌字符识别系统。
关于车牌定位系统的研究,国内外学者已经做了大量的工作,但实际效果并不是很理想,比如车牌图像的倾斜、车牌表面的污秽和磨损、光线的干扰等都是影响定位准确度的潜在因素。
为此,近年来不少学者针对车牌本身的特点、车辆拍摄的不良现象及背景复杂状况,先后提出了许多有针对性的定位方法,使车牌定位在技术和方法上都有了很大的改善。
然而现代化交通系统不断提高的快节奏,将对车牌定位的准确率和实时性提出更高的要求,因而进一步加深车牌定位的研究是非常有必要的。
§1.2 车牌的特征车牌的本身具有许多固有特征,这些特征对不同的国家是不同的,我国现在使用的车牌主要根据中华人民共和国机动车牌号GA36-92标准,具有以下特征:(1)形状特征:标准的车牌外轮廓尺寸440*140,字符高90,宽45,字符间距12,间隔符宽10。
整个字符的高宽比例近似为3:1,车牌的边缘是线段围成的有规则的矩形。
主要用在车牌的定位分割。
(2)颜色特征:现有的字符颜色与车牌底色搭配有四种类型,蓝底白字,黄底黑字,白底黑字,黑底白字。
这部分特征主要用在对彩色图像进行车牌的定位。
(3)字符的特征:标准的车牌上有7个字符,呈水平排列,待识别的字符模板可以分为一下三类,汉字,英文字母,阿拉伯数字,主要用于对字符匹配识别方面。
(4)其他国家的汽车牌照格式(如汽车牌照的尺寸大小,牌照上的字符排列等)通常只有一种,而我国则根据不同车辆、车型、用途,规定了多种牌照格式(例如分为军车、警车、普通车等)。
(5)我国汽车牌照的规范悬挂位置不唯一。
(6)由于环境、道路或人为因素造成汽车牌照污染严重,这种情况下,国外发达国家不允许上路,而在我国仍可上路行驶。
车牌与汽车的其它区域相比,还有以下主要特征:(1)车牌区域中的垂直边缘比水平边缘密集,而车身其它部分的水平边缘明显,垂直边缘较少。
(2)灰度变化特征:车牌的底色、边缘颜色,车辆外部的颜色都是不同的,表现在图像中就是灰度级互不相同,这就在车牌边缘形成了灰度突变边界。
实际上,车牌的边缘在灰度上的表现是一种屋脊状边缘。
在车牌区域内部,字符和车牌底的灰度较均匀的呈现波峰波谷。
(3)有相对集中和规则的纹理特征。
由于我国汽车车牌识别的特殊性,这就导致了采用任何单一识别技术都是难以奏效的。
§1.3 国内外车辆牌照识别技术现状目前,国内外有大量关于车牌识别方面的研究报道。