第三章 流体力学 习题讲解

合集下载

流体力学习题解答讲解

流体力学习题解答讲解

2.在现实生活中可视为牛顿流体的有水 和空气 等。

3.流体静压力和流体静压强都是压力的一种量度。

它们的区别在于:前者是作用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压强。

4.均匀流过流断面上压强分布服从于水静力学规律。

5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。

7.流体受压,体积缩小,密度增大 的性质,称为流体的压缩性 ;流体受热,体积膨胀,密度减少 的性质,称为流体的热胀性 。

8.压缩系数β的倒数称为流体的弹性模量 ,以E 来表示12.液体静压强分布规律只适用于静止、同种、连续液体。

13.静止非均质流体的水平面是等压面,等密面和等温面。

14.测压管是一根玻璃直管或U 形管,一端连接在需要测定的容器孔口上,另一端开口,直接和大气相通。

16.作用于曲面上的水静压力P 的铅直分力z P 等于其压力体内的水重。

17.通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。

18. 流线不能相交(驻点处除外),也不能是折线,因为流场内任一固定点在同一瞬间只能有一个速度向量,流线只能是一条光滑的曲线或直线。

20.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。

21.由紊流转变为层流的临界流速k v 小于 由层流转变为紊流的临界流速kv ',其中kv '称为上临界速度,k v 称为下临界速度。

23.圆管层流的沿程阻力系数仅与雷诺数有关,且成反比,而和管壁粗糙无关。

25.紊流过渡区的阿里特苏里公式为25.0)Re68(11.0+=d k λ。

26.速度的大小、方向或分布发生变化而引起的能量损失,称为局部损失。

29.湿周是指过流断面上流体和固体壁面接触的周界。

31.串联管路总的综合阻力系数S 等于各管段的阻抗叠加。

32.并联管路总的综合阻力系数S 与各分支管综合阻力系数的关系为3211111s s s s ++=。

管嘴与孔口比较,如果水头H 和直径d 相同,其流速比V 孔口/V 管嘴等于82.097.0,流量比Q 孔口/Q 管嘴等于82.060.0。

流体力学习题及答案-第三章

流体力学习题及答案-第三章

第三章 流体运动学3-1粘性流体平面定常流动中是否存在流函数? 答:对于粘性流体定常平面流动,连续方程为:()()0=∂∂+∂∂yv x u ρρ; 存在函数:v t y x P ρ-=),,(和()u t y x Q ρ=,,,并且满足条件:()()yP x Q ∂∂=∂∂。

因此,存在流函数,且为:()()()dy u dx v Qdy Pdx t y x ρρψ+-=+=⎰⎰,,。

3-2轴对称流动中流函数是否满足拉普拉斯方程?答:如果流体为不可压缩流体,流动为无旋流动,那么流函数为调和函数,满足拉普拉斯方程。

3-3 就下面两种平面不可压缩流场的速度分布分别求加速度。

(1)22222 ,2yx ym v y x x m u +⋅=+⋅=ππ (2)()()()222222222 ,yxKtxyv yxx y Kt u +-=+-=,其中m ,K 为常数。

答:(1)流场的加速度表达式为:yv v x v u t v a y u v x u u t u a x ∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=y ,。

由速度分布,可以计算得到:0 ,0=∂∂=∂∂tvt u ,因此: ()222222y x x y m x u +-⋅=∂∂π,()22222y x xy m y u +-⋅=∂∂π;()22222y x xy m x v +-⋅=∂∂π,()222222y x y x m y v +-⋅=∂∂π。

代入到加速度表达式中:()()()22222222222222222222220y x x m y x xym y x y m y x x y m y x x m a x +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ()()()22222222222222222222220y x y m y x y x m y x y m y x xym y x x m a y +⋅⎪⎭⎫⎝⎛-=+-⋅⋅+⋅++-⋅⋅+⋅+=πππππ(2)由速度分布函数可以得到:()()()322222222 ,y x Kxyt v y x x y K t u +-=∂∂+-=∂∂ ()()3222232y x y x Ktx x u +-⋅=∂∂,()()3222232y x y x Kty y u +-⋅=∂∂; ()()3222232y x x y Kty x v +-⋅-=∂∂,()()3222232yx y x Ktx y v +-⋅-=∂∂。

流体力学第三章习题

流体力学第三章习题

第三章 流体动力学基础3-1 已知速度场为k z x j y x i y x u)()()(2-+-++= (m/s),求(2,3,1)点的速度和加速度。

已已知知::z x u y x u y x u -=-=+=z y x )(2,, 解析:(1) (2,3,1)点的速度为m/s 1m/s 1m/s 10)(2z y x =-=-=-==+=z x u y x u y x u ,, s /m 10.101)1(102222z 2y 2x =+-+=++=u u u u (2) (2,3,1)点的加速度为2x z x y x x x x m/s 1832262602)(2)(20=⨯+⨯=+=+⨯-+⨯++=∂∂+∂∂+∂∂+∂∂=y x y x y x zuu y u u x u u u a τ2y zy yy xy y m/s 1133230)1()(1)(20=⨯+=+=+-⨯-+⨯++=∂∂+∂∂+∂∂+∂∂=y x y x y x zu u yu u xu u u a τ2z z z y z x z z m/s 913222)1()(01)(20=+⨯+=++=-⨯-++⨯++=∂∂+∂∂+∂∂+∂∂=z y x z x y x zu u y u u x u u u a τ22222z 2y 2x s /m 93.2291118=++=++=a a a a3-2 已知速度场为k z y j y i x u )34()(2)3(2-+-++=ττ (m/s),求τ=2秒时,位于(2,2,1)点的速度和加速度。

已已知知::z y u y u x u )34()(23z 2y x -=-=+=,,ττ解析:(1) τ=2秒、位于(2,2,1)点的速度为m/s 5)34(m/s 4)(2m/s 83z 2y x =-=-=-==+=z y u y u x u ,,ττ s /m 25.105)4(82222z 2y 2x =+-+=++=u u u u (2) τ=2秒、位于(2,2,1)点的加速度为2x z x y x x x x m/s 251)223(31)3(3003)3(1=++⨯⨯=++=++⨯++=∂∂+∂∂+∂∂+∂∂=τττx x zuu y u u x u u u a2222y zy yy xy y m/s 342)22(282)(80)4()(202=+-⨯⨯=+-=+-⨯-++=∂∂+∂∂+∂∂+∂∂=τττy y y y zu u yu u xu u u a2222222z z z y z x z z m/s 91)324()22(18)34()(8)34(4)(200=⨯-⨯+-⨯⨯=-+-=-+⨯-++=∂∂+∂∂+∂∂+∂∂=z y y z zy z y zuu y u u x u u u a τττ22222z 2y 2x s /m 15.4393425=++=++=a a a a3-3 已知二维流场的速度分布为j x y i x y uττ)96()64(-+-= (m/s)。

工程流体力学课后答案 第三章 流体动力学基础

工程流体力学课后答案  第三章 流体动力学基础

第3章 流体动力学基础3.1 解: zuu y u u x u u t u a x z x y x x x x ∂∂+∂∂+∂∂+∂∂=()()342246222222222=++++=+-++++=++=z y x t z y t y x t u u y xzu u yu u xu u tu a y zy yy xy y ∂∂+∂∂+∂∂+∂∂=()()32111=-++=-+++--=+-=z y x z x t z y t u u x yzu u y u u x u u t u a z z z y z x z z ∂∂+∂∂+∂∂+∂∂=()()112122211=++++=-+-+++=-+=z y x t z y t y x t u u z x222286.35s m a a a a z y x =++=3.2 解:(1)3235623=-=+=xy xy u xy y u a y x x222527310.3333231s m a a a y u y a y x y y =+===-=(2)二元流动(3)恒定流 (4)非均匀流 3.3 解:bh u y h u bdy h y u udA Q h hA m ax 07871m ax 071m ax 8787==⎪⎭⎫ ⎝⎛==⎰⎰ m ax 87u A Q v ==3.4 解:s m dd v v 02.011.02221221=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛= 3.5 解:Hd v d 1v 1q 1q 2223d 3v Dv 1dv 2(1)s m v d Q 332330785.04==πs m q Q Q 32321.0=+= s m Q q Q 321115.0=+=(2)s m d Q v 12.242111==πs m d Q v 18.342222==π 3.6 解:渠中:s m m m s m bh v Q 311612/3=⨯⨯==管中:2231242.1d v s m Q Q Q ⨯⨯==-=πm v Q d 0186.1422==π 3.7 解: s m d d v v ABB A62.04.05.1442222=⨯=⋅=ππ以过A 点的水平面为等压面,则OmH g v g p h H OmH g v g p H B B B A A A 2222226964.58.925.18.9405.128980.48.9268.9302=⨯++=++==⨯+=+=ρρ可以看出:A B H H >,水将从B 点流向A 点。

流体力学第三章课后习题答案

流体力学第三章课后习题答案

流体力学第三章课后习题答案流体力学第三章课后习题答案流体力学是研究流体运动和流体力学性质的学科。

在学习流体力学的过程中,课后习题是巩固知识和提高理解能力的重要环节。

本文将为大家提供流体力学第三章的课后习题答案,帮助读者更好地掌握流体力学的相关知识。

1. 一个液体的密度为1000 kg/m³,重力加速度为9.8 m/s²,求其比重。

解答:比重定义为物体的密度与水的密度之比。

水的密度为1000 kg/m³,所以比重为1。

因此,该液体的比重也为1。

2. 一个物体在液体中的浮力与物体的重力相等,求物体在液体中的浸没深度。

解答:根据阿基米德原理,物体在液体中的浮力等于物体所排除液体的重量。

浮力的大小等于液体的密度乘以物体的体积乘以重力加速度。

物体的重力等于物体的质量乘以重力加速度。

根据题目条件,浮力等于重力,所以液体的密度乘以物体的体积等于物体的质量。

浸没深度可以通过浸没体积与物体的底面积之比来计算。

3. 一个圆柱形容器中盛有液体,容器的高度为10 cm,直径为5 cm,液体的密度为800 kg/m³,求液体的压强。

解答:液体的压强等于液体的密度乘以重力加速度乘以液体的深度。

容器的高度为10 cm,所以液体的深度为10 cm。

重力加速度为9.8 m/s²,所以液体的压强为800 kg/m³乘以9.8 m/s²乘以0.1 m,即784 Pa。

4. 一个水龙头的出水口半径为2 cm,水流速度为10 m/s,求水龙头出水口附近的压强。

解答:根据质量守恒定律,水流速度越大,压强越小。

根据伯努利定律,水流速度越大,压强越小。

因此,水龙头出水口附近的压强较小。

5. 在一个垂直于水平面的圆柱形容器中,盛有密度为900 kg/m³的液体。

容器的半径为10 cm,液体的高度为20 cm。

求液体对容器底部的压力。

解答:液体对容器底部的压力等于液体的密度乘以重力加速度乘以液体的高度。

最新《流体力学》徐正坦主编课后答案第三章解析资料

最新《流体力学》徐正坦主编课后答案第三章解析资料

第三章习题简答_ 2 23-1已知流体流动的速度分布为5 = X - y , U y =/xy ,求通过x-hy.的一条流线。

解:由流线微分方程d ^= dy 得U ydx =u xdy 则有U x U y32 2 2 2y-2xydx = (x -y )dy 两边积分可得 -yx= x yC即 y 3「6x 2y C = 0将x=1,y=1代入上式,可得 C=5,则 流线方程为y 3 -6x 2y • 5 =03-3 已知流体的速度分布为Ux = _c^y = Y°ty U yY xx o tx'(⑷ >o ,鈕 >o )试求流线方程,并画流线图。

解:由流线微分方程dx - dy 得U y dx =u x dy 则有U xU y2 2;o txdx - - ;o tydy 两边积分可得x y C流线方程为x 2 y 2 =C3-5 以平均速度v =1.5m/s 流入直径为D=2cm 的排孔管中的液体,全部经 8个直径 d=1mm 的排孔流出,假定每孔出流速度依次降低 2%,试求第一孔与第八孔的出流速度各为多少?题3-5图解:由题意得:V 2=V I (1-2%) , V 3=V I (1-2%)2,…,V 8=V I (1-2%)7 根据质量守恒定律可得Q 二 Q 1 Q 2 Q 3QfTFfTFfTFiTFfTF2■ 2■ 2■ 2■ 2v _D一d ■ v 2 一dv 3 一d 打 咲 V 8 _d44 44 4题3-6图解:取1-1和2-2断面,并以2-2断面为基准面 列1-1、2-2断面的伯努利方程2 2H 邑工"匹匕电 2gPg 2g3-8 利用毕托管原理测量输水管的流量如图示。

已知输水管直径d=200mm ,测得水银差压计读书h p =60mm ,若此时断面平均流速 v = 0.84U max ,这里U max 为毕托管前管轴上 未受扰动水流的流速。

流体力学第3章(第二版)知识点总结经典例题讲解

流体力学第3章(第二版)知识点总结经典例题讲解

dx u u( t ) dt
流体质点加速度:
dy v v(t ) dt
dz w w( t ) dt
d2x d2y d 2z ax 2 , y 2 , z 2 a a dt dt dt
x(t ) a t y( t ) b t z(t ) 0
y
迹线方程:
流线的性质
(1)流线彼此不能相交(除了源和汇)
交点
v1 v2
s1
(2)流线是一条光滑的曲线, 不可能出现折点(除了激波问题)
(3)定常流动时流线形状不变, 非定常流动时流线形状发生变化
s2
v1 v 折点 2
s
[例1] 由速度分布求质点轨迹
已知: 求: 解: 已知用欧拉法表示的流场速度分布规律为
(2)
由于在欧拉法中速度只和当地坐标以及时间有关,所以必须消 去初始座标,观察(1)式和(2)式可得:
u( x , y , z , t ) y v ( x , y , z , t ) x w( x, y, z, t ) 0
讨论:本例说明虽然给出的是流体质点在不同时刻经历的空间位置,即 运动轨迹,即可由此求出空间各点速度分布式(欧拉法),即各 空间点上速度分量随时间的变化规律。 此例中空间流场分布与时间无关,属于定常流场.
[例3] 由速度分布求加速度
已知: 已知用欧拉法表示的流场速度分布规律为 求各空间位置上流体质点的加速度 解: 对某时刻 t 位于坐标点上(x, y)的质点
dx xt dt dy v yt dt u
u xt v yt
(a )
求解一阶常微分方程(a)可得
x( t ) ae y( t ) be

吴望一《流体力学》第三章习题参考答案

吴望一《流体力学》第三章习题参考答案

吴望一《流体力学》第三章习题参考答案1.解:CV CS d V s dt tτϕϕδτδτϕδ∂=+⋅∂⎰⎰⎰ 由于t 时刻该物质系统为流管,因而侧面上ϕ的通量=0,于是(1)定常流动0t ϕ∂=∂,222111dV d V d dt τϕδτϕσϕσ=-⎰,设流速正方向从1端指向2端。

(2)非定常流动222111CV d V d V d dt t τϕϕδτδτϕσϕσ∂=+-∂⎰⎰ 2.解:取一流体微团,设其运动方程为(,,,)(,,,)(,,,)x x a b c t y y a b c t z z a b c t =⎧⎪=⎨⎪=⎩,由质量守恒得,在0t =和t 时刻()(),,,0,,,a b c dadbdc a b c t dxdydz ρρ=利用积分变换可知()(),,,,x y z dxdydz J dadbdc a b c ∂==∂(雅可比行列式),于是()(),,(,,,0)(,,,),,x y z a b c dadbdc a b c t dadbdc a b c ρρ∂=∂()()()(),,,,,0,,,,,x y z a b c a b c t a b c ρρ∂=∂3.(控制体内流体质量的增加率)=-(其表面上的质量通量)(2)球坐标系下选取空间体元(控制体)2sin r r δτθδδθδϕ=。

单位时间内该空间内流体质量的增量为2sin r r t tρρδτθδδθδϕ∂∂=∂∂ 该控制体表面上的质量通量:以 r e 和-r e 为法向的两个面元上的质量通量为()2sin |sin |sin r r r r r r v r v r r v r r r rδρρδθθδϕρδθθδϕδδθδϕθ+∂-+=∂以 e θ和-e θ为法向的两个面元上的质量通量为()sin sin |sin |v v rr v rr r r θθθθθδθρθρδθδϕρδθδϕδδθδϕθ+∂-+=∂以e ϕ 和-e ϕ为法向的两个面元上的质量通量为()||v v r r v r r r r ϕϕϕϕϕδϕρρδθδρδθδδδθδϕϕ+∂-+=∂ 所以()()()22sin sin sin 0r v r v vr r r t rϕθρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂即()()()22sin 110sin sin r v r v v tr r r rϕθρρρθρθθθϕ∂∂∂∂+++=∂∂∂∂ (3)柱坐标系下选取空间体元(控制体)r r z δτδθδδ= 单位时间内该空间内流体质量的增量为 ()r r z r r z t tρδδθδρδδθδ∂∂=∂∂该控制体表面上的质量通量为()()()r z rv v v r z r z r r z r zθρρρδδθδδδθδδδθδθ∂∂∂++∂∂∂ 所以()()()0r z rv v v r r t r zθρρρρθ∂∂∂∂+++=∂∂∂∂ 即()()()0r z v r v v t r r r zθρρρρθ∂∂∂∂+++=∂∂∂∂ (4)极坐标系下选取面元(控制体)s r r δδθδ=,可认为该面元对应以该面元为底面的单位高度的柱体。

流体力学例题及思考题-第三章

流体力学例题及思考题-第三章

第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程连续性方程——质量守恒*伯努利方程——能量守恒** 重点动量方程——动量守恒** 难点方程的应用第一节研究流体运动的两种方法流体质点:物理点。

是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。

空间点:几何点,表示空间位置。

流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。

拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。

一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。

2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。

3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t)y = y(a,b,c,t) z = z(a,b,c,t) 4、适用情况:流体的振动和波动问题。

5、优点: 可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。

缺点:不便于研究整个流场的特性。

二、欧拉法(站岗法、流场法)Eulerian method1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。

2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。

3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。

位置: x = x(x,y,z,t)y = y(x,y,z,t) z = z(x,y,z,t)速度: u x =u x (x,y,z,t )u y =u y (x,y,z,t ) u z =u z (x,y,z,t )同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。

李玉柱流体力学课后题答案第三章

李玉柱流体力学课后题答案第三章

李玉柱流体力学课后题答案第三章第三章流体运动学3-1 已知某流体质点做匀速直线运动,开始时刻位于点A(3,2,1),经过10秒钟后运动到点B(4,4,4)。

试求该流体质点的轨迹方程。

tt3t解:3-2 已知流体质点的轨迹方程为试求点A(10,11,3)处的加速度α值。

解:由10,解得15.2把代入上式得-3 已知不可压缩流体平面流动的流速场为,其中,流速、位置坐标和时间单位分别为m/s、m和s。

求当t,l s时点A(1,2)处液体质点的加速度。

解:根据加速度的定义可知:当t,l s时点A(1,2) 处液体质点的加速度为:于是,加速度a加速度a与水平方向(即x方向)的夹角: 的大小:-4 已知不可压缩流体平面流动的流速分量为。

求(1) t,0时,过(0,0)点的迹线方程;(2) t,1时,过(0,0)点的流线方程。

解:(1) 将带入迹线微分方程dt得 uvt2解这个微分方程得迹线的参数方程:将时刻,点(0,0)代入可得积分常数:。

将代入得:t3所以:,将时刻,点(0,0)代入可得积分常数:。

6 联立方程,消去得迹线方程为:(2) 将带入流线微分方程dxdy得y2t被看成常数,则积分上式得,c=0 2y2时过(0,0)点的流线为3-5 试证明下列不可压缩均质流体运动中,哪些满足连续性方程,哪些不满足连续性方程(连续性方程的极坐标形式可参考题3—7)。

解:对于不可压缩均质流体,不可压缩流体的连续方程为。

直角坐标系中不可压缩流体的连续性方程为:。

,因,满足,因,满足,因,满足,满足,因,满足,因,满足,因在圆柱坐标系中不可压缩流体的连续性方程为:。

,满足,因,满足,因,不满足,因,仅在y=0处满足,因其中,k、α和C均为常数,式(7)和(8)中3-6 已知圆管过流断面上的流速分布为,umax为管轴处最大流速,r0为圆管半径,r为某点到管轴的距离。

试求断面平均流速V与umax之间的关系。

2解:断面平均速度Ar0Ar02r04r3r024r0umax3-7 利用图中所示微元体证明不可压缩流体平面流动的连续性微分方程的极坐标形式为解:取扇形微元六面体,体积,中心点M密度为,速度为,r向的净出质量dmr 为类似有若流出质量,控制体内的质量减少量dmV可表示为。

流体力学第三章习题讲解

流体力学第三章习题讲解

4 .0 m
总 水 头 线
3 .2 m 3 .0 m
H=4m
测 压 管 水 头 线
0 .8 m 0 A
3-26
总水头线 测压管水头线
总 水 头 线
测 压 管 水 头 线
总 水 头 线 测 压 管 水 头 线
总 水 头 线
测 压 管 水 头 线来自p1 v12 v 22 2g 2g
Q 0 .4 v 3 .1 8m 1 s A 2 1 0 .4 4
提问
• 恒定元流能量方程是怎样的?各项的含义 是什么?方程的推导是在什么条件下得到 的?
• 什么是均匀流?均匀流过流断面上的压强 分布是怎样的? • 恒定总流伯努利方程是怎样的?
提问
• 恒定总流能量方程式的推导是在什么前
提条件下进行的? • 节流式流量计有哪三种? • 文丘里流量计的工作原理是什么?
p1 v 22 v12 2g 2g
2 A v 0 . 4 11 m v 2 3 . 1 8 5 1 2 s A 0 . 1 2
p 1
2 2 5 1 3 .1 8 1 3 2 m 2 g 2 g
K N p h 1 3 2 9 . 8 0 7 1 3 0 0 2 1 m
2 2 3 . 9 6 1 . 9 8 3 p ( 4 2 . 5 * 4 ) * 9 . 8 * 1 01 1 . 7 6 k p 2 a 2 * 9 . 82 * 9 . 8
各段的损失
2 2 v 1 .9 8 1 4 4 0 .8 m 2g 2*9 .8
2 2 v 3 .9 6 2 3 4 2 .4 m 2g 2*9 .8
• 节流式流量计的缺点是什么?为什么?

(完整版)流体力学第三章课后习题答案

(完整版)流体力学第三章课后习题答案

(完整版)流体⼒学第三章课后习题答案⼀元流体动⼒学基础1.直径为150mm 的给⽔管道,输⽔量为h kN /7.980,试求断⾯平均流速。

解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→//A Qv ρ=得:s m v /57.1=2.断⾯为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出⼝处断⾯收缩为150mm ×400mm,求该断⾯的平均流速解:由流量公式vA Q = 得:A Q v =由连续性⽅程知2211A v A v = 得:s m v /5.122=3.⽔从⽔箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流⼊⼤⽓中. 当出⼝流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速解:(1)由s m A v Q /0049.0333==质量流量s kg Q /9.4=ρ (2)由连续性⽅程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输⽔量为h kg /294210的给⽔管道,流速限制在9.0∽s m /4.1之间。

试确定管道直径,根据所选直径求流速。

直径应是mm 50的倍数。

解:vA Q ρ= 将9.0=v ∽s m /4.1代⼊得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代⼊vA Q ρ= 得m v 18.1=5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。

试设计直径,根据所定直径求流速。

直径规定为50 mm 的倍数。

解:vA Q = 将s m v /20≤代⼊得:mm d 5.420≥ 取mm d 450= 代⼊vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断⾯上,⽤下法选定五个点,以测局部风速。

流体力学龙天渝课后答案解析第三章一元流体动力学基础

流体力学龙天渝课后答案解析第三章一元流体动力学基础

第三章 一元流体动力学基础1.直径为150mm 的给水管道,输水量为h kN /7.980,试求断面平均流速。

解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=⇒→//AQv ρ=得:s m v /57.1= 2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速解:由流量公式vA Q = 得:A Qv =由连续性方程知2211A v A v = 得:s m v /5.122=3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求(1)容积流量及质量流量;(2)1d 及2d 管段的流速 解:(1)由s m A v Q /0049.0333== 质量流量s kg Q /9.4=ρ (2)由连续性方程:33223311,A v A v A v A v ==得:s m v s m v /5.2,/625.021==4.设计输水量为h kg /294210的给水管道,流速限制在9.0∽s m /4.1之间。

试确定管道直径,根据所选直径求流速。

直径应是mm 50的倍数。

解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1=5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。

试设计直径,根据所定直径求流速。

直径规定为50 mm 的倍数。

解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17=6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。

设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。

流体力学第3章(第二版)知识点总结经典例题讲解

流体力学第3章(第二版)知识点总结经典例题讲解

u( x , y , z , t ) x t 与时间有 关的流场 v ( x , y , z , t ) y 2t w( x , y , z , t ) 0
t1
t2
t3
t
二、拉格朗日描述(拉格朗日的眼睛)
1.方法概要
它着眼于流体质点的实际运动轨迹, 研究各质点的运动历程 2. 研究对象
[例3] 由速度分布求加速度
已知: 已知用欧拉法表示的流场速度分布规律为 求各空间位置上流体质点的加速度 解: 对某时刻 t 位于坐标点上(x, y)的质点
dx xt dt dy v yt dt u
u xt v yt
(a )
求解一阶常微分方程(a)可得
x( t ) ae y( t ) be
dx u u( t ) dt
流体质点加速度:
dy v v(t ) dt
dz w w( t ) dt
d2x d2y d 2z ax 2 , y 2 , z 2 a a dt dt dt
x(t ) a t y( t ) b t z(t ) 0
y
迹线方程:
x aet y be-t xy ab C
讨论: 本例说明虽然给出的是速度分布式(欧拉法),即各空间点上速 度分量变化规律,仍然可由此求出一指定流体质点在不同时刻经 历的空间位置,即运动轨迹(拉格朗日法)。
例2:如果已知用拉格朗日法表示的流体质点运动为:
2 2 x x 0 y0 cos( t tan1 2 2 1 y x 0 y0 si n ( t tan z z0 y0 ) x0 y0 ) x0
x
x a y b

流体力学-第3章流体运动学

流体力学-第3章流体运动学

第3章流体运动学选择题:【3.1】 用欧拉法表示流体质点的加速度a 等于:(a )22d d t r ;(b )v t ∂∂;(c )()v v ⋅∇;(d )()t ∂+⋅∇∂vv v。

解:用欧拉法表示的流体质点的加速度为()d d t t∂==+∇∂v va v v (d ) 【3.2】 恒定流是:(a )流动随时间按一定规律变化;(b )各空间点上的运动要素不随时间变化;(c )各过流断面的速度分布相同;(d )迁移加速度为零。

解:恒定流是指用欧拉法来观察流体的运动,在任何固定的空间点若 流体质点的所有物理量皆不随时间而变化的流动.(b )【3.3】 一元流动限于:(a )流线是直线;(b )速度分布按直线变化;(c )运动参数是一个空间坐标和时间变量的函数;(d )运动参数不随时间变化的流动。

解:一维流动指流动参数可简化成一个空间坐标的函数。

(c )【3.4】 均匀流是:(a )当地加速度为零;(b )迁移加速度为零;(c )向心加速度为零;(d )合加速度为零。

解:按欧拉法流体质点的加速度由当地加速度和变位加速度(亦称迁移加速度)这两部分组成,若变位加速度等于零,称为均匀流动 (b )【3.5】 无旋运动限于:(a )流线是直线的流动;(b )迹线是直线的流动;(c )微团无旋转的流动;(d )恒定流动。

解:无旋运动也称势流,是指流体微团作无旋转的流动,或旋度等于零的流动。

(d ) 【3.6】 变直径管,直径1320mm d =,2160mm d =,流速1 1.5m/s V =。

2V 为:(a )3m/s ;(b )4m/s ;(c )6m/s ;(d )9m/s 。

解:按连续性方程,22112244V d V d ππ=,故2212123201.56m/s160d V V d ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭(c )【3.7】 平面流动具有流函数的条件是:(a )理想流体;(b )无旋流动;(c )具有流速势;(d )满足连续性。

《流体力学》课后习题详细解答

《流体力学》课后习题详细解答
克服轴承摩擦所消耗的功率为
1-8解:
或,由 积分得
1-9解:法一:5atm
10atm
=0.537 x 10-9x (10-5) x98.07 x 103= 0.026%
法二: ,积分得
1-10解:水在玻璃管中上升高度
h =
水银在玻璃管中下降的高度
H= mm
第二章流体静力学
2-1解:已知液体所受质量力的x向分量为–a ,z向分量为-g。液体平衡方程为
重心C位于浮心之上,偏心距
沉箱绕长度方向的对称轴y轴倾斜时稳定性最差。浮面面积A=15m2。浮面关于y
轴的惯性矩和体积排量为
定倾半径
可见, >e,定倾中心高于重心,沉箱是稳定的。
第三章流体运动学
3-1解:质点的运动速度
质点的轨迹方程
3-Байду номын сангаас解:
由 和 ,得

3-3解:当t=1s时,点A(1,2)处的流速
线速度u = 0r,速度环量
(2)半径r+dr的圆周封闭流线的速度环量为

忽略高阶项2 0dr2,得d
(3)设涡量为 ,它在半径r和r+dr两条圆周封闭流线之间的圆环域上的积分为d 。因为 在圆环域上可看作均匀分布,得
将圆环域的面积dA=2 rdr代入该式,得
可解出 =2 + dr/r。忽略无穷小量 dr/r,最后的涡量
沉箱绕长度方向的对称轴y倾斜时稳定性最差。浮面面积A=15m2.浮面关于y轴的惯性矩和体积排量为
定倾半径
可见, ,定倾中心低于重心,沉箱是不稳定的。
(2)沉箱的混凝土体积
沉箱的重量
沉箱水平截面面积
设吃水深度为h,取水的密度 =1000kg/m3.浮力F等于重量G。有

流体力学课件第三章例题与习题

流体力学课件第三章例题与习题

uz
ux z
2 2(2t 2x 2 y) 2(t y z) 0(t x z) t3 x2, y2,z1
ay
Du y Dt
u y t
ux
u y x
uy
u y y
uz
u y z
az
Du z Dt
uz t
ux
uz x
uy
uz y
uz
uz z
习题 3-8
u
x
u y
xy2 1
ln
y
C1
ln( x 2) ln( z 3) C2
经过空间点 (3,1,4)
流线方程为:
ln( x 2) 1 ln y
3
ln( x 2) ln( z 3)
CC12
0 0
x
1
y3
2
x z 1
例题:已知某平面流场速度分布为:
ux
t
x 3
uy y 2
求其流线方程和迹线方程。
ln( x t)( y t) C
t=0时过(-1,-1)
C0
xy 1
例题:已知某平面流场速度分布为:
ux x t uy y t
求在t=0时过(-1,-1)其流线方程和迹线方程。
解:
迹线方程:
dx dy dt
xt yt
dx xt
dt
dy
dt
y t
dx ddyt dt
t 3) t
ln
ln C1 C2
x 3
y C2eC1 2
x C1(t 3)
y
C2et
2
例题:已知某平面流场速度分布为:
ux x t uy y t
求在t=0时过(-1,-1)其流线方程和迹线方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 流体力学 习题
牟艳秋
Z1:
注射器活塞面积为S 1=1.2cm2,而注射 针针孔的截面S 2=0.25mm2。当注射器 水平放置时,用F=49N的力压迫活塞, 使之移动L=4cm,问水从注射器中流 出需要多少时间?
解: ;;
对针孔与活塞横截面积处应用伯努利方

程和连续性原理 ,得
p0

H
1 0,
h


D(
D 2
)2


d

(
d 2
)2
D D2 d d 2

p0

1 2
d2


gh

p0

g (h

H)

pD

1 2
D2

1 2
vd
2

gh

g(H

h)解得
vd2 2gH ,
vD2

d4 D4
vd2
2
d4 D4
gH
由方程pD

1 2
vD2
F S1

1 2
v12

p0

1 2
v22
整理,得
1S1 2 S2
F S1

1 2
12

1 2

S12 S22
12
解得 1
2F S22
S1(S12 S22)
t L ?
1
Z2
有一喷泉竖直喷出高度
为H的水柱,喷泉的喷嘴
具有上细下粗的截锥形
状。其上截面的直径为d。
H
下截面的直径为D。喷嘴
的高度为h,求喷嘴下截
h
面积的计示压强?(计
示压强为实际压强与大
气压强之差)
解:
选取三个截面S1,Sd,SD ,列伯努利方程,得
pd

1 2
d2

ghd

p1

1 2
12

gh1

pD

1 2
D2
ghD
其中, p1 pd p0 ,
hD 0, hd h, h1 H h
h Q2 ( 1 1 )
2g
S
2 A
S
2 B
2gS22
解得t
t
dt
S12 S22
H 1
h 2dh
( S12 1) 2H
0
2gS22 0
S22
g
Z4
水通过内径为0.20m的管子,从水塔 底部流出,水塔内水面高出排水管出 口25m。如果维持水位差不变,并设 每立方米水通过全部管道能量损失为 2.4×105J。试求每小时由管子排出的 水量为多少立方米?
p0

1 2
12

gh

p0

1 2
22
S1v1 S2v2
解得
v2
2ghS12 S12 S22
S1 H
h S2

v1

dh dt
连续性原理可写为S1
dh dt

S2
2ghS12
S12

S
2 2
整理,得dt S1
S12

S
2 2
dh

S12
S22
1
h 2dh
S2 2ghS12
解:
对水塔内水面和水塔底部管截面列粘滞流
体的伯努利方程,有
p0

gh

p0

1 2
22

A
h 25m, A 2.4105 J
解得2 3.16m / s
Q

QV

t

v2S2t

3.16
(
0.20)2 2

3600

?
Z5
Байду номын сангаас
如图所示的装置中,液体在水平管道 中流动,截面B与大气相通。盆中液体 恰能被吸上时,证明下式成立,即
Q2 1 1
h ( )
2g
S
2 A
S
2 B
其中SA、SB分别为管道
A、B处的截面积,Q为
流量。
解:
盆中液体恰能被吸上时,有
pB p0, pA p0 gh
对A、B截面处列伯努利方程,得
p0

1 2
vB2

p0

gh

1 2

2 A
将vA

Q SA
, vB

Q SB
代入上式,解得

p0

g(H

h)解得
计示压强:pD p0 (1 d 4 / D4 ) gH gh
Z3
一柱形容器装有高度为H的液体。如
果在底部开一小孔,让液体流出。设
容器截面积为S1,小孔面积为S2。求
液体全部流出所需时间?
S1 H
h S2
解:
对液面和小孔截面列伯努利方程和连续性
原理,有
相关文档
最新文档